WO2007093531A1 - Verfahren zur herstellung wasserabsorbierender polymerpartikel durch polymerisation von tropfen einer monomerlösung - Google Patents

Verfahren zur herstellung wasserabsorbierender polymerpartikel durch polymerisation von tropfen einer monomerlösung Download PDF

Info

Publication number
WO2007093531A1
WO2007093531A1 PCT/EP2007/051146 EP2007051146W WO2007093531A1 WO 2007093531 A1 WO2007093531 A1 WO 2007093531A1 EP 2007051146 W EP2007051146 W EP 2007051146W WO 2007093531 A1 WO2007093531 A1 WO 2007093531A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer particles
water
monomer solution
absorbing polymer
gas phase
Prior art date
Application number
PCT/EP2007/051146
Other languages
English (en)
French (fr)
Inventor
Dennis LÖSCH
Volker Seidl
Matthias Weismantel
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Publication of WO2007093531A1 publication Critical patent/WO2007093531A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/04Polymerisation in solution
    • C08F2/10Aqueous solvent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/103Esters of polyhydric alcohols or polyhydric phenols of trialcohols, e.g. trimethylolpropane tri(meth)acrylate

Definitions

  • the present invention relates to a process for producing water-absorbing polymer particles by polymerization of droplets of a monomer solution in a gas phase surrounding the droplets, the polymer particles having an average diameter of at least 150 ⁇ m and the oxygen content of the gas phase being from 0.0005 to 0.2 vol. %, wherein the polymerization takes place in drops in a homogeneous phase.
  • Water-absorbing polymers are used as aqueous solutions absorbent products for the production of diapers, tampons, sanitary napkins and other hygiene articles, but also as water-retaining agents in agricultural horticulture.
  • the earlier German patent applications with the file references 102004042946.4, 102004042948.3 and 102004042955.0 describe the production of thickeners by spray polymerization.
  • the object of the present invention was to provide an improved process for producing water-absorbing polymer particles with a low proportion of residual monomers and a high free swellability.
  • the object was achieved by a method for producing water-absorbing polymer particles by polymerization of drops of a monomer solution containing
  • the polymer particles have an average diameter of at least 150 microns and the oxygen content of the gas phase from 0.0005 to 0.2 vol .-%, wherein the polymerization takes place in droplets in a homogeneous phase.
  • the average diameter of the polymer particles is preferably at least 200 .mu.m, more preferably from 250 to 600 .mu.m, very particularly from 300 to 500 .mu.m, wherein the particle diameter can be determined by light scattering and means the volume-averaged mean diameter.
  • 90% of the polymer particles have a diameter of preferably 100 to 800 .mu.m, more preferably from 150 to 700 .mu.m, most preferably from 200 to 600 .mu.m.
  • the oxygen content of the gas phase is preferably 0.001 to 0.15% by volume, more preferably 0.002 to 0.1% by volume, most preferably 0.005 to 0.05% by volume.
  • the gas phase preferably contains only inert gases besides oxygen, i. Gases which do not interfere with the polymerization under reaction conditions, for example nitrogen and / or water vapor.
  • the monomers a) are water-soluble, i. the solubility in water at 23 ° C. is typically at least 1 g / 100 g of water, preferably at least 5 g / 100 g of water, more preferably at least 25 g / 100 g of water, most preferably at least 50 g / 100 g of water preferably at least one acid group each.
  • the concentration of the monomers a) in the monomer solution is usually from 2 to 80% by weight, preferably from 5 to 70% by weight, particularly preferably from 10 to 60% by weight.
  • Suitable monomers a) are, for example, ethylenically unsaturated carboxylic acids, such as acrylic acid, methacrylic acid, maleic acid, fumaric acid and itaconic acid. Particularly preferred monomers are acrylic acid and methacrylic acid. Very particular preference is given to acrylic acid.
  • the preferred monomers a) have at least one acid group, wherein the acid groups are preferably at least partially neutralized.
  • the proportion of acrylic acid and / or salts thereof in the total amount of monomers a) is preferably at least 50 mol%, particularly preferably at least 90 mol%, very particularly preferably at least 95 mol%.
  • the acid groups of the monomers a) are usually partially neutralized, preferably from 25 to 85 mol%, preferably from 50 to 80 mol%, particularly preferably from 60 to 75 mol%, where the customary neutralizing agents can be used, preferably alkali metal hydroxides, alkali metal oxides , Alkali metal carbonates or alkali metal hydrogencarbonates and mixtures thereof.
  • the customary neutralizing agents can be used, preferably alkali metal hydroxides, alkali metal oxides , Alkali metal carbonates or alkali metal hydrogencarbonates and mixtures thereof.
  • alkali metal salts and ammonium salts can be used.
  • Sodium and potassium are particularly preferred as the alkali metals, but most preferred are sodium hydroxide, sodium carbonate or sodium bicarbonate and mixtures thereof.
  • the neutralization is achieved by mixing the neutralizing agent as an aqueous solution, as a melt, or preferably as a solid.
  • Preferred hydroquinone half ethers are hydroquinone monomethyl ether (MEHQ) and / or tocopherols.
  • Tocopherol is understood as meaning compounds of the following formula
  • R 1 is hydrogen or methyl
  • R 2 is hydrogen or methyl
  • R 3 is hydrogen or methyl
  • R 4 is hydrogen or an acid radical having 1 to 20 carbon atoms.
  • Preferred radicals for R 4 are acetyl, ascorbyl, succinyl, nicotinyl and other physiologically acceptable carboxylic acids.
  • the carboxylic acids can be mono-, di- or tricarboxylic acids.
  • R 1 is particularly preferably hydrogen or acetyl. Especially preferred is RRR-alpha-tocopherol.
  • the monomer solution preferably contains at most 130 ppm by weight, more preferably at most 70 ppm by weight, preferably at least 10 ppm by weight, more preferably at least 30 ppm by weight, in particular by 50 ppm by weight, hydroquinone, in each case based on Acrylic acid, wherein acrylic acid salts are taken into account as acrylic acid.
  • an acrylic acid having a corresponding content of hydroquinone half-ether can be used.
  • the crosslinkers b) are compounds having at least two free-radically polymerizable groups which can be copolymerized into the polymer network in a free-radical manner.
  • Suitable crosslinkers b) are, for example, ethylene glycol dimethacrylate, diethylene glycol diacrylate, allyl methacrylate, trimethylolpropane triacrylate, triallylamine, tetraallyloxyethane, as described in EP-A-0 530 438, di- and triacrylates, as in EP-A-0 547 847, EP-A-0 559 476, EP-A-0 632 068, WO-A-93/21237, WO-A-03/104299, WO-A-03/104300, WO-A-03/104301 and DE-A-103 31 450, mixed acrylates which contain, in addition to acrylate groups, further ethylenically unsaturated groups, as described in DE-A-103 314 56 and the earlier German
  • Suitable crosslinkers b) are especially N, N'-methylenebisacrylamide and N 1 N'-methylenebismethacrylamide, esters of unsaturated mono- or polycarboxylic acids of polyols, such as diacrylate or triacrylate, for example butanediol or ethylene glycol di acrylate or methacrylate, and trimethylolpropane triacrylate and allyl compounds, such as allyl (meth) acrylate, triallyl cyanurate, maleic acid diallyl esters, polyallyl esters, tetraallyloxyethane, triallylamine, tetraallylethylenediamine, allyl esters of phosphoric acid and vinylphosphonic acid derivatives, as described, for example, in EP-A-0 343 427.
  • esters of unsaturated mono- or polycarboxylic acids of polyols such as diacrylate or triacrylate, for example butanediol or ethylene glycol di acrylate
  • crosslinkers b) are pentaerythritol di-pentaerythritol tri- and pentaerythritol tetraallyl ethers, polyethylene glycol diallyl ether, ethylene glycol diallyl ether, glycerol and glycerol triallyl ethers, polyallyl ethers based on sorbitol, and ethoxylated variants thereof.
  • Useful in the process according to the invention are di (meth) acrylates of polyethylene glycols, where the polyethylene glycol used has a molecular weight between 300 and 1000.
  • crosslinkers b) are di- and triacrylates of 3 to 15 times ethoxylated glycerol, 3 to 15 times ethoxylated trimethylolpropane, 3 to 15 times ethoxylated trimethylolethane, in particular di- and triacrylates of 2 to 6-fold ethoxylated glycerol or trimethylolpropane, the 3-fold propoxylated glycerol or trimethylolpropane, and the 3-fold mixed ethoxylated or propoxylated glycerol or trimethylolpropane, the 15-fold ethoxylated glycerol or trimethylolpropane, and the 40-times ethoxylated glycerol, trimethylolethane or trimethylolpropane.
  • Very particularly preferred crosslinkers b) are the polyethoxylated and / or propoxylated glycerols esterified with acrylic acid or methacrylic acid to form di- or triacrylates, as described, for example, in WO-A-03/104301. Particularly advantageous are di- and / or triacrylates of 3- to 10-fold ethoxylated glycerol. Very particular preference is given to diacrylates or triacrylates of 1 to 5 times ethoxylated and / or propoxylated glycerol. Most preferred are the triacrylates of 3 to 5 times ethoxylated and / or propoxylated glycerin.
  • At least 0.05% by weight, particularly preferably at least 0.1% by weight, very particularly preferably at least 0.15% by weight, of crosslinking agent b) are preferably used.
  • initiators c) it is possible to use all compounds which decompose into free radicals under the polymerization conditions, for example peroxides, hydroperoxides, hydrogen peroxide, persulfates, azo compounds and the so-called redox initiators. Preference is given to the use of water-soluble initiators. In some cases, it is advantageous to use mixtures of different initiators, for example mixtures of hydrogen peroxide and sodium or potassium peroxodisulfate. Mixtures of hydrogen peroxide and sodium peroxodisulfate can be used in any proportion.
  • Particularly preferred initiators c) are azo initiators, such as 2,2'-azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride and 2,2'-azobis [2- (5-methyl-2-imidazoline-2 - yl) propane] dihydrochloride, and photoinitiators, such as 2-hydroxy-2-methylpropiophenone and 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one, redox initiato such as sodium persulfate / hydroxymethylsulfinic acid, ammonium peroxodisulfate / hydroxymethylsulfinic acid, hydrogen peroxide / hydroxymethylsulfinic acid, sodium persulfate / ascorbic acid, ammonium peroxodisulfate / ascorbic acid and hydrogen peroxide / ascorbic acid, photoinitiators, such as 1- [4- (2-hydroxyethoxy) -phen
  • the monomer solution may be polymerized prior to polymerization by inerting, i. Flow through with an inert gas, preferably nitrogen, to be freed of dissolved oxygen.
  • an inert gas preferably nitrogen
  • the oxygen content of the monomer solution before polymerization is reduced to less than 1 ppm by weight, more preferably less than 0.5 ppm by weight.
  • the polymerization inhibitors can also be removed by absorption, for example on activated carbon.
  • the monomer solution can be dripped off for the polymerization in the gas phase.
  • the polymerization in the monomer solution drops takes place in a homogeneous phase. This means that the monomer solution is homogeneous and that the monomer solution remains homogeneous during the polymerization.
  • the polymer may swell during the polymerization but not precipitate and form a second phase in the drop. Otherwise, several polymer nuclei would form in each drop, forming agglomerates of very small primary particles during drying.
  • the aim of the method according to the invention is the production of one primary particle per drop. Therefore, the monomers a) and the crosslinkers b) are to be selected so that the resulting polymer in the aqueous phase of the drop is swellable.
  • a monomer solution is metered to form droplets in the gas phase.
  • the dripping of the monomer solution can be carried out, for example, by means of a dropletizer plate.
  • a dropletizer plate is a plate having at least one bore, the liquid passing from above through the bore.
  • the dropletizer plate or the liquid can be set in vibration, whereby an ideally monodisperse droplet chain is produced on the underside of the dropletizer per bore.
  • the number and size of the holes are selected according to the desired capacity and drop size.
  • the drop diameter is usually 1, 9 times the diameter of the bore. It is important here that the liquid to be dripped does not pass through the bore too quickly or the pressure loss through the bore is not too great. Otherwise, the liquid is not dripped, but the liquid jet is torn due to the high kinetic energy (sprayed).
  • the rate at which the monomer solution passes through the bore is preferably less than 0.2 m / s, more preferably less than 0.1 m / s, most particularly preferably less than 0.05 m / s.
  • the pressure loss through the bore is preferably less than 1 bar, more preferably less than 0.5 bar, most preferably less than 0.3 bar.
  • the dropletizer plate typically has at least one, preferably at least 10, more preferably at least 50, and usually up to 10,000, preferably up to 5,000, more preferably up to 1,000, holes, the holes are usually evenly distributed over the Vertropferplatte, preferably in the so-called triangle division, ie three holes each form the corners of an equilateral triangle.
  • the diameter of the holes is adjusted to the desired drop size.
  • the droplet size can also be used to adjust the size of the polymer particles.
  • the support plate may be advantageous to place the Vertropferplatte on a support plate, wherein the support plate also has holes.
  • the holes of the support plate on a larger diameter than the holes of the Vertropferplatte and are arranged so that there is a concentric bore of the support plate under each bore of the Vertropferplatte.
  • This arrangement allows a quick change of the dropletizer plate, for example to produce droplets of a different size.
  • a system of dropletizer plate and carrier plate is considered a dropletizer in the context of this invention, i. the bottom of the system drop-off plate / backing plate is the bottom of the drop-down plate.
  • the dripping can also be carried out by means of pneumatic drawing nozzles, rotation, cutting of a jet or quickly actuable micro-valve nozzles.
  • a jet of liquid is accelerated along with a gas flow through a shutter.
  • the diameter of the liquid jet and thus the droplet diameter can be influenced.
  • the exiting liquid jet can also be cut into defined segments by means of a rotating knife. Each segment then forms a drop.
  • micro-valve nozzles directly drops are generated with a defined volume of liquid.
  • the gas phase flows as a carrier gas through the reaction space.
  • the carrier gas can be passed through the reaction space in cocurrent or in countercurrent to the freely falling drops of the monomer solution, preferably in cocurrent.
  • the carrier gas after a passage at least partially, preferably at least 50%, more preferably at least 75%, recycled as recycle gas into the reaction space.
  • a subset of the carrier gas is discharged after each pass, preferably up to 10%, more preferably up to 3%, most preferably up to 1%.
  • the polymerization is preferably carried out in a laminar gas flow.
  • a laminar gas flow is a gas flow in which the individual layers of the flow do not mix but move in parallel.
  • a measure of the flow conditions is the Reynolds number (Re). Below a critical Reynolds number (Fteknt) of 2300, the gas flow is laminar.
  • the Reynolds number of the laminar gas flow is preferably less than 2000, more preferably less than 1500, most preferably less than 1000.
  • the gas velocity is preferably adjusted so that the flow in the reactor is directed, for example, there are no convection vortices opposite the general flow direction, and is for example 0.02 to 2.5 m / s, preferably 0.05 to 2 m / s ,
  • the temperature in the reaction space in the thermally induced polymerization is preferably 70 to 250.degree. C., more preferably 100 to 220.degree. C., most preferably 120 to 200.degree.
  • the carrier gas is expediently preheated to the reaction temperature in front of the reactor.
  • the reaction can be carried out in overpressure or under reduced pressure, a negative pressure of up to 100 mbar relative to the ambient pressure is preferred.
  • the reaction offgas ie the carrier gas leaving the reaction space
  • water and unreacted monomer condense a Thereafter, the reaction gas can be at least partially reheated and recycled as recycle gas in the reactor.
  • Part of the reaction exhaust gas can be discharged and replaced by fresh carrier gas. can be set, wherein contained in the reaction gas and water unreacted monomers a) can be separated and recycled.
  • a heat network that is, a portion of the waste heat during cooling of the exhaust gas is used to heat the circulating gas.
  • the reactors can be accompanied by heating.
  • the heat tracing is adjusted so that the wall temperature is at least 5 ° C above the internal reactor temperature and the condensation on the reactor walls is reliably avoided.
  • the reaction product can be removed from the reactor in a conventional manner, preferably dried on the ground via a screw conveyor, and optionally to the desired residual moisture content and to the desired residual monomer content.
  • the polymer particles can subsequently be postcrosslinked.
  • Suitable postcrosslinkers are compounds containing at least two groups which can form covalent bonds with the carboxylate groups of the hydrogel.
  • Suitable compounds are, for example, alkoxysilyl compounds, polyaziridines, polyamines, polyamidoamines, di- or polyglycidyl compounds, as described in EP-A-0 083 022, EP-A-0 543 303 and EP-A-0 937 736, di- or polyfunctional alcohols, as described in DE-C- 33 14 019, DE-C-35 23 617 and EP-AO 450 922, or ⁇ -hydroxyalkylamides, as described in DE-A-102 04 938 and US Pat. No. 6,239,230.
  • DE-A-40 20 780 cyclic carbonates, in DE-A-198 07 502 2- oxazolidone and its derivatives, such as 2-hydroxyethyl-2-oxazolidone, in DE-A-198 07 992 bis- and poly 2-oxazolidinone, in DE-A-198 54 573 2-oxotetrahydro-1,3-oxazine and its derivatives, in DE-A-198 54 574 N-acyl-2-oxazolidones, in DE-A-102 04 937 cyclic ureas, in DE-A-103 34 584 bicyclic amide acetals, in EP-A-1 199 327 oxetanes and cyclic ureas and in WO-A-03/031482 morpholine-2,3-dione and its derivatives are described as suitable postcrosslinkers.
  • the process according to the invention makes it possible to produce water-absorbing polymer particles having a low content of unreacted monomers and having a high free swellability. Surprisingly, it was found that the two parameters can be influenced differently by the oxygen content of the gas phase, so that an optimal combination of properties is obtained in a narrow range.
  • Another object of the present invention are water-absorbing polymer particles which are obtainable by the process according to the invention.
  • a further subject of the present invention are processes for the production of hygiene articles, in particular diapers, comprising the use of water-absorbing polymer particles produced according to the abovementioned method.
  • Another object of the present invention is the use of inventive water-absorbing polymer particles in hygiene articles, for thickening of waste, especially medical waste, or as a water-retaining agent in agriculture
  • the water-absorbing polymer particles are tested by the test methods described below.
  • Measurements should be taken at an ambient temperature of 23 ⁇ 2 ° C and a relative humidity of 50 ⁇ 10%, unless otherwise specified.
  • the water-absorbing polymers are thoroughly mixed before the measurement.
  • Residual monomers Residual monomers
  • the residual monomers of the water-absorbing polymer particles are determined according to the test method No. 410.2-02 "Residual monomers" recommended by the EDANA (European Disposables and Nonwovens Association).
  • the free swellability of the water-absorbing polymer particles is determined according to the test method No. 440.2-02 "Free swell capacity" recommended by the EDANA (European Disposables and Nonwovens Association).
  • the EDANA test methods are available, for example, from the European Disposables and Nonwovens Association, Avenue Eugene Plasky 157, B-1030 Brussels, Belgium.
  • the initiator was mixed with the monomer solution just before the dropletizer via a static mixer.
  • the initiator used was a 2.5% strength by weight solution of 2,2'-azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride in water.
  • the metering rate of the initiator solution was 0.9 kg / h.
  • the gas outlet temperature from the dropletizing tower was 130 ° C.
  • the average TeN- chen bionic salt obtained was 270 microns.
  • the water-absorbing polymer particles had the following properties:
  • Residual monomers 0.70 wt.% FSC: 60.2 g / g
  • Example 2 The procedure was as in Example 1.
  • the oxygen concentration in Vertropfungs- tower was set to 0.001 vol .-%.
  • the water-absorbing polymer particles had the following properties:
  • Residual monomers 0.69 wt.% FSC: 61.7 g / g
  • Example 2 The procedure was as in Example 1.
  • the oxygen concentration in Vertropfungs- tower was set to 0.01 vol .-%.
  • the water-absorbing polymer particles had the following properties:
  • Residual monomers 0.70 wt.% FSC: 64.2 g / g
  • Example 2 The procedure was as in Example 1.
  • the oxygen concentration in Vertropfungs- tower was set to 0.1 vol .-%.
  • the water-absorbing polymer particles had the following properties: Residual monomers 0.80% by weight
  • Example 2 The procedure was as in Example 1.
  • the oxygen concentration in drop tower was set to 0.5% by volume.
  • the water-absorbing polymer particles had the following properties:

Abstract

Verfahren zur Herstellung wasserabsorbierender Polymerpartikel durch Polymerisation von Tropfen einer Monomerlösung in einer die Tropfen umgebenden Gasphase, wobei die Polymerpartikel einem mittleren Durchmesser von mindestens 150 µm aufweisen und der Sauerstoffgehalt der Gasphase von 0,0005 bis 0,2 Vol.-% beträgt, wobei die Polymerisation im Tropfen in homogener Phase stattfindet.

Description

Verfahren zur Herstellung wasserabsorbierender Polymerpartikel durch Polymerisation von Tropfen einer Monomerlösung
Beschreibung
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung wasserabsorbierender Polymerpartikel durch Polymerisation von Tropfen einer Monomerlösung in einer die Tropfen umgebenden Gasphase, wobei die Polymerpartikel einem mittleren Durchmesser von mindestens 150 μm aufweisen und der Sauerstoffgehalt der Gasphase von 0,0005 bis 0,2 Vol.-% beträgt, wobei die Polymerisation im Tropfen in homogener Phase stattfindet.
Weitere Ausführungsformen der vorliegenden Erfindung sind den Ansprüchen, der Beschreibung und den Beispielen zu entnehmen. Es versteht sich, dass die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale des erfindungsgemäßen Gegenstandes nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen verwendbar sind, ohne den Rahmen der Erfindung zu verlassen.
Die Herstellung wasserabsorbierender Polymerpartikel wird in der Monographie "Modern Superabsorbent Polymer Technology", F. L. Buchholz und AT. Graham, Wiley- VCH, 1998, Seiten 71 bis 103, beschrieben.
Wasserabsorbierende Polymere werden als wässrige Lösungen absorbierende Pro- dukte zur Herstellung von Windeln, Tampons, Damenbinden und anderen Hygieneartikeln, aber auch als wasserzurückhaltende Mittel im landwirtschaftlichen Gartenbau verwendet.
Durch Sprühpolymerisation konnten die Verfahrensschritte Polymerisation und Trock- nung zusammengefasst werden. Zusätzlich konnte die Partikelgröße durch geeignete Verfahrensführung in gewissen Grenzen eingestellt werden.
Die Herstellung wasserabsorbierender Polymerpartikel durch Polymerisation von Tropfen einer Monomerlösung wird beispielsweise in EP-A-O 348 180, WO-A-96/40427, US-5,269,980, DE-A-103 14 466, DE-A-103 40 253 und DE-A-102004024437 beschrieben.
Die älteren deutschen Patentanmeldungen mit den Aktenzeichen 102004042946.4, 102004042948.3 und 102004042955.0 beschreiben die Herstellung von Verdickern durch Sprühpolymerisation. Aufgabe der vorliegenden Erfindung war die Bereitstellung eines verbesserten Verfahrens zur Herstellung wasserabsorbierender Polymerpartikel mit einem geringen Anteil an Restmonomeren und einer hohen freien Quellbarkeit.
Gelöst wurde die Aufgabe durch ein Verfahren zur Herstellung wasserabsorbierender Polymerpartikel durch Polymerisation von Tropfen einer Monomerlösung, enthaltend
a) mindestens ein wasserlösliches ethylenisch ungesättigtes Monomer, b) mindestens einen Vernetzer, c) mindestens einen Initiator, d) Wasser,
in einer die Tropfen umgebenden Gasphase, dadurch gekennzeichnet, dass die Polymerpartikel einem mittleren Durchmesser von mindestens 150 μm aufweisen und der Sauerstoffgehalt der Gasphase von 0,0005 bis 0,2 Vol.-% beträgt, wobei die Polymerisation im Tropfen in homogener Phase stattfindet.
Der mittlere Durchmesser der Polymerpartikel beträgt vorzugsweise mindestens 200 μm, besonders bevorzugt von 250 bis 600 μm, ganz besonders von 300 bis 500 μm, wobei der Partikeldurchmesser durch Lichtstreuung bestimmt werden kann und den volumengemittelten mittleren Durchmesser bedeutet. 90% der Polymerpartikel weisen einen Durchmesser von vorzugsweise 100 bis 800 μm, besonders bevorzugt von 150 bis 700 μm, ganz besonders bevorzugt von 200 bis 600 μm, auf.
Der Sauerstoffgehalt der Gasphase beträgt vorzugsweise 0,001 bis 0,15 Vol.-%, besonders bevorzugt 0,002 bis 0,1 Vol.-%, ganz besonders bevorzugt 0,005 bis 0,05 Vol.-%.
Die Gasphase enthält neben Sauerstoff vorzugsweise nur inerte Gase, d.h. Gase, die unter Reaktionsbedingungen nicht in die Polymerisation eingreifen, beispielsweise Stickstoff und/oder Wasserdampf.
Die Monomeren a) sind wasserlöslich, d.h. die Löslichkeit in Wasser bei 23°C beträgt typischerweise mindestens 1 g/100 g Wasser, vorzugsweise mindestens 5 g/100 g Wasser, besonders bevorzugt mindestens 25 g/100 g Wasser, ganz besonders bevorzugt mindestens 50 g/100 g Wasser, und haben vorzugsweise mindestens je eine Säuregruppe.
Die Konzentration der Monomeren a) in der Monomerlösung beträgt üblicherweise 2 bis 80 Gew.-%, vorzugsweise 5 bis 70 Gew.-%, besonders bevorzugt 10 bis 60 Gew.-
%. Geeignete Monomere a) sind beispielsweise ethylenisch ungesättigte Carbonsäuren, wie Acrylsäure, Methacrylsäure, Maleinsäure, Fumarsäure und Itaconsäure. Besonders bevorzugte Monomere sind Acrylsäure und Methacrylsäure. Ganz besonders bevorzugt ist Acrylsäure.
Die bevorzugten Monomere a) haben mindestens eine Säuregruppe, wobei die Säuregruppen vorzugsweise zumindest teilweise neutralisiert sind.
Der Anteil an Acrylsäure und/oder deren Salzen an der Gesamtmenge der Monomeren a) beträgt vorzugsweise mindestens 50 mol-%, besonders bevorzugt mindestens 90 mol-%, ganz besonders bevorzugt mindestens 95 mol-%.
Die Säuregruppen der Monomere a) sind üblicherweise teilweise neutralisiert, vorzugsweise zu 25 bis 85 mol-%, bevorzugt zu 50 bis 80 mol-%, besonders bevorzugt 60 bis 75 mol-%, wobei die üblichen Neutralisationsmittel verwendet werden können, vorzugsweise Alkalimetallhydroxide, Alkalimetalloxide, Alkalimetallcarbonate oder Alkali- metallhydrogencarbonate sowie deren Mischungen. Statt Alkalimetallsalzen können auch Ammoniumsalze verwendet werden. Natrium und Kalium sind als Alkalimetalle besonders bevorzugt, ganz besonders bevorzugt sind jedoch Natriumhydroxid, Natri- umcarbonat oder Natriumhydrogencarbonat sowie deren Mischungen. Üblicherweise wird die Neutralisation durch Einmischung des Neutralisationsmittels als wässrige Lösung, als Schmelze, oder bevorzugt auch als Feststoff erreicht. Beispielsweise kann Natriumhydroxid mit einem Wasseranteil deutlich unter 50 Gew.-% als wachsartige Masse mit einem Schmelzpunkt oberhalb 23°C vorliegen. In diesem Fall ist eine Dosie- rung als Stückgut oder Schmelze bei erhöhter Temperatur möglich.
Die Monomere a), insbesondere Acrylsäure, enthalten vorzugsweise bis zu 0,025 Gew.-% eines Hydrochinonhalbethers. Bevorzugte Hydrochinonhalbether sind Hydro- chinonmonomethylether (MEHQ) und/oder Tocopherole.
Unter Tocopherol werden Verbindungen der folgenden Formel verstanden
Figure imgf000004_0001
wobei R1 Wasserstoff oder Methyl, R2 Wasserstoff oder Methyl, R3 Wasserstoff oder Methyl und R4 Wasserstoff oder ein Säurerest mit 1 bis 20 Kohlenstoffatomen bedeutet. Bevorzugte Reste für R4 sind Acetyl, Ascorbyl, Succinyl, Nicotinyl und andere physiologisch verträgliche Carbonsäuren. Die Carbonsäuren können Mono-, Di- oder Tricar- bonsäuren sein.
Bevorzugt ist alpha-Tocopherol mit R1 = R2 = R3 = Methyl, insbesondere racemisches alpha-Tocopherol. R1 ist besonders bevorzugt Wasserstoff oder Acetyl. Insbesondere bevorzugt ist RRR-alpha-Tocopherol.
Die Monomerlösung enthält bevorzugt höchstens 130 Gew.-ppm, besonders bevorzugt höchstens 70 Gew.-ppm, bevorzugt mindesten 10 Gew.-ppm, besonders bevorzugt mindesten 30 Gew.-ppm, insbesondere um 50 Gew.-ppm, Hydrochinonhalbether, jeweils bezogen auf Acrylsäure, wobei Acrylsäuresalze als Acrylsäure mit berücksichtigt werden. Beispielsweise kann zur Herstellung der Monomerlösung eine Acrylsäure mit einem entsprechenden Gehalt an Hydrochinonhalbether verwendet werden.
Die Vernetzer b) sind Verbindungen mit mindestens zwei radikalisch polymerisierbaren Gruppen, die in das Polymernetzwerk radikalisch einpolymerisiert werden können. Geeignete Vernetzer b) sind beispielsweise Ethylenglykoldimethacrylat, Diethylenglykoldi- acrylat, Allylmethacrylat, Trimethylolpropantriacrylat, Triallylamin, Tetraallyloxyethan, wie in EP-A-O 530 438 beschrieben, Di- und Triacrylate, wie in EP-A-O 547 847, EP-A- 0 559 476, EP-A-O 632 068, WO-A-93/21237, WO-A-03/104299, WO-A-03/104300, WO-A-03/104301 und in DE-A-103 31 450 beschrieben, gemischte Acrylate, die neben Acrylatgruppen weitere ethylenisch ungesättigte Gruppen enthalten, wie in DE-A-103 314 56 und der älteren deutschen Anmeldung mit dem Aktenzeichen 10355401.7 be- schrieben, oder Vernetzermischungen, wie beispielsweise in DE-A-195 43 368, DE-A- 196 46 484, WO-A-90/15830 und WO-A-02/32962 beschrieben.
Geeignete Vernetzer b) sind insbesondere N,N'-Methylenbisacrylamid und N1N'- Methylenbismethacrylamid, Ester ungesättigter Mono- oder Polycarbonsäuren von Polyolen, wie Diacrylat oder Triacrylat, beispielsweise Butandiol- oder Ethylenglykoldi- acrylat bzw. -methacrylat sowie Trimethylolpropantriacrylat und Allylverbindungen, wie Allyl(meth)acrylat, Triallylcyanurat, Maleinsäurediallylester, Polyallylester, Tetraallyloxyethan, Triallylamin, Tetraallylethylendiamin, Allylester der Phosphorsäure sowie Vi- nylphosphonsäurederivate, wie sie beispielsweise in EP-A-O 343 427 beschrieben sind. Weiterhin geeignete Vernetzer b) sind Pentaerythritoldi- Pentaerythritoltri- und Pentaerythritoltetraallylether, Polyethylenglykoldiallylether, Ethylenglykoldiallylether, Glyzerindi- und Glyzerintriallylether, Polyallylether auf Basis Sorbitol, sowie ethoxylier- te Varianten davon. Im erfindungsgemäßen Verfahren einsetzbar sind Di(meth)acrylate von Polyethylenglykolen, wobei das eingesetzte Polyethylenglykol ein Molekularge- wicht zwischen 300 und 1000 aufweist. Besonders vorteilhafte Vernetzer b) sind jedoch Di- und Triacrylate des 3- bis 15-fach ethoxylierten Glyzerins, des 3- bis 15-fach ethoxylierten Trimethylolpropans, des 3- bis 15-fach ethoxylierten Trimethylolethans, insbesondere Di- und Triacrylate des 2- bis 6- fach ethoxylierten Glyzerins oder Trimethylolpropans, des 3-fach propoxylierten Glyze- rins oder Trimethylolpropans, sowie des 3-fach gemischt ethoxylierten oder propoxylierten Glyzerins oder Trimethylolpropans, des 15-fach ethoxylierten Glyzerins oder Trimethylolpropans, sowie des 40-fach ethoxylierten Glyzerins, Trimethylolethans oder Trimethylolpropans.
Ganz besonders bevorzugte Vernetzer b) sind die mit Acrylsäure oder Methacrylsäure zu Di- oder Triacrylaten veresterten mehrfach ethoxylierten und/oder propoxylierten Glyzerine wie sie beispielsweise in WO-A-03/104301 beschrieben sind. Besonders vorteilhaft sind Di- und/oder Triacrylate des 3- bis 10-fach ethoxylierten Glyzerins. Ganz besonders bevorzugt sind Di- oder Triacrylate des 1- bis 5- fach ethoxylierten und/oder propoxylierten Glyzerins. Am meisten bevorzugt sind die Triacrylate des 3- bis 5-fach ethoxylierten und/oder propoxylierten Glyzerins. Diese zeichnen sich durch besonders niedrige Restgehalte (typischerweise unter 10 Gew.-ppm) im wasserabsorbierenden Polymer aus und die wässrigen Extrakte der damit hergestellten wasserabsorbierenden Polymere weisen eine fast unveränderte Oberflächenspannung (typi- scherweise mindestens 0,068 N/m) im Vergleich zu Wasser gleicher Temperatur auf.
Bezogen auf das Monomer a) werden vorzugsweise mindestens 0,05 Gew.-%, besonders bevorzugt mindestens 0,1 Gew.-%, ganz besonders bevorzugt mindestens 0,15 Gew.-%, Vernetzer b) eingesetzt.
Als Initiatoren c) können sämtliche unter den Polymerisationsbedingungen in Radikale zerfallende Verbindungen eingesetzt werden, beispielsweise Peroxide, Hydroperoxide, Wasserstoffperoxid, Persulfate, Azoverbindungen und die sogenannten Redoxinitiato- ren. Bevorzugt ist der Einsatz von wasserlöslichen Initiatoren. In manchen Fällen ist es vorteilhaft, Mischungen verschiedener Initiatoren zu verwenden, beispielsweise Mischungen aus Wasserstoffperoxid und Natrium- oder Kaliumperoxodisulfat. Mischungen aus Wasserstoffperoxid und Natriumperoxodisulfat können in jedem beliebigen Verhältnis verwendet werden.
Besonders bevorzugte Initiatoren c) sind Azoinitiatoren, wie 2,2'-Azobis[2-(2- imidazolin-2-yl)propan]dihydrochlorid und 2,2'-Azobis[2-(5-methyl-2-imidazolin-2- yl)propan]dihydrochlorid, und Photoinitiatoren, wie 2-Hydroxy-2-methylpropiophenon und 1-[4-(2-Hydroxyethoxy)-phenyl]-2-hydroxy-2-methyl-1-propan-1-on, Redoxinitiato- ren, wie Natriumpersulfat/ Hydroxymethylsulfinsäure, Ammoniumperoxodisul- fat/Hydroxymethylsulfinsäure, Wasserstoffperoxid/Hydroxymethylsulfinsäure, Natrium- persulfat/Ascorbinsäure, Ammoniumperoxodisulfat/Ascorbinsäure und Wasserstoffpe- roxid/Ascorbinsäure, Photoinitiatoren, wie 1-[4-(2-Hydroxyethoxy)-phenyl]-2-hydroxy-2- methyl-1-propan-1-on, sowie deren Mischungen. Die Initiatoren werden in üblichen Mengen eingesetzt, beispielsweise in Mengen von 0,001 bis 5 Gew.-%, vorzugsweise 0,01 bis 1 Gew.-%, bezogen auf die Monomeren a).
Die bevorzugten Polymerisationsinhibitoren benötigen für eine optimale Wirkung gelös- ten Sauerstoff. Daher kann die Monomerlösung vor der Polymerisation durch Inertisie- rung, d.h. Durchströmen mit einem inerten Gas, vorzugsweise Stickstoff, von gelöstem Sauerstoff befreit werden. Vorzugsweise wird der Sauerstoffgehalt der Monomerlösung vor der Polymerisation auf weniger als 1 Gew.-ppm, besonders bevorzugt auf weniger als 0,5 Gew.-ppm, gesenkt.
Die Polymerisationsinhibitoren können auch durch Absorption, beispielsweise an Aktivkohle, entfernt werden.
Die Monomerlösung kann zur Polymerisation in der Gasphase vertropft werden.
Die Polymerisation in den Monomerlösungstropfen findet in homogener Phase statt. Dies bedeutet, dass die Monomerlösung homogen ist und dass die Monomerlösung auch während der Polymerisation homogen bleibt. Das Polymer darf während der Polymerisation quellen, aber nicht ausfallen und eine zweite Phase im Tropfen bilden. Ansonsten würden in jedem Tropfen mehrere Polymerkeime entstehen, die während der Trocknung Agglomerate sehr kleiner Primärpartikel bilden. Ziel des erfindungsgemäßen Verfahrens ist die Herstellung jeweils eines Primärpartikels pro Tropfen. Daher sind die Monomeren a) und die Vernetzer b) so auszuwählen, dass das entstehende Polymer in der wäßrigen Phase des Tropfens quellbar ist.
Bei der Vertropfung wird eine Monomerlösung unter Ausbildung von Tropfen in die Gasphase dosiert. Die Vertropfung der Monomerlösung kann beispielsweise mittels einer Vertropferplatte durchgeführt werden.
Eine Vertropferplatte ist eine Platte mit mindestens einer Bohrung, wobei die Flüssigkeit von oben durch die Bohrung tritt. Die Vertropferplatte bzw. die Flüssigkeit kann in Schwingungen versetzt werden, wodurch an der Unterseite der Vertropferplatte je Bohrung eine idealerweise monodisperse Tropfenkette erzeugt wird.
Die Anzahl und die Größe der Bohrungen werden gemäß der gewünschten Kapazität und Tropfengröße ausgewählt. Der Tropfendurchmesser beträgt dabei üblicherweise das 1 ,9fache des Durchmessers der Bohrung. Wichtig ist hierbei, dass die zu vertropfende Flüssigkeit nicht zu schnell durch die Bohrung tritt bzw. der Druckverlust über die Bohrung nicht zu groß ist. Ansonsten wird die Flüssigkeit nicht vertropft, sondern der Flüssigkeitsstrahl wird infolge der hohen kinetischen Energie zerrissen (versprüht). Die Geschwindigkeit, mit der die Monomerlösung durch die Bohrung tritt, beträgt vorzugsweise weniger als 0,2 m/s, besonders bevorzugt weniger als 0,1 m/s, ganz besonders bevorzugt weniger als 0,05 m/s. Der Druckverlust über die Bohrung beträgt vorzugsweise weniger als 1 bar, besonders bevorzugt weniger als 0,5 bar, ganz besonders bevorzugt weniger als 0,3 bar.
Die Vertropferplatte weist üblicherweise mindestens eine, vorzugsweise mindestens 10, besonders bevorzugt mindestens 50, und üblicherweise bis zu 10.000, vorzugsweise bis zu 5.000, besonders bevorzugt bis zu 1.000, Bohrungen auf, wobei die Bohrungen üblicherweise gleichmäßig über die Vertropferplatte verteilt sind, vorzugsweise in der sogenannten Dreiecksteilung, d.h. jeweils drei Bohrungen bilden die Ecken eines gleichseitigen Dreiecks.
Der Durchmesser der Bohrungen wird an die gewünschte Tropfengröße angepasst.
Über die Tropfengröße kann auch die Größe der Polymerpartikel eingestellt werden.
Es kann vorteilhaft sein die Vertropferplatte auf eine Trägerplatte aufzulegen, wobei die Trägerplatte ebenfalls Bohrungen aufweist. Dabei weisen die Bohrungen der Trägerplatte einen größeren Durchmesser auf als die Bohrungen der Vertropferplatte auf und sind so angeordnet, dass sich unter jeder Bohrung der Vertropferplatte eine mit ihr konzentrische Bohrung der Trägerplatte befindet. Diese Anordnung ermöglicht einen schnellen Wechsel der Vertropferplatte, beispielsweise um Tropfen einer anderen Größe zu erzeugen. Ein derartiges System aus Vertropferplatte und Trägerplatte gilt als Vertropferplatte im Sinne dieser Erfindung, d.h. die Unterseite des Systems Vertropferplatte/Trägerplatte ist die Unterseite der Vertropferplatte.
Die Vertropfung kann aber auch mittels pneumatischer Ziehdüsen, Rotation, Zerschneiden eines Strahls oder schnell ansteuerbarer Mikroventildüsen durchgeführt werden.
In eine pneumatische Ziehdüse wird ein Flüssigkeitsstrahl zusammen mit einem Gasstrom durch eine Blende beschleunigt. Über die Gasmenge kann der Durchmesser des Flüssigkeitsstrahls und damit der Tropfendurchmesser beeinflusst werden.
Bei der Vertropfung durch Rotation tritt die Flüssigkeit durch die Öffnungen einer rotie- renden Scheibe. Durch die auf die Flüssigkeit wirkende Fliehkraft werden Tropfen definierter Größe abgerissen. Die Rotationsvertropf ung wird beispielsweise in DE-A- 4308842 und US 6338438 beschrieben.
Der austretende Flüssigkeitsstrahl kann aber auch mittels eines rotierenden Messers in definierte Segmente zerschnitten werden. Jedes Segment bildet anschließend einen Tropfen. Bei Verwendung von Mikroventildüsen werden direkt Tropfen mit definiertem Flüssigkeitsvolumen erzeugt.
Bevorzugt strömt die Gasphase als Trägergas durch den Reaktionsraum. Dabei kann das Trägergas im Gleichstrom oder im Gegenstrom zu den frei fallenden Tropfen der Monomerlösung durch den Reaktionsraum geführt werden, bevorzugt im Gleichstrom. Vorzugsweise wird das Trägergas nach einem Durchgang zumindest teilweise, bevorzugt zu mindestens 50%, besonders bevorzugt zu mindestens 75%, als Kreisgas in den Reaktionsraum zurückgeführt. Üblicherweise wird eine Teilmenge des Trägerga- ses nach jedem Durchgang ausgeschleust, vorzugsweise bis zu 10%, besonders bevorzugt bis zu 3%, ganz besonders bevorzugt bis zu 1 %.
Die Polymerisation wird vorzugsweise in einer laminaren Gasströmung durchgeführt. Eine laminare Gasströmung ist eine Gasströmung, bei der sich die einzelnen Schichten der Strömung nicht vermischen, sondern parallel bewegen. Ein Maß für die Strömungsverhältnisse ist die Reynolds-Zahl (Re). Unterhalb einer kritischen Reynolds- Zahl (Fteknt) von 2300 ist die Gasströmung laminar. Die Reynolds-Zahl der laminaren Gasströmung beträgt vorzugsweise weniger als 2000, besonders bevorzugt weniger als 1500, ganz besonders bevorzugt weniger als 1000. Der untere Grenzfall der lami- naren Inertgasströmung ist eine ruhende Inertgasatmosphäre (Re = 0), d.h., es wird nicht kontinuierlich Inertgas eingespeist.
Die Gasgeschwindigkeit wird vorzugsweise so eingestellt, dass die Strömung im Reaktor gerichtet ist, beispielsweise liegen keine der allgemeinen Strömungsrichtung entge- gengesetzte Konvektionswirbel vor, und beträgt beispielsweise 0,02 bis 2,5 m/s, bevorzugt 0,05 bis 2 m/s.
Die Temperatur im Reaktionsraum beträgt bei der thermisch induzierten Polymerisation vorzugsweise 70 bis 250°C, besonders bevorzugt 100 bis 220°C, ganz besonders be- vorzugt 120 bis 200°C.
Das Trägergas wird zweckmäßigerweise vor dem Reaktor auf die Reaktionstemperatur vorgewärmt.
Die Reaktion kann im Überdruck oder im Unterdruck durchgeführt werden, ein Unterdruck von bis zu 100 mbar gegenüber dem Umgebungsdruck ist bevorzugt.
Das Reaktionsabgas, d.h. das der Reaktionsraum verlassende Trägergas, kann beispielsweise in einem Wärmeaustauscher abgekühlt werden. Dabei kondensieren Was- ser und nicht umgesetztes Monomer a). Danach kann das Reaktionsabgas zumindest teilweise wieder aufgewärmt und als Kreisgas in den Reaktor zurückgeführt werden. Ein Teil des Reaktionsabgases kann ausgeschleust und durch frisches Trägergas er- setzt werden, wobei im Reaktionsabgas enthaltenes Wasser und nicht umgesetzte Monomere a) abgetrennt und rückgeführt werden können.
Besonders bevorzugt ist ein Wärmeverbund, dass heißt, ein Teil der Abwärme beim Abkühlen des Abgases wird zum Aufwärmen des Kreisgases verwendet.
Die Reaktoren können begleitbeheizt werden. Die Begleitheizung wird dabei so eingestellt, dass die Wandtemperatur mindestens 5°C oberhalb der Reaktorinnentemperatur liegt und die Kondensation an den Reaktorwänden zuverlässig vermieden wird.
Das Reaktionsprodukt kann dem Reaktor in üblicher Weise entnommen werden, vorzugsweise am Boden über eine Förderschnecke, und gegebenenfalls bis zur gewünschten Restfeuchte und zum gewünschten Restmonomerengehalt getrocknet werden.
Selbstverständlich können die Polymerpartikel anschließend nachvernetzt werden.
Geeignete Nachvernetzer sind Verbindungen, die mindestens zwei Gruppen enthalten, die mit den Carboxylatgruppen des Hydrogels kovalente Bindungen bilden können. Geeignete Verbindungen sind beispielsweise Alkoxysiliylverbindungen, Polyaziridine, Polyamine, Polyamidoamine, Di- oder Polyglycidylverbindungen, wie in EP-A-O 083 022, EP-A-O 543 303 und EP-A-O 937 736 beschrieben, di- oder polyfunktionelle Alkohole, wie in DE-C-33 14 019, DE-C-35 23 617 und EP-A-O 450 922 beschrieben, oder ß-Hydroxyalkylamide, wie in DE-A-102 04 938 und US-6,239,230 beschrieben.
Des weiteren sind in DE-A-40 20 780 zyklische Karbonate, in DE-A-198 07 502 2- Oxazolidon und dessen Derivate, wie 2-Hydroxyethyl-2-oxazolidon, in DE-A-198 07 992 Bis- und Poly-2-oxazolidinone, in DE-A-198 54 573 2-Oxotetrahydro-1 ,3-oxazin und dessen Derivate, in DE-A-198 54 574 N-Acyl-2-Oxazolidone, in DE-A-102 04 937 zyklische Harnstoffe, in DE-A-103 34 584 bizyklische Amidacetale, in EP-A-1 199 327 Oxetane und zyklische Harnstoffe und in WO-A-03/031482 Morpholin-2,3-dion und dessen Derivate als geeignete Nachvernetzer beschrieben.
Das erfindungsgemäße Verfahren ermöglicht die Herstellung wasserabsorbierender Polymerpartikel mit einem niedrigen Gehalt an nicht umgesetzten Monomeren und mit einer hohen freien Quellbarkeit. Überraschenderweise wurde festgestellt, dass sich die beiden Parameter durch den Sauerstoffgehalt der Gasphase unterschiedlich beeinflussen lassen, so dass in einem engen Bereich eine optimale Eigenschaftskombination erhalten wird.
Ein weiterer Gegenstand der vorliegenden Erfindung sind wasserabsorbierende Polymerpartikel, die nach dem erfindungsgemäßen Verfahren erhältlich sind. Ein weiterer Gegenstand der vorliegenden Erfindung sind Verfahren zur Herstellung von Hygieneartikeln, insbesondere Windeln, umfassend die Verwendung gemäß obengenannten Verfahrens hergestellter wasserabsorbierender Polymerpartikel.
Ein weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung erfindungsgemäßer wasserabsorbierender Polymerpartikel in Hygieneartikeln, zur Verdickung von Abfällen, insbesondere medizinischen Abfällen, oder als wasserrückhaltendes Mittel in der Landwirtschaft
Die wasserabsorbierenden Polymerpartikel werden mittels der nachfolgend beschriebenen Testmethoden geprüft.
Methoden:
Die Messungen sollten, wenn nicht anders angegeben, bei einer Umgebungstemperatur von 23 ± 2 °C und einer relativen Luftfeuchte von 50 ± 10 % durchgeführt werden. Die wasserabsorbierenden Polymere werden vor der Messung gut durchmischt.
Restmonomere (Residual monomers)
Die Restmonomeren der wasserabsorbierenden Polymerpartikel werden gemäß der von der EDANA (European Disposables and Nonwovens Association) empfohlenen Testmethode Nr. 410.2-02 "Residual monomers" bestimmt.
Freie Quellbarkeit (FSC Free swell capacity)
Die freie Quellbarkeit der wasserabsorbierenden Polymerpartikel wird gemäß der von der EDANA (European Disposables and Nonwovens Association) empfohlenen Testmethode Nr. 440.2-02 "Free swell capacity" bestimmt.
Die EDANA-Testmethoden sind beispielsweise erhältlich bei der European Disposables and Nonwovens Association, Avenue Eugene Plasky 157, B-1030 Brüssel, Belgien.
Beispiele:
Beispiel 1 (Vergleich)
1 1 ,9 kg Natriumacrylat (37,5 gew.-%ige Lösung in Wasser) und 1 ,1 kg Acrylsäure wurden mit 3 kg Wasser und 9 g 15-fach ethoxiliertem Trimethylolpropantriacrylat gemischt. Die Lösung wurde in einen erwärmten, mit Stickstoffatmosphäre gefüllten Ver- tropfungsturm vertropft (180°C, 12m Höhe, 2m Breite, Gasgeschwindigkeit 0,1 m/s im Gleichstrom). Die Sauerstoffkonzentration im Vertropfungsturm wurde ca. 1 m unterhalb der Vertropferplatte gemessen und betrug 0,0002 Vol.-%. Die Dosiergeschwindigkeit betrug 16 kg/h. Die Vertropferplatte wies 30 Bohrungen ä 170 μm auf. Der Durch- messer der Vertropferplatte betrug 65 mm. Der Initiator wurde kurz vor dem Vertropfer über einen statischen Mischer mit der Monomerlösung gemischt. Als Initiator wurde eine 2,5 gew.-%ige Lösung von 2,2'-Azobis[2-(2-imidazolin-2-yl)propan]dihydrochlorid in Wasser verwendet. Die Dosiergeschwindigkeit der Initiatorlösung betrug 0,9 kg/h. Die Gasaustrittstemperatur aus dem Vertropfungsturm betrug 130°C. Der mittlere TeN- chendurchmesser der erhaltenen Polymerpartikel betrug 270 μm.
Die wasserabsorbierenden Polymerpartikel hatten folgende Eigenschaften:
Restmonomere 0,70 Gew.-% FSC: 60,2 g/g
Beispiel 2
Es wurde verfahren wie unter Beispiel 1. Die Sauerstoffkonzentration in Vertropfungs- türm wurde auf 0,001 Vol.-% eingestellt.
Die wasserabsorbierenden Polymerpartikel hatten folgende Eigenschaften:
Restmonomere 0,69 Gew.-% FSC: 61 ,7 g/g
Beispiel 3
Es wurde verfahren wie unter Beispiel 1. Die Sauerstoffkonzentration in Vertropfungs- türm wurde auf 0,01 Vol.-% eingestellt.
Die wasserabsorbierenden Polymerpartikel hatten folgende Eigenschaften:
Restmonomere 0,70 Gew.-% FSC: 64,2 g/g
Beispiel 4
Es wurde verfahren wie unter Beispiel 1. Die Sauerstoffkonzentration in Vertropfungs- türm wurde auf 0,1 Vol.-% eingestellt.
Die wasserabsorbierenden Polymerpartikel hatten folgende Eigenschaften: Restmonomere 0,80 Gew.-%
FSC: 65,8 g/g
Beispiel 5
Es wurde verfahren wie unter Beispiel 1. Die Sauerstoffkonzentration in Vertropfungs- turm wurde auf 0,5 Vol.-% eingestellt.
Die wasserabsorbierenden Polymerpartikel hatten folgende Eigenschaften:
Restmonomere 2,1 Gew.-%
FSC: 66,1 g/g

Claims

Patentansprüche
1. Verfahren zur Herstellung wasserabsorbierender Polymerpartikel durch Polymerisation von Tropfen einer Monomerlösung, enthaltend
a) mindestens ein wasserlösliches ethylenisch ungesättigtes Monomer, b) mindestens einen Vernetzer, c) mindestens einen Initiator, d) Wasser,
in einer die Tropfen umgebenden Gasphase, dadurch gekennzeichnet, dass die Polymerpartikel einem mittleren Durchmesser von mindestens 150 μm aufweisen und der Sauerstoffgehalt der Gasphase von 0,0005 bis 0,2 Vol.-% beträgt, wobei die Polymerisation im Tropfen in homogener Phase stattfindet.
2. Verfahren gemäß Anspruch 1 , dadurch gekennzeichnet, dass das Monomer a) mindestens eine Säuregruppe hat.
3. Verfahren gemäß Anspruch 2, dadurch gekennzeichnet, dass die Säuregruppen der Monomeren a) zumindest teilweise neutralisiert sind.
4. Verfahren gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass Monomer a) zu mindestens 50 ιmol-% Acrylsäure ist.
5. Verfahren gemäß einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Polymerpartikel einen mittleren Durchmesser von mindestens 200 μm aufweisen.
6. Verfahren gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass mindestens 90 Gew.-% der Polymerpartikel einen Durchmesser von 100 bis 800 μm aufweisen.
7. Verfahren gemäß einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Gasphase als Trägergas durch den Reaktionsraum strömt.
8. Verfahren gemäß Anspruch 7, dadurch gekennzeichnet, dass das den Reaktionsraum verlassende Trägergas nach einem Durchgang zumindest teilweise rückgeführt wird.
9. Verfahren gemäß einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, der Sauerstoffgehalt der Gasphase von 0,001 bis 0,05 Vol.-% beträgt.
10. Verfahren gemäß einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die erhaltenen Polymerpartikel in mindestens einem weiteren Verfahrensschritt getrocknet und/oder nachvernetzt werden.
PCT/EP2007/051146 2006-02-17 2007-02-07 Verfahren zur herstellung wasserabsorbierender polymerpartikel durch polymerisation von tropfen einer monomerlösung WO2007093531A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP06110108 2006-02-17
EP06110108.5 2006-02-17

Publications (1)

Publication Number Publication Date
WO2007093531A1 true WO2007093531A1 (de) 2007-08-23

Family

ID=37907557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/051146 WO2007093531A1 (de) 2006-02-17 2007-02-07 Verfahren zur herstellung wasserabsorbierender polymerpartikel durch polymerisation von tropfen einer monomerlösung

Country Status (1)

Country Link
WO (1) WO2007093531A1 (de)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008009612A1 (de) 2006-07-19 2008-01-24 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel mit hoher permeabilität durch polymerisation von tropfen einer monomerlösung
WO2008040715A2 (de) * 2006-10-05 2008-04-10 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel durch polymerisation von tropfen einer monomerlösung
WO2008052971A1 (de) 2006-10-31 2008-05-08 Basf Se Regelung eines verfahrens zur herstellung wasserabsorbierender polymerpartikel in einer erwärmten gasphase
US20080188586A1 (en) * 2005-01-28 2008-08-07 Basf Aktiengesellschaft Production of Water-Absorbing Polymeric Particles by Dropletization Polymerization in the Gas Phase
WO2008095893A1 (de) * 2007-02-06 2008-08-14 Basf Se Verfahren zur herstellung von polymerpartikeln durch polymerisation von flüssigkeitstropfen in einer gasphase
WO2009027356A1 (de) * 2007-08-30 2009-03-05 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel durch polymerisation von tropfen einer monomerlösung
WO2011023647A1 (en) 2009-08-28 2011-03-03 Basf Se Process for producing triclosan-coated superabsorbents
WO2011032876A1 (de) 2009-09-16 2011-03-24 Basf Se Farbstabiler superabsorber
WO2011032922A1 (de) 2009-09-17 2011-03-24 Basf Se Farbstabiler superabsorber
US8114320B2 (en) 2007-01-16 2012-02-14 Basf Se Method for producing polymer particles by the polymerization of fluid drops in a gas phase
WO2013144027A1 (de) 2012-03-30 2013-10-03 Basf Se Farbstabiler superabsorber
WO2013144026A1 (de) 2012-03-30 2013-10-03 Basf Se Farbstabiler superabsorber
CN103857714A (zh) * 2011-11-17 2014-06-11 赢创德固赛有限公司 具有快速吸收性能的超吸收性聚合物及其制备方法
WO2019091848A1 (de) 2017-11-10 2019-05-16 Basf Se Superabsorber
WO2019197194A1 (de) 2018-04-10 2019-10-17 Basf Se Permeabler superabsorber und verfahren zu seiner herstellung
DE102019216910A1 (de) 2018-11-12 2020-05-14 Basf Se Verfahren zur Oberflächennachvernetzung von Superabsorbern
WO2021013639A1 (en) 2019-07-24 2021-01-28 Basf Se Permeable superabsorbent and process for production thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996040427A1 (en) * 1995-06-07 1996-12-19 Freeman Clarence S A polymerization process, apparatus and polymer
EP0881238A2 (de) * 1997-05-28 1998-12-02 Clariant GmbH Wasserquellbare, hydrophile Polymerzusammensetzungen
DE10340253A1 (de) * 2003-08-29 2005-03-24 Basf Ag Sprühpolymerisationsverfahren
DE102004024437A1 (de) * 2004-05-14 2005-12-08 Basf Ag Verfahren zur Herstellung wasserquellbarer, polymerer Partikel
WO2006024370A1 (de) * 2004-09-02 2006-03-09 Basf Aktiengesellschaft Verfahren zur herstellung von polymeren durch sprühpolymerisation
WO2006024368A1 (de) * 2004-09-02 2006-03-09 Basf Aktiengesellschaft Verfahren zur herstellung von polymeren durch sprühpolymerisation
WO2006024369A1 (de) * 2004-09-02 2006-03-09 Basf Aktiengesellschaft Verfahren zur herstellung von polymeren durch sprühpolymerisation
WO2006077054A1 (de) * 2005-01-18 2006-07-27 Basf Aktiengesellschaft Verfahren zur herstellung von polymeren durch sprühpolymerisation

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996040427A1 (en) * 1995-06-07 1996-12-19 Freeman Clarence S A polymerization process, apparatus and polymer
EP0881238A2 (de) * 1997-05-28 1998-12-02 Clariant GmbH Wasserquellbare, hydrophile Polymerzusammensetzungen
DE10340253A1 (de) * 2003-08-29 2005-03-24 Basf Ag Sprühpolymerisationsverfahren
DE102004024437A1 (de) * 2004-05-14 2005-12-08 Basf Ag Verfahren zur Herstellung wasserquellbarer, polymerer Partikel
WO2006024370A1 (de) * 2004-09-02 2006-03-09 Basf Aktiengesellschaft Verfahren zur herstellung von polymeren durch sprühpolymerisation
WO2006024368A1 (de) * 2004-09-02 2006-03-09 Basf Aktiengesellschaft Verfahren zur herstellung von polymeren durch sprühpolymerisation
WO2006024369A1 (de) * 2004-09-02 2006-03-09 Basf Aktiengesellschaft Verfahren zur herstellung von polymeren durch sprühpolymerisation
WO2006077054A1 (de) * 2005-01-18 2006-07-27 Basf Aktiengesellschaft Verfahren zur herstellung von polymeren durch sprühpolymerisation

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080188586A1 (en) * 2005-01-28 2008-08-07 Basf Aktiengesellschaft Production of Water-Absorbing Polymeric Particles by Dropletization Polymerization in the Gas Phase
US7727586B2 (en) * 2005-01-28 2010-06-01 Basf Aktiengesellschaft Production of water-absorbing polymeric particles by dropletization polymerization in the gas phase
WO2008009612A1 (de) 2006-07-19 2008-01-24 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel mit hoher permeabilität durch polymerisation von tropfen einer monomerlösung
US8013087B2 (en) 2006-10-05 2011-09-06 Basf Se Method for the production of water absorbent polymer particles by polymerizing drops of a monomer solution
WO2008040715A2 (de) * 2006-10-05 2008-04-10 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel durch polymerisation von tropfen einer monomerlösung
WO2008040715A3 (de) * 2006-10-05 2008-05-22 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel durch polymerisation von tropfen einer monomerlösung
WO2008052971A1 (de) 2006-10-31 2008-05-08 Basf Se Regelung eines verfahrens zur herstellung wasserabsorbierender polymerpartikel in einer erwärmten gasphase
US8183331B2 (en) 2006-10-31 2012-05-22 Basf Se Regulation of a process for producing water-absorbing polymer particles in a heated gas phase
US8114320B2 (en) 2007-01-16 2012-02-14 Basf Se Method for producing polymer particles by the polymerization of fluid drops in a gas phase
US8748512B2 (en) 2007-02-06 2014-06-10 Basf Se Method for producing polymer particles by the polymerization of liquid droplets in a gas phase
WO2008095893A1 (de) * 2007-02-06 2008-08-14 Basf Se Verfahren zur herstellung von polymerpartikeln durch polymerisation von flüssigkeitstropfen in einer gasphase
WO2009027356A1 (de) * 2007-08-30 2009-03-05 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel durch polymerisation von tropfen einer monomerlösung
CN101790390B (zh) * 2007-08-30 2013-04-24 巴斯夫欧洲公司 通过聚合单体溶液液滴来制备吸水聚合物颗粒的方法
RU2484100C2 (ru) * 2007-08-30 2013-06-10 Басф Се Способ получения водопоглощающих полимерных частиц полимеризацией капель раствора мономера
WO2011023647A1 (en) 2009-08-28 2011-03-03 Basf Se Process for producing triclosan-coated superabsorbents
WO2011032876A1 (de) 2009-09-16 2011-03-24 Basf Se Farbstabiler superabsorber
WO2011032922A1 (de) 2009-09-17 2011-03-24 Basf Se Farbstabiler superabsorber
CN103857714A (zh) * 2011-11-17 2014-06-11 赢创德固赛有限公司 具有快速吸收性能的超吸收性聚合物及其制备方法
WO2013144026A1 (de) 2012-03-30 2013-10-03 Basf Se Farbstabiler superabsorber
WO2013144027A1 (de) 2012-03-30 2013-10-03 Basf Se Farbstabiler superabsorber
WO2019091848A1 (de) 2017-11-10 2019-05-16 Basf Se Superabsorber
US11813589B2 (en) 2017-11-10 2023-11-14 Basf Se Superabsorbent complexed with aluminum ions
WO2019197194A1 (de) 2018-04-10 2019-10-17 Basf Se Permeabler superabsorber und verfahren zu seiner herstellung
DE102019216910A1 (de) 2018-11-12 2020-05-14 Basf Se Verfahren zur Oberflächennachvernetzung von Superabsorbern
WO2021013639A1 (en) 2019-07-24 2021-01-28 Basf Se Permeable superabsorbent and process for production thereof

Similar Documents

Publication Publication Date Title
EP2079763B2 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel durch polymerisation von tropfen einer monomerlösung
EP2046839B2 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel mit hoher permeabilität durch polymerisation von tropfen einer monomerlösung
EP2089151B1 (de) Regelung eines verfahrens zur herstellung wasserabsorbierender polymerpartikel in einer erwärmten gasphase
EP2046400B1 (de) Verfahren zur herstellung nachvernetzter wasserabsorbierender polymerpartikel mit hoher absorption durch polymerisation von tropfen einer monomerlösung
WO2007093531A1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel durch polymerisation von tropfen einer monomerlösung
EP2115014B1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel durch polymerisation von tropfen einer monomerlösung
EP1926551B1 (de) Verfahren und reaktor zur herstellung von polymerpartikeln durch vertropfen von flüssigkeiten
EP2115013B1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel durch polymerisation von tropfen einer monomerlösung
EP1844080B1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel durch vertropfungspolymerisation in der gasphase
EP2187978B1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel durch polymerisation von tropfen einer monomerlösung
EP2297211B1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel durch polymerisation von tropfen einer monomerlösung
EP2076547B1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel durch polymerisation von tropfen einer monomerlösung
DE102005002412A1 (de) Verfahren zur Herstellung von Polymeren durch Sprühpolymerisation
EP2104686A1 (de) Verfahren zur herstellung mechanisch stabiler wasserabsorbierender polymerpartikel
EP2046402B2 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel durch polymerisation von tropfen einer monomerlösung
EP2125047A1 (de) Verfahren zur herstellung mechanisch stabiler wasserabsorbierender polymerpartikel
EP2470222B1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel mit verbesserter blutabsorption durch polymerisation von tropfen einer monomerlösung
WO2006120232A1 (de) Verfahren zur herstellung von polymerpartikeln durch sprühpolymerisation
EP2121772B1 (de) Verfahren zur herstellung von polymerpartikeln durch polymerisation von flüssigkeitstropfen in einer gasphase

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07704404

Country of ref document: EP

Kind code of ref document: A1