WO2021201177A1 - 粒子状吸水剤 - Google Patents

粒子状吸水剤 Download PDF

Info

Publication number
WO2021201177A1
WO2021201177A1 PCT/JP2021/014046 JP2021014046W WO2021201177A1 WO 2021201177 A1 WO2021201177 A1 WO 2021201177A1 JP 2021014046 W JP2021014046 W JP 2021014046W WO 2021201177 A1 WO2021201177 A1 WO 2021201177A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
weight
particulate water
absorbent
absorbent resin
Prior art date
Application number
PCT/JP2021/014046
Other languages
English (en)
French (fr)
Inventor
まり子 玉置
啓太 大西
ゆいか 田村
一司 鳥井
Original Assignee
株式会社日本触媒
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本触媒 filed Critical 株式会社日本触媒
Priority to JP2022512669A priority Critical patent/JP7382493B2/ja
Priority to US17/912,565 priority patent/US20230144119A1/en
Priority to CN202180026001.1A priority patent/CN115348897A/zh
Priority to EP21780477.2A priority patent/EP4130053A4/en
Publication of WO2021201177A1 publication Critical patent/WO2021201177A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/261Synthetic macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • B01J20/267Cross-linked polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/24Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/60Liquid-swellable gel-forming materials, e.g. super-absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28011Other properties, e.g. density, crush strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/53Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/53Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
    • A61F2013/530481Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having superabsorbent materials, i.e. highly absorbent polymer gel materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/68Superabsorbents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2810/00Chemical modification of a polymer
    • C08F2810/20Chemical modification of a polymer leading to a crosslinking, either explicitly or inherently

Definitions

  • the present invention relates to a particulate water absorbent having little liquid return under pressure even after liquid absorption.
  • the water-absorbent resin (SAP / Super Absorbent Polymer) is a water-swellable water-insoluble polymer gelling agent.
  • Particle-shaped water-absorbing agents containing water-absorbing resin as the main component are used for various purposes such as paper diapers, sanitary napkins, sanitary goods such as incontinence products for adults, soil water-retaining agents for agriculture and horizons, and industrial water-stopping agents. It is used for absorption goods of.
  • Many monomers and hydrophilic polymers have been proposed as raw materials for such water-absorbent resins, but from the viewpoint of performance and cost, polyacrylic using acrylic acid and / or a salt thereof as a monomer. Acrylic (salt) -based water-absorbent resins are most often used.
  • particulate water absorbents are not limited to the high water absorption ratio, but also gel strength, water-soluble content, water absorption rate, water absorption ratio under pressure, liquid permeability, particle size distribution, and urine resistance. , Antibacterial property, impact resistance (damage resistance), powder fluidity, deodorant property, color resistance (whiteness), low dust and the like.
  • reverse physical property in which the liquid is re-released from the particulate water-absorbing agent in the direction of introduction of the absorbed liquid. Since the user feels uncomfortable with the liquid that comes into contact with the skin, reducing the reversion is a very important issue in the field of water-absorbent resin (for example, Patent Document 1).
  • Patent Document 2 As another related prior art, there is Patent Document 2.
  • the absorbing article By the way, every time a liquid such as urine is discharged to an absorbing article such as a disposable diaper, the absorbing article is not replaced, and usually the absorbing article is discharged a plurality of times.
  • the particulate water-absorbing agent that has absorbed the liquid is in a swollen state. Therefore, the user may use an absorbent article having a swelled particulate water absorbent. In this way, when the particulate water absorbent is in a swollen state, the absorber can be used in daily activities, especially in situations where external pressure is applied, such as when a person is under weight (for example, when lying down or sitting).
  • an object of the present invention is to provide a particulate water absorbent capable of significantly reducing liquid return even when an external pressure is applied to the particulate water absorbent when the particulate water absorbent is in a swollen state. And.
  • a particulate water absorbent containing a polyacrylic acid (salt) -based water-absorbent resin that is surface-crosslinked as a main component and that satisfies the following formula (1).
  • AAP (2.06 kPa) is the water absorption ratio (g / g) under pressure of 2.06 kPa
  • CRC (2.06 kPa) is the water absorption ratio (g / g) under pressure after swelling.
  • CRC indicates the water absorption ratio (g / g) under no pressurization).
  • Water-absorbent resin refers to a water-swellable, water-insoluble polymer crosslinked product, and refers to a resin that satisfies the following physical properties. That is, the physical properties of "water swellability", the CRC specified by ERT441.2-02 is 5 g / g or more, and “water insoluble”, the Ext specified by ERT470.2-02 is 50% by weight or less. Refers to a polymer crosslinked body that satisfies the above conditions.
  • the water-absorbent resin can be appropriately designed according to its use, and is not particularly limited, but is preferably a hydrophilic crosslinked polymer obtained by crosslink-polymerizing an unsaturated monomer having a carboxyl group. Further, the total amount (100% by weight) is not limited to the polymer form, and a water-absorbent resin composition containing additives and the like may be used as long as the above physical properties (CRC, Ext) are satisfied.
  • the water-absorbent resin in the present invention is not limited to the final product, but is an intermediate in the manufacturing process of the water-absorbent resin (for example, a water-containing gel-like crosslinked polymer after polymerization, a dried polymer after drying, and water absorption before surface cross-linking. (Sex resin powder, etc.) may also be referred to, and all of these are collectively referred to as "water-absorbent resin".
  • Examples of the shape of the water-absorbent resin include sheet-like, fibrous, film-like, particle-like, and gel-like shapes, but the water-absorbent resin of the present invention is mainly in the form of particles (powder).
  • the water absorbing agent contains a water absorbing resin as a main component.
  • the particulate water-absorbing agent means a particle-like (also known as powder) water-absorbing agent (including water-absorbing resin particles as a main component), and even if it is a single particle-like water-absorbing agent, there are a plurality of particles. Even individual particulate water absorbents are referred to as particulate water absorbents.
  • Particular means having a particle morphology, which means a solid or liquid granular small object with measurable size (JIS Industrial Glossary, 4th Edition, p. 2002). say.
  • a particulate water-absorbing agent may be simply referred to as a water-absorbing agent.
  • the aqueous liquid is not limited to water, but may be urine, blood, sweat, feces, waste liquid, moisture, steam, ice, a mixture of water and an organic solvent and / or an inorganic solvent, rainwater, groundwater, or the like. If water is included, there are no particular restrictions. Preferably, urine, menstrual blood, sweat and other body fluids can be mentioned.
  • the particulate water absorbent according to the present invention is suitably used as a sanitary material for absorbing an aqueous liquid.
  • the particulate water-absorbing agent of the present invention contains a polyacrylic acid (salt) -based water-absorbing resin (particles) (hereinafter, also simply referred to as a polyacrylic acid (salt) -based water-absorbing resin) formed by surface cross-linking as a main component. That is, the polyacrylic acid (salt) -based water-absorbent resin formed by surface cross-linking in the particulate water-absorbing agent is preferably 60 to 100% by weight, 70 to 100% by weight, 80 to 100% by weight, 90 to 100% by weight. included.
  • the particulate water-absorbing agent optionally contains other water-absorbent resin particles, water, and / or additives such as water-insoluble inorganic particles and a water-soluble polyvalent metal cation-containing compound.
  • the suitable water content of the particulate water absorbent is 0.2 to 30% by weight. That is, a water-absorbent resin composition in which these components are integrated is also in the category of particulate water-absorbent.
  • the upper limit of the polyacrylic acid (salt) -based water-absorbent resin in the water-absorbing agent is 99% by weight, further 97% by weight, particularly about 95% by weight, preferably water or an additive (water-insoluble inorganic particles) described later.
  • Water-soluble polyvalent metal cation-containing compound Water-soluble polyvalent metal cation-containing compound
  • the particulate water-absorbing agent of the present invention contains a polyacrylic acid (salt) -based water-absorbing resin as a main component, but the particulate water-absorbing agent may contain other water-absorbing resins.
  • Other water-absorbent resins include polysulfonic acid (salt) -based water-absorbent resin, maleic anhydride (salt) -based water-absorbent resin, polyacrylamide-based water-absorbent resin, polyvinyl alcohol-based water-absorbent resin, polyethylene oxide-based water-absorbent resin, and the like.
  • Examples thereof include polyaspartic acid (salt) -based water-absorbent resin, polyglutamic acid (salt) -based water-absorbent resin, polyarginic acid (salt) -based water-absorbent resin, starch-based water-absorbent resin, and cellulose-based resin.
  • polyacrylic acid (salt) refers to polyacrylic acid and / or a salt thereof.
  • the polyacrylic acid (salt) -based water-absorbent resin contains acrylic acid and / or a salt thereof (hereinafter referred to as "acrylic acid (salt)”) as a repeating unit as a main component, and is preferably a graft component.
  • Polyacrylic acid (salt) internally cross-linked by the surface is cross-linked.
  • the polyacrylic acid (salt) -based water-absorbent resin is preferably in the form of particles (also known as powder) in the particulate water-absorbing agent.
  • main component means that the amount (content) of acrylic acid (salt) used is usually 50 to 100 mol% with respect to the entire monomer (excluding the internal cross-linking agent) used for polymerization. It is preferably 70 to 100 mol%, more preferably 90 to 100 mol%, and further preferably substantially 100 mol%.
  • PSD is an abbreviation for Particle Size Distribution, which means the particle size distribution of a particulate water-absorbing agent or water-absorbent resin as measured by sieving.
  • the weight average particle size (D50) and the logarithmic standard deviation ( ⁇ ) of the particle size distribution are described in “(3) Mass-Average Particle Diameter (D50) and Logistic Standard Deviation ( ⁇ )” described in US Pat. No. 7,638,570. Measure in the same way as “Particle Diameter Deviation”.
  • X to Y indicating a range means “X or more and Y or less”.
  • unit of weight “t (ton)” means “metric ton”
  • ppm means “weight ppm” or “mass ppm”.
  • weight and “mass”, “parts by weight” and “parts by mass”, and “% by weight” and “% by mass” are treated as synonyms, respectively.
  • -acid (salt) means “-acid and / or a salt thereof
  • (meth) acrylic means “acrylic and / or methacryl", respectively.
  • liter may be described as “l” or “L”
  • weight% may be described as “wt%” for convenience.
  • the particle-like water-absorbing agent of the present invention is a particle-like water-absorbing agent containing a polyacrylic acid (salt) -based water-absorbing resin formed by surface cross-linking as a main component and satisfies the formula (1). , A particulate water absorbent.
  • the particulate water absorbing agent of the present invention can significantly reduce liquid return even when pressure is applied to the particulate water absorbing agent from the outside when the particulate water absorbing agent is in a swollen state.
  • the value obtained by AAP (2.06 kPa) + RCAP (2.06 kPa) is also referred to as a value (A), and the value obtained by 0.58 ⁇ CRC + 55.6 is also referred to as a value (B).
  • the particulate water absorbent does not satisfy the formula (1), that is, when the value (A) ⁇ value (B), the amount of liquid return becomes remarkably large after the particulate water absorbent absorbs water and swells.
  • the value (A) is the sum of AAP (2.06 kPa) and RCAP (2.06 kPa).
  • AAP is an abbreviation for Absorption against Pressure, and means the water absorption ratio under pressure of a particulate water absorbent.
  • RCAP is an abbreviation for Retition Capacity against Pressure, and means the water absorption ratio under pressure at the time of swelling of the particulate water absorbent.
  • CRC is an abbreviation for Centrifuge Retention Capacity (centrifuge holding capacity), and means a water absorption ratio under no pressure of a particulate water absorbing agent or a water absorbing resin (sometimes referred to as "water absorption ratio”). .. Normally, the water absorption ratio decreases under pressure, so that in the same particulate water absorption agent, AAP (2.06 kPa) [g / g] ⁇ CRC (2.06 kPa) [g / g].
  • Re-Wet return amount, sometimes referred to as Re-Wet
  • Re-Wet return amount, sometimes referred to as Re-Wet
  • Re-Wet return amount, which is usually used for evaluating the physical properties of water-absorbent resin
  • Re-Wet is a non-woven fabric containing an absorbent layer containing water-absorbent resin (water-absorbing agent), pulp, etc. This is an evaluation of an absorbent sheet (absorbent) laminated with or the like, not an evaluation of the water-absorbent resin (water-absorbing agent) itself.
  • Re-Wet evaluation it cannot be said that the water-absorbent resin contained in the absorber is in a saturated state (the load after absorbing the liquid on the surface of the absorber at multiple times at 30-minute intervals). It does not evaluate the liquid holding power in the state where the particulate water absorbing agent in the "swelling state", which is the subject of the present application, is further pressurized.
  • the particulate water absorbent satisfies the following formula (2).
  • the particulate water absorbent satisfies the following formula (3).
  • the value (A) is not particularly limited, but is preferably larger than 76.0 g / g. That is, the particulate water absorbent preferably satisfies the following formula (A).
  • the upper limit of the value (A) is not particularly limited, but is usually 90.0 g / g or less, and may be 85.0 g / g or less.
  • AAP (2.06 kPa), RCAP (2.06 kPa) and CRC are measured values up to the first decimal place, and the values (A) are used.
  • Value (B), and the right-hand side of equations (2) and (3) are rounded to the first decimal place of the value calculated using the above measured values. Is used.
  • CRC Centrifuge Retention Capacity
  • a particulate water-absorbing agent or a water-absorbent resin is placed in a non-woven fabric bag, and then immersed in a large excess of 0.9 wt% sodium chloride aqueous solution for 30 minutes for free swelling, and then freely swollen. It refers to the water absorption ratio (unit: g / g) after draining with a centrifuge (250 G).
  • the CRC (centrifuge holding capacity) of the particulate water absorbent of the present invention is preferably 30 g / g or more, more preferably 31 g / g or more, further preferably 32 g / g or more. Even more preferably, it is 33 g / g or more.
  • the CRC (centrifuge holding capacity) of the particulate water absorbent is preferably 70 g / g or less, more preferably 60 g / g or less, and even more preferably 50 g / g or less.
  • the CRC is particularly preferably 40 g / g or less.
  • the rate of absorbing body fluids such as urine and blood is maintained, so that it is also suitable for use in high water absorption rate type disposable diapers and the like.
  • the CRC can be controlled by the type and amount of the internal cross-linking agent.
  • AAP Pressurized water absorption ratio
  • AAP (2.06 kPa) is 2.06 kPa (21 g / cm) for 1 hour with respect to 0.9 g of a particulate water-absorbing agent or a water-absorbent resin with respect to a large excess of a 0.9 wt% sodium chloride aqueous solution. 2 , 0.3 psi) It refers to the water absorption ratio (unit: g / g) after swelling under a load. In some cases, the load condition is changed to 4.83 kPa (49 g / cm 2 , 0.7 psi) for measurement. In this case, it is described as AAP (4.83 kPa).
  • the AAP (2.06 kPa) of the particulate water absorbent of the present invention is preferably 20 g / g or more, more preferably 24 g / g or more, still more preferably 26 g / g or more, still more preferably 28 g / g or more, particularly. It is preferably 29 g / g or more, and most preferably 30 g / g or more.
  • the upper limit is not particularly limited, but is preferably 40 g / g or less.
  • the disposable diaper produced by using the particulate water-absorbing agent has an excellent ability to absorb urine from pulp, can reduce the amount of return, and can suppress skin irritation and urine leakage.
  • the disposable diaper produced by using the particulate water-absorbing agent has an excellent ability to absorb urine from pulp, can reduce the amount of return, and can suppress skin irritation and urine leakage.
  • the AAP (4.83 kPa) of the particulate water absorbent of the present invention is preferably 10 g / g or more, more preferably 13 g / g or more, still more preferably 17 g / g or more, and particularly preferably 20 g / g or more. Is.
  • the upper limit is not particularly limited, but is preferably 30 g / g or less.
  • RCAP Retention Capacity against Pressure
  • the RCAP test can be measured using the cylinders, pistons and weights used in the Gel Bed Permeability test described in US Pat. No. 8,269,060. Specifically, the apparatus illustrated in FIG. 1 of US Pat. No. 8,269,060 is used.
  • the particulate water absorbing agent RCAP (2.06 kPa) of the present invention is preferably 18 g / g or more, more preferably 24 g / g or more, still more preferably 30 g / g or more, particularly preferably 40 g / g or more, most preferably. It is preferably 43 g / g or more.
  • the upper limit is not particularly limited, but is preferably 60 g / g or less.
  • the disposable diaper produced by using the particulate water-absorbing agent has an excellent ability to absorb urine from pulp, can reduce the amount of return, and can suppress skin irritation and urine leakage.
  • the disposable diaper produced by using the particulate water-absorbing agent has an excellent ability to absorb urine from pulp, can reduce the amount of return, and can suppress skin irritation and urine leakage.
  • the value of RCAP (2.06 kPa) can be controlled by controlling the method for producing the water-absorbent resin, for example, the mixing time of the additive (for example, water-insoluble inorganic particles) and the content of the soluble component. ..
  • GPR Gel Permeation Rate
  • the device 400 shown in FIG. 1 is used as the device for measurement.
  • the device 400 is roughly divided into a container 410 and a tank 420.
  • the container 410 is provided with a cell 411 (inner diameter 6 cm), and a swelling gel 414 (which absorbs water of a particulate water absorbent) can be stored inside the cell 411, and a liquid 423 can be introduced. Further, by fitting the piston 412 to the cell 411, pressure can be applied to the swollen gel 414.
  • Wire mesh 413a and 413b No.
  • the liquid 423 a 0.90 mass% sodium chloride aqueous solution is used as the liquid 423.
  • the tank 420 stores the liquid 423 inside.
  • the liquid 423 is introduced into cell 411 through an L-shaped tube 422 with a cock.
  • a glass tube 421 is inserted into the tank 420, and the inside of the glass tube 421 is filled with air. As a result, the lower end of the glass tube 421 and the liquid level in the cell 411 can be made the same.
  • the liquid level in the cell 411 can be kept constant.
  • the height difference between the lower liquid level of the liquid 423 in the tank 420 (that is, the lower end of the glass tube 421) and the bottom surface of the swollen gel 414 was set to 4 cm. That is, according to the device 400, the liquid 423 having a constant hydrostatic pressure can be introduced into the cell 411. Since the hole 415 is formed in the piston 412, the liquid 423 flows through the hole 415, and further the swelling gel 414 layer also flows and flows out to the outside of the cell 411.
  • the container 410 is placed on a stainless steel wire mesh 431 that does not block the passage of the liquid 423. Therefore, the liquid 423 flowing out of the cell 411 is finally collected in the collection container 432. Then, the amount of the liquid 423 collected in the collection container 432 can be weighed by the precision balance 433.
  • GPR gel permeation rate
  • Particulate water absorbent (0.900 g) is uniformly added to cell 411.
  • the above-mentioned particulate water-absorbing agent is made to absorb water for 60 minutes with a liquid (0.90 mass% sodium chloride aqueous solution) under no pressure to form a swollen gel 414.
  • the gel permeation rate (GPR) [g / min] is calculated by averaging the flow velocities 1 to 3 minutes after the start of circulation of the liquid 423.
  • the gel permeation rate (GPR) of the particulate water absorbent of the present invention is preferably 20 g / min or more.
  • the gel permeation rate (GPR) of the particulate water absorbent is more preferably 22 g / min or more, further preferably 24 g / min or more, and particularly preferably 26 g / min or more.
  • the upper limit is not particularly limited, but is preferably 300 g / min or less, more preferably 150 g / min or less.
  • the value of the gel permeation rate (GPR) can be controlled by controlling, for example, the amount of the internal cross-linking agent of the water-absorbent resin, the amount of the surface cross-linking agent, the time of the surface cross-linking reaction, and the like.
  • the “moisture absorption fluidity” in the present invention means blocking, caking, or powder when the particulate water absorbent is left for 1 hour under the conditions of a temperature of 25 ° C. and a relative humidity of 90% RH. This is an evaluation of the fluidity of the particles, and is judged by the moisture absorption blocking rate.
  • the calculation method of the moisture absorption blocking rate is described in detail in Examples. Briefly, the particulate water absorbent is placed on the sieve, classified, and the weight of the particulate water absorbent remaining on the sieve (W1 [g]) and the weight of the particulate water absorbent that has passed through the sieve (W2). [G]) is measured, and the moisture absorption fluidity is calculated according to the following equation.
  • Moisture absorption blocking rate [% by weight] ⁇ W1 / (W1 + W2) ⁇ x 100.
  • the moisture absorption blocking rate of the particulate water absorbent of the present invention is usually 50% by weight or less, preferably 40% by weight or less, more preferably 30% by weight or less, still more preferably 20% by weight or less, still more preferably 10% by weight or less. , Most preferably 0% by weight.
  • the moisture absorption blocking rate of the particulate water absorbent of the present invention can be 0 to 50% by weight, 0 to 40% by weight, 0 to 30% by weight, 0 to 20% by weight, or 0 to 10% by weight. Since the moisture absorption blocking rate is 40% by weight or less, the particulate water absorber is easy to handle even in a humid environment, and it can be used in the transfer piping of a manufacturing plant, such as when manufacturing a thin absorber for sanitary materials.
  • the moisture absorption blocking rate can be controlled by the type of agent added to improve the fluidity during moisture absorption and the amount of the agent added.
  • Flow Rate means the powder fluidity of the particulate water absorbent.
  • 100 g of the particulate water absorbent is put into a funnel equipped with a damper at the bottom, the damper is opened, and the time from the start of the flow to the end of the flow is measured to allow the particulate water absorbent to flow down per unit time. Calculate the amount and use this as the flow rate.
  • the flow rate of the particulate water absorbing agent of the present invention is preferably 8.5 g / s or more.
  • the fluidity of the particulate water absorbent is low, which makes it difficult to supply the particulate water absorbent to the hopper and transport the particulate water absorbent by the feeder, and hygiene. There may be a problem of not being able to mix uniformly with hydrophilic fibers during the production of absorbents for materials.
  • the amount of dust of the particulate water absorbing agent of the present invention is preferably 400 mg / kg or less per water absorbing agent.
  • the amount of dust of the water absorbing agent is more preferably 300 mg / kg or less, further preferably 250 mg / kg or less, and particularly preferably 200 mg / kg or less per water absorbing agent.
  • the ideal value is 0 mg / kg water absorbent, but in consideration of productivity in actual use and on an industrial scale, the lower limit is usually 10 mg / kg or more and 15 mg / kg or more per water absorbent. It may be 20 mg / kg or more.
  • the amount of dust in the particulate water absorbent is calculated by the method described in Examples.
  • the surface tension referred to in the present application refers to the surface tension of the aqueous solution when the particulate water absorbent is dispersed in the 0.90 mass% sodium chloride aqueous solution.
  • the surface tension of the water absorbing agent is measured by the following procedure. That is, 50 ml of physiological saline adjusted to 20 ° C. was placed in a thoroughly washed 100 ml beaker, and the surface tension of the physiological saline was first measured using a surface tension meter (K11 automatic surface tension meter manufactured by KRUSS). To measure.
  • a fully washed 25 mm long fluororesin rotor and 0.5 g of a particulate water absorbent were placed in a beaker containing a physiological saline solution adjusted to 20 ° C. after measuring the surface tension, at 500 rpm. Stir for 4 minutes under the conditions. After 4 minutes, the stirring is stopped, and after the water-containing particulate water absorbent has settled, the surface tension of the supernatant is measured again by performing the same operation.
  • a plate method using a platinum plate is adopted, and the plate is sufficiently washed with deionized water before each measurement and heated and washed with a gas burner before use.
  • the surface tension of the particulate water absorbent of the present invention is preferably 65 [mN / m] or more, and more preferably 66 [mN / m] or more, 68 [mN / m] or more, 70 [mN / m]. As mentioned above, it is 71 [mN / m] or more and 72 [mN / m] or more.
  • the upper limit is usually 75 [mN / m].
  • the water-absorbent resin (powder) preferably has an amorphous crushed shape as a particle shape.
  • the amorphous crushed particles are crushed particles having a non-constant shape.
  • the shape is not constant in the amorphous crushed form, so it is excellent in mixing with hydrophilic fibers such as pulp, and liquid diffusivity due to gaps between particles. Is preferable because it is high.
  • the particulate water absorbent according to one embodiment of the present invention is preferably a pulverized product in aqueous solution polymerization.
  • the amorphous crushed form is obtained by pulverizing a gel or a dried product (preferably a dried product) of a crosslinked polymer obtained through aqueous solution polymerization.
  • a gel or a dried product preferably a dried product
  • spherical particles or granulated products of spherical particles obtained by reverse phase suspension polymerization or droplet polymerization such as spraying and polymerizing a polymerization monomer are typically crushed into an irregular shape. Not in shape.
  • the shape of the particulate water absorbing agent is amorphous and crushed, the water absorption rate and RCAP are superior to those having a high average roundness (for example, a spherical one).
  • the average roundness of the particulate water absorbing agent is preferably 0.70 or less, more preferably 0.60 or less, and further preferably 0.55 or less.
  • the calculation method of the average roundness is as follows. 100 or more particulate water absorbents are randomly selected, and each particulate water absorbent is photographed with an electron microscope (VE-9800 manufactured by Keyence Co., Ltd.) (magnification 50 times) to obtain an image of the particulate water absorbent. , The peripheral length and area were calculated for each particle using the attached image analysis software. The following formula:
  • the roundness of each particle is obtained with, and the average value of the obtained values is calculated as the average roundness.
  • the particulate water-absorbing agent of the present invention is at least one selected from the group consisting of water-insoluble inorganic particles and water-soluble polyvalent metal cation-containing compound. It is preferable to further contain.
  • the hygroscopic fluidity of the particulate water absorbent can be improved. Further, by adding the water-insoluble inorganic particles, the absorption amount of the absorbent article can be improved. Further, the water-absorbent resin particles (composition) may lose their fluidity when the absorbent article is manufactured by storage after the manufacture. By mixing water-insoluble inorganic particles with the water-absorbent resin particles (composition) that have lost such fluidity to preferably form an absorber, the water-absorbent resin particles (composition) maintain their performance. Since the fluidity of the composition) is restored, the productivity is improved.
  • the hygroscopic fluidity refers to the fluidity of the particulate water-absorbing agent when stored under high humidity conditions, and the fluidity of the particulate water-absorbing agent containing a water-absorbent resin generally decreases due to moisture absorption. ..
  • water-insoluble inorganic particles have been added for the purpose of improving the moisture absorption and fluidity of the particulate water-absorbing agent, the formula (1) is simply added and mixed with the water-insoluble inorganic particles. ) Cannot be satisfied, and the amount of pressure reversion in the swollen state of the particulate water absorbent increases (see the comparative example described later).
  • the particulate water-absorbing agent can satisfy the relationship of the formula (1), and the particulate water-absorbing agent is in a swollen state. It is possible to significantly suppress the liquid return under pressure.
  • water-insoluble inorganic particles examples include multi-element metal compounds such as hydrotalcite, silicon dioxide (silica), aluminum hydroxide, titanium dioxide, aluminum oxide, magnesium oxide, zinc oxide, talc, and metal phosphate (for example, triphosphate).
  • metal phosphate such as calcium, barium phosphate, aluminum phosphate
  • metal borate eg titanium borate, aluminum borate, iron borate, magnesium borate, manganese borate, calcium borate
  • silic acid or salts thereof examples thereof include clay, diatomaceous soil, zeolite, bentonite, kaolin, and active white clay.
  • the water-insoluble inorganic particles contain at least one selected from a multi-element metal compound, silicon dioxide, talc, and tricalcium phosphate, and silicon dioxide and hydroxide. It is more preferable to contain at least one selected from aluminum and tricalcium phosphate.
  • the volume average particle diameter of the water-insoluble inorganic particles is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less, and further preferably 1 ⁇ m or less.
  • the volume average particle size is preferably 0.05 ⁇ m or more, more preferably 0.1 ⁇ m or more, and even more preferably 0.3 ⁇ m or more. When it is at least the above lower limit, it is possible to suppress a decrease in workability during the addition step and obtain sufficient performance.
  • the volume average particle size of the water-insoluble inorganic particles can be measured by a "laser diffraction / scattering method" (for example, manufactured by Nikkiso Co., Ltd., trade name: measured using a Microtrac MT3000II particle size analyzer).
  • the water-insoluble inorganic particles may be surface-treated.
  • Examples of the surface treatment agent used for the surface treatment include specific examples of the surface treatment agents of the following multielement metal compounds.
  • the above-mentioned multi-element metal compound is a multi-element metal compound containing two kinds of divalent and trivalent metal cations and a hydroxyl group.
  • Examples of the divalent metal cation include Mg 2+ , Fe 2+ , Zn 2+ , Ca 2+ , Ni 2+ , Co 2+ , and Cu 2+ , and Mg 2+ is preferable from the viewpoint of heat resistance and the like.
  • Examples of the trivalent metal cation include Al 3+ , Fe 3+ , and Mn 3+ , and Al 3+ is preferable from the viewpoint of heat resistance and the like. Therefore, a preferred embodiment of the polyvalent metal compound is that the divalent metal cation is a magnesium cation and the trivalent metal cation is an aluminum cation.
  • Multiple metal compound has the general formula (1) [M 1 2+ 1 -x M 2 3+ x (OH -) 2] x + ⁇ [(A n-) x / n ⁇ mH 2 O] x- (M 1 2+ is Hydrotalcite known as the structure of a layered compound represented by a divalent metal cation, M 2 3+ is a trivalent metal cation, An- is an n-valent anion, and H 2 O is water). It is preferable to have a similar structure.
  • the ratio of the divalent metal cation to the trivalent metal cation in the general formula (1) is preferably in the range of 0.2 to 0.75 for x, and more preferably in the range of 0.25 to 0.7. , 0.25 to 0.5 is more preferable.
  • the anion OH -, F -, Cl -, Br -, NO 3 -, CO 3 2-, SO 4 2-, Fe (CN) 6 3-, CH 3 COO -, oxalic acid ion or Examples thereof include salicate ion, but carbonate anion is preferable.
  • m is a real number larger than 0, and it is preferable that 0 ⁇ m ⁇ 10.
  • the shape of the multi-element metal compound is not particularly limited, but it is preferably spherical (including powder).
  • the multielement metal compound preferably has a constant particle size, and the volume average particle size is preferably 2 ⁇ m or less, more preferably 1.5 ⁇ m or less, and further preferably 1 ⁇ m or less.
  • the volume average particle size is preferably 0.05 ⁇ m or more, more preferably 0.1 ⁇ m or more, and even more preferably 0.3 ⁇ m or more.
  • the average particle size of the multidimensional metal compound adhering to the surface of the water-absorbent resin particles can be measured by a measurement method using an SEM (scanning electron microscope).
  • the organic compound may be intercalated between the layers, and a surface treatment may be applied to enhance the mixing property with the water-absorbent resin particles and the like.
  • Preferred structural formula of multi metal compound Mg and 6 Al 2 (OH) 16 CO 3 ⁇ 4H 2 O, Mg 4 Al 2 (OH) 12 CO 3 ⁇ 3H 2 O , and the like.
  • Specific examples thereof include DHT-4H and DHT-6 manufactured by Kyowa Chemical Industry Co., Ltd., STABIACE HT-1-NC and STABIACE HT-P manufactured by Sakai Chemical Industry Co., Ltd.
  • the content of the water-insoluble inorganic particles is 100% by weight of the polyacrylic acid (salt) -based water-absorbent resin from the viewpoint of improving the absorption amount of the absorbent article and making the balance between the absorption amount and the return amount excellent. On the other hand, it is 0.01% by weight or more and less than 10% by weight, preferably 0.1 to 5% by weight.
  • the performance of the water absorbent is improved by containing the water-soluble polyvalent metal cation-containing compound in the particulate water absorbent.
  • a water-soluble polyvalent metal cation-containing compound for the purpose of improving the moisture absorption and fluidity of the particulate water-absorbing agent, the water-soluble polyvalent metal cation-containing compound is simply added.
  • the addition / mixing conditions for example, mixing time
  • the relationship of the formula (1) can be satisfied and sufficient addition is made.
  • a particulate water-absorbing agent exhibiting reduced water-absorbing performance can be obtained.
  • the water-soluble polyvalent metal cation-containing compound refers to a compound other than a multivalent metal compound containing a metal cation, which is preferably divalent or higher and preferably trivalent or higher.
  • Examples of the trivalent or higher valent metal cation include aluminum, zirconium, and titanium, and aluminum is preferable.
  • Examples of the water-soluble polyvalent metal cation-containing compound include inorganic salts of polyvalent metals such as aluminum sulfate, aluminum chloride, zirconium chloride, zirconium ammonium carbonate, potassium zirconium carbonate, potassium zirconium carbonate, zirconium sulfate, zirconium acetate, and zirconium nitrate.
  • polyvalent metal compounds such as organic salts of polyvalent metals such as titanium lactate.
  • a compound containing aluminum as a polyvalent metal cation is preferable, and aluminum sulfate, potassium aluminum sulfate, and sodium aluminum sulfate are more preferable.
  • the content of the water-soluble polyvalent metal cation-containing compound is 0.001 in terms of the amount of polyvalent metal cation with respect to 100 parts by weight of the polyacrylic acid (salt) -based water-absorbent resin from the viewpoint of improving the performance of the water-absorbing agent. It is preferably up to 5 parts by weight, more preferably 0.01 to 2 parts by weight, and even more preferably 0.01 to 1 part by weight.
  • the particulate water absorbing agent of the above form can be obtained, for example, by controlling the following production methods (a) to (c) so as to satisfy the formula (1).
  • the water-absorbent resin to which the water-insoluble inorganic particles are added may be surface-crosslinked or may not be surface-crosslinked.
  • the water-insoluble inorganic particles may be mixed with a water-absorbent resin composition containing a water-absorbent resin or other additives.
  • the water-absorbent resin (composition), the water-insoluble inorganic particles, and the hydrophilic fibers may be mixed in the production of the absorbent article.
  • the water-absorbent resin and the water-insoluble inorganic particles are dry-mixed. Dry mixing is preferable because the amount of dust of the obtained water absorbing agent is reduced.
  • the dry mixing means mixing in a state in which a liquid substance other than the water-insoluble inorganic particles and the liquid substance absorbed or retained by the water-absorbent resin is substantially absent (preferably not present). Specifically, water absorption having moisture-absorbing moisture, water-insoluble inorganic particles containing an organic compound held between layers, dry residue, moisture-absorbing moisture, a surface cross-linking agent added in the surface cross-linking agent addition step, a solvent, and the like. It includes a form in which the sex resin is mixed without further adding a liquid substance.
  • the mixing time of the water-absorbent resin and the water-insoluble inorganic particles is not particularly limited and is appropriately set by the mixing device, but the mixing may be performed for a relatively long time so as to satisfy the above formula (1). preferable. That is, in the present invention, it is preferable to mix the water-absorbent resin and the water-insoluble inorganic particles by setting a longer time than the mixing time for the purpose of simply mixing the additives. Usually, for the purpose of improving productivity, the operation of the mixing device is stopped when it can be confirmed that the additives are uniformly mixed by visual inspection or by a conventional evaluation method. Further, even by such a conventional mixing, the basic performance required for the particulate water absorbing agent such as AAP and CRC was ensured.
  • the amount of pressure reduction in the swollen state of the particulate water-absorbing agent was not sufficiently reduced.
  • the water-insoluble inorganic particles are not sufficiently dispersed microscopically in the water-absorbent resin because the water-insoluble inorganic particles are easily aggregated, and the water-insoluble inorganic particles are not sufficiently dispersed. It was assumed that the addition of the water-absorbing agent would lead to a decrease in the physical properties of the particulate water-absorbing agent, and in particular, an increase in the amount of pressure reduction in the swollen state.
  • a particulate water-absorbing agent for satisfying the formula (1) can be obtained by making the mixing time when mixing the water-insoluble inorganic particles longer than the time required for normal uniform mixing.
  • the time required for uniform mixing has been set by a conventional evaluation method or the like, but the present inventors have RCAP, which is an index for improving the amount of pressure reversion in a swollen state.
  • RCAP is an index for improving the amount of pressure reversion in a swollen state.
  • the additional effect of increasing the mixing time which was conventionally considered sufficient.
  • a long mixing time causes a decrease in productivity and is considered to be rather unfavorable, and therefore has not been actively implemented.
  • the above-mentioned findings outweigh the disadvantages such as a decrease in productivity. I was able to find a lot of merits.
  • the mixing time of the water-absorbent resin and the water-insoluble inorganic particles is, for example, 5 minutes or more, preferably 15 minutes or more, and more preferably 30 minutes
  • the means used for mixing the water-absorbent resin and the water-insoluble inorganic particles is not particularly limited, but the mixing means is not a gentle stirring like a paddle type stirring device, but a relatively strong stirring condition. Is preferably used.
  • the upper limit of the mixing time is not particularly limited, but in consideration of productivity and saturation of the effect, it is preferably 5 hours or less, and more preferably 2 hours or less.
  • the mixing method is not particularly limited, but is a method of mixing while applying vibration, a method of mixing while rotating (for example, a method using a turbo shaker mixer), mixing with a stirrer, and air. A method such as transporting particles together with an air flow is preferable.
  • the stirring conditions are appropriately set by the mixing device. For example, when a turbo shaker mixer is used, the rotation speed is preferably higher than 45 rpm, more preferably 70 rpm or higher, and further preferably 100 rpm or higher. preferable.
  • the object of the present application can be achieved by appropriately adjusting the mixing time. Whether or not the object of the present application has been achieved can be determined by whether or not the physical property parameters of the present application are satisfied.
  • the water-soluble polyvalent metal cation-containing compound may be directly mixed with the water-absorbent resin as a powder, may be mixed as a solution, particularly an aqueous solution, or may be dissolved in a surface cross-linking agent or an aqueous solution thereof and mixed. good.
  • the (weight) ratio is defined in the range of 1/99 to 99/1, preferably 10/90 to 90/10. .. Exceeding these ranges is not preferable because the situation is extremely close to that of one-time addition and the effect of multiple additions becomes poor.
  • the method for adding the water-soluble polyvalent metal cation-containing compound is not particularly limited, but (1) it is added at the same time as the addition of the surface cross-linking agent (added in the surface cross-linking step), and (2) in the surface cross-linking step. It is preferable to add it later.
  • the water-soluble polyvalent metal cation-containing compound By adding the water-soluble polyvalent metal cation-containing compound at such a timing, the compound can be present in the vicinity of the particle surface, and the performance of the water absorbing agent can be improved.
  • it may be added together with other additives.
  • the water-soluble polyvalent metal cation-containing compound may be added to the water-absorbent resin (powder) in the state of a solution dissolved in a solvent (for example, water).
  • a solvent for example, water.
  • a hydrophilic organic solvent alcohol or polyglycol
  • a surfactant is used in combination in addition to water to improve dispersibility, solubility and mixability. May be good.
  • the amount of water to be used is appropriately determined depending on the type of the water-soluble polyvalent metal cation-containing compound and the method of addition. Is 0.1 to 10 parts by weight and 0.5 to 5 parts by weight.
  • the water-soluble polyvalent metal cation-containing compound may be added to the water-absorbent resin (powder) as it is.
  • the water-soluble polyvalent metal cation-containing compound is preferably in the form of particles.
  • the volume average particle size of the water-soluble polyvalent metal cation-containing compound particles is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less, and further preferably 1 ⁇ m or less.
  • the volume average particle size is preferably 0.05 ⁇ m or more, more preferably 0.1 ⁇ m or more, and even more preferably 0.3 ⁇ m or more. When it is at least the above lower limit, it is possible to suppress a decrease in workability during the addition step and obtain sufficient performance.
  • the volume average particle size of the water-soluble polyvalent metal cation-containing compound particles shall be measured by the "laser diffraction / scattering method" (for example, manufactured by Nikkiso Co., Ltd., trade name: measured using a Microtrac MT3000II particle size analyzer). Can be done.
  • water-soluble refers to a substance that is soluble (or easily soluble) in water at room temperature (23 ° C.) and under normal pressure (under 1 atm).
  • a substance having a dissolution amount of 1 g or more in 100 ml of water at room temperature and under normal pressure is shown.
  • water-insoluble refers to a substance that is insoluble (or sparingly soluble) in water at room temperature (23 ° C.) and under normal pressure (under 1 atm).
  • the substance has a dissolution amount of less than 1 g in 100 ml of water at room temperature and normal pressure, and a dissolution amount in 100 ml of water at room temperature and normal pressure is less than 0.1 g.
  • the mixing time of the water-absorbent resin and the water-soluble polyvalent metal cation-containing compound is not particularly limited and is appropriately set by a mixing device, but is mixed for a relatively long time so as to satisfy the above formula (1). Is preferable. That is, in the present invention, it is preferable to mix the water-absorbent resin and the water-soluble polyvalent metal cation-containing compound for a longer time than the mixing time for the purpose of simply mixing the additives. Usually, for the purpose of improving productivity, the operation of the mixing device is stopped when it can be confirmed that the additives are uniformly mixed by visual inspection or by a conventional evaluation method.
  • the basic performance required for the particulate water absorbing agent such as AAP and CRC was ensured.
  • the amount of pressure reduction in the swollen state of the particulate water-absorbing agent was not sufficiently reduced.
  • the present inventors have found that the conventional mixing method and time are insufficient for the water-soluble polyvalent metal cation-containing compound, and therefore, microscopically in the water-absorbent resin.
  • the mixing time of the water-absorbent resin and the water-soluble polyvalent metal cation-containing compound is, for example, 5 minutes or more, preferably 15 minutes or more, and more preferably 30 minutes or more.
  • the upper limit of the mixing time is not particularly limited, but in consideration of productivity and saturation of the effect, it is preferably 5 hours or less, and more preferably 2 hours or less.
  • the mixing method is not particularly limited, but is a method of mixing while applying vibration, a method of mixing while rotating (for example, a method using a turbo shaker mixer), mixing with a stirrer, and air.
  • a method such as transporting particles together with an air flow is preferable.
  • the rotation speed in this case may be the same as that of the manufacturing method a.
  • the mixing time required for ideal mixing differs depending on each mixing method, the object of the present application can be achieved by appropriately adjusting the mixing time. Whether or not the object of the present application has been achieved can be determined by whether or not the physical property parameters of the present application are satisfied.
  • Patent Document 2 International Publication No. 97/003114
  • cleaning is performed for the purpose of reducing the residual cross-linking agent, and "the range of the mixing ratio of water and the hydrophilic organic solvent is set to a mixed solution. Is to select the water-absorbent resin powder so as not to swell. ”Therefore, it is clearly distinguished from the above-mentioned step of swelling the water-absorbent resin powder by washing with a cleaning liquid containing water as a main component.
  • a cleaning method for example, it is preferable to swell the water-absorbent resin and then clean it with a cleaning liquid.
  • the method for bringing the water-absorbent resin into a swollen state include a method of immersing the water-absorbent resin in the liquid using a liquid containing water as a main component.
  • the immersion time is not particularly limited as long as the water-absorbent resin sufficiently swells, but may be, for example, 1 minute or longer, or 5 minutes or longer.
  • the main component of water is 80% by weight or more, preferably 90% by weight or more, more preferably 95% by weight or more, still more preferably 99% by weight or more, and preferably substantially water in the cleaning liquid. ..
  • the water preferably does not contain impurities, is preferably RO water, deionized water, distilled water, purified water, etc., and more preferably deionized water or distilled water.
  • a hydrophilic organic solvent may be contained as a component other than water.
  • hydrophilic organic solvent used lower alcohols such as methyl alcohol, ethyl alcohol, propyl alcohol, isopropyl alcohol and t-butyl alcohol are preferably exemplified.
  • the water-absorbent resin may be either the water-absorbent resin powder before the surface cross-linking treatment or the water-absorbent resin particles after the surface cross-linking treatment, but it is easier to obtain a particulate water-absorbent agent satisfying the formula (1). Therefore, it is preferable to wash the water-absorbent resin powder (so-called base polymer) before the surface cross-linking treatment.
  • the cleaning method is not particularly limited, and the cleaning liquid and the water-absorbent resin can be cleaned by a continuous or discontinuous batch method.
  • cleaning may be performed multiple times.
  • the washing time (water flow time) is preferably 15 minutes to 10 hours, more preferably 30 minutes to 8 hours, and even more preferably 1 to 5 hours.
  • the temperature of the cleaning liquid is preferably 20 to 50 ° C. from the viewpoint of cleaning effect.
  • the pressure at the time of cleaning is not particularly limited to pressurization, depressurization, and normal pressure, but normal pressure is usually used.
  • the water-absorbent resin (moisture-containing gel) after cleaning is further subjected to additional steps such as drying, crushing, and classification as necessary, as in the subsequent step of the water-containing gel in the method for producing a particulate water-absorbing agent below. Just do it.
  • This step is a step of preparing an aqueous solution containing a monomer (for example, acrylic acid (salt)) as a main component (hereinafter referred to as "monomer aqueous solution").
  • a monomer for example, acrylic acid (salt)
  • a monomer slurry liquid can be used as long as the water absorption performance of the obtained water-absorbent resin does not deteriorate, but in this section, the monomer aqueous solution will be described for convenience.
  • main component means that the amount (content) of acrylic acid (salt) used is usually relative to the entire monomer (excluding the internal cross-linking agent) subjected to the polymerization reaction of the water-absorbent resin. It means that it is 50 mol% or more, preferably 70 mol% or more, more preferably 90 mol% or more (upper limit is 100 mol%).
  • acrylic acid In the present invention, acrylic acid and / or a salt thereof (hereinafter referred to as "acrylic acid (salt)”) is used as a monomer from the viewpoint of physical properties and productivity of the obtained particulate water absorbent.
  • acrylic acid may be a known acrylic acid, preferably methoxyphenols as a polymerization inhibitor, more preferably p-methoxyphenol, from the viewpoint of the polymerizable property of acrylic acid and the color tone of the particulate water absorbent. May contain 200 ppm or less, more preferably 10 to 160 ppm, still more preferably 20 to 100 ppm.
  • impurities in acrylic acid the compound described in US Patent Application Publication No. 2008/0161512 is also applied to the present invention.
  • the "acrylic acid salt” is obtained by neutralizing the above acrylic acid with the following basic composition, and the acrylic acid salt may be a commercially available acrylic acid salt (for example, sodium acrylate). It may be obtained by neutralizing the particulate water-absorbing agent in the production plant.
  • the “basic composition” refers to a composition containing a basic compound, and corresponds to, for example, a commercially available sodium hydroxide aqueous solution.
  • the basic compound examples include alkali metal carbonates and hydrogen carbonates, alkali metal hydroxides, ammonia, and organic amines.
  • alkali metal carbonates and hydrogen carbonates examples include alkali metal carbonates and hydrogen carbonates, alkali metal hydroxides, ammonia, and organic amines.
  • neutralization As the neutralization in the present invention, neutralization with respect to acrylic acid (before polymerization) or neutralization with respect to a hydrogel crosslinked polymer obtained by crosslinking and polymerizing acrylic acid (after polymerization) (hereinafter, referred to as “post-neutralization”). Either of the above can be selected or used in combination. Further, these neutralizations may be a continuous type or a batch type and are not particularly limited, but a continuous type is preferable from the viewpoint of production efficiency and the like.
  • the neutralization rate in the present invention is preferably 10 to 90 mol%, more preferably 40 to 85 mol%, still more preferably 50 to 80 mol%, and particularly preferably 60 to 75 mol% with respect to the acid group of the monomer. Mol%. If the neutralization rate is less than 10 mol%, the water absorption ratio may be significantly reduced. On the other hand, when the neutralization rate exceeds 90 mol%, a water-absorbent resin having a high water-absorbing ratio under pressure may not be obtained.
  • the above neutralization rate is the same even in the case of post-neutralization. Further, the above neutralization rate is also applied to the neutralization rate of the particulate water absorbing agent as a final product.
  • the neutralization rate of 75 mol% means a mixture of 25 mol% of acrylic acid and 75 mol% of acrylate. In addition, the mixture may be referred to as a partially neutralized acrylic acid.
  • the "other monomer” refers to a monomer other than the above acrylic acid (salt), and the other monomer is used in combination with acrylic acid (salt) to produce a particulate water absorbent. be able to.
  • Examples of the above-mentioned other monomers include water-soluble or hydrophobic unsaturated monomers.
  • the compounds described in US Patent Application Publication No. 2005/0215734 (excluding acrylic acid) also apply to the present invention.
  • Internal cross-linking agent As the internal cross-linking agent used in the present invention, the compound described in US Pat. No. 6,241,928 is also applied to the present invention. From these, one kind or two or more kinds of compounds are selected in consideration of reactivity. In the present invention, it is preferable to surface-treat the crosslinked product using the internal cross-linking agent in consideration of the water absorption performance.
  • a compound having two or more polymerizable unsaturated groups is preferable, a compound having thermal decomposability at the following drying temperature is more preferable, and (poly) alkylene is more preferable.
  • a compound having two or more polymerizable unsaturated groups having a glycol structural unit is used as an internal cross-linking agent.
  • polymerizable unsaturated group examples include an allyl group, a (meth) acrylate group, and more preferably a (meth) acrylate group.
  • polyethylene glycol is preferable as the (poly) alkylene glycol structural unit, and the number of n is preferably 1 to 100, more preferably 6 to 50.
  • (poly) alkylene glycol di (meth) acrylate or (poly) alkylene glycol tri (meth) acrylate is preferably used, and more preferably (poly) ethylene glycol di (meth) acrylate is used.
  • the amount of the internal cross-linking agent used is preferably 0.0001 to 10 mol%, more preferably 0.001 to 1 mol%, based on the entire monomer.
  • the desired water-absorbent resin can be obtained by setting the amount used within the above range. If the amount used is too small, the gel strength tends to decrease and the water-soluble content tends to increase, and if the amount used is too large, the water absorption ratio tends to decrease.
  • a method in which a predetermined amount of an internal cross-linking agent is added to a monomer aqueous solution in advance and a cross-linking reaction is carried out at the same time as polymerization is preferably applied.
  • a method of adding an internal cross-linking agent during or after polymerization to post-crosslink a method of radical cross-linking using a radical polymerization initiator, radiation using active energy rays such as electron beams and ultraviolet rays.
  • a method of cross-linking or the like can also be adopted. Moreover, these methods can also be used together.
  • a hydrophilic polymer such as starch, starch derivative, cellulose, cellulose derivative, polyvinyl alcohol, polyacrylic acid (salt), polyacrylic acid (salt) crosslinked product, etc. is preferably 50 in a monomer aqueous solution. Addition in an amount of% by weight or less, more preferably 20% by weight or less, still more preferably 10% by weight or less, particularly preferably 5% by weight or less (the lower limit is 0% by weight), or a foaming agent such as a carbonate, an azo compound, or bubbles. , Surfactant, chelating agent such as diethylenetriamine-5acetic acid (salt), ethylenediaminetetramethylenephosphonic acid (salt), chain transfer agent, etc. in a monomer aqueous solution, preferably 5% by weight or less, more preferably 1% by weight. Below, more preferably, it can be added in an amount of 0.5% by weight or less (the lower limit is 0% by weight).
  • the above-mentioned substance may be added not only in the form added to the aqueous monomer solution but also in the form added during the polymerization, or these forms may be used in combination.
  • a graft polymer or a water-absorbent resin composition for example, starch-acrylic acid polymer, PVA-acrylic acid polymer, etc.
  • a graft polymer or a water-absorbent resin composition for example, starch-acrylic acid polymer, PVA-acrylic acid polymer, etc.
  • each of the above substances is added when preparing the monomer aqueous solution.
  • concentration of the monomer component in the aqueous monomer solution is not particularly limited, but from the viewpoint of the physical properties of the water-absorbent resin, it is preferably 10 to 80% by weight, more preferably 20 to 75% by weight, still more preferably 30. ⁇ 70% by weight.
  • a solvent other than water can be used in combination as needed.
  • the type of solvent is not particularly limited.
  • the above-mentioned "concentration of the monomer component” is a value obtained by the following formula (5), and the weight of the aqueous monomer solution includes the graft component, the water-absorbent resin, and the hydrophobicity in the reverse phase suspension polymerization.
  • the weight of the solvent is not included.
  • (Concentration of monomer component (% by weight)) (weight of monomer component) / (weight of aqueous monomer solution) ⁇ 100 Equation (5)
  • (3-2) Polymerization Step In this step, the acrylic acid (salt) -based monomer aqueous solution obtained in the above-mentioned monomer aqueous solution preparation step is polymerized to form a hydrogel crosslinked polymer (hereinafter, “hydrogen gel”). This is the process of obtaining).
  • hydrogel crosslinked polymer hereinafter, “hydrogen gel”. This is the process of obtaining).
  • the polymerization initiator used in the present invention is appropriately selected depending on the polymerization form and the like, and is not particularly limited.
  • a thermal decomposition type polymerization initiator a photodegradable polymerization initiator, or decomposition of these polymerization initiators.
  • examples thereof include a redox-based polymerization initiator in which a reducing agent that promotes the above-mentioned activity is used in combination.
  • a reducing agent that promotes the above-mentioned activity is used in combination.
  • one or more of the polymerization initiators disclosed in US Pat. No. 7,265,190 are used.
  • a peroxide or an azo compound is preferably used, more preferably a peroxide, and still more preferably a persulfate.
  • the amount of the polymerization initiator used is preferably 0.001 to 1 mol%, more preferably 0.001 to 0.5 mol%, based on the monomer.
  • the amount of the reducing agent used is preferably 0.0001 to 0.02 mol% with respect to the monomer.
  • the polymerization reaction may be carried out by irradiating with active energy rays such as radiation, electron beam and ultraviolet rays, and these active energy rays and the polymerization initiator may be used in combination.
  • active energy rays such as radiation, electron beam and ultraviolet rays
  • the polymerization form applied to the present invention is not particularly limited, but is preferably spray droplet polymerization, aqueous solution polymerization, reverse phase suspension polymerization, and more preferably aqueous solution polymerization from the viewpoint of water absorption characteristics, ease of polymerization control, and the like. , Reverse phase suspension polymerization, more preferably aqueous polymerization. Among them, continuous aqueous solution polymerization is particularly preferable, and either continuous belt polymerization or continuous kneader polymerization is applied.
  • continuous belt polymerization is referred to in US Pat. No. 4,893999, No. 624,928, US Patent Application Publication No. 2005/215734, etc.
  • continuous kneader polymerization is referred to in US Pat. No. 6,987,151, No. 6710141, etc. , Each is disclosed.
  • high temperature start polymerization and “high concentration polymerization” are mentioned as a preferable form of the said continuous aqueous solution polymerization.
  • the “high temperature start polymerization” means that the temperature of the aqueous monomer solution is preferably 30 ° C. or higher, more preferably 35 ° C. or higher, further preferably 40 ° C. or higher, and particularly preferably 50 ° C. or higher (upper limit is the boiling point).
  • “High-concentration polymerization” refers to a form in which the monomer concentration is preferably 30% by weight or more, more preferably 35% by weight or more, still more preferably 40% by weight or more, and particularly preferably 45% by weight or more. It refers to a form in which polymerization is carried out at (the upper limit is the saturation concentration). These polymerization forms can also be used in combination.
  • the polymerization can be carried out in an air atmosphere, but from the viewpoint of the color tone of the obtained water-absorbent resin, the polymerization may be carried out in an atmosphere of an inert gas such as nitrogen or argon. In this case, for example, it is preferable to control the oxygen concentration to 1 volume% or less.
  • the dissolved oxygen in the monomer aqueous solution is also preferably replaced with an inert gas (for example, dissolved oxygen; less than 1 mg / l).
  • the solid content concentration may be increased during the polymerization.
  • the degree of solid content increase is defined by the following formula (6) as an index of such an increase in solid content concentration.
  • the degree of increase in the solid content concentration is preferably 1% by weight or more, more preferably 2% by weight or more.
  • the solid content concentration of the monomer aqueous solution is a value obtained by the following formula (7), and the components in the polymerization system are the monomer aqueous solution and the graft component, the water-absorbent resin, and other solid substances (for example, water). Insoluble fine particles, etc.) and does not include hydrophobic solvents in reverse phase suspension polymerization.
  • the present invention can be carried out by a static polymerization method in which a monomer aqueous solution is polymerized in a static state, a stirring polymerization method in which the monomer aqueous solution is polymerized in a stirring device, or the like.
  • a static polymerization method in which a monomer aqueous solution is polymerized in a static state
  • stirring polymerization method in which the monomer aqueous solution is polymerized in a stirring device, or the like.
  • an endless belt it is preferable to use an endless belt.
  • the belt is preferably a resin or rubber belt that does not easily release the heat of polymerization from the contact surface.
  • the hydrous gel obtained in the above polymerization step is gel crushed by, for example, a screw extruder such as a kneader or a meat chopper, or a gel crusher such as a cutter mill, and is in the form of particles.
  • a hydrogel hereinafter referred to as "particulate hydrogel"
  • the polymerization step and the gel crushing step are carried out at the same time.
  • the gel pulverization step may not be carried out.
  • This step is a step of drying the particulate hydrogel obtained in the above-mentioned polymerization step and / or gel crushing step to a desired resin solid content to obtain a dried polymer.
  • the resin solid content is determined from the weight loss by drying (weight change when 1 g of the water-absorbent resin is heated at 180 ° C. for 3 hours), and is preferably 80% by weight or more, more preferably 85 to 99% by weight, still more preferably 90. It is ⁇ 98% by weight, particularly preferably 92 ⁇ 97% by weight.
  • the method for drying the particulate hydrogel is not particularly limited, but for example, heat drying, hot air drying, vacuum drying, fluidized bed drying, infrared drying, microwave drying, drum dryer drying, co-boiling with a hydrophobic organic solvent.
  • Examples include drying by dehydration and high-humidity drying using high-temperature steam.
  • hot air drying is preferable, and band drying in which hot air drying is performed on a ventilation belt is more preferable.
  • the drying temperature (hot air temperature) in the hot air drying is preferably 120 to 250 ° C., more preferably 150 to 200 ° C. from the viewpoint of the color tone of the water-absorbent resin and the drying efficiency. Drying conditions other than the above drying temperature, such as the wind speed of hot air and the drying time, may be appropriately set according to the water content and total weight of the particulate hydrogel to be dried and the target resin solid content.
  • the conditions described in International Publication No. 2006/100300, No. 2011/025012, No. 2011/0250513, No. 2011/111657 and the like are appropriately applied.
  • the dry polymer obtained in the drying step is crushed (crushing step), adjusted to a particle size within a predetermined range (classifying step), and is a water-absorbent resin powder (classification step).
  • classification step This is a step of obtaining a powdery water-absorbent resin (referred to as "water-absorbent resin powder" for convenience) before surface cross-linking.
  • Examples of the equipment used in the crushing process of the present invention include high-speed rotary crushers such as roll mills, hammer mills, screw mills, and pin mills, vibration mills, knuckle type crushers, cylindrical mixers, and the like, if necessary. Used together.
  • high-speed rotary crushers such as roll mills, hammer mills, screw mills, and pin mills, vibration mills, knuckle type crushers, cylindrical mixers, and the like, if necessary. Used together.
  • the particle size adjusting method in the classification step of the present invention is not particularly limited, and examples thereof include sieve classification using a JIS standard sieve (JIS Z8801-1 (2000)) and air flow classification.
  • the particle size adjustment of the water-absorbent resin is not limited to the above-mentioned pulverization step and classification step, but is not limited to the above-mentioned pulverization step and classification step, but is also a polymerization step (particularly reverse phase suspension polymerization and spray droplet polymerization) and other steps (for example, granulation step and fine powder recovery step). ) Can be carried out as appropriate.
  • the water-absorbent resin powder obtained in the above step has a weight average particle diameter (D50) of preferably 200 to 600 ⁇ m, more preferably 200 to 550 ⁇ m, and even more preferably. Is 250 to 500 ⁇ m.
  • D50 weight average particle diameter
  • the proportion of particles having a particle size of less than 150 ⁇ m is preferably 10% by weight or less, more preferably 5% by weight or less, still more preferably 1% by weight or less, and the proportion of particles having a particle size of 850 ⁇ m or more is preferably 5. By weight or less, more preferably 3% by weight or less, still more preferably 1% by weight or less.
  • the lower limit of the ratio of these particles is preferably as small as 0% by weight, but may be about 0.1% by weight.
  • the logarithmic standard deviation ( ⁇ ) of the particle size distribution is preferably 0.20 to 0.50, more preferably 0.25 to 0.40, and even more preferably 0.27 to 0.35.
  • the above-mentioned particle size is applied not only to the water-absorbent resin after surface cross-linking (hereinafter, may be referred to as "water-absorbent resin particles" for convenience) but also to the particulate water-absorbent as the final product. Therefore, it is preferable that the water-absorbent resin particles are subjected to a surface cross-linking treatment (surface cross-linking step) so as to maintain the particle size in the above range, and the particle size can be adjusted by providing a granulation step after the surface cross-linking step. preferable.
  • This step is a step of providing a portion having a higher crosslink density on the surface layer of the water-absorbent resin powder (a portion several tens of ⁇ m from the surface of the water-absorbent resin powder) obtained through the above-mentioned steps. It is composed of a mixing step, a heat treatment step and a cooling step (optional).
  • a water-absorbent resin (water-absorbent resin particles) surface-crosslinked by radical cross-linking or surface polymerization on the surface of the water-absorbent resin powder, a cross-linking reaction with a surface cross-linking agent, or the like can be obtained.
  • the surface cross-linking agent used in the present invention is not particularly limited, and examples thereof include organic or inorganic surface cross-linking agents. Among them, an organic surface cross-linking agent that reacts with a carboxyl group is preferable from the viewpoint of physical properties of the water-absorbent resin and handleability of the surface cross-linking agent. For example, one or more surface cross-linking agents disclosed in US Pat. No. 7,183,456.
  • polyhydric alcohol compounds More specifically, polyhydric alcohol compounds, epoxy compounds, haloepoxy compounds, polyhydric amine compounds or condensates thereof with haloepoxy compounds, oxazoline compounds, oxazolidinone compounds, polyvalent metal salts, alkylene carbonate compounds, cyclic urea compounds and the like. Can be mentioned.
  • organic surface cross-linking agent examples include (di, tri, tetra, poly) ethylene glycol, (di, poly) propylene glycol, 1,3-propanediol, 2,2,4-trimethyl-1,3-pentanediol, (Poly) Glycerin, 2-butane-1,4-diol, 1,4-butanediol, 1,3-butanediol, 1,5-pentanediol, 1,6-hexanediol, trimethylolpropane, di or triethanol
  • Polyalcohol compounds such as amine, pentaerythritol, sorbitol; epoxy compounds such as (poly) ethylene glycol diglycidyl ether, (di, poly) glycerol polyglycidyl ether, glycidol; 2-oxazolidone, N-hydroxyethyl-2-oxazolidone, Oxetane compounds such as 1,
  • Silane coupling agents such as xypropyltrimethoxysilane and ⁇ -aminopropyltriethoxysilane; 3-methyl-3-oxetane methanol, 3-ethyl-3-oxetane methanol, 3-butyl 3-oxetane methanol, 3-methyl- Oxetane compounds such as 3-oxetane ethanol, 3-ethyl-3-oxetane ethanol, 3-butyl 3-oxetane ethanol, 3-chloromethyl-3-methyloxetane, 3-chloromethyl-3-ethyloxetane, polyvalent oxetane compounds , 2-Cyclic urea compounds such as imidazolidinone, and the like.
  • a polyhydric alcohol having 2 to 8 carbon atoms is preferable, a polyhydric alcohol having 3 to 6 carbon atoms is more preferable, and a polyhydric alcohol having 3 to 4 carbon atoms is further preferable.
  • diols are preferable, and ethylene glycol, propylene glycol, 1,3-propanediol, and 1,4-butanediol are exemplified, and propylene glycol (1,2-propanediol), 1,3-propanediol, and 1,4 are exemplified.
  • -A polyhydric alcohol selected from butanediol is preferred.
  • epoxy compound a polyglycidyl compound is preferable, and ethylene glycol diglycidyl ether is preferably used.
  • a polyamine-cationic polymer such as a polyamine polymer or a water-soluble polyvalent metal cation-containing compound may be used in combination as the ion-binding surface cross-linking agent. good.
  • the water-soluble polyvalent metal cation-containing compound is as described above.
  • the amount of the surface cross-linking agent used is preferably 0.01 to 10 parts by weight, more preferably 0.01 to 5 parts by weight, based on 100 parts by weight of the water-absorbent resin powder.
  • the surface cross-linking agent is preferably added as an aqueous solution, and in this case, the amount of water used is preferably 0.1 to 20 parts by weight, more preferably 0, with respect to 100 parts by weight of the water-absorbent resin powder. 5 to 10 parts by weight. Further, if necessary, when a hydrophilic organic solvent is used, the amount used is preferably 10 parts by weight or less, more preferably 5 parts by weight or less, based on 100 parts by weight of the water-absorbent resin powder.
  • the water-soluble polyvalent metal cation-containing compound may be added in the surface cross-linking step.
  • This step is a step of mixing the water-absorbent resin powder and the surface cross-linking agent.
  • the method for mixing the surface cross-linking agent is not particularly limited, but a surface cross-linking agent solution is prepared in advance, and the solution is preferably sprayed or dropped onto the water-absorbent resin powder, and more preferably sprayed. There is a method of mixing.
  • the apparatus for performing the mixing is not particularly limited, but a high-speed stirring type mixer is preferable, and a high-speed stirring type continuous mixer is more preferable.
  • This step is a step of applying heat to the mixture discharged from the mixing step to cause a crosslinking reaction on the surface of the water-absorbent resin powder.
  • the apparatus for carrying out the cross-linking reaction is not particularly limited, but a paddle dryer is preferable.
  • the reaction temperature in the cross-linking reaction is appropriately set according to the type of surface cross-linking agent used, but is preferably 50 to 300 ° C, more preferably 100 to 200 ° C.
  • This step is an arbitrary step that is installed as needed after the heat treatment step.
  • the device for performing the cooling is not particularly limited, but is preferably a device having the same specifications as the device used in the heat treatment step, and more preferably a paddle dryer. This is because it can be used as a cooling device by changing the heat medium to a refrigerant.
  • the water-absorbent resin particles obtained in the heat treatment step are forcibly cooled to 40 to 80 ° C., more preferably 50 to 70 ° C., if necessary, in the cooling step.
  • a water-soluble polyvalent metal cation-containing compound, a polyvalent metal salt, a cationic polymer, a chelating agent, and an inorganic reduction are added to the water-absorbent resin particles obtained in the surface cross-linking step.
  • additives such as an agent, a hydroxycarboxylic acid compound, water-insoluble inorganic particles, a surfactant, and a non-polymer water-soluble compound.
  • the additive can be mixed with the water-absorbent resin powder at the same time as the surface cross-linking agent (aqueous solution).
  • Multivalent metal salt and / or cationic polymer From the viewpoint of improving the water absorption rate, liquid permeability, moisture absorption and fluidity, etc. of the obtained water-absorbent resin, a polyvalent metal salt and / or a cationic polymer may be added.
  • polyvalent metal salt and / or cationic polymer specifically, the compound disclosed in "[7] Polyvalent metal salt and / or cationic polymer" of International Publication No. 2011/040530 and the amount thereof used. Is applied to the present invention.
  • chelating agent A chelating agent may be added from the viewpoint of color tone (prevention of coloring), prevention of deterioration, etc. of the obtained water-absorbent resin.
  • An inorganic reducing agent may be added from the viewpoints of color tone (prevention of coloring), prevention of deterioration, reduction of residual monomers, etc. of the obtained water-absorbent resin.
  • the compound disclosed in "[3] Inorganic Reducing Agent" of International Publication No. 2011/040530 and the amount used thereof are applied to the present invention.
  • ⁇ -hydroxycarboxylic acid compound From the viewpoint of the color tone (prevention of coloring) of the obtained water-absorbent resin, ⁇ -hydroxycarboxylic acid may be added.
  • the " ⁇ -hydroxycarboxylic acid compound” is a carboxylic acid having a hydroxyl group in the molecule or a salt thereof, and is a hydroxycarboxylic acid having a hydroxyl group at the ⁇ -position.
  • ⁇ -hydroxycarboxylic acid compound specifically, the compound disclosed in "[6] ⁇ -hydroxycarboxylic acid compound" of International Publication No. 2011/040530 and the amount used thereof are applied to the present invention. ..
  • Water-insoluble inorganic particles may be added from the viewpoint of improving the fluidity of the water-absorbent resin. Specifically, the water-insoluble inorganic particles described in the above column (2-9) can be mentioned. As described above, since it is easy to obtain a particulate water-absorbing agent filled with the formula (1), a form in which water-insoluble inorganic particles are added to the water-absorbent resin particles obtained in the surface cross-linking step is a preferable form.
  • a surfactant may be added from the viewpoint of improving the physical characteristics (for example, water absorption rate) of the obtained water-absorbent resin.
  • surfactant examples include the surfactants disclosed in International Publication No. 97/017397 and US Pat. No. 6,107,358, that is, nonionic surfactants, anionic surfactants, and cationic surfactants. Agents, amphoteric surfactants and the like can be mentioned.
  • Non-polymer water-soluble compound A non-polymer water-soluble compound may be added from the viewpoint of reducing dust of the water-absorbent resin.
  • the compounds disclosed in "Non-polymer water-soluble compounds" of WO2014 / 034667 and the amounts thereof used are applied to the present invention.
  • additives other than the above-mentioned additives can be added in order to add various functions to the water-absorbent resin.
  • specific examples of the additive include compounds having a phosphorus atom, oxidizing agents, organic reducing agents, organic powders such as metal soaps, deodorants, antibacterial agents, pulp and thermoplastic fibers.
  • the amount of the additive used is appropriately determined according to the intended use and is not particularly limited, but is preferably 3 parts by weight or less, more preferably 1 part by weight, based on 100 parts by weight of the water-absorbent resin. It is less than a part. Further, the additive may be added in a step different from the above step.
  • a granulation step, a granulation step, a fine powder removing step, a fine powder reuse step, and the like can be provided as necessary. Further, one or more steps such as a transportation step, a storage step, a packing step, and a storage step may be further included.
  • the "granulation step” includes a step of removing fine powder after the surface cross-linking step and a step of classifying and pulverizing when the water-absorbent resin aggregates and exceeds a desired size.
  • the "step of reusing the fine powder” includes a step of forming a large water-containing gel and adding it to any step of the manufacturing process of the water-absorbent resin.
  • the particulate water-absorbing agent of the present invention is used for the purpose of water absorption and is widely used as an absorber. It is also used as an absorbent article containing the absorber.
  • the granular water-absorbing agent of the present invention is suitably used as a sanitary article used by humans for absorbing body fluids such as urine and blood, among absorption articles, because reversion under pressure is reduced. Be done.
  • a preferred embodiment of the present invention is an absorber containing the particulate water absorbent of the above-mentioned form.
  • Another preferred embodiment of the present invention is a hygienic article containing the absorber of the above-mentioned form.
  • the absorbent examples include an absorbent molded by containing a particulate water absorbent and a fiber base material (for example, hydrophilic fiber) as main components.
  • the content (core concentration) of the particulate water-absorbing agent with respect to the total weight of the particulate water-absorbing agent and the hydrophilic fiber in the absorber is 20 to 100% by weight, more preferably 25 to 90% by weight, and particularly preferably 30. -80% by weight, most preferably 40-80% by weight.
  • the higher the core concentration in the absorber the more affected by the water absorption performance of the particulate water absorbent during the manufacture of the absorber, the absorbent article, and the like.
  • Such an absorber is formed by blending or sandwiching a fiber base material such as a hydrophilic fiber with a particulate water absorbent, for example.
  • a fiber base material such as a hydrophilic fiber with a particulate water absorbent
  • the fiber base material used include hydrophilic fibers such as crushed wood pulp, cotton linters and crosslinked cellulose fibers, rayon, cotton, wool, acetate, vinylon and the like. These fiber base materials are preferably air-laid.
  • the absorber may be a water-absorbent sheet (of Palpress) in which a water-absorbent resin is immobilized between two sheets (for example, a non-woven fabric).
  • the absorbent article includes the absorbent body, a liquid-permeable front sheet, and a liquid-impermeable back sheet.
  • the absorbent article manufactures an absorbent body (absorbent core), and the absorbent core is sandwiched between a liquid-permeable front sheet and a liquid-impermeable back sheet. Then, if necessary, by equipping with an elastic member, a diffusion layer, an adhesive tape, or the like, an absorbent article such as an adult paper diaper or a sanitary napkin can be obtained.
  • the absorption core is compression-molded in a range of, for example, a density of 0.06 to 0.50 [g / cm 3 ] and a basis weight of 0.01 to 0.20 [g / cm 2].
  • the electrical equipment used in Examples, Comparative Examples, and Reference Examples used a 200V or 100V power supply.
  • A Method for measuring moisture absorption blocking rate (BR; Blocking Ratio) After uniformly spraying 2 g of a particulate water absorbent or a water absorbent resin on an aluminum cup having a diameter of 52 mm, the temperature is 25 ° C. and the relative humidity is 90 ⁇ 5. It was allowed to stand for 1 hour in a constant temperature and humidity chamber (PLATINOUSLUCIFERPL-2G; manufactured by Tabay Espec) under% RH.
  • BR moisture absorption blocking rate
  • the particulate water-absorbing agent or water-absorbent resin contained in the aluminum cup is gently transferred onto a JIS standard sieve (TheIIDATETINGSIEVE: inner diameter 80 mm) having an opening of 2000 ⁇ m (JIS8.6 mesh), and a low-tap type sieve is used.
  • a shaker ES-65 type sieve shaker manufactured by Iida Seisakusho Co., Ltd .; rotation speed 230 rpm, impact number 130 rpm
  • the particles were classified for 5 seconds under the conditions of room temperature (20 to 25 ° C.) and relative humidity of 50% RH.
  • Hygroscopic fluidity (BR) [% by weight] ⁇ W1 / (W1 + W2) ⁇ x 100.
  • (B) Method for measuring the amount of dust The measurement was carried out in accordance with the description of [281] to [282] of International Publication No. 2006/098271. That is, the amount of dust of the particulate water absorbing agent was measured by increasing the weight of the dust sucked and captured by the glass fiber filter paper under the following conditions.
  • the measuring device was a Heubach DUSTMERer manufactured by Heubach Engineering GmbH in Germany, and the measurement mode was Type II.
  • the temperature of the atmosphere at the time of measurement was 23 ° C. ( ⁇ 2 ° C.), the relative humidity was 20 to 40% RH, and the pressure was normal.
  • the measurement method was as follows.
  • the weight of the glass fiber filter paper is measured up to 0.00001 g unit ([Db]).
  • the amount of dust is calculated according to the following formula (8).
  • Dust amount [mg / kg] ([Db]-[Da]) / 100 ⁇ 1000000 formula (8).
  • a well-washed 25 mm long fluororesin rotor and 0.5 g of a particulate water-absorbing agent or water-absorbing resin were put into a beaker containing a physiological saline solution adjusted to 20 ° C. after measuring the surface tension. Then, the mixture was stirred under the condition of 500 rpm for 4 minutes. After 4 minutes, the stirring was stopped, and after the water-containing particulate water-absorbing agent or water-absorbent resin had settled, the surface tension of the supernatant was measured again by performing the same operation.
  • a plate method using a platinum plate was adopted, and the plate was sufficiently washed with deionized water before each measurement and then heated and washed with a gas burner before use.
  • the surface color (YI value (Yellow)) was filled with the above spectroscopic color difference meter under the conditions of 5 g (filling about 60% of the provided sample table), room temperature (20 to 25 ° C.), and humidity of 50 RH%. Index)) was measured.
  • the object color (L, a, b) or WB (hunter color) of another scale can be measured at the same time by the same measurement method of the same device. The larger the L / WB and the smaller the a / b, the lower the coloring and the closer to the substantially white color.
  • the paste sample table was filled with 5 g of a particulate water-absorbing agent or a water-absorbent resin, and the temperature was adjusted to 70 ⁇ 1 ° C. and the relative humidity was 65 ⁇ 1% RH.
  • Product name A paste sample table filled with a particulate water-absorbing agent or a water-absorbent resin in a small environmental tester, type SH-641) was exposed for 14 days. After exposure, the surface color (YI value (Yellow Index)) was measured with the above spectroscopic color difference meter.
  • the YI value is preferably 35 or less, more preferably 32 or less, still more preferably 29 or less, and particularly preferably 26 or less.
  • Paint shaker test 30 g of water-absorbent resin was placed in a glass container having a diameter of 6 cm and a height of 11 cm, and installed in a paint shaker (No. 488 test disperser, manufactured by Toyo Seiki Seisakusho Co., Ltd.). Then, the paint shaker was shaken at 800 (cycle / min) for a predetermined time, and then stopped.
  • the monomer aqueous solution (a') was cooled with stirring.
  • 144.8 g of a 48.5% by weight sodium hydroxide aqueous solution adjusted to 40 ° C. was added and mixed to prepare a monomer aqueous solution (a).
  • the temperature of the monomer aqueous solution (a) was raised to 78.2 ° C. by the heat of neutralization in the second stage immediately after the production.
  • precipitates were observed, but they gradually dissolved to become a transparent uniform solution.
  • the polymerization reaction started 60 seconds after the above-mentioned monomer aqueous solution (a) was poured into the vat-shaped container.
  • the polymerization reaction proceeded by expanding and foaming in all directions while generating water vapor, and then contracted to a size slightly larger than that of the vat-shaped container.
  • the hydrogel-like crosslinked polymer hereinafter referred to as “hydrogen gel”.
  • the hydrogel (1) obtained by the above polymerization reaction was cut into strips, supplied to a screw extruder and pulverized to obtain a particulate hydrogel (1).
  • the screw extruder is provided with a perforated plate having a diameter of 100 mm, a hole diameter of 11.0 mm, a number of holes of 40, a hole opening rate of 62.5%, and a thickness of 10 mm at the tip, and the outer diameter of the screw shaft is 86 mm. rice field.
  • the gel crushing was performed by simultaneously supplying the strip-shaped hydrogel (1) and water vapor from different supply ports in a state where the rotation speed of the screw shaft of the screw extruder was 130 rpm.
  • the amount of the hydrogel (1) supplied was 4640 g / min, and the amount of water vapor supplied was 83 g / min.
  • This particulate hydrogel (1) is spread on a 50-mesh wire mesh, dried with hot air at 190 ° C. for 30 minutes, and the dried product is crushed using a roll mill (WML type roll crusher / Inoguchi Giken Co., Ltd.). Further, by sieving with a JIS standard sieve having a mesh size of 850 ⁇ m, 600 ⁇ m, 500 ⁇ m, 300 ⁇ m, and 150 ⁇ m and then preparing the mixture, the weight average particle size (D50) is 305 ⁇ m and the logarithmic standard deviation ( ⁇ ) of the particle size distribution is 0.35. A standard crushed precursor water-absorbent resin (A) was obtained. The centrifuge holding capacity (CRC) of the precursor water-absorbent resin (A) was 48.4 (g / g).
  • CRC centrifuge holding capacity
  • the monomer aqueous solution (b') was cooled with stirring.
  • 138.1 g of a 48.5% by weight sodium hydroxide aqueous solution adjusted to 40 ° C. was added and mixed to prepare a monomer aqueous solution (b).
  • the temperature of the monomer aqueous solution (b) was raised to 77.8 ° C. by the heat of neutralization in the second stage immediately after the preparation.
  • precipitates were observed, but they gradually dissolved to become a transparent uniform solution.
  • the polymerization reaction started 60 seconds after the above-mentioned monomer aqueous solution (b) was poured into the vat-shaped container.
  • the polymerization reaction proceeded by expanding and foaming in all directions while generating water vapor, and then contracted to a size slightly larger than that of the vat-shaped container.
  • the hydrogel-like crosslinked polymer hereinafter referred to as “hydrogen gel”.
  • the hydrogel (2) obtained by the above polymerization reaction was cut into strips, supplied to a screw extruder and pulverized to obtain a particulate hydrogel (2).
  • the screw extruder is provided with a perforated plate having a diameter of 100 mm, a hole diameter of 9.5 mm, a number of holes of 40, a hole opening rate of 62.5%, and a thickness of 10 mm at the tip, and the outer diameter of the screw shaft is 86 mm. rice field.
  • the gel crushing was performed by simultaneously supplying the strip-shaped hydrogel (2) and water vapor from different supply ports in a state where the rotation speed of the screw shaft of the screw extruder was 130 rpm.
  • the amount of the hydrogel (2) supplied was 4640 g / min, and the amount of water vapor supplied was 83 g / min.
  • This subdivided hydrogel (2) is spread on a 50-mesh wire mesh, dried with hot air at 190 ° C. for 30 minutes, and the dried product is crushed using a roll mill (WML type roll crusher / Inoguchi Giken Co., Ltd.). Then, by further sieving with a JIS standard sieve having a mesh size of 850 ⁇ m, 600 ⁇ m, 500 ⁇ m, 300 ⁇ m, and 150 ⁇ m and then preparing the mixture, the weight average particle size (D50) is 298 ⁇ m, and the logarithmic standard deviation ( ⁇ ) of the particle size distribution is 0.35.
  • Atypical crushed precursor water-absorbent resin (B) was obtained.
  • the centrifuge holding capacity (CRC) of the precursor water-absorbent resin (B) was 50.1 (g / g).
  • Example 1-1 0.025 parts by weight of ethylene glycol diglycidyl ether, 0.3 parts by weight of ethylene carbonate, 0.5 parts by weight of propylene glycol and 2.0 parts by weight of deionized water with respect to 100 parts by weight of the precursor water-absorbent resin (A).
  • the surface cross-linking agent solution made of the above was uniformly mixed and heat-treated at 190 ° C. for about 30 minutes so that the CRC of the obtained water-absorbent resin (1) was about 35 [g / g].
  • aqueous solution consisting of 1 part by weight of deionized water and 0.01 part by weight of diethylenetriamine-5 acetic acid / 3 sodium (DTPA / 3Na) was uniformly mixed with 100 parts by weight of the water-absorbent resin. After drying at 60 ° C. for 1 hour, the mixture was passed through a JIS standard sieve having an opening of 850 ⁇ m, and 0.3 parts by weight of silicon dioxide (trade name: Leoloseal QS-20, manufactured by Tokuyama Corporation) was mixed.
  • silicon dioxide trade name: Leoloseal QS-20, manufactured by Tokuyama Corporation
  • Example 1-2 With respect to 100 parts by weight of the precursor water-absorbent resin (A), 0.025 parts by weight of ethylene glycol diglycidyl ether, 0.26 parts by weight of 1,3-propanediol, 0.5 parts by weight of propylene glycol and 2 parts by weight of deionized water. A surface cross-linking agent solution consisting of 0.0 parts by weight was uniformly mixed and heat-treated at 190 ° C. for about 30 minutes so that the CRC of the obtained water-absorbent resin (2) was about 35 [g / g]. ..
  • aqueous solution consisting of 1 part by weight of deionized water and 0.01 part by weight of ethylenediaminetetramethylenephosphonic acid / 5 sodium (EDTMP / 5Na) was uniformly mixed with 100 parts by weight of the water-absorbent resin. After drying at 60 ° C. for 1 hour, the mixture was passed through a JIS standard sieve having an opening of 850 ⁇ m, and 0.3 parts by weight of silicon dioxide (trade name: Leoloseal QS-20, manufactured by Tokuyama Corporation) was mixed.
  • silicon dioxide trade name: Leoloseal QS-20, manufactured by Tokuyama Corporation
  • Example 1-3 In Production Example 1, after sieving with a JIS standard sieve having openings of 850 ⁇ m, 600 ⁇ m, 500 ⁇ m, 300 ⁇ m, and 150 ⁇ m, the weight average particle diameter (D50) is 343 ⁇ m, and the logarithmic standard deviation ( ⁇ ) of the particle size distribution is 0.36.
  • Example 1-4 A surface cross-linking agent solution consisting of 0.03 parts by weight of ethylene glycol diglycidyl ether, 1.5 parts by weight of propylene glycol and 3.5 parts by weight of deionized water was uniformly applied to 100 parts by weight of the precursor water-absorbent resin (A). Was mixed with and heat-treated at 100 ° C. for about 30 minutes so that the CRC of the obtained water-absorbent resin (4) was about 35 [g / g].
  • aqueous solution consisting of 1 part by weight of deionized water and 0.05 part by weight of diethylenetriamine-5 acetic acid / 3 sodium (DTPA / 3Na) was uniformly mixed with 100 parts by weight of the water-absorbent resin. After drying at 60 ° C. for 1 hour, the mixture was passed through a JIS standard sieve having an opening of 850 ⁇ m, and 0.3 parts by weight of silicon dioxide (trade name: Leoloseal QS-20, manufactured by Tokuyama Corporation) was mixed.
  • silicon dioxide trade name: Leoloseal QS-20, manufactured by Tokuyama Corporation
  • Example 1-5 0.025 parts by weight of ethylene glycol diglycidyl ether, 0.3 parts by weight of ethylene carbonate, 0.5 parts by weight of propylene glycol and 2.0 parts by weight of deionized water with respect to 100 parts by weight of the precursor water-absorbent resin (A).
  • the surface cross-linking agent solution made of the above was uniformly mixed and heat-treated at 190 ° C. for about 30 minutes so that the CRC of the obtained water-absorbent resin (5) was about 35 [g / g].
  • Example 1-6 A surface cross-linking agent solution consisting of 0.04 parts by weight of ethylene glycol diglycidyl ether, 2.8 parts by weight of propylene glycol and 4.2 parts by weight of deionized water was uniformly applied to 100 parts by weight of the precursor water-absorbent resin (A). And heat-treated at 100 ° C. for about 30 minutes so that the CRC of the obtained water-absorbent resin (6) was about 35 [g / g]. After that, cooling is performed, the above paint shaker test (shaking time: 15 minutes) is carried out, and damage equivalent to the manufacturing process is given.
  • aqueous solution consisting of 0.05 parts by weight of methylene phosphonic acid and 5 sodium (EDTMP and 5Na) was uniformly mixed. After drying at 60 ° C. for 1 hour, the mixture was passed through a JIS standard sieve having an opening of 850 ⁇ m, and 0.3 parts by weight of silicon dioxide (trade name: Sipernat 22S, manufactured by EVONIK) was mixed.
  • Example 1--7 0.025 parts by weight of ethylene glycol diglycidyl ether, 0.21 parts by weight of ethylene glycol, 0.5 parts by weight of propylene glycol and 2.0 parts by weight of deionized water with respect to 100 parts by weight of the precursor water-absorbent resin (A).
  • the surface cross-linking agent solution made of the above was uniformly mixed and heat-treated at 190 ° C. for about 30 minutes so that the CRC of the obtained water-absorbent resin (7) was about 35 [g / g].
  • Example 1-8 0.025 parts by weight of ethylene glycol diglycidyl ether, 0.3 parts by weight of ethylene carbonate, 0.5 parts by weight of propylene glycol and 2.0 parts by weight of deionized water with respect to 100 parts by weight of the precursor water-absorbent resin (A).
  • the surface cross-linking agent solution made of the above was uniformly mixed and heat-treated at 190 ° C. for about 30 minutes so that the CRC of the obtained water-absorbent resin (8) was about 35 [g / g].
  • Example 1-9 In Production Example 1, after sieving with a JIS standard sieve having openings of 850 ⁇ m, 600 ⁇ m, 500 ⁇ m, 300 ⁇ m, and 150 ⁇ m, the weight average particle diameter (D50) is 379 ⁇ m, and the logarithmic standard deviation ( ⁇ ) of the particle size distribution is 0.38.
  • a surface cross-linking agent consisting of 0.03 parts by weight of ethylene glycol diglycidyl ether, 1.2 parts by weight of propylene glycol, and 2.8 parts by weight of deionized water with respect to 100 parts by weight of the precursor water-absorbent resin (A) prepared in. The solution was uniformly mixed, and heat treatment was performed at 90 ° C.
  • Example 1-10 0.04 parts by weight of ethylene glycol diglycidyl ether, 2.45 parts by weight of propylene glycol, 3.55 parts by weight of deionized water, and 14 to 18 hydrates of aluminum sulfate with respect to 100 parts by weight of the precursor water-absorbent resin (A).
  • a surface cross-linking agent solution consisting of 0.75 parts by weight of the product is uniformly mixed, and heat-treated at 100 ° C. for about 30 minutes so that the CRC of the obtained water-absorbent resin (10) is about 35 [g / g]. went.
  • Example 1-11 With respect to 100 parts by weight of the precursor water-absorbent resin (B), 0.025 parts by weight of ethylene glycol diglycidyl ether, 0.26 parts by weight of 1,3-propanediol, 0.5 parts by weight of propylene glycol and 2 parts by weight of deionized water. A surface cross-linking agent solution consisting of 0.0 parts by weight was uniformly mixed, and heat treatment was performed at 190 ° C. for about 30 minutes so that the CRC of the obtained water-absorbent resin (11) was about 35 [g / g]. ..
  • aqueous solution consisting of 1 part by weight of deionized water and 0.03 part by weight of diethylenetriamine-5 acetic acid / 3 sodium (DTPA / 3Na) was uniformly mixed with 100 parts by weight of the water-absorbent resin. After drying at 60 ° C. for 1 hour, the mixture was passed through a JIS standard sieve having an opening of 850 ⁇ m, and 0.3 parts by weight of silicon dioxide (trade name: Leoloseal QS-20, manufactured by Tokuyama Corporation) was mixed.
  • silicon dioxide trade name: Leoloseal QS-20, manufactured by Tokuyama Corporation
  • Example 1-12 0.025 parts by weight of ethylene glycol diglycidyl ether, 0.3 parts by weight of ethylene carbonate, 0.5 parts by weight of propylene glycol and 2.0 parts by weight of deionized water with respect to 100 parts by weight of the precursor water-absorbent resin (B).
  • the surface cross-linking agent solution made of the above was uniformly mixed and heat-treated at 190 ° C. for about 30 minutes so that the CRC of the obtained water-absorbent resin (12) was about 35 [g / g].
  • Example 1-13 With respect to 100 parts by weight of the precursor water-absorbent resin (B), 0.025 parts by weight of ethylene glycol diglycidyl ether, 0.31 parts by weight of 1,4-butanediol, 0.5 parts by weight of propylene glycol and 2 parts by weight of deionized water. A surface cross-linking agent solution consisting of 0.0 parts by weight was uniformly mixed and heat-treated at 190 ° C. for about 30 minutes so that the CRC of the obtained water-absorbent resin (13) was about 35 [g / g]. ..
  • Example 1-14 A surface cross-linking agent solution consisting of 0.03 parts by weight of ethylene glycol diglycidyl ether, 1.5 parts by weight of propylene glycol and 3.5 parts by weight of deionized water was uniformly applied to 100 parts by weight of the precursor water-absorbent resin (B). Was mixed with and heat-treated at 100 ° C. for about 30 minutes so that the CRC of the obtained water-absorbent resin (14) was about 35 [g / g].
  • Example 1-15 0.025 parts by weight of ethylene glycol diglycidyl ether, 0.3 parts by weight of ethylene carbonate, 0.5 parts by weight of propylene glycol and 2.0 parts by weight of deionized water with respect to 100 parts by weight of the precursor water-absorbent resin (B).
  • the surface cross-linking agent solution made of the above was uniformly mixed and heat-treated at 190 ° C. for about 30 minutes so that the CRC of the obtained water-absorbent resin (15) was about 35 [g / g].
  • Example 1-16 A uniform surface cross-linking agent solution consisting of 0.04 parts by weight of ethylene glycol diglycidyl ether, 2.8 parts by weight of propylene glycol and 4.2 parts by weight of deionized water with respect to 100 parts by weight of the precursor water-absorbent resin (B).
  • B the precursor water-absorbent resin
  • aqueous solution consisting of 1 part by weight of deionized water and 0.01 part by weight of ethylenediaminetetramethylenephosphonic acid / 5 sodium (EDTMP / 5Na) was uniformly mixed with 100 parts by weight of the water-absorbent resin. After drying at 60 ° C. for 1 hour, the mixture was passed through a JIS standard sieve having an opening of 850 ⁇ m, and 0.3 parts by weight of silicon dioxide (trade name: Sipernat 22S, manufactured by EVONIK) was mixed.
  • silicon dioxide trade name: Sipernat 22S, manufactured by EVONIK
  • Example 1-17 0.025 parts by weight of ethylene glycol diglycidyl ether, 0.21 parts by weight of ethylene glycol, 0.5 parts by weight of propylene glycol and 2.0 parts by weight of deionized water with respect to 100 parts by weight of the precursor water-absorbent resin (B).
  • the surface cross-linking agent solution made of the above was uniformly mixed and heat-treated at 190 ° C. for about 30 minutes so that the CRC of the obtained water-absorbent resin (17) was about 35 [g / g].
  • Example 1-18 0.025 parts by weight of ethylene glycol diglycidyl ether, 0.3 parts by weight of ethylene carbonate, 0.5 parts by weight of propylene glycol and 2.0 parts by weight of deionized water with respect to 100 parts by weight of the precursor water-absorbent resin (B).
  • the surface cross-linking agent solution made of the above was uniformly mixed and heat-treated at 190 ° C. for about 30 minutes so that the CRC of the obtained water-absorbent resin (18) was about 35 [g / g].
  • Example 1-19 With respect to 100 parts by weight of the precursor water-absorbent resin (A), 0.04 parts by weight of ethylene glycol diglycidyl ether, 4.0 parts by weight of propylene glycol, 5.8 parts by weight of deionized water and 14 to 18 hydrates of aluminum sulfate. Material (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) A surface cross-linking agent solution consisting of 0.75 parts by weight is uniformly mixed, and the CRC of the water-absorbent resin (19) obtained at 100 ° C. for about 30 minutes is about 35 [g]. The heat treatment was performed so as to be [/ g].
  • Example 1-20 In Production Example 1, after sieving with a JIS standard sieve having openings of 850 ⁇ m, 600 ⁇ m, 500 ⁇ m, 300 ⁇ m, and 150 ⁇ m, the weight average particle diameter (D50) is 379 ⁇ m, and the logarithmic standard deviation ( ⁇ ) of the particle size distribution is 0.38.
  • a surface cross-linking agent consisting of 0.03 parts by weight of ethylene glycol diglycidyl ether, 1.2 parts by weight of propylene glycol, and 2.8 parts by weight of deionized water with respect to 100 parts by weight of the precursor water-absorbent resin (A) prepared in. The solution was uniformly mixed, and heat treatment was performed at 90 ° C.
  • Example 1-21 50 parts by weight of the precursor water-absorbent resin (A) was added to a 99 L poly bucket filled with deionized water, allowed to stand for 10 minutes, and after confirming the sedimentation of the gel, the poly bucket was covered with a mesh sheet having an opening of 150 ⁇ m, and the poly bucket was covered. Fixed to. The hose was fixed on the mesh sheet, and deionized water was passed through the hose into the poly bucket for 3 hours. After passing water, the liquid in the poly bucket was drained using a JIS standard sieve with a mesh size of 150 ⁇ m, the obtained gel was spread on a wire mesh of 50 mesh, air-dried at 60 ° C. for 24 hours, and the moisture content was 7%. It was dried under reduced pressure at 60 ° C. until it became.
  • the dried product is crushed using a roll mill (WML type roll crusher / Inoguchi Giken Co., Ltd.), further sieved with a JIS standard sieve having openings of 850 ⁇ m, 600 ⁇ m, 500 ⁇ m, 300 ⁇ m, and 150 ⁇ m, and then prepared.
  • An amorphous crushed precursor water-absorbent resin (C) having a weight average particle diameter (D50) of 314 ⁇ m and a particle size distribution logarithmic standard deviation ( ⁇ ) of 0.35 was obtained.
  • the centrifuge holding capacity (CRC) of the precursor water-absorbent resin (C) was 49.8 (g / g).
  • Comparative Example 1-1 A comparative particulate water absorbent (1) was obtained by the same method as in Example 1-1 except that the mixing time of silicon dioxide with a turbo shaker mixer was set to 2 minutes.
  • the AAP of the comparative particulate water absorbent (1) was 18.0 [g / g]
  • the GPR was 112 [g / min]
  • the flow rate was 10.1 [g / s].
  • Table 1 shows the absorption performance of the comparative particulate water absorbent (1).
  • Comparative Example 1-2 A comparative particulate water absorbent (2) was obtained by the same method as in Example 1-2 except that the mixing time of silicon dioxide with a turbo shaker mixer was set to 2 minutes. Table 1 shows the absorption performance of the comparative particulate water absorbent (2).
  • Comparative Example 1-3 A comparative particulate water absorbent (3) was obtained by the same method as in Example 1-4 except that the mixing time of silicon dioxide with a turbo shaker mixer was set to 2 minutes. Table 1 shows the absorption performance of the comparative particulate water absorbent (3).
  • Comparative Example 1-4 A comparative particulate water absorbent (4) was obtained by the same method as in Example 1-5 except that the mixing time of silicon dioxide with a turbo shaker mixer was set to 2 minutes. Table 1 shows the absorption performance of the comparative particulate water absorbent (4).
  • Example 1-9 Example 1-9, except that 0.4 parts by weight of aluminum hydroxide was 0.3 parts by weight of silicon dioxide (trade name: OSC C132, Oriental Silicon Corporation) and the mixing time by a turbo shaker mixer was 2 minutes.
  • a comparative particulate water absorbent (5) was obtained by the same method. Table 1 shows the absorption performance of the comparative particulate water absorbent (5). The surface tension of the comparative particulate water absorbent (5) was 72.3 mN / m.
  • Comparative Example 1-6 A comparative particulate water absorbent (6) was obtained by the same method as in Example 1-11 except that the mixing time of silicon dioxide with a turbo shaker mixer was set to 2 minutes. Table 1 shows the absorption performance of the comparative particulate water absorbent (6).
  • Comparative Example 1--7 A comparative particulate water absorbent (7) was obtained by the same method as in Example 1-12 except that the mixing time of silicon dioxide with a turbo shaker mixer was set to 2 minutes. Table 1 shows the absorption performance of the comparative particulate water absorbent (7).
  • the GPR of the comparative particulate water absorbent (7) was 78 [g / min], and the amount of dust was 160 [mg / kg].
  • Comparative Example 1-8 A comparative particulate water absorbent (8) was obtained by the same method as in Example 1-13 except that the mixing time of silicon dioxide with a turbo shaker mixer was set to 2 minutes. Table 1 shows the absorption performance of the comparative particulate water absorbent (8).
  • Comparative Example 1-9 A comparative particulate water absorbent (9) was obtained by the same method as in Example 1-15 except that the mixing time of silicon dioxide with a turbo shaker mixer was set to 2 minutes. Table 1 shows the absorption performance of the comparative particulate water absorbent (9).
  • Comparative Example 1-10 A comparative particulate water absorbent (10) was obtained by the same method as in Example 1-16 except that the mixing time of silicon dioxide with a turbo shaker mixer was set to 2 minutes. Table 1 shows the absorption performance of the comparative particulate water absorbent (10).
  • Comparative Example 1-11 A comparative particulate water absorbent (11) was obtained by the same method as in Example 1-17 except that the mixing time of silicon dioxide with a turbo shaker mixer was set to 2 minutes. Table 1 shows the absorption performance of the comparative particulate water absorbent (11).
  • Comparative Example 1-12 A comparative particulate water absorbent (12) was obtained by the same method as in Example 1-18 except that the mixing time of silicon dioxide with a turbo shaker mixer was set to 2 minutes. Table 1 shows the absorption performance of the comparative particulate water absorbent (12).
  • Example 1-4 the precursor water-absorbent resin (D) was used, the ethylene glycol of the surface cross-linking agent solution was changed to 0.25 parts by weight, and the amount of deionized water added to the water-absorbent resin was changed to 10 parts by weight.
  • a comparative particulate water absorbent (13) was obtained by the same method as in Example 1-4 except that the mixing amount was 0.4 parts by weight and the mixing time with a turbo shaker mixer was 2 minutes. Table 1 shows the absorption performance of the comparative particulate water absorbent (13).
  • Comparative Example 1-14 In Comparative Example 1-13, the amount of deionized water added to the water-absorbent resin was changed to 15 parts by weight, and the type of hydrotalcite was changed (trade name: HT-1-NC, manufactured by Sakai Chemical Industry Co., Ltd.).
  • a comparative particulate water absorbent (14) was obtained by the method of Comparative Example 1-13, except that the mixed amount of hydrotalcite was 0.2 parts by weight. Table 1 shows the absorption performance of the comparative particulate water absorbent (14).
  • Model Absorber A Fabrication Method 80 mm ⁇ 160 mm absorbent cotton (for example, cut cotton 8 cm ⁇ 16 cm manufactured by Kawamoto Corporation can be used) was uniformly torn in the plane direction to prepare two 1.6 g absorbent cotton sheets.
  • the water-absorbent paper was cut out to a size of 200 mm ⁇ 200 mm, and a frame of 8 cm ⁇ 16 cm was placed near the center of the water-absorbent paper.
  • the structure was used.
  • the entire absorber thus produced was held for 1 minute with a load of 10 kg applied to mold the absorber. After that, the load and the frame were removed, and both ends of the water-absorbent paper were folded back so as to wrap the absorber along the longitudinal direction of the absorber. This was placed in a non-woven fabric bag (10 cm ⁇ 22 cm) prepared using Heatron paper, and the periphery was heat-sealed to obtain a model absorber A.
  • Model absorber B manufacturing method Cut out a 100 mm x 180 mm vinyl tape (for example, vinyl tape 21-100TM manufactured by Nitto Denko Corporation can be used) with the adhesive side facing up, and install a frame of 80 mm x 160 mm in the center. 3.2 g of the particulate water absorbing agent was uniformly sprayed in the frame. The frame was removed, and a spunbonded non-woven fabric cut out to a size of 100 mm ⁇ 180 mm was placed separately and attached to vinyl tape. This was placed in a non-woven fabric bag (10 cm ⁇ 22 cm) prepared using Heatron paper, and the periphery was heat-sealed to obtain a model absorber B.
  • a non-woven fabric bag (10 cm ⁇ 22 cm) prepared using Heatron paper
  • Absorption amount measurement method Put a 0.9 wt% sodium chloride aqueous solution in a deep vat so that the liquid depth is 5 cm or more, and adjust the temperature so that the liquid temperature in the vat is 37 ° C.
  • the model absorber was immersed in this vat and inflated for 60 minutes without any load.
  • the model absorber B was immersed so that the vinyl tape surface was on the upper surface, and all subsequent operations were performed with the vinyl tape surface on the upper surface.
  • the model absorber After swelling, the model absorber is taken out from the vat, placed on a JIS standard sieve having a diameter of 45 cm and an opening of 2000 ⁇ m, and a weight of 2690 g is placed on an area of 8 cm ⁇ 16 cm in which the particulate water absorbent of the model absorber is present (21 g). / Cm 2 ) The liquid was drained for 1 minute. The weight of the model absorber after draining was measured, and the difference from the previously measured weight of the model absorber before immersion was taken as the absorption amount. The results are shown in Table 1.
  • FIG. 2 is a diagram in which AAP (2.06 kPa) + RCAP (2.06 kPa) (vertical axis) is plotted against CRC [g / g] (horizontal axis) in the above Examples and Comparative Examples.
  • the particulate water-absorbing agent of the example which is a particulate water-absorbing agent satisfying the formula (1), has particles when used as an absorber as compared with the comparative example. Even when the water-absorbing agent absorbed the liquid and swelled, the amount of liquid retained (absorbed) under pressure was 1 g or more. This difference in liquid retention is a remarkable difference in the field. From this result, it can be seen that the particulate water-absorbing agent of the example can significantly reduce the liquid return even if the particulate water-absorbing agent is subjected to an external pressure when the particulate water-absorbing agent is in a swollen state.
  • the monomer aqueous solution (e') was cooled with stirring.
  • 144.8 g of a 48.5% by weight sodium hydroxide aqueous solution adjusted to 40 ° C. was added and mixed to prepare a monomer aqueous solution (e).
  • the temperature of the monomer aqueous solution (e) was raised to 77.9 ° C. by the heat of neutralization in the second stage immediately after the preparation.
  • precipitates were observed, but they gradually dissolved to become a transparent uniform solution.
  • the polymerization reaction started 60 seconds after the above-mentioned monomer aqueous solution (e) was poured into the vat-shaped container.
  • the polymerization reaction proceeded by expanding and foaming in all directions while generating water vapor, and then contracted to a size slightly larger than that of the vat-shaped container.
  • the hydrogel-like crosslinked polymer hereinafter referred to as “hydrogen gel”.
  • the hydrogel (3) obtained by the above polymerization reaction was cut into strips, supplied to a screw extruder and pulverized to obtain a particulate hydrogel (3).
  • the screw extruder is provided with a perforated plate having a diameter of 100 mm, a hole diameter of 11.0 mm, a number of holes of 40, a hole opening rate of 62.5%, and a thickness of 10 mm at the tip, and the outer diameter of the screw shaft is 86 mm. rice field.
  • the gel crushing was performed by simultaneously supplying the strip-shaped hydrogel (3) and water vapor from different supply ports in a state where the rotation speed of the screw shaft of the screw extruder was 130 rpm.
  • the amount of the hydrogel (3) supplied was 4640 g / min, and the amount of water vapor supplied was 83 g / min.
  • This particulate hydrogel (3) is spread on a 50-mesh wire mesh, dried with hot air at 190 ° C. for 30 minutes, and the dried product is crushed using a roll mill (WML type roll crusher / Inoguchi Giken Co., Ltd.). Further, by sieving with a JIS sieve having openings of 850 ⁇ m, 600 ⁇ m, 500 ⁇ m, 300 ⁇ m, and 150 ⁇ m and then preparing the mixture, the weight average particle size (D50) is 303 ⁇ m and the logarithmic standard deviation ( ⁇ ) of the particle size distribution is 0.36. A crushed precursor water-absorbent resin (E) was obtained. The centrifuge holding capacity (CRC) of the precursor water-absorbent resin (E) was 50.2 (g / g).
  • CRC centrifuge holding capacity
  • the monomer aqueous solution (f') was cooled with stirring.
  • 138.1 g of a 48.5% by weight sodium hydroxide aqueous solution adjusted to 40 ° C. was added and mixed to prepare a monomer aqueous solution (f).
  • the temperature of the monomer aqueous solution (f) was raised to 78.1 ° C. by the heat of neutralization in the second stage immediately after production.
  • precipitates were observed, but they gradually dissolved to become a transparent uniform solution.
  • the polymerization reaction started 60 seconds after the above-mentioned monomer aqueous solution (f) was poured into the vat-shaped container.
  • the polymerization reaction proceeded by expanding and foaming in all directions while generating water vapor, and then contracted to a size slightly larger than that of the vat-shaped container.
  • the hydrogel-like crosslinked polymer hereinafter referred to as “hydrogen gel”.
  • the hydrogel (4) obtained by the above polymerization reaction was cut into strips, supplied to a screw extruder and pulverized to obtain a particulate hydrogel (4).
  • the screw extruder is provided with a perforated plate having a diameter of 100 mm, a hole diameter of 9.5 mm, a number of holes of 40, a hole opening rate of 62.5%, and a thickness of 10 mm at the tip, and the outer diameter of the screw shaft is 86 mm. rice field.
  • the gel crushing was performed by simultaneously supplying the strip-shaped hydrogel (4) and water vapor from different supply ports in a state where the rotation speed of the screw shaft of the screw extruder was 130 rpm.
  • the amount of the hydrogel (4) supplied was 4640 g / min, and the amount of water vapor supplied was 83 g / min.
  • This subdivided hydrogel (4) is spread on a 50-mesh wire mesh, dried with hot air at 190 ° C. for 30 minutes, and the dried product is crushed using a roll mill (WML type roll crusher / Inoguchi Giken Co., Ltd.). Then, by further sieving with a JIS sieve having a mesh size of 850 ⁇ m, 600 ⁇ m, 500 ⁇ m, 300 ⁇ m, and 150 ⁇ m and then blending, the weight average particle diameter (D50) is 303 ⁇ m, and the logarithmic standard deviation ( ⁇ ) of the particle size distribution is 0.35. An amorphous crushed precursor water-absorbent resin (F) was obtained. The centrifuge holding capacity (CRC) of the precursor water-absorbent resin (F) was 49.6 (g / g).
  • CRC centrifuge holding capacity
  • Example 2-1 0.025 parts by weight of ethylene glycol diglycidyl ether, 0.3 parts by weight of ethylene carbonate, 0.5 parts by weight of propylene glycol and 2.0 parts by weight of deionized water with respect to 100 parts by weight of the precursor water-absorbent resin (E).
  • the surface cross-linking agent solution made of the above was uniformly mixed and heat-treated at 190 ° C. for about 30 minutes so that the CRC of the obtained water-absorbent resin (22) was about 35 [g / g].
  • Example 2-2 0.025 parts by weight of ethylene glycol diglycidyl ether, 0.21 parts by weight of ethylene glycol, 0.5 parts by weight of propylene glycol, and 2.0 parts by weight of deionized water with respect to 100 parts by weight of the precursor water-absorbent resin (E).
  • the surface cross-linking agent solution made of the above was uniformly mixed and heat-treated at 190 ° C. for about 30 minutes so that the CRC of the obtained water-absorbent resin (23) was about 35 [g / g].
  • Example 2-3 A uniform surface cross-linking agent solution consisting of 0.025 parts by weight of ethylene glycol diglycidyl ether, 1.2 parts by weight of propylene glycol and 2.8 parts by weight of deionized water with respect to 100 parts by weight of the precursor water-absorbent resin (E). And heat-treated at 100 ° C. for about 30 minutes so that the CRC of the obtained water-absorbent resin (24) was about 35 [g / g]. After that, cooling was performed, the above paint shaker test (shaking time: 10 minutes) was carried out, and damage equivalent to that of the manufacturing process was given.
  • aqueous solution consisting of 0.01 part by weight of acetic acid / 3 sodium (DTPA / 3Na) and 0.2 part by weight of polyethylene glycol 600 (trade name: PEG-600, manufactured by Sanyo Chemical Industries, Ltd.) was uniformly mixed. After drying at 60 ° C. for 1 hour, the mixture was passed through a JIS standard sieve having an opening of 850 ⁇ m, and 0.3 parts by weight of silicon dioxide (trade name: Sipernat 22S, manufactured by EVONIK) was mixed.
  • Example 2-4 0.04 parts by weight of ethylene glycol diglycidyl ether, 3.5 parts by weight of propylene glycol, 5.0 parts by weight of deionized water, and 14 to 18 hydrates of aluminum sulfate with respect to 100 parts by weight of the precursor water-absorbent resin (E).
  • a surface cross-linking agent solution consisting of 0.75 parts by weight of the product is uniformly mixed, and heat-treated at 100 ° C. for about 30 minutes so that the CRC of the obtained water-absorbent resin (25) is about 35 [g / g]. went.
  • Example 2-5 0.025 parts by weight of ethylene glycol diglycidyl ether, 0.3 parts by weight of ethylene carbonate, 0.5 parts by weight of propylene glycol and 2.0 parts by weight of deionized water with respect to 100 parts by weight of the precursor water-absorbent resin (F).
  • the surface cross-linking agent solution made of the above was uniformly mixed and heat-treated at 190 ° C. for about 30 minutes so that the CRC of the obtained water-absorbent resin (26) was about 35 [g / g].
  • Example 2-6 A uniform surface cross-linking agent solution consisting of 0.04 parts by weight of ethylene glycol diglycidyl ether, 2.8 parts by weight of propylene glycol and 4.2 parts by weight of deionized water with respect to 100 parts by weight of the precursor water-absorbent resin (F). was mixed with and heat-treated at 100 ° C. for about 30 minutes so that the CRC of the obtained water-absorbent resin (27) was about 35 [g / g].
  • Example 2--7 A surface cross-linking agent solution consisting of 0.03 parts by weight of ethylene glycol diglycidyl ether, 1.5 parts by weight of propylene glycol and 3.5 parts by weight of deionized water was uniformly applied to 100 parts by weight of the precursor water-absorbent resin (F). Was mixed with and heat-treated at 100 ° C. for about 30 minutes so that the CRC of the obtained water-absorbent resin (28) was about 35 [g / g].
  • aqueous solution was uniformly mixed. After drying at 60 ° C. for 1 hour, it was passed through a JIS standard sieve having an opening of 850 ⁇ m, and 0.4 parts by weight of aluminum hydroxide (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) was mixed.
  • Example 2-8 With respect to 100 parts by weight of the precursor water-absorbent resin (F), 0.04 parts by weight of ethylene glycol diglycidyl ether, 2.8 parts by weight of propylene glycol, 4.2 parts by weight of deionized water and 14 to 18 hydrates of aluminum sulfate. Material (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) A surface cross-linking agent solution consisting of 0.75 parts by weight is uniformly mixed, and the CRC of the water-absorbent resin (29) obtained at 100 ° C. for about 30 minutes is about 35 [g]. The heat treatment was performed so as to be [/ g].
  • Example 2-9 A particulate water absorbent (30) was obtained by the same method as in Example 2-1 except that the mixing time of silicon dioxide with a turbo shaker mixer was set to 15 minutes. Table 2 shows the water absorption performance of the particulate water absorbent (30).
  • Comparative Example 2-1 A comparative particulate water absorbent (15) was obtained by the same method as in Example 2-1 except that the mixing time of silicon dioxide with a turbo shaker mixer was set to 2 minutes.
  • the GPR of the comparative particulate water absorbent (15) was 100 [g / min], the surface tension was 72.2 mN / m, and the YI value after the coloring evaluation was 24.
  • Table 2 shows the absorption performance of the comparative particulate water absorbent (15).
  • Comparative Example 2-2 A comparative particulate water absorbent (16) was obtained by the same method as in Example 2-3 except that the mixing time of silicon dioxide with a turbo shaker mixer was set to 2 minutes. Table 2 shows the absorption performance of the comparative particulate water absorbent (16).
  • Comparative Example 2-3 A comparative particulate water absorbent (17) was obtained by the same method as in Example 2-5 except that the mixing time of silicon dioxide with a turbo shaker mixer was set to 2 minutes. Table 2 shows the absorption performance of the comparative particulate water absorbent (17).
  • Comparative Example 2-4 A comparative particulate water absorbent (18) was obtained by the same method as in Example 2-6 except that the mixing time of silicon dioxide with a turbo shaker mixer was set to 2 minutes.
  • the flow rate of the comparative particulate water absorbent (18) was 9.2 [g / s], and the YI value after the coloring evaluation was 23.
  • Table 2 shows the absorption performance of the comparative particulate water absorbent (18).
  • the calculated value of the acceleration received by the particulate water absorbing agent is 2.2 G at the maximum.
  • the particulate water-absorbing agent after shaking was designated as a comparative particulate water-absorbing agent (19).
  • Table 3 shows the water absorption performance of the comparative particulate water absorbent (19).
  • Comparative Example 2-6 A comparative particulate water absorbent (20) was obtained by performing the same operation as in Comparative Example 2-5 except that the shaking time was changed to 300 minutes. Table 3 shows the water absorption performance of the comparative particulate water absorbent (20).
  • the particulate water-absorbing agent of the example which is a particulate water-absorbing agent satisfying the formula (1), has particles when used as an absorber as compared with the comparative example. Even when the water-absorbing agent absorbed the liquid and swelled, the amount of liquid retained (absorbed) under pressure was 2 g or more. This difference in liquid retention is a remarkable difference in the field. From this result, it can be seen that the particulate water-absorbing agent of the example can significantly reduce the liquid return even if the particulate water-absorbing agent is subjected to an external pressure when the particulate water-absorbing agent is in a swollen state.
  • the gel permeation rate (GPR) is 20 g / min or more
  • the moisture absorption blocking rate is 40% by weight or less
  • the flow rate (Flow Rate) is 8.5 g / s.
  • the amount of dust was 400 mg / kg or less
  • the surface tension was 65 mN / m or more
  • the water-absorbent resin powder was in an amorphous crushed state.
  • 400 devices 410 container, 411 cells, 412 piston, 413a, 413b wire mesh, 414 Swelling gel (water-absorbed particulate water-absorbing agent), 415 holes, 420 tank, 421 glass tube, 422 L-shaped tube with cock glass tube, 423 liquid, 431 Stainless steel wire mesh, 432 Collection container, 433 Precision balance.

Abstract

【課題】粒子状吸水剤が膨潤状態のときに粒子状吸水剤に外部から圧力が負荷されても、液戻りを有意に低減することができる粒子状吸水剤を提供する。 【解決手段】表面架橋されてなるポリアクリル酸(塩)系吸水性樹脂を主成分とする粒子状吸水剤であって、下記式(1)を満たす、粒子状吸水剤。 AAP(2.06kPa)+RCAP(2.06kPa)≧0.58×CRC+55.6 (1)(式(1)において、AAP(2.06kPa)は、2.06kPa加圧下での吸水倍率(g/g)を、RCAP(2.06kPa)は、膨潤後加圧下吸水倍率(g/g)を、CRCは、無加圧下吸水倍率(g/g)を示す)

Description

粒子状吸水剤
 本発明は、液吸収後であっても加圧下での液戻りが少ない粒子状吸水剤に関する。
 吸水性樹脂(SAP/Super Absorbent Polymer)は、水膨潤性水不溶性の高分子ゲル化剤である。吸水性樹脂を主成分とする粒子状吸水剤は、紙オムツ、生理用ナプキンや成人向け失禁用製品等の衛生物品、農園芸用の土壌保水剤、工業用の止水剤等、様々な用途の吸収物品に利用されている。このような吸水性樹脂は、原料として多くの単量体や親水性高分子が提案されているが、性能およびコストの観点から、アクリル酸および/またはその塩を単量体として用いたポリアクリル酸(塩)系吸水性樹脂が、最も多く用いられている。
 粒子状吸水剤の主用途である紙オムツの高性能化に伴い、粒子状吸水剤に対して多くの機能(物性)が要求されている。粒子状吸水剤の物性の具体的な例としては、単なる吸水倍率の高さに限らず、ゲル強度、水可溶分、吸水速度、加圧下吸水倍率、通液性、粒度分布、耐尿性、抗菌性、耐衝撃性(耐ダメージ性)、粉体流動性、消臭性、耐着色性(白色度)、低粉塵等が挙げられる。これらの中に、吸収される液の導入方向に液が粒子状吸水剤から再放出される、いわゆる「逆戻り」の物性がある。逆戻りは、肌に触れた液によって使用者が不快に感ずるため、逆戻りの低減は吸水性樹脂の分野において非常に重要な課題である(例えば、特許文献1)。
 なお、関連する他の先行技術としては、特許文献2がある。
特開2015-213911号公報 国際公開第97/003114号
 ところで、紙オムツなどの吸収物品に尿などの液が排出される度に、吸収物品は交換されるものではなく、通常は吸収物品に複数回の液排出が行われる。液を吸収した粒子状吸水剤は、膨潤状態となる。よって、使用者は、膨潤状態の粒子状吸水剤を有する吸収物品を使用する場合がある。このように粒子状吸水剤が膨潤状態の際に、日常動作、特に体重がかかった状態(例えば、あおむけ寝の状態や座るなどの動作)など外部から圧力が付加された場面においても、吸収体の液保持力が向上して液戻りが低減されることが必要であり、これにより、肌かぶれなどのトラブルも低減され、使用者が快適に長時間吸収物品を使用することができる。従来は、一般的に加圧下吸収倍率(AAP)で表現される、「荷重がかけられた条件下でいかに液を吸収するか」にのみ注目されてきたが、吸液後の膨潤状態において、荷重がかかってもどれだけ液を保持できるかについては着目されておらず、改良の余地があると考えられる。
 よって、本発明は、粒子状吸水剤が膨潤状態のときに粒子状吸水剤に外部から圧力が負荷されても、液戻りを有意に低減することができる粒子状吸水剤を提供することを目的とする。
 表面架橋されてなるポリアクリル酸(塩)系吸水性樹脂を主成分とする粒子状吸水剤であって、下記式(1)を満たす、粒子状吸水剤によって、上記課題を解決する。
 AAP(2.06kPa)+RCAP(2.06kPa)≧0.58×CRC+55.6 (1)
(式(1)において、AAP(2.06kPa)は、2.06kPa加圧下での吸水倍率(g/g)を、RCAP(2.06kPa)は、膨潤後加圧下吸水倍率(g/g)を、CRCは、無加圧下吸水倍率(g/g)を示す)。
ゲル透過速度(GPR)を測定するための装置を示す模式図である。 各実施例および比較例において、CRC[g/g](横軸)に対して、AAP(2.06kPa)+RCAP(2.06kPa)[g/g](縦軸)をプロットした図である。直線は、AAP(2.06kPa)+RCAP(2.06kPa)=0.58×CRC+55.6を表す。
 以下、本発明を最良の形態を示しながら説明する。本明細書の全体にわたり、単数形の表現は、特に言及しない限り、その複数形の概念をも含むことが理解されるべきである。従って、単数形の冠詞(例えば、英語の場合は「a」、「an」、「the」等)は、特に言及しない限り、その複数形の概念をも含むことが理解されるべきである。また、本明細書において使用される用語は、特に言及しない限り、当該分野で通常用いられる意味で用いられることが理解されるべきである。したがって、他に定義されない限り、本明細書中で使用される全ての専門用語および科学技術用語は、本発明の属する分野の当業者によって一般的に理解されるのと同じ意味を有する。矛盾する場合、本明細書(定義を含めて)が優先する。本発明は、下記の実施形態に限定されるものではなく、特許請求の範囲内で種々改変することができる。
 〔1〕用語の定義
 (1-1)「吸水性樹脂」
 本発明における「吸水性樹脂」とは、水膨潤性水不溶性の高分子架橋体を指し、以下の物性を満たすものをいう。即ち、「水膨潤性」として、ERT441.2-02で規定されるCRCが5g/g以上、かつ、「水不溶性」として、ERT470.2-02で規定されるExtが50重量%以下の物性を満たす高分子架橋体を指す。
 上記吸水性樹脂は、その用途に応じて適宜、設計が可能であり、特に限定されないが、カルボキシル基を有する不飽和単量体を架橋重合させた親水性架橋重合体であることが好ましい。また、全量(100重量%)が重合体である形態に限定されず、上記物性(CRC、Ext)を満足する範囲内で、添加剤等を含んだ吸水性樹脂組成物であってもよい。
 更に、本発明における吸水性樹脂は、最終製品に限らず、吸水性樹脂の製造工程における中間体(例えば、重合後の含水ゲル状架橋重合体や乾燥後の乾燥重合体、表面架橋前の吸水性樹脂粉末等)を指す場合もあり、これら全てを包括して「吸水性樹脂」と総称する。なお、吸水性樹脂の形状として、シート状、繊維状、フィルム状、粒子状、ゲル状等が挙げられるが、本発明の吸水性樹脂は、粒子状(粉末)を主とする。
 (1-2)「粒子状吸水剤」
 本明細書において、吸水剤は、吸水性樹脂を主成分として含む。本明細書において粒子状吸水剤とは、粒子状(別称;粉末状)の吸水剤(吸水性樹脂粒子を主成分として含む)を意味し、一粒の粒子状吸水剤であっても、複数個の粒子状吸水剤であっても粒子状吸水剤と称する。「粒子状」とは、粒子の形態を有することを意味し、粒子とは、測定可能な大きさを持つ、固体または液体の粒状小物体(JIS工業用語大辞典第4版、2002頁)をいう。なお、本明細書において、粒子状吸水剤を単に吸水剤と称する場合もある。
 なお、水性液とは水に限らず、尿、血液、汗、糞、廃液、湿気、蒸気、氷、水と有機溶媒および/または無機溶媒との混合物、雨水、地下水等であってもよく、水を含めば特に制限されるものではない。好ましくは、尿、経血、汗、その他の体液を挙げることができる。
 本発明にかかる粒子状吸水剤は、水性液を吸収するための衛生材料として好適に使用されるものである。本発明の粒子状吸水剤は、表面架橋されてなるポリアクリル酸(塩)系吸水性樹脂(粒子)(以下、単にポリアクリル酸(塩)系吸水性樹脂とも称する)を主成分とする。つまり、粒子状吸水剤中に表面架橋されてなるポリアクリル酸(塩)系吸水性樹脂は、好ましくは60~100重量%、70~100重量%、80~100重量%、90~100重量%含まれる。その他、粒子状吸水剤は、他の吸水性樹脂粒子、水、および/または、水不溶性無機粒子、水溶性多価金属カチオン含有化合物等の添加剤を任意に含む。粒子状吸水剤の好適な含水率は0.2~30重量%である。すなわち、これらの成分が一体化された吸水性樹脂組成物も粒子状吸水剤の範疇である。
 なお、吸水剤中のポリアクリル酸(塩)系吸水性樹脂の上限は99重量%、さらには97重量%、特に95重量%程度であり、好ましくは水や後述の添加剤(水不溶性無機粒子、水溶性多価金属カチオン含有化合物)をさらに含む。
 また、本発明の粒子状吸水剤においては、ポリアクリル酸(塩)系吸水性樹脂を主成分とするが、粒子状吸水剤は、その他の吸水性樹脂を含有していてもよい。その他の吸水性樹脂としては、ポリスルホン酸(塩)系吸水性樹脂、無水マレイン酸(塩)系吸水性樹脂、ポリアクリルアミド系吸水性樹脂、ポリビニルアルコール系吸水性樹脂、ポリエチレンオキシド系吸水性樹脂、ポリアスパラギン酸(塩)系吸水性樹脂、ポリグルタミン酸(塩)系吸水性樹脂、ポリアルギン酸(塩)系吸水性樹脂、デンプン系吸水性樹脂、セルロース系樹脂等が挙げられる。
 (1-3)「ポリアクリル酸(塩)」および「ポリアクリル酸(塩)系吸水性樹脂」
 本発明における「ポリアクリル酸(塩)」とは、ポリアクリル酸および/またはその塩を指す。また、ポリアクリル酸(塩)系吸水性樹脂とは、主成分として、アクリル酸および/またはその塩(以下、「アクリル酸(塩)」と称する)を繰り返し単位として含み、好ましくは、グラフト成分によって内部架橋されたポリアクリル酸(塩)が表面架橋されてなる。
 ポリアクリル酸(塩)系吸水性樹脂は、粒子状吸水剤中、粒子状(別称;粉末状)であることが好ましい。
 なお、上記「主成分」とは、アクリル酸(塩)の使用量(含有量)が、重合に用いられる単量体(内部架橋剤を除く)全体に対して、通常50~100モル%、好ましくは70~100モル%、より好ましくは90~100モル%、更に好ましくは実質100モル%であることをいう。
 (1-4)「EDANA」および「ERT」
 「EDANA」は、欧州不織布工業会(European Disposables and Nonwovens Associations)の略称であり、「ERT」は、欧州標準(ほぼ世界標準)の吸水性樹脂の測定法(EDANA Recommended Test Methods)の略称である。本発明では、特に断りのない限り、ERT原本(2002年改定/公知文献)に準拠して、吸水性樹脂の物性を測定する。
 (1-5)「PSD」(ERT420.2-02)
 「PSD」は、Particle Size Distributionの略称であり、篩分級により測定される、粒子状吸水剤または吸水性樹脂の粒度分布を意味する。
 なお、重量平均粒子径(D50)および粒度分布の対数標準偏差(σζ)は、米国特許第7638570号に記載された「(3)Mass-Average Particle Diameter (D50) and Logarithmic Standard Deviation (σζ) of Particle Diameter Distribution」と同様の方法で測定する。
 (1-6)その他
 本明細書において、範囲を示す「X~Y」は「X以上、Y以下」を意味する。また、特に注釈のない限り、重量の単位である「t(トン)」は「Metric ton(メトリック トン)」を意味し、「ppm」は「重量ppm」または「質量ppm」を意味する。更に、「重量」と「質量」、「重量部」と「質量部」、「重量%」と「質量%」はそれぞれ同義語として扱う。また、「~酸(塩)」は「~酸および/またはその塩」、「(メタ)アクリル」は「アクリルおよび/またはメタクリル」をそれぞれ意味する。
 また、「リットル」を「l」または「L」、「重量%」を「wt%」と便宜上記すことがある。更に、微量成分の測定を行う場合において、検出限界以下をN.D(Non Detected)と表記する。
 〔2〕粒子状吸水剤
 本発明の粒子状吸水剤は、表面架橋されてなるポリアクリル酸(塩)系吸水性樹脂を主成分とする粒子状吸水剤であって、式(1)を満たす、粒子状吸水剤である。
 本発明の粒子状吸水剤は、粒子状吸水剤が膨潤状態のときに粒子状吸水剤に外部から圧力が付加されても、液戻りを有意に低減することができる。
 以下、AAP(2.06kPa)+RCAP(2.06kPa)で求められる値を値(A)とも称し、0.58×CRC+55.6で求められる値を値(B)とも称す。
 粒子状吸水剤が式(1)を満たさない、すなわち、値(A)<値(B)の場合、粒子状吸水剤が吸水し、膨潤した後に、液戻り量が顕著に大きくなる。
 値(A)は、AAP(2.06kPa)とRCAP(2.06kPa)との和である。「AAP」は、Absorption Against Pressureの略称であり、粒子状吸水剤の加圧下吸水倍率を意味する。「RCAP」は、Retention Capacity Against Pressureの略称であり、粒子状吸水剤の膨潤時の加圧下吸水倍率を意味する。また、「CRC」は、Centrifuge Retention Capacity(遠心分離機保持容量)の略称であり、粒子状吸水剤または吸水性樹脂の無加圧下吸水倍率(「吸水倍率」と称する場合もある)を意味する。通常、吸水倍率は、加圧下で低下するため、同一の粒子状吸水剤においては、AAP(2.06kPa)[g/g]<CRC(2.06kPa)[g/g]となる。
 吸水性物品の実使用を想定した場合、様々な使用状況、例えば、体重がかかった状態で排尿される場合や、排尿時は無加圧で膨潤するが動作に伴い加圧される場面など種々のケースが想定される。本発明者らは、「粒子状吸水剤が吸水し、膨潤した後の戻り量低減」という課題を解決しようとする過程で、種々のケースでの「液保持力」(吸水性樹脂粒子自体の吸水倍率(すなわちCRC)に、吸水性樹脂粒子同士(一次粒子、及び/又は、一次粒子同士が凝集した二次粒子を含む)の隙間に保持される液量を加えた吸収量)が重要であることを見出し、数多くの粒子状吸水剤の物性の中から、AAP(2.06kPa)およびRCAP(2.06kPa)に着目したものである。
 ここで、「粒子状吸水剤が膨潤状態のときに粒子状吸水剤に外部から圧力が付加されても、液戻りを有意に低減する」という本願課題においては、RCAPが高ければ、課題が解決されるようにも考えられる。しかしながら、膨潤状態の液戻りは、膨潤時の加圧下吸水倍率であるRCAPを考慮するだけでは不十分であることが本発明者らの検討過程で判明した。例えば、後述の比較例1-5のRCAPは実施例1-8よりも高いが、膨潤時の粒子状吸水剤の液戻りは有意に低下していることから、この事実は理解される。そして、本発明者らは、AAP(2.06kPa)+RCAP(2.06kPa)の総和と、CRCとが膨潤時の粒子状吸水剤の液戻りに関して重要な因子であることを見出し、さらに、式(1)を満たす新規の粒子状吸水剤が、膨潤時の粒子状吸水剤の液戻りを有意に抑制することを見出したのである。
 なお、通常吸水性樹脂の物性評価として用いられている「逆戻り」(戻り量、Re-Wetと称されることもある)は、吸水性樹脂(吸水剤)、パルプ等を含む吸収層を不織布等で積層した吸収シート(吸収体)での評価であって、吸水性樹脂(吸水剤)そのものの評価ではない。また、前記のRe-Wet評価は、吸収体中に含まれる吸水性樹脂が飽和状態であるとは言えず(吸収体表面上に、30分間隔の複数回で、液を吸収した後の荷重下戻りを評価している)、本願課題である「膨潤状態」の粒子状吸水剤をさらに加圧した状態での液保持力を評価するものではない。
 また、粒子状吸水剤は以下の式(2)を満たすことがより好ましい。
 AAP(2.06kPa)+RCAP(2.06kPa)≧0.58×CRC+56.0 (2)
 上記式(2)を満たす粒子状吸水剤であることで、膨潤した吸収体を加圧した際の液保持力に優れる。
 特に、粒子状吸水剤のCRCが37.0g/g未満の場合は、上記式(2)を満たすことがより好ましい。
 さらに、粒子状吸水剤は以下の式(3)を満たすことがより好ましい。
 AAP(2.06kPa)+RCAP(2.06kPa)≧0.58×CRC+56.5 (3)
 上記式(3)を満たす粒子状吸水剤であることで、膨潤した吸収体を加圧した際の液保持力に優れる。
 特に、粒子状吸水剤のCRCが37.0g/g未満の場合は、上記式(3)を満たすことがより好ましい。
 値(A)としては、特に限定されるものではないが、76.0g/gよりも大きいことが好ましい。すなわち、粒子状吸水剤は、下記式(A)を満たすことが好ましい。
 AAP(2.06kPa)+RCAP(2.06kPa)>76.0 (A)
 値(A)が76.0g/gよりも大きいことで、粒子状吸水剤の膨潤後の液戻りの低減がより一層発揮されやすい。値(A)の上限値は、特に限定されるものではないが、通常、90.0g/g以下であり、85.0g/g以下であってもよい。
 なお、式(1)~(3)および式(A)の算出にあたっては、AAP(2.06kPa)、RCAP(2.06kPa)およびCRCを小数点第1位までの測定値を用い、値(A)、値(B)、ならびに式(2)および式(3)の右辺の算出においては、上記測定値を用いて算出された値の小数点第2位を四捨五入し、小数点第1位までの値を用いる。
 (2-1)CRC(遠心分離機保持容量)(ERT441.2-02)
 「CRC」は、Centrifuge Retention Capacity(遠心分離機保持容量)の略称であり、粒子状吸水剤または吸水性樹脂の無加圧下吸水倍率(「吸水倍率」と称する場合もある)を意味する。
 具体的には、粒子状吸水剤または吸水性樹脂0.2gを不織布製の袋に入れた後、大過剰の0.9重量%塩化ナトリウム水溶液中に30分間浸漬して自由膨潤させ、その後、遠心分離機(250G)で水切りした後の吸水倍率(単位;g/g)のことをいう。
 本発明の粒子状吸水剤のCRC(遠心分離機保持容量)は、30g/g以上であることが好ましく、31g/g以上であることがより好ましく、32g/g以上であることがさらに好ましく、33g/g以上であることがさらにより好ましい。CRCが30g/g以上であることで、吸収量が適切となり、紙おむつ等の衛生物品の吸収体としての性能が確保される。また、粒子状吸水剤のCRC(遠心分離機保持容量)は、70g/g以下であることが好ましく、60g/g以下であることがより好ましく、50g/g以下であることがさらにより好ましく、40g/g以下であることが特に好ましい。CRCが70g/g以下であることで、尿や血液等の体液等を吸収する速度が保持されるため、高吸水速度タイプの紙おむつ等への使用にも適する。なお、CRCは、内部架橋剤の種類や量等で制御することができる。
 (2-2)加圧下吸水倍率(AAP)(ERT442.2-02)
 「AAP」は、Absorption Against Pressureの略称であり、粒子状吸水剤または吸水性樹脂の加圧下吸水倍率を意味する。
 具体的には、AAP(2.06kPa)は、粒子状吸水剤または吸水性樹脂0.9gを大過剰の0.9重量%塩化ナトリウム水溶液に対して、1時間、2.06kPa(21g/cm、0.3psi)荷重下で膨潤させた後の吸水倍率(単位;g/g)のことをいう。なお、荷重条件を4.83kPa(49g/cm、0.7psi)に変更して測定する場合もある。この場合、AAP(4.83kPa)と記載する。
 また、ERT442.2-02には、Absorption Under Pressureと表記されているが、実質的に同一内容である。
 本発明の粒子状吸水剤のAAP(2.06kPa)は、好ましくは、20g/g以上、より好ましくは24g/g以上、さらに好ましくは26g/g以上、さらにより好ましくは28g/g以上、特に好ましくは29g/g以上、最も好ましくは30g/g以上である。上限値については特に限定されないが、好ましくは40g/g以下である。上記の条件を満たすことにより、AAP(2.06kPa)がある程度高いことで、式(1)の条件を満たしやすくなる。また、当該粒子状吸水剤を用いて製造した紙おむつは、パルプからの尿の吸い取り能力に優れ、戻り量を低減でき、肌かぶれや尿漏れを抑制できるようになる。なお、後述の実施例、比較例を参酌すれば理解されるように、AAP(2.06kPa)が高いことと、式(1)を満たすこととは、相関性はない。
 また、本発明の粒子状吸水剤のAAP(4.83kPa)は、好ましくは、10g/g以上、より好ましくは13g/g以上、さらに好ましくは、17g/g以上、特に好ましくは20g/g以上である。上限値については特に限定されないが、好ましくは30g/g以下である。上記の条件を満たすことにより、上記の粒子状吸水剤を用いて製造した紙おむつは、パルプからの尿の吸い取り能力に優れ、戻り量を低減でき、肌かぶれや尿漏れを抑制できるようになる。なお、AAPは、表面架橋剤の種類や量等で制御することができる。
 (2-3)加圧下保持容量(Retention Capacity Against Pressure:RCAP)
 「RCAP」は、Retention Capacity Against Pressureの略称であり、粒子状吸水剤の膨潤時の加圧下吸水倍率を意味する。
 RCAPの試験は、米国特許第8269060号明細書に記載のGel Bed Permeability(ゲル床透過性)試験に用いられるシリンダー、ピストンおよびおもりを用いて測定することができる。具体的には、米国特許第8269060号明細書の図1で図示される装置を用いる。
 試験実施前に、シリンダー、ピストンおよびおもりの合計重量を測定し、その値をWa[g]とする。試験するサンプルを約0.9g量り取り、シリンダー底面に均一に散布し、試験溶液(0.9重量%塩化ナトリウム水溶液)に60分間浸漬し、制限荷重をかけることなくサンプルを膨潤させる。60分後、シリンダー中のサンプルにピストンおよびおもり(合計重量約596g)を乗せ、シリンダーを試験溶液から引き上げ、目開き2000μmのJIS標準篩上に乗せて約1分間液切りを行う。液切り後、シリンダー下部に付着した水滴をキムワイプ(日本製紙クレシア製S-200)等により除去し、重量測定を行い、得られた値をWb[g]とする。なお、キムワイプによるシリンダー下部に付着した水滴の除去は、シリンダー中の膨潤ゲル層に含まれる水分を除去しないよう、あくまでシリンダー外に付着した水分の除去を目的として、キムワイプによる圧力がかからないように、0.5秒以内に拭き取ることで行われる。以下の式(4)により、RCAPが計算される。
Figure JPOXMLDOC01-appb-M000001
 本発明の粒子状吸水剤のRCAP(2.06kPa)は、好ましくは、18g/g以上、より好ましくは24g/g以上、さらにより好ましくは30g/g以上、特に好ましくは40g/g以上、最も好ましくは43g/g以上である。上限値については特に限定されないが、好ましくは60g/g以下である。上記の条件を満たすことにより、RCAP(2.06kPa)がある程度高いことで、式(1)の条件を満たしやすくなる。また、当該粒子状吸水剤を用いて製造した紙おむつは、パルプからの尿の吸い取り能力に優れ、戻り量を低減でき、肌かぶれや尿漏れを抑制できるようになる。なお、後述の実施例、比較例を参酌すれば理解されるように、RCAP(2.06kPa)が高いことと、式(1)を満たすこととは、相関性はない。
 RCAP(2.06kPa)は、吸水性樹脂の製造方法、例えば、添加剤(例えば、水不溶性無機粒子)の混合時間や可溶成分の含有量を制御することによって、値を制御することができる。
 (2-3)ゲル透過速度(Gel Permeation Rate:GPR)
 本明細書において、粒子状吸水剤の「通液性」とは、荷重下において膨潤ゲル粒子間を通過する液体の流れ性のことを言う。この指標として、ゲル透過速度(GPR)が用いられる。粒子状吸水剤のGPRの測定は、米国特許第5849405号明細書記載の食塩水流れ誘導性(SFC)試験を参考に、測定条件を変更し、以下の手順で行う。
 測定のための装置として、図1に示す装置400を用いる。装置400は、大きく分けて、容器410とタンク420とから構成されている。容器410にはセル411(内径6cm)が設けられており、セル411の内部に膨潤ゲル414(粒子状吸水剤を吸水させたもの)を収納、および液体423を導入できる。また、セル411にピストン412を嵌合させることにより、膨潤ゲル414に対して圧力を負荷することができる。セル411の底面およびピストン412の底面には、金網413a、413b(No.400ステンレス製金網、目開き38μm)が張られており、膨潤ゲル414(および粒子状吸水剤)が通過できないようになっている。ここで、液体423は、0.90質量%塩化ナトリウム水溶液を用いる。タンク420は、内部に液体423を蓄えている。液体423は、コック付きL字管422を通じてセル411に導入される。また、タンク420にはガラス管421が挿入されており、ガラス管421の内部は空気で満たされている。これによって、ガラス管421の下端とセル411内の液面を同じとすることができる。すなわち、タンク420内の液体423の液面がガラス管421の下端よりも上部にある間は、セル411内の液面を一定に保持することが可能となる。今回の測定では、タンク420内の液体423の下部液面(すなわち、ガラス管421の下端)と、膨潤ゲル414の底面との高低差を、4cmとした。つまり、装置400によれば、セル411に一定の静水圧の液体423を導入することができる。ピストン412には孔415が空けられているので、液体423は孔415を流通し、さらに膨潤ゲル414層も流通して、セル411の外部へと流出する。容器410は、液体423の通過を妨げないステンレス製の金網431の上に載せられている。そのため、セル411から流出した液体423は、最終的に捕集容器432に集められる。そして、捕集容器432に集められた液体423の量は、上皿天秤433によって秤量できる。
 具体的なゲル透過速度(GPR)の測定方法は以下の通りである。なお、以下の操作は室温(20~25℃)にて行う。
 (1)セル411に、粒子状吸水剤(0.900g)を均一に入れる。
 (2)上記粒子状吸水剤を、無加圧下にて、液体(0.90質量%塩化ナトリウム水溶液)を60分間吸水させ、膨潤ゲル414とする。
 (3)膨潤ゲル414の上にピストンを載置して、0.3psi(2.06kPa)の加圧状態にする。
 (4)静水圧を3923dyne/cmの一定値に保ちながら、液体423をセル411に導入し、膨潤ゲル414層を通液させる。
 (5)膨潤ゲル414層を通液する液体423の量を、5秒間隔で3分間記録する。すなわち、膨潤ゲル414層を通過する液体423の流速を測定する。測定には、上皿天秤433およびコンピュータ(図示せず)を使用する。
 (6)液体423の流通を開始してから1分後~3分後の流速を平均し、ゲル透過速度(GPR)[g/min]を算出する。
 本発明の粒子状吸水剤のゲル透過速度(GPR)は、好ましくは、20g/min以上である。ゲル透過速度(GPR)が20g/min以上であることで、粒子状吸水剤を吸収体に使用した場合の液拡散性に優れる。粒子状吸水剤のゲル透過速度(GPR)は、より好ましくは22g/min以上、さらに好ましくは24g/min以上、特に好ましくは26g/min以上である。上限値については特に限定されないが、好ましくは300g/min以下、より好ましくは150g/min以下である。
 ゲル透過速度(GPR)は、例えば、吸水性樹脂の内部架橋剤量、表面架橋剤量、表面架橋反応の時間等を制御することによって、値を制御することができる。
 (2-4)吸湿ブロッキング率
 本発明における「吸湿流動性」とは、粒子状吸水剤を気温25℃および相対湿度90%RHの条件下に1時間放置した際のブロッキング、ケーキング、または粉体としての流動性について評価したものであり、吸湿ブロッキング率で判断する。吸湿ブロッキング率の算出法は、実施例に詳述される。簡略に述べると、粒子状吸水剤を篩の上に乗せ、分級を行い、篩上に残存した粒子状吸水剤の重量(W1[g])および篩を通過した粒子状吸水剤の重量(W2[g])を測定し、次式にしたがって、吸湿流動性を算出する。
 吸湿ブロッキング率[重量%]={W1/(W1+W2)}×100。
 測定方法の詳細は、実施例に記載のとおりである。
 本発明の粒子状吸水剤の吸湿ブロッキング率は、通常50重量%以下、好ましくは40重量%以下、より好ましくは30重量%以下、さらに好ましくは20重量%以下、よりさらに好ましくは10重量%以下、最も好ましくは0重量%である。本発明の粒子状吸水剤の吸湿ブロッキング率は、0~50重量%、0~40重量%、0~30重量%、0~20重量%、または0~10重量%であり得る。吸湿ブロッキング率が40重量%以下であることで、多湿の環境下においても、粒子状吸水剤の取り扱い性がよく、衛生材料向けの薄型吸収体の製造時等、製造プラントの移送配管内での凝集および詰まりの発生や、親水性繊維と均一に混合できないという問題が生じるおそれが少なくなる。ゆえに、上記の条件を満たすことにより粒子状吸水剤および繊維基材を用いて吸収体を作製する際に、装置設備への付着を少なくすることができる。
 吸湿ブロッキング率は、吸湿時の流動性を向上するために添加する剤の種類やその添加量によって制御することができる。
 (2-5)流下速度(Flow Rate、(ERT450.2-02))
 流下速度(Flow Rate)は、粒子状吸水剤の粉体流動性を意味する。
 具体的には、粒子状吸水剤100gを下部にダンパーを備えた漏斗に投入し、ダンパーを開け、流下開始から流下終了までの時間を計測することにより、単位時間当たりの粒子状吸水剤の流下量を算出し、これを流下速度とする。
 本発明の粒子状吸水剤の流下速度(Flow Rate)は、8.5g/s以上であることが好ましい。流下速度が8.5g/s未満である場合、粒子状吸水剤の流動性が低いため、ホッパーへの粒子状吸水剤の供給やフィーダーによる粒子状吸水剤の輸送が困難になる問題や、衛生材料向けの吸収体の製造時に親水性繊維と均一に混合できない問題が生じる場合がある。
 (2-6)粉塵量
 本発明の粒子状吸水剤の粉塵量は、吸水剤あたり400mg/kg以下であることが好ましい。吸水剤の粉塵量が上記上限以下であることで、粉塵が十分に低減され、吸水剤の取り扱い性に優れる。吸水剤の粉塵量は、吸水剤あたり300mg/kg以下であることがより好ましく、250mg/kg以下が更に好ましく、200mg/kg以下が特に好ましい。該値は0mg/kg吸水剤が理想ではあるが、実使用上および工業規模での生産性を考慮し、下限値は吸水剤あたり通常、10mg/kg以上であり、15mg/kg以上であってもよく、20mg/kg以上であってもよい。
 粒子状吸水剤の粉塵量は、実施例記載の方法により算出される。
 (2-7)表面張力
 表面張力とは、固体や液体の表面積を増加させるのに必要な仕事(自由エネルギー)を単位面積当たりで表したものである。本願でいう表面張力は、粒子状吸水剤を0.90質量%塩化ナトリウム水溶液中に分散させた際の、水溶液の表面張力をいう。なお、吸水剤の表面張力は、以下の手順により測定する。即ち、十分に洗浄された100mlのビーカーに20℃に調整された生理食塩水50mlを入れ、まず、生理食塩水の表面張力を、表面張力計(KRUSS社製のK11自動表面張力計)を用いて測定する。次に、20℃に調整した表面張力測定後の生理食塩水を含んだビーカーに、十分に洗浄された25mm長のフッ素樹脂製回転子、及び粒子状吸水剤0.5gを投入し、500rpmの条件で4分間攪拌する。4分後、攪拌を止め、含水した粒子状吸水剤が沈降した後に、上澄み液の表面張力を再度同様の操作を行い測定する。なお、本発明では白金プレートを用いるプレート法を採用し、プレートは各測定前に十分脱イオン水にて洗浄し、かつ、ガスバーナーで加熱洗浄して使用する。
 本発明の粒子状吸水剤の表面張力は、65[mN/m]以上であることが好ましく、より好ましい順に66[mN/m]以上、68[mN/m]以上、70[mN/m]以上、71[mN/m]以上、72[mN/m]以上である。表面張力が上記の条件を満たすことにより、紙おむつでの戻り量をより低減させることができる。上限は通常75[mN/m]で十分である。
 (2-8)粒子形状
 吸水性樹脂(粉末)は、粒子形状として不定形破砕状であることが好ましい。ここで、不定形破砕状とは、形状が一定でない破砕状の粒子である。逆相懸濁重合や気相重合で得られた球状粒子に比べて不定形破砕状では形状が一定でないため、パルプなどの親水性繊維との混合性に優れ、粒子間の隙間による液拡散性が高いため好ましい。本発明の一実施形態に係る粒子状吸水剤は、好ましくは水溶液重合における粉砕物である。不定形破砕状は、水溶液重合を経て得られる架橋重合体のゲルまたは乾燥物(好ましくは乾燥物)を粉砕することによって得られる。一方、粉砕工程を経ない場合、代表的には逆相懸濁重合や重合モノマーを噴霧し重合するような液滴重合等によって得られる球状の粒子または球状粒子の造粒物は、不定形破砕状ではない。本発明の実施形態において、粒子状吸水剤の形状が不定形破砕状であると、平均真円度の高いもの(例えば、球形のもの)と比べて吸水速度やRCAPに優れる。本発明の実施形態において、粒子状吸水剤の平均真円度は、0.70以下であることが好ましく、0.60以下であることがより好ましく、0.55以下であることがさらに好ましい。
 平均真円度の算出方法は以下のとおりである。ランダムに100個以上の粒子状吸水剤を選択し、各粒子状吸水剤を電子顕微鏡(株式会社キーエンス社製 VE-9800)(倍率50倍)で撮影して粒子状吸水剤の画像を取得し、付属の画像解析ソフトを用いて粒子ごとに周囲長および面積を算出した。以下の式:
Figure JPOXMLDOC01-appb-M000002
で各粒子の真円度を求め、得られた値の平均値を平均真円度として算出する。
 (2-9)水不溶性無機粒子/水溶性多価金属カチオン含有化合物
 本発明の粒子状吸水剤は、水不溶性無機粒子および水溶性多価金属カチオン含有化合物からなる群から選択される少なくとも1種をさらに含むことが好ましい。
 粒子状吸水剤が、水不溶性無機粒子を含むことで、粒子状吸水剤の吸湿流動性を、向上させることができる。また、水不溶性無機粒子を添加することで、吸収性物品の吸収量の向上を図ることができる。さらに、吸水性樹脂粒子(組成物)は、製造後の保管によって吸収性物品を製造する際に流動性を失っている場合がある。かような流動性を失った吸水性樹脂粒子(組成物)に対して、水不溶性無機粒子を混合して好適には吸収体を成形することで、性能を維持したまま、吸水性樹脂粒子(組成物)の流動性が回復するので、生産性が向上する。ここで、吸湿流動性とは、高湿条件下に保管された場合の粒子状吸水剤の流動性を指し、吸水性樹脂を含む粒子状吸水剤は一般的に吸湿によりその流動性が低下する。なお、粒子状吸水剤の吸湿流動性を向上させる目的で、水不溶性無機粒子を添加することがこれまでにも行われてきたが、水不溶性無機粒子を単に添加、混合するだけでは式(1)の関係を満たすことができず、粒子状吸水剤が膨潤状態での加圧下戻り量が増加する(後述の比較例参照)。一方、水不溶性無機粒子の添加・混合条件(例えば、混合時間)等を工夫することで、粒子状吸水剤が式(1)の関係を満たすことができ、粒子状吸水剤が膨潤した状態での加圧下の液戻りを有意に抑制することができる。
 水不溶性無機粒子としては、ハイドロタルサイト等の多元金属化合物、二酸化ケイ素(シリカ)、水酸化アルミニウム、二酸化チタン、酸化アルミニウム、酸化マグネシウム、酸化亜鉛、タルク、金属リン酸塩(例えば、リン酸三カルシウム等のリン酸カルシウム、リン酸バリウム、リン酸アルミニウム)、金属硼酸塩(例えば、ホウ酸チタン、ホウ酸アルミニウム、ホウ酸鉄、ホウ酸マグネシウム、ホウ酸マンガン、ホウ酸カルシウム)、珪酸またはその塩、粘土、珪藻土、ゼオライト、ベントナイト、カオリン、活性白土等が挙げられる。中でも、本発明の効果が顕著に得られることから、水不溶性無機粒子が多元金属化合物、二酸化ケイ素、タルク、およびリン酸三カルシウムから選ばれる少なくとも1種を含むことが好ましく、二酸化ケイ素、水酸化アルミニウムおよびリン酸三カルシウムから選ばれる少なくとも1種を含むことがより好ましい。
 水不溶性無機粒子の体積平均粒子径としては、10μm以下であることが好ましく、5μm以下であることがより好ましく、1μm以下であることが更に好ましい。また、体積平均粒子径は0.05μm以上が好ましく、0.1μm以上がより好ましく、0.3μm以上が更に好ましい。上記下限以上であることで、添加工程時の作業性の低下を抑制し、十分な性能を得ることができる。なお、水不溶性無機粒子の体積平均粒子径は、「レーザー回折散乱法」(例えば、日機装社製、商品名:マイクロトラックMT3000II粒度分析計を使用して測定)で測定することができる。
 水不溶性無機粒子は表面処理が行われていてもよい。表面処理に用いられる表面処理剤としては、下記多元金属化合物の表面処理剤の具体例が挙げられる。
 上記多元金属化合物とは、2価および3価の2種類の金属カチオンと水酸基とを含有する多元金属化合物である。
 上記2価の金属カチオンとしては、Mg2+、Fe2+、Zn2+、Ca2+、Ni2+、Co2+、Cu2+が挙げられ、耐熱性等の観点から、Mg2+が好ましい。上記3価の金属カチオンとしては、Al3+、Fe3+、Mn3+が挙げられ、耐熱性等の観点から、Al3+が好ましい。したがって、多元金属化合物の好適な一実施形態は、2価の金属カチオンがマグネシウムカチオンであり、3価の金属カチオンがアルミニウムカチオンである。
 多元金属化合物は、一般式(1)[M 2+ 1-x 3+ (OHx+・[(An-x/n・mHO]x-(M 2+は2価の金属カチオン、M 3+は3価の金属カチオン、An-はn価の陰イオン、HOは水を表す)で表される層状化合物の構造として知られているハイドロタルサイト様構造を有していることが好ましい。
 また、一般式(1)における2価の金属カチオンと3価の金属カチオンとの比率は、xが0.2~0.75の範囲が好ましく、0.25~0.7の範囲がより好ましく、0.25~0.5の範囲が更に好ましい。また、陰イオンとしては、OH、F、Cl、Br、NO 、CO 2-、SO 2-、Fe(CN) 3-、CHCOO、シュウ酸イオンまたはサリチン酸イオン等が挙げられるが、炭酸アニオンが好ましい。また、mは、0より大きい実数で、0<m≦10であることが好ましい。
 多元金属化合物の形状は、特に制限されないが、球状(粉末状を含む)であることが好ましい。また、多元金属化合物は、一定の粒度であることが好ましく、体積平均粒子径は2μm以下が好ましく、1.5μm以下がより好ましく、1μm以下が更に好ましい。粒子径が上記上限以下であることで、十分な効果を得るための添加量が多くなり過ぎることがなく、得られた吸水剤の吸水性能を損なうおそれが少ない。また、体積平均粒子径は0.05μm以上が好ましく、0.1μm以上がより好ましく、0.3μm以上が更に好ましい。上記下限以上であることで、添加工程時の作業性の低下を抑制し、十分な性能を得ることができる。また、吸水性樹脂粒子の表面に付着した多元金属化合物の平均粒子径の測定は、SEM(走査型電子顕微鏡)を用いた測定法により測定することができる。
 更に、層間に有機化合物をインターカレーションしていてもよく、吸水性樹脂粒子等との混合性を高めるための表面処理が施されていてもよい。
 多元金属化合物の好ましい構造式としては、MgAl(OH)16CO・4HOや、MgAl(OH)12CO・3HO等が挙げられる。具体的には、協和化学工業株式会社製のDHT-4H、DHT-6、堺化学工業株式会社製のSTABIACE HT-1-NC、STABIACE HT-P等が挙げられる。
 水不溶性無機粒子の含有量は、吸収性物品の吸収量を向上させ、吸収量および戻り量のバランスに優れたものとするという観点から、ポリアクリル酸(塩)系吸水性樹脂100重量%に対して、0.01重量%以上10重量%未満であり、好ましくは0.1~5重量%である。
 粒子状吸水剤が、水溶性多価金属カチオン含有化合物を含むことで、吸水剤の性能が向上する。なお、粒子状吸水剤の吸湿流動性を向上させる目的で、水溶性多価金属カチオン含有化合物を添加することがこれまでにも行われてきたが、水溶性多価金属カチオン含有化合物を単に添加、混合するのではなく、例えば、水溶性多価金属カチオン含有化合物の添加・混合条件(例えば、混合時間)等を工夫することで、式(1)の関係を満たすことができ、十分な加圧下吸水性能を示す粒子状吸水剤を得ることができる。
 水溶性多価金属カチオン含有化合物とは、2価以上好ましく3価以上の、金属カチオンを含有する多元金属化合物以外の化合物を指す。該3価以上の金属カチオンとしては、アルミニウム、ジルコニウム、チタニウムが例示され、アルミニウムが好ましい。該水溶性多価金属カチオン含有化合物としては、硫酸アルミニウム、塩化アルミニウム、塩化酸化ジルコニウム、炭酸ジルコニウムアンモニウム、炭酸ジルコニウムカリウム、炭酸ジルコニウムカリウム、硫酸ジルコニウム、酢酸ジルコニウム、硝酸ジルコニウムなどの多価金属の無機塩、酢酸アルミニウム、乳酸アルミニウム、ヒドロキシ塩化ジルコニウム、チタントリエタノールアミネート、チタンラクテートなどの多価金属の有機塩等の多価金属化合物等が挙げられる。中でも、多価金属カチオンとしてアルミニウムを含有する化合物であることが好ましく、硫酸アルミニウム、硫酸カリウムアルミニウム、硫酸ナトリウムアルミニウムであることがより好ましい。
 水溶性多価金属カチオン含有化合物の含有量は、吸水剤の性能向上の観点から、ポリアクリル酸(塩)系吸水性樹脂100重量部に対して、多価金属カチオン量に換算で0.001~5重量部であることが好ましく、0.01~2重量部であることがより好ましく、0.01~1重量部であることがさらに好ましい。
 上記形態の粒子状吸水剤は、例えば、下記製造方法(a)~(c)において、式(1)を満たすように制御することで得ることができる。
 (製造方法a)
 吸水性樹脂に水不溶性無機粒子を添加し、混合時間を制御して、式(1)を満たす粒子状吸水剤を得る。
 水不溶性無機粒子が添加される吸水性樹脂は、表面架橋されたものであってもよく、表面架橋されていないものであってもよい。また、水不溶性無機粒子は、吸水性樹脂または他の添加剤を含有する吸水性樹脂組成物と混合されてもよい。更に、吸収性物品を製造する際に、吸水性樹脂(組成物)、水不溶性無機粒子、および親水性繊維を混合してもよい。
 また、吸水性樹脂と、水不溶性無機粒子とは、乾式混合するのが好ましい。乾式混合により、得られる吸水剤の粉塵量が低減するため好ましい。該乾式混合とは、水不溶性無機粒子および吸水性樹脂が吸収または保持している液状物質以外の液状物質が実質存在しない(好ましくは存在しない)状態での混合を意味する。具体的には、吸湿水分や層間に保持されている有機化合物を含む水不溶性無機粒子と、乾燥残分や吸湿水分、前記表面架橋剤添加工程で添加された表面架橋剤や溶媒等を有する吸水性樹脂とを、更に液状物質を添加することなしに混合する形態が含まれる。
 吸水性樹脂と、水不溶性無機粒子との混合時間は特に制限されるものではなく、混合装置により適宜設定されるが、上記式(1)を満たすように比較的長時間の混合を行うことが好ましい。すなわち、本発明においては、添加剤を単に混合する目的での混合時間よりも長い時間を設定して吸水性樹脂と、水不溶性無機粒子とを混合することが好ましい。通常、生産性向上を目的として、目視または従来の評価方法により添加物が均一に混合されていることを確認できた時点で、混合装置の作動を止める。また、このような従来の混合によっても、AAPやCRCといった粒子状吸水剤に求められる基本性能は担保されていた。しかしながら、これらの粒子状吸水剤は、粒子状吸水剤が膨潤している状態での加圧下戻り量が十分に低減されたものではなかった。このような課題を本発明者らは知得し、検討した結果、水不溶性無機粒子は凝集しやすいため、吸水性樹脂中で微視的には十分に分散されておらず、水不溶性無機粒子を添加した際に粒子状吸水剤の物性の低下、特に膨潤状態での加圧下戻り量の増加に繋がるのではないかと仮定した。そして、水不溶性無機粒子を混合する際の混合時間を通常の均一な混合に必要な時間よりも長くすることで、式(1)を満たすための粒子状吸水剤が得られることを見出した。一般的に、均一な混合に必要な時間は従来の評価方法などによって設定されていたが、本発明者らはRCAPという膨潤している状態での加圧下戻り量を改善するための一つの指標となる新規なパラメータを見出し、それによって初めて、従来は十分とされていた混合時間をさらに長くすることによる付加的な効果を発見した。従来は、長い混合時間は生産性の低下等を招き、むしろ好ましくないと考えられていたため積極的な実施はされてこなかったが、本発明では上記の発見により、生産性低下等のデメリットを上回って余りあるメリットを見出すことができた。吸水性樹脂と、水不溶性無機粒子と、の混合時間は、例えば、5分以上であり、15分以上であることが好ましく、30分以上であることがより好ましい。
 吸水性樹脂と、水不溶性無機粒子との混合に用いられる手段は特に限定されるものではないが、パドル式撹拌装置のような緩やかな攪拌ではなく、比較的強攪拌条件となるような混合手段を用いることが好ましい。
 混合時間の上限は特に制限されるものではないが、生産性や効果の飽和を考慮すると、5時間以下であることが好ましく、2時間以下であることがより好ましい。また、混合方法としては、特に限定されるものではないが、振動を付与しながら混合する方法、回転運動しながら混合する方法(例えば、ターブラ・シェーカー・ミキサーを用いる方法)、攪拌機による混合、空気輸送など気流と共に粒子を輸送するような方法が好ましい。攪拌条件は混合装置により適宜設定されるが、例えばターブラ・シェーカー・ミキサーを用いる場合は、その回転速度は45rpmより高いことが好ましく、70rpm以上であることがより好ましく、100rpm以上であることがさらに好ましい。また、各混合方法によって、理想的な混合に必要な混合時間は異なるが、適宜混合時間を調整することで本願の目的は達成可能である。本願の目的が達成できたかどうかの判断は、本願の物性パラメータを満たすかどうかが一つの指標となりうる。
 (製造方法b)
 吸水性樹脂に水溶性多価金属カチオン含有化合物を添加し、混合時間を制御して、式(1)を満たす粒子状吸水剤を得る。
 水溶性多価金属カチオン含有化合物は吸水性樹脂に粉体として直接混合してもよいし、溶液、特に水溶液にして混合してもよく、表面架橋剤やその水溶液に溶解させて混合してもよい。
 また、複数回添加してもよく、その場合、例えば2回添加する場合、その(重量)比率としては1/99~99/1、好ましくは10/90~90/10の範囲に規定される。これらの範囲を超えると、極めて1回での添加と同じ状況に近くなり複数回添加の効果が乏しくなるため好ましくない。
 水溶性多価金属カチオン含有化合物の添加方法としては特に制限されるものではないが、(1)表面架橋剤の添加と同時に添加する(表面架橋工程で添加する)、(2)表面架橋工程の後に添加する、ことが好ましい。このようなタイミングで水溶性多価金属カチオン含有化合物を添加することで、粒子表面近傍に存在させることが可能となり吸水剤の性能を向上させることが可能である。表面架橋工程の後に添加する場合、他の添加剤とともに添加してもよい。
 水溶性多価金属カチオン含有化合物は、溶媒(例えば、水)に溶解させた溶液の状態で吸水性樹脂(粉末)に添加してもよい。水溶性多価金属カチオン含有化合物を水溶液として添加する場合には、水以外に親水性有機溶媒(アルコールないしポリグリコール)や界面活性剤を併用して分散性や溶解性や混合性を向上させてもよい。使用する水の量は水溶性多価金属カチオン含有化合物の種類や添加方法で適宜決定されるが、例えば、吸水性樹脂100重量部に対して0重量部(乾式混合)~50重量部、さらには0.1~10重量部、0.5~5重量部である。
 また、水溶性多価金属カチオン含有化合物は、そのままの形態で吸水性樹脂(粉末)に添加してもよい。その場合、水溶性多価金属カチオン含有化合物は、粒子であることが好ましい形態である。水溶性多価金属カチオン含有化合物粒子の体積平均粒子径としては、10μm以下であることが好ましく、5μm以下であることがより好ましく、1μm以下であることが更に好ましい。また、体積平均粒子径は0.05μm以上が好ましく、0.1μm以上がより好ましく、0.3μm以上が更に好ましい。上記下限以上であることで、添加工程時の作業性の低下を抑制し、十分な性能を得ることができる。なお、水溶性多価金属カチオン含有化合物粒子の体積平均粒子径は、「レーザー回折散乱法」(例えば、日機装社製、商品名:マイクロトラックMT3000II粒度分析計を使用して測定)で測定することができる。
 本明細書において、水溶性とは、室温(23℃)、常圧下(1気圧下)での、水に可溶(もしくは易溶)の物質を示す。例えば、室温、常圧下での水100mlに対する溶解量が1g以上の物質を示す。また、水不溶性とは、室温(23℃)、常圧下(1気圧下)での、水に不溶(もしくは難溶)の物質を示す。例えば、室温、常圧下での水100mlに対する溶解量が1g未満の物質を示し、さらに室温、常圧下での水100mlに対する溶解量が0.1g未満であることが好ましい。
 吸水性樹脂と、水溶性多価金属カチオン含有化合物との混合時間は特に制限されるものではなく、混合装置により適宜設定されるが、上記式(1)を満たすように比較的長時間の混合を行うことが好ましい。すなわち、本発明においては、添加剤を単に混合する目的での混合時間よりも長い時間を設定して吸水性樹脂と、水溶性多価金属カチオン含有化合物とを混合することが好ましい。通常、生産性向上を目的として、目視または従来の評価方法により添加物が均一に混合されていることを確認できた時点で、混合装置の作動を止める。また、このような従来の混合によっても、AAPやCRCといった粒子状吸水剤に求められる基本性能は担保されていた。しかしながら、これらの粒子状吸水剤は、粒子状吸水剤が膨潤している状態での加圧下戻り量が十分に低減されたものではなかった。このような課題を本発明者らは知得し、検討した結果、水溶性多価金属カチオン含有化合物は従来の混合方法及び時間では不十分であるため、吸水性樹脂中で微視的には十分に分散されておらず、水溶性多価金属カチオン含有化合物を添加した際に粒子状吸水剤の物性の低下、特に膨潤状態での加圧下戻り量の増加に繋がるのではないかと仮定した。そして、水溶性多価金属カチオン含有化合物を混合する際の混合時間を通常の均一な混合に必要な時間よりも長くすることで、式(1)を満たすための粒子状吸水剤が得られることを見出した。一般的に、均一な混合に必要な時間は従来の評価方法などによって設定されていたが、本発明者らはRCAPという膨潤している状態での加圧下戻り量を改善するための一つの指標となる新規なパラメータを見出し、それによって初めて、従来は十分とされていた混合時間をさらに長くすることによる付加的な効果を発見した。従来は、長い混合時間は生産性の低下等を招き、むしろ好ましくないと考えられていたため積極的な実施はされてこなかったが、本発明では上記の発見により、生産性低下等のデメリットを上回って余りあるメリットを見出すことができた。吸水性樹脂と、水溶性多価金属カチオン含有化合物と、の混合時間は、例えば、5分以上であり、15分以上であることが好ましく、30分以上であることがより好ましい。混合時間の上限は特に制限されるものではないが、生産性や効果の飽和を考慮すると、5時間以下であることが好ましく、2時間以下であることがより好ましい。また、混合方法としては、特に限定されるものではないが、振動を付与しながら混合する方法、回転運動しながら混合する方法(例えば、ターブラ・シェーカー・ミキサーを用いる方法)、攪拌機による混合、空気輸送など気流と共に粒子を輸送するような方法が好ましい。この場合の回転数は、製造方法aと同様でもよい。また、各混合方法によって、理想的な混合に必要な混合時間は異なるが、適宜混合時間を調整することで本願の目的は達成可能である。本願の目的が達成できたかどうかの判断は、本願の物性パラメータを満たすかどうかが一つの指標となりうる。
 (製造方法c)
 粒子状吸水剤を製造する製造方法において、水を主成分として含む洗浄液で吸水性樹脂を洗浄する工程を有する。水を主成分とする洗浄液で吸水性樹脂を洗浄することで、式(1)を満たす粒子状吸水剤が得られやすくなる。詳細なメカニズムは不明であるが、水を主成分として含む洗浄液で吸水性樹脂を洗浄することで、吸水性樹脂が水を含水して膨潤状態となり、この状態で洗浄することで、吸水性能に影響しうる不要な成分を効率的に洗い流すことができ、高いRCAPの吸水剤が得られやすくなるためであると考えられる。
 なお、上記特許文献2(国際公開第97/003114号)では、残存架橋剤を低減することを目的として洗浄を行っており、「水と親水性有機溶媒との混合比の範囲を、混合液が吸水性樹脂粉末を膨潤しないように選択することにある」とあることから、水を主成分として含む洗浄液で洗浄することで吸水性樹脂粉末を膨潤させる上記工程とは明確に区別される。
 洗浄の方法としては、例えば、吸水性樹脂を膨潤状態にしたのちに、洗浄液を用いて洗浄することが好ましい。吸水性樹脂を膨潤状態にする方法としては、水を主成分とする液を用いて、当該液に吸水性樹脂を浸漬する方法が挙げられる。浸漬時間としては、吸水性樹脂が十分に膨潤すれば特に限定されないが、例えば、1分以上であってもよく、5分以上であってもよい。
 水が主成分とは、洗浄液中、水を80重量%以上、好ましくは90重量%以上、より好ましくは95重量%以上、さらにより好ましくは99重量%以上含み、好ましくは実質的に水からなる。
 水は、不純物を含まないことが好ましく、RO水や脱イオン水、蒸留水、精製水などが好ましく、脱イオン水や蒸留水がより好ましい。
 水以外の成分として、親水性有機溶媒を含んでいてもよい。用いられる親水性有機溶媒としては、メチルアルコール、エチルアルコール、プロピルアルコール、イソプロピルアルコール、t一ブチルアルコ一ル等の低級アルコ一ル類が好適に例示される。
 ここで、吸水性樹脂は、表面架橋処理前の吸水性樹脂粉末、表面架橋後の吸水性樹脂粒子のいずれであってもよいが、式(1)を満たす粒子状吸水剤がより得られやすくなることから、表面架橋処理前の吸水性樹脂粉末(いわゆるベースポリマー)を洗浄することが好ましい。
 洗浄方法としては特に限定されず、洗浄液と吸水性樹脂を連続あるいは非連続の回分式方法で洗浄を行うことができる。例えば、吸水性樹脂を、洗浄液中で、必要により撹拌しながら接触させ、その後、吸水性樹脂を例えば、デカンテ一ションや吸引濾過により洗浄液より分離する方法;膨潤状態の含水ゲルに対して洗浄液を通水する通水洗浄などが挙げられる。
 また、洗浄は複数回行われてもよい。
 これらの方法において、洗浄時間(通水時間)は、15分~10時間であることが好ましく、30分~8時間であることがより好ましく、1~5時間であることがさらにより好ましい。洗浄液の温度は洗浄効果の面から、好ましくは、20~50℃である。また、洗浄時の圧力は加圧、減圧、常圧と特に問わないが、常圧で通常行われる。
 洗浄後の吸水性樹脂(含水ゲル)は、下記〔3〕粒子状吸水剤の製造方法における含水ゲルの後工程と同様に、必要に応じて更に乾燥、粉砕、分級等の工程を追加的に行えばよい。
 〔3〕粒子状吸水剤の製造方法
 以下に、本発明にかかわる粒子状吸水剤の製造工程(3-1)~(3-8)について示す。
 (3-1)単量体水溶液の調製工程
 本工程は、単量体(たとえばアクリル酸(塩))を主成分として含む水溶液(以下、「単量体水溶液」と称する)を調製する工程である。なお、得られる吸水性樹脂の吸水性能が低下しない範囲で、単量体のスラリー液を使用することもできるが、本項では便宜上、単量体水溶液について説明を行う。
 また、上記「主成分」とは、アクリル酸(塩)の使用量(含有量)が、吸水性樹脂の重合反応に供される単量体(内部架橋剤は除く)全体に対して、通常50モル%以上、好ましくは70モル%以上、より好ましくは90モル%以上(上限は100モル%)であることをいう。
 (アクリル酸)
 本発明では、得られる粒子状吸水剤の物性および生産性の観点から、単量体としてアクリル酸および/またはその塩(以下「アクリル酸(塩)」と称する)を用いる。
 上記「アクリル酸」は、公知のアクリル酸でよく、重合禁止剤として好ましくはメトキシフェノール類、より好ましくはp-メトキシフェノールを、アクリル酸の重合性や粒子状吸水剤の色調の観点から、好ましくは200ppm以下、より好ましくは10~160ppm、更に好ましくは20~100ppmを含んでいればよい。また、アクリル酸中の不純物については、米国特許出願公開第2008/0161512号に記載された化合物が本発明にも適用される。
 また、上記「アクリル酸塩」は、上記アクリル酸を下記塩基性組成物で中和したものであるが、該アクリル酸塩として、市販のアクリル酸塩(例えば、アクリル酸ナトリウム)でもよいし、粒子状吸水剤の製造プラント内で中和して得られたものでもよい。
 (塩基性組成物)
 本発明において、「塩基性組成物」とは、塩基性化合物を含有する組成物を指し、例えば、市販の水酸化ナトリウム水溶液等が該当する。
 上記塩基性化合物として、具体的には、アルカリ金属の炭酸塩や炭酸水素塩、アルカリ金属の水酸化物、アンモニア、有機アミン等が挙げられる。これらの中でも、得られる粒子状吸水剤の物性の観点から、強塩基性であることが望まれる。即ち、水酸化ナトリウム、水酸化カリウム、水酸化リチウム等のアルカリ金属の水酸化物が好ましく、水酸化ナトリウムがより好ましい。
 (中和)
 本発明における中和として、アクリル酸に対する中和(重合前)またはアクリル酸を架橋重合して得られる含水ゲル状架橋重合体に対する中和(重合後)(以下、「後中和」と称する)の何れかを選択または併用することができる。また、これらの中和は、連続式でもバッチ式でもよく特に限定されないが、生産効率等の観点から連続式が好ましい。
 なお、中和を行う装置、中和温度、滞留時間等の条件については、国際公開第2009/123197号や米国特許出願公開第2008/0194863号に記載された条件が本発明にも適用される。
 本発明における中和率は、単量体の酸基に対して、好ましくは10~90モル%、より好ましくは40~85モル%、更に好ましくは50~80モル%、特に好ましくは60~75モル%である。該中和率が10モル%未満の場合、吸水倍率が著しく低下することがある。一方、該中和率が90モル%を超える場合、加圧下吸水倍率の高い吸水性樹脂が得られないことがある。
 上記中和率は、後中和の場合でも同様である。また、最終製品としての粒子状吸水剤の中和率についても、上記中和率が適用される。なお、中和率75モル%とは、アクリル酸25モル%およびアクリル酸塩75モル%の混合物を意味する。また、該混合物をアクリル酸部分中和物と称する場合もある。
 (他の単量体)
 本発明において、「他の単量体」とは、上記アクリル酸(塩)以外の単量体を指し、他の単量体をアクリル酸(塩)と併用して粒子状吸水剤を製造することができる。
 上記他の単量体として、水溶性または疎水性の不飽和単量体が挙げられる。具体的には、米国特許出願公開第2005/0215734に記載された化合物(但し、アクリル酸は除く)が本発明にも適用される。
 (内部架橋剤)
 本発明で使用される内部架橋剤として、米国特許第6241928号に記載された化合物が本発明にも適用される。これらの中から反応性を考慮して1種または2種以上の化合物が選択される。本発明においては、吸水性能を考慮して、内部架橋剤を用いた架橋体を表面処理することが好ましい。
 また、得られる吸水性樹脂の吸水性能等の観点から、好ましくは重合性不飽和基を2個以上有する化合物、より好ましくは下記乾燥温度で熱分解性を有する化合物、更に好ましくは(ポリ)アルキレングリコール構造単位を有する重合性不飽和基を2個以上する化合物が、内部架橋剤として用いられる。
 上記重合性不飽和基として、好ましくはアリル基、(メタ)アクリレート基、より好ましくは(メタ)アクリレート基が挙げられる。また、上記(ポリ)アルキレングリコール構造単位としてポリエチレングリコールが好ましく、n数として好ましくは1~100、より好ましくは6~50である。
 したがって、本発明では、好ましくは(ポリ)アルキレングリコールジ(メタ)アクリレートまたは(ポリ)アルキレングリコールトリ(メタ)アクリレート、より好ましくは(ポリ)エチレングリコールジ(メタ)アクリレートが用いられる。
 上記内部架橋剤の使用量は、単量体全体に対して、好ましくは0.0001~10モル%、より好ましくは0.001~1モル%である。該使用量を上記範囲内とすることで所望する吸水性樹脂が得られる。なお、該使用量が少なすぎる場合、ゲル強度が低下し水可溶分が増加する傾向にあり、該使用量が多すぎる場合、吸水倍率が低下する傾向にある。
 本発明では、所定量の内部架橋剤を予め単量体水溶液に添加しておき、重合と同時に架橋反応する方法が好ましく適用される。一方、該手法以外に、重合中や重合後に内部架橋剤を添加して後架橋する方法や、ラジカル重合開始剤を用いてラジカル架橋する方法、電子線、紫外線等の活性エネルギー線を用いた放射線架橋する方法等を採用することもできる。また、これらの方法を併用することもできる。
 (その他、単量体水溶液に添加される物質)
 本発明において、得られる吸水性樹脂の物性向上の観点から、下記の物質を単量体水溶液の調製時に添加することもできる。
 具体的には、澱粉、澱粉誘導体、セルロース、セルロース誘導体、ポリビニルアルコール、ポリアクリル酸(塩)、ポリアクリル酸(塩)架橋体等の親水性高分子を、単量体水溶液中、好ましくは50重量%以下、より好ましくは20重量%以下、更に好ましくは10重量%以下、特に好ましくは5重量%以下(下限は0重量%)で添加したり、炭酸塩、アゾ化合物、気泡等の発泡剤、界面活性剤、ジエチレントリアミン5酢酸(塩)、エチレンジアミンテトラメチレンホスホン酸(塩)等のキレート剤、連鎖移動剤等を、単量体水溶液中、好ましくは5重量%以下、より好ましくは1重量%以下、更に好ましくは0.5重量%以下(下限は0重量%)で添加したりすることができる。
 また、上記物質は、単量体水溶液に添加される形態のみならず、重合途中で添加される形態でもよいし、これらの形態を併用することもできる。
 なお、親水性高分子として水溶性樹脂または吸水性樹脂を使用する場合には、グラフト重合体または吸水性樹脂組成物(例えば、澱粉-アクリル酸重合体、PVA-アクリル酸重合体等)が得られる。これらの重合体、吸水性樹脂組成物も本発明の範疇である。
 (単量体成分の濃度)
 本工程において、単量体水溶液を調製する際に、上記の各物質が添加される。該単量体水溶液中の単量体成分の濃度としては特に限定されないが、吸水性樹脂の物性の観点から、好ましくは10~80重量%、より好ましくは20~75重量%、更に好ましくは30~70重量%である。
 また、水溶液重合または逆相懸濁重合を採用する場合、水以外の溶媒を必要に応じて併用することもできる。この場合、溶媒の種類は特に限定されない。
 なお、上記「単量体成分の濃度」とは、下記式(5)で求められる値であり、単量体水溶液の重量には、グラフト成分や吸水性樹脂、逆相懸濁重合における疎水性溶媒の重量は含めない。
 (単量体成分の濃度(重量%))=(単量体成分の重量)/(単量体水溶液の重量)×100  式(5)
 (3-2)重合工程
 本工程は、上記単量体水溶液の調製工程で得られたアクリル酸(塩)系単量体水溶液を重合させて、含水ゲル状架橋重合体(以下、「含水ゲル」と称する)を得る工程である。
 (重合開始剤)
 本発明で使用される重合開始剤は、重合形態等によって適宜選択されるため、特に限定されないが、例えば、熱分解型重合開始剤、光分解型重合開始剤、またはこれらの重合開始剤の分解を促進する還元剤を併用したレドックス系重合開始剤等が挙げられる。具体的には、米国特許第7265190号に開示された重合開始剤のうち、1種または2種以上が用いられる。なお、重合開始剤の取扱性や粒子状吸水剤または吸水性樹脂の物性の観点から、好ましくは過酸化物またはアゾ化合物、より好ましくは過酸化物、更に好ましくは過硫酸塩が使用される。
 該重合開始剤の使用量は、単量体に対して、好ましくは0.001~1モル%、より好ましくは0.001~0.5モル%である。また、該還元剤の使用量は、単量体に対して、好ましくは0.0001~0.02モル%である。
 なお、上記重合開始剤に代えて、放射線、電子線、紫外線等の活性エネルギー線を照射して重合反応を実施してもよく、これらの活性エネルギー線と重合開始剤を併用してもよい。
 (重合形態)
 本発明に適用される重合形態としては、特に限定されないが、吸水特性や重合制御の容易性等の観点から、好ましくは噴霧液滴重合、水溶液重合、逆相懸濁重合、より好ましくは水溶液重合、逆相懸濁重合、更に好ましくは水溶液重合が挙げられる。中でも、連続水溶液重合が特に好ましく、連続ベルト重合、連続ニーダー重合の何れでも適用される。
 具体的な重合形態として、連続ベルト重合は米国特許第4893999号、同第6241928号、米国特許出願公開第2005/215734号等に、連続ニーダー重合は米国特許第6987151号、同第6710141号等に、それぞれ開示されている。これらの連続水溶液重合を採用することで、吸水性樹脂の生産効率が向上する。
 また、上記連続水溶液重合の好ましい形態として、「高温開始重合」や「高濃度重合」が挙げられる。「高温開始重合」とは、単量体水溶液の温度を好ましくは30℃以上、より好ましくは35℃以上、更に好ましくは40℃以上、特に好ましくは50℃以上(上限は沸点)の温度で重合を開始する形態をいい、「高濃度重合」とは、単量体濃度を好ましくは30重量%以上、より好ましくは35重量%以上、更に好ましくは40重量%以上、特に好ましくは45重量%以上(上限は飽和濃度)で重合を行う形態をいう。これらの重合形態を併用することもできる。
 また、本発明においては、空気雰囲気下で重合を行うこともできるが、得られる吸水性樹脂の色調の観点から、窒素やアルゴン等の不活性ガス雰囲気下で重合を行ってもよい。この場合、例えば、酸素濃度を1容積%以下に制御することが好ましい。なお、単量体水溶液中の溶存酸素についても、不活性ガスで置換(例えば、溶存酸素;1mg/l未満)しておくことが好ましい。
 また、本発明では、単量体水溶液に気泡(特に上記不活性ガス等)を分散させて重合を行う発泡重合とすることもできる。
 また、本発明においては、重合中に固形分濃度を上昇させてもよい。このような固形分濃度の上昇の指標として固形分上昇度は下記式(6)により定義される。なお、該固形分濃度の上昇度としては、好ましくは1重量%以上、より好ましくは2重量%以上である。 (固形分上昇度(重量%))=(重合後の含水ゲルの固形分濃度(重量%))-(単量体水溶液の固形分濃度(重量%)) 式(6)
 ただし、単量体水溶液の固形分濃度とは下記式(7)で求められる値であり、重合系内の成分とは、単量体水溶液とグラフト成分、吸水性樹脂、その他固形物(例えば水不溶性微粒子等)であり、逆相懸濁重合における疎水性溶媒は含めない。
 (単量体水溶液の固形分(重量%))=((単量体成分+グラフト成分+吸水性樹脂+その他固形物)の重量)/(重合系内の成分の重量)×100 式(7)
 また、水溶液重合の形態としては、単量体水溶液を静置状態で重合する静置重合法、攪拌装置内で重合する攪拌重合法、などで本発明を実施することができる。静置重合法では、エンドレスベルトを用いるのが好ましい。ベルトは重合熱を接材面から逃しにくい樹脂ないしゴム製のベルトが好ましい。
 (3-3)ゲル粉砕工程
 本工程は、上記重合工程で得られた含水ゲルを、例えば、ニーダー、ミートチョッパー等のスクリュー押出し機、カッターミル等のゲル粉砕機でゲル粉砕し、粒子状の含水ゲル(以下、「粒子状含水ゲル」と称する)を得る工程である。なお、上記重合工程がニーダー重合の場合、重合工程とゲル粉砕工程が同時に実施されている。また、気相重合や逆相懸濁重合等、粒子状含水ゲルが重合過程で直接得られる場合には、該ゲル粉砕工程が実施されないこともある。
 上記以外のゲル粉砕条件や形態については、国際公開第2011/126079号に開示される内容が、本発明に好ましく適用される。
 (3-4)乾燥工程
 本工程は、上記重合工程および/またはゲル粉砕工程で得られた粒子状含水ゲルを所望する樹脂固形分まで乾燥させて乾燥重合体を得る工程である。該樹脂固形分は、乾燥減量(吸水性樹脂1gを180℃で3時間加熱した際の重量変化)から求められ、好ましくは80重量%以上、より好ましくは85~99重量%、更に好ましくは90~98重量%、特に好ましくは92~97重量%である。
 上記粒子状含水ゲルの乾燥方法としては、特に限定されないが、例えば、加熱乾燥、熱風乾燥、減圧乾燥、流動層乾燥、赤外線乾燥、マイクロ波乾燥、ドラムドライヤー乾燥、疎水性有機溶媒との共沸脱水による乾燥、高温の水蒸気を利用した高湿乾燥等が挙げられる。中でも乾燥効率の観点から、熱風乾燥が好ましく、通気ベルト上で熱風乾燥を行うバンド乾燥がより好ましい。
 上記熱風乾燥における乾燥温度(熱風の温度)としては、吸水性樹脂の色調や乾燥効率の観点から、好ましくは120~250℃、より好ましくは150~200℃である。なお、熱風の風速や乾燥時間等、上記乾燥温度以外の乾燥条件については、乾燥に供する粒子状含水ゲルの含水率や総重量および目的とする樹脂固形分に応じて、適宜設定すればよく、バンド乾燥を行う際には、国際公開第2006/100300号、同第2011/025012号、同第2011/025013号、同第2011/111657号等に記載される諸条件が適宜適用される。
 (3-5)粉砕工程、分級工程
 本工程は、上記乾燥工程で得られた乾燥重合体を粉砕(粉砕工程)し、所定範囲の粒度に調整(分級工程)して、吸水性樹脂粉末(表面架橋を施す前の、粉末状の吸水性樹脂を便宜上「吸水性樹脂粉末」と称する)を得る工程である。
 本発明の粉砕工程で使用される機器としては、例えば、ロールミル、ハンマーミル、スクリューミル、ピンミル等の高速回転式粉砕機、振動ミル、ナックルタイプ粉砕機、円筒型ミキサー等が挙げられ、必要により併用される。
 また、本発明の分級工程での粒度調整方法としては、特に限定されないが、例えば、JIS標準篩(JIS Z8801-1(2000))を用いた篩分級や気流分級等が挙げられる。なお、吸水性樹脂の粒度調整は、上記粉砕工程、分級工程に限定されず、重合工程(特に逆相懸濁重合や噴霧液滴重合)、その他の工程(例えば、造粒工程、微粉回収工程)で適宜実施できる。
 上記工程で得られる吸水性樹脂粉末(表面架橋工程前の吸水性樹脂粉末、いわゆるベースポリマー)は、重量平均粒子径(D50)として、好ましくは200~600μm、より好ましくは200~550μm、更に好ましくは250~500μmである。また、粒子径150μm未満の粒子の割合は、好ましくは10重量%以下、より好ましくは5重量%以下、更に好ましくは1重量%以下であり、粒子径850μm以上の粒子の割合は、好ましくは5重量%以下、より好ましくは3重量%以下、更に好ましくは1重量%以下である。なお、これらの粒子の割合の下限値としては、何れの場合も少ないほど好ましく、0重量%が望まれるが、0.1重量%程度でもよい。更に、粒度分布の対数標準偏差(σζ)は、好ましくは0.20~0.50、より好ましくは0.25~0.40、更に好ましくは0.27~0.35である。なお、これらの粒度は、米国特許第7638570号やEDANA ERT420.2-02に開示されている測定方法に準じて、標準篩を用いて測定される。
 上述した粒度は、表面架橋後の吸水性樹脂(以下、便宜上「吸水性樹脂粒子」と称する場合がある)のみならず、最終製品としての粒子状吸水剤についても適用される。そのため、吸水性樹脂粒子において、上記範囲の粒度を維持するように、表面架橋処理(表面架橋工程)されることが好ましく、表面架橋工程以降に整粒工程を設けて粒度調整されることがより好ましい。
 (3-6)表面架橋工程
 本工程は、上述した工程を経て得られる吸水性樹脂粉末の表面層(吸水性樹脂粉末の表面から数10μmの部分)に、更に架橋密度の高い部分を設ける工程であり、混合工程、加熱処理工程および冷却工程(任意)から構成される。
 該表面架橋工程において、吸水性樹脂粉末表面でのラジカル架橋や表面重合、表面架橋剤との架橋反応等により表面架橋された吸水性樹脂(吸水性樹脂粒子)が得られる。
 (表面架橋剤)
 本発明で使用される表面架橋剤としては、特に限定されないが、有機または無機の表面架橋剤が挙げられる。中でも、吸水性樹脂の物性や表面架橋剤の取扱性の観点から、カルボキシル基と反応する有機表面架橋剤が好ましい。例えば、米国特許7183456号に開示される1種または2種以上の表面架橋剤が挙げられる。より具体的には、多価アルコール化合物、エポキシ化合物、ハロエポキシ化合物、多価アミン化合物またはそのハロエポキシ化合物との縮合物、オキサゾリン化合物、オキサゾリジノン化合物、多価金属塩、アルキレンカーボネート化合物、環状尿素化合物等が挙げられる。
 有機表面架橋剤の具体例として、(ジ、トリ、テトラ、ポリ)エチレングリコール、(ジ、ポリ)プロピレングリコール、1,3-プロパンジオール、2,2,4-トリメチルー1,3-ペンタンジオール、(ポリ)グリセリン、2-ブテンー1,4-ジオール、1,4-ブタンジオール、1,3-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、トリメチロールプロパン、ジまたはトリエタノールアミン、ペンタエリスリトール、ソルビトール等のポリアルコール化合物;(ポリ)エチレングリコールジグリシジルエーテル、(ジ、ポリ)グリセロールポリグリシジルエーテル、グリシドール等のエポキシ化合物;2-オキサゾリドン、N-ヒドロキシエチル-2-オキサゾリドン、1,2-エチレンビスオキサゾリン等のオキサゾリン化合物;1,3-ジオキソラン-2-オン(エチレンカーボネート)、4-メチル-1,3-ジオキソラン-2-オン、4,5-ジメチル-1,3-ジオキソラン-2-オン、4,4-ジメチル-1,3-ジオキソラン-2-オン、4-エチル-1,3-ジオキソラン-2-オン、4-ヒドロキシメチル-1,3-ジオキソラン-2-オン、1,3-ジオキサン-2-オン、4-メチル-1,3-ジオキサン-2-オン、4,6-ジメチル-1,3-ジオキサン-2-オン、1,3-ジオキソパン-2-オン等のアルキレンカーボネート化合物;エピクロロヒドリン、エピブロムヒドリン、α-メチルエピクロロヒドリン等のハロエポキシ化合物、および、その多価アミン付加物(例えばハーキュレス製カイメン;登録商標);γ-グリシドキシプロピルトリメトキシシラン、γーアミノプロピルトリエトキシシラン等のシランカップリング剤;3-メチル-3-オキセタンメタノール、3-エチル-3-オキセタンメタノール、3-ブチル3-オキセタンメタノール、3-メチル-3-オキセタンエタノール、3-エチル-3-オキセタンエタノール、3-ブチル3-オキセタンエタノール、3-クロロメチル-3-メチルオキセタン、3-クロロメチル-3-エチルオキセタン、多価オキセタン化合物などのオキセタン化合物、2-イミダゾリジノン等の環状尿素化合物等が挙げられる。
 前記多価アルコールとしては、炭素数が2~8の多価アルコールが好ましく、炭素数3~6の多価アルコールがより好ましく、炭素数3ないし4の多価アルコールが更に好ましい。更に、ジオールが好ましく、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,4-ブタンジオールが例示され、プロピレングリコール(1,2-プロパンジオール)、1,3-プロパンジオール、1,4-ブタンジオールから選ばれる多価アルコールが好ましい。
 また、エポキシ化合物としてはポリグリシジル化合物が好ましく、エチレングリコールジグリシジルエーテルが好適に使用される。
 上記有機表面架橋剤に加えて、表面架橋をより効果的に行う観点から、イオン結合性表面架橋剤としてポリアミンポリマーなどの多価カチオン性ポリマーや水溶性多価金属カチオン含有化合物を併用してもよい。水溶性多価金属カチオン含有化合物としては、上記したとおりである。
 該表面架橋剤の使用量(複数使用の場合は合計使用量)は、吸水性樹脂粉末100重量部に対して、好ましくは0.01~10重量部、より好ましくは0.01~5重量部である。また、該表面架橋剤は水溶液として添加することが好ましく、この場合、水の使用量は、吸水性樹脂粉末100重量部に対して、好ましくは0.1~20重量部、より好ましくは0.5~10重量部である。更に必要に応じて、親水性有機溶媒を使用する場合、その使用量は、吸水性樹脂粉末100重量部に対して、好ましくは10重量部以下、より好ましくは5重量部以下である。
 また、上述したように当該表面架橋工程において、水溶性多価金属カチオン含有化合物を添加してもよい。
 (混合工程)
 本工程は、吸水性樹脂粉末と上記表面架橋剤を混合する工程である。該表面架橋剤の混合方法については、特に限定されないが、予め表面架橋剤溶液を作製しておき、該液を吸水性樹脂粉末に対して、好ましくは噴霧または滴下して、より好ましくは噴霧して混合する方法が挙げられる。
 該混合を行う装置としては、特に限定されないが、好ましくは高速撹拌型混合機、より好ましくは高速撹拌型連続混合機が挙げられる。
 (加熱処理工程)
 本工程は、上記混合工程から排出された混合物に熱を加えて、吸水性樹脂粉末の表面上で架橋反応を起させる工程である。
 該架橋反応を行う装置としては、特に限定されないが、好ましくはパドルドライヤーが挙げられる。該架橋反応での反応温度は、使用される表面架橋剤の種類に応じて適宜設定されるが、好ましくは50~300℃、より好ましくは100~200℃である。
 (冷却工程)
 本工程は、上記加熱処理工程後に必要に応じて設置される任意の工程である。
 該冷却を行う装置としては、特に限定されないが、好ましくは加熱処理工程で使用される装置と同一仕様の装置であり、より好ましくはパドルドライヤーである。熱媒を冷媒に変更することで、冷却装置として使用できるためである。なお、上記加熱処理工程で得られた吸水性樹脂粒子は、該冷却工程において、好ましくは40~80℃、より好ましくは50~70℃に、必要に応じて強制冷却される。
 (3-7)添加剤添加工程
 本工程は、上記表面架橋工程で得られた吸水性樹脂粒子に、水溶性多価金属カチオン含有化合物、多価金属塩、カチオン性ポリマー、キレート剤、無機還元剤、ヒドロキシカルボン酸化合物、水不溶性無機粒子、界面活性剤、非高分子水溶性化合物等の添加剤を添加する工程である。上述したように、該添加剤は上記表面架橋剤(水溶液)と同時に、吸水性樹脂粉末と混合することもできる。
 (多価金属塩および/またはカチオン性ポリマー)
 得られる吸水性樹脂の吸水速度、通液性、吸湿流動性等の向上の観点から、多価金属塩および/またはカチオン性ポリマーを添加してもよい。
 上記多価金属塩および/またはカチオン性ポリマーとして、具体的には、国際公開第2011/040530号の「〔7〕多価金属塩および/またはカチオン性ポリマー」に開示された化合物およびその使用量が、本発明に適用される。
 特に上述したように、式(1)で満たされる粒子状吸水剤を得やすいことから、上記表面架橋工程で得られた吸水性樹脂粒子に、水溶性多価金属カチオン含有化合物を添加する形態は好ましい形態である。
 (キレート剤)
 得られる吸水性樹脂の色調(着色防止)、劣化防止等の観点から、キレート剤を添加してもよい。
 上記キレート剤として、具体的には、国際公開第2011/040530号の「〔2〕キレート剤」に開示された化合物およびその使用量が、本発明に適用される。
 (無機還元剤)
 得られる吸水性樹脂の色調(着色防止)、劣化防止、残存モノマー低減等の観点から、無機還元剤を添加してもよい。
 上記無機還元剤として、具体的には、国際公開第2011/040530号の「〔3〕無機還元剤」に開示された化合物およびその使用量が、本発明に適用される。
 (α-ヒドロキシカルボン酸化合物)
 得られる吸水性樹脂の色調(着色防止)等の観点から、α-ヒドロキシカルボン酸を添加してもよい。なお、「α-ヒドロキシカルボン酸化合物」とは、分子内にヒドロキシル基を有するカルボン酸またはその塩のことで、α位にヒドロキシル基を有するヒドロキシカルボン酸である。
 上記α-ヒドロキシカルボン酸化合物として、具体的には、国際公開第2011/040530号の「〔6〕α-ヒドロキシカルボン酸化合物」に開示された化合物およびその使用量が、本発明に適用される。
 (水不溶性無機粒子)
 吸水性樹脂の流動性改善等の観点から、水不溶性無機粒子を添加してもよい。具体的には、上記(2-9)の欄で記載した水不溶性無機粒子が挙げられる。上述したように、式(1)で満たされる粒子状吸水剤を得やすいことから、上記表面架橋工程で得られた吸水性樹脂粒子に、水不溶性無機粒子を添加する形態は好ましい形態である。
 (界面活性剤)
 得られる吸水性樹脂の物性(例えば、吸水速度)向上等の観点から、界面活性剤を添加してもよい。
 上記界面活性剤として、具体的には、国際公開第97/017397号や米国特許第6107358号に開示された界面活性剤、即ち、ノニオン性界面活性剤、アニオン性界面活性剤、カチオン性界面活性剤、両性界面活性剤等が挙げられる。
 (非高分子水溶性化合物)
 吸水性樹脂の粉塵低減等の観点から、非高分子水溶性化合物を添加してもよい。国際公開第2014/034667号の「非高分子水溶性化合物」に開示された化合物およびその使用量が、本発明に適用される。
 本発明においては、上述した添加剤以外の添加剤を、吸水性樹脂に種々の機能を付加させるため、添加することもできる。該添加剤として、具体的には、リン原子を有する化合物、酸化剤、有機還元剤、金属石鹸等の有機粉末、消臭剤、抗菌剤、パルプや熱可塑性繊維等が挙げられる。
 該添加剤の使用量(添加量)は、その用途に応じて適宜決定されるため、特に限定されないが、吸水性樹脂100重量部に対して、好ましくは3重量部以下、より好ましくは1重量部以下である。また、該添加剤は、上記工程とは別の工程で添加することもできる。
 (3-8)その他の工程
 本発明においては、上述した工程以外に、造粒工程、整粒工程、微粉除去工程、微粉の再利用工程等を必要に応じて設けることができる。また、輸送工程、貯蔵工程、梱包工程、保管工程等の1種または2種以上の工程を更に含んでもよい。なお、「整粒工程」は、表面架橋工程以降の微粉除去工程や吸水性樹脂が凝集し、所望の大きさを超えた場合に分級、粉砕を行う工程を含む。また、「微粉の再利用工程」は、本発明のように微粉をそのまま添加する形態の他、大きな含水ゲルにして、吸水性樹脂の製造工程の何れかの工程に添加する工程を含む。
 〔4〕粒子状吸水剤の用途
 本発明の粒子状吸水剤は、吸水を目的とした用途に用いられ、吸収体として広く使用される。また、当該吸収体を含む吸収物品として用いられる。特に、本発明の粒状吸水剤は、加圧下での逆戻りが低減されることから、吸収物品の中でも、人が使用する、尿や血液等の体液を吸収するための衛生物品として、好適に用いられる。
 すなわち、本発明の好適な一実施形態は、上記形態の粒子状吸水剤を含む吸収体である。
 また、本発明の他の好適な一実施形態は、上記形態の吸収体を含む衛生物品である。
 吸収体としては、粒子状吸水剤と繊維基材(例えば、親水性繊維)とを主成分して成型された吸収材が挙げられる。上記吸収体中の粒子状吸水剤と親水性繊維との合計重量に対する粒子状吸水剤の含有量(コア濃度)は、20~100重量%、より好ましくは25~90重量%、特に好ましくは30~80重量%、最も好ましくは40~80重量%がさらに好ましい。上記吸収体中のコア濃度が高いほど、吸収体や吸収物品等の製造時における粒子状吸水剤の吸水性能の影響をより受けるものとなる。このような吸収体は、例えば、親水性繊維等の繊維基材と粒子状吸水剤とをブレンド又はサンドイッチして成形される。用いられる繊維基材としては、例えば、粉砕された木材パルプ等の親水性繊維、コットンリンターや架橋セルロース繊維、レーヨン、綿、羊毛、アセテート、ビニロン等が挙げられる。これらの繊維基材は、好ましくはエアレイドしてなるものがよい。
 また、吸収体としては、2枚のシート(例えば、不織布)間に吸水性樹脂を固定化した(パルプレスの)吸水性シートであってもよい。
 また、上記吸収物品とは、上記吸収体、液透過性を有する表面シート及び液不透過性を有する背面シートを備えてなるものである。上記吸収性物品は、吸収体(吸収コア)を製造し、該吸収コアを、液透過性を有する表面シートと液不透過性を有する背面シートでサンドイッチする。その後、必要に応じて、弾性部材、拡散層、粘着テープ等を装備することにより、大人用紙オムツや生理用ナプキン等の吸収物品が得られる。なお、このとき、上記吸収コアは、例えば、密度0.06~0.50[g/cm]、坪量0.01~0.20[g/cm]の範囲に圧縮成形される。
 本発明を、以下の実施例および比較例を用いてさらに詳細に説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。また、下記実施例において、特記しない限り、操作は室温(20~25℃)/相対湿度45~55%RHの条件下で行われた。
 なお、実施例、比較例および参照例で使用する電気機器(粒子状吸水剤の物性測定も含む)は、特に注釈のない限り、200Vまたは100Vの電源を使用した。
 (a)吸湿ブロッキング率(B.R.;Blocking Ratio)の測定方法
 粒子状吸水剤または吸水性樹脂2gを、直径52mmのアルミカップに均一に散布した後、温度25℃、相対湿度90±5%RH下の恒温恒湿機(PLATINOUSLUCIFERPL-2G;タバイエスペック社製)中で1時間静置した。1時間経過後、上記アルミカップに入った粒子状吸水剤または吸水性樹脂を、目開き2000μm(JIS8.6メッシュ)のJIS標準篩(TheIIDATESTINGSIEVE:内径80mm)の上に静かに移し、ロータップ型ふるい振盪機(株式会社飯田製作所製ES-65型ふるい振盪機;回転数230rpm、衝撃数130rpm)を用いて、室温(20~25℃)、相対湿度50%RHの条件下で5秒間分級した。上記JIS標準篩上に残存した粒子状吸水剤または吸水性樹脂の重量(W1[g])および該JIS標準篩を通過した粒子状吸水剤または吸水性樹脂の重量(W2[g])を測定し、次式にしたがって、吸湿流動性(吸湿ブロッキング率)を算出した。なお、ブロッキング率の値が低いほど、吸湿流動性に優れている。
 吸湿流動性(B.R.)[重量%]={W1/(W1+W2)}×100。
 (b)粉塵量の測定方法
 国際公開第2006/098271号の[281]~[282]の記載に従い実施した。すなわち、下記の条件で所定時間にガラス繊維濾紙に吸引され捕捉されたダストの重量増をもって、粒子状吸水剤の粉塵量を測定した。測定装置としては独国Heubach Engineering GmbH製ホイバッハ・ダストメータ(Heubach DUSTMETER)、測定モードTypeIIで実施した。測定時の雰囲気の温度は23℃(±2℃)、相対湿度20~40%RH、常圧で行った。測定方法は以下のように行った。
 (1)回転ドラムに、測定サンプルの粒子状吸水剤100.00gを入れる。
 (2)保留粒子径0.5μm(JIS P3801)で、直径50mmのガラス繊維濾紙(例えばADVANTEC製、GLASS FIBER,GC-90ないしその相当品を直径50mmに加工)の重量を0.00001g単位まで測定する([Da]g)。
 (3)回転ドラムに大型粒子分離機を取付け、ガラス繊維濾紙を装着したフィルターケースを取り付ける。
 (4)ダストメータにおける制御部の測定条件を、下記のように設定し測定する。ドラム回転数:30rpm、吸引風量:4L/min、Time(測定時間):30分。
 (5)所定時間後、ガラス繊維濾紙の重量を、0.00001g単位まで測定する([Db])。
 前記Daと前記Dbを用いて、粉塵量は、下記式(8)に従い算出する。
 粉塵量[mg/kg]=([Db]-[Da])/100×1000000 式(8)。
 (c)表面張力の測定方法
 十分に洗浄された100mlのビーカーに20℃に調整された生理食塩水50mlを入れ、まず、生理食塩水の表面張力を、表面張力計(KRUSS社製のK11自動表面張力計)を用いて測定した。この測定において表面張力の値が71~75[mN/m]の範囲でなくてはならない。
 次に、20℃に調整した表面張力測定後の生理食塩水を含んだビーカーに、十分に洗浄された25mm長のフッ素樹脂製回転子、および粒子状吸水剤または吸水性樹脂0.5gを投入し、500rpmの条件で4分間攪拌した。4分後、攪拌を止め、含水した粒子状吸水剤または吸水性樹脂が沈降した後に、上澄み液の表面張力を再度同様の操作を行い測定した。なお、本発明では白金プレートを用いるプレート法を採用し、プレートは各測定前に十分脱イオン水にて洗浄し、かつガスバーナーで加熱洗浄して使用した。
 (d)着色評価(黄色度/YI値)
 粒子状吸水剤または吸水性樹脂の着色評価は、日本電色工業株式会社製の分光式色差計SZ-Σ80COLOR MEASURING SYSTEMを用いた。設定条件(反射測定/付属の粉末・ペースト試料台(内径30mm、高さ12mm/標準として粉末・ペースト用標準丸白板No.2/30Φ投光パイプ))で、粒子状吸水剤または吸水性樹脂を備え付けの試料台に5g充填し(備え付け試料台の6割程度の充填)、室温(20~25℃)、湿度50RH%の条件下で上記分光式色差計にて表面色(YI値(Yellow Index))を測定した。また、同じ装置の同じ測定法によって、同時に他の尺度の物体色(L,a,b)ないしWB(ハンターカラー)も測定できる。L/WBは大きいほど、a/bは小さいほど、低着色で実質白色に近づくことを示す。
 続いて、上記ペースト試料台に5gの粒子状吸水剤または吸水性樹脂を充填し、温度70±1℃、相対湿度65±1%RHの雰囲気に調整した恒温恒湿機(エスペック株式会社製、品名:小型環境試験器、形式SH-641)中に粒子状吸水剤または吸水性樹脂を充填したペースト試料台を14日間曝露した。曝露後、上記分光式色差計にて表面色(YI値(Yellow Index))を測定した。YI値は、好ましくは35以下、より好ましくは32以下、さらに好ましくは29以下、特に好ましくは26以下である。
 (e)ペイントシェーカーテスト
 直径6cm、高さ11cmのガラス製容器に、吸水性樹脂30gを入れ、ペイントシェーカー(No.488試験用分散機、株式会社東洋精機製作所製)に設置した。次いで、800(cycle/min)でペイントシェーカーを所定の時間振とうさせた後、停止させた。
 [製造例1]
 容量2リットルのポリプロピレン製容器に、アクリル酸351.7g、内部架橋剤としてポリエチレングリコールジアクリレート(分子量523)0.860g(カルボキシル基含有不飽和単量体に対して0.034モル%)、1.0重量%のジエチレントリアミン5酢酸・3ナトリウム(DTPA・3Na)水溶液2.15g、48.5重量%の水酸化ナトリウム水溶液149.0g、および脱イオン水(イオン交換水)336.2gを投入し混合させて、単量体水溶液(a’)を作製した。
 次に、上記単量体水溶液(a’)を攪拌しながら冷却した。液温が40.0℃となった時点で、40℃に調温した48.5重量%の水酸化ナトリウム水溶液144.8gを加え、混合することで単量体水溶液(a)を作製した。このとき、該単量体水溶液(a)の温度は、作製直後の2段目の中和熱によって78.2℃まで上昇した。48.5重量%の水酸化ナトリウム水溶液を混合し始めた直後は、析出物が観察されたが、次第に溶解し透明な均一溶液となった。
 次に、攪拌状態の上記単量体水溶液(a)に4.0重量%の過硫酸ナトリウム水溶液15.49gを加えた後、直ちにステンレス製バット型容器(底面340×340mm、高さ25mm、内面;テフロン(登録商標)コーティング)に大気開放系で注いだ。なお、2段目の中和開始からバット型容器に単量体水溶液(a)を注ぎ込むまでの時間は55秒間とし、該バット型容器はホットプレート(NEO HOTPLATE HI-1000/株式会社井内盛栄堂社)を用いて、表面温度が40℃となるまで加熱した。
 上記単量体水溶液(a)がバット型容器に注がれてから60秒経過後に重合反応が開始した。該重合反応は、水蒸気を発生しながら四方八方に膨脹発泡して進行した後、バット型容器よりも若干大きなサイズまで収縮した。重合反応の開始から3分経過後に、含水ゲル状架橋重合体(以下、「含水ゲル」と称する)(1)を取り出した。なお、これら一連の操作は、大気開放系で行った。
 上記重合反応で得られた含水ゲル(1)を短冊状に切断し、スクリュー押出機に供給してゲル粉砕を行い、粒子状含水ゲル(1)を得た。なお、スクリュー押出機には、先端部に直径100mm、孔径11.0mm、孔数40個、開孔率 62.5%、厚み10mmの多孔板が備えられ、スクリュー軸の外径は86mmであった。
 上記ゲル粉砕は、上記スクリュー押出機のスクリュー軸の回転数を130rpmとした状態で、上記短冊状の含水ゲル(1)と水蒸気とをそれぞれ別の供給口から同時に供給することで行われた。なお、該含水ゲル(1)の供給量は毎分4640g、水蒸気の供給量は毎分83gであった。
 この粒子状含水ゲル(1)を50メッシュの金網上に広げ、190℃で30分間熱風乾燥を行い、乾燥物をロールミル(WML型ロール粉砕機/有限会社井ノ口技研社)を用いて粉砕し、さらに目開き850μm、600μm、500μm、300μm、150μmを有するJIS標準篩で篩い分けた後調合することにより、重量平均粒子径(D50)305μm、粒度分布の対数標準偏差(σζ)0.35の不定形破砕状の前駆体吸水性樹脂(A)を得た。前駆体吸水性樹脂(A)の遠心分離機保持容量(CRC)は48.4(g/g)であった。
 [製造例2]
 容量2リットルのポリプロピレン製容器に、アクリル酸335.3g、内部架橋剤としてポリエチレングリコールジアクリレート(分子量523)0.720g(カルボキシル基含有不飽和単量体に対して0.030モル%)、1.0重量%のジエチレントリアミン5酢酸・3ナトリウム(DTPA・3Na)水溶液2.05g、48.5重量%の水酸化ナトリウム水溶液142.1g、および脱イオン水(イオン交換水)367.2gを投入し混合させて、単量体水溶液(b’)を作製した。
 次に、上記単量体水溶液(b’)を攪拌しながら冷却した。液温が42.0℃となった時点で、40℃に調温した48.5重量%の水酸化ナトリウム水溶液138.1gを加え、混合することで単量体水溶液(b)を作製した。このとき、該単量体水溶液(b)の温度は、作製直後の2段目の中和熱によって77.8℃まで上昇した。48.5重量%の水酸化ナトリウム水溶液を混合し始めた直後は、析出物が観察されたが、次第に溶解し透明な均一溶液となった。
 次に、攪拌状態の上記単量体水溶液(b)に4.0重量%の過硫酸ナトリウム水溶液14.77gを加えた後、直ちにステンレス製バット型容器(底面340×340mm、高さ25mm、内面;テフロン(登録商標)コーティング)に大気開放系で注いだ。なお、2段目の中和開始からバット型容器に単量体水溶液(b)を注ぎ込むまでの時間は55秒間とし、該バット型容器はホットプレート(NEO HOTPLATE HI-1000/株式会社井内盛栄堂社)を用いて、表面温度が40℃となるまで加熱した。
 上記単量体水溶液(b)がバット型容器に注がれてから60秒経過後に重合反応が開始した。該重合反応は、水蒸気を発生しながら四方八方に膨脹発泡して進行した後、バット型容器よりも若干大きなサイズまで収縮した。重合反応の開始から3分経過後に、含水ゲル状架橋重合体(以下、「含水ゲル」と称する)(2)を取り出した。なお、これら一連の操作は、大気開放系で行った。
 上記重合反応で得られた含水ゲル(2)を短冊状に切断し、スクリュー押出機に供給してゲル粉砕を行い、粒子状含水ゲル(2)を得た。なお、スクリュー押出機には、先端部に直径100mm、孔径9.5mm、孔数40個、開孔率62.5%、厚み10mmの多孔板が備えられ、スクリュー軸の外径は86mmであった。
 上記ゲル粉砕は、上記スクリュー押出機のスクリュー軸の回転数を130rpmとした状態で、上記短冊状の含水ゲル(2)と水蒸気とをそれぞれ別の供給口から同時に供給することで行われた。なお、該含水ゲル(2)の供給量は毎分4640g、水蒸気の供給量は毎分83gであった。
 この細分化された含水ゲル(2)を50メッシュの金網上に広げ、190℃で30分間熱風乾燥を行い、乾燥物をロールミル(WML型ロール粉砕機/有限会社井ノ口技研社)を用いて粉砕し、さらに目開き850μm、600μm、500μm、300μm、150μmを有するJIS標準篩で篩い分けた後調合することにより、重量平均粒子径(D50)298μm、粒度分布の対数標準偏差(σζ)0.35の不定形破砕状の前駆体吸水性樹脂(B)を得た。前駆体吸水性樹脂(B)の遠心分離機保持容量(CRC)は50.1(g/g)であった。
 (実施例1-1)
 前駆体吸水性樹脂(A)100重量部に対して、エチレングリコールジグリシジルエーテル0.025重量部、エチレンカーボネート0.3重量部、プロピレングリコール0.5重量部および脱イオン水2.0重量部からなる表面架橋剤溶液を均一に混合し、190℃で30分間程度、得られる吸水性樹脂(1)のCRCが約35[g/g]となるように加熱処理を行った。その後冷却を行い、吸水性樹脂100重量部に対して、脱イオン水1重量部、ジエチレントリアミン5酢酸・3ナトリウム(DTPA・3Na)0.01重量部からなる水溶液を均一に混合した。60℃で1時間乾燥した後、目開き850μmのJIS標準篩を通過させ、二酸化ケイ素(商品名:レオロシールQS-20、株式会社トクヤマ製)0.3重量部を混合した。混合は吸水性樹脂30gを容量225mLのマヨネーズ瓶に二酸化ケイ素と共に入れ、ターブラ・シェーカー・ミキサーT2F型(株式会社シンマルエンタープライゼス製)を用いて101rpmで30分間混合し、粒子状吸水剤(1)を得た。粒子状吸水剤(1)の吸収性能を表1に示す。また、粒子状吸水剤(1)のAAP4.83kPaは19.4[g/g]、GPRは81[g/min]、流下速度は10.1[g/s]であった。
 (実施例1-2)
 前駆体吸水性樹脂(A)100重量部に対して、エチレングリコールジグリシジルエーテル0.025重量部、1,3-プロパンジオール0.26重量部、プロピレングリコール0.5重量部および脱イオン水2.0重量部からなる表面架橋剤溶液を均一に混合し、190℃で30分間程度、得られる吸水性樹脂(2)のCRCが約35[g/g]となるように加熱処理を行った。その後冷却を行い、吸水性樹脂100重量部に対して、脱イオン水1重量部、エチレンジアミンテトラメチレンホスホン酸・5ナトリウム(EDTMP・5Na)0.01重量部からなる水溶液を均一に混合した。60℃で1時間乾燥した後、目開き850μmのJIS標準篩を通過させ、二酸化ケイ素(商品名:レオロシールQS-20、株式会社トクヤマ製)0.3重量部を混合した。混合は吸水性樹脂30gを容量225mLのマヨネーズ瓶に二酸化ケイ素と共に入れ、ターブラ・シェーカー・ミキサーT2F型(株式会社シンマルエンタープライゼス製)を用いて101rpmで60分間混合し、粒子状吸水剤(2)を得た。粒子状吸水剤(2)の吸収性能を表1に示す。
 (実施例1-3)
 製造例1において、目開き850μm、600μm、500μm、300μm、150μmを有するJIS標準篩で篩い分けた後、重量平均粒子径(D50)を343μm、粒度分布の対数標準偏差(σζ)を0.36に調合した前駆体吸水性樹脂(A)100重量部に対して、エチレングリコールジグリシジルエーテル0.025重量部、1,4-ブタンジオール0.31重量部、プロピレングリコール0.5重量部および脱イオン水2.0重量部からなる表面架橋剤溶液を均一に混合し、190℃で30分間程度、得られる吸水性樹脂(3)のCRCが約35[g/g]となるように加熱処理を行った。その後冷却を行い、吸水性樹脂100重量部に対して、脱イオン水1重量部、ジエチレントリアミン5酢酸・3ナトリウム(DTPA・3Na)0.03重量部およびポリオキシエチレン(20)ソルビタンモノステアレート(商品名:レオドールTW-S120V、花王株式会社製)0.01重量部からなる水溶液を均一に混合した。60℃で1時間乾燥した後、目開き850μmのJIS標準篩を通過させ、二酸化ケイ素(商品名:アエロジル200、日本アエロジル製)0.3重量部を混合した。混合は吸水性樹脂30gを容量225mLのマヨネーズ瓶に二酸化ケイ素と共に入れ、ターブラ・シェーカー・ミキサーT2F型(株式会社シンマルエンタープライゼス製)を用いて101rpmで60分間混合し、粒子状吸水剤(3)を得た。粒子状吸水剤(3)の吸収性能を表1に示す。
 (実施例1-4)
 前駆体吸水性樹脂(A)100重量部に対して、エチレングリコールジグリシジルエーテル0.03重量部、プロピレングリコール1.5重量部および脱イオン水3.5重量部からなる表面架橋剤溶液を均一に混合し、100℃で30分間程度、得られる吸水性樹脂(4)のCRCが約35[g/g]となるように加熱処理を行った。その後冷却を行い、吸水性樹脂100重量部に対して、脱イオン水1重量部、ジエチレントリアミン5酢酸・3ナトリウム(DTPA・3Na)0.05重量部からなる水溶液を均一に混合した。60℃で1時間乾燥した後、目開き850μmのJIS標準篩を通過させ、二酸化ケイ素(商品名:レオロシールQS-20、株式会社トクヤマ製)0.3重量部を混合した。混合は吸水性樹脂30gを容量225mLのマヨネーズ瓶に二酸化ケイ素と共に入れ、ターブラ・シェーカー・ミキサーT2F型(株式会社シンマルエンタープライゼス製)を用いて101rpmで60分間混合し、粒子状吸水剤(4)を得た。粒子状吸水剤(4)の吸収性能を表1に示す。
 (実施例1-5)
 前駆体吸水性樹脂(A)100重量部に対して、エチレングリコールジグリシジルエーテル0.025重量部、エチレンカーボネート0.3重量部、プロピレングリコール0.5重量部および脱イオン水2.0重量部からなる表面架橋剤溶液を均一に混合し、190℃で30分間程度、得られる吸水性樹脂(5)のCRCが約35[g/g]となるように加熱処理を行った。その後冷却を行い、吸水性樹脂100重量部に対して、脱イオン水1重量部、ジエチレントリアミン5酢酸・3ナトリウム(DTPA・3Na)0.01重量部からなる水溶液を均一に混合した。60℃で1時間乾燥した後、目開き850μmのJIS標準篩を通過させ、二酸化ケイ素(商品名:Sipernat 22S、EVONIK製)0.3重量部を混合した。混合は吸水性樹脂30gを容量225mLのマヨネーズ瓶に二酸化ケイ素と共に入れ、ターブラ・シェーカー・ミキサーT2F型(株式会社シンマルエンタープライゼス製)を用いて101rpmで45分間混合し、粒子状吸水剤(5)を得た。粒子状吸水剤(5)の吸収性能を表1に示す。
 (実施例1-6)
 前駆体吸水性樹脂(A)100重量部に対して、エチレングリコールジグリシジルエーテル0.04重量部、プロピレングリコール2.8重量部および脱イオン水4.2重量部からなる表面架橋剤溶液を均一に混合し、100℃で30分間程度、得られる吸水性樹脂(6)のCRCが約35[g/g]となるように加熱処理した。その後冷却を行い、上記ペイントシェーカーテスト(振とう時間:15分)を実施し、製造プロセス相当のダメージを付与した後に、吸水性樹脂100重量部に対して、脱イオン水1重量部、エチレンジアミンテトラメチレンホスホン酸・5ナトリウム(EDTMP・5Na)0.05重量部からなる水溶液を均一に混合した。60℃で1時間乾燥した後、目開き850μmのJIS標準篩を通過させ、二酸化ケイ素(商品名:Sipernat 22S、EVONIK製)0.3重量部を混合した。混合は吸水性樹脂30gを容量225mLのマヨネーズ瓶に二酸化ケイ素と共に入れ、ターブラ・シェーカー・ミキサーT2F型(株式会社シンマルエンタープライゼス製)を用いて101rpmで60分間混合し、粒子状吸水剤(6)を得た。粒子状吸水剤(6)の吸収性能を表1に示す。
 (実施例1-7)
 前駆体吸水性樹脂(A)100重量部に対して、エチレングリコールジグリシジルエーテル0.025重量部、エチレングリコール0.21重量部、プロピレングリコール0.5重量部および脱イオン水2.0重量部からなる表面架橋剤溶液を均一に混合し、190℃で30分間程度、得られる吸水性樹脂(7)のCRCが約35[g/g]となるように加熱処理を行った。その後冷却を行い、吸水性樹脂100重量部に対して、脱イオン水0.5重量部、ジエチレントリアミン5酢酸・3ナトリウム(DTPA・3Na)0.05重量部およびポリプロピレングリコール700(キシダ化学株式会社製)0.25重量部からなる水溶液を均一に混合した。60℃で1時間乾燥した後、目開き850μmのJIS標準篩を通過させ、二酸化ケイ素(商品名:OSC C132、Oriental Silica Corporation)0.3重量部を混合した。混合は吸水性樹脂30gを容量225mLのマヨネーズ瓶に二酸化ケイ素と共に入れ、ターブラ・シェーカー・ミキサーT2F型(株式会社シンマルエンタープライゼス製)を用いて101rpmで60分間混合し、粒子状吸水剤(7)を得た。粒子状吸水剤(7)のGPRは46[g/min]、粉塵量は70[mg/kg]であった。また、粒子状吸水剤(7)の吸収性能を表1に示す。
 (実施例1-8)
 前駆体吸水性樹脂(A)100重量部に対して、エチレングリコールジグリシジルエーテル0.025重量部、エチレンカーボネート0.3重量部、プロピレングリコール0.5重量部および脱イオン水2.0重量部からなる表面架橋剤溶液を均一に混合し、190℃で30分間程度、得られる吸水性樹脂(8)のCRCが約35[g/g]となるように加熱処理を行った。その後冷却を行い、吸水性樹脂100重量部に対して、脱イオン水1重量部、ジエチレントリアミン5酢酸・3ナトリウム(DTPA・3Na)0.01重量部、ポリオキシエチレン(20)ソルビタンモノステアレート(商品名:レオドールTW-S120V、花王株式会社製)0.01重量部およびポリエチレングリコール400(商品名:XG-40A、株式会社日本触媒製)0.2重量部からなる水溶液を均一に混合した。60℃で1時間乾燥した後、目開き850μmのJIS標準篩を通過させ、二酸化ケイ素(商品名:OSC C132、Oriental Silica Corporation)0.3重量部を混合した。混合は吸水性樹脂30gを容量225mLのマヨネーズ瓶に二酸化ケイ素と共に入れ、ターブラ・シェーカー・ミキサーT2F型(株式会社シンマルエンタープライゼス製)を用いて101rpmで60分間混合し、粒子状吸水剤(8)を得た。粒子状吸水剤(8)の吸収性能を表1に示す。
 (実施例1-9)
 製造例1において、目開き850μm、600μm、500μm、300μm、150μmを有するJIS標準篩で篩い分けた後、重量平均粒子径(D50)を379μm、粒度分布の対数標準偏差(σζ)を0.38に調合した前駆体吸水性樹脂(A)100重量部に対して、エチレングリコールジグリシジルエーテル0.03重量部、プロピレングリコール1.2重量部および脱イオン水2.8重量部からなる表面架橋剤溶液を均一に混合し、90℃で30分間程度、得られる吸水性樹脂(9)のCRCが約35[g/g]となるように加熱処理を行った。その後冷却を行い、吸水性樹脂100重量部に対して、脱イオン水1重量部、ジエチレントリアミン5酢酸・3ナトリウム(DTPA・3Na)0.01重量部からなる水溶液を均一に混合した。60℃で1時間乾燥した後、目開き850μmのJIS標準篩を通過させ、水酸化アルミニウム(富士フイルム和光純薬株式会社製)0.4重量部を混合した。混合は吸水性樹脂30gを容量225mLのマヨネーズ瓶に水酸化アルミニウムと共に入れ、ターブラ・シェーカー・ミキサーT2F型(株式会社シンマルエンタープライゼス製)を用いて101rpmで60分間混合し、粒子状吸水剤(9)を得た。粒子状吸水剤(9)のAAP4.83kPaは22.1[g/g]、表面張力は72.4mN/mであった。また、粒子状吸水剤(9)の吸収性能を表1に示す。
 (実施例1-10)
 前駆体吸水性樹脂(A)100重量部に対して、エチレングリコールジグリシジルエーテル0.04重量部、プロピレングリコール2.45重量部、脱イオン水3.55重量部および硫酸アルミニウム14~18水和物0.75重量部からなる表面架橋剤溶液を均一に混合し、100℃で30分間程度、得られる吸水性樹脂(10)のCRCが約35[g/g]となるように加熱処理を行った。その後冷却を行い、吸水性樹脂100重量部に対して、脱イオン水1重量部、ジエチレントリアミン5酢酸・3ナトリウム(DTPA・3Na)0.03重量部およびポリエチレングリコール600(商品名:PEG-600、三洋化成工業株式会社製)0.1重量部からなる水溶液を均一に混合した。60℃で1時間乾燥した後、目開き850μmのJIS標準篩を通過させた。さらに、吸水性樹脂30gを容量225mLのマヨネーズ瓶に入れ、ターブラ・シェーカー・ミキサーT2F型(株式会社シンマルエンタープライゼス製)を用いて101rpmで60分間混合し、粒子状吸水剤(10)を得た。粒子状吸水剤(10)のAAP4.83kPaは18.5[g/g]、吸湿ブロッキング率は0[%]、粉塵量は260[mg/kg]であった。また、粒子状吸水剤(10)の吸収性能を表1に示す。
 (実施例1-11)
 前駆体吸水性樹脂(B)100重量部に対して、エチレングリコールジグリシジルエーテル0.025重量部、1,3-プロパンジオール0.26重量部、プロピレングリコール0.5重量部および脱イオン水2.0重量部からなる表面架橋剤溶液を均一に混合し、190℃で30分間程度、得られる吸水性樹脂(11)のCRCが約35[g/g]となるように加熱処理を行った。その後冷却を行い、吸水性樹脂100重量部に対して、脱イオン水1重量部、ジエチレントリアミン5酢酸・3ナトリウム(DTPA・3Na)0.03重量部からなる水溶液を均一に混合した。60℃で1時間乾燥した後、目開き850μmのJIS標準篩を通過させ、二酸化ケイ素(商品名:レオロシールQS-20、株式会社トクヤマ製)0.3重量部を混合した。混合は吸水性樹脂30gを容量225mLのマヨネーズ瓶に二酸化ケイ素と共に入れ、ターブラ・シェーカー・ミキサーT2F型(株式会社シンマルエンタープライゼス製)を用いて101rpmで30分間混合し、粒子状吸水剤(11)を得た。粒子状吸水剤(11)の吸収性能を表1に示す。
 (実施例1-12)
 前駆体吸水性樹脂(B)100重量部に対して、エチレングリコールジグリシジルエーテル0.025重量部、エチレンカーボネート0.3重量部、プロピレングリコール0.5重量部および脱イオン水2.0重量部からなる表面架橋剤溶液を均一に混合し、190℃で30分間程度、得られる吸水性樹脂(12)のCRCが約35[g/g]となるように加熱処理を行った。その後冷却を行い、吸水性樹脂100重量部に対して、脱イオン水1重量部、エチレンジアミンテトラメチレンホスホン酸・5ナトリウム(EDTMP・5Na)0.1重量部、ポリオキシエチレン(20)ソルビタンモノステアレート(商品名:レオドールTW-S120V、花王株式会社製)0.01重量部およびポリエチレングリコール1000(商品名:PEG-1000、三洋化成工業株式会社製)0.2重量部からなる水溶液を均一に混合した。60℃で1時間乾燥した後、目開き850μmのJIS標準篩を通過させ、二酸化ケイ素(商品名:レオロシールQS-20、株式会社トクヤマ製)0.3重量部を混合した。混合は吸水性樹脂30gを容量225mLのマヨネーズ瓶に二酸化ケイ素と共に入れ、ターブラ・シェーカー・ミキサーT2F型(株式会社シンマルエンタープライゼス製)を用いて101rpmで60分間混合し、粒子状吸水剤(12)を得た。粒子状吸水剤(12)のGPRは71[g/min]、粉塵量は150[mg/kg]であった。また、粒子状吸水剤(12)の吸収性能を表1に示す。
 (実施例1-13)
 前駆体吸水性樹脂(B)100重量部に対して、エチレングリコールジグリシジルエーテル0.025重量部、1,4-ブタンジオール0.31重量部、プロピレングリコール0.5重量部および脱イオン水2.0重量部からなる表面架橋剤溶液を均一に混合し、190℃で30分間程度、得られる吸水性樹脂(13)のCRCが約35[g/g]となるように加熱処理を行った。その後冷却を行い、吸水性樹脂100重量部に対して、脱イオン水1重量部、ジエチレントリアミン5酢酸・3ナトリウム(DTPA・3Na)0.03重量部およびポリエチレングリコール400(商品名:XG-40A、株式会社日本触媒製)0.1重量部からなる水溶液を均一に混合した。60℃で1時間乾燥した後、目開き850μmのJIS標準篩を通過させ、二酸化ケイ素(商品名:アエロジル200、日本アエロジル株式会社)0.3重量部を混合した。混合は吸水性樹脂30gを容量225mLのマヨネーズ瓶に二酸化ケイ素と共に入れ、ターブラ・シェーカー・ミキサーT2F型(株式会社シンマルエンタープライゼス製)を用いて101rpmで60分間混合し、粒子状吸水剤(13)を得た。粒子状吸水剤(13)の吸収性能を表1に示す。
 (実施例1-14)
 前駆体吸水性樹脂(B)100重量部に対して、エチレングリコールジグリシジルエーテル0.03重量部、プロピレングリコール1.5重量部および脱イオン水3.5重量部からなる表面架橋剤溶液を均一に混合し、100℃で30分間程度、得られる吸水性樹脂(14)のCRCが約35[g/g]となるように加熱処理を行った。その後冷却を行い、吸水性樹脂100重量部に対して、脱イオン水1重量部、エチレンジアミンテトラメチレンホスホン酸・5ナトリウム(EDTMP・5Na)0.05重量部およびポリエチレングリコール1000(商品名:PEG-1000、三洋化成工業株式会社製)0.05重量部からなる水溶液を均一に混合した。60℃で1時間乾燥した後、目開き850μmのJIS標準篩を通過させ、二酸化ケイ素(商品名:レオロシールQS-20、株式会社トクヤマ製)0.3重量部を混合した。混合は吸水性樹脂30gを容量225mLのマヨネーズ瓶に二酸化ケイ素と共に入れ、ターブラ・シェーカー・ミキサーT2F型(株式会社シンマルエンタープライゼス製)を用いて101rpmで30分間混合し、粒子状吸水剤(14)を得た。粒子状吸水剤(14)の吸収性能を表1に示す。
 (実施例1-15)
 前駆体吸水性樹脂(B)100重量部に対して、エチレングリコールジグリシジルエーテル0.025重量部、エチレンカーボネート0.3重量部、プロピレングリコール0.5重量部および脱イオン水2.0重量部からなる表面架橋剤溶液を均一に混合し、190℃で30分間程度、得られる吸水性樹脂(15)のCRCが約35[g/g]となるように加熱処理を行った。その後冷却を行い、吸水性樹脂100重量部に対して、脱イオン水1重量部、ジエチレントリアミン5酢酸・3ナトリウム(DTPA・3Na)0.03重量部およびポリオキシエチレン(20)ソルビタンモノステアレート(商品名:レオドールTW-S120V、花王株式会社製)0.01重量部からなる水溶液を均一に混合した。60℃で1時間乾燥した後、目開き850μmのJIS標準篩を通過させ、二酸化ケイ素(商品名:Sipernat 22S、EVONIK製)0.3重量部を混合した。混合は吸水性樹脂30gを容量225mLのマヨネーズ瓶に二酸化ケイ素と共に入れ、ターブラ・シェーカー・ミキサーT2F型(株式会社シンマルエンタープライゼス製)を用いて60分間混合し、粒子状吸水剤(15)を得た。粒子状吸水剤(15)の吸収性能を表1に示す。
 (実施例1-16)
 前駆体吸水性樹脂(B)100重量部に対して、エチレングリコールジグリシジルエーテル0.04重量部、プロピレングリコール2.8重量部および脱イオン水4.2重量部からなる表面架橋剤溶液を均一に混合し、100℃で30分間程度、得られる吸水性樹脂(16)のCRCが約35[g/g]となるように加熱処理を行った。その後冷却を行い、吸水性樹脂100重量部に対して、脱イオン水1重量部、エチレンジアミンテトラメチレンホスホン酸・5ナトリウム(EDTMP・5Na)0.01重量部からなる水溶液を均一に混合した。60℃で1時間乾燥した後、目開き850μmのJIS標準篩を通過させ、二酸化ケイ素(商品名:Sipernat 22S、EVONIK製)0.3重量部を混合した。混合は吸水性樹脂30gを容量225mLのマヨネーズ瓶に二酸化ケイ素と共に入れ、ターブラ・シェーカー・ミキサーT2F型(株式会社シンマルエンタープライゼス製)を用いて101rpmで60分間混合し、粒子状吸水剤(16)を得た。粒子状吸水剤(16)の吸収性能を表1に示す。
 (実施例1-17)
 前駆体吸水性樹脂(B)100重量部に対して、エチレングリコールジグリシジルエーテル0.025重量部、エチレングリコール0.21重量部、プロピレングリコール0.5重量部および脱イオン水2.0重量部からなる表面架橋剤溶液を均一に混合し、190℃で30分間程度、得られる吸水性樹脂(17)のCRCが約35[g/g]となるように加熱処理を行った。その後冷却を行い、吸水性樹脂100重量部に対して、脱イオン水1重量部、ジエチレントリアミン5酢酸・3ナトリウム(DTPA・3Na)0.05重量部からなる水溶液を均一に混合した。60℃で1時間乾燥した後、目開き850μmのJIS標準篩を通過させ、二酸化ケイ素(商品名:OSC C132、Oriental Silica Corporation)0.3重量部を混合した。混合は吸水性樹脂30gを容量225mLのマヨネーズ瓶に二酸化ケイ素と共に入れ、ターブラ・シェーカー・ミキサーT2F型(株式会社シンマルエンタープライゼス製)を用いて60分間混合し、粒子状吸水剤(17)を得た。粒子状吸水剤(17)の吸収性能を表1に示す。
 (実施例1-18)
 前駆体吸水性樹脂(B)100重量部に対して、エチレングリコールジグリシジルエーテル0.025重量部、エチレンカーボネート0.3重量部、プロピレングリコール0.5重量部および脱イオン水2.0重量部からなる表面架橋剤溶液を均一に混合し、190℃で30分間程度、得られる吸水性樹脂(18)のCRCが約35[g/g]となるように加熱処理を行った。その後冷却を行い、吸水性樹脂100重量部に対して、脱イオン水1重量部、ジエチレントリアミン5酢酸・3ナトリウム(DTPA・3Na)0.01重量部、ポリオキシエチレン(20)ソルビタンモノステアレート(商品名:レオドールTW-S120V、花王株式会社製)0.001重量部およびポリエチレングリコール600(商品名:PEG-600、三洋化成工業株式会社製)0.2重量部からなる水溶液を均一に混合した。60℃で1時間乾燥した後、目開き850μmのJIS標準篩を通過させ、二酸化ケイ素(商品名:OSC C132、Oriental Silica Corporation)0.3重量部を混合した。混合は吸水性樹脂30gを容量225mLのマヨネーズ瓶に二酸化ケイ素と共に入れ、ターブラ・シェーカー・ミキサーT2F型(株式会社シンマルエンタープライゼス製)を用いて101rpmで60分間混合し、粒子状吸水剤(18)を得た。粒子状吸水剤(18)の吸収性能を表1に示す。
 (実施例1-19)
 前駆体吸水性樹脂(A)100重量部に対して、エチレングリコールジグリシジルエーテル0.04重量部、プロピレングリコール4.0重量部、脱イオン水5.8重量部および硫酸アルミニウム14~18水和物(富士フイルム和光純薬株式会社製)0.75重量部からなる表面架橋剤溶液を均一に混合し、100℃で30分間程度、得られる吸水性樹脂(19)のCRCが約35[g/g]となるように加熱処理を行った。その後冷却を行い、吸水性樹脂100重量部に対して、脱イオン水1重量部、エチレンジアミンテトラメチレンホスホン酸・5ナトリウム(EDTMP・5Na)0.05重量部およびポリプロピレングリコール700(キシダ化学株式会社製)0.05重量部からなる水溶液を均一に混合した。60℃で1時間乾燥した後、目開き850μmのJIS標準篩を通過させた。さらに、吸水性樹脂30gを容量225mLのマヨネーズ瓶に入れ、ターブラ・シェーカー・ミキサーT2F型(株式会社シンマルエンタープライゼス製)を用いて101rpmで60分間混合し、粒子状吸水剤(19)を得た。粒子状吸水剤(19)のAAP4.83kPaは19.5[g/g]、GPRは114[g/min]、吸湿ブロッキング率は0[%]であった。また、粒子状吸水剤(19)の吸収性能を表1に示す。
 (実施例1-20)
 製造例1において、目開き850μm、600μm、500μm、300μm、150μmを有するJIS標準篩で篩い分けた後、重量平均粒子径(D50)を379μm、粒度分布の対数標準偏差(σζ)を0.38に調合した前駆体吸水性樹脂(A)100重量部に対して、エチレングリコールジグリシジルエーテル0.03重量部、プロピレングリコール1.2重量部および脱イオン水2.8重量部からなる表面架橋剤溶液を均一に混合し、90℃で30分間程度、得られる吸水性樹脂(20)のCRCが約35[g/g]となるように加熱処理を行った。その後冷却を行い、吸水性樹脂100重量部に対して、脱イオン水1.5重量部、ジエチレントリアミン5酢酸・3ナトリウム(DTPA・3Na)0.01重量部、硫酸アルミニウム14~18水和物(富士フイルム和光純薬株式会社製)0.75重量部およびプロピレングリコール0.75重量部からなる水溶液を均一に混合した。60℃で1時間乾燥した後、目開き850μmのJIS標準篩を通過させた。さらに、吸水性樹脂30gを容量225mLのマヨネーズ瓶に入れ、ターブラ・シェーカー・ミキサーT2F型(株式会社シンマルエンタープライゼス製)を用いて60分間混合し、粒子状吸水剤(20)を得た。粒子状吸水剤(20)のAAP4.83kPaは22.9[g/g]であった。また、粒子状吸水剤(20)の吸収性能を表1に示す。
 (実施例1-21)
 前駆体吸水性樹脂(A)50重量部を、脱イオン水で満たした99Lポリバケツに加え、10分間静置し、ゲルの沈降を確認した後、ポリバケツに目開き150μmのメッシュシートを被せ、ポリバケツに固定した。メッシュシート上にホースを固定し、脱イオン水を、ホースを通じてポリバケツ内に3時間通水させた。通水後、ポリバケツ内の液を目開き150μmのJIS標準篩を用いて液切りし、得られたゲルを50メッシュの金網上に広げ、60℃で24時間風乾後、含水率が7%となるまで、60℃で減圧乾燥を行った。
 乾燥物をロールミル(WML型ロール粉砕機/有限会社井ノ口技研社)を用いて粉砕し、さらに目開き850μm、600μm、500μm、300μm、150μmを有するJIS標準篩で篩い分けた後調合することにより、重量平均粒子径(D50)314μm、粒度分布の対数標準偏差(σζ)0.35の不定形破砕状の前駆体吸水性樹脂(C)を得た。前駆体吸水性樹脂(C)の遠心分離機保持容量(CRC)は49.8(g/g)であった。
 前駆体吸水性樹脂(C)100重量部に対して、エチレングリコールジグリシジルエーテル0.025重量部、エチレンカーボネート0.3重量部、プロピレングリコール0.5重量部および脱イオン水2.0重量部からなる表面架橋剤溶液を均一に混合し、190℃で30分間程度、得られる吸水性樹脂(21)のCRCが約35[g/g]となるように加熱処理して、粒子状吸水剤(21)を得た。粒子状吸水剤(21)の吸収性能を表1に示す。
 (比較例1-1)
 ターブラ・シェーカー・ミキサーによる二酸化ケイ素の混合時間を2分間とした以外、実施例1-1と同様の方法により、比較粒子状吸水剤(1)を得た。比較粒子状吸水剤(1)のAAP4.83kPaは18.0[g/g]、GPRは112[g/min]、流下速度は10.1[g/s]であった。また、比較粒子状吸水剤(1)の吸収性能を表1に示す。
 (比較例1-2)
 ターブラ・シェーカー・ミキサーによる二酸化ケイ素の混合時間を2分間とした以外、実施例1-2と同様の方法により、比較粒子状吸水剤(2)を得た。比較粒子状吸水剤(2)の吸収性能を表1に示す。
 (比較例1-3)
 ターブラ・シェーカー・ミキサーによる二酸化ケイ素の混合時間を2分間とした以外、実施例1-4と同様の方法により、比較粒子状吸水剤(3)を得た。比較粒子状吸水剤(3)の吸収性能を表1に示す。
 (比較例1-4)
 ターブラ・シェーカー・ミキサーによる二酸化ケイ素の混合時間を2分間とした以外、実施例1-5と同様の方法により、比較粒子状吸水剤(4)を得た。比較粒子状吸水剤(4)の吸収性能を表1に示す。
 (比較例1-5)
 水酸化アルミニウム0.4重量部を二酸化ケイ素(商品名:OSC C132、Oriental Silica Corporation)0.3重量部とし、ターブラ・シェーカー・ミキサーによる混合時間を2分間とした以外、実施例1-9と同様の方法により、比較粒子状吸水剤(5)を得た。比較粒子状吸水剤(5)の吸収性能を表1に示す。また、比較粒子状吸水剤(5)の表面張力は72.3mN/mであった。
 (比較例1-6)
 ターブラ・シェーカー・ミキサーによる二酸化ケイ素の混合時間を2分間とした以外、実施例1-11と同様の方法により、比較粒子状吸水剤(6)を得た。比較粒子状吸水剤(6)の吸収性能を表1に示す。
 (比較例1-7)
 ターブラ・シェーカー・ミキサーによる二酸化ケイ素の混合時間を2分間とした以外、実施例1-12と同様の方法により、比較粒子状吸水剤(7)を得た。比較粒子状吸水剤(7)の吸収性能を表1に示す。また、比較粒子状吸水剤(7)のGPRは78[g/min]、粉塵量は160[mg/kg]であった。
 (比較例1-8)
 ターブラ・シェーカー・ミキサーによる二酸化ケイ素の混合時間を2分間とした以外、実施例1-13と同様の方法により、比較粒子状吸水剤(8)を得た。比較粒子状吸水剤(8)の吸収性能を表1に示す。
 (比較例1-9)
 ターブラ・シェーカー・ミキサーによる二酸化ケイ素の混合時間を2分間とした以外、実施例1-15と同様の方法により、比較粒子状吸水剤(9)を得た。比較粒子状吸水剤(9)の吸収性能を表1に示す。
 (比較例1-10)
 ターブラ・シェーカー・ミキサーによる二酸化ケイ素の混合時間を2分間とした以外、実施例1-16と同様の方法により、比較粒子状吸水剤(10)を得た。比較粒子状吸水剤(10)の吸収性能を表1に示す。
 (比較例1-11)
 ターブラ・シェーカー・ミキサーによる二酸化ケイ素の混合時間を2分間とした以外、実施例1-17と同様の方法により、比較粒子状吸水剤(11)を得た。比較粒子状吸水剤(11)の吸収性能を表1に示す。
 (比較例1-12)
 ターブラ・シェーカー・ミキサーによる二酸化ケイ素の混合時間を2分間とした以外、実施例1-18と同様の方法により、比較粒子状吸水剤(12)を得た。比較粒子状吸水剤(12)の吸収性能を表1に示す。
 (比較例1-13)
 製造例1において、内部架橋剤であるポリエチレングリコールジアクリレートをカルボキシル基含有不飽和単量体に対して0.019モル%となるよう単量体水溶液を調整し、製造例1と同様の方法により前駆体吸水性樹脂(D)を得た。前駆体吸水性樹脂(D)の遠心分離機保持容量(CRC)は52.7(g/g)であった。
 実施例1-4において、前駆体吸水性樹脂(D)を用い、表面架橋剤溶液のエチレングリコールを0.25重量部に変更、吸水性樹脂に添加する脱イオン水の量を10重量部に変更、ジエチレントリアミン5酢酸・3ナトリウム(DTPA・3Na)を0.01重量に変更、二酸化ケイ素をハイドロタルサイト(商品名:DHT-6、協和化学工業株式会社製)に変更及び、ハイドロタルサイトの混合量を0.4重量部にし、ターブラ・シェーカー・ミキサーによる混合時間を2分間とした以外は、実施例1-4と同様の方法により比較粒子状吸水剤(13)を得た。比較粒子状吸水剤(13)の吸収性能を表1に示す。
 (比較例1-14)
 比較例1-13において、吸水性樹脂に添加する脱イオン水の量を15重量部に変更、ハイドロタルサイトの種類を変更(商品名:HT-1-NC、堺化学工業株式会社製)、及び、ハイドロタルサイトの混合量を0.2重量部にした以外は、比較例1-13の方法により比較粒子状吸水剤(14)を得た。比較粒子状吸水剤(14)の吸収性能を表1に示す。
 [吸収体の吸収量の評価]
 以下記載の方法により、吸収体AおよびBを作製し、吸収体の吸収量を評価した。
 モデル吸収体A作製方法
 80mm×160mmの脱脂綿(例えば川本産業株式会社製カット綿8cm×16cmなどが使用できる)を面方向に均一に裂き、1.6gの脱脂綿シートを2枚作製した。次いで、吸水紙を200mm×200mmとなるよう切り出し、吸水紙の中央付近に8cm×16cmの枠を配置した。枠内に1.6gに調整した脱脂綿シートを敷き、アクリル板等で脱脂綿上面を均し、上面から粒子状吸水剤3.2gを均一に散布し、さらに1.6gの脱脂綿シートを載せ、サンド構造とした。こうして作製した吸収体全体に10kgの荷重をかけた状態で1分間保持し、吸収体を成型した。この後、荷重および枠を取り外し、吸収体の長手方向に沿って吸水紙の両端を吸収体を包むように折り返した。これをヒートロンペーパーを用いて作成した不織布バッグ(10cm×22cm)に入れ、周囲をヒートシールし、モデル吸収体Aとした。
 モデル吸収体B作製方法
 100mm×180mmのビニールテープ(例えば日東電工株式会社製ビニールテープ21-100TMなどが使用できる)を粘着面を上にして切り出し、その中央に80mm×160mmの枠を設置し、枠内に粒子状吸水剤3.2gを均一に散布した。枠を取り外し、別途100mm×180mmサイズに切り出したスパンボンド不織布を載せ、ビニールテープと貼り合わせた。これをヒートロンペーパーを用いて作製した不織布バッグ(10cm×22cm)に入れ、周囲をヒートシールし、モデル吸収体Bとした。
 吸収量測定方法
 深型バットに0.9重量%塩化ナトリウム水溶液を液深が5cm以上となるように入れ、バット中の液温度が37℃となるように調温する。このバット中にモデル吸収体を浸漬し、荷重をかけない状態で60分間膨潤させた。浸漬の際、モデル吸収体Bはビニールテープ面が上面となるように浸漬させ、以降の操作は全てビニールテープ面を上面にして行った。膨潤後、バットからモデル吸収体を取り出し、直径45cm、目開き2000μmのJIS標準篩に載せ、モデル吸収体の粒子状吸水剤が存在する8cm×16cmの面積に対して2690gの錘を載せ(21g/cm)、1分間液切りを行った。液切り後のモデル吸収体の重量を計測し、予め計測した浸漬前のモデル吸収体重量との差を吸収量とした。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 上記実施例、比較例について、CRC[g/g](横軸)に対して、AAP(2.06kPa)+RCAP(2.06kPa)(縦軸)をプロットした図が図2である。直線は、AAP(2.06kPa)+RCAP(2.06kPa)=0.58×CRC+55.6を表す。
 表1の吸収体の評価結果からわかるように、式(1)を満たす粒子状吸水剤である実施例の粒子状吸水剤は、比較例と比較して、吸収体に使用した場合に、粒子状吸水剤が液を吸収して膨潤した状態であっても加圧下の液保持量(吸収量)が1g以上多かった。この液保持量の差は当該分野においては、顕著な差である。この結果から、実施例の粒子状吸水剤は、粒子状吸水剤が膨潤状態のときに粒子状吸水剤に外部から圧力が負荷されても、液戻りを有意に低減することができることがわかる。
 [製造例3]
 容量2リットルのポリプロピレン製容器に、アクリル酸351.7g、内部架橋剤としてポリエチレングリコールジアクリレート(分子量523)0.910g(カルボキシル基含有不飽和単量体に対して0.036モル%)、1.0重量%のジエチレントリアミン5酢酸・3ナトリウム(DTPA・3Na)水溶液2.15g、48.5重量%の水酸化ナトリウム水溶液149.0g、50.0重量%のリンゴ酸水溶液(DL-リンゴ酸、50.0%水溶液、扶桑化学工業株式会社製、食品添加物グレード)1.41g(リンゴ酸はカルボキシル基含有不飽和単量体に対して0.108モル%)、および脱イオン水(イオン交換水)336.2gを投入し混合させて、単量体水溶液(e’)を作製した。
 次に、上記単量体水溶液(e’)を攪拌しながら冷却した。液温が40.0℃となった時点で、40℃に調温した48.5重量%の水酸化ナトリウム水溶液144.8gを加え、混合することで単量体水溶液(e)を作製した。このとき、該単量体水溶液(e)の温度は、作製直後の2段目の中和熱によって77.9℃まで上昇した。48.5重量%の水酸化ナトリウム水溶液を混合し始めた直後は、析出物が観察されたが、次第に溶解し透明な均一溶液となった。
 次に、攪拌状態の上記単量体水溶液(e)に4.0重量%の過硫酸ナトリウム水溶液15.49gを加えた後、直ちにステンレス製バット型容器(底面340×340mm、高さ25mm、内面;テフロン(登録商標)コーティング)に大気開放系で注いだ。なお、2段目の中和開始からバット型容器に単量体水溶液(e)を注ぎ込むまでの時間は55秒間とし、該バット型容器はホットプレート(NEO HOTPLATE HI-1000/株式会社井内盛栄堂社)を用いて、表面温度が40℃となるまで加熱した。
 上記単量体水溶液(e)がバット型容器に注がれてから60秒経過後に重合反応が開始した。該重合反応は、水蒸気を発生しながら四方八方に膨脹発泡して進行した後、バット型容器よりも若干大きなサイズまで収縮した。重合反応の開始から3分経過後に、含水ゲル状架橋重合体(以下、「含水ゲル」と称する)(3)を取り出した。なお、これら一連の操作は、大気開放系で行った。
 上記重合反応で得られた含水ゲル(3)を短冊状に切断し、スクリュー押出機に供給してゲル粉砕を行い、粒子状含水ゲル(3)を得た。なお、スクリュー押出機には、先端部に直径100mm、孔径11.0mm、孔数40個、開孔率 62.5%、厚み10mmの多孔板が備えられ、スクリュー軸の外径は86mmであった。
 上記ゲル粉砕は、上記スクリュー押出機のスクリュー軸の回転数を130rpmとした状態で、上記短冊状の含水ゲル(3)と水蒸気とをそれぞれ別の供給口から同時に供給することで行われた。なお、該含水ゲル(3)の供給量は毎分4640g、水蒸気の供給量は毎分83gであった。
 この粒子状含水ゲル(3)を50メッシュの金網上に広げ、190℃で30分間熱風乾燥を行い、乾燥物をロールミル(WML型ロール粉砕機/有限会社井ノ口技研社)を用いて粉砕し、さらに目開き850μm、600μm、500μm、300μm、150μmを有するJIS篩で篩い分けた後調合することにより、重量平均粒子径(D50)303μm、粒度分布の対数標準偏差(σζ)0.36の不定形破砕状の前駆体吸水性樹脂(E)を得た。前駆体吸水性樹脂(E)の遠心分離機保持容量(CRC)は50.2(g/g)であった。
 [製造例4]
 容量2リットルのポリプロピレン製容器に、アクリル酸335.3g、内部架橋剤としてポリエチレングリコールジアクリレート(分子量523)1.344g(カルボキシル基含有不飽和単量体に対して0.056モル%)、1.0重量%のジエチレントリアミン5酢酸・3ナトリウム(DTPA・3Na)水溶液2.05g、48.5重量%の水酸化ナトリウム水溶液142.1g、50.0重量%のリンゴ酸水溶液(DL-リンゴ酸、50.0%水溶液、扶桑化学工業株式会社製、食品添加物グレード)6.706g(リンゴ酸はカルボキシル基含有不飽和単量体に対して0.537モル%)、および脱イオン水(イオン交換水)367.2gを投入し混合させて、単量体水溶液(f’)を作製した。
 次に、上記単量体水溶液(f’)を攪拌しながら冷却した。液温が42.0℃となった時点で、40℃に調温した48.5重量%の水酸化ナトリウム水溶液138.1gを加え、混合することで単量体水溶液(f)を作製した。このとき、該単量体水溶液(f)の温度は、作製直後の2段目の中和熱によって78.1℃まで上昇した。48.5重量%の水酸化ナトリウム水溶液を混合し始めた直後は、析出物が観察されたが、次第に溶解し透明な均一溶液となった。
 次に、攪拌状態の上記単量体水溶液(f)に4.0重量%の過硫酸ナトリウム水溶液14.77gを加えた後、直ちにステンレス製バット型容器(底面340×340mm、高さ25mm、内面;テフロン(登録商標)コーティング)に大気開放系で注いだ。なお、2段目の中和開始からバット型容器に単量体水溶液(f)を注ぎ込むまでの時間は55秒間とし、該バット型容器はホットプレート(NEO HOTPLATE HI-1000/株式会社井内盛栄堂社)を用いて、表面温度が40℃となるまで加熱した。
 上記単量体水溶液(f)がバット型容器に注がれてから60秒経過後に重合反応が開始した。該重合反応は、水蒸気を発生しながら四方八方に膨脹発泡して進行した後、バット型容器よりも若干大きなサイズまで収縮した。重合反応の開始から3分経過後に、含水ゲル状架橋重合体(以下、「含水ゲル」と称する)(4)を取り出した。なお、これら一連の操作は、大気開放系で行った。
 上記重合反応で得られた含水ゲル(4)を短冊状に切断し、スクリュー押出機に供給してゲル粉砕を行い、粒子状含水ゲル(4)を得た。なお、スクリュー押出機には、先端部に直径100mm、孔径9.5mm、孔数40個、開孔率62.5%、厚み10mmの多孔板が備えられ、スクリュー軸の外径は86mmであった。
 上記ゲル粉砕は、上記スクリュー押出機のスクリュー軸の回転数を130rpmとした状態で、上記短冊状の含水ゲル(4)と水蒸気とをそれぞれ別の供給口から同時に供給することで行われた。なお、該含水ゲル(4)の供給量は毎分4640g、水蒸気の供給量は毎分83gであった。
 この細分化された含水ゲル(4)を50メッシュの金網上に広げ、190℃で30分間熱風乾燥を行い、乾燥物をロールミル(WML型ロール粉砕機/有限会社井ノ口技研社)を用いて粉砕し、さらに目開き850μm、600μm、500μm、300μm、150μmを有するJIS篩で篩い分けた後調合することにより、重量平均粒子径(D50)303μm、粒度分布の対数標準偏差(σζ)0.35の不定形破砕状の前駆体吸水性樹脂(F)を得た。前駆体吸水性樹脂(F)の遠心分離機保持容量(CRC)は49.6(g/g)であった。
 (実施例2-1)
 前駆体吸水性樹脂(E)100重量部に対して、エチレングリコールジグリシジルエーテル0.025重量部、エチレンカーボネート0.3重量部、プロピレングリコール0.5重量部および脱イオン水2.0重量部からなる表面架橋剤溶液を均一に混合し、190℃で30分間程度、得られる吸水性樹脂(22)のCRCが約35[g/g]となるように加熱処理を行った。その後冷却を行い、吸水性樹脂100重量部に対して、脱イオン水1重量部、エチレンジアミンテトラメチレンホスホン酸・5ナトリウム(EDTMP・5Na)0.05重量部および亜硫酸ナトリウム0.15重量部からなる水溶液を均一に混合した。60℃で1時間乾燥した後、目開き850μmのJIS標準篩を通過させ、二酸化ケイ素(商品名:レオロシールQS-20、株式会社トクヤマ製)0.3重量部を混合した。混合は吸水性樹脂30gを容量225mLのマヨネーズ瓶に二酸化ケイ素と共に入れ、ターブラ・シェーカー・ミキサーT2F型(株式会社シンマルエンタープライゼス製)を用いて101rpmで30分間混合し、粒子状吸水剤(22)を得た。粒子状吸水剤(22)のGPRは84[g/min]、表面張力は72.3mN/m、着色評価後のYI値は24であった。粒子状吸水剤(22)の吸収性能を表2に示す。
 (実施例2-2)
 前駆体吸水性樹脂(E)100重量部に対して、エチレングリコールジグリシジルエーテル0.025重量部、エチレングリコール0.21重量部、プロピレングリコール0.5重量部および脱イオン水2.0重量部からなる表面架橋剤溶液を均一に混合し、190℃で30分間程度、得られる吸水性樹脂(23)のCRCが約35[g/g]となるように加熱処理を行った。その後冷却を行い、吸水性樹脂100重量部に対して、脱イオン水1重量部、ジエチレントリアミン5酢酸・3ナトリウム(DTPA・3Na)0.03重量部からなる水溶液を均一に混合した。60℃で1時間乾燥した後、目開き850μmのJIS標準篩を通過させ、二酸化ケイ素(商品名:OSC C132、Oriental Silica Corporation)0.3重量部を混合した。混合は吸水性樹脂30gを容量225mLのマヨネーズ瓶に二酸化ケイ素と共に入れ、ターブラ・シェーカー・ミキサーT2F型(株式会社シンマルエンタープライゼス製)を用いて101rpmで60分間混合し、粒子状吸水剤(23)を得た。粒子状吸水剤(23)の吸収性能を表2に示す。
 (実施例2-3)
 前駆体吸水性樹脂(E)100重量部に対して、エチレングリコールジグリシジルエーテル0.025重量部、プロピレングリコール1.2重量部および脱イオン水2.8重量部からなる表面架橋剤溶液を均一に混合し、100℃で30分間程度、得られる吸水性樹脂(24)のCRCが約35[g/g]となるように加熱処理した。その後冷却を行い、上記ペイントシェーカーテスト(振とう時間:10分)を実施し、製造プロセス相当のダメージを付与した後に、吸水性樹脂100重量部に対して、脱イオン水1重量部、ジエチレントリアミン5酢酸・3ナトリウム(DTPA・3Na)0.01重量部およびポリエチレングリコール600(商品名:PEG-600、三洋化成工業株式会社製)0.2重量部からなる水溶液を均一に混合した。60℃で1時間乾燥した後、目開き850μmのJIS標準篩を通過させ、二酸化ケイ素(商品名:Sipernat 22S、EVONIK製)0.3重量部を混合した。混合は吸水性樹脂30gを容量225mLのマヨネーズ瓶に二酸化ケイ素と共に入れ、ターブラ・シェーカー・ミキサーT2F型(株式会社シンマルエンタープライゼス製)を用いて101rpmで60分間混合し、粒子状吸水剤(24)を得た。粒子状吸水剤(24)の吸収性能を表2に示す。
 (実施例2-4)
 前駆体吸水性樹脂(E)100重量部に対して、エチレングリコールジグリシジルエーテル0.04重量部、プロピレングリコール3.5重量部、脱イオン水5.0重量部および硫酸アルミニウム14~18水和物0.75重量部からなる表面架橋剤溶液を均一に混合し、100℃で30分間程度、得られる吸水性樹脂(25)のCRCが約35[g/g]となるように加熱処理を行った。その後冷却を行い、吸水性樹脂100重量部に対して、脱イオン水1重量部、ジエチレントリアミン5酢酸・3ナトリウム(DTPA・3Na)0.01重量部およびポリプロピレングリコール700(キシダ化学株式会社製)0.05重量部からなる水溶液を均一に混合した。60℃で1時間乾燥した後、目開き850μmのJIS標準篩を通過させた。さらに、吸水性樹脂30gを容量225mLのマヨネーズ瓶に入れ、ターブラ・シェーカー・ミキサーT2F型(株式会社シンマルエンタープライゼス製)を用いて101rpmで60分間混合し、粒子状吸水剤(25)を得た。粒子状吸水剤(25)のAAP4.83kPaは19.1[g/g]、GPRは79[g/min]、吸湿ブロッキング率は0[%]であった。粒子状吸水剤(25)の吸収性能を表2に示す。
 (実施例2-5)
前駆体吸水性樹脂(F)100重量部に対して、エチレングリコールジグリシジルエーテル0.025重量部、エチレンカーボネート0.3重量部、プロピレングリコール0.5重量部および脱イオン水2.0重量部からなる表面架橋剤溶液を均一に混合し、190℃で30分間程度、得られる吸水性樹脂(26)のCRCが約35[g/g]となるように加熱処理を行った。その後冷却を行い、吸水性樹脂100重量部に対して、脱イオン水1重量部、エチレンジアミンテトラメチレンホスホン酸・5ナトリウム(EDTMP・5Na)0.1重量部、ポリオキシエチレン(20)ソルビタンモノステアレート(商品名:レオドールTW-S120V、花王株式会社製)0.01重量部およびポリエチレングリコール1000(商品名:PEG-1000、三洋化成工業株式会社製)0.2重量部からなる水溶液を均一に混合した。60℃で1時間乾燥した後、目開き850μmのJIS標準篩を通過させ、二酸化ケイ素(商品名:OSC C132、Oriental Silica Corporation)0.3重量部を混合した。混合は吸水性樹脂30gを容量225mLのマヨネーズ瓶に二酸化ケイ素と共に入れ、ターブラ・シェーカー・ミキサーT2F型(株式会社シンマルエンタープライゼス製)を用いて101rpmで60分間混合し、粒子状吸水剤(26)を得た。粒子状吸水剤(26)の吸収性能を表2に示す。
 (実施例2-6)
 前駆体吸水性樹脂(F)100重量部に対して、エチレングリコールジグリシジルエーテル0.04重量部、プロピレングリコール2.8重量部および脱イオン水4.2重量部からなる表面架橋剤溶液を均一に混合し、100℃で30分間程度、得られる吸水性樹脂(27)のCRCが約35[g/g]となるように加熱処理を行った。その後冷却を行い、吸水性樹脂100重量部に対して、脱イオン水1重量部、ジエチレントリアミン5酢酸・3ナトリウム(DTPA・3Na)0.03重量部およびポリオキシエチレン(20)ソルビタンモノステアレート(商品名:レオドールTW-S120V、花王株式会社製)0.01重量部からなる水溶液を均一に混合した。60℃で1時間乾燥した後、目開き850μmのJIS標準篩を通過させ、二酸化ケイ素(商品名:Sipernat 22S、EVONIK製)0.3重量部を混合した。混合は吸水性樹脂30gを容量225mLのマヨネーズ瓶に二酸化ケイ素と共に入れ、ターブラ・シェーカー・ミキサーT2F型(株式会社シンマルエンタープライゼス製)を用いて101rpmで45分間混合し、粒子状吸水剤(27)を得た。粒子状吸水剤(27)の流下速度は9.4[g/s]、着色評価後のYI値は23であった。粒子状吸水剤(27)の吸収性能を表2に示す。
 (実施例2-7)
 前駆体吸水性樹脂(F)100重量部に対して、エチレングリコールジグリシジルエーテル0.03重量部、プロピレングリコール1.5重量部および脱イオン水3.5重量部からなる表面架橋剤溶液を均一に混合し、100℃で30分間程度、得られる吸水性樹脂(28)のCRCが約35[g/g]となるように加熱処理を行った。その後冷却を行い、吸水性樹脂100重量部に対して、脱イオン水1重量部、エチレンジアミンテトラメチレンホスホン酸・5ナトリウム(EDTMP・5Na)0.01重量部および亜硫酸水素ナトリウム0.1重量部からなる水溶液を均一に混合した。60℃で1時間乾燥した後、目開き850μmのJIS標準篩を通過させ、水酸化アルミニウム(富士フイルム和光純薬株式会社製)0.4重量部を混合した。混合は吸水性樹脂30gを容量225mLのマヨネーズ瓶に水酸化アルミニウムと共に入れ、ターブラ・シェーカー・ミキサーT2F型(株式会社シンマルエンタープライゼス製)を用いて101rpmで60分間混合し、粒子状吸水剤(28)を得た。粒子状吸水剤(28)の吸収性能を表2に示す。
 (実施例2-8)
 前駆体吸水性樹脂(F)100重量部に対して、エチレングリコールジグリシジルエーテル0.04重量部、プロピレングリコール2.8重量部、脱イオン水4.2重量部および硫酸アルミニウム14~18水和物(富士フイルム和光純薬株式会社製)0.75重量部からなる表面架橋剤溶液を均一に混合し、100℃で30分間程度、得られる吸水性樹脂(29)のCRCが約35[g/g]となるように加熱処理を行った。その後冷却を行い、吸水性樹脂100重量部に対して、脱イオン水1重量部、ジエチレントリアミン5酢酸・3ナトリウム(DTPA・3Na)0.05重量部、ポリエチレングリコール400(商品名:XG-40A、株式会社日本触媒製)0.3重量部および亜硫酸ナトリウム0.03重量部からなる水溶液を均一に混合した。60℃で1時間乾燥した後、目開き850μmのJIS標準篩を通過させた。さらに、吸水性樹脂30gを容量225mLのマヨネーズ瓶に入れ、ターブラ・シェーカー・ミキサーT2F型(株式会社シンマルエンタープライゼス製)を用いて101rpmで60分間混合し、粒子状吸水剤(29)を得た。粒子状吸水剤(29)の粉塵量は50[mg/kg]、着色評価後のYI値は25であった。粒子状吸水剤(29)の吸収性能を表2に示す。
 (実施例2-9)
 ターブラ・シェーカー・ミキサーによる二酸化ケイ素の混合時間を15分間とした以外、実施例2-1と同様の方法により、粒子状吸水剤(30)を得た。粒子状吸水剤(30)の吸水性能を表2に示す。
 (比較例2-1)
 ターブラ・シェーカー・ミキサーによる二酸化ケイ素の混合時間を2分間とした以外、実施例2-1と同様の方法により、比較粒子状吸水剤(15)を得た。比較粒子状吸水剤(15)のGPRは100[g/min]、表面張力は72.2mN/m、着色評価後のYI値は24であった。比較粒子状吸水剤(15)の吸収性能を表2に示す。
 (比較例2-2)
 ターブラ・シェーカー・ミキサーによる二酸化ケイ素の混合時間を2分間とした以外、実施例2-3と同様の方法により、比較粒子状吸水剤(16)を得た。比較粒子状吸水剤(16)の吸収性能を表2に示す。
 (比較例2-3)
 ターブラ・シェーカー・ミキサーによる二酸化ケイ素の混合時間を2分間とした以外、実施例2-5と同様の方法により、比較粒子状吸水剤(17)を得た。比較粒子状吸水剤(17)の吸収性能を表2に示す。
 (比較例2-4)
 ターブラ・シェーカー・ミキサーによる二酸化ケイ素の混合時間を2分間とした以外、実施例2-6と同様の方法により、比較粒子状吸水剤(18)を得た。比較粒子状吸水剤(18)の流下速度は9.2[g/s]、着色評価後のYI値は23であった。また、比較粒子状吸水剤(18)の吸収性能を表2に示す。
 (比較例2-5)
 大王製紙株式会社製のおむつ「GOO.Nパンツまっさらさら通気男の子用Lサイズ」(2020年購入)の吸収体からパルプをできるだけ取り除いて採取した粒子状吸水剤(不定形破砕状)25.5gを、チャック付のポリエチレン袋(チャック内側のサイズ:70mm×50mm、厚さ0.04mm、容量35mL)に充填した。このポリエチレン袋を目開き850mm、内径200mmのJIS標準篩の上に載せた。その標準篩をふるい振とう機AS200(株式会社Retsch製)に固定し、振とう幅0.3mmで30分間振とうした。この時、粒子状吸水剤が受ける加速度の計算値は最大で2.2Gである。振とう後の粒子状吸水剤を比較粒子状吸水剤(19)とした。比較粒子状吸水剤(19)の吸水性能を表3に示す。
 (比較例2-6)
 振とう時間を300分に変更したこと以外は比較例2-5と同一の操作を行うことにより、比較粒子状吸水剤(20)を得た。比較粒子状吸水剤(20)の吸水性能を表3に示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表2の吸収体の評価結果からわかるように、式(1)を満たす粒子状吸水剤である実施例の粒子状吸水剤は、比較例と比較して、吸収体に使用した場合に、粒子状吸水剤が液を吸収して膨潤した状態であっても加圧下の液保持量(吸収量)が2g以上多かった。この液保持量の差は当該分野においては、顕著な差である。この結果から、実施例の粒子状吸水剤は、粒子状吸水剤が膨潤状態のときに粒子状吸水剤に外部から圧力が負荷されても、液戻りを有意に低減することができることがわかる。
 なお、いずれの実施例においても、ゲル透過速度(Gel Permeation Rate:GPR)は20g/min以上であり、吸湿ブロッキング率は40重量%以下であり、流下速度(Flow Rate)が8.5g/s以上であり、粉塵量が400mg/kg以下であり、表面張力が65mN/m以上であり、吸水性樹脂粉末が不定形破砕状であった。
 本出願は、2020年3月31日に出願された、日本特許出願 特願2020-064626号に基づいており、その開示内容は、その全体が参照により本明細書に組みこまれる。
400 装置、
410 容器、
411 セル、
412 ピストン、
413a、
413b 金網、
414 膨潤ゲル(粒子状吸水剤を吸水させたもの)、
415 孔、
420 タンク、
421 ガラス管、
422 コックガラス管付きL字管、
423 液体、
431 ステンレス製の金網、
432 捕集容器、
433 上皿天秤。

Claims (16)

  1.  表面架橋されてなるポリアクリル酸(塩)系吸水性樹脂を主成分とする粒子状吸水剤であって、
     下記式(1)を満たす、粒子状吸水剤。
     AAP(2.06kPa)+RCAP(2.06kPa)≧0.58×CRC+55.6 (1)
    (式(1)において、AAP(2.06kPa)は、2.06kPa加圧下での吸水倍率(g/g)を、RCAP(2.06kPa)は、膨潤後加圧下吸水倍率(g/g)を、CRCは、無加圧下吸水倍率(g/g)を示す)
  2.  下記式(A)を満たす、請求項1に記載の粒子状吸水剤。
     AAP(2.06kPa)+RCAP(2.06kPa)>76.0 (A)
  3.  下記式(2)を満たす、請求項1または2に記載の粒子状吸水剤。
     AAP(2.06kPa)+RCAP(2.06kPa)≧0.58×CRC+56.0 (2)
  4.  下記式(3)を満たす、請求項1~3のいずれか1項に記載の粒子状吸水剤。
     AAP(2.06kPa)+RCAP(2.06kPa)≧0.58×CRC+56.5 (3)
  5.  前記CRCが30g/g以上である、請求項1~4のいずれか1項に記載の粒子状吸水剤。
  6.  AAP(4.83kPa)(4.83kPa加圧下での膨潤倍率(g/g))が10g/g以上である、請求項1~5のいずれか1項に記載の粒子状吸水剤。
  7.  AAP(2.06kPa)(2.06kPa加圧下での膨潤倍率(g/g))が20g/g以上である、請求項1~6のいずれか1項に記載の粒子状吸水剤。
  8.  ゲル透過速度(Gel Permeation Rate:GPR)が20g/min以上である、請求項1~7のいずれか1項に記載の粒子状吸水剤。
  9.  吸湿ブロッキング率が40重量%以下である、請求項1~8のいずれか1項に記載の粒子状吸水剤。
  10.  流下速度(Flow Rate)が8.5g/s以上である、請求項1~9のいずれか1項に記載の粒子状吸水剤。
  11.  粉塵量が400mg/kg以下である、請求項1~10のいずれか1項に記載の粒子状吸水剤。
  12.  表面張力が65mN/m以上である、請求項1~11のいずれか1項に記載の粒子状吸水剤。
  13.  前記吸水性樹脂が不定形破砕状である、請求項1~12のいずれか1項に記載の粒子状吸水剤。
  14.  水不溶性無機粒子および水溶性多価金属カチオン含有化合物からなる群から選択される少なくとも1種をさらに含む、請求項1~13のいずれか1項に記載の粒子状吸水剤。
  15.  請求項1~14のいずれか1項に記載の粒子状吸水剤を含む吸収体。
  16.  請求項15に記載の吸収体を含む衛生物品。
PCT/JP2021/014046 2020-03-31 2021-03-31 粒子状吸水剤 WO2021201177A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022512669A JP7382493B2 (ja) 2020-03-31 2021-03-31 粒子状吸水剤
US17/912,565 US20230144119A1 (en) 2020-03-31 2021-03-31 Particulate water-absorbing agent
CN202180026001.1A CN115348897A (zh) 2020-03-31 2021-03-31 颗粒状吸水剂
EP21780477.2A EP4130053A4 (en) 2020-03-31 2021-03-31 PARTICULATE WATER-ABSORBING AGENT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020064626 2020-03-31
JP2020-064626 2020-03-31

Publications (1)

Publication Number Publication Date
WO2021201177A1 true WO2021201177A1 (ja) 2021-10-07

Family

ID=77929229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/014046 WO2021201177A1 (ja) 2020-03-31 2021-03-31 粒子状吸水剤

Country Status (5)

Country Link
US (1) US20230144119A1 (ja)
EP (1) EP4130053A4 (ja)
JP (1) JP7382493B2 (ja)
CN (1) CN115348897A (ja)
WO (1) WO2021201177A1 (ja)

Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4893999A (en) 1985-12-18 1990-01-16 Chemische Fabrik Stockhausen Gmbh Apparatus for the continuous production of polymers and copolymers of water-soluble monomers
JPH0788171A (ja) * 1993-06-18 1995-04-04 Sanyo Chem Ind Ltd 紙おむつ用吸収剤組成物
WO1997003114A1 (fr) 1995-07-07 1997-01-30 Nippon Shokubai Co., Ltd. Poudre absorbant l'eau et son procede de fabrication
WO1997017397A1 (de) 1995-11-03 1997-05-15 Basf Aktiengesellschaft Wasserabsorbierende, schaumförmige, vernetzte hydrogel-polymere
US5849405A (en) 1994-08-31 1998-12-15 The Procter & Gamble Company Absorbent materials having improved absorbent property and methods for making the same
US6107358A (en) 1996-08-23 2000-08-22 Nippon Shokubai Co., Ltd. Water-absorbent resin and method for production thereof
US6241928B1 (en) 1998-04-28 2001-06-05 Nippon Shokubai Co., Ltd. Method for production of shaped hydrogel of absorbent resin
US6710141B1 (en) 1999-11-20 2004-03-23 Basf Aktiengesellschaft Method for continuously producing cross-linked fine-particle geleous polymerizates
US20050215734A1 (en) 2004-03-24 2005-09-29 Yorimichi Dairoku Method for continuous production of water-absorbent resin
US6987151B2 (en) 2001-09-12 2006-01-17 Dow Global Technologies Inc. Continuous polymerization process for the manufacture of superabsorbent polymers
WO2006098271A1 (ja) 2005-03-14 2006-09-21 Nippon Shokubai Co., Ltd. 吸水剤およびその製造方法
WO2006100300A1 (de) 2005-03-24 2006-09-28 Basf Aktiengesellschaft Verfahren zur herstellung wasserabsorbierender polymere
US7183456B2 (en) 2000-09-20 2007-02-27 Nippon Shokubai Co., Ltd. Water-absorbent resin and production process therefor
US7265190B2 (en) 2002-11-07 2007-09-04 Nippon Shokubai Co., Ltd. Process and apparatus for production of water-absorbent resin
US20080161512A1 (en) 2005-04-07 2008-07-03 Takaaki Kawano Production Process of Polyacrylic Acid (Salt) Water-Absorbent Resin
US20080194863A1 (en) 2005-09-07 2008-08-14 Basf Se Neutralization Process
WO2009123197A1 (ja) 2008-03-31 2009-10-08 株式会社日本触媒 吸水性樹脂を主成分とする粒子状吸水剤の製造方法及びその製造装置
US7638570B2 (en) 2003-02-10 2009-12-29 Nippon Shokubai Co., Ltd. Water-absorbing agent
WO2011025013A1 (ja) 2009-08-28 2011-03-03 株式会社日本触媒 吸水性樹脂の製造方法
WO2011040530A1 (ja) 2009-09-30 2011-04-07 株式会社日本触媒 粒子状吸水剤及びその製造方法
WO2011111657A1 (ja) 2010-03-08 2011-09-15 株式会社日本触媒 粒子状含水ゲル状架橋重合体の乾燥方法
WO2011126079A1 (ja) 2010-04-07 2011-10-13 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂粉末の製造方法及びポリアクリル酸(塩)系吸水性樹脂粉末
US8269060B2 (en) 2003-07-31 2012-09-18 Evonik Stockhausen, Llc Absorbent materials and absorbent articles incorporating such absorbent materials
WO2014034667A1 (ja) 2012-08-27 2014-03-06 株式会社日本触媒 粒子状吸水剤及びその製造方法
JP2015213911A (ja) 2009-09-29 2015-12-03 株式会社日本触媒 粒子状吸水剤及びその製造方法
WO2016204302A1 (ja) * 2015-06-19 2016-12-22 株式会社日本触媒 ポリ(メタ)アクリル酸(塩)系粒子状吸水剤及び製造方法
JP2017509757A (ja) * 2013-12-13 2017-04-06 エルジー・ケム・リミテッド 高吸水性樹脂組成物
WO2017057709A1 (ja) * 2015-10-02 2017-04-06 Sdpグローバル株式会社 吸水性樹脂組成物及びその製造方法
WO2017170605A1 (ja) * 2016-03-28 2017-10-05 株式会社日本触媒 粒子状吸水剤
JP2020064626A (ja) 2018-10-18 2020-04-23 富士通株式会社 生体エンティティの特性を推測するコンピュータにより実施される方法及び機器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6774946B2 (ja) * 2015-07-01 2020-10-28 株式会社日本触媒 粒子状吸水剤
EP3711722A4 (en) * 2017-11-16 2021-09-01 Nippon Shokubai Co., Ltd. ABSORBENTS AND ABSORBENT ARTICLES

Patent Citations (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4893999A (en) 1985-12-18 1990-01-16 Chemische Fabrik Stockhausen Gmbh Apparatus for the continuous production of polymers and copolymers of water-soluble monomers
JPH0788171A (ja) * 1993-06-18 1995-04-04 Sanyo Chem Ind Ltd 紙おむつ用吸収剤組成物
US5849405A (en) 1994-08-31 1998-12-15 The Procter & Gamble Company Absorbent materials having improved absorbent property and methods for making the same
WO1997003114A1 (fr) 1995-07-07 1997-01-30 Nippon Shokubai Co., Ltd. Poudre absorbant l'eau et son procede de fabrication
WO1997017397A1 (de) 1995-11-03 1997-05-15 Basf Aktiengesellschaft Wasserabsorbierende, schaumförmige, vernetzte hydrogel-polymere
US6107358A (en) 1996-08-23 2000-08-22 Nippon Shokubai Co., Ltd. Water-absorbent resin and method for production thereof
US6241928B1 (en) 1998-04-28 2001-06-05 Nippon Shokubai Co., Ltd. Method for production of shaped hydrogel of absorbent resin
US6710141B1 (en) 1999-11-20 2004-03-23 Basf Aktiengesellschaft Method for continuously producing cross-linked fine-particle geleous polymerizates
US7183456B2 (en) 2000-09-20 2007-02-27 Nippon Shokubai Co., Ltd. Water-absorbent resin and production process therefor
US6987151B2 (en) 2001-09-12 2006-01-17 Dow Global Technologies Inc. Continuous polymerization process for the manufacture of superabsorbent polymers
US7265190B2 (en) 2002-11-07 2007-09-04 Nippon Shokubai Co., Ltd. Process and apparatus for production of water-absorbent resin
US7638570B2 (en) 2003-02-10 2009-12-29 Nippon Shokubai Co., Ltd. Water-absorbing agent
US8269060B2 (en) 2003-07-31 2012-09-18 Evonik Stockhausen, Llc Absorbent materials and absorbent articles incorporating such absorbent materials
US20050215734A1 (en) 2004-03-24 2005-09-29 Yorimichi Dairoku Method for continuous production of water-absorbent resin
WO2006098271A1 (ja) 2005-03-14 2006-09-21 Nippon Shokubai Co., Ltd. 吸水剤およびその製造方法
WO2006100300A1 (de) 2005-03-24 2006-09-28 Basf Aktiengesellschaft Verfahren zur herstellung wasserabsorbierender polymere
US20080161512A1 (en) 2005-04-07 2008-07-03 Takaaki Kawano Production Process of Polyacrylic Acid (Salt) Water-Absorbent Resin
US20080194863A1 (en) 2005-09-07 2008-08-14 Basf Se Neutralization Process
WO2009123197A1 (ja) 2008-03-31 2009-10-08 株式会社日本触媒 吸水性樹脂を主成分とする粒子状吸水剤の製造方法及びその製造装置
WO2011025013A1 (ja) 2009-08-28 2011-03-03 株式会社日本触媒 吸水性樹脂の製造方法
WO2011025012A1 (ja) 2009-08-28 2011-03-03 株式会社日本触媒 吸水性樹脂の製造方法
JP2015213911A (ja) 2009-09-29 2015-12-03 株式会社日本触媒 粒子状吸水剤及びその製造方法
WO2011040530A1 (ja) 2009-09-30 2011-04-07 株式会社日本触媒 粒子状吸水剤及びその製造方法
WO2011111657A1 (ja) 2010-03-08 2011-09-15 株式会社日本触媒 粒子状含水ゲル状架橋重合体の乾燥方法
WO2011126079A1 (ja) 2010-04-07 2011-10-13 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂粉末の製造方法及びポリアクリル酸(塩)系吸水性樹脂粉末
WO2014034667A1 (ja) 2012-08-27 2014-03-06 株式会社日本触媒 粒子状吸水剤及びその製造方法
JP2017509757A (ja) * 2013-12-13 2017-04-06 エルジー・ケム・リミテッド 高吸水性樹脂組成物
WO2016204302A1 (ja) * 2015-06-19 2016-12-22 株式会社日本触媒 ポリ(メタ)アクリル酸(塩)系粒子状吸水剤及び製造方法
WO2017057709A1 (ja) * 2015-10-02 2017-04-06 Sdpグローバル株式会社 吸水性樹脂組成物及びその製造方法
WO2017170605A1 (ja) * 2016-03-28 2017-10-05 株式会社日本触媒 粒子状吸水剤
JP2020064626A (ja) 2018-10-18 2020-04-23 富士通株式会社 生体エンティティの特性を推測するコンピュータにより実施される方法及び機器

Also Published As

Publication number Publication date
US20230144119A1 (en) 2023-05-11
EP4130053A4 (en) 2023-09-27
CN115348897A (zh) 2022-11-15
JPWO2021201177A1 (ja) 2021-10-07
EP4130053A1 (en) 2023-02-08
JP7382493B2 (ja) 2023-11-16

Similar Documents

Publication Publication Date Title
JP6460495B2 (ja) ポリ(メタ)アクリル酸(塩)系粒子状吸水剤及び製造方法
JP4683405B2 (ja) 吸水性樹脂組成物とその製造方法
JP5301159B2 (ja) 吸水剤及びこれを用いた吸水体、並びに吸水剤の製造方法
JP5847260B2 (ja) 吸水性樹脂の製造方法
JP5047616B2 (ja) 吸水剤およびその製造方法
JP5914677B2 (ja) ポリアクリル酸(塩)系吸水剤の製造方法及びその吸水剤
JP6557721B2 (ja) 粒子状吸水剤
WO2016158975A1 (ja) ポリアクリル酸(塩)系吸水性樹脂粉末及びその製造方法、並びにその評価方法
WO2013002387A1 (ja) ポリアクリル酸(塩)系吸水性樹脂粉末及びその製造方法
WO2015093594A1 (ja) ポリアクリル酸(塩)系吸水剤及びその製造方法
EP1512417A1 (en) Particulate water-absorbent resin composition
WO2014041969A1 (ja) ポリアクリル酸(塩)系吸水剤の製造方法及びその吸水剤
JP2009209373A (ja) 吸水剤およびその製造方法、並びに、衛生材料
JP6286533B2 (ja) 粒子状吸水剤及びその製造方法
JPWO2017170501A1 (ja) 吸水剤およびその製造方法、並びに吸水剤を用いた吸収性物品
JP7299958B2 (ja) 粒子状吸水剤
KR20150050565A (ko) 입자상 흡수제 및 그의 제조 방법
JP4749679B2 (ja) 吸水性樹脂およびその製造方法
JP7273067B2 (ja) 吸水性樹脂を主成分とする吸水剤及びその製造方法
WO2021201177A1 (ja) 粒子状吸水剤
JP4500134B2 (ja) 粒子状吸水性樹脂組成物
JPH10101735A (ja) 吸水剤およびその製造方法
KR20210041070A (ko) 흡수성 수지 분말의 제조 방법 및 흡수성 수지 분말
WO2007141875A1 (ja) 吸水性樹脂組成物の製造方法および吸水性樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21780477

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022512669

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021780477

Country of ref document: EP

Effective date: 20221031