WO2009153196A1 - Verfahren zur kontinuierlichen herstellung wasserabsorbierender polymerpartikel - Google Patents

Verfahren zur kontinuierlichen herstellung wasserabsorbierender polymerpartikel Download PDF

Info

Publication number
WO2009153196A1
WO2009153196A1 PCT/EP2009/057143 EP2009057143W WO2009153196A1 WO 2009153196 A1 WO2009153196 A1 WO 2009153196A1 EP 2009057143 W EP2009057143 W EP 2009057143W WO 2009153196 A1 WO2009153196 A1 WO 2009153196A1
Authority
WO
WIPO (PCT)
Prior art keywords
undersize
water
polymerization
polymer gel
polymer particles
Prior art date
Application number
PCT/EP2009/057143
Other languages
English (en)
French (fr)
Inventor
Rüdiger Funk
Matthias Weismantel
Leigh R. Blair
Kevin D. Heitzhaus
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Priority to EP09765776A priority Critical patent/EP2291416A1/de
Priority to JP2011513993A priority patent/JP2011524452A/ja
Priority to CN2009801232323A priority patent/CN102066431B/zh
Publication of WO2009153196A1 publication Critical patent/WO2009153196A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/008Treatment of solid polymer wetted by water or organic solvents, e.g. coagulum, filter cakes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/24Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/14Water soluble or water swellable polymers, e.g. aqueous gels

Definitions

  • the present invention relates to a process for the continuous production of water-absorbing polymer particles, comprising polymerization, drying, milling, classification and at least partial recycling of the undersize resulting from the classification, wherein the polymer gel obtained by the polymerization is removed from the polymerization reactor and mixed with the recirculated undersize.
  • Water-absorbent polymers are used in the manufacture of diapers, tampons, sanitary napkins and other sanitary articles, but also as water-retaining agents in agricultural horticulture.
  • the properties of the water-absorbing polymers can be adjusted via the degree of crosslinking. As the degree of cross-linking increases, the gel strength increases and the centrifuge retention capacity (CRC) decreases.
  • CRC centrifuge retention capacity
  • water-absorbing polymer particles are generally surface-postcrosslinked.
  • the degree of crosslinking of the particle surface increases, whereby the absorption under a pressure of 49.2 g / cm 2 and the centrifuge retention capacity (CRC) can be at least partially decoupled.
  • This surface postcrosslinking can be carried out in aqueous gel phase.
  • dried, ground and sieved polymer particles (base polymer) are coated on the surface with a surface postcrosslinker, thermally surface-postcrosslinked and dried.
  • Crosslinkers suitable for this purpose are compounds which contain at least two groups which can form covalent bonds with the carboxylate groups of the water-absorbing polymers.
  • the water-absorbing polymers are used as pulverulent, granular product, preferably in the hygiene sector.
  • particle sizes between 150 and 850 microns are used and the particulate polymer material is already classified in the manufacturing process to these particle sizes.
  • continuous lending screening machines are used with at least two sieves, with sieves are used with the mesh sizes of 150 and 850 microns. Particles with a grain size of up to 150 ⁇ m fall through both screens and are collected at the bottom of the screening machine as undersize. Particles with a particle size of larger 850 microns remain as oversize grain on the top sieve and are discharged, ground again and recycled.
  • the product fraction with a particle size of greater than 150 to 850 microns is taken as a medium grain between the two sieves of the screening machine.
  • the undersize and oversize grain resulting from the classification process is usually returned to the production process.
  • the recirculation of the undersize is described, for example, in EP 0 463 388 A1, EP 0 496 594 A2, EP 0 785 224 A2, EP 1 878 761 A1 and US Pat. No. 5,064,582.
  • EP 0 463 388 A1 describes that pumpable polymer gels having a high solids content can be obtained by adding a small amount of undersize.
  • EP 0 496 594 A2 teaches the recirculation of the undersize into the polymerization reactor.
  • EP 0 785 224 A2 describes the recirculation of the undersize into the polymer gel formed during the polymerization, surfactants being added.
  • EP 1 878 761 A1 discloses a process for recycling an undersize coated with water-soluble polyvalent metal salts.
  • the undersize can be mixed for example by means of a kneader in the polymer gel.
  • US 5,064,582 discloses a process for recirculating undersize wherein the undersize is mixed with water prior to recycle.
  • the object of the present invention was to provide an improved process for recycling the undersize resulting from the production of water-absorbing polymer particles.
  • the object was achieved by a process for the continuous production of water-absorbing polymer particles by polymerization of a monomer solution or suspension containing
  • a thick or viscous mass can be forced under high pressure through at least one shaping orifice.
  • a very high mixing energy can be entered.
  • an undersized grain is a grain size fraction obtained during the classification which has a smaller mean grain size than the grain size fraction of the target product.
  • a sieve with a mesh size of up to 300 ⁇ m is usually used.
  • the mesh size of the screen is preferably at least 100 ⁇ m, particularly preferably at least 150 ⁇ m, very particularly preferably at least 200 ⁇ m.
  • the water content of the polymer gel removed from the polymerization reactor is preferably from 40 to 75% by weight, particularly preferably from 50 to 70% by weight, very particularly preferably from 55 to 65% by weight.
  • the water content of the recirculated undersize is preferably less than 8% by weight, more preferably less than 6% by weight, most preferably less than 5% by weight.
  • the low water content of the recirculated undersize has the consequence that the undersize is metered as a free-flowing powder in the mixing device.
  • the surface tension of the aqueous extract of the water-absorbing polymer particles is preferably at least 0.063 N / m, more preferably at least 0.066 N / m, most preferably at least 0.068 N / m.
  • the water content of the mixture obtained by mixing the polymer gel taken from the polymerization reactor with the recirculated undersize is preferably from 40 to 68% by weight, more preferably from 50 to 65% by weight, most preferably from 55 to 62% by weight.
  • the polymer gel taken from the polymerization reactor is preferably mixed with the recirculated undersize from 1 to 180 minutes, more preferably from 2 to 60 minutes, most preferably from 5 to 20 minutes.
  • the withdrawn from the polymerization reactor polymer gel is mixed at a temperature of preferably 40 to 80 0 C, particularly preferably from 45 up to 75 ° C, very particularly preferably from 50 to 70 0 C, with the recycled undersize.
  • the ratio of polymer gel to recirculated undersize is preferably from 5 to 50, particularly preferably from 10 to 40, very particularly from 12 to 30.
  • the polymerization reactors which can be used for the process according to the invention are subject to no restriction.
  • the inventive method is particularly advantageous in a static polymerization, for example, in the polymerization on a continuously circulating belt.
  • the process according to the invention preferably comprises at least one surface postcrosslinking.
  • both before and after the surface postcrosslinking are classified.
  • the present invention is based on the finding that the addition of undersize from the ongoing process leads to a significant drop in centrifuge retention capacity. This undesirable effect can be largely suppressed if the undersize is added only after the polymerization reactor.
  • the present invention is further based on the finding that the mixing result can be significantly improved if the water content during mixing in the extruder is kept low. Only thereby is it possible a sufficiently large Entering mixing energy and break up intermediately occurring Unterkornagglomerate.
  • the prior art known from the prior art pasting the undersize with water or the addition of surfactants is no longer necessary.
  • the water-absorbing polymer particles are prepared by polymerization of a monomer solution or suspension and are usually water-insoluble.
  • the monomers a) are preferably water-soluble, i. the solubility in water at 23 ° C. is typically at least 1 g / 100 g of water, preferably at least 5 g / 100 g of water, more preferably at least 25 g / 100 g of water, most preferably at least 35 g / 100 g of water.
  • Suitable monomers a) are, for example, ethylenically unsaturated carboxylic acids, such as acrylic acid, methacrylic acid, and itaconic acid. Particularly preferred monomers are acrylic acid and methacrylic acid. Very particular preference is given to acrylic acid.
  • Suitable monomers a) are, for example, ethylenically unsaturated sulfonic acids, such as styrenesulfonic acid and 2-acrylamido-2-methylpropanesulfonic acid (AMPS).
  • sulfonic acids such as styrenesulfonic acid and 2-acrylamido-2-methylpropanesulfonic acid (AMPS).
  • AMPS 2-acrylamido-2-methylpropanesulfonic acid
  • Impurities can have a significant influence on the polymerization. Therefore, the raw materials used should have the highest possible purity. It is therefore often advantageous to purify the monomers a) specifically. Suitable purification processes are described, for example, in WO 2002/055469 A1, WO 2003/078378 A1 and WO 2004/035514 A1.
  • a suitable monomer a) is, for example, an acrylic acid purified according to WO 2004/035514 A1 with 99.8460% by weight of acrylic acid, 0.0950% by weight of acetic acid, 0.0332% by weight of water, 0.0203% by weight % Propionic acid, 0.0001% by weight of furfurals, 0.0001% by weight of maleic anhydride, 0.0003% by weight of diacrylic acid and 0.0050% by weight of hydroquinone monomethyl ether.
  • the proportion of acrylic acid and / or salts thereof in the total amount of monomers a) is preferably at least 50 mol%, particularly preferably at least 90 mol%, very particularly preferably at least 95 mol%.
  • the monomers a) usually contain polymerization inhibitors, preferably hydroquinone half ethers, as a storage stabilizer.
  • the monomer solution preferably contains up to 250 ppm by weight, preferably at most 130 ppm by weight, more preferably at most 70 ppm by weight, preferably at least 10 ppm by weight, more preferably at least 30 ppm by weight, in particular by 50% by weight .-ppm, hydroquinone, in each case based on the unneutralized monomer a).
  • an ethylenically unsaturated compound may be used to prepare the monomer solution. saturated acid-bearing monomer having a corresponding hydroquinone half-ether content.
  • hydroquinone half ethers are hydroquinone monomethyl ether (MEHQ) and / or alpha-tocopherol (vitamin E).
  • Suitable crosslinkers b) are compounds having at least two groups suitable for crosslinking. Such groups are, for example, ethylenically unsaturated groups which can be radically copolymerized into the polymer chain, and functional groups which can form covalent bonds with the acid groups of the monomer a). Furthermore, polyvalent metal salts which can form coordinative bonds with at least two acid groups of the monomer a) are also suitable as crosslinking agents b).
  • Crosslinkers b) are preferably compounds having at least two polymerizable groups which can be incorporated in the polymer network in free-radically polymerized form.
  • Suitable crosslinkers b) are, for example, ethylene glycol dimethacrylate, diethylene glycol diacrylate, polyethylene glycol diacrylate, allyl methacrylate, trimethylolpropane triacrylate, triallylamine, tetraallylammonium chloride, tetraallyloxyethane, as described in EP 530 438 A1, di- and triacrylates, as in EP 547 847 A1, EP 559 476 A1, EP 632 068 A1,
  • WO 93/21237 A1 WO 2003/104299 A1, WO 2003/104300 A1, WO 2003/104301 A1 and DE 103 31 450 A1, mixed acrylates which, in addition to acrylate groups, contain further ethylenically unsaturated groups, as in DE 103 31 456 A1 and DE 103 55 401 A1, or crosslinker mixtures, as described, for example, in DE 195 43 368 A1, DE 196 46 484 A1, WO 90/15830 A1 and WO 2002/32962 A2.
  • Preferred crosslinkers b) are pentaerythritol triallyl ether, tetraalloxyethane, methylenebis-methacrylamide, 15-times ethoxylated trimethylolpropane triacrylate, polyethylene glycol diacrylate, trimethylolpropane triacrylate and triallylamine.
  • Very particularly preferred crosslinkers b) are the polyethoxylated and / or propoxylated glycerols esterified with acrylic acid or methacrylic acid to form di- or triacrylates, as described, for example, in WO 2003/104301 A1.
  • Particularly advantageous are di- and / or triacrylates of 3- to 10-fold ethoxylated glycerol.
  • diacrylates or triacrylates of 1 to 5 times ethoxylated and / or propoxylated glycerol.
  • Most preferred are the triacrylates of 3 to 5 times ethoxylated and / or propoxylated glycerol, in particular the triacrylate of 3-times ethoxylated glycerol.
  • the amount of crosslinker b) is preferably from 0.05 to 1, 5 wt .-%, particularly preferably 0.1 to 1 wt .-%, most preferably 0.3 to 0.6 wt .-%, in each case attracted to monomer a).
  • the centrifuge retention capacity decreases and the absorption under a pressure of 21.0 g / cm 2 passes through a maximum.
  • initiators c) it is possible to use all compounds which generate free radicals under the polymerization conditions, for example thermal initiators, redox initiators, photoinitiators.
  • Suitable redox initiators are sodium peroxodisulfate / ascorbic acid, hydrogen peroxide / ascorbic acid, sodium peroxodisulfate / sodium bisulfite and hydrogen peroxide / sodium bisulfite.
  • Preference is given to using mixtures of thermal initiators and redox initiators, such as sodium peroxodisulfate / hydrogen peroxide / ascorbic acid.
  • a reducing component but preferably a mixture of the sodium salt of 2-hydroxy-2-sulfinatoacetic acid, the disodium salt of 2-hydroxy-2-sulfonatoacetic acid and sodium bisulfite is used.
  • Such mixtures are available as Brüggolite® FF6 and Brüggolite® FF7 (Brüggemann Chemicals, Heilbronn, DE).
  • Examples of ethylenically unsaturated monomers d) which can be copolymerized with the ethylenically unsaturated monomers having acid groups are acrylamide, methacrylamide, hydroxyethyl acrylate, hydroxyethyl methacrylate, dimethylaminoethyl methacrylate, dimethylaminoethyl acrylate, dimethylaminopropyl acrylate, diethylaminopropyl acrylate, dimethylaminoethyl methacrylate, diethylaminoethyl methacrylate.
  • water-soluble polymers e it is possible to use polyvinyl alcohol, polyvinylpyrrolidone, starch, starch derivatives, modified cellulose, such as methylcellulose or hydroxyethylcellulose, gelatin, polyglycols or polyacrylic acids, preferably starch, starch derivatives and modified cellulose.
  • an aqueous monomer solution is used.
  • the water content of the monomer solution is preferably from 40 to 75 wt .-%, particularly preferably from 45 to 70 wt .-%, most preferably from 50 to 65 wt .-%.
  • monomer suspensions i. Monomer solutions with excess monomer a), for example sodium acrylate, use. With increasing water content, the energy expenditure increases during the subsequent drying and with decreasing water content, the heat of polymerization can only be dissipated insufficiently.
  • the preferred polymerization inhibitors require dissolved oxygen for optimum performance. Therefore, the monomer solution can be freed of dissolved oxygen prior to the polymerization by inertization, ie by flowing through with an inert gas, preferably nitrogen or carbon dioxide.
  • the oxygen content of the monomer solution before the polymerization is preferably reduced to less than 1 ppm by weight, more preferably to less than 0.5 ppm by weight, most preferably to less than 0.1 ppm by weight.
  • Suitable reactors are, for example, kneading reactors or belt reactors.
  • the polymer gel formed in the polymerization of an aqueous monomer solution or suspension is comminuted continuously by, for example, counter-rotating stirring shafts, as described in WO 2001/38402 A1.
  • the polymerization on the belt is described, for example, in DE 38 25 366 A1 and US Pat. No. 6,241,928.
  • Polymerization in a belt reactor produces a polymer gel which must be comminuted in a further process step, for example in a meat grinder, extruder or kneader.
  • the acid groups of the polymer gels obtained are usually partially neutralized.
  • the neutralization is preferably carried out at the stage of the monomers. This is usually done by mixing the neutralizing agent as an aqueous solution or preferably as a solid.
  • the degree of neutralization is preferably from 25 to 95 mol%, particularly preferably from 50 to 80 mol%, very particularly preferably from 60 to 75 mol%, the usual neutralizing agents can be used, preferably alkali metal hydroxides, alkali metal oxides, alkali metal carbonates or Alkalimetallhydrogenkarbonate and mixtures thereof.
  • alkali metal salts and ammonium salts can be used.
  • Sodium and potassium are particularly preferred as alkali metals, but most preferred are sodium hydroxide, sodium carbonate or sodium bicarbonate and mixtures thereof.
  • the polymer gel is also possible to carry out the neutralization after the polymerization at the stage of the polymer gel formed during the polymerization. Furthermore, it is possible to neutralize up to 40 mol%, preferably 10 to 30 mol%, particularly preferably 15 to 25 mol%, of the acid groups before the polymerization by adding a part of the neutralizing agent already to the monomer solution and the desired final degree of neutralization is adjusted only after the polymerization at the level of the polymer gel. If the polymer gel is at least partially neutralized after the polymerization, the polymer gel is preferably comminuted mechanically, for example by means of an extruder, wherein the neutralizing agent can be sprayed, sprinkled or poured on and then thoroughly mixed in. For this purpose, the gel mass obtained can be extruded several times for homogenization.
  • the polymer gel is then preferably dried with a belt dryer until the residual moisture content is preferably 0.5 to 15 wt .-%, particularly preferably 1 to 10 wt .-%, most preferably 2 to 8 wt .-%, wherein the residual moisture content according to the test method No. WSP 230.2-05 "Moisture content" recommended by EDANA (European Disposables and Nonwovens Association). If the residual moisture content is too high, the dried polymer gel has too low a glass transition temperature T 9 and is difficult to process further. At a too low residual moisture, the dried polymer gel is too brittle and in the subsequent crushing steps fall undesirable large amounts of polymer particles with too small particle size (undersize).
  • the solids content of the gel before drying is preferably from 25 to 90% by weight, more preferably from 35 to 70% by weight, most preferably from 40 to 60% by weight.
  • a fluidized bed dryer or a heated ploughshare mixer can be used for drying.
  • the dried polymer gel is then ground and classified, wherein for grinding usually one- or multi-stage roller mills, preferably two- or three-stage roller mills, pin mills, hammer mills or vibratory mills can be used.
  • the mean particle size of the polymer fraction separated as a product fraction is preferably at least 200 ⁇ m, more preferably from 250 to 600 ⁇ m, very particularly from 300 to 500 ⁇ m.
  • the mean particle size of the product fraction can be determined by means of the test method no. WSP 220.2-05 "particle size distribution" recommended by the EDANA (European Disposables and Nonwovens Association), in which the mass fractions of the sieve fractions are cumulatively applied and the mean particle size is determined graphically becomes.
  • the mean particle size here is the value of the mesh size, which results for accumulated 50 wt .-%.
  • the proportion of particles having a particle size of at least 150 .mu.m is preferably at least 90 wt .-%, more preferably at least 95 wt .-%, most preferably at least 98 wt .-%.
  • Too small polymer particles are therefore usually separated and recycled to the process.
  • the proportion of particles having a particle size of at most 850 microns is preferably at least 90 wt .-%, more preferably at least 95 wt .-%, most preferably at least 98 wt .-%.
  • Suitable surface postcrosslinkers are compounds containing groups that can form covalent bonds with at least two carboxylate groups of the polymer particles. Suitable compounds are, for example, polyfunctional amines, polyfunctional amidoamines, polyfunctional epoxides, as described in EP 83 022 A2, EP 543 303 A1 and EP 937 736 A2, di- or polyfunctional alcohols, as in DE 33 14 019 A1, DE 35 23 617 A1 and EP 450 922 A2, or ⁇ -hydroxyalkylamides, as described in DE 102 04 938 A1 and US Pat. No. 6,239,230.
  • Preferred surface postcrosslinkers are ethylene carbonate, ethylene glycol diglycidyl ether, reaction products of polyamides with epichlorohydrin and mixtures of propylene glycol and 1,4-butanediol.
  • Very particularly preferred surface postcrosslinkers are 2-hydroxyethyloxazolidin-2-one, oxazolidin-2-one and 1,3-propanediol.
  • the amount of surface postcrosslinker is preferably 0.001 to 2 wt .-%, more preferably 0.02 to 1 wt .-%, most preferably 0.05 to 0.2 wt .-%, each based on the polymer particles.
  • polyvalent cations are applied to the particle surface before, during or after the surface postcrosslinking in addition to the surface postcrosslinkers.
  • the polyvalent cations which can be used in the process according to the invention are, for example, divalent cations, such as the cations of zinc, magnesium, calcium, iron and strontium, trivalent cations, such as the cations of aluminum, iron, chromium, rare earths and manganese, tetravalent cations, such as Cations of titanium and Zirconium.
  • divalent cations such as the cations of zinc, magnesium, calcium, iron and strontium
  • trivalent cations such as the cations of aluminum, iron, chromium, rare earths and manganese
  • tetravalent cations such as Cations of titanium and Zirconium.
  • chloride, bromide, sulfate, hydrogensulfate, carbonate, hydrogencarbonate, nitrate, phosphate, hydrogenphosphate, dihydrogenphosphate and carboxylate, such as acetate and lactate are possible.
  • Aluminum sulfate and aluminum lactate are preferred.
  • the amount of polyvalent cation used is, for example, 0.001 to 1.5% by weight, preferably 0.005 to 1% by weight, particularly preferably 0.02 to 0.8% by weight. in each case based on the polymer particles.
  • the surface postcrosslinking is usually carried out so that a solution of the surface postcrosslinker is sprayed onto the dried polymer particles. Subsequent to the spraying, the polymer particles coated with the surface postcrosslinker are thermally dried, whereby the surface postcrosslinking reaction can take place both before and during drying.
  • the spraying of a solution of the surface postcrosslinker is preferably carried out in mixers with agitated mixing tools, such as screw mixers, disk mixers, plowshare mixers and paddle mixers.
  • agitated mixing tools such as screw mixers, disk mixers, plowshare mixers and paddle mixers.
  • horizontal mixers such as plowshare mixers and paddle mixers
  • vertical mixers very particularly preferred are vertical mixers.
  • horizontal mixer and vertical mixer is made by the storage of the mixing shaft, i.
  • Horizontal mixers have a horizontally mounted mixing shaft and vertical mixers have a vertically mounted mixing shaft.
  • suitable mixers are Lödige mixers, Bepex mixers, Nauta mixers, Processall mixers and Schugi mixers.
  • the surface postcrosslinkers are typically used as an aqueous solution.
  • the penetration depth of the surface postcrosslinker into the polymer particles can be adjusted by the content of nonaqueous solvent or total solvent amount.
  • solvent for example isopropanol / water, 1,3-propanediol / water and propylene glycol / water, the mixing mass ratio preferably being from 20:80 to 40:60.
  • the thermal drying is preferably carried out in contact dryers, more preferably paddle dryers, very particularly preferably disk dryers.
  • Suitable dryers include Bepex-T rockner and Nara-T rockner.
  • fluidized bed dryers can also be used.
  • the drying can take place in the mixer itself, by heating the jacket or blowing hot air.
  • a downstream dryer such as a hopper dryer, a rotary kiln or a heatable screw. Particularly advantageous is mixed and dried in a fluidized bed dryer.
  • Preferred drying temperatures are in the range 100 to 250 0 C, preferably 120 to 220 0 C, particularly preferably 130 to 210 ° C most preferably 150 to 200 0 C. by weight, the preferred residence time at this temperature in the reaction mixer or dryer is preferably at least 10 minutes , more preferably at least 20 minutes, most preferably at least 30 minutes, and usually at most 60 minutes.
  • the surface-postcrosslinked polymer particles can be classified again, wherein too small and / or too large polymer particles are separated and recycled to the process.
  • the surface-postcrosslinked polymer particles can be coated or post-moistened for further improvement of the properties.
  • Suitable coatings for improving the swelling rate and the permeability (SFC) are, for example, inorganic inert substances, such as water-insoluble metal salts, organic polymers, cationic polymers and di- or polyvalent metal cations.
  • Suitable coatings for dust binding are, for example, polyols.
  • Suitable coatings against the unwanted caking tendency of the polymer particles are, for example, fumed silica, such as Aerosil® 200, and surfactants, such as Span® 20.
  • the water-absorbing polymer particles produced by the process according to the invention have a moisture content of preferably 0 to 15 wt .-%, particularly preferably 0.2 to 10 wt .-%, most preferably 0.5 to 8 wt .-%, wherein the Water content according to the test method No. WSP 230.2-05 "Moisture content" recommended by the EDANA (European Disposables and Nonwovens Association).
  • the water-absorbing polymer particles prepared according to the method of the invention have a centrifuge retention capacity (CRC) of typically at least 15 g / g, preferably at least 20 g / g, preferably at least 22 g / g, more preferably at least 24 g / g, most preferably at least 26 g / g, up.
  • the centrifuge retention capacity (CRC) of the water-absorbing polymer particles is usually less than 60 g / g.
  • the centrifuge retention capacity (CRC) is determined in accordance with the EDANA (European Disposables and Nonwovens Association) recommended test method No. WSP 241.2-05 "Centrifuge retention Capacency".
  • the water-absorbing polymer particles produced by the process according to the invention have an absorption under a pressure of 49.2 g / cm 2 of typically at least 15 g / g, preferably at least 20 g / g, preferably at least 22 g / g, particularly preferably at least 24 g / g, most preferably at least 26 g / g, on.
  • the absorption under a pressure of 49.2 g / cm 2 of the water-absorbing polymer particles is usually less than 35 g / g.
  • the absorption under a pressure of 49.2 g / cm 2 is determined analogously to the recommended by the EDANA (European Disposables and Nonwovens Association) Test Method No. WSP 242.2-05 "absorption under pressure", instead of a pressure of 21, 0 g / cm 2 a pressure of 49.2 g / cm 2 is set.
  • the water-absorbing polymer particles are tested by the test methods described below.
  • the measurements should be taken at an ambient temperature of 23 ⁇ 2 0 C and a relative humidity of 50 ⁇ 10% unless otherwise specified.
  • the water-absorbing polymer particles are thoroughly mixed before the measurement.
  • the residual monomers are determined according to the test method no. WSP 210.2-05 "Residual Monomers” recommended by the EDANA (European Disposables and Nonwovens Association).
  • the centrifuge retention capacity (CRC) is determined according to the test method no. WSP 241.2- 05 "Centrifuge Retention Capacity" recommended by the EDANA (European Disposables and Nonwovens Association).
  • the EDANA test methods are available, for example, from the European Disposables and Nonwovens Association, Avenue Eugene Plasky 157, B-1030 Brussels, Associates.
  • the monomer solution was transferred by means of a funnel into a glass dish with a
  • the glass dish was covered with a plastic film and also inertized with 150 l / h of nitrogen.
  • the monomer solution in the glass dish was stirred by means of a magnetic stir bar.
  • 5.88 g of a 1% strength by weight aqueous solution of Bruggolite® FF6 (disodium salt of 2-hydroxy-2-sulfinatoacetic acid) were metered into the monomer solution using a disposable syringe. After the start of the reaction, the magnetic stirrer was switched off.
  • the polymer gel was removed and crushed with a perforated plate extruder (6 mm hole diameter), sprayed with 17.6 g of a 1% by weight aqueous solution of sodium bisulfite, and extruded twice.
  • the gel was spread over four sheets and dried for one hour at 16O 0 C in a convection oven.
  • the loading of the sheets with polymer gel was 0.59 g / cm 2 . It was then pre-shredded with a roller mill with a gap width of 1,000 ⁇ m and homogenized using a roller mixer.
  • a partial amount of about 100 g was comminuted with a two-stage roller mill with a gap width of 600 microns and 400 microns and sieved to 150 to 850 microns (base polymer A). The remaining amount was comminuted by means of a rotor mill (Retsch® ZM200) to a particle size of less than 150 ⁇ m (undersize A).
  • the monomer solution was transferred by means of a funnel into a glass dish with a
  • the glass dish was covered with a plastic film and also inertized with 150 l / h of nitrogen.
  • the monomer solution in the glass dish was stirred by means of a magnetic stir bar.
  • 5.88 g of a 1% strength by weight aqueous solution of Bruggolit® FF6 (disodium salt of 2-hydroxy-2-sulfinatoacetic acid) were metered into the monomer solution by means of a disposable syringe. After the start of the reaction, the magnetic stirrer was switched off.
  • the polymer gel was removed and crushed with a perforated plate extruder (6 mm hole diameter), sprayed with 17.6 g of a 1% by weight aqueous solution of sodium bisulfite, and re-extruded. Subsequently, a total of 84 g of undersize A from Example 1 in two portions powdered by means of a 180 ⁇ m sieve and a spoon and extruded a third time.
  • the gel was spread over four sheets and dried for one hour at 16O 0 C in a convection oven.
  • the loading of the sheets with polymer gel was 0.59 g / cm 2 . It was then pre-shredded with a roller mill with a gap width of 1,000 ⁇ m, comminuted with a two-stage roller mill with a gap width of 600 ⁇ m and 400 ⁇ m and sieved to 150 to 850 ⁇ m.
  • Example 8 The procedure was as in Example 8. Together with the dosage of the undersize, 0.0100 or 0.0166% by weight of sorbitan monococoate in 1% by weight of water, in each case based on the polymer gel, was sprayed onto the polymer gel.

Abstract

Verfahren zur kontinuierlichen Herstellung wasserabsorbierender Polymerpartikel, umfassend Polymerisation, Trocknung, Mahlung, Klassierung und zumindest teilweiser Rückführung des bei der Klassierung anfallenden Unterkorns, wobei das durch die Polymerisation erhaltene Polymergel dem Polymerisationsreaktor entnommen und mit dem rückgeführten Unterkorn vermischt wird.

Description

Verfahren zur kontinuierlichen Herstellung wasserabsorbierender Polymerpartikel
Beschreibung
Die vorliegende Erfindung betrifft ein Verfahren zur kontinuierlichen Herstellung wasserabsorbierender Polymerpartikel, umfassend Polymerisation, Trocknung, Mahlung, Klassierung und zumindest teilweiser Rückführung des bei der Klassierung anfallenden Unterkorns, wobei das durch die Polymerisation erhaltene Polymergel dem Polymerisationsreaktor entnommen und mit dem rückgeführten Unterkorn vermischt wird.
Die Herstellung wasserabsorbierender Polymerpartikel wird in der Monographie "Modern Superabsorbent Polymer Technology", F. L. Buchholz und AT. Graham, Wiley- VCH, 1998, Seiten 71 bis 103, beschrieben.
Wasserabsorbierende Polymere werden zur Herstellung von Windeln, Tampons, Damenbinden und anderen Hygieneartikeln, aber auch als wasserzurückhaltende Mittel im landwirtschaftlichen Gartenbau verwendet.
Die Eigenschaften der wasserabsorbierenden Polymere können über den Vernet- zungsgrad eingestellt werden. Mit steigendem Vernetzungsgrad steigt die Gelfestigkeit und sinkt die Zentrifugenretentionskapazität (CRC).
Zur Verbesserung der Anwendungseigenschaften, wie beispielsweise Permeabilität des gequollenen Gelbetts (SFC) in der Windel und Absorption unter einem Druck von 49.2 g/cm2, werden wasserabsorbierende Polymerpartikel im allgemeinen oberflächen- nachvernetzt. Dadurch steigt der Vernetzungsgrad der Partikeloberfläche, wodurch die Absorption unter einem Druck von 49,2 g/cm2 und die Zentrifugenretentionskapazität (CRC) zumindest teilweise entkoppelt werden können. Diese Oberflächennachvernet- zung kann in wässriger Gelphase durchgeführt werden. Vorzugsweise werden aber getrocknete, gemahlene und abgesiebte Polymerpartikel (Grundpolymer) an der Oberfläche mit einem Oberflächennachvernetzer beschichtet, thermisch oberflächennach- vernetzt und getrocknet. Dazu geeignete Vernetzer sind Verbindungen, die mindestens zwei Gruppen enthalten, die mit den Carboxylatgruppen der wasserabsorbierenden Polymere kovalente Bindungen bilden können.
Die wasserabsorbierenden Polymere gelangen als pulverförmiges, körniges Produkt bevorzugt im Hygienesektor zum Einsatz. Hier werden beispielsweise Teilchengrößen zwischen 150 und 850 μm eingesetzt und das partikuläre Polymermaterial wird bereits beim Herstellungsprozess auf diese Korngrößen klassiert. Hierbei werden kontinuier- lieh arbeitende Siebmaschinen mit mindestens zwei Sieben eingesetzt, wobei Siebe mit den Maschenweiten von 150 und 850 μm verwendet werden. Partikel mit einer Korngröße von bis zu 150 μm fallen dabei durch beide Siebe und werden am Boden der Siebmaschine als Unterkorn gesammelt. Partikel mit einer Korngröße von größer 850 μm verbleiben als Überkorn auf dem obersten Sieb und werden ausgeschleust, erneut gemahlen und rückgeführt. Die Produktfraktion mit einer Korngröße von größer 150 bis 850 μm wird als Mittelkorn zwischen den beiden Sieben der Siebmaschine entnommen.
Das bei der Klassierung anfallende Unter- und Überkorn wird üblicherweise in den Produktionsprozess zurückgeführt. Die Rückführung des Unterkorns wird beispielsweise in EP 0 463 388 A1 , EP 0 496 594 A2, EP 0 785 224 A2, EP 1 878 761 A1 und US 5,064,582 beschrieben.
EP 0 463 388 A1 beschreibt, dass durch Zusatz von wenig Unterkorn pumpbare Polymergele mit hohem Feststoffgehalt erhalten werden können.
EP 0 496 594 A2 lehrt die Rückführung des Unterkorns in den Polymerisationsreaktor.
EP 0 785 224 A2 beschreibt die Rückführung des Unterkorns in das bei der Polymerisation entstandene Polymergel, wobei Tenside zugesetzt werden.
EP 1 878 761 A1 offenbart ein Verfahren zur Rückführung eines mit wasserlöslichen polyvalenten Metallsalzen beschichteten Unterkorns. Das Unterkorn kann beispielsweise mittels eines Kneters in das Polymergel eingemischt werden.
US 5,064,582 offenbart ein Verfahren zur Rückführung von Unterkorn, wobei das Unterkorn vor der Rückführung mit Wasser vermischt wird.
Aufgabe der vorliegenden Erfindung war die Bereitstellung eines verbesserten Verfahrens zur Rückführung des bei der Herstellung wasserabsorbierender Polymerpartikel anfallenden Unterkorns.
Gelöst wurde die Aufgabe durch ein Verfahren zur kontinuierlichen Herstellung wasserabsorbierender Polymerpartikel durch Polymerisation einer Monomerlösung oder - suspension, enthaltend
a) mindestens ein ethylenisch ungesättigtes, säuregruppentragendes Monomer, das zumindest teilweise neutralisiert sein kann, b) mindestens einen Vernetzer, c) mindestens einen Initiator, d) optional ein oder mehrere mit den unter a) genannten Monomeren copolymerisier- bare ethylenisch ungesättigte Monomere und e) optional ein oder mehrere wasserlösliche Polymere, umfassend Polymerisation, Trocknung, Mahlung, Klassierung und zumindest teilweiser Rückführung des bei der Klassierung anfallenden Unterkorns, wobei das durch die Polymerisation erhaltene Polymergel dem Polymerisationsreaktor entnommen und in einem Extruder mit dem rückgeführten Unterkorn vermischt wird, dadurch gekenn- zeichnet, dass der Wassergehalt der durch Vermischen des dem Polymerisationsreaktor entnommen Polymergels mit dem rückgeführten Unterkorn erhaltenen Mischung höchstens 70 Gew.-% beträgt, beim Vermischen des dem Polymerisationsreaktor entnommen Polymergels mit dem rückgeführten Unterkorn im Wesentlichen kein Tensid zugesetzt wird und/oder die Oberflächenspannung des wässrigen Extrakts der wasser- absorbierenden Polymerpartikel mindestens 0,06 N/m beträgt.
Wichtig ist, dass das Mischen in einem Extruder durchgeführt wird. In einem Extruder kann eine dickflüssige oder viskose Masse unter hohem Druck durch mindestens eine formgebende Öffnung gepresst werden. In einem Extruder kann eine sehr hohe Misch- energie eingetragen werden.
Als Unterkorn im Sinne dieser Erfindung wird eine bei der Klassierung anfallende Korngrößenfraktion bezeichnet, die eine geringere mittlere Korngröße als die Korngrößenfraktion des Zielprodukts aufweist. Zur Abtrennung des Unterkorns wird üblicher- weise ein Sieb mit einer Maschenweite von bis zu 300 μm eingesetzt. Die Maschenweite des Siebes beträgt vorzugsweise mindestens 100 μm, besonders bevorzugt mindestens 150 μm, ganz besonders bevorzugt mindestens 200 μm.
Der Wassergehalt des dem Polymerisationsreaktors entnommenen Polymergels be- trägt vorzugsweise 40 bis 75 Gew.-%, besonders bevorzugt 50 bis 70 Gew.-%, ganz besonders bevorzugt 55 bis 65 Gew.-%.
Der Wassergehalt des rückgeführten Unterkorns beträgt vorzugsweise weniger als 8 Gew.-%, besonders bevorzugt weniger als 6 Gew.-%, ganz besonders bevorzugt we- niger als 5 Gew.-%.
Der niedrige Wassergehalt des rückgeführten Unterkorns hat zur Folge, dass das Unterkorn als rieselfähiges Pulver in die Mischeinrichtung dosiert wird.
Die Oberflächenspannung des wässrigen Extrakts der wasserabsorbierenden Polymerpartikel beträgt vorzugsweise mindestens 0,063 N/m, besonders bevorzugt mindestens 0,066 N/m, ganz besonders bevorzugt mindestens 0,068 N/m.
Tensidisch wirkende Verbindungen senken die Oberflächenspannung des wässrigen Extrakts und erhöhen damit die Leckrate der Windel. Der Wassergehalt der durch Vermischen des dem Polymerisationsreaktor entnommen Polymergels mit dem rückgeführten Unterkorn erhaltenen Mischung beträgt vorzugsweise 40 bis 68 Gew.-%, besonders bevorzugt 50 bis 65 Gew.-%, ganz besonders bevorzugt 55 bis 62 Gew.-%.
Das dem Polymerisationsreaktor entnommene Polymergel wird vorzugsweise von 1 bis 180 Minuten, besonders bevorzugt von 2 bis 60 Minuten, ganz besonders bevorzugt von 5 bis 20 Minuten, mit dem rückgeführten Unterkorn vermischt.
Während des Mischens kann zusätzlich Wasser zugesetzt werden, ggf. auch als wäss- rige Lösung. Dabei ist aber zu beachten, dass zuviel Wasser einen negativen Einfluss auf das Mischergebnis hat.
Das dem Polymerisationsreaktor entnommene Polymergel wird bei einer Temperatur von vorzugsweise 40 bis 800C, besonders bevorzugt 45 von bis 75°C, ganz besonders bevorzugt von 50 bis 700C, mit dem rückgeführten Unterkorn vermischt.
Das Verhältnis von Polymergel zu rückgeführtem Unterkorn beträgt vorzugsweise von 5 bis 50, besonders bevorzugt von 10 bis 40, ganz besonders von 12 bis 30.
Die für das erfindungsgemäße Verfahren einsetzbaren Polymerisationsreaktoren unterliegen keiner Beschränkung.
Bei einer statischen Polymerisation ist es nicht möglich das rückzuführende Unterkorn während der Polymerisation einzumischen. Wird das Unterkorn aber vor der Polymerisation zugesetzt, so wird dadurch der Vernetzungsgrad des erhaltenen Polymers erhöht, wodurch die Zentrifugenretentionskapazität (CRC) sinkt. Daher ist das erfindungsgemäße Verfahren besonders vorteilhaft bei einer statischen Polymerisation, beispielsweise bei der Polymerisation auf einem kontinuierlich umlaufenden Band.
Das erfindungsgemäße Verfahren umfasst vorzugsweise mindestens eine Oberflä- chennachvernetzung. In einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung wird sowohl vor als auch nach der Oberflächennachvernetzung klassiert.
Der vorliegenden Erfindung liegt die Erkenntnis zugrunde, dass der Zusatz von Unterkorn aus dem laufenden Prozess zu einem deutlichen Abfall der Zentrifugenretentionskapazität führt. Dieser unerwünschte Effekt kann weitgehend zurückgedrängt werden, wenn dass Unterkorn erst hinter dem Polymerisationsreaktor zugemischt wird.
Der vorliegenden Erfindung liegt weiterhin die Erkenntnis zugrunde, dass das Mischergebnis deutlich verbessert werden kann, wenn der Wassergehalt beim Mischen im Extruder niedrig gehalten wird. Nur dadurch ist es möglich eine hinreichend große Mischenergie einzutragen und intermediär auftretende Unterkornagglomerate aufzubrechen. Das aus dem Stand der Technik bekannte vorige Anteigen des Unterkorns mit Wasser oder der Zusatz von Tensiden ist nicht mehr erforderlich.
Die wasserabsorbierenden Polymerpartikel werden durch Polymerisation einer Monomerlösung oder -Suspension hergestellt und sind üblicherweise wasserunlöslich.
Die Monomeren a) sind vorzugsweise wasserlöslich, d.h. die Löslichkeit in Wasser bei 23°C beträgt typischerweise mindestens 1 g/100 g Wasser, vorzugsweise mindestens 5 g/100 g Wasser, besonders bevorzugt mindestens 25 g/100 g Wasser, ganz besonders bevorzugt mindestens 35 g/100 g Wasser.
Geeignete Monomere a) sind beispielsweise ethylenisch ungesättigte Carbonsäuren, wie Acrylsäure, Methacrylsäure, und Itaconsäure. Besonders bevorzugte Monomere sind Acrylsäure und Methacrylsäure. Ganz besonders bevorzugt ist Acrylsäure.
Weitere geeignete Monomere a) sind beispielsweise ethylenisch ungesättigte Sulfon- säuren, wie Styrolsulfonsäure und 2-Acrylamido-2-methylpropansulfonsäure (AMPS).
Verunreinigungen können einen erheblichen Einfluss auf die Polymerisation haben. Daher sollten die eingesetzten Rohstoffe eine möglichst hohe Reinheit aufweisen. Es ist daher oft vorteilhaft die Monomeren a) speziell zu reinigen. Geeignete Reinigungsverfahren werden beispielsweise in der WO 2002/055469 A1 , der WO 2003/078378 A1 und der WO 2004/035514 A1 beschrieben. Ein geeignetes Monomer a) ist beispiels- weise eine gemäß WO 2004/035514 A1 gereinigte Acrylsäure mit 99,8460 Gew.-% Acrylsäure, 0,0950 Gew.-% Essigsäure, 0,0332 Gew.-% Wasser, 0,0203 Gew.-% Propionsäure, 0,0001 Gew.-% Furfurale, 0,0001 Gew.-% Maleinsäureanhydrid, 0,0003 Gew.-% Diacrylsäure und 0,0050 Gew.-% Hydrochinonmonomethylether.
Der Anteil an Acrylsäure und/oder deren Salzen an der Gesamtmenge der Monomeren a) beträgt vorzugsweise mindestens 50 mol-%, besonders bevorzugt mindestens 90 mol-%, ganz besonders bevorzugt mindestens 95 mol-%.
Die Monomere a) enthalten üblicherweise Polymerisationsinhibitoren, vorzugsweise Hydrochinonhalbether, als Lagerstabilisator.
Die Monomerlösung enthält vorzugsweise bis zu 250 Gew.-ppm, bevorzugt höchstens 130 Gew.-ppm, besonders bevorzugt höchstens 70 Gew.-ppm, bevorzugt mindesten 10 Gew.-ppm, besonders bevorzugt mindesten 30 Gew.-ppm, insbesondere um 50 Gew.-ppm, Hydrochinonhalbether, jeweils bezogen auf das unneutralisierte Monomer a). Beispielsweise kann zur Herstellung der Monomerlösung ein ethylenisch ungesät- tigtes, säuregruppentragendes Monomer mit einem entsprechenden Gehalt an Hydro- chinonhalbether verwendet werden.
Bevorzugte Hydrochinonhalbether sind Hydrochinonmonomethylether (MEHQ) und/oder alpha-Tocopherol (Vitamin E).
Geeignete Vernetzer b) sind Verbindungen mit mindestens zwei zur Vernetzung geeigneten Gruppen. Derartige Gruppen sind beispielsweise ethylenisch ungesättigte Gruppen, die in die Polymerkette radikalisch einpolymerisiert werden können, und funktio- nelle Gruppen, die mit den Säuregruppen des Monomeren a) kovalente Bindungen ausbilden können. Weiterhin sind auch polyvalente Metallsalze, die mit mindestens zwei Säuregruppen des Monomeren a) koordinative Bindungen ausbilden können, als Vernetzer b) geeignet.
Vernetzer b) sind vorzugsweise Verbindungen mit mindestens zwei polymerisierbaren Gruppen, die in das Polymernetzwerk radikalisch einpolymerisiert werden können. Geeignete Vernetzer b) sind beispielsweise Ethylenglykoldimethacrylat, Diethylenglykoldi- acrylat, Polyethylenglykoldiacrylat, Allylmethacrylat, Trimethylolpropantriacrylat, Trially- lamin, Tetraallylammoniumchlorid, Tetraallyloxyethan, wie in EP 530 438 A1 beschrie- ben, Di- und Triacrylate, wie in EP 547 847 A1 , EP 559 476 A1 , EP 632 068 A1 ,
WO 93/21237 A1 , WO 2003/104299 A1 , WO 2003/104300 A1 , WO 2003/104301 A1 und DE 103 31 450 A1 beschrieben, gemischte Acrylate, die neben Acrylatgruppen weitere ethylenisch ungesättigte Gruppen enthalten, wie in DE 103 31 456 A1 und DE 103 55 401 A1 beschrieben, oder Vernetzermischungen, wie beispielsweise in DE 195 43 368 A1 , DE 196 46 484 A1 , WO 90/15830 A1 und WO 2002/32962 A2 beschrieben.
Bevorzugte Vernetzer b) sind Pentaerythrittriallylether, Tetraalloxyethan, Methylenbis- methacrylamid, 15-fach ethoxiliertes Trimethylolpropantriacrylat, Polyethylenglykoldiac- rylat , Trimethylolpropantriacrylat und Triallylamin.
Ganz besonders bevorzugte Vernetzer b) sind die mit Acrylsäure oder Methacrylsäure zu Di- oder Triacrylaten veresterten mehrfach ethoxylierten und/oder propoxylierten Glyzerine, wie sie beispielsweise in WO 2003/104301 A1 beschrieben sind. Besonders vorteilhaft sind Di- und/oder Triacrylate des 3- bis 10-fach ethoxylierten Glyzerins. Ganz besonders bevorzugt sind Di- oder Triacrylate des 1- bis 5-fach ethoxylierten und/oder propoxylierten Glyzerins. Am meisten bevorzugt sind die Triacrylate des 3- bis 5-fach ethoxylierten und/oder propoxylierten Glyzerins, insbesondere das Triacrylat des 3-fach ethoxylierten Glyzerins .
Die Menge an Vernetzer b) beträgt vorzugsweise 0,05 bis 1 ,5 Gew.-%, besonders bevorzugt 0,1 bis 1 Gew.-%, ganz besonders bevorzugt 0,3 bis 0,6 Gew.-%, jeweils be- zogen auf Monomer a). Mit steigendem Vernetzergehalt sinkt die Zentrifugenretenti- onskapazität (CRC) und die Absorption unter einem Druck von 21 ,0 g/cm2 durchläuft ein Maximum.
Als Initiatoren c) können sämtliche unter den Polymerisationsbedingungen Radikale erzeugende Verbindungen eingesetzt werden, beispielsweise thermische Initiatoren, Redox-Initiatoren, Photoinitiatoren. Geeignete Rediox-Initiatoren sind Natriumperoxodi- sulfat/Ascorbinsäure, Wasserstoffperoxid/Ascorbinsäure, Natriumperoxodisul- fat/Natriumbisulfit und Wasserstoffperoxid/Natriumbisulfit. Vorzugsweise werden Mi- schungen aus thermischen Initiatoren und Redox-Initiatoren eingesetzt, wie Natriumpe- roxodisulfat/Wasserstoffperoxid/Ascorbinsäure. Als reduzierende Komponente wird aber vorzugsweise ein Gemisch aus dem Natriumsalz der 2-Hydroxy-2- sulfinatoessigsäure, dem Dinatriumsalz der 2-Hydroxy-2-sulfonatoessigsäure und Natriumbisulfit eingesetzt. Derartige Gemische sind als Brüggolite® FF6 und Brüggoli- te® FF7 (Brüggemann Chemicals; Heilbronn; DE) erhältlich.
Mit den ethylenisch ungesättigten, säuregruppentragenden Monomeren a) copolymeri- sierbare ethylenisch ungesättigte Monomere d) sind beispielsweise Acrylamid, Methac- rylamid, Hydroxyethylacrylat, Hydroxyethylmethacrylat, Dimethylaminoethylmethacry- lat, Dimethylaminoethylacrylat, Dimethylaminopropylacrylat, Diethylaminopropylacrylat, Dimethylaminoethylmethacrylat, Diethylaminoethylmethacrylat.
Als wasserlösliche Polymere e) können Polyvinylalkohol, Polyvinylpyrrolidon, Stärke, Stärkederivate, modifizierte Cellulose, wie Methylcellulose oder Hydroxyethylcellulose, Gelatine, Polyglykole oder Polyacrylsäuren, vorzugsweise Stärke, Stärkederivate und modifizierte Cellulose, eingesetzt werden.
Üblicherweise wird eine wässrige Monomerlösung verwendet. Der Wassergehalt der Monomerlösung beträgt vorzugsweise von 40 bis 75 Gew.-%, besonders bevorzugt von 45 bis 70 Gew.-%, ganz besonders bevorzugt von 50 bis 65 Gew.-%. Es ist auch möglich Monomersuspensionen, d.h. Monomerlösungen mit überschüssigem Monomer a), beispielsweise Natriumacrylat, einzusetzen. Mit steigendem Wassergehalt steigt der Energieaufwand bei der anschließenden Trocknung und mit sinkendem Wassergehalt kann die Polymerisationswärme nur noch ungenügend abgeführt werden.
Die bevorzugten Polymerisationsinhibitoren benötigen für eine optimale Wirkung gelösten Sauerstoff. Daher kann die Monomerlösung vor der Polymerisation durch Inertisie- rung, d.h. Durchströmen mit einem inerten Gas, vorzugsweise Stickstoff oder Kohlendioxid, von gelöstem Sauerstoff befreit werden. Vorzugsweise wird der Sauerstoffge- halt der Monomerlösung vor der Polymerisation auf weniger als 1 Gew.-ppm, besonders bevorzugt auf weniger als 0,5 Gew.-ppm, ganz besonders bevorzugt auf weniger als 0,1 Gew.-ppm, gesenkt. Geeignete Reaktoren sind beispielsweise Knetreaktoren oder Bandreaktoren. Im Kneter wird das bei der Polymerisation einer wässrigen Monomerlösung oder -Suspension entstehende Polymergel durch beispielsweise gegenläufige Rührwellen kontinuierlich zerkleinert, wie in WO 2001/38402 A1 beschrieben. Die Polymerisation auf dem Band wird beispielsweise in DE 38 25 366 A1 und US 6,241 ,928 beschrieben. Bei der Polymerisation in einem Bandreaktor entsteht ein Polymergel, das in einem weiteren Verfahrensschritt zerkleinert werden muss, beispielsweise in einem Fleischwolf, Extruder oder Kneter.
Die Säuregruppen der erhaltenen Polymergele sind üblicherweise teilweise neutralisiert. Die Neutralisation wird vorzugsweise auf der Stufe der Monomeren durchgeführt. Dies geschieht üblicherweise durch Einmischung des Neutralisationsmittels als wässri- ge Lösung oder bevorzugt auch als Feststoff. Der Neutralisationsgrad beträgt vor- zugsweise von 25 bis 95 mol-%, besonders bevorzugt von 50 bis 80 mol-%, ganz besonders bevorzugt von 60 bis 75 mol-%, wobei die üblichen Neutralisationsmittel verwendet werden können, vorzugsweise Alkalimetallhydroxide, Alkalimetalloxide, Alkalimetallkarbonate oder Alkalimetallhydrogenkarbonate sowie deren Mischungen. Statt Alkalimetallsalzen können auch Ammoniumsalze verwendet werden. Natrium und KaIi- um sind als Alkalimetalle besonders bevorzugt, ganz besonders bevorzugt sind jedoch Natriumhydroxid, Natriumkarbonat oder Natriumhydrogenkarbonat sowie deren Mischungen.
Es ist aber auch möglich die Neutralisation nach der Polymerisation auf der Stufe des bei der Polymerisation entstehenden Polymergels durchzuführen. Weiterhin ist es möglich bis zu 40 mol-%, vorzugsweise 10 bis 30 mol-%, besonders bevorzugt 15 bis 25 mol-%, der Säuregruppen vor der Polymerisation zu neutralisieren indem ein Teil des Neutralisationsmittels bereits der Monomerlösung zugesetzt und der gewünschte End- neutralisationsgrad erst nach der Polymerisation auf der Stufe des Polymergels einge- stellt wird. Wird das Polymergel zumindest teilweise nach der Polymerisation neutralisiert, so wird das Polymergel vorzugsweise mechanisch zerkleinert, beispielsweise mittels eines Extruders, wobei das Neutralisationsmittel aufgesprüht, übergestreut oder aufgegossen und dann sorgfältig untergemischt werden kann. Dazu kann die erhaltene Gelmasse noch mehrmals zur Homogenisierung extrudiert werden.
Das Polymergel wird dann vorzugsweise mit einem Bandtrockner getrocknet bis der Restfeuchtegehalt vorzugsweise 0,5 bis 15 Gew.-%, besonders bevorzugt 1 bis 10 Gew.-%, ganz besonders bevorzugt 2 bis 8 Gew.-%, beträgt, wobei der Restfeuchtegehalt gemäß der von der EDANA (European Disposables and Nonwovens Associa- tion) empfohlenen Testmethode Nr. WSP 230.2-05 "Moisture content" bestimmt wird. Bei einer zu hohen Restfeuchte weist das getrocknete Polymergel eine zu niedrige Glasübergangstemperatur T9 auf und ist nur schwierig weiter zu verarbeiten. Bei einer zu niedrigen Restfeuchte ist das getrocknete Polymergel zu spröde und in den anschließenden Zerkleinerungsschritten fallen unerwünscht große Mengen an Polymerpartikeln mit zu niedriger Partikelgröße (Unterkorn) an. Der Feststoffgehalt des Gels beträgt vor der Trocknung vorzugsweise von 25 und 90 Gew.-%, besonders bevorzugt von 35 bis 70 Gew.-%, ganz besonders bevorzugt von 40 bis 60 Gew.-%. Wahlweise kann zur Trocknung aber auch ein Wirbelbetttrockner oder ein beheizter Pflugscharmischer verwendet werden.
Das getrocknete Polymergel wird hiernach gemahlen und klassiert, wobei zur Mahlung üblicherweise ein- oder mehrstufige Walzenstühle, bevorzugt zwei- oder dreistufige Walzenstühle, Stiftmühlen, Hammermühlen oder Schwingmühlen eingesetzt werden können.
Die mittlere Partikelgröße der als Produktfraktion abgetrennten Polymerpartikel beträgt vorzugsweise mindestens 200 μm, besonders bevorzugt von 250 bis 600 μm, ganz besonders von 300 bis 500 μm. Die mittlere Partikelgröße der Produktfraktion kann mittels der von der EDANA (European Disposables and Nonwovens Association) empfohlenen Testmethode Nr. WSP 220.2-05 "Partikel size distribution" ermittelt werden, wobei die Massenanteile der Siebfraktionen kumuliert aufgetragen werden und die mitt- lere Partikelgröße graphisch bestimmt wird. Die mittlere Partikelgröße ist hierbei der Wert der Maschenweite, der sich für kumulierte 50 Gew.-% ergibt.
Der Anteil an Partikeln mit einer Partikelgröße von mindestens 150 μm beträgt vorzugsweise mindestens 90 Gew.-%, besonders bevorzugt mindesten 95 Gew.-%, ganz besonders bevorzugt mindestens 98 Gew.-%.
Polymerpartikel mit zu niedriger Partikelgröße senken die Permeabilität (SFC). Daher sollte der Anteil zu kleiner Polymerpartikel (Unterkorn) niedrig sein.
Zu kleine Polymerpartikel werden daher üblicherweise abgetrennt und in das Verfahren rückgeführt.
Der Anteil an Partikeln mit einer Partikelgröße von höchstens 850 μm, beträgt vorzugsweise mindestens 90 Gew.-%, besonders bevorzugt mindesten 95 Gew.-%, ganz besonders bevorzugt mindestens 98 Gew.-%.
Polymerpartikel mit zu großer Partikelgröße senken die Anquellgeschwindigkeit. Daher sollte der Anteil zu großer Polymerpartikel (Überkorn) ebenfalls niedrig sein.
Zu große Polymerpartikel werden daher üblicherweise abgetrennt und in die Mahlung des getrockneten Polymergels rückgeführt. Die Polymerpartikel können zur weiteren Verbesserung der Eigenschaften oberflä- chennachvernetzt werden. Geeignete Oberflächennachvernetzer sind Verbindungen, die Gruppen enthalten, die mit mindestens zwei Carboxylatgruppen der Polymerpartikel kovalente Bindungen bilden können. Geeignete Verbindungen sind beispielsweise polyfunktionelle Amine, polyfunktionelle Amidoamine, polyfunktionelle Epoxide, wie in EP 83 022 A2, EP 543 303 A1 und EP 937 736 A2 beschrieben, di- oder polyfunktionelle Alkohole, wie in DE 33 14 019 A1 , DE 35 23 617 A1 und EP 450 922 A2 beschrieben, oder ß-Hydroxyalkylamide, wie in DE 102 04 938 A1 und US 6,239,230 beschrieben.
Des weiteren sind in DE 40 20 780 C1 zyklische Karbonate, in DE 198 07 502 A1 2-Oxazolidon und dessen Derivate, wie 2-Hydroxyethyl-2-oxazolidon, in DE 198 07 992 C1 Bis- und Poly-2-oxazolidinone, in DE 198 54 573 A1 2-Oxotetrahydro-1 ,3-oxazin und dessen Derivate, in DE 198 54 574 A1 N-Acyl-2- Oxazolidone, in DE 102 04 937 A1 zyklische Harnstoffe, in DE 103 34 584 A1 bizyklische Amidacetale, in EP 1 199 327 A2 Oxetane und zyklische Harnstoffe und in WO 2003/31482 A1 Morpholin-2,3-dion und dessen Derivate als geeignete Oberflächennachvernetzer beschrieben.
Bevorzuge Oberflächennachvernetzer sind Ethylenkarbonat, Ethylenglykoldiglycidy- lether, Umsetzungsprodukte von Polyamiden mit Epichlorhydrin und Gemische aus Propylenglykol und 1 ,4-Butandiol.
Ganz besonders bevorzugte Oberflächennachvernetzer sind 2-Hydroxyethyloxazolidin- 2-on, Oxazolidin-2-on und 1 ,3-Propandiol.
Weiterhin können auch Oberflächennachvernetzer eingesetzt werden, die zusätzliche polymerisierbare ethylenisch ungesättigte Gruppen enthalten, wie in DE 37 13 601 A1 beschrieben
Die Menge an Oberflächennachvernetzer beträgt vorzugsweise 0,001 bis 2 Gew.-%, besonders bevorzugt 0,02 bis 1 Gew.-%, ganz besonders bevorzugt 0,05 bis 0,2 Gew.-%, jeweils bezogen auf die Polymerpartikel.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung werden vor, während oder nach der Oberflächennachvernetzung zusätzlich zu den Oberflächennach- vernetzern polyvalente Kationen auf die Partikeloberfläche aufgebracht.
Die im erfindungsgemäßen Verfahren einsetzbaren polyvalenten Kationen sind bei- spielsweise zweiwertige Kationen, wie die Kationen von Zink, Magnesium, Kalzium, Eisen und Strontium, dreiwertige Kationen, wie die Kationen von Aluminium, Eisen, Chrom, Seltenerden und Mangan, vierwertige Kationen, wie die Kationen von Titan und Zirkonium. Als Gegenion sind Chlorid, Bromid, Sulfat, Hydrogensulfat, Carbonat, Hydrogencarbonat, Nitrat, Phosphat, Hydrogenphosphat, Dihydrogenphosphat und Carboxylat, wie Acetat und Lactat, möglich. Aluminiumsulfat und Aluminiumlaktat sind bevorzugt. Außer Metallsalzen können auch Polyamine als polyvalente Kationen ein- gesetzt werden.
Die Einsatzmenge an polyvalentem Kation beträgt beispielsweise 0,001 bis 1 ,5 Gew.-%, vorzugsweise 0,005 bis 1 Gew.-%, besonders bevorzugt 0,02 bis 0,8 Gew.-%. jeweils bezogen auf die Polymerpartikel.
Die Oberflächennachvernetzung wird üblicherweise so durchgeführt, dass eine Lösung des Oberflächennachvernetzers auf die getrockneten Polymerpartikel aufgesprüht wird. Im Anschluss an das Aufsprühen werden die mit der Oberflächennachvernetzer beschichteten Polymerpartikel thermisch getrocknet, wobei die Oberflächennachvernet- zungsreaktion sowohl vor als auch während der Trocknung stattfinden kann.
Das Aufsprühen einer Lösung des Oberflächennachvernetzers wird vorzugsweise in Mischern mit bewegten Mischwerkzeugen, wie Schneckenmischer, Scheibenmischer, Pflugscharmischer und Schaufelmischer, durchgeführt werden. Besonders bevorzugt sind Horizontalmischer, wie Pflugscharmischer und Schaufelmischer, ganz besonders bevorzugt sind Vertikalmischer. Die Unterscheidung in Horizontalmischer und Vertikalmischer erfolgt über die Lagerung der Mischwelle, d.h. Horizontalmischer haben eine horizontal gelagerte Mischwelle und Vertikalmischer haben eine vertikal gelagerte Mischwelle. Geeignete Mischer sind beispielsweise Lödige-Mischer, Bepex-Mischer, Nauta-Mischer, Processall-Mischer und Schugi-Mischer. Es ist aber auch möglich die Oberflächennachvernetzerlösung in einem Wirbelbett aufzusprühen.
Die Oberflächennachvernetzer werden typischerweise als wässrige Lösung eingesetzt. Über den Gehalt an nichtwässrigem Lösungsmittel bzw. Gesamtlösungsmittelmenge kann die Eindringtiefe des Oberflächennachvernetzers in die Polymerpartikel eingestellt werden.
Wird ausschließlich Wasser als Lösungsmittel verwendet, so wird vorteilhaft ein Tensid zugesetzt. Dadurch wird das Benetzungsverhalten verbessert und die Verklumpungs- neigung vermindert. Vorzugsweise werden aber Lösungsmittelgemische eingesetzt, beispielsweise Isopropanol/Wasser, 1 ,3-Propandiol/Wasser und Propylengly- kol/Wasser, wobei das Mischungsmassenverhältnis vorzugsweise von 20:80 bis 40:60 beträgt.
Die thermische Trocknung wird vorzugsweise in Kontakttrocknern, besonders bevorzugt Schaufeltrocknern, ganz besonders bevorzugt Scheibentrocknern, durchgeführt. Geeignete Trockner sind beispielsweise Bepex-T rockner und Nara-T rockner. Überdies können auch Wirbelschichttrockner eingesetzt werden.
Die Trocknung kann im Mischer selbst erfolgen, durch Beheizung des Mantels oder Einblasen von Warmluft. Ebenso geeignet ist ein nachgeschalteter Trockner, wie beispielsweise ein Hordentrockner, ein Drehrohrofen oder eine beheizbare Schnecke. Besonders vorteilhaft wird in einem Wirbelschichttrockner gemischt und getrocknet.
Bevorzugte Trocknungstemperaturen liegen im Bereich 100 bis 2500C, bevorzugt 120 bis 2200C, besonders bevorzugt 130 bis 210°C, ganz besonders bevorzugt 150 bis 2000C. Die bevorzugte Verweilzeit bei dieser Temperatur im Reaktionsmischer oder Trockner beträgt vorzugsweise mindestens 10 Minuten, besonders bevorzugt mindestens 20 Minuten, ganz besonders bevorzugt mindestens 30 Minuten, und üblicherweise höchstens 60 Minuten.
Anschließend können die oberflächennachvernetzten Polymerpartikel erneut klassiert werden, wobei zu kleine und/oder zu große Polymerpartikel abgetrennt und in das Verfahren rückgeführt werden.
Die oberflächennachvernetzten Polymerpartikel können zur weiteren Verbesserung der Eigenschaften beschichtet oder nachbefeuchtet werden. Geeignete Beschichtungen zur Verbesserung der Anquellgeschwindigkeit sowie der Permeabilität (SFC) sind beispielsweise anorganische inerte Substanzen, wie wasserunlösliche Metallsalze, organische Polymere, kationische Polymere sowie zwei- oder mehrwertige Metallkationen. Geeignete Beschichtungen zur Staubbindung sind beispielsweise Polyole. Geeignete Beschichtungen gegen die unerwünschte Verbackungsneigung der Polymerpartikel sind beispielsweise pyrogene Kieselsäure, wie Aerosil® 200, und Tenside, wie Span® 20.
Die gemäß dem erfindungsgemäßen Verfahren hergestellten wasserabsorbierenden Polymerpartikel weisen einen Feuchtegehalt von vorzugsweise 0 bis 15 Gew.-%, besonders bevorzugt 0,2 bis 10 Gew.-%, ganz besonders bevorzugt 0,5 bis 8 Gew.-%, auf, wobei der Wassergehalt gemäß der von der EDANA (European Disposables and Nonwovens Association) empfohlenen Testmethode Nr. WSP 230.2-05 "Moisture con- tent" bestimmt wird.
Die gemäß dem erfindungsgemäßen Verfahren hergestellten wasserabsorbierenden Polymerpartikel weisen eine Zentrifugenretentionskapazität (CRC) von typischerweise mindestens 15 g/g, vorzugsweise mindestens 20 g/g, bevorzugt mindestens 22 g/g, besonders bevorzugt mindestens 24 g/g, ganz besonders bevorzugt mindestens 26 g/g, auf. Die Zentrifugenretentionskapazität (CRC) der wasserabsorbierenden Polymerpartikel beträgt üblicherweise weniger als 60 g/g. Die Zentrifugenretentionskapazi- tät (CRC) wird gemäß der von der EDANA (European Disposables and Nonwovens Association) empfohlenen Testmethode Nr. WSP 241.2-05 "Centrifuge retention capa- city" bestimmt.
Die gemäß dem erfindungsgemäßen Verfahren hergestellten wasserabsorbierenden Polymerpartikel weisen eine Absorption unter einem Druck von 49,2 g/cm2 von typischerweise mindestens 15 g/g, vorzugsweise mindestens 20 g/g, bevorzugt mindestens 22 g/g, besonders bevorzugt mindestens 24 g/g, ganz besonders bevorzugt mindestens 26 g/g, auf. Die Absorption unter einem Druck von 49,2 g/cm2 der wasserab- sorbierenden Polymerpartikel beträgt üblicherweise weniger als 35 g/g. Die Absorption unter einem Druck von 49,2 g/cm2 wird analog der von der EDANA (European Disposables and Nonwovens Association) empfohlenen Testmethode Nr. WSP 242.2-05 "Absorption under pressure" bestimmt, wobei statt eines Drucks von 21 ,0 g/cm2 ein Druck von 49,2 g/cm2 eingestellt wird.
Die wasserabsorbierenden Polymerpartikel werden mit den nachfolgend beschrieben Testmethoden geprüft.
Methoden:
Die Messungen sollten, wenn nicht anders angegeben, bei einer Umgebungstemperatur von 23 ± 2 0C und einer relativen Luftfeuchte von 50 ± 10 % durchgeführt werden. Die wasserabsorbierenden Polymerpartikel werden vor der Messung gut durchmischt.
Restmonomere (Residual Monomers)
Die Restmonomeren (Remos) werden gemäß der von der EDANA (European Disposables and Nonwovens Association) empfohlenen Testmethode Nr. WSP 210.2-05 "Residual Monomers" bestimmt.
Zentrifugenretentionskapazität (Centrifuge Retention Capacity)
Die Zentrifugenretentionskapazität (CRC) wird gemäß der von der EDANA (European Disposables and Nonwovens Association) empfohlenen Testmethode Nr. WSP 241.2- 05 "Centrifuge Retention Capacity" bestimmt.
Absorption unter einem Druck von 21 ,0 g/cm2 (Absorption under Pressure)
Die Absorption unter einem Druck von 21 ,0 g/cm2 wird gemäß der von der EDANA (European Disposables and Nonwovens Association) empfohlenen Testmethode Nr. WSP 242.2-05 "Absorption under Pressure" bestimmt. Extrahierbare (Extractables)
Die Extrahierbaren (Extr.) werden gemäß der von der EDANA (European Disposables and Nonwovens Association) empfohlenen Testmethode Nr. WSP 270.2-05 "Extrac- tables" bestimmt.
Oberflächenspannung des wässrigen Extraktes (OFS)
Es werden 0,20 g der wasserabsorbierenden Polymerpartikel in eine kleines Becher- glas (ca. 42 mm Außendurchmesser und ca. 50 mm Höhe) eingewogen und mit 40 ml einer 0,9 Gew.%-igen Salzlösung versetzt. Der Inhalt des Becherglases wird 60 Minuten bei 400 U/min mit einem Magnetrührstab (2,4 cm x 0,5 cm) gerührt, dann lässt man 2 Minuten absitzen. Schließlich wird die Oberflächenspannung (OFS) der überstehenden wässrigen Phase mit einem Digital-Tensiometer K10-ST (Krüss GmbH; Hamburg; DE) oder vergleichbarem Gerät mit Platinplatte gemessen.
Die EDANA-Testmethoden sind beispielsweise erhältlich bei der European Disposables and Nonwovens Association, Avenue Eugene Plasky 157, B-1030 Brüssel, BeI- gien.
Beispiele:
Beispiel 1 (Herstellung von Grundpolymer A und Unterkorns A)
1028 g einer 37,3 gew.-%igen wässrigen Natriumacrylatlösung, 98 g Acrylsäure, 254 g Wasser und 1 ,29 g 3-fach ethoxiliertes Glyzerintriacrylat wurden in einen 2.000 ml Metallbecher eingewogen. Der Neutralisationsgrad betrug 75 mol-%. Der Metallbecher wurde mit Parafilm® verschlossen und mit 1501/h Stickstoff inertisiert. Während des Inertisierens wurde die Monomerlösung auf -0,50C gekühlt. Anschließend wurden nacheinander 6,47 g einer 10 gew.-%igen wässrigen Lösung von Natriumpersulfat und 5,88 g einer 1 gew.-%igen wässrigen Lösung von Wasserstoffperoxid zugegeben.
Die Monomerlösung wurde mittels eines Trichters in eine Glasschale mit einem
Durchmesser von 190 mm überführt. Die Glasschale wurde mit einer Kunststofffolie abgedeckt und ebenfalls mit 1501/h Stickstoff inertisiert. Zusätzlich wurde die Monomerlösung in der Glasschale mittels eines Magnetrührstabes gerührt. Anschließend wurden mittels einer Einwegspritze 5,88 g einer 1 gew.-%igen wässrigen Lösung von Brüggolite®FF6 (Dinatriumsalz der 2-Hydroxy-2-sulfinatoessigsäure) in die Monomerlösung dosiert. Nach dem Reaktionsstart wurde der Magnetrührer abgeschaltet. Nach einer Reaktionszeit von 30 Minuten wurde das Polymergel entnommen und mit einem Extruder mit Lochplatte (6 mm Lochdurchmesser) zerkleinert, mit 17,6 g einer 1 gew.-%igen wässrigen Lösung von Natriumbisulfit besprüht und zweimal extrudiert.
Das Gel wurde auf vier Blechen verteilt und eine Stunde bei 16O0C im Umlufttrocken- schrank getrocknet. Die Beladung der Bleche mit Polymergel betrug 0,59 g/cm2. Anschließend wurde mit eimem Walzenstuhl mit einer Spaltbreite von 1.000 μm vorzerkleinert und mit einem Rollenmischer homogenisiert.
Eine Teilmenge von ca. 100 g wurde mit einem zweistufigen Walzenstuhl mit einer Spaltbreite von 600 μm und 400 μm zerkleinert und auf 150 bis 850 μm abgesiebt (Grundpolymer A). Die übrige Menge wurde mittels einer Rotormühle (Retsch® ZM200) auf eine Partikelgröße von weniger als 150 μm zerkleinert (Unterkorn A).
Beispiel 2 (Herstellung von Grundpolymer B und Unterkorns B)
Es wurde verfahren wie unter Beispiel 1. Die Menge an 3-fach ethoxiliertem Glyze- rintriacrylat wurde auf 0,58 g gesenkt.
Beispiel 3
1028 g einer 37,3 gew.-%igen wässrigen Natriumacrylatlösung, 98 g Acrylsäure, 254 g Wasser und 1 ,29 g 3-fach ethoxiliertes Glyzerintriacrylat wurden in einen 2.000 ml Metallbecher eingewogen. Der Neutralisationsgrad betrug 75 mol-%. Der Metallbecher wurde mit Parafilm® verschlossen und mit 1501/h Stickstoff inertisiert. Während des Inertisierens wurde die Monomerlösung auf -0,50C gekühlt. Anschließend wurden nacheinander 6,47 g einer 10 gew.-%igen wässrigen Lösung von Natriumpersulfat und 5,88 g einer 1 gew.-%igen wässrigen Lösung von Wasserstoffperoxid zugegeben.
Die Monomerlösung wurde mittels eines Trichters in eine Glasschale mit einem
Durchmesser von 190 mm überführt. Die Glasschale wurde mit einer Kunststofffolie abgedeckt und ebenfalls mit 1501/h Stickstoff inertisiert. Zusätzlich wurde die Monomerlösung in der Glasschale mittels eines Magnetrührstabes gerührt. Anschließend wurden mittels einer Einwegspritze 5,88 g einer 1 gew.-%igen wässrigen Lösung von Brüggolit®FF6 (Dinatriumsalz der 2-Hydroxy-2-sulfinatoessigsäure) in die Monomerlösung dosiert. Nach dem Reaktionsstart wurde der Magnetrührer abgeschaltet.
Nach einer Reaktionszeit von 30 Minuten wurde das Polymergel entnommen und mit einem Extruder mit Lochplatte (6 mm Lochdurchmesser) zerkleinert, mit 17,6 g einer 1 gew.-%igen wässrigen Lösung von Natriumbisulfit besprüht und erneut extrudiert. Anschließend wurden insgesamt 84 g Unterkorn A aus Beispiel 1 in zwei Portionen mittels eines 180 μm Siebes und eines Löffels aufgepudert und ein drittes Mal extru- diert.
Das Gel wurde auf vier Blechen verteilt und eine Stunde bei 16O0C im Umlufttrocken- schrank getrocknet. Die Beladung der Bleche mit Polymergel betrug 0,59 g/cm2. Anschließend wurde mit einem Walzenstuhl mit einer Spaltbreite von 1.000 μm vorzerkleinert, mit einem zweistufigen Walzenstuhl mit einer Spaltbreite von 600 μm und 400 μm zerkleinert und auf 150 bis 850 μm abgesiebt.
Die erhaltenen Polymerpartikel wurden analysiert. Die Ergebnisse sind in der Tabelle zusammengefasst.
Beispiele 4 bis 7
Es wurde verfahren wie unter Beispiel 3. Zusammen mit der Dosierung des Unterkorns wurden 0,0166 bzw. 0,0819 Gew.-% Sorbitanmonococoat bzw. Sorbitanmonolaurat jeweils in 1 Gew.-% Wasser, jeweils bezogen auf das Polymergel, auf das Polymergel aufgesprüht.
Die erhaltenen Polymerpartikel wurden analysiert. Die Ergebnisse sind in der Tabelle zusammengefasst.
Beispiel 8
Es wurde verfahren wie unter Beispiel 3. Die Menge an 3-fach ethoxiliertem Glyze- rintriacrylat wurde auf 0,58 g gesenkt und es wurde Unterkorn B eingesetzt.
Die erhaltenen Polymerpartikel wurden analysiert. Die Ergebnisse sind in der Tabelle zusammengefasst.
Beispiele 9 und 10
Es wurde verfahren wie unter Beispiel 8. Zusammen mit der Dosierung des Unterkorns wurden 0,0100 bzw. 0,0166 Gew.-% Sorbitanmonococoat in 1 Gew.-% Wasser, jeweils bezogen auf das Polymergel, auf das Polymergel aufgesprüht.
Die erhaltenen Polymerpartikel wurden analysiert. Die Ergebnisse sind in der Tabelle zusammengefasst.
Die Ergebnisse zeigen, dass sich das Unterkorn auch ohne Tensidzusatz im Extruder rückführen lässt. Der höhere Energieeintrag führt nur zu einer unwesentlichen Ände- rung der Extrahierbaren. Überraschenderweise führt das erfindungsgemäße Verfahren auch zu einem Produkt mit gegenüber dem Stand der Technik deutlich reduziertem Gehalt an Restmonomeren.
Tabelle
OO
Figure imgf000019_0001
Vergleich
CRC Zentrifugenretentionskapazität
AUL Absorption unter einem Druck von 21 ,0 g/cm2
Extr. Extrahierbare
OFS Oberflächenspannung des wässrigen Extraktes
Remos Restmonomere
<150 μm Unterkorn nach Walzenstuhl

Claims

Patentansprüche
1. Verfahren zur kontinuierlichen Herstellung wasserabsorbierender Polymerpartikel durch Polymerisation einer Monomerlösung oder -Suspension, enthaltend
a) mindestens ein ethylenisch ungesättigtes, säuregruppentragendes Monomer, das zumindest teilweise neutralisiert sein kann, b) mindestens einen Vernetzer, c) mindestens einen Initiator, d) optional ein oder mehrere mit den unter a) genannten Monomeren copoly- merisierbare ethylenisch ungesättigte Monomere und e) optional ein oder mehrere wasserlösliche Polymere,
umfassend Polymerisation, Trocknung, Mahlung, Klassierung und zumindest teilweiser Rückführung des bei der Klassierung anfallenden Unterkorns, wobei das durch die Polymerisation erhaltene Polymergel dem Polymerisationsreaktor entnommen und in einem Extruder mit dem rückgeführten Unterkorn vermischt wird, dadurch gekennzeichnet, dass der Wassergehalt der durch Vermischen des dem Polymerisationsreaktor entnommen Polymergels mit dem rückgeführten Un- terkorn erhaltenen Mischung höchstens 70 Gew.-% beträgt, beim Vermischen des dem Polymerisationsreaktor entnommen Polymergels mit dem rückgeführten Unterkorn im Wesentlichen kein Tensid zugesetzt wird und/oder die Oberflächenspannung des wäßrigen Extrakts der wasserabsorbierenden Polymerpartikel mindestens 0,06 N/m beträgt.
2. Verfahren gemäß Anspruch 1 , dadurch gekennzeichnet, dass der Wassergehalt der durch Vermischen des dem Polymerisationsreaktor entnommen Polymergels mit dem rückgeführten Unterkorn erhaltenen Mischung höchstens 65 Gew.-% beträgt.
3. Verfahren gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass das dem Polymerisationsreaktor entnommene Polymergel von 1 bis 180 Minuten mit dem rückgeführten Unterkorn vermischt wird.
4. Verfahren gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Verfahren mindestens eine Nachvernetzung umfasst.
5. Verfahren gemäß Anspruch 4, dadurch gekennzeichnet, dass vor und nach der
Nachvernetzung klassiert wird.
6. Verfahren gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass statisch polymerisiert wird.
7. Verfahren gemäß einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das dem Polymerisationsreaktor entnommene Polymergel bei einer Temperatur von 40 bis 800C mit dem rückgeführten Unterkorn vermischt wird
8. Verfahren gemäß einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das Verhältnis von Polymergel zu rückgeführtem Unterkorn von 5 bis 50 beträgt.
9. Verfahren gemäß einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass Monomer a) zu mindestens 50 mol-% Acrylsäure ist.
10. Verfahren gemäß einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die wasserabsorbierenden Polymerpartikel eine Zentrifugenretentionskapazität von mindestens 15 g/g aufweisen.
PCT/EP2009/057143 2008-06-19 2009-06-10 Verfahren zur kontinuierlichen herstellung wasserabsorbierender polymerpartikel WO2009153196A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09765776A EP2291416A1 (de) 2008-06-19 2009-06-10 Verfahren zur kontinuierlichen herstellung wasserabsorbierender polymerpartikel
JP2011513993A JP2011524452A (ja) 2008-06-19 2009-06-10 吸水性ポリマー粒子の連続的な製造法
CN2009801232323A CN102066431B (zh) 2008-06-19 2009-06-10 连续制备吸水性聚合物颗粒的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US7391408P 2008-06-19 2008-06-19
US61/073,914 2008-06-19

Publications (1)

Publication Number Publication Date
WO2009153196A1 true WO2009153196A1 (de) 2009-12-23

Family

ID=41431897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/057143 WO2009153196A1 (de) 2008-06-19 2009-06-10 Verfahren zur kontinuierlichen herstellung wasserabsorbierender polymerpartikel

Country Status (5)

Country Link
US (1) US8080620B2 (de)
EP (1) EP2291416A1 (de)
JP (1) JP2011524452A (de)
CN (1) CN102066431B (de)
WO (1) WO2009153196A1 (de)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011078298A1 (ja) 2009-12-24 2011-06-30 株式会社日本触媒 ポリアクリル酸系吸水性樹脂粉末及びその製造方法
WO2011136301A1 (ja) 2010-04-27 2011-11-03 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂粉末の製造方法
WO2012102407A1 (ja) 2011-01-28 2012-08-02 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂粉末の製造方法
WO2014021432A1 (ja) 2012-08-01 2014-02-06 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂の製造方法
WO2014041969A1 (ja) 2012-09-11 2014-03-20 株式会社日本触媒 ポリアクリル酸(塩)系吸水剤の製造方法及びその吸水剤
WO2014041968A1 (ja) 2012-09-11 2014-03-20 株式会社日本触媒 ポリアクリル酸(塩)系吸水剤の製造方法及びその吸水剤
WO2014054656A1 (ja) 2012-10-01 2014-04-10 株式会社日本触媒 多元金属化合物からなる粉塵低減剤、多元金属化合物を含む吸水剤及びその製造方法
WO2015093594A1 (ja) 2013-12-20 2015-06-25 株式会社日本触媒 ポリアクリル酸(塩)系吸水剤及びその製造方法
EP3165542A4 (de) * 2014-10-08 2017-11-22 LG Chem, Ltd. Verfahren zur herstellung eines supersaugfähigen harzes
EP3369480A1 (de) 2012-10-03 2018-09-05 Nippon Shokubai Co., Ltd. Wasserabsorbierendes mittel
EP2307062B2 (de) 2008-07-15 2021-11-24 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602008017325C5 (de) 2007-06-08 2022-05-12 MiiCs & Partners Japan Co., Ltd. Mobiles Kommunikationssystem, Basisstationsvorrichtung und Mobilstationsvorrichtung
CN102844358B (zh) * 2010-03-25 2014-09-17 巴斯夫欧洲公司 制备吸水性聚合物颗粒的方法
KR101495779B1 (ko) 2010-11-30 2015-02-25 주식회사 엘지화학 고흡수성 수지의 제조 방법
EP2673011B2 (de) * 2011-02-07 2019-01-16 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel mit hoher anquellgeschwindigkeit
WO2012144595A1 (ja) 2011-04-20 2012-10-26 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂の製造方法および製造装置
CN104619357B (zh) * 2012-08-29 2017-07-07 巴斯夫欧洲公司 用于制备吸水性聚合物颗粒的方法
CN104603159B (zh) * 2012-08-29 2017-07-14 巴斯夫欧洲公司 制备吸水性聚合物颗粒的方法
KR101855353B1 (ko) * 2015-06-09 2018-05-08 주식회사 엘지화학 고흡수성 수지의 미분 재조립체를 포함하는 고흡수성 수지의 제조 방법 및 이로부터 제조된 고흡수성 수지

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0417761A2 (de) * 1989-09-15 1991-03-20 The Dow Chemical Company Verfahren und Vorrichtung zum Rückgewinnen von wasserabsorbierendem feinkörnigem Gut
EP0463388A1 (de) 1990-05-31 1992-01-02 Hoechst Celanese Corporation Verfahren zur Umwandlung von feinen Teilchen aus superabsorbierenden Polymeren in grossen Teilchen
EP0496594A2 (de) 1991-01-22 1992-07-29 Nippon Shokubai Co., Ltd. Verfahren zur Herstellung eines absorbierenden Harzes
EP0785224A2 (de) 1996-01-19 1997-07-23 Hoechst Aktiengesellschaft Verfahren zur Herstellung hydrophiler, hochquellfähiger Hydrogele
JP2001079826A (ja) 1999-07-16 2001-03-27 Depuy Orthopaedics Inc 骨セメント材混合装置
JP2001079829A (ja) * 1999-06-25 2001-03-27 Nippon Shokubai Co Ltd 吸水性樹脂およびその製造方法
EP1690887A1 (de) 2005-02-15 2006-08-16 Nippon Shokubai Co., Ltd. Wasser absorbierendes Harz und Verfahren zu seiner Herstellung
DE102005014291A1 (de) * 2005-03-24 2006-09-28 Basf Ag Verfahren zur Herstellung wasserabsorbierender Polymere
DE102005055077A1 (de) * 2005-11-16 2007-05-24 Basf Ag Verfahren zur Herstellung wasserabsorbierender Polymerpartikel
WO2007104657A2 (de) * 2006-03-14 2007-09-20 Basf Se Verfahren zur pneumatischen förderung wasserabsorbierender polymerpartikel
EP1878761A1 (de) 2005-03-14 2008-01-16 Nippon Shokubai Co.,Ltd. Wasserabsorbierendes element und herstellungsverfahren dafür
WO2008037674A1 (de) * 2006-09-25 2008-04-03 Basf Se Verfahren zur kontinuierlichen herstellung wasserabsorbierender polymerpartikel

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3145461B2 (ja) * 1991-02-01 2001-03-12 株式会社日本触媒 粒子状含水ゲル状重合体および吸水性樹脂の製造方法
JP5046522B2 (ja) * 2005-02-15 2012-10-10 株式会社日本触媒 吸水性樹脂及びその製造方法
DE102005014841A1 (de) * 2005-03-30 2006-10-05 Basf Ag Verfahren zur Herstellung wasserabsorbierender Polymerpartikel

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0417761A2 (de) * 1989-09-15 1991-03-20 The Dow Chemical Company Verfahren und Vorrichtung zum Rückgewinnen von wasserabsorbierendem feinkörnigem Gut
US5064582A (en) 1989-09-15 1991-11-12 The Dow Chemical Company Process and apparatus for recycling aqueous fluid absorbents fines
EP0463388A1 (de) 1990-05-31 1992-01-02 Hoechst Celanese Corporation Verfahren zur Umwandlung von feinen Teilchen aus superabsorbierenden Polymeren in grossen Teilchen
EP0496594A2 (de) 1991-01-22 1992-07-29 Nippon Shokubai Co., Ltd. Verfahren zur Herstellung eines absorbierenden Harzes
EP0785224A2 (de) 1996-01-19 1997-07-23 Hoechst Aktiengesellschaft Verfahren zur Herstellung hydrophiler, hochquellfähiger Hydrogele
JP2001079829A (ja) * 1999-06-25 2001-03-27 Nippon Shokubai Co Ltd 吸水性樹脂およびその製造方法
JP2001079826A (ja) 1999-07-16 2001-03-27 Depuy Orthopaedics Inc 骨セメント材混合装置
EP1690887A1 (de) 2005-02-15 2006-08-16 Nippon Shokubai Co., Ltd. Wasser absorbierendes Harz und Verfahren zu seiner Herstellung
EP1878761A1 (de) 2005-03-14 2008-01-16 Nippon Shokubai Co.,Ltd. Wasserabsorbierendes element und herstellungsverfahren dafür
DE102005014291A1 (de) * 2005-03-24 2006-09-28 Basf Ag Verfahren zur Herstellung wasserabsorbierender Polymere
DE102005055077A1 (de) * 2005-11-16 2007-05-24 Basf Ag Verfahren zur Herstellung wasserabsorbierender Polymerpartikel
WO2007104657A2 (de) * 2006-03-14 2007-09-20 Basf Se Verfahren zur pneumatischen förderung wasserabsorbierender polymerpartikel
WO2008037674A1 (de) * 2006-09-25 2008-04-03 Basf Se Verfahren zur kontinuierlichen herstellung wasserabsorbierender polymerpartikel

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2307062B2 (de) 2008-07-15 2021-11-24 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel
WO2011078298A1 (ja) 2009-12-24 2011-06-30 株式会社日本触媒 ポリアクリル酸系吸水性樹脂粉末及びその製造方法
WO2011136301A1 (ja) 2010-04-27 2011-11-03 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂粉末の製造方法
WO2012102407A1 (ja) 2011-01-28 2012-08-02 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂粉末の製造方法
WO2014021432A1 (ja) 2012-08-01 2014-02-06 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂の製造方法
WO2014041969A1 (ja) 2012-09-11 2014-03-20 株式会社日本触媒 ポリアクリル酸(塩)系吸水剤の製造方法及びその吸水剤
WO2014041968A1 (ja) 2012-09-11 2014-03-20 株式会社日本触媒 ポリアクリル酸(塩)系吸水剤の製造方法及びその吸水剤
WO2014054656A1 (ja) 2012-10-01 2014-04-10 株式会社日本触媒 多元金属化合物からなる粉塵低減剤、多元金属化合物を含む吸水剤及びその製造方法
EP3369480A1 (de) 2012-10-03 2018-09-05 Nippon Shokubai Co., Ltd. Wasserabsorbierendes mittel
WO2015093594A1 (ja) 2013-12-20 2015-06-25 株式会社日本触媒 ポリアクリル酸(塩)系吸水剤及びその製造方法
EP4252728A2 (de) 2013-12-20 2023-10-04 Nippon Shokubai Co., Ltd. Wasserabsorbierendes mittel auf der basis von polyacrylsäure und/oder einem salz davon
EP3165542A4 (de) * 2014-10-08 2017-11-22 LG Chem, Ltd. Verfahren zur herstellung eines supersaugfähigen harzes
US9975979B2 (en) 2014-10-08 2018-05-22 Lg Chem, Ltd. Method of preparing superabsorbent polymer

Also Published As

Publication number Publication date
CN102066431A (zh) 2011-05-18
US8080620B2 (en) 2011-12-20
CN102066431B (zh) 2012-10-03
JP2011524452A (ja) 2011-09-01
EP2291416A1 (de) 2011-03-09
US20090318633A1 (en) 2009-12-24

Similar Documents

Publication Publication Date Title
EP2307062B1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel
WO2009153196A1 (de) Verfahren zur kontinuierlichen herstellung wasserabsorbierender polymerpartikel
EP2411422B1 (de) Verfahren zur herstellung oberflächennachvernetzter wasserabsorbierender polymerpartikel
EP2445942B1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel mit geringer verbackungsneigung und hoher absorption unter druck
EP2673011B1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel mit hoher anquellgeschwindigkeit
EP2438096B1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel
EP2731975A1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel mit hoher anquellgeschwindigkeit
EP3497141A1 (de) Verfahren zur herstellung von superabsorbern
EP2274087B1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel
EP2300061B1 (de) Verfahren zur oberflächennachvernetzung wasserabsorbierender polymerpartikel
EP2288645B1 (de) Verfahren zur kontinuierlichen thermischen oberflächennachvernetzung wasserabsorbierender polymerpartikel
EP3464427B1 (de) Verfahren zur herstellung von superabsorbern
EP2705075B1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel
EP2861633B1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel
EP2485773B1 (de) Verwendung von heizdampfkondensat zur herstellung wasserabsorbierender polymerpartikel
EP2861631B1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel in einem polymerisationsreaktor mit mindestens zwei achsparallel rotierenden wellen
EP2714103B1 (de) Verfahren zur kontinuierlichen herstellung wasserabsorbierender polymerpartikel
EP2485774B1 (de) Verfahren zur kontinuierlichen herstellung wasserabsorbierender polymerpartikel
WO2019162123A1 (de) Verfahren zur herstellung von superabsorberpartikeln
EP3827031A1 (de) Verfahren zur herstellung von superabsorbern
EP3697457A1 (de) Verfahren zur herstellung von superabsorbern

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980123232.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09765776

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011513993

Country of ref document: JP

Ref document number: 2009765776

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE