WO2006098246A1 - 液晶表示装置の駆動方法、液晶表示装置の駆動装置、そのプログラムおよび記録媒体、並びに、液晶表示装置 - Google Patents

液晶表示装置の駆動方法、液晶表示装置の駆動装置、そのプログラムおよび記録媒体、並びに、液晶表示装置 Download PDF

Info

Publication number
WO2006098246A1
WO2006098246A1 PCT/JP2006/304792 JP2006304792W WO2006098246A1 WO 2006098246 A1 WO2006098246 A1 WO 2006098246A1 JP 2006304792 W JP2006304792 W JP 2006304792W WO 2006098246 A1 WO2006098246 A1 WO 2006098246A1
Authority
WO
WIPO (PCT)
Prior art keywords
video data
luminance
liquid crystal
pixel
period
Prior art date
Application number
PCT/JP2006/304792
Other languages
English (en)
French (fr)
Inventor
Makoto Shiomi
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Priority to JP2007508113A priority Critical patent/JP4444334B2/ja
Priority to US11/794,153 priority patent/US8035589B2/en
Publication of WO2006098246A1 publication Critical patent/WO2006098246A1/ja

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0443Pixel structures with several sub-pixels for the same colour in a pixel, not specifically used to display gradations
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0443Pixel structures with several sub-pixels for the same colour in a pixel, not specifically used to display gradations
    • G09G2300/0447Pixel structures with several sub-pixels for the same colour in a pixel, not specifically used to display gradations for multi-domain technique to improve the viewing angle in a liquid crystal display, such as multi-vertical alignment [MVA]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0876Supplementary capacities in pixels having special driving circuits and electrodes instead of being connected to common electrode or ground; Use of additional capacitively coupled compensation electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0252Improving the response speed
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0261Improving the quality of display appearance in the context of movement of objects on the screen or movement of the observer relative to the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0271Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping
    • G09G2320/0276Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping for the purpose of adaptation to the characteristics of a display device, i.e. gamma correction
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/028Improving the quality of display appearance by changing the viewing angle properties, e.g. widening the viewing angle, adapting the viewing angle to the view direction
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0673Adjustment of display parameters for control of gamma adjustment, e.g. selecting another gamma curve
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/16Determination of a pixel data signal depending on the signal applied in the previous frame
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2018Display of intermediate tones by time modulation using two or more time intervals
    • G09G3/2022Display of intermediate tones by time modulation using two or more time intervals using sub-frames
    • G09G3/2025Display of intermediate tones by time modulation using two or more time intervals using sub-frames the sub-frames having all the same time duration
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3614Control of polarity reversal in general

Definitions

  • Liquid crystal display device driving method liquid crystal display device driving apparatus, program and recording medium, and liquid crystal display device
  • the present invention relates to a method for driving a liquid crystal display device with improved image quality when displaying a moving image, a driving method for the liquid crystal display device, a program thereof, and a recording medium.
  • the present invention relates to a liquid crystal display device.
  • the drive signal is modulated and driven so as to emphasize the tone transition to the previous power this time.
  • a method is also used.
  • Non-Patent Documents 1 and 2 to be described later in order to improve the response speed of a liquid crystal cell in PVA (Patterned Vertial Alignment) mode, an overshoot is applied after applying a pretilt signal to a pixel. A configuration for applying a signal is described.
  • Patent Document 1 Japanese Patent Laid-Open No. 4-302289 (Publication Date: October 26, 1994)
  • Patent Document 2 JP-A-5-68221 (Publication date: March 19, 1995)
  • Patent Document 3 Japanese Patent Laid-Open No. 2001-281625 (Publication Date: October 10, 2001)
  • Patent Document 4 Japanese Patent Laid-Open No. 2002-23707 (Publication date: January 25, 2002)
  • Patent Document 5 Japanese Patent Laid-Open No. 2003-22061 (Publication Date: January 24, 2003)
  • Patent Document 6 Japanese Patent No. 2650479 (issue date: September 3, 1997)
  • Patent Document 7 Japanese Unexamined Patent Application Publication No. 2003-295160 (Release Date; October 15, 2003)
  • Patent Document 8 Japanese Patent Application Laid-Open No. 2004-62146 (Publication Date; February 26, 2004)
  • Patent Document 9 Japanese Patent Application Laid-Open No. 2004-78157 (Publication Date; March 11, 2004)
  • Patent Document 10 Japanese Patent Application Laid-Open Publication No. 2004-258139 (Publication Date; September 16, 2004)
  • Non-Patent Document 1 Sang Soo Kim, 15.4: Invited Paper: Super PVA Sets New State-of-the
  • Non-Patent Document 2 Jang-Kun Song, et al., 48.2: DCCII: Novel Method for Fast Response Time in PVA Mode ⁇ SID 04 DIGEST, 2004, pp 1344— pp 1347
  • Non-Patent Document 3 New edition Color Science Handbook; 2nd edition (University of Tokyo Press; Publication date; June 10, 1998)
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a liquid crystal display device that is brighter, has a wide viewing angle, has a fast response speed, and has improved image quality when displaying moving images.
  • the present invention provides a driving method for a liquid crystal display device, a driving device for a liquid crystal display device, a program and a recording medium therefor, and a liquid crystal display device.
  • a driving method of a liquid crystal display device uses a vertically aligned mode liquid crystal cell as a normally black mode (normally black mode when no voltage is applied).
  • Luminance A low value that controls the time integral value of the luminance of the pixel during the period driven by the plurality of output video data by increasing or decreasing at least one of the remaining output video data. Luminance process and the above input video data from a predetermined threshold If at least one of the plurality of output video data is set to a value indicating the brightness within a predetermined range for bright display, the remaining output video is displayed.
  • a high-luminance process for controlling a time integral value of luminance of the pixel in a period driven by the plurality of output video data by increasing / decreasing at least one of the data
  • the low luminance step at least one of the plurality of output video data generated when the input video data indicates black has a luminance other than black.
  • the input video data indicates black
  • at least two of the plurality of output video data may be set to different values.
  • the value indicating the luminance in a predetermined range for dark display may be set to a value other than black.
  • the output video data with the latest pixel driving period corresponding to each of the output video data is set to a brightness other than the black. It may be set to the value shown.
  • the input video data shows a luminance lower than a predetermined threshold (in the case of dark display)
  • at least one of the plurality of output video data is dark. It is set to a value indicating the brightness within a predetermined range for display (the brightness for dark display), and the time integral value of the brightness of the pixel during the period driven by the output video data is controlled. Therefore, at least one of the remaining output video data is increased or decreased. Therefore, in most cases, the luminance of the pixel in the period driven in accordance with the output video data indicating the luminance for dark display (dark display period) can be set lower than the remaining period.
  • At least one of the plurality of output video data is set to a value indicating the luminance (brightness for bright display) in a predetermined range for bright display. At least one of the remaining output video data is increased or decreased in order to control the time integral value of the luminance of the pixel in the period driven by the plurality of output video data. Therefore, in most cases, the luminance of the pixels in a period other than the period (bright display period) driven according to the output video data indicating the brightness for bright display can be set lower than that in the bright display period. [0010] As a result, in most cases, it is possible to provide a period in which the luminance of the pixel is lower than that of the other periods at least once in each input period. Can be improved.
  • the brightness of a pixel is at a maximum.
  • the viewing angle capable of maintaining the brightness within the allowable range is wider than in the middle case. This is because in the state close to the maximum or minimum luminance, the alignment state of the liquid crystal molecules is simple and can be easily corrected, and it is easy to produce a favorable result in terms of images. This is because the viewing angle is more selectively assured in the portion close to the minimum luminance. Therefore, when the time-division driving is not performed, the viewing angle at which the halftone can be displayed suitably becomes narrow, and when viewed from outside the range, there is a possibility that problems such as whitening may occur.
  • one of the output video data in the case of dark display, one of the output video data is set to a value indicating the luminance for dark display, so that the luminance of the pixel is within an allowable range during the dark display period.
  • the maintained viewing angle can be expanded.
  • one of the output video data is set to a value indicating the brightness for dark display. Therefore, during the dark display period, the field of view in which the brightness of the pixels is maintained within the allowable range is set. The corner can be enlarged. As a result, it is possible to prevent the occurrence of defects such as whitening and to increase the viewing angle, compared to a configuration in which time-division driving is not performed.
  • liquid crystal molecules when a vertical alignment mode liquid crystal cell is driven in a normally black mode, an electric field is applied to liquid crystal molecules in a black display state, that is, a substantially vertical alignment state, and the liquid crystal molecules are tilted.
  • the liquid crystal molecules determine both the orientation (the in-plane component of the alignment direction parallel to the substrate) and the tilt angle (the direction force perpendicular to the substrate is also the angle to the alignment direction).
  • a liquid crystal molecule whose orientation has already been determined may determine its tilt angle according to the electric field.
  • the response time to the state power intermediate gradation in which the pixel displays black is the dark display state power brighter than black. It will be longer than the response time to the key.
  • At least one of the plurality of output video data generated when the input video data indicates black in the low luminance step has a luminance other than black. Is shown.
  • the response speed to the intermediate gray level can be greatly improved, and when displaying moving images.
  • the image quality can be greatly improved. If the brightness other than black is sufficiently dark, a user who has no problem even if the pixel does not actually display black recognizes the pixel as black.
  • the liquid crystal display device driving method is a liquid crystal display device driving method in which a vertical alignment mode liquid crystal cell is driven in a normally black mode. This is performed when the input video data to the panel pixels shows a brightness lower than a predetermined threshold, and is generated by dividing the unit period driven by the input video data into a plurality of periods. In at least one of the divided periods, the luminance of the pixel is set to a luminance within a predetermined range for dark display, and the luminance of the pixels in the remaining divided period is controlled.
  • a low luminance control process for controlling the time integral value of the luminance of the pixel in the unit period, and when the input video data to the pixel of the liquid crystal panel shows a luminance higher than a predetermined threshold.
  • the luminance of the pixel is determined in advance for bright display in at least one divided period.
  • a high-intensity control step in which the luminance of the pixel in the remaining divided period is controlled to control a time integral value of the luminance of the pixel in the unit period.
  • the luminance of the pixel is controlled to a luminance other than black in at least one of the divided periods. It is characterized by.
  • the input video data indicates black
  • at least two of the plurality of divided periods may be set to different luminances.
  • the brightness in a range predetermined for dark display may be set to a value other than black.
  • the luminance of the last divided period among the plurality of divided periods may be controlled to a luminance other than the black.
  • the liquid crystal display device driving method in most cases, it is possible to provide a period in which the pixel luminance is lower than that in other divided periods at least once per unit period. Therefore, the image quality when the liquid crystal display device displays a moving image can be improved. Furthermore, in the case of bright display, as the luminance indicated by the input video data increases, the luminance of the pixels in the period other than the divided period (bright display period) set to a luminance within a predetermined range for bright display increases. Therefore, a liquid crystal display device capable of brighter display can be realized.
  • the drive device for a liquid crystal display device performs the time-division drive of the pixel every time input video data is input to the pixel.
  • the input video data to the pixel it has a generating means for generating a plurality of predetermined numbers of output video data to the pixel for each input period, and the vertical alignment mode liquid crystal cell is normally set.
  • the generating unit is configured to store the plurality of output video data when the input video data has a luminance lower than a predetermined threshold value.
  • At least one of them is set to a value indicating the luminance within a predetermined range for dark display, and at least one of the remaining output video data is increased or decreased and driven by the plurality of output video data.
  • the input video data is determined in advance. If the brightness is higher than the threshold value, at least one of the output video data is set to a value indicating the brightness within a predetermined range for bright display, and the remaining output is set.
  • At least one of the video data is increased / decreased to control a time integral value of luminance of the pixel during a period driven by the plurality of output video data, and the generation means includes the input video When the data indicates black, at least one of the plurality of output video data is set to a value indicating luminance other than black.
  • the generation unit when the input video data indicates black, may set at least two of the plurality of output video data to different values. . Further, in addition to the above configuration, the value indicating the luminance in a predetermined range for dark display may be set to a value other than black. In addition to the above configuration, when the input video data indicates black, the generation means has the longest period in which the pixels are driven in accordance with each of the plurality of output video data. You can set the output video data later to a value that indicates a brightness other than black.
  • a period in which the luminance of the pixel is lower than the other periods can be provided at least once in each input period.
  • the image quality when the liquid crystal display device displays a moving image can be improved.
  • the luminance of the pixels in the period other than the bright display period increases, so that a liquid crystal display device capable of brighter display can be realized.
  • the generating unit may increase or decrease specific output video data that is a specific one of the remaining output video data to control the time integral value.
  • Both of the plurality of output video data other than the specific output video data have a value indicating a luminance in a predetermined range for the dark display or a luminance in a predetermined range for the bright display. May be set to the value shown.
  • video data other than the specific output video data is a value indicating a luminance within a predetermined range for dark display or a display for bright display. Is set to a value indicating the luminance in a predetermined range, so that the video data other than the specific output video data is set to a value that is not included in the difference between the two ranges. Furthermore, the occurrence of problems such as whitening can be prevented and the viewing angle can be expanded.
  • the generation means includes a period in which a pixel is driven in accordance with each of the plurality of output video data, divided into a plurality of divided periods,
  • the period during which the pixel is driven in accordance with a plurality of output video data is defined as a unit period, in the region where the luminance indicated by the input video data is the lowest, the time of the unit period is divided among the divided periods.
  • the output video data corresponding to the division period closest to the center position is selected as the specific output video data, and the luminance indicated by the input video data gradually increases, and the specific output video data is used for the bright display.
  • the output video data of the relevant divided period is set to a value within the relevant range, and the remaining divided period corresponds to the divided period closest to the temporal center position of the unit period.
  • Out Force video data may be newly selected as the specific output video data.
  • the temporal barycentric position of the luminance of the pixel in the unit period is set near the temporal center position of the unit period, regardless of the luminance indicated by the input video data.
  • the ratio between the periods in which the pixels are driven by each of the plurality of output video data may be any output video data among the plurality of output video data.
  • Timing power to switch between data It may be set to be closer to the timing for equally dividing the range of brightness that can be expressed by the pixel than the timing for equally dividing the range of luminance that can be expressed.
  • the time integral value power of the luminance of the pixel in the period driven by the plurality of output video data is appropriately determined as to which of the output video data indicates the main control. Since the brightness can be switched, the amount of whitening recognized by a person can be further reduced and the viewing angle can be further expanded, compared with the case where the brightness range is switched evenly.
  • the correction target data is arranged before or after the generation means, and corrects correction target data that is one of the input video data or the output video data, and a correction target after correction.
  • the correction unit includes a correction unit that predicts the luminance that the pixel has reached at the end of the drive period of the correction target data.
  • the luminance at the end of the driving period of the current correction target data may be predicted.
  • the luminance at the end of the driving period may be, for example, the luminance indicated by the current correction target data.
  • the response speed of the pixel when the response speed of the pixel is low, a certain amount of error occurs.
  • the current correction target data itself can be used as a prediction result, the configuration for prediction can be simplified.
  • the prediction result is based on a plurality of data including at least the current correction target data among the current correction target data and the current correction target data, the prediction result is The power that makes the configuration for prediction more complicated than when video data is used. Even when the response speed of pixels is slow, the brightness at the last point can be predicted more accurately.
  • the current correction is performed according to the prediction result indicating the luminance at which the pixel arrives at the first time of the driving period of the current correction target data among the prediction results thus far. Since the target data is corrected, the response speed of the pixels can be improved.
  • the types of liquid crystal display devices that can be driven by the drive device of the liquid crystal display device can be increased.
  • the pixels when pixels are time-divided, the pixels are required to have a faster response speed than when pixels are not time-division driven.
  • the response speed of the pixel if the response speed of the pixel is sufficient, the brightness of the pixel at the end of the current drive period is the current brightness even if the current correction target data is output as it is without referring to the prediction result. The brightness indicated by the correction target data is reached.
  • the response speed of the pixel is insufficient, it is difficult to make the luminance of the pixel at the last time point reach the luminance indicated by the current correction target data only by outputting the current correction target data as it is.
  • the types of liquid crystal display devices that can be driven by the time-division driven driving device are more limited than those without time-division driving.
  • the current correction target data is corrected according to the prediction result. For example, when the response speed is expected to be insufficient, the gradation transition is emphasized and the pixel is corrected. This makes it possible to perform processing according to the prediction result, such as improving the response speed of the pixel, and to improve the response speed of the pixels.
  • a liquid crystal display device is characterized in that it includes a! /, Shift of the driving device of the liquid crystal display device and a liquid crystal display device driven by the driving device. Therefore, similar to the liquid crystal display driving device, it is possible to realize a liquid crystal display device that is brighter, has a wider viewing angle, has a faster response speed, and has improved image quality when displaying moving images.
  • the liquid crystal display device is a liquid crystal display device having a vertical alignment mode liquid crystal cell and a drive device driven in a normally black mode.
  • each divided period generated by dividing the unit period driven by the input video data into a plurality of periods the luminance of the pixel is set to a luminance within a predetermined range for dark display, and the luminance of the pixels in the remaining divided periods is controlled. While controlling the time integral value of the luminance of the pixel, if the input video data to the pixel of the liquid crystal panel shows a luminance higher than a predetermined threshold, the unit period driven by the input video data is set.
  • the luminance of the pixel is set to a luminance within a predetermined range for bright display, and the remaining divided periods are set.
  • the luminance of the pixel is controlled to control the time integral value of the luminance of the pixel in the unit period, and the input video data indicates black
  • the pixel in the divided period is at least one It is characterized by controlling the brightness of the screen to a brightness other than black.
  • the method for driving the liquid crystal display device when the input video data indicates black, at least one of the divided periods is controlled to a luminance other than black.
  • the response speed to the halftone can be greatly improved compared to the configuration in which the entire divided period is controlled to black display, and the image quality during video display is greatly improved. Can be improved.
  • the driving device controls the time integral value by increasing or decreasing the luminance of a specific divided period, which is a specific one of the remaining divided periods.
  • the luminance other than the specific divided period is a value indicating a luminance in a range predetermined for the dark display or a luminance in a predetermined range for the bright display. It may be set to a value.
  • the drive device may include a divided period closest to the temporal center position of the unit period in each divided period in a region where the luminance indicated by the input video data is the lowest.
  • the luminance of the division period is A value within the range may be set, and among the remaining divided periods, a divided period closest to the temporal center position of the unit period may be newly selected as the specific divided period.
  • the temporal barycentric position of the luminance of the pixel in the unit period is set in the vicinity of the temporal center position of the unit period, regardless of the luminance indicated by the input video data.
  • the ratio between the divided periods is that the timing for switching which divided period to be the specific output divided period among the divided periods is the representation of the pixel. It may be set closer to the timing to equally divide the range of brightness that can be expressed by the pixel than the timing to equally divide the possible luminance range.
  • receiving means for receiving a television broadcast and inputting a video signal indicating an image transmitted by the television broadcast to the driving device of the liquid crystal display device And may operate as a liquid crystal television receiver.
  • the liquid crystal display device may be operated as a liquid crystal monitor device that receives a video signal from the outside and displays an image indicating the video signal.
  • the liquid crystal display device since the liquid crystal display device operates as a liquid crystal television receiver or a liquid crystal monitor device, it is brighter, has a wider viewing angle, and a faster response speed.
  • a liquid crystal television receiver or a liquid crystal monitor device with improved display image quality can be realized.
  • the device for controlling the liquid crystal display device may be realized by hardware! / Or by causing a computer to execute the program.
  • the program according to the present invention provides a computer that controls a liquid crystal display device having a vertical alignment mode liquid crystal cell driven in a normally black mode to each of the methods for driving the liquid crystal display device.
  • a program for executing a process, and the program is recorded on a recording medium according to the present invention.
  • the computer can control the liquid crystal display device in accordance with the driving method of the liquid crystal display device. Therefore, similarly to the driving method of the liquid crystal display device, it is possible to provide a liquid crystal display device having a brighter viewing angle, a faster response speed, and an improved image quality when displaying a moving image.
  • the present invention when the input video data indicates black, at least one of the divided periods is controlled to a luminance other than black, so that it is brighter and has a wider viewing angle. It is possible to provide a liquid crystal display device with improved image quality when displaying a moving image because of its rapid response speed and force. Therefore, it can be used widely and suitably as a driving device for various liquid crystal display devices such as a liquid crystal television receiver and a liquid crystal monitor.
  • FIG. 1, showing an embodiment of the present invention is a block diagram showing a main configuration of a signal processing circuit provided in an image display device.
  • FIG. 2 is a block diagram showing a main configuration of the image display device.
  • FIG. 3 (a) is a block diagram showing a main configuration of a television receiver provided with the image display device.
  • FIG. 3 (b) is a block diagram showing a main configuration of a liquid crystal monitor device provided with the image display device.
  • FIG. 4 is a circuit diagram showing a configuration example of a pixel provided in the image display device.
  • a liquid crystal cell provided in the image display device which is a schematic diagram showing a state in which no voltage is applied.
  • a liquid crystal cell provided in the image display device which is a schematic diagram showing a voltage application state.
  • FIG. 7 is a plan view showing a configuration example of the liquid crystal cell and showing the vicinity of a pixel electrode. 8] A graph showing the difference in luminance when the pixel is viewed from the front and obliquely when it is driven without time division.
  • FIG. 10 shows a comparative example and is a timing chart showing temporal changes in video data input / output to / from the signal processing unit.
  • FIG. 11 is a graph showing a change in luminance when the image display device is driven by the signal processing unit.
  • FIG. 13 is a graph showing a change in luminance when the image display device is driven by the signal processing unit.
  • FIG. 14 is a drawing showing the results of evaluating the average luminance and contrast ratio during black display while changing the luminance of darkly displayed subframes.
  • FIG. 15 is a block diagram illustrating a comparative example, in which a ⁇ correction circuit is provided in the preceding stage of the modulation processing unit in the signal processing circuit.
  • FIG. 16 is a block diagram illustrating an exemplary configuration of a modulation processing unit provided in the signal processing circuit according to the embodiment, and illustrating a configuration of a main part of the modulation processing unit.
  • FIG. 17 is a graph showing the luminance graph shown in FIG. 14 converted to lightness.
  • FIG. 18 The video signal input to the frame memory shown in FIG.
  • FIG. 19 is an explanatory diagram showing the ON timing of the scanning signal lines related to the front display signal and the rear display signal when the frame is divided into 3: 1 in the present embodiment.
  • FIG. 20 is a graph showing the relationship between scheduled brightness and actual brightness when a frame is divided into 3: 1 in this embodiment.
  • 21 (a)] is an explanatory diagram showing a method of inverting the polarity of the voltage between electrodes at a frame period.
  • FIG. 21 (b) is an explanatory diagram showing another method for inverting the polarity of the interelectrode voltage at the frame period.
  • ⁇ 22 (a)] is a diagram for explaining the response speed of the liquid crystal, and is a diagram for explaining the voltage applied to the liquid crystal in one frame when displaying a display signal of intermediate gradation.
  • ⁇ 22 (b)] is a diagram for explaining the response speed of the liquid crystal, and is a diagram showing the voltage between the electrodes.
  • ⁇ 22 (c)] is a diagram for explaining the response speed of the liquid crystal, and the response of the liquid crystal
  • FIG. 6 is a diagram showing the interelectrode voltage when the speed is low.
  • FIG. 23 is a graph showing display luminance (relationship between planned luminance and actual luminance) output from a liquid crystal panel when subframe display is performed using liquid crystal with a slow response speed.
  • FIG. 24 (a) is a graph showing the luminance displayed by the previous subframe and the rear subframe when the display luminance force Lmax is 3Z4 and 1Z4.
  • FIG. 24 (b) is a graph showing the transition state of the liquid crystal voltage when the polarity of the voltage (liquid crystal voltage) applied to the liquid crystal is changed in the subframe period.
  • ⁇ 25 (a)] is an explanatory diagram showing a method of reversing the polarity of the voltage between the electrodes at the frame period
  • ⁇ 25 (b)] is an explanatory diagram showing a method of reversing the polarity of the voltage between the electrodes at the frame period
  • the figure shows the case where the liquid crystal voltage is reversed between two subframes in one frame, and the rear subframe and the previous subframe of the next frame are of the same polarity.
  • FIG. 26 (a) is an explanatory diagram showing the four sub-pixels in the liquid crystal panel and the polarity of the liquid crystal voltage of each pixel.
  • FIG. 26 (b) is another explanatory diagram showing the four sub-pixels in the liquid crystal panel and the polarity of the liquid crystal voltage of each pixel.
  • FIG. 26 (d) is another explanatory diagram showing the four sub-pixels in the liquid crystal panel and the polarity of the liquid crystal voltage of each pixel.
  • FIG. 27 is an explanatory diagram showing a configuration of a liquid crystal panel driven by pixel division.
  • FIG. 28 (a) This is a graph showing the voltage (liquid crystal voltage) applied to the liquid crystal capacitance of the partial pixel when a positive ( ⁇ Vcom) display signal is applied to the source line S. The case where 1 auxiliary signal rises is shown.
  • FIG. 28 (b) This is a graph showing the voltage (liquid crystal voltage) applied to the liquid crystal capacitance of the partial pixel when a negative ( ⁇ Vcom) display signal is applied to the source line S. The case where the auxiliary signal of CS1 falls is shown.
  • FIG. 28 (c) This is a graph showing the voltage (liquid crystal voltage) applied to the liquid crystal capacitance of the partial pixel when a positive ( ⁇ Vcom) display signal is applied to the source line S.
  • the auxiliary signal of S2 shows the case where it falls.
  • FIG. 28 (d) This is a graph showing the voltage (liquid crystal voltage) applied to the liquid crystal capacitance of the partial pixel when a negative ( ⁇ Vcom) display signal is applied to the source line S. The case where the auxiliary signal of CS2 rises is shown.
  • FIG. 30 (a) is a graph showing changes in liquid crystal voltage (for one pixel) in the case where sub-frame display is performed while inverting the polarity of the liquid crystal voltage every l frame.
  • ⁇ 30 (c)] is a graph showing the liquid crystal voltage of the partial pixel (dark pixel) having the same low luminance.
  • [31 (a)] is a graph showing the luminance of a bright pixel corresponding to FIG. 30 (b).
  • FIG. 31 (b) is a graph showing the luminance of dark pixels corresponding to FIG. 30 (c).
  • FIG. 32 (b) Graph showing the luminance of dark pixels when polarity inversion is performed in the frame period It is.
  • FIG. 34 (b) is a graph showing the luminance of dark pixels when polarity inversion is performed in the subframe period.
  • FIG.35 Graph showing the result of dividing the display into three equal subframes (dashed line and solid line) and the result of normal hold display (dashed line and solid line) It is.
  • FIG. 36 is a graph showing the transition of the liquid crystal voltage when the frame is divided into three and the voltage polarity is inverted for each frame.
  • FIG. 37 is a graph showing the transition of the liquid crystal voltage when the frame is divided into three and the voltage polarity is inverted for each subframe.
  • Another embodiment of the present invention is a block diagram showing a main configuration of a signal processing circuit.
  • FIG. 40 shows a configuration example of a modulation processing unit provided in the signal processing circuit, and is a block diagram showing a main configuration of the modulation processing unit.
  • FIG. 41 is a timing chart showing the operation of the signal processing circuit.
  • FIG. 42 is a block diagram showing another configuration example of the modulation processing unit provided in the signal processing circuit and showing a main configuration of the modulation processing unit.
  • FIG. 43 is a timing chart showing the operation of the signal processing circuit.
  • FIG. 44 is a block diagram showing a main configuration of a modulation processing section, showing a modification.
  • FIG. 45 is a block diagram showing the main configuration of a modulation processing section, showing another modification.
  • FIG. 46 is a perspective view showing a pixel electrode according to another configuration example of the liquid crystal cell.
  • FIG. 47 is a plan view showing still another configuration example of the liquid crystal cell and showing the vicinity of a pixel electrode.
  • FIG. 48 is a perspective view showing another configuration example of the liquid crystal cell and showing the pixel electrode.
  • FIG. 49 is a perspective view showing another configuration example of the liquid crystal cell and showing a pixel electrode and a counter electrode.
  • FIG. 50 is a plan view showing a pixel electrode, showing still another configuration example of the liquid crystal cell.
  • the image display apparatus controls the brightness to a brightness other than black at least one of the divided periods (for example, subframes) even when the input video data indicates black.
  • a brighter viewing angle, wider response speed, and faster force are liquid crystal display devices capable of improving the image quality at the time of moving image display, and can be suitably used, for example, as an image display device for a television receiver.
  • Examples of television broadcasting received by the television receiver include artificial satellites such as terrestrial television broadcasting, BS (Broadcasting Satellite) digital broadcasting, and CS (Communication Satellite) digital broadcasting. Broadcasting used, cable television broadcasting, etc. are mentioned.
  • the panel 11 of the image display device (display device) 1 includes, for example, one pixel from sub-pixels that can display R, G, and B colors, and controls the luminance of each sub-pixel.
  • a panel capable of color display for example, a pixel array (display) having sub-pixels SPIX (1,1) to SPIX (n, m) arranged in a matrix as shown in FIG. 2), a data signal line driving circuit 3 for driving the data signal lines SL1 to SLn of the pixel array 2, and a scanning signal line driving circuit 4 for driving the scanning signal lines GL1 to GLm of the pixel array 2.
  • the image display device 1 includes a control circuit 12 that supplies control signals to both drive circuits 3 and 4, and a video signal DAT2 that is supplied to the control circuit 12 based on the video signal DAT input from the video signal source VS. And a signal processing circuit 21 for generating. These circuits are operated by supplying power from the power supply circuit 13.
  • one pixel PIX is composed of three sub-pixels SPIX adjacent in the direction along the scanning signal lines GLl to GLm. Note that the sub-pixel SPIX (1,1) •• ⁇ according to the present embodiment corresponds to the pixel described in the claims.
  • the video signal source VS may be any device as long as it can generate the video signal DAT, but as an example, when the device including the image display device 1 is a television receiver, There is a tuner (image receiving means) that receives a television broadcast and generates a video signal indicating a video transmitted by the television broadcast.
  • the video signal source VS as a tuner selects the channel of the broadcast signal, transmits the television video signal of the selected channel to the signal processing circuit 21, and the signal processing circuit 21 converts the television video signal into the TV video signal. Based on this, a video signal DAT2 after signal processing is generated.
  • the video signal source VS include a personal computer.
  • the television receiver 100a when the device including the image display device 1 is the television receiver 100a, the television receiver 100a includes the video signal source VS and the image display device 1, and is shown in FIG. ) As shown in FIG. 5, for example, a television broadcast signal is input to the video signal source VS. Further, the video signal source VS includes a tuner unit TS that selects a channel of the TV broadcast signal power and outputs the TV video signal of the selected channel as a video signal DAT.
  • a tuner unit TS that selects a channel of the TV broadcast signal power and outputs the TV video signal of the selected channel as a video signal DAT.
  • the liquid crystal monitor device 100b receives a video monitor signal from a personal computer, for example, as shown in FIG. 3 (b).
  • a monitor signal processing unit 101 that outputs a video signal to the liquid crystal panel 11 is provided.
  • the monitor signal processing unit 101 may be the signal processing circuit 21 or the control circuit 12 itself, or may be a circuit provided in the preceding stage or the subsequent stage.
  • the pixel array 2 includes a plurality of data signal lines SLl to SLn (in this case, n lines) and a plurality of data signal lines SLl to SLn (in this case, m lines).
  • Scanning signal lines GLl to GLm where i is an arbitrary integer up to 1 force and n, and j is an arbitrary integer up to 1 force and m, for each combination of data signal line SLi and scanning signal line GLj
  • Subpixel SPIX (i, j) is provided.
  • each sub-pixel SPIX (iJ) includes two adjacent data signal lines SL (i-1) ′ SLi and two adjacent scanning signal lines GL (jl) ′ GLj It is arranged in the part surrounded by.
  • the sub-pixel SPIX (U) includes a field effect transistor SW having a gate connected to the scanning signal line GLj and a source connected to the data signal line SLi as a switching element. (i, j) and a pixel capacitor Cp (i, j) having one electrode connected to the drain of the field effect transistor SW (i, j). The other end of the pixel capacitor Cp (i, j) is connected to a common electrode line common to all the sub-pixels SPIX.
  • the pixel capacitor Cp (i, j) includes a liquid crystal capacitor CL (i, j) and an auxiliary capacitor Cs (i, j) that is added as necessary.
  • the scanning signal line GLj is selected and a voltage corresponding to the video data to the subpixel SPIX (i, j) is applied to the data signal line SLi, the display state of the subpixel SPIX (i, j) Can be changed according to the video data.
  • the image display device 1 is a vertical alignment mode liquid crystal cell as a liquid crystal cell, that is, when no voltage is applied, the liquid crystal molecules are aligned substantially perpendicular to the substrate, and the subpixel SPIX A liquid crystal cell in which the liquid crystal molecules tilt from the vertical alignment state according to the voltage applied to the liquid crystal capacitance CL (i, j) of (i, x) is adopted, and the liquid crystal cell is normally black mode. I use it.
  • the pixel array 2 includes a vertical alignment (VA) type liquid crystal cell (liquid crystal display device) 111 and a liquid crystal cell 111 arranged on both sides of the liquid crystal cell 111.
  • VA vertical alignment
  • the polarizing plates 112 and 113 are laminated.
  • the liquid crystal cell 111 includes a TFT (Thin Film Transistor) substrate 11 la provided with a pixel electrode 12 la corresponding to each subpixel SPIX, a counter substrate 11 lb provided with a counter electrode 121b, And a liquid crystal layer 111c made of nematic liquid crystal having negative dielectric anisotropy sandwiched between both substrates 11 la '11 lb.
  • the image display device 1 can perform color display, and the counter substrate 111b is provided with a color filter (not shown) corresponding to the color of each sub-pixel SPIX.
  • a vertical alignment film 122a is formed on the surface of the TFT substrate 11la on the liquid crystal layer 111c side.
  • a vertical alignment film 122b is formed on the surface of the counter substrate 11lb on the liquid crystal layer 111c side.
  • the liquid crystal cell 111 is a multi-domain alignment liquid crystal cell in which each subpixel SPIX is divided into a plurality of ranges (domains), and the alignment direction, that is, when a voltage is applied.
  • the orientation (in-plane component of the alignment direction) when the liquid crystal molecules M are tilted is controlled to be different between the domains.
  • the pixel electrode 121a has protrusions 123a in a cross-sectional shape and an in-plane shape bent substantially at right angles to the zigzag in a stripe shape. It has been done.
  • the counter electrode 121b is formed with a slit (opening: an electrode is formed, a portion) 123b- "whose in-plane shape is bent substantially at right angles to the zigzag is formed in a stripe shape!
  • the distance in the in-plane direction between the projection row 123a and the slit 123b is set to a predetermined interval, and the projection row 123a is formed by applying a photosensitive resin on the pixel electrode 121a.
  • the electrodes 121a '121b are formed by forming an ITO (Indium Tin Oxide) film on each substrate 11 la' 11 lb, and then forming the electrodes 121a '121b on the electrodes 11a' 121b.
  • the slit 123b is formed so as to exclude the slit 123b when forming the counter electrode 12 lb. By pattering It is made.
  • the liquid crystal molecules are aligned so as to be perpendicular to the slope of the protrusion row 123a.
  • the electric field in the vicinity of the protrusion row 123a is inclined so as to be parallel to the slope of the protrusion row 123a.
  • the major axis of the liquid crystal molecules is inclined in the direction perpendicular to the electric field, the liquid crystal molecules are aligned in an oblique direction with respect to the substrate surface.
  • the liquid crystal molecules that have separated the slope force of the projection row 123a are aligned in the same direction as the liquid crystal molecules near the slope.
  • each projection row 123a ... and slit 123b ... if the portion between the corner C and the corner portion is referred to as a line portion, the line portion L 123a of the projection row 123a and the line of the slit 123b In the region between the portion L 123 b, the in-plane component in the alignment direction of the liquid crystal molecules at the time of voltage application coincides with the in-plane component in the direction from the line portion L123a to the line portion L123b.
  • the protrusion row 123a and the slit 123b are bent at a corner C at a substantially right angle. Therefore, the alignment direction of the liquid crystal molecules is divided into four in the subpixel SPIX, and domains D1 to D4 having different alignment directions of the liquid crystal molecules can be formed in the subpixel SPIX.
  • both polarizing plates 112 113 shown in FIG. 5 are arranged so that the absorption axis AA112 of the polarizing plate 112 and the absorption axis AA113 of the polarizing plate 113 are orthogonal to each other (see FIG. 7). Further, both polarizing plates 112 and 113 form an angle of 45 degrees with the respective absorption axes ⁇ 112 ⁇ ⁇ 113 and in-plane components in the alignment direction of the liquid crystal molecules in the domains D1 to D4 when a voltage is applied. Is located (see Figure 7). In FIG.
  • the forces with the absorption axis AA112 being an axis parallel to the paper surface and the absorption axis AA113 being an axis perpendicular to the paper surface are rotated by 90 °.
  • the absorption axis AA112 may be an axis perpendicular to the paper surface
  • the absorption axis AA113 may be an axis parallel to the paper surface.
  • the liquid crystal molecules of the liquid crystal cell 111 are aligned in the substrate normal direction as shown in FIG. On the other hand, it is tilted by an angle corresponding to the voltage. Thereby, a phase difference corresponding to the voltage is given to the light passing through the liquid crystal cell 111.
  • the polarizing plates 112 ⁇ 113 113 ⁇ 112 ⁇ ⁇ 113 are arranged so as to be orthogonal to each other. Therefore, the light incident on the polarizing plate (eg, 112) on the output side becomes elliptically polarized light corresponding to the phase difference given by the liquid crystal cell 111, and part of the incident light passes through the polarizing plate 112. As a result, the amount of light emitted from the polarizing plate 112 can be controlled according to the applied voltage, and gradation display is possible.
  • the alignment directions of the liquid crystal molecules are different from each other in the sub-pixel. Domains D1 to D4 are formed. Therefore, even when the liquid crystal cell 111 is viewed from a direction parallel to the alignment direction of the liquid crystal molecule belonging to a certain domain (for example, D1), the liquid crystal molecule cannot give a phase difference to the transmitted light.
  • the liquid crystal molecules in the remaining domains can give a phase difference to the transmitted light. Therefore, each domain can optically compensate for each other. As a result, the display quality when the liquid crystal cell 111 is viewed from an oblique direction can be improved, and the viewing angle can be expanded.
  • the liquid crystal molecules of the liquid crystal cell 111 are in a vertically aligned state as shown in FIG.
  • the light incident on the liquid crystal cell 111 from the normal direction is not given a phase difference by each liquid crystal molecule and passes through the liquid crystal cell 111 while maintaining the polarization state.
  • the polarizing plate eg, 112
  • the polarizing plate becomes linearly polarized light in a direction substantially parallel to the absorption axis AA1 12 of the polarizing plate 112 and cannot pass through the polarizing plate 112.
  • the pixel array 2 can display black.
  • the transmittance of the sub-pixel SPIX can be changed according to the voltage level applied to the pixel electrode 121a, and gradation display can be performed.
  • the scanning signal line drive circuit 4 shown in FIG. 2 outputs a signal indicating whether or not the selection period is valid, such as a voltage signal, to each of the scanning signal lines GL1 to GLm. Further, the scanning signal line drive circuit 4 changes the scanning signal line GLj that outputs a signal indicating the selection period based on timing signals such as a clock signal GCK and a start pulse signal GSP supplied from the control circuit 12, for example. ing. Thus, the scanning signal lines GLl to GLm are sequentially selected at a predetermined timing.
  • the data signal line driving circuit 3 extracts the video data to the sub-pixels SPIX, which are input in a time division manner, as video signals by sampling at a predetermined timing, respectively. Further, the data signal line driving circuit 3 sends each data signal line to each subpixel SPIX (l, j) to SPIX (n, j) corresponding to the scanning signal line GLj that is selected by the scanning signal line driving circuit 4. Output the output signal according to the video data to each via SLl ⁇ SLn To do.
  • the data signal line driving circuit 3 determines the output timing of the sampling timing output signal based on the timing signals such as the clock signal SCK and the start pulse signal SSP input from the control circuit 12. Decide.
  • each of the subpixels SPIX (l, j) to SPIX (n, j) has its corresponding data signal line SLl to SLn while the scanning signal line GLj corresponding to the subpixel SPIX (l, j) to SPIX (n, j) is selected.
  • the brightness and transmittance when emitting light are adjusted to determine its own brightness.
  • the scanning signal line driving circuit 4 sequentially selects the scanning signal lines GLl to GLm.
  • the subpixels SPIX (1,1) to SPIX (n, m) that make up all the pixels of the pixel array 2 can be set to the brightness (gradation) indicated by the video data for each, and displayed on the pixel array 2. Can be updated.
  • the video data D to each of the sub-pixels SPIX may be the gradation level itself as long as the gradation level of the sub-pixel SPIX can be specified, or for calculating the gradation level. Although it may be a parameter, in the following description, as an example, the case where the video data D is the gradation level of the sub-pixel SPIX will be described.
  • the video signal DAT supplied from the video signal source VS to the signal processing circuit 21 may be an analog signal or a digital signal, as will be described later. . Also, it may be transmitted in frame units (entire screen unit), or one frame may be divided into a plurality of fields and may be transmitted in the field unit. The case where the signal DAT is transmitted in frame units will be described.
  • the video signal source VS when the video signal source VS according to the present embodiment transmits the video signal DAT to the signal processing circuit 21 of the image display device 1 via the video signal line VL, the video data for a certain frame is transmitted. After all the data has been transmitted, the video data for the next frame is transmitted in a time division manner, such as by transmitting the video data for the next frame.
  • the frame is composed of a plurality of horizontal lines.
  • the video signal line VL After all video data for a certain horizontal line is transmitted in a certain frame, the next transmission is performed.
  • Each horizontal line is transmitted by transmitting video data for the horizontal line.
  • Video data for video transmission is transmitted in time division.
  • the video signal source VS drives the video signal line VL in a time-sharing manner when transmitting video data for one horizontal line, and video data is sequentially transmitted in a predetermined order.
  • video data D can identify video data D to each sub-pixel, the video data D itself is transmitted separately to the sub-pixel, and the video data itself is sent to the sub-pixel.
  • the video data D can be used as video data D, or data that has undergone some data processing is transmitted to each video data D, and the signal processing circuit 21 restores the data to the original video data D.
  • video data indicating the color of the pixel for example, data displayed in RGB
  • the signal processing circuit 21 is based on the video data of each pixel.
  • the video data D for each sub-pixel is generated.
  • the transmission frequency (dot clock) of the video data of each pixel is 65 [MHz].
  • the signal processing circuit 21 performs a process of emphasizing gradation transition, a process of dividing into subframes, and a ⁇ conversion process on the video signal DAT transmitted through the video signal line VL.
  • Video signal DAT2 can be output.
  • the video signal DAT2 is composed of video data power to each sub-pixel after processing, and the video data to each sub-pixel in a certain frame is transmitted to each sub-pixel in each sub-frame. It is given as a combination of video data.
  • each video data constituting the video signal DAT2 is also transmitted in a time division manner.
  • the signal processing circuit 21 transmits video data for the next frame after transmitting all video data for a certain frame.
  • the video data for each frame is transmitted in a time division manner.
  • Each frame includes a plurality of subframes.
  • the signal processing circuit 21, for example, transmits all video data for a certain subframe and then transmits the video for the next subframe to be transmitted.
  • Video data for each subframe is transmitted in a time division manner, such as by transmitting image data.
  • the video data for the sub-frame is composed of video data for a plurality of horizontal lines, and the video data for the horizontal line is composed of video data for each sub-pixel. It is made.
  • the signal processing circuit 21 transmits the video data for the horizontal line to be transmitted next after, for example, all the video data for a certain horizontal line has been transmitted. For example, when video data for each horizontal line is transmitted in a time-sharing manner, and video data for each horizontal line is transmitted, for example, the video data is sequentially transmitted to each sub-pixel in a predetermined order. And speak.
  • gradation transition emphasis processing may be performed later, but in the following, after the gradation transition is emphasized, division into subframes and ⁇ conversion processing are performed. And explain.
  • the signal processing circuit 21 performs correction for emphasizing gradation transition in each sub-pixel SPIX on the video signal DAT, and the corrected video A modulation processing unit (correction means) 31 that outputs the signal DATo, and subframe processing that performs division into ⁇ -frames and ⁇ conversion processing based on the video signal DATo and outputs the corrected video signal DAT2 Part 32 is provided.
  • the image display device 1 according to the present embodiment includes R, G, and ⁇ sub-pixels for color display, and the modulation processing unit 31 and the subframe processing unit 32 include R, G, and Although each circuit has the same configuration except for the input video data D (i, j, k), in the following, referring to FIG. Only the circuit will be described.
  • the above-mentioned modulation processing unit 31 outputs each video data (in this case, video data D (i, j, k)) to each sub-pixel indicated by the input video signal, which will be described in detail later.
  • the video signal DATo consisting of each corrected video data (in this case, video data Do (i, j, k)) can be output.
  • FIG. 1, FIG. 15, FIG. 16, FIG. 39, FIG. 40, FIG. 42, FIG. 44, and FIG. 45 which will be described later, illustrate only video data related to a specific subpixel SPIX (U).
  • the symbol U indicating the location is omitted as in the video data Do (k).
  • the subframe processing unit 32 divides one frame period into a plurality of subframes, and based on the video data Do (i, j, k) of a certain frame FR (k), Video data S to (i, j, k) for each subframe of FR (k) can be generated.
  • one frame FR (k) is divided into two subframes, For each frame, the subframe processing unit 32, based on the video data Do (i, j, k) of the frame (for example, FR (k)), the video data Sol (i , j, k) and So2 (i, j, k).
  • the temporally previous subframe is SFRl (k)
  • the temporally subsequent subframe is SFR2 (k).
  • the case where the signal processing circuit 21 transmits the video data for the subframe SFRl (k) after transmitting the video data for the subframe SFRl (k) will be described.
  • the subframe SFRl (k) corresponds to the video data Sol (i, j, k)
  • the subframe SFR2 (k) corresponds to the video data So2 (i, j, k).
  • the voltage corresponding to the video data D (i, j, k) is changed to the subpixel SPIX.
  • the time to be applied to (i, j) is the force that can be set at various times.
  • the video data D (i, j, k) of a certain frame FR (k) is subjected to gradation transition emphasis processing, frame division processing, and ⁇ correction processing (corrected data Sol (i, j, k) and So2 (i, j, k)) and the voltages (Vl (i, j, k) and V2 (i, j, k)) corresponding to the corrected data are ⁇ corresponding to the same frame FR (k).
  • the period corresponding to these data and voltage is referred to as frame FR (k).
  • These data, voltage and frame are referred to with the same frame number (for example, k).
  • the period corresponding to these data and voltage is more specifically, the video data D (i, j, k) of a certain frame FR (k) is input to the sub-pixel SPIX (iJ). Until the video data D (i, j, k + 1) of the next frame FR (k + l) is input until the video data D (i, j, k) Output the first of the corrected data Sol (i, j, k) and So2 (i, j, k) (Sol (i, j, k) in this example) After that, the corrected data Sol (i, j, k + l) and So2 (i, j, k + l) obtained by performing the above processing on the next video data D (i, j, k + 1) l) The first one of (in this example, Sol (i, j, k + l)) is output, or it is applied according to the video data Sol (i, j, k) After the voltage Vl
  • each subframe and video data or voltage corresponding to the subframe are collectively referred to as a subframe number such as a subframe SFR (x).
  • a subframe number such as a subframe SFR (x).
  • certain subframes SFRl (k) and SFR2 (k) become subframes SFR (x) and SFR (x + l).
  • the subframe processing unit 32 includes a frame memory 41 that stores video data D to each subpixel SPIX for one frame, and video data and video data Sol in the first subframe.
  • a look-up table (LUT) 42 that stores the correspondence relationship between the image data and the LUT 43 that stores the correspondence relationship between the video data and the video data So2 in the second subframe, and a control circuit 44 that controls them. Yes.
  • the LUT 42'43 corresponds to the storage means described in the claims, and the control circuit 44 corresponds to the generation means.
  • the control circuit 44 performs video data D to each sub-pixel SPIX (1, 1) to (n, m) in the frame (for example, FR (k)) once for each frame. (l, l, k) to D (n, m, k) are written to the frame memory 41, and the number of subframes (in this case, twice) for each frame is written into the frame memory 41. From the above, each of the video data D (l, l, k) to D (n, m, k) can be read out.
  • the LUT 42 is output when the read video data (l, l, k) to D (n, m, k) are associated with each of the possible values.
  • a value indicating the video data Sol to be stored is stored.
  • the LUT 43 is associated with each of the possible values and stores a value indicating the video data So2 to be output when the value is obtained.
  • control circuit 44 refers to the LUT 42 and outputs the video data Sol (i, j, k) corresponding to the read video data D (i, j, k), and the LUT 43
  • the video data So2 (i, j, k) corresponding to the read video data D (i, j, k) can be output with reference.
  • the value stored in each LUT 42'43 may be, for example, a difference from the above possible value as long as each video data Sol 'So2 can be specified.
  • the value itself of the image data Sol ′ So2 is stored, and the control circuit 44 outputs the value read from each LUT 42′43 as each video data Sol ′ So2.
  • the values stored in the LUT 42'43 correspond to the above possible values g and the value g.
  • the values stored in each are Pl and P2, they are set as follows.
  • the video data Sol of the subframe SFRl (k) may be set so as to show a higher luminance, but in the following, the video data So2 of the subframe SFR2 (k) has a luminance higher than the video data Sol. It will be explained if it is set to indicate!
  • the value P1 is set to a value within the range determined for dark display.
  • the value P2 is set according to the value P1 and the value g.
  • the upper limit value of the dark display range is a gradation predetermined for dark display
  • the lower limit value is set to a value larger than the gradation (black) indicating the lowest luminance.
  • the range includes an upper limit and a lower limit.
  • the gradation predetermined for the dark display is set to a value that can suppress the amount of whitening described later to a desired amount or less.
  • the value P2 is a range defined for bright display.
  • the value P1 is set to a value corresponding to the value P2 and the value g.
  • the range for bright display is a gradation greater than or equal to the gradation predetermined for bright display, and when the gradation predetermined for the bright display shows the maximum luminance, the maximum luminance is Is a gradation (white).
  • the display state of the sub-pixel SPIXGJ) can be set to the dark display state at least during the sub-frame SFRl (k) in the frame FR (k).
  • the sub-pixel SPIX (iJ) in the frame FR (k) can be brought close to an impulse type light emission such as CRT (Cathode-Ray Tube), and the image quality when displaying a moving image on the pixel array 2 can be improved.
  • video data D (i, j, k) to sub-pixel SPIXGJ) in a certain frame FR (k) When the gradation is higher than the above threshold value, that is, in the high luminance region, the level of the luminance of the sub-pixel SPIX (iJ) in the frame FR (k) is mainly due to the magnitude of the value P1. Controlled. Therefore, compared with the configuration in which the luminances of both subframes SFRl (k) and SFR2 (k) are allocated approximately equally, the luminance in subframe SFRl (k) of subpixel SPIXGJ) and the subframe SFR2 (k ) Can be set large.
  • the video data So2 (i, j, k) for the subframe SFR2 (k) ) Becomes a value within the range specified for bright display, and as the luminance indicated by the video data D (i, j, k) increases, the video data Sol (i, j, k) increases. Therefore, the luminance of the sub-pixel SPIX (iJ) in the frame FR (k) can be increased as compared with a configuration in which a period for dark display is always provided even when white display is instructed.
  • the luminance value of the sub-pixel SPIX (i, j) is made closer to the impulse type described above, and the maximum value of the luminance of the sub-pixel SPIXGJ) is greatly increased despite the improved image quality during video display. Therefore, a brighter image display device 1 can be realized.
  • the video data D (i, j, k) can be displayed in any of the high luminance region gradation and the low luminance region gradation.
  • One of the video data Sol (i, j, k) and So2 (i, j, k) is a value within the range defined for bright display or within the range defined for dark display. Value, and the sub image in the frame FR (k)
  • the brightness of the element SPIX (i, j) is mainly controlled by the other size.
  • the amount of whitening (deviation from the assumed brightness) is the largest in the case of intermediate gradation, and in the case of sufficiently low brightness. In the case of sufficiently high brightness, the value is relatively small.
  • the liquid crystal molecules are aligned in a substantially vertical state (black display state), and then the inclined state (intermediate gradation or The response speed when transitioning to (white display state) is higher than the response speed when changing the tilt angle according to the gradation to be displayed from the state where the liquid crystal molecules have already tilted (display state other than black). Will also be late.
  • the response speed when driving divided into subframes as described above, or the brightness of the subpixel SPIX is improved. Improvement is likely to be limited.
  • the orientation direction in-plane component parallel to the substrate in the alignment direction
  • the orientation direction has not yet been determined, so that it depends on the electric field or the continuity of the liquid crystal.
  • the response speed of the liquid crystal molecules tends to be slow compared to the case of transition from a state in which the orientation direction has already been determined.
  • the orientation direction of the liquid crystal molecules is determined after the orientation direction of the liquid crystal molecules in the neighboring region is determined. Since the direction is determined, the response speed of these liquid crystal molecules is further slowed down. As a result, the response speed of the luminance (transmittance) of the sub-pixel SPIX changes from the state where the liquid crystal molecules are already inclined (display state other than black) according to the gradation to be displayed. Compared to the case, the transition from the state where the liquid crystal molecules are aligned substantially vertically (black display state) to the tilted state (intermediate gradation or white display state) becomes slower. If the tone transition is emphasized, the response time can be shortened to some extent.
  • the frame FR in the period tO to tl is, for example, frames FR (1) to FR (5)
  • the video data D (i, j, l to 5) is a value indicating black (for example, 0)
  • the video data So 2 (i, j, 1 to 5) is also set to a value indicating black.
  • the subframe processing unit 32 performs subframe SFR1 (6 to) Video data Sol (i, j, 6 ⁇ ) is set to a value within the range defined for dark display (in this case, black), and video data So2 (i, subframe SFR2 (6 ⁇ ) is set. j, 6 ⁇ ) is increased or decreased to control the time integral value of the luminance of sub-pixel SPIXGJ) in each frame FR (6 ⁇ ).
  • the video data D (i, j, 6 ⁇ ) does not exceed the threshold value but is a value immediately before the threshold value. Therefore, the video data So2 (i, j, 6 ⁇ ) is set to white or a value close to white.
  • the sub-frame processing unit 32 generates each video data Sol (i, j, k) -So2 (i, j, k) and the sub-pixel SPIX (i, j) force.
  • Data Sol (i, j, k) ⁇ There is a time difference from the first time point of the period driven by 8 ⁇ 2 ( ⁇ ,], 1 ⁇ ). In the explanation, this time difference is set to 0 for convenience.
  • the temporal change in luminance of the sub-pixel SPIXGJ becomes as shown in FIG.
  • the threshold power white display brightness is 1
  • the brightness is set to 0.5
  • the speed of gradation transition (rise gradation transition) to increase the brightness is set.
  • it shows 10 times slower than the gradation transition (decay gradation transition) to decrease the brightness!
  • the maximum luminance of the sub-pixel SPIXGJ should reach the same luminance as that when white is displayed.
  • the average brightness of the sub-pixel SPIX (i, j), which should be 0.5 times that of white display, is not 0.16 times. Will go down.
  • the gray level (for example, the value within the range set for dark display is set to a value brighter than black)
  • the gradation is set to 24 gradations when expressed in ⁇ 2.2 and 8-bit display.
  • each video data Sol () generated by the subframe processing unit 32 in each frame FR (1 ⁇ ) is input.
  • i, j, l ⁇ ) and So2 (i, j, l ⁇ ) are as shown in Fig. 12, and the video data Sol (i, j, l ⁇ ) of each subframe SFR1 (1 ⁇ ) Is set to a dark gradation other than black.
  • the video data So2 (i, j, 6 ⁇ ) is set to white or a value close to white.
  • the video data Sol (i, j, l ⁇ ) of each subframe SFR1 (1 ⁇ ) is set to a dark gradation other than the above black. Therefore, sub-pixel SPIX (U) has tl At the time point, the transition to the black power dark gradation is instructed, and at the time t2, the transition to the gradation is instructed from the dark gradation to the above white or white.
  • the gradation transition at the time of tl is a transition from black to gray, which is a gradation transition from black. Therefore, the liquid crystal cell in the vertical alignment mode is driven in the normally black mode.
  • the subpixel SPIXGJ can respond within a subframe period in which there is no problem.
  • the gradation transition at time t2 is a gradation transition from the dark gradation rather than the gradation transition from black. The response speed can be improved.
  • the time integral value of the luminance of sub-pixel SPIX (iJ) is compared to the case of setting black. Becomes larger (brighter).
  • the response time ⁇ rise at the rise tone transition is much larger than the response time ⁇ d at the decay tone transition. Since it is large, the time average value of luminance over the entire frame period can be kept sufficiently dark, and the user can recognize it as black.
  • the temporal change in luminance of the subpixel SPIXGJ is as shown in FIG.
  • the maximum luminance of the sub-pixel SPIX (i, j) can be reached to the same luminance as when white is displayed.
  • the average luminance of the subpixel SPIXGJ) can be set to a desired value (0.5 times). Compared to the case of FIG. 11, the average luminance of the sub-pixel SPIXGJ) is increased more than three times.
  • the response speed of the sub-pixel SPIXGJ) when driving divided into sub-frames as described above compared to the configuration in which the value within the range defined for dark display is set to black as described above.
  • the time integration value of the luminance of the subpixel SPIX can be increased. It is possible to realize an image display device 1 that is brighter and has higher image quality when displaying moving images.
  • the average brightness and contrast ratio during black display were evaluated while changing the brightness of the subframe SFRl (k), and the result of FIG. 14 was obtained. It was. In the figure, when the luminance is described, the luminance when white is displayed is normalized as 1. Thus, if the luminance of the subframe SFRl (k) is 0.012, a contrast ratio of around 400 is secured.
  • the response speed of the sub-pixel SPIX (i, j) can be improved while maintaining a sufficient contrast ratio.
  • the video data Sol set to a value within the range defined for the dark display is set to a dark floor other than black.
  • the video data So2 is also set to a dark gradation other than black. May be. As an example, if video data D indicates black, both video data Sol and So2 may be set to the same dark gradation.
  • the video signal DAT is input, It is necessary to perform ⁇ correction processing before applying the corresponding voltage to panel 11. Even if the two ⁇ characteristics are the same, if an image is displayed with a ⁇ characteristic different from the original according to a user's instruction, etc., the video signal DAT is input and then the corresponding voltage is applied. Before applying to panel 11, it is necessary to perform gamma correction.
  • the gamma correction circuit 533 is required instead of the circuit for controlling the reference voltage. Still, the circuit scale may increase.
  • the ⁇ correction circuit 533 refers to the LU T533a that stores the output value after ⁇ correction corresponding to the value that can be input, and the video data after ⁇ correction. Is generated.
  • each of the LUTs 42'43 is the LUTs 42'43.
  • the time-division driven LUT542.543 and the ⁇ -conversion LUT533a are shared.
  • the circuit scale can be reduced by the amount of LUT533a for ⁇ conversion, and the circuit scale required for the signal processing circuit 21 can be greatly reduced.
  • the LUT 42'43 is provided for each color of the sub-pixels SPIX (i, j) (in this example, R, G, and B, respectively). Different video data Slo 'S 2 ⁇ can be output, and more appropriate value than when using the same LUT between different colors.
  • the birefringence changes according to the display wavelength, and therefore has different ⁇ characteristics for each color.
  • the gradation is expressed by the response integrated luminance by time-division driving as in the present embodiment, it is desirable to perform independent ⁇ correction processing, which is particularly effective.
  • the LUT 42'43 is provided for each changeable ⁇ value, and the control circuit 44 receives an instruction to change the ⁇ value, for example, by a user operation or the like. If it is attached, the LUT 42'43 that matches the instruction is selected from the plurality of LUTs 42'43, and the LUT 42.43 is referred to. Thereby, the subframe processing unit 32 can switch the ⁇ value to be corrected.
  • the subframe processing unit 32 may change the time ratio of each of the subframes SFR1 and SFR2 in response to an instruction to change the y value.
  • the subframe processing unit 32 The adjustment processing unit 31 is instructed to change the time ratio of each subframe SFR1 'SFR2 in the modulation processing unit 31.
  • the time ratio of each subframe SFRl 'S FR2 can be changed in accordance with the instruction to change the ⁇ value. Therefore, as will be described in detail later, any correction to ⁇ value is instructed.
  • the modulation processing unit 31 performs prediction-type gradation transition enhancement processing, stores the predicted value E (i, j, k) of each sub-pixel SPIX (iJ), and Frame memory (predicted value storage means) 51 that stores up to the frame FR (k + l) of the current frame, and the predicted value E (i, j, k-1) of the previous frame FR (kl) stored in the frame memory 51 ),
  • the video data D (i, j, k) of the current frame FR (k) is corrected, and the corrected value is output as video data Do (i, j, k).
  • the sub pixel SPIXGJ stored in the frame memory 51 Is provided with a prediction processing unit 53 for updating the predicted value E (i, j, k-1) related to the new predicted value E (i, j, k).
  • the predicted value E (i, j, k) of the current frame FR (k) is calculated when the subpixel SPIXGJ) is driven by the corrected video data Do (i, j, k).
  • Pixel SPIXGJ) Power Sub-pixel SPIX (i, j) at the start of the next frame FR (k + l), that is, the video data Do (i, j, k + l) of the next frame FR (k + l) ) Is the value indicating the gray level corresponding to the predicted brightness when the drive starts, and the prediction processing unit 53 predicts the predicted value E (i, j, kl) and the predicted value E (i, j, k) are predicted based on the video data D (i, j, k) in the current frame FR (k).
  • frame division and ⁇ correction processing are performed on the corrected video data Do (i, j, k) to obtain two video data per frame.
  • Sol (i, j, k) and So2 (i, j, k) are generated, and the corresponding voltages Vl (i, j, k) and V2 (i, j, k) are , Sub-pixel SPIXGJ).
  • the predicted value E (i, j, k-1) of the previous frame FR (k-1) and the video data D (i, j, k) of the current frame FR (k) are specified.
  • the corrected video data Do (i, j, k) is identified and the video data Do (i, j, k) Is specified, both video data Sol (i, j, k) and So2 (i, j, k), and both voltages Vl (i, j, k) and V2 (i, j, k) Is also identified.
  • the predicted value E (i, j, k-1) is a predicted value of the previous frame FR (kl)
  • the predicted value E (i , j, k-1) is a value indicating the gradation corresponding to the luminance that the sub-pixel SPIXGJ) is predicted to reach at the start of the current frame FR (k), and represents the current frame FR (k ) Is a value indicating the display state of the sub-pixel SPIX (iJ) at the start time.
  • the subpixel SPIXGJ is a liquid crystal display element
  • the value also indicates the alignment state of the liquid crystal molecules of the subpixel SPIX (i, j).
  • the prediction processing unit 53 Is based on the predicted value E (i, j, k-1) of the previous frame FR (kl) and the video data D (i, j, k) in the current frame FR (k). i, j, k) can also be predicted accurately.
  • the correction processing unit 52 performs the predicted value E (i, j, k-1) of the previous frame FR (kl), that is, the sub-pixel at the start time of the current frame FR (k). Based on the value indicating the display state of SPIX (iJ) and the video data D (i, j, k) of the current frame FR (k), the level indicated by the predicted value E (i, j, k-1) The video data D (i, j, k) can be corrected so as to emphasize the gradation transition from the key to the video data D (i, j, k).
  • processing units 52 and 53 may be realized by only the LUT, in the present embodiment, the processing units 52 and 53 are realized by the combined use of the LUT reference process and the interpolation process.
  • the correction processing unit 52 includes an LUT 61.
  • this combination is input to the corresponding LU T61 in association with each of the possible combinations of the video data D (i, j, k) and the predicted value E (i, j, k-1) Stores the value indicating the video data Do to be output.
  • the value may be any value as long as the image data Do can be specified, but in the following, the image data Do itself is stored. In the case of, it will be explained.
  • values corresponding to all possible combinations may be stored in the LUT 61.
  • the LUT 61 uses some predetermined combinations in order to reduce the storage capacity. Only the matching is stored with the corresponding value.
  • the correction processing unit 52 When the combination is input, the operation unit 62 provided reads out values corresponding to a plurality of combinations close to the input combination from the LUT 61 and determines those values in advance. The value corresponding to the input combination is calculated by interpolation.
  • video data D (i, j, k) and predicted value E (i, j, k-1) can be taken.
  • a value indicating a value to be output when the combination is input is stored in association with each combination.
  • the LUT 71 also stores the value to be output (in this case, the predicted value E (i, j, k)) itself, as described above.
  • the combinations for storing values in the LUT 71 are also limited to some predetermined combinations, and the calculation unit 72 provided in the prediction processing unit 53 performs an interpolation calculation referring to the LUT 71. Based on the above, the value corresponding to the input combination is calculated.
  • the predicted value E (i, j, k-1) is not stored in the frame memory 51 but the video data D (i, j, k-1) of the previous frame FR (k-1) itself.
  • the correction processing unit 52 stores the predicted value E (i, j, k-1) of the previous frame FR (kl), that is, the display state of the sub-pixel SPIXGJ at the start of the current frame FR (k).
  • the video data D (i, j, k) of the current frame FR (k) is corrected with reference to the predicted value.
  • the signal processing circuit 21 reaches the luminance indicated by the video data So (i, j, x) of the previous subframe SFR (x_l) at the start time of the current subframe FR (x). See If the gradation transition is emphasized, the gradation transition is overemphasized or the gradation transition is not sufficiently enhanced.
  • a gradation transition in which the luminance increases (rise gradation transition) and a gradation transition in which the luminance decreases
  • the voltages Vl (i, j, k) and V2 (i corresponding to the video data Sol (i, j, k) and So2 (i, j, k) are described.
  • , j, k) to the sub-pixel SPIX (iJ) the light emission state of the sub-pixel SPIXGJ) is made close to the impulse-type light emission. Increase or decrease.
  • the image quality may be deteriorated due to inappropriate gradation transition.
  • the prediction value E (i, j, k) is referred to, so that the prediction is performed with higher accuracy than in the case considered as described above.
  • improper gradation transition intensities can be prevented in spite of frequent rise ⁇ decay repetitions.
  • a prediction method with higher accuracy than considered as described above for example, a prediction is made by referring to a plurality of input video data, or a plurality of prediction results obtained so far. A method of predicting by referring to a method, a method of predicting by referring to a plurality of prediction results, a video data input so far, and a plurality of the current video data including at least the current video data, etc. Is mentioned.
  • the subframe processing unit 32 divides the frame into subframes (video data Slo and S2o generation processing), that is, the following configuration:
  • the pixel array 2 is an active matrix (TFT) liquid crystal panel in VA mode and each subpixel SPIX can display 8-bit gray scales as an example.
  • TFT active matrix
  • the video data Slo and S2o are referred to as a front display signal and a rear display signal.
  • the luminance gradation (signal) of the signal (video signal DAT2) applied to the liquid crystal panel is in the range from 0 to 255.
  • L is the signal gradation (frame gradation) when displaying an image in one frame (when displaying an image with normal hold display)
  • Lmax is the maximum luminance gradation (255)
  • T is the display luminance
  • is the correction value (usually 2.2).
  • the display brightness T output from the liquid crystal panel is as shown in FIG. 8 described above.
  • the horizontal axis indicates “brightness that should be output (scheduled luminance; value according to signal gradation, equivalent to the above display luminance T)”, and the vertical axis indicates “brightness actually output. (Actual brightness) ”.
  • control circuit 44 is
  • the control circuit 44 divides the frame equally into two subframes, and displays the luminance up to half of the maximum luminance by one subframe. Designed to do!
  • the control circuit 44 sets the previous subframe as a gray scale display and the subsequent subframe. Tone expression is performed by adjusting only the display brightness of the frame (tone expression is performed using only the subsequent sub-frame).
  • the integrated luminance in one frame is “(minimum luminance + luminance of subsequent subframe) / 2”.
  • the control circuit 44 sets the rear subframe to the maximum luminance (white) and adjusts the display luminance of the previous subframe to adjust the level. Make a key expression.
  • the integrated luminance in one frame is “(luminance of the previous subframe + maximum luminance) Z2”.
  • the signal gradation setting is performed by the control circuit 44 shown in FIG.
  • the control circuit 44 preliminarily calculates a frame gradation corresponding to the above-described threshold luminance (TmaxZ2) using the above-described equation (1).
  • the frame gradation (threshold luminance gradation; Lt) corresponding to such display luminance is obtained from equation (1):
  • control circuit 44 obtains the frame gradation L based on the video signal output from the frame memory 41.
  • control circuit 44 sets the luminance gradation (F) of the preceding display signal to the minimum (0) by the preceding LUT 42.
  • the control circuit 44 sets the luminance gradation R of the subsequent display signal to the maximum (255).
  • control circuit 44 determines the luminance gradation F of the previous subframe based on the equation (1).
  • control circuit 44 transmits the video signal DAT2 after the signal processing to the control circuit 12 shown in FIG. 2, thereby sending the first scanning signal line GL1 to the data signal line driving circuit 3 with a double clock.
  • the previous stage display signals of the sub-pixels SPIX (n) are accumulated.
  • the control circuit 44 causes the scanning signal line drive circuit 4 to turn on (select) the first scanning signal line GL1 via the control circuit 12, and the sub-pixel SPIX of the scanning signal line GL1.
  • the previous stage display signal is written to.
  • the control circuit 44 similarly turns on the second to m-th scanning signal lines GL2 to GLm with the double clock while changing the previous display signal accumulated in the data signal line driving circuit 3.
  • the previous stage display signal can be written to all the sub-pixels SPIX in a half period of 1 frame (lZ 2 frame period).
  • the control circuit 44 performs the same operation, and writes the post-stage display signal to the subpixels SPIX of all the scanning signal lines GLl to GLm in the remaining 1Z2 frame period.
  • the pre-stage display signal and the post-stage display signal are written to each subpixel SPIX by equal time (1Z2 frame period).
  • FIG. 9 described above shows the results (broken line and solid line) of the subframe display in which the preceding display signal and the subsequent display signal are divided into the front and rear subframes and output (the broken line and the solid line). It is a graph shown together with (a dashed-dotted line and a solid line).
  • the difference between the actual luminance and the planned luminance (equivalent to the solid line) at a large viewing angle is the minimum or maximum display luminance. In some cases, the minimum (0) is used, but the largest LCD panel is used in the halftone (near the threshold brightness).
  • the image display device 1 performs subframe display by dividing one frame into subframes.
  • the previous subframe is displayed with a gray scale and the display is performed using only the rear subframe within the range where the integrated luminance in one frame is not changed. It is doing.
  • the display is performed by adjusting the luminance of only the previous subframe, with the subsequent subframe being displayed in white within a range in which the integrated luminance in one frame is not changed. For this reason, in this case as well, the shift of the subsequent subframe is minimized, so that the total shift of both subframes can be reduced to approximately half as shown by the broken line in FIG.
  • the image display device 1 according to the present configuration example has an overall shift compared to the configuration in which the normal hold display is performed (the configuration in which the image is displayed in one frame without using the subframe). Can be reduced to about half.
  • the period of the previous subframe and that of the subsequent subframe are assumed to be equal. This is because the luminance up to half of the maximum value is displayed in one subframe. However, these subframe periods may be set to different values.
  • the whitening phenomenon which is a problem in the image display device 1 according to the present configuration example, has a characteristic as shown in FIG. 8 when the viewing angle is large. This is a phenomenon in which an image appears bright and white.
  • an image captured by a camera is a signal based on luminance.
  • the image is converted into a display signal using ⁇ shown in equation (1) (that is, the luminance signal is multiplied by ( ⁇ ⁇ ) and divided equally. To add gradation). Then, based on such a display signal, an image displayed by the image display device 1 such as a liquid crystal panel has a display luminance represented by the expression (1).
  • the human visual sense receives an image not as luminance but as brightness.
  • the lightness (lightness index) ⁇ is expressed by the following equations (5) and (6) (see Non-Patent Document 3).
  • y is the y value of tristimulus values in the xyz color system of an arbitrary color
  • yn is the y value of standard diffuse reflection surface light
  • yn 100.
  • FIG. 17 is a graph showing the brightness graph shown in FIG. 8 converted to lightness.
  • This graph shows “lightness that should be output (scheduled lightness; value corresponding to signal tone, equivalent to lightness M above)” on the horizontal axis, and “lightness actually output (actual lightness). ) ”.
  • the two brightness values mentioned above are equal on the front of the liquid crystal panel (viewing angle 0 °).
  • the broken line in this graph when the viewing angle is 60 degrees and the period of each subframe is equal (that is, the luminance up to half the maximum value is displayed in one subframe)
  • the actual brightness and the scheduled brightness are improved compared to the conventional case of normal hold display. Therefore, the whitening phenomenon can be suppressed to some extent.
  • the frame division ratio according to the brightness that is not the luminance, in order to suppress the white-floating phenomenon more according to the human visual sense.
  • the deviation from the brightness is the largest at the half of the maximum value of the planned brightness as in the case of the brightness.
  • the frame should be displayed so that the brightness up to half the maximum is displayed in one subframe.
  • Ability to divide It will be possible to improve the misalignment (ie, whitening) felt by humans.
  • ⁇ in this equation is about 2.5.
  • the subframe that is used for display when the luminance is low (the subframe that is maintained at the maximum luminance when the luminance is high) is set to a short period. It will be.
  • the control circuit 44 displays the previous subframe as a gray scale display.
  • the gradation expression is performed by adjusting only the display luminance of the subsequent subframe (the gradation expression is performed using only the subsequent subframe).
  • the integral luminance in one frame is “(minimum luminance + luminance of subsequent subframe) Z4”.
  • the control circuit 44 sets the rear sub-frame to the maximum luminance (white) and sets the display luminance of the previous sub-frame. Adjust and perform gradation expression.
  • the integrated luminance in one frame is “(luminance of the previous subframe + maximum luminance) Z4”.
  • the signal gradation (and the output operation described later) is set so as to satisfy the above conditions (a) and (b).
  • control circuit 44 preliminarily calculates a frame gradation corresponding to the above-described threshold luminance (TmaxZ4) using the above-described equation (1).
  • the control circuit 44 obtains the frame gradation L based on the video signal output from the frame memory 41 when displaying an image.
  • control circuit 44 sets the luminance gradation (F) of the previous stage display signal to the minimum (0) using the previous stage LUT 42.
  • the control circuit 44 sets the luminance gradation R of the subsequent display signal to the maximum (255).
  • control circuit 44 determines the luminance gradation F of the previous subframe based on the equation (1).
  • the sub pixel SPIX has the front display signal and the rear display signal. , Each is written in equal time (1Z2 frame period).
  • the division ratio can be changed by changing the write start timing of the post-stage display signal (ON timing of the running signal line GL... Related to the post-stage display signal).
  • Fig. 18 (a) is a video signal input to the frame memory 41 shown in Fig. 1
  • Fig. 18 (b) is a case where the frame memory 41 is divided into 3: 1 from the frame memory 41 to the preceding LUT 42.
  • the output video signal and (c) of FIG. 18 are explanatory views showing the video signal output to the LUT 43 in the same manner.
  • FIG. 19 is also an explanatory diagram showing the ON timing of the scanning signal lines GL... For the preceding display signal and the succeeding display signal in the case of the same 3: 1 division.
  • control circuit 44 writes the first stage display signal of the first frame to the sub-pixels SPIX of each scanning signal line GL ... with a normal clock.
  • the first signal is input to the data signal line drive circuit 3 Scan signal Accumulate the subsequent display signal for line GL1 and turn on this scanning signal line GL1.
  • “3Z4 of all scanning signal lines GLl to GLm” + the previous stage display signal for the first scanning signal line GL (m * 3/4 + l) is accumulated in the data signal line driving circuit 3, and this scanning is performed. Turn on signal line GL (m * 3/4 + l).
  • the time integral value (integral sum) of the display luminance in these two subframes becomes the integral luminance in one frame.
  • the data stored in the frame memory 41 is output to the data signal line driving circuit 3 in accordance with the ON timing of the scanning signal lines GL.
  • FIG. 20 is a graph showing the relationship between the planned brightness and the actual brightness when the frame is divided into 3: 1.
  • the frame can be divided at the point where the deviation between the planned brightness and the actual brightness is the largest. Therefore, compared with the results shown in FIG. 17, the difference between the planned brightness and the actual brightness when the viewing angle is 60 degrees is very small.
  • the previous subframe is displayed in grayscale in a range where the integrated luminance in one frame is not changed. And display using only the subsequent subframe.
  • the total deviation in both subframes can be reduced to about half as shown by the broken line in FIG.
  • the display start time force may be displayed with a double clock using a dummy rear stage display signal.
  • the former display signal and the latter display signal of signal gradation 0 may be output alternately.
  • control circuit 44 outputs the previous subframe as a gray scale when outputting the luminance up to the maximum luminance of lZ (n + l) (threshold luminance; TmaxZ (n + l)) in one frame (in the case of low luminance). Display and perform gradation expression by adjusting only the display luminance of the subsequent subframe (representation of gradation using only the subsequent subframe).
  • the integrated luminance in one frame is “(minimum luminance + luminance of subsequent subframe) / (n + 1)”.
  • control circuit 44 sets the rear subframe to the maximum luminance (white) and displays the previous subframe. Adjust the brightness to express the gradation.
  • the integrated luminance in one frame is “(luminance of the previous subframe + maximum luminance) / (n + 1)”.
  • the signal gradation (and the output operation described later) is set so as to satisfy the above conditions (a) and (b).
  • control circuit 44 uses the above equation (1) to calculate the above threshold luminance (TmaxZ (n + l) ) To calculate the frame gradation corresponding to).
  • the control circuit 44 obtains the frame gradation L based on the video signal output from the frame memory 41 when displaying an image.
  • control circuit 44 sets the luminance gradation (F) of the previous stage display signal to the minimum (0) using the previous stage LUT 42.
  • control circuit 44 determines the luminance gradation (R) of the subsequent display signal based on the equation (1).
  • the control circuit 44 sets the luminance gradation R of the subsequent display signal to the maximum (255).
  • control circuit 44 determines the luminance gradation F of the previous subframe based on the equation (1).
  • the display signal of the previous stage is output with the double clock after the ⁇ ( ⁇ + 1) frame period of the first frame. It is sufficient to design so that and the subsequent display signal are output alternately.
  • is 2 or more, it is preferable that the front display signal and the rear display signal are alternately output as described above.
  • the required clock frequency can be maintained at twice the normal frequency.
  • the liquid crystal panel is preferably driven by alternating current. This is because the alternating current drive can change the charge polarity of the subpixel SPIX (the direction of the voltage between the pixel electrodes (interelectrode voltage) sandwiching the liquid crystal) for each frame.
  • the voltage value (absolute value) applied between the pixel electrodes is often different between the subframes.
  • One method is to apply a voltage of the same polarity for one frame.
  • the interelectrode voltage is reversed between two subframes in one frame, and the subsequent subframe and the previous subframe of the next frame are driven with the same polarity. Is the method.
  • Figure 21 (a) shows the relationship between the voltage polarity (polarity of the voltage between electrodes) and the frame period when the former method is used.
  • Figure 21 (b) shows the relationship between the voltage polarity and the frame period when the latter method is used.
  • either of the two methods described above may be used to prevent the flickering force if burn-in occurs.
  • a configuration in which the polarity is the same for one frame is more preferable. More specifically, dividing into sub-frames reduces the charging time of TFTs, so even if the charging time is within the design range, it is the margin for charging compared to a configuration that does not divide into sub-frames. It is undeniable that will decrease. Therefore, in mass production, there is a risk of brightness variations due to insufficient charging due to variations in panel and TFT performance.
  • the latter half frame that is the main display of luminance corresponds to the second writing of the same polarity, and the voltage change in the second half frame that is the main display of luminance can be reduced.
  • the required charge charge amount can be reduced, and display defects due to insufficient charge can be prevented.
  • the liquid crystal panel is driven by the sub-frame display, thereby suppressing whitening.
  • the voltage between the electrodes changes as shown by the solid line X in Fig. 22 (b) according to the response speed (response characteristics) of the liquid crystal.
  • the display brightness of the previous subframe is not minimized and the display brightness of the subsequent subframe is maximized.
  • the relationship between the planned brightness and the actual brightness is as shown in FIG. That is, Even if the frame display is performed, it is not possible to display with the brightness (minimum brightness / maximum brightness) where the difference (shift) between the planned brightness and the actual brightness is small when the viewing angle is large.
  • the response speed of the liquid crystal in the liquid crystal panel satisfies the following (c) and (d): Designed to be preferred.
  • the control circuit 44 is preferably designed so that the response speed of the liquid crystal can be monitored.
  • control circuit 44 interrupts the sub-frame display, It is usually set to drive by hold display.
  • the display method of the liquid crystal panel can be switched to the normal hold display.
  • the previous subframe is displayed as a gray scale display, and the grayscale expression is performed using only the rear subframe.
  • the display signal (the front display signal and the rear display signal is expressed using equation (1). No.) brightness gradation (signal gradation)! / Speak.
  • the actual panel has brightness even in the case of black display (gradation 0), and the response speed of the liquid crystal is finite. Therefore, these factors are taken into account when setting the signal gradation. It is preferable.
  • an actual image is displayed on the liquid crystal panel, the relationship between the signal gradation and the display brightness is measured, and an LUT (output table) that satisfies Equation (1) is determined based on the actual measurement result. preferable.
  • Such a data signal line driving circuit 3 outputs the voltage signal used in the normal hold display as it is in each subframe according to the input signal gradation even when performing the subframe display. Will be.
  • the data signal line drive circuit 3 is preferably designed to output a voltage signal converted into divided luminances.
  • the data signal line driving circuit 3 is set so as to finely adjust the voltage (interelectrode voltage) applied to the liquid crystal according to the signal gradation.
  • the liquid crystal panel is assumed to be a VA panel, and any liquid crystal panel of a mode other than the VA mode may be used as long as the effect of suppressing the white floating phenomenon is suppressed. That's right. That is, in the sub-frame display of the image display apparatus 1 according to this configuration example, the liquid crystal panel (planned brightness (planned brightness)) and actual brightness (actual brightness) shift when the viewing angle is increased ( It is possible to suppress the white floating phenomenon for a liquid crystal panel in a mode in which the viewing angle characteristics of the gradation gamma change.
  • the sub-frame display of the image display device 1 according to the present configuration example is effective for a liquid crystal panel having such a characteristic that the display luminance increases when the viewing angle is increased.
  • the white floating phenomenon can be obtained with either normally black or normally white. Furthermore, if the whitening phenomenon is suppressed, it can be obtained by using another display panel (for example, an organic EL panel or a plasma display panel) instead of the liquid crystal panel.
  • another display panel for example, an organic EL panel or a plasma display panel
  • the present invention is not limited to this, and the image display device 1 according to the present configuration example is designed to divide the frame in the range of l: n or n: 1 (n is a natural number of 1 or more). Also good.
  • the signal gradation of the display signal (the front display signal and the rear display signal) is set using the above-described equation (10).
  • the threshold luminance gradation Lt is a frame gradation of this luminance.
  • Lt may be a little more complicated, and the threshold luminance Tt may not be expressed by a simple equation. Therefore, it may be difficult to express Lt with Lmax.
  • the luminance of the liquid crystal panel it is preferable to use the result of measuring the luminance of the liquid crystal panel.
  • the luminance irradiated from the liquid crystal panel cover is measured, and the luminance is defined as Tt.
  • the gradation Lt of spillage is determined by the following formula.
  • Lt obtained using Equation (10) is an ideal value, and is preferably used as a guideline.
  • FIG. 24 (a) is a graph showing the luminance displayed by the previous subframe and the subsequent subframe when the display luminance is 3Z4 and 1Z4 with Lmax.
  • the voltage value applied to the liquid crystal differs between subframes.
  • the polarity of the voltage applied to the liquid crystal liquid crystal voltage
  • the difference in the voltage value between the previous subframe and the subsequent subframe causes a difference.
  • the applied liquid crystal voltage is biased (the total applied voltage is (never)), so the direct current component of the liquid crystal voltage cannot be canceled and the liquid crystal panel is driven for a long time. If burned in, there is a possibility of generating frit force.
  • One method is to apply a voltage of the same polarity for one frame.
  • the other method is to reverse the liquid crystal voltage between two subframes in one frame, and to make the subsequent subframe and the previous subframe of the next frame have the same polarity. It is.
  • FIG. 25 (a) is a graph showing the relationship between the voltage polarity (polarity of the liquid crystal voltage), the frame period, and the liquid crystal voltage when the former method is used.
  • Fig. 25 (b) is a similar graph when the latter method is used.
  • FIGS. 26 (a) to 26 (d) are explanatory diagrams showing the polarities of the four subpixels SPIX and the liquid crystal voltages of the subpixels SPIX in the liquid crystal panel.
  • the image display device 1 according to the present configuration example may be designed to perform pixel division driving (area gradation driving).
  • FIG. 27 is an explanatory diagram showing a configuration of a liquid crystal panel driven by pixel division.
  • one subpixel SPIX (1,1) connected to the scanning signal line (eg, GL1) and data signal line (eg, SL1) of the liquid crystal panel is connected.
  • the display is performed by changing the voltage applied to each partial pixel SP1 (1,1) ⁇ 8 ⁇ 2 (1,1).
  • Such pixel division driving is described in, for example, Patent Documents 7 to 10.
  • auxiliary capacitance lines CS1′CS2 are arranged so as to sandwich one subpixel SPIX (1,1). Each of these auxiliary capacitance lines CS1 and CS2 is connected to one of the partial pixels SP1 to SP2.
  • the TFT 131 is connected to the scanning signal line GL1, the data signal line SL1, and the liquid crystal capacitor 132.
  • the auxiliary capacitor 133 is connected to the TFT 131, the liquid crystal capacitor 132, and the auxiliary capacitor line CS1 or CS2.
  • An auxiliary signal which is an AC voltage signal having a predetermined frequency, is applied to the auxiliary capacitance lines CS1′CS2.
  • the phases of the auxiliary signals applied to the auxiliary capacitance lines CS1 'CS2 are inverted (180 ° different).
  • the liquid crystal capacitor 132 is connected to the TF1T31, the common voltage Vcom, and the auxiliary capacitor 133.
  • the liquid crystal capacitor 132 is connected to a parasitic capacitor 134 that is generated between itself and the scanning signal line GL1. In this configuration, when the scanning signal line GL1 is turned on, the TFTs 131 of both partial pixels SP 1 and SP2 in one subpixel SPIX (1,1) are turned on.
  • Figures 28 (a) and 28 (c) show the voltages applied to the liquid crystal capacitors 132 of the partial pixels SP1'SP2 when a positive ( ⁇ Vcom) display signal is applied to the data signal line SL1 at this time. It is a graph which shows (liquid crystal voltage).
  • the auxiliary signal of the auxiliary capacitance line CS2 falls (from high to low). Then, the liquid crystal voltage of the partial pixel SP2 connected thereto decreases by a value Vcs corresponding to the amplitude of the auxiliary signal. After that, it vibrates between VO-Vd and V0-Vd-Vcs.
  • a negative ( ⁇ Vcom) display signal (voltage signal) is applied to the data signal line SL1.
  • 6 is a graph showing liquid crystal voltages of partial pixels SP1 and SP2 in the case.
  • the liquid crystal voltage of the partial pixels SP1′SP2 drops to a value (one VI) corresponding to the display signal.
  • the absolute value of the liquid crystal voltage is higher than the display signal voltage for the partial pixel that inputs the auxiliary signal that rises immediately after the pull-in phenomenon (see FIG. 28 (a)).
  • the absolute value of the liquid crystal voltage is lower than the display signal voltage for the partial pixel to which the auxiliary signal that falls at this time is input (FIG. 28 (c)).
  • the absolute value of the applied voltage of the liquid crystal capacitor 132 is the partial pixel that receives the auxiliary signal whose potential falls immediately after the pull-in phenomenon. It becomes higher than the display signal voltage (Fig. 28 (b)).
  • the absolute value of the liquid crystal voltage is lower than the display signal voltage for the partial pixel that receives the auxiliary signal that rises at this time (FIG. 28 (d)).
  • the liquid crystal voltage (absolute value) of the partial pixel SP1 is higher than that of the partial pixel SP2 (the display luminance of the partial pixel SP1 is (It becomes higher than partial pixel SP2.)
  • liquid crystal voltage difference (Vcs) of the partial pixels SP1′SP2 can be controlled in accordance with the amplitude value of the auxiliary signal applied to the auxiliary capacitance wiring CS1′CS2. As a result, a desired difference can be given to the display luminance (first luminance and second luminance) of the two partial pixels SP1′SP2.
  • Table 1 shows the polarity of the liquid crystal voltage and the state of the auxiliary signal immediately after the pull-in phenomenon applied to the partial pixel with high luminance (bright pixel) and the partial pixel with low luminance (dark pixel). Shown together.
  • the polarity of the liquid crystal voltage is indicated by “+, ⁇ ”.
  • the case where the auxiliary signal rises immediately after the pulling phenomenon is indicated by “ ⁇ ”, and the case where it falls is indicated by “I”.
  • the luminance of the sub-pixel SPIX is the sum of the luminances of the two partial pixels SP1'SP2 (corresponding to the transmittance of the liquid crystal).
  • FIG. 29 is a graph showing the relationship between the transmittance of the liquid crystal panel and the applied voltage at two viewing angles (0 ° (front) and 60 °) when pixel division driving is not performed. is there.
  • the transmittance at the front is NA (when the liquid crystal voltage is controlled to be NA)
  • the transmittance at a viewing angle of 60 ° is LA.
  • the luminance of one partial pixel is changed to a gray scale display (white display) and the luminance of the other partial pixel is adjusted by increasing the amplitude of the CS signal.
  • a low luminance (high luminance) image is also possible.
  • the deviation between the display luminance and the actual luminance in one of the partial pixels can be minimized, so that the viewing angle characteristics can be further improved.
  • one of the partial pixels may be configured not to perform grayscale display (white display). That is, if there is a luminance difference between the two partial pixels, in principle, the viewing angle can be improved. Therefore, the CS amplitude can be reduced, which facilitates the panel drive design. Also, it is not necessary to make a difference in the brightness of the partial pixels SP1 'SP2 for all display signals. Yes. For example, in the case of white display and grayscale display, it is preferable to make these luminances equal.
  • the partial pixel SP1 is designed to have the first luminance
  • the partial pixel SP2 is designed to have the second luminance different from the first luminance. Good.
  • one subpixel SPIX is divided into two. However, not limited to this, one subpixel SPIX may be divided into three upper partial pixels.
  • the above-described pixel division driving may be combined with normal hold display, or may be combined with subframe display. Further, the polarity inversion driving shown in FIGS. 28 (a), 28 (b), 25 (a), and 25 (b) may be combined. Hereinafter, a combination of pixel division driving, subframe display, and polarity inversion driving will be described.
  • Fig. 30 (a) is the same as Fig. 25 (a), and the change in the liquid crystal voltage (for one pixel) when the sub-frame display is performed while inverting the polarity of the liquid crystal voltage every frame. It is a graph which shows.
  • FIG. 30 (b) shows the liquid crystal voltage of the partial pixel (bright pixel) that increases in luminance in pixel division driving
  • FIG. 30 (c) shows the liquid crystal voltage of the partial pixel (dark pixel) that also decreases in luminance. It is a graph which shows a voltage.
  • the wavy line indicates the liquid crystal voltage when pixel division driving is not performed, while the solid line indicates the pixel Show the liquid crystal voltage for split drive!
  • FIGS. 31 (a) and 31 (b) are graphs showing the luminances of the bright pixels and the dark pixels corresponding to FIGS. 30 (b) and 30 (c).
  • the liquid crystal voltage polarity of each partial pixel is inverted every frame. This is because the liquid crystal voltages that differ between subframes are canceled appropriately (the total liquid crystal voltage in two frames is OV).
  • auxiliary signal state (phase immediately after the pull-in phenomenon; ,, I) is reversed at the same Cf phase as the polarity reversal.
  • the amount of increase in the liquid crystal voltage at the bright pixel in the previous subframe matches the amount of decrease at the dark pixel.
  • the increase amount of the liquid crystal voltage at the bright pixel in the subsequent subframe is equal to the decrease amount at the dark pixel.
  • the liquid crystal voltage polarity of each partial pixel is inverted every frame.
  • the present invention is not limited to this, and the polarity of the liquid crystal voltage may be reversed at the frame period.
  • the liquid crystal voltage is reversed between two subframes in one frame, and the subsequent subframe and the previous subframe of the next frame are the same. You can make it polar.
  • FIGS. 32 (a) and 32 (b) are graphs showing the luminance of the bright pixel and the dark pixel when the polarity is inverted in this way.
  • the state of the auxiliary signal ( ⁇ , I) can be inverted to the same phase as the polarity inversion, so that the total liquid crystal voltage in two frames can be set to OV.
  • Fig. 33 shows the result of displaying a combination of subframe display, polarity inversion drive, and pixel division drive (broken line and solid line) as described above by image display device 1 according to this configuration example, and normal hold display 14 is a graph showing together with the results of the measurement (dash-dot line and solid line; similar to those shown in FIG. 13).
  • the viewing angle characteristic can be made extremely good by the synergistic effect of the sub-frame display and the pixel division driving.
  • the state of the auxiliary signal (phase immediately after the pulling phenomenon; I) is reversed at the same phase as the polarity reversal.
  • the polarity inversion is ignored and the state of the auxiliary signal is changed for each subframe, the liquid crystal voltage cannot be canceled appropriately.
  • the fluctuation amount of the liquid crystal voltage according to the state of the auxiliary signal varies depending on the magnitude (absolute value) of the original liquid crystal voltage (if the liquid crystal voltage is large, the fluctuation amount also increases).
  • the amount of increase (decrease) in the liquid crystal voltage due to pixel division driving is different between the previous subframe and the rear subframe (in the example of FIGS. 30B and 30C, the rear subframe is different).
  • the amount of frame variation is larger than the previous subframe).
  • 3: 1 to 7: 1 is cited as a preferable ratio (frame division ratio) between the previous subframe period and the subsequent subframe period.
  • the split ratio may be set to 1: 1 or 2: 1.
  • the frame division ratio is 1: 1, as shown in FIG. 9, it is possible to bring the actual luminance closer to the planned luminance as compared to the normal hold display. Also, as shown in FIG. 20, regarding the brightness, the actual brightness can be close to the planned brightness as compared with the normal hold display.
  • n 1
  • the division ratio may be n: l (n is a real number of 1 or more (more preferably, a real number greater than 1)). For example, by setting this division ratio to 1.5: 1, the viewing angle characteristics can be improved as compared to 1: 1. In addition, it becomes easier to use a liquid crystal material with a slow response speed compared to the case of 2: 1.
  • n is a real number of 1 or more, it is effective for controlling the luminance gradation using the above equations (10) to (12).
  • the sub-frame display of the image display device 1 is a display performed by dividing the frame into two sub-frames.
  • the present invention is not limited to this, and the image display device 1 may be designed to perform subframe display in which a frame is divided into three or more subframes.
  • the s-l sub-frames are displayed in grayscale, while the luminance of one sub-frame (luminance) Display only by adjusting (gradation). Then, when the luminance becomes so high that it cannot be expressed only by this subframe, this subframe is displayed in white. Then, s- 2 subframes are displayed in grayscale, while the luminance of the remaining one subframe is adjusted for display.
  • Fig. 35 shows the result of displaying the frame divided into three equal subframes (broken line and solid line) and the normal hold display by the image display device 1 according to this configuration example. It is a graph that is shown together with the results (the one-dot chain line and the solid line; the same as that shown in Fig. 8). Can be very close to. Therefore, it is clear that the viewing angle characteristics of the image display device 1 according to this configuration example can be made in a better state.
  • the position of the subframe for adjusting the luminance is such that the temporal center of gravity of the luminance of the subpixel in the frame period is close to the temporal center position of the frame period. It is desirable to set so that
  • FIG. 36 is a graph showing the transition of the liquid crystal voltage when the frame is divided into three and the voltage polarity is inverted for each frame.
  • the total liquid crystal voltage in 2 frames can be OV.
  • Fig. 37 is a graph showing the transition of the liquid crystal voltage when the frame is similarly divided into three and the voltage polarity is inverted for each subframe.
  • the total liquid crystal voltage in two frames can be set to OV.
  • the liquid crystal voltage is adjusted so that the total liquid crystal voltage in 2 frames (or more frames) is OV. It is preferable to reverse the polarity.
  • one subframe for adjusting the luminance is always set to one, and the other subframe is set to white display (maximum luminance) or grayscale display. .
  • the present invention is not limited to this, and the number of subframes for adjusting the luminance may be two or more.
  • viewing angle characteristics can be improved by displaying at least one subframe in white display (maximum luminance) or gray scale display.
  • the luminance is not adjusted!
  • the luminance of the subframe may be set to "a value greater than the maximum or the second predetermined value” instead of the maximum luminance. Also, instead of setting the minimum luminance, “the minimum or smaller than the first predetermined value” may be used.
  • Lightness deviation can be made sufficiently small. Therefore, the viewing angle characteristics of the image display device 1 according to this configuration example can be improved.
  • FIG. 38 shows the signal gradation (%: luminance gradation of the display signal) output to the panel 11 and the actual luminance gradation corresponding to each signal gradation in the subframe where the luminance is not adjusted. It is a graph which shows the relationship (viewing angle gradation characteristic (actual measurement)) with (%).
  • the actual luminance gradation means that "the luminance (actual luminance) output from the LCD panel power of the panel 11 according to each signal gradation is converted into a luminance gradation using the above equation (1).”
  • the above two gradations are equal on the front surface of the liquid crystal panel (viewing angle 0 °).
  • the actual brightness gradation is halftone and brighter than the signal gradation due to whitening.
  • this whitening takes the maximum value when the luminance gradation is between 20% and 30% regardless of the viewing angle.
  • the display quality of the image display device 1 according to this configuration example is It is possible that it can be kept sufficiently (the above-mentioned brightness deviation can be made sufficiently small).
  • the range of the signal gradation that does not exceed 10% of the maximum value is 80 to: LO 0% and 0 to 0.02% of the maximum value of the signal gradation. This range does not change even when the viewing angle changes.
  • the viewing angle characteristics of the liquid crystal panel can be improved by making a slight difference in the display state of each subframe.
  • the modulation processing unit 3 la that performs substantially the same operation as the modulation processing unit 31 and the subframe processing unit 32 shown in FIG.
  • a subframe processing unit 32a is provided in the preceding stage of the modulation processing unit 31a, and replaces the corrected image data Do (i, j, k) with each of the uncorrected images.
  • Frame division and ⁇ correction processing are performed on video data D (i, j, k), and each subframe corresponding to the video data D (i, j, k) SF Rl (k)-SFRl (k ) Video data Sl (i, j, k)-S2 (i, j, k).
  • the modulation processing unit 31a applies to each video data D (i, j, k) before correction. Instead, for each of the video data S l (i, j, k)-S 2 (i, j, k) after being divided into subframes, correction is performed so as to emphasize the gradation transition, and The corrected video data is output as video data Slo (i, j, k) ⁇ 82 ⁇ ( ⁇ , 1 ⁇ ) constituting the video signal DAT2. Note that the video data Slo (i, j, k) ⁇ 82 ⁇ ( ⁇ ,], 1 ⁇ ) is also time-divisionally similar to the video data Sol (i, j, k) ⁇ 8 ⁇ 2 ( ⁇ ⁇ , 1 ⁇ ). Is being transmitted.
  • correction processing and prediction processing by the modulation processing unit 31a are also performed in units of subframes, and the modulation processing unit 31a predicts the previous subframe SFR (xl) read from a frame memory (not shown). Based on the value E (i, j, x-1) and the video data So (i, j, x) to the sub-pixel SPIXGJ) in the current sub-frame SFR (x), the current sub-frame SFR (x ) Video data So (i, j, X ).
  • the modulation processing unit 3 la based on the predicted value E (i, j, x-1) and the video data So (i, j, x), the subpixel SPIXGJ) A value indicating a gradation corresponding to the luminance predicted to be reached at the start of FR (x + l) is predicted, and the predicted value E (i, j, x) is stored in the frame memory. Yes.
  • the members 51a to 53a for generating the video data Slo (i, j, k) and the video data S 2o (i , j, k) is provided with members 51b to 53b.
  • These members 51a to 53a and 51b to 53b are configured in substantially the same manner as the members 51 to 53 shown in FIG.
  • each of the members 51a to 53b is configured to be able to operate at a speed twice that of FIG. 16, and values stored in LUTs (not shown in FIG. 40) provided in the respective members are also illustrated. This is different from the case of 16.
  • each of the video data S from the subframe processing unit 32a is sent to the correction processing unit 52a and the prediction processing unit 53a in place of each video data D (i, j, k) of the current frame FR (k).
  • l (i, j, k) is input, and the correction processing unit 52a outputs the corrected video data as video data Slo (i, j, k).
  • the correction processing unit 52b and the prediction processing unit 53b include the current frame.
  • each video data S2 (i, j, k) from the subframe processing unit 32a is inputted, and the correction processing unit 52a Outputs the corrected video data as video data S2o (i, j, k).
  • the prediction processing unit 53a outputs the predicted value El (i, j, k) to the frame memory 5 lb referred to by the correction processing unit 52b that is not included in the frame memory 51a referred to by the correction processing unit 52a.
  • the processing unit 53b outputs the predicted value E 2 (i, j, k) to the frame memory 51a.
  • the predicted value El (i, j, k) is obtained when the sub-pixel SPIX (iJ) is driven by the video data Slo (i, j, k) output from the correction processing unit 52a.
  • the sub-pixel SPIXGJ) is a value indicating the gradation corresponding to the luminance predicted to arrive at the start of the next sub-frame SFR2 (k), and the prediction processing unit 53a receives the current frame FR (k ) Based on the video data Sl (i, j, k) and the predicted value E2 (i, j, k-1) of the previous frame FR (k-1) read from the frame memory 5 la.
  • Predicted value El (i, j, k) is predicted.
  • the predicted value E2G, j, k) is calculated when the subpixel SP IX (i, j) is driven by the video data S2o (i, j, k) output from the correction processing unit 52b.
  • the sub-pixel SPIX (U) is a value indicating the gradation corresponding to the luminance predicted to arrive at the start of the next sub-frame SFRl (k + l), and the prediction processing unit 53b Based on the video data S2 (i, j, k) in FR (k) and the predicted value El (i, j, k) read from the frame memory 51b, the predicted value E2 (i, j, k) is predicted.
  • the control circuit 44 outputs the video data Sl (l, l, k) to Sl (n, m, k) for the subframe SFRl (k) with reference to the LUT 42 during the first reading. (During t31 to t32) During the second readout, the video data S2 (l, l, k) to S2 (n, m, k) for subframe SFR2 (k) is output with reference to LTU43 (Period from t32 to t33).
  • the signal processing circuit 21a receives the first video data D (l, l, k).
  • the time difference between time t21 and time t31 when video data Sl (l, l, k) for subframe SFRl (k) corresponding to the video data D (l, l, k) is output is the buffer memory.
  • the case where the time difference is half a frame (one subframe) is shown as an example.
  • the frame memory 51a of the modulation processing unit 31b stores the video data S2 (l, l) for the subframe SFR2 (k-1) of the previous frame FR (k-1). , k-1) to S2 (n, m, k-1), and updated predicted values E2 (l, l, k-1) to E2 (n, m, kl) are accumulated,
  • the correction processing unit 52a refers to the predicted values E2 (l, l, k-1) to E2 (n, m, kl), and outputs the video data Sl (l, l, k) output from the control circuit 44.
  • the prediction processing unit 53a includes the video data S1 (1,1, k) to Sl (n, m, k) and the predicted values E2 (l, l, k-1) to E2 (n, m , k ⁇ 1), the predicted value El (l, l, k) to the predicted value El (n, m, k) are generated and stored in the frame memory 51b.
  • the correction processing unit 52b refers to the predicted values El (l, l, k) to El (n, m, k) and outputs the control circuit 44.
  • the prediction processing unit 53b includes the video data S2 (l, l, k) to S2 (n, m, k) and predicted values El (1,1, k-1) to El (n, m, k). -Based on 1), the predicted value E2 (l, l, k) to predicted value E2 (n, m, k) are generated and stored in the frame memory 5 la.
  • the signal processing circuit 21a performs the correction process (gradation transition enhancement process) and the prediction process in units of subframes. Therefore, compared to the configuration of the first embodiment, that is, the configuration in which these processes are performed in units of frames, more accurate prediction processing is possible, and gradation transition can be more accurately emphasized. As a result, improper gradation The image quality at the time of moving image display can be improved while further suppressing deterioration in image quality due to transition emphasis.
  • the video data S1 set to a value within the range defined for the dark display is set to a dark gradation other than black, so the video data D is black.
  • the response speed to the intermediate gradation can be greatly improved.
  • the display quality can be greatly improved.
  • the members constituting the signal processing circuit 21a according to the present embodiment are often integrated in one integrated circuit chip in order to increase the speed.
  • the frame memories 41 and 51a '51b are difficult to integrate in an integrated circuit that is significantly larger than the required storage capacity JT, they are often externally attached to the integrated circuit chip.
  • the transmission speed is improved as compared with the case of transmission in the integrated circuit chip. difficult. Also, if you try to increase the number of signal lines in order to increase the transmission speed, the number of pins on the integrated circuit chip will increase!] And the dimensions of the integrated circuit chip will increase significantly. Furthermore, since the modulation processing unit 31b shown in FIG. 40 is driven at double speed, the frame memory 41 and 51a ′ 51b can operate at high speed and require a large capacity memory.
  • each video data D (l, l, k) to D (n, m, k) is written.
  • the frame memory 41 outputs each video data D (l, l, k) to D (n, m, k) twice for each frame. Therefore, if a signal line for transmitting data is shared between reading and writing as in a general memory, the frequency at which each video data D ... is transmitted in the video signal DAT.
  • the frame memory 41 is required to access at a frequency three times or more than f.
  • the access speed required at the time of reading / writing is, for example, an access speed required for reading at the frequency f or an access speed writing required for writing at the frequency f, such as r: 2 times.
  • the ratio when the required access speed is set to 1 is shown after the letter (rZ w) indicating read Z write.
  • each predicted value E2 (l, l, k) to predicted value E2 (n, m, k) and each predicted value El (l, l, k) to predicted value El (n, m, k) are read and written.
  • a period for reading from the frame memory 51a (for example, t31 to t32) and a period for reading from the frame memory 51b (for example, t32 to t33) are provided separately. This period is half of the frame.
  • the period for writing to the frame memories 51a and 51b is also a half period of the frame. Therefore, both frame memories 5 la '51b require an access speed that is four times the frequency f.
  • the modulation processing unit 31b shown in FIG. 40 when the modulation processing unit 31b shown in FIG. 40 is used, the access speed required for each of the frame memories 41 ′ 51a and 51b increases, and the manufacturing cost of the signal processing circuit 21a increases. If the number of signal lines is increased, the size of the integrated circuit chip and the number of pins may increase.
  • the video data S 1 (1, 1, 2) is performed twice for each frame. k) to video data Sl (n, m, k), video data S2 (l, l, k) to video data S2 (n, m, k) and predicted values El (l, l, k) to predicted values Generate El (n, m, k) and generate and output prediction value E2 (l, l, k) to prediction value E2 (n, m, k) that can be performed twice per frame
  • the number of writes to the frame memory is reduced by storing the predicted value E2 (l, l, k) to the predicted value E2 (n, m, k) in the frame memory once every frame. And then.
  • the subframe processing unit 32c performs the video data S1 (1,1, k) to Sl (n) twice for each frame. , m, k) and video data S2 (l, l, k) to S2 (n, m, k).
  • control circuit 44 of the subframe processing unit 32 shown in FIG. 40 outputs the video data S 1 (1, l, k) to Sl (n, m, k). Force that paused the output of video data S2 (l, l, k) to S2 (n, m, k)
  • the control circuit 44c of the subframe processing unit 32c according to this configuration example is shown in FIG.
  • the video data S 2 (1,1, k) to S2 are also output while the video data S 1 (1,1, k) to Sl (n, m, k) are being output (period t41 to t42).
  • the control circuit 44c every time the control circuit 44c reads one video data D (i, j, k) from the frame memory 41, the video data D (i, j, k) is used to read both the video data Sl (i, , j, k) and S2 (i, j, k) can be prevented from increasing the amount of data transmission between the frame memory 41 and the control circuit 44c.
  • the amount of data transmission between the subframe processing unit 32c and the modulation processing unit 31c is greater than that in the configuration of FIG. 40. Since this data transmission is performed within the integrated circuit chip, there is no problem. Can be transmitted.
  • the modulation processing unit 31c performs prediction instead of the frame memory 5la'51b that stores the prediction values E1 and E2 for one subframe each.
  • a frame memory that stores only the value E2 for 2 subframes and outputs the predicted value E2 (l, l, kl) to the predicted value E2 (n, m, k-1) twice per frame (Predicted value storage means) 54 is provided.
  • the modulation processing unit 31c according to the present configuration example is provided with the saddle member 52c ′ 52d ′ 53c ′ 53d force substantially the same as the members 52a ′ 52b • 53a ′ 53b of FIG. Note that in this configuration column, the members 52c ⁇ 52d ′ 53c ′ 53d correspond to the correcting means described in the claims.
  • the predicted value E2 (l, l, k-1) to the predicted value E2 (n, m, k-1) to the correction processing unit 52c and the prediction processing unit 53c Is supplied from the frame memory 54 which is not included in the frame memory 41a.
  • the predicted value El (l, l, k) to predicted value El (n, m, k) to the correction processing unit 52d and the prediction processing unit 53d are given from the prediction processing unit 53c, which is not included in the frame memory 41b.
  • the predicted value E2 (l, l, k-1) to the predicted value E2 (n, m, k-1) and the video data Sl (l, l, k) to Sl (n, m, k) is output twice for each frame, and the prediction processing unit 53c, as shown in FIG. 42, predicts the predicted value twice for each frame as shown in FIG. El (l, l, k) to El (n, m, k) are generated and output.
  • the force prediction process itself in which the number of predicted values E1 to be output for each frame is different and the circuit configuration of the prediction processing unit 53c are the same as those of the prediction processing unit 53a shown in FIG.
  • the predicted value E2 (l, l, k-1) to the predicted value E2 (n, m, k-1) and the video data S 1 (1, 1, k) to S l (n, m, k) is also output twice for each frame.
  • the force correction processing unit 52c corrects the video data Slo (l, l, k) to Slo (n, m, k) are generated and output (period t41 to t42).
  • the correction processing unit 52d outputs the predicted value El (l, l, k) to the predicted value El (n, m, k) and the video data S2 (l, l, which are output twice for each frame.
  • the prediction processing unit 53d has these predicted values E (l, l, k) to E2 (n, m, k) and predicted values E (l, l, k) to E2 (n , m, k) and half of the generation and output processing, the predicted values E (l, l, k) to E 2 (n, m, k) are calculated once per frame. Generate and output.
  • the force prediction process itself in which the timing at which the predicted value E2 is generated and output in each frame is different is the same as the prediction processing unit 53b shown in FIG.
  • the circuit configuration is substantially the same as that of the prediction processing unit 53b, but a circuit for determining the timing of thinning out and thinning out generation processing and output processing is added.
  • the prediction processing unit 53d when the time ratio of both subframes SFR1 'SFR2 is 1: 1, the prediction processing unit 53d according to this configuration example skips the above generation and output processing by skipping one. Will be described. Specifically, the prediction processing unit 53d is the period during which the first video data S2 (i, j, k) and the predicted value El (i, j, k) are output (period t41 to t42). Of these, the predicted value E2 () is based on the odd-numbered and even-numbered video data S2 (i, j, k) and the predicted value El (i, j, k). i, j, k).
  • the prediction processing unit 53d In the period during which the second time is output (period t42 to t43), the prediction processing unit 53d generates a predicted value E (i, j, k) based on the remaining one.
  • the prediction processing unit 53d can output all the predicted values E2 (l, l, k) to E2 (n, m, k) once for each frame, and each predicted value E2 (i, The time interval for outputting j, k) is twice as long as the configuration in FIG.
  • one predicted value E2 (l, l, k) to E2 (n, m, k) may be written in one frame period for each frame. Therefore, the access speed necessary for the frame memory 54 can be reduced to 3/4 times the configuration of FIG.
  • the dot clock of each video data D (i, j, k) is about 65 [MHz V, so the frame memories 51a and 51b in FIG. 40 are four times that, that is, about 260 [MHz]. It is necessary to respond to access.
  • the frame memory 54 according to this configuration example like the frame memory 41, only needs to respond to an access at three times the dot clock, that is, about 195 [MHz].
  • the entire storage area (for two subframes) of the frame memory 54 may be configured to be accessible at the access speed.
  • the frame memory 54 is It consists of two frame memories 54a.54b, further reducing the access speed required for one of them.
  • the frame memory 54 is composed of two frame memories 54a '54b capable of storing the prediction value E2 for one subframe.
  • the frame memory 54a is a frame memory in which each prediction value E2 (i, j, k) is written by the prediction processing unit 53d, and the prediction for one subframe written in the previous frame FR (kl).
  • the frame memory 54b receives the predicted values E2 (l, l, k-1) to E2 (n, m, k-1), and receives the predicted value E2 ( l, l, k-1) to E2 (n, m, kl) can be output.
  • the predicted value E2 for one subframe needs to be written once and read twice each within one frame period, so it is necessary to respond to access at a frequency three times the above frequency f. is there.
  • the prediction value E2 stored in the frame memory 54a by the prediction processing unit 53d is transferred to the frame memory 54b for outputting the prediction value E2 to the correction processing unit 52c and the prediction processing unit 53c.
  • FIG. 43 shows an example in which the transfer from the frame memory 54a to the frame memory 54b is shifted by one subframe to reduce the storage capacity required for the buffer.
  • the entire storage area of the frame memory 54 is configured to be able to respond to access at a frequency three times the frequency f, so that the storage area that can respond to access at the frequency is higher.
  • the size can be reduced, and the frame memory 54 can be provided more inexpensively and easily.
  • the prediction value E2 generation process and the output process by the prediction processing unit 53d are thinned is described as an example, but only the output process may be thinned out.
  • the predicted value El (l, l, k) is generated so that the predicted values E2 (l, l, k) to E2 (n, m, k) can be generated twice for each frame period.
  • the modulation processing unit corrects each of the plurality of video data Sl (i, j, k) -S2 (i, j, k) generated for each frame period, and corrects the frame period. For each subframe SFRl (k)-SFR2 (k) divided into a plurality of corrected video data Slo (i, j, k)-S2o (i, j, k) corresponding to each subframe And the sub-pixel SPIX (i, j) is driven according to the corrected video data S2o (i, j, k) corresponding to the last subframe SFR2 (k) In this case, a prediction indicating the luminance reached by the sub-pixel SPIXGJ) at the end of the period during which the sub-pixel SPIXG, j) is driven according to the corrected video data S2o (i, j, k) A frame memory 54 for storing the value E2 (i, j, k) is provided.
  • the correction processing unit 52c determines that the video data Sl (i, j, k) or S2 (i, j, k) to be corrected corresponds to the first subframe SFRl (k) (video data).
  • Sl (i, j, k)) the above frame menu
  • the video data Sl so that the gradation transition from the brightness indicated by the predicted value E2 (i, j, k-1) read from the memory 54 to the brightness indicated by the video data Sl (i, j, k) is emphasized.
  • Correct i, j, k).
  • the correction processing unit 52d and the prediction processing unit 53c provided in the modulation processing unit have the second video data Sl (i, j, k) or S2 (i, j, k) to be corrected.
  • the following subframes are supported (in the case of video data S2 (i, j, k))
  • the video data S2 (i, j, k) and the previous subframe SFRl (k) are supported.
  • the first time of the subframe SFR2 (k) The luminance of the subpixel SPIX (iJ) is predicted, and the gradation transition from the predicted luminance (the luminance indicated by El (i, j, k)) to the luminance indicated by the video data S2 (i, j, k)
  • the video data S2 (i, j, k) is corrected so as to emphasize.
  • the prediction processing units 53c and 53d provided in the modulation processing unit perform video data Sl (i, j, k) or S2 (i, j, k) 1S last subframe SFR2 (k) to be corrected (For video data S2 (i, j, k)), video data S2 (i, j, k) and video data Sl corresponding to the previous subframe SFRl (k) Based on (i, j, k) and the predicted value E2 (i, j, k-1) stored in the frame memory 54, video data S2 (i, j, k) to be corrected The brightness of the subpixel SPIX (iJ) at the last time of the subframe SFR2 (k) corresponding to is predicted, and the predicted value E2 (i, j, k) indicating the prediction result is stored in the frame memory 54. .
  • subframes SFRl (k)-SFR2 (k) corresponding to video data Sl (i, j, k)-S2 (i, j, k) The result of predicting the luminance reached by the sub-pixel SPIX (iJ) at the end of the previous subframe SFR2 (k-1)-SF Rl (k) El (i, j, k)
  • Video data Sl (i, j, k) -S2 (i, j, k) can be corrected without storing i, j, k) in the frame memory each time.
  • the prediction result of each subframe is stored in the frame memory per frame period as compared with the configuration in which the prediction is stored in the frame memory (51a'51b) each time.
  • the amount of predicted value data can be reduced. Since the amount of data can be reduced, for example, even if a buffer is provided to reduce the access speed required for the frame memory, the access speed can be reduced only by providing a smaller scale circuit.
  • the prediction processing unit 53d performs prediction values E (l, l, k) to E2 (n, m, k) and prediction values E (l, l, k) to E2 ( Half of the generation and output processing with (n, m, k)
  • the access speed required for the frame memory without providing a new buffer is reduced. it can.
  • the force described by taking as an example the case where the modulation processing units 31 and 31a perform the prediction-type gradation transition enhancement processing is not limited to this.
  • the modulation processing unit 31 may be configured as a modulation processing unit 31e shown in FIG.
  • a force prediction processing unit 53 having substantially the same configuration as that of the modulation processing unit 31 shown in FIG. 16 is omitted, and the frame memory 51 is replaced with a predicted value E (i, j, k).
  • the video data D (i, j, k) of the current frame FR (k) is stored up to the next frame FR (k + l), and instead of the predicted value E (i, j, k-1)
  • the video data D (i, j, k-1) stored in the previous frame FR (kl) is given to the correction processing unit 52.
  • the correction processing unit 52 is based on the video data D (i, j, k-1) of the previous frame FR (kl) and the video data D (i, j, k) of the current frame FR (k).
  • the video data D (i, j, k) is corrected to emphasize the gradation transition between the two.
  • the modulation processing unit 31e is driven by the video data D (i, j, k) of the current frame FR (k) at the start of the next frame FR (k + 1). It is assumed that the brightness indicated by data D (i, j, k) has been reached.
  • the modulation processing unit 3la may be configured as a modulation processing unit 3 If shown in FIG.
  • the modulation processing unit 31f has a configuration substantially similar to that of the modulation processing unit 31b shown in FIG. 40, the force prediction processing unit 53a '53b is omitted, and the frame memory 51a' 51b includes a predicted value El (i, j, k) 'Instead of the predicted value E2 (i, j, k), the video data Sl (i, j, k)' video data S2 (i, j, k) of the current subframe FR (k) Stores up to the next frame FR (k + l), and instead of the predicted value E l (i, j, kl) 'predicted value E2 (i, j, k-1), the previous frame FR (kl) The stored video data Sl (i, j, k-1) or S2 (i, j, k-1) is given to the correction processing unit 52a
  • the correction processing unit 52a is based on the video data S2 (i, j, k-1) of the previous frame FR (kl) and the video data Sl (i, j, k) of the current frame FR (k). The video data Sl (i, j, k) is corrected so as to emphasize the gradation transition between the two.
  • the correction processing unit 52b is based on the video data Sl (i, j, k-1) of the current frame FR (k) and the video data S2 (i, j, k) of the current frame FR (k). The video data S2 (i, j, k) is corrected so as to emphasize the gradation transition between the two.
  • the modulation processing unit 3 If is driven by the video data Sl (i, j, k) of the current frame FR (k), and the sub-pixel SPIX (U) 1S-order subframe SFR2 (k) At the start, video data Sl ( It is assumed that the luminance indicated by i, j, k) has been reached.
  • the video data S2 (i, j, k) in the current frame FR (k) is driven by the video data S2 (i, j, k) at the start of the next subframe SFRl (k + l). It is assumed that the luminance indicated by S2 (i, j, k) has been reached.
  • the gradation transition emphasis can improve the response speed of each sub-pixel SPIX, and the image quality when displaying a moving image on the pixel array 2 can be improved by approaching the impulse-type light emission.
  • the video data S1 set to a value within the range defined for the dark display is set to a dark gradation other than black, so the video data D is black.
  • the response speed to the intermediate gradation can be greatly improved.
  • the display quality can be greatly improved.
  • the LUT 542 ′ 543 of time division driving shown in FIG. 15 and the LUT 533a for ⁇ conversion are shared.
  • the circuit size can be reduced by the amount of the LUT533a for ⁇ conversion, and the circuit scale required for the signal processing circuit can be greatly reduced.
  • the control circuit (44'44c) regardless of the surrounding conditions of the image display device 1, which causes a change in the temporal change in luminance of the pixel (sub-pixel) such as a temperature change.
  • Force The force described when referring to the same LUT (42'43) is not limited to this.
  • a plurality of LUTs corresponding to the surrounding conditions are provided in advance, and a sensor for detecting the surrounding conditions of the image display device 1 is provided.
  • the control circuit is referred to when generating video data for each subframe.
  • the LUT to be switched may be switched according to the detection result of the sensor. In this configuration, since the video data for each subframe can be changed according to the surrounding conditions, display quality can be maintained even if the surrounding conditions change.
  • the response characteristics and gradation luminance characteristics of a liquid crystal panel change depending on the environmental temperature (the temperature of the environment where the panel 11 is placed (temperature)). For this reason, even if the input video signal DAT is the same, the optimum value as the video data for each subframe also changes according to the environmental temperature.
  • the panel 11 is a liquid crystal panel
  • an LUT (42'43) suitable for use in different temperature ranges is provided
  • a sensor for measuring the environmental temperature is provided
  • the control circuit (44 ' 44c) Force If the LUT referred to above is switched according to the measurement result of the environmental temperature by the sensor, the signal processing unit (21 to 21f) including the control circuit can be used even if the video signal DAT is the same.
  • a more appropriate video signal DAT2 can be generated and transmitted to the LCD panel. Therefore, it is possible to display an image with more brilliant luminance in all assumed temperature ranges (for example, a range of 0 ° C to 65 ° C).
  • the time-division drive LUT142'143 shown in FIG. This is not limited to the power described for the configuration that shares the LUT133a.
  • the same LUT 142 ′ 143 and ⁇ correction circuit 133 as in FIG. 7 may be provided. If ⁇ correction is unnecessary, the ⁇ correction circuit 133 may be deleted.
  • the power described mainly using the case where the subframe processing unit (32'32c) divides one frame into two subframes is not limited to this.
  • the subframe processing unit (Slo 'S2o ; Sl 'S2) is set to a value indicating the brightness of a predetermined range for dark display, and at least one of the remaining video data for each subframe is increased or decreased. And controlling the time integral value of the luminance of the pixels in one frame period, and when the input video data indicates a luminance higher than a predetermined threshold, among the video data for each subframe, At least one is set to a value indicating a luminance within a predetermined range for bright display, and at least one of the remaining subframe video data is increased or decreased, so that the corresponding pixel in one frame period is increased or decreased.
  • Luminance time may be controlled.
  • one of the output video data in the case of dark display, one of the output video data is set to a value indicating the luminance for dark display, so that the luminance of the pixel is within an allowable range during the dark display period.
  • the maintained viewing angle can be expanded.
  • one of the output video data in the case of bright display, one of the output video data is set to a value indicating the luminance for dark display, so that the viewing angle at which the pixel luminance is maintained within the allowable range during the dark display period. Can be expanded.
  • the generation unit may change the number of pixels according to the input video data to each pixel.
  • Output video data to each pixel is generated for each of the input cycles by a plurality of the predetermined number, and the correction means outputs each output video data to each pixel.
  • Each of the correction results is corrected and the prediction result corresponding to each pixel is stored in the prediction result storage unit, and the generation unit generates a pixel for each input period.
  • the plurality of output video data are respectively generated in a plurality of the predetermined number, and the correction unit generates a prediction result for the pixel for each of the input periods for each of the input periods.
  • any pixel can be executed a plurality of times for each input period, and the pixel at the last time point can be executed.
  • at least one prediction result writing process may be performed.
  • a plurality of output video data generated for each input cycle is generated for each of the plurality of predetermined numbers, and the prediction result is calculated for each input cycle.
  • Each is read a plurality of times determined in advance. Thereby, based on these prediction results and each output video data, the luminance of the pixel at the last time point can be predicted a plurality of times and the prediction results can be stored. Note that the number of pixels is plural, and the reading process and the generation process are performed corresponding to each pixel.
  • At least one prediction result writing process is included in the prediction process and the prediction result storage process that can be performed a plurality of times for each input period.
  • the time interval for storing the prediction result of each pixel in the prediction result storage unit can be increased in the prediction result storage unit, and the response speed required for the prediction result storage unit can be reduced compared to a configuration that does not thin out. can do.
  • the effect can be obtained by thinning out at least one writing process, but if the number of times of the writing process of the prediction result by the correction means is thinned out once per input period for each pixel. More effective.
  • the above configuration is not changed, and the above
  • the video data other than a specific one of the video data for the remaining subframes is a value indicating the luminance in a predetermined range for dark display or a predetermined range for bright display. Set to a value indicating brightness, increase or decrease the specific video data, and It is preferable to control the time integral value of the luminance of the pixel in the frame period.
  • video data other than the specific video data is a value indicating a luminance in a predetermined range for dark display or a display for bright display. Is set to a value indicating the luminance of a predetermined range, so that the video data for a plurality of subframes is set to a value not included in either of the ranges.
  • the occurrence of defects such as white floating can be prevented and the viewing angle can be expanded.
  • the video data for each subframe is set such that the temporal center of gravity of the luminance of the pixel in one frame period is close to the temporal center position of the one frame period. Is better.
  • the video data corresponding to the subframe closest to the central position is set as the specific video data, and the value of the video data is increased or decreased to control the time integral value of the luminance of the pixel in one frame period.
  • the video data of the subframe is set to a value within the range.
  • the video data corresponding to the subframe closest to the temporal center position of the frame period is set as the specific video data, and the value of the video data is increased or decreased. Controls the time integral value of the brightness of the pixel in the frame period. The selection of the subframe corresponding to the specific video data is repeated every time the specific video data enters the predetermined range for the bright display.
  • the temporal center position of the luminance of the pixel in one frame period is set to be close to the temporal center position of the one frame period.
  • the signal processing unit ( 21 to 21f) divide the time ratio of each of the subframe periods as shown below, that is, the subframe switching timing force corresponding to the specific video data. It is better to set it closer to the timing to equally divide the range of lightness that can be expressed by the pixel than to the timing.
  • the signal processing unit corrects the value of the video signal DAT2 (video data Sol ⁇ So2; Slo; S2o) input to the data signal line driving circuit 3, and performs the subframe period. That is, the configuration in which at least one luminance is set to a dark gradation other than black has been described, but the present invention is not limited to this.
  • At least one luminance in each subframe period can be set to a dark gradation other than black, instead of correcting the value of the video signal DAT2, for example, the data signal line drive circuit 3 self-power video signal By controlling the voltage applied to the sub-pixel SPIXGJ) while referring to the value of DAT2, at least one luminance in each sub-frame period may be set to a dark gradation other than black.
  • input video data (D) to the pixels of the liquid crystal panel has a predetermined threshold value. At least one subframe period among the subframe periods generated by dividing the frame period driven by the input video data into a plurality of periods. In the frame period, the luminance of the pixel is set to a luminance within a range predetermined for dark display, and the luminance of the pixel in the remaining frame period is controlled to control the luminance of the pixel in the frame period.
  • the low luminance control process for controlling the time integration value and when the input video data to the pixel of the liquid crystal panel shows a luminance higher than a predetermined threshold value, and the input video data Among the sub-frame period which is generated by dividing the frame period to be driven into a plurality of periods, the one sub-frame period even without less, the luminance of the pixel, predetermined for bright display
  • a high-intensity control step that controls the luminance of the pixels in the remaining subframe period and controls the time integral value of the luminance of the pixel in the frame period.
  • the luminance of the pixel may be controlled to a luminance other than black in at least one of the divided periods.
  • the signal processing unit corrects the value of the video signal DAT2 (video data Sol ⁇ So2; Slo; S2o) input to the data signal line drive circuit 3, and If the configuration is such that at least one luminance is set to a dark gradation other than black in the sub-frame period, it is not necessary to change the data signal line driving circuit 3, so that it can be driven by the above driving method relatively easily.
  • a liquid crystal display device can be realized.
  • the force described for the case where the liquid crystal cell 111 is configured as shown in FIGS. 5 to 7 and the alignment direction of the liquid crystal molecules in the pixel is divided into four is not limited to this. is not.
  • the slit 12 3b may be formed instead of forming the projection row 123a shown in FIG. 7 on the pixel electrode 121a.
  • a protruding row 123a may be formed instead of forming the slit 123b in the counter electrode 121b.
  • an oblique electric field is formed in the vicinity of the protrusion row 123a or the slit 123b, and the liquid crystal molecules in the vicinity of these members (123a or the slit 123b) are caused by the electric field.
  • the orientation direction of the liquid crystal molecules in the regions apart from these member forces is determined after the orientation direction of the neighboring region is determined by the continuity of the liquid crystal. Therefore, as in FIGS. 5 to 7, the response speed from the black display state is slow. As a result, even when the liquid crystal cell having the configuration is used as the liquid crystal cell of the pixel array 2, the same effects as those of the above embodiments can be obtained.
  • the protrusion row 123a and the slit 123b shown in FIG. 7 are omitted, and the quadrangular pyramid protrusion 124 is formed on the pixel electrode 121a.
  • the protrusion 124 can be formed by applying a photosensitive resin on the pixel electrode 121a and covering the pixel electrode 121a in the same manner as the protrusion row 123a.
  • the liquid crystal molecules are aligned so as to be perpendicular to the inclined surfaces.
  • the electric field at the portion of the protrusion 124 is inclined in a direction parallel to the slope of the protrusion 124.
  • the in-plane component of the orientation angle of the liquid crystal molecules becomes equal to the in-plane component in the normal direction of the nearest slope (direction Pl, P2, P3 or P4). Therefore, the pixel region is divided into four domains D1 to D4 having different alignment directions when tilted.
  • the alignment direction of the liquid crystal molecules in the region away from the protrusion 124 is determined by the continuity of the liquid crystal after the alignment direction of the liquid crystal molecules in the vicinity of the protrusion 124 is determined. Therefore, as in FIGS. 5 to 7, the response speed from the black display state is slow. As a result, even when the liquid crystal cell having the configuration is used as the liquid crystal cell of the pixel array 2, the same effects as those of the above embodiments can be obtained.
  • each pixel is as large as about 1 mm square, and if only one protrusion 124 is provided on each pixel electrode 121a, There is a possibility that the orientation regulating force is weakened and the orientation becomes unstable. Therefore, in this case, when the alignment regulating force is insufficient, a plurality of protrusions 124 are formed on each pixel electrode 121a. It is desirable to provide
  • a Y-shaped slit is formed on the counter electrode 121b of the counter substrate 11 lb in the vertical direction (in the plane, on either side of the substantially rectangular pixel electrode 121a).
  • Multi-domain alignment can be realized even by providing an alignment control window (region in which no electrode is formed) 125 that is connected symmetrically in the (parallel direction).
  • the alignment direction of the liquid crystal molecules in the region away from the alignment control window 125 depends on the continuity of the liquid crystal after the alignment direction of the liquid crystal molecules in the vicinity of the alignment control window 125 is determined. It is determined. Therefore, as in FIGS. 5 to 7, the response speed from the black display state is slow. As a result, even when the liquid crystal cell having the configuration is used as the liquid crystal cell of the pixel array 2, the same effects as those of the above embodiments can be obtained.
  • a substantially hemispherical protrusion 126 is provided instead of the protrusion 124 shown in FIG. Also in this case, in the vicinity of the protrusion 126, the liquid crystal molecules are aligned so as to be perpendicular to the surface of the protrusion 126. Power! In other words, when a voltage is applied, the electric field at the portion of the protrusion 126 is inclined in a direction parallel to the surface of the protrusion 126.
  • the liquid crystal molecules are tilted when a voltage is applied, the liquid crystal molecules are easily tilted radially around the protrusion 126 in the in-plane direction, and each liquid crystal molecule of the liquid crystal cell 111 can be tilted radially.
  • the protrusion 126 can also be formed in the same process as the protrusion 124. Similarly to the protrusion 124, when the alignment regulating force is insufficient, it is desirable to provide a plurality of protrusions 126 on each pixel electrode 121a.
  • the alignment direction of the liquid crystal molecules in the region away from the protrusion 126 is determined by the continuity of the liquid crystal after the alignment direction of the liquid crystal molecules in the vicinity of the protrusion 126 is determined. Similarly, the response speed from the black display state is slow. As a result, even when the liquid crystal cell having the configuration is used as the liquid crystal cell of the pixel array 2, the same effects as those of the above embodiments can be obtained.
  • a circular slit 127 is formed in the pixel electrode 121a in place of the protrusion 124 shown in FIG.
  • an electric field that tilts the liquid crystal molecules is not applied in the region immediately above the slit 127 in the surface of the pixel electrode 121a. Therefore, in this region, the liquid crystal molecules are aligned vertically even when a voltage is applied.
  • the electric field is inclined and spread so as to avoid the slit 127 as it approaches the slit 127 in the thickness direction.
  • the liquid crystal molecules are inclined in the direction in which the major axis is vertical, and the liquid crystal molecules separated from the slit 127 are also aligned in the same direction due to the continuity of the liquid crystal. Therefore, when a voltage is applied to the pixel electrode 121a, each liquid crystal molecule is aligned such that the in-plane component in the alignment direction spreads radially around the slit 127 as indicated by the arrow in the figure, that is, the slit. It can be oriented axially around the center of 127.
  • the substrate normal direction component (tilt angle) in the alignment direction of the liquid crystal molecules can be controlled by the applied voltage.
  • each liquid crystal molecule is substantially parallel to the display screen, and the force is also aligned radially in the plane.
  • the alignment regulating force is insufficient, it is desirable to provide a plurality of slits 127 on each pixel electrode 121a.
  • the alignment direction of the liquid crystal molecules in the region away from the slit 127 is determined by the continuity of the liquid crystal after the alignment direction of the liquid crystal molecules in the vicinity of the slit 127 is determined. Similarly, the response speed from the black display state is slow. As a result, even when the liquid crystal cell having the configuration is used as the liquid crystal cell of the pixel array 2, the same effects as those of the above embodiments can be obtained.
  • a portion where no electrode is formed (slit) and a portion where an electrode is formed may be reversed.
  • the plurality of slits 128 are arranged so that their centers form a square lattice, and are substantially surrounded by four slits 128 whose centers are located on four lattice points forming one unit lattice.
  • the solid part 129 (referred to as “unit solid part”) has a substantially circular shape.
  • Each slit 128 is formed in a substantially star shape having four quarter-arc sides (edges) and having a four-fold rotation axis at the center thereof.
  • the pixel electrode 12 la is also formed with a conductive film (for example, ITO film) force.
  • a conductive film for example, ITO film
  • the conductive film is removed so that the slit 128 has the shape described above.
  • a slit 128 is formed.
  • a plurality of slits 128 are formed for each pixel electrode 121a.
  • Each of the solid portions 129 is basically formed of a single continuous conductive film.
  • the case where the centers of the slits 128 are arranged so as to form a square lattice has been described as an example.
  • the shape is not limited to this, and other shapes such as a rectangular lattice shape may be used. There may be.
  • the case where the slit 127 or the solid portion 129 is substantially circular has been described as an example, other shapes such as an ellipse or a square may be used.
  • liquid crystal molecules are aligned in the vertical direction, and a voltage is applied to the pixel electrode to form a portion where the electrode is formed and the electrode. If the liquid crystal cell forms an oblique electric field in the region (edge region) near the boundary with the part and determines the alignment direction of the liquid crystal molecules by the electric field, substantially the same effect can be obtained.
  • the center of the slit 128 forms a square lattice, and the solid portion 129 Since the liquid crystal molecules in the pixel PIX (i, j) can be evenly distributed in the substantially circular shape, the image display device 1 with better viewing angle characteristics can be realized.
  • the force described by taking as an example the case where each member constituting the signal processing circuit (21 to 21f) is realized only by hardware is not limited to this.
  • a signal processing circuit may be realized as a device driver used when a computer connected to the image display device 1 drives the image display device 1.
  • a signal processing circuit is realized as a conversion board built in or externally attached to the image display device 1, and the operation of the circuit that realizes the signal processing circuit can be changed by rewriting a program such as firmware. For example, by distributing a recording medium on which the software is recorded or transmitting the software via a communication path, the software is distributed to the hardware and the software is executed.
  • Hardware may be operated as the signal processing circuit of each of the above embodiments.
  • the CPU or hardware that can execute the functions described above is powerful computing means such as program code stored in a storage device such as ROM or RAM.
  • the signal processing circuit according to each of the above embodiments can be realized by executing and controlling peripheral circuits such as an input / output circuit (not shown).
  • the program code itself that can be directly executed by the arithmetic means, or a program as data that can generate the program code by a process such as unzipping described later, is stored in the recording medium. And the recording medium is distributed, or the program is transmitted by a communication means for transmitting via a wired or wireless communication path, and is executed by the arithmetic means.
  • each transmission medium constituting the communication path propagates a signal sequence indicating the program, whereby the program is transmitted via the communication path.
  • the transmission device may superimpose the signal sequence on the carrier by modulating the carrier with the signal sequence indicating the program. In this case, the signal sequence is restored by the receiving apparatus demodulating the carrier wave.
  • the transmission device may divide the signal sequence as a digital data sequence and transmit it. In this case, the receiving apparatus concatenates the received packet groups and restores the signal sequence.
  • the transmission device may multiplex and transmit the signal sequence with another signal sequence by a method such as time division Z frequency division Z code division.
  • the receiving apparatus extracts and restores individual signal sequences from the multiplexed signal sequence. In either case, the same effect can be obtained if the program can be transmitted via the communication channel.
  • the recording medium for distributing the program is removable, but it does not matter whether the recording medium after distributing the program is removable.
  • the recording medium may be rewritten (written), volatile, recording method, and shape as long as a program is stored.
  • Examples of recording media include magnetic tapes, force set tapes, etc., floppy disks (registered trademark), magnetic disks, such as node disks, CD-ROMs, magneto-optical disks (MO), and mini disks (MD). And digital video disc (DVD) discs.
  • the recording medium may be a card such as an IC card or an optical card, or a semiconductor memory such as a mask ROM, EPROM, EEPROM, or flash ROM. Alternatively, it may be a memory formed in a calculation means such as a CPU.
  • the program code may be a code for instructing the arithmetic means of all procedures of the processes, or may be a part or all of the processes by being called in a predetermined procedure. If a basic program (for example, an operating system or a library) that can execute a part already exists, a code or pointer that instructs the arithmetic means to call the basic program is used. You can replace it all.
  • a basic program for example, an operating system or a library
  • the format for storing the program in the recording medium may be a storage format that can be accessed and executed by the arithmetic means, for example, in a state where the program is stored in the real memory. From the storage format after installation on a local recording medium that is always accessible by the computing means (for example, real memory or a node disk) before being placed in the memory, or from a network or transportable recording medium. It may be the storage format before installing on a local recording medium.
  • the program may be stored as source code that is not limited to the object code after con- taining, or as intermediate code generated during interpretation or compilation.
  • the above calculation is performed by a process such as decompression of compressed information, decoding of encoded information, interpretation, compilation, linking, allocation to real memory, or a combination of processes. If the means can be converted into an executable format, the same effect can be obtained regardless of the format in which the program is stored in the recording medium.
  • the present invention when the input video data indicates black, since at least one of the divided periods is controlled to a luminance other than black, a brighter viewing angle and a wider response speed are obtained. It can also provide a liquid crystal display device with improved image quality when displaying moving images. Therefore, it can be used widely and suitably as a driving device for various liquid crystal display devices such as a liquid crystal television receiver and a liquid crystal monitor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Transforming Electric Information Into Light Information (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

 本発明は、より明るく、視野角が広く、応答速度が速く、しかも、動画表示時の画質の向上した液晶表示装置を実現することを目的とする。サブフレーム処理部(32)は、サブ画素を暗表示する場合、サブフレーム(SFR1)用の映像データ(S1o)を暗表示用の範囲内の値に設定し、サブフレーム(SFR2)用の映像データ(S2o)を増減して、サブ画素の輝度を制御すると共に、明表示する場合は、映像データ(S2o)を明表示用の範囲内の値に設定し、映像データ(S1o)を増減して、サブ画素の輝度を制御する。また、上記暗表示用の範囲内の値は、黒よりも明るい輝度を示す値に設定されており、サブフレーム処理部(32)は、サブ画素(SPIX)への映像データ(D)が黒表示を示している場合であっても、上記映像データ(S1o)として当該値を出力する。

Description

明 細 書
液晶表示装置の駆動方法、液晶表示装置の駆動装置、そのプログラムお よび記録媒体、並びに、液晶表示装置
技術分野
[0001] 本発明は、より明るぐ視野角が広ぐ応答速度が速ぐし力も、動画表示時の画質 の向上した液晶表示装置の駆動方法、液晶表示装置の駆動装置、そのプログラム および記録媒体、並びに、液晶表示装置に関するものである。
背景技術
[0002] 従来から、例えば、後述する特許文献 1〜5に示すように、 1画像を表示するフレー ムを複数のサブフレームに時分割して駆動する表示装置が広く使われて 、る。これら の構成では、液晶表示装置のようにホールド型の表示装置において、 1フレーム期 間内に黒表示あるいは暗表示期間を設けることによって、 CRT (Cathode-Ray Tube) のようなインパルス型発光に近づけ、動画表示時の画質を向上させている。
[0003] また、後述する特許文献 6に示すように、液晶表示装置の応答速度を向上させるた めに、前回力 今回への階調遷移を強調するように、駆動信号を変調して駆動する 方法も使用されている。
[0004] さらに、後述する非特許文献 1および 2では、 PVA (Patterned Vertial Alignment)モ ードの液晶セルの応答速度を向上させるために、画素に、プレティルト信号を印加し た後で、オーバーシュート信号を印加する構成が記載されて 、る。
特許文献 1:特開平 4— 302289号公報 (公開日: 1994年 10月 26日)
特許文献 2 :特開平 5— 68221号公報 (公開日: 1995年 3月 19日)
特許文献 3:特開 2001— 281625号公報 (公開日: 2001年 10月 10日)
特許文献 4 :特開 2002— 23707号公報 (公開日:2002年 1月 25日)
特許文献 5:特開 2003 - 22061号公報 (公開日: 2003年 1月 24日)
特許文献 6:特許第 2650479号公報 (発行日: 1997年 9月 3日)
特許文献 7:特開 2003 - 295160号公報 (公開日; 2003年 10月 15日)
特許文献 8 :特開 2004— 62146号公報 (公開日;2004年 2月 26日) 特許文献 9 :特開 2004— 78157号公報 (公開日;2004年 3月 11日) 特許文献 10 :特開 2004— 258139号公報 (公開日; 2004年 9月 16日)
非特許文献 1: Sang Soo Kim、 15.4:Invited Paper: Super PVA Sets New State- of- the
-Art for LCD-TV, SID 04 DIGEST, 2004年、 pp760-pp763
非特許文献 2 : Jang- Kun Song, et al.、 48.2:DCCII: Novel Method for Fast Response Time in PVA Modeゝ SID 04 DIGEST, 2004年、 pp 1344— pp 1347
非特許文献 3 :新編 色彩科学ハンドブック;第 2版 (東京大学出版会;公開日; 1998 年 6月 10曰)
発明の開示
[0005] し力しながら、上記構成のいずれであっても、動画表示時の画質向上は充分では なぐより明るく、視野角が広ぐ応答速度が速ぐし力も、動画表示時の画質の向上 した液晶表示装置が求められて 、る。
[0006] 本発明は、上記の問題点に鑑みてなされたものであり、その目的は、より明るく、視 野角が広ぐ応答速度が速ぐしかも、動画表示時の画質の向上した液晶表示装置 の駆動方法、液晶表示装置の駆動装置、そのプログラムおよび記録媒体、並びに、 液晶表示装置を提供することにある。
[0007] 本発明に係る液晶表示装置の駆動方法は、上記課題を解決するために、垂直配 向モードの液晶セルをノーマリブラックモード(Normally Black Mode :電圧無印加時 には、黒表示となるモード)で駆動する液晶表示装置の駆動方法であって、画素へ の入力映像データが入力される度に繰り返される生成工程を含み、当該各生成工程 では、当該画素を時分割駆動するために、当該画素への入力映像データに応じて、 当該画素への出力映像データが、当該入力周期毎に予め定められた複数の個数生 成される液晶表示装置の駆動方法において、上記各生成工程には、上記入力映像 データが予め定められた閾値よりも低い輝度を示している場合に行われ、上記複数 個の出力映像データのうち、少なくとも 1つを、暗表示用に予め定められた範囲の輝 度を示す値に設定し、残余の出力映像データのうちの少なくとも 1つを増減して、当 該複数個の出力映像データによって駆動される期間における当該画素の輝度の時 間積分値を制御する低輝度工程と、上記入力映像データが予め定められた閾値より も高い輝度を示している場合に行われ、上記複数個の出力映像データのうち、少なく とも 1つを、明表示用に予め定められた範囲の輝度を示す値に設定し、残余の出力 映像データのうちの少なくとも 1つを増減して、当該複数個の出力映像データによつ て駆動される期間における当該画素の輝度の時間積分値を制御する高輝度工程と が含まれていると共に、上記低輝度工程にて、入力映像データが黒を示している場 合に生成される上記複数個の出力映像データの少なくとも 1つは、黒以外の輝度を 示していることを特徴としている。なお、入力映像データが黒を示している場合、上記 複数個の出力映像データの少なくとも 2つを、互いに異なる値に設定してもよい。また 、暗表示用に予め定められた範囲の輝度を示す値は、黒以外の値に設定されてい てもよい。さらに、入力映像データが黒を示している場合、上記複数個の出力映像デ ータのうち、それぞれに応じて画素が駆動される期間が最も後の出力映像データを、 上記黒以外の輝度を示す値に設定してもよ ヽ。
[0008] これらの構成では、上記入力映像データが予め定められた閾値よりも低い輝度を 示している場合 (暗表示の場合)、上記複数個の出力映像データのうち、少なくとも 1 つは、暗表示用に予め定められた範囲の輝度(暗表示用の輝度)を示す値に設定さ れると共に、当該複数個の出力映像データによって駆動される期間における当該画 素の輝度の時間積分値を制御するために、残余の出力映像データのうちの少なくと も 1つが増減される。したがって、殆どの場合で、暗表示用の輝度を示す出力映像デ ータに応じて駆動されている期間(暗表示期間)における画素の輝度を、残余の期間 よりも低く設定できる。
[0009] また、上記入力映像データが予め定められた閾値よりも高い輝度を示している場合
(明表示の場合)、上記複数個の出力映像データのうち、少なくとも 1つは、明表示用 に予め定められた範囲の輝度(明表示用の輝度)を示す値に設定されると共に、当 該複数個の出力映像データによって駆動される期間における当該画素の輝度の時 間積分値を制御するため、残余の出力映像データのうちの少なくとも 1つが増減され る。したがって、殆どの場合で、明表示用の輝度を示す出力映像データに応じて駆 動されている期間(明表示期間)以外の期間における画素の輝度を、明表示期間より も低く設定できる。 [0010] これらの結果、殆どの場合、各入力周期毎に少なくとも 1回、他の期間よりも画素の 輝度が低い期間を設けることができるので、液晶表示装置が動画を表示する際の画 質を向上させることができる。また、明表示の場合、入力映像データの示す輝度が高 くなるに従って、明表示期間以外の期間における画素の輝度が高くなつていくので、 各入力周期毎に少なくとも 1回、暗表示を行う構成と比較して、各入力周期全体にお ける画素の輝度の時間積分値を上昇させることができ、より明るい表示が可能な液晶 表示装置を実現できる。
[0011] なお、明表示期間以外の期間における画素の輝度が高くなつても、明表示期間の 輝度との差力 ある程度以上あれば、動画表示時の画質を向上できるので、殆どの 場合に、動画表示時の画質を向上できる。
[0012] また、垂直配向モードの液晶表示装置であっても、画素の輝度が最大に近力つたり
、最小に近力 たりする場合の方が、それらの中間の場合よりも、その輝度を許容範 囲内に維持可能な視野角が広くなつている。これは、最大または最小輝度に近い状 態では、液晶分子の配向状態がコントラストへの要請力 単純なものとなり補正しや すいと共に、映像的にも好ましい結果を生み易いので、最大および最小 (特に最小 の輝度に近い部分)を、より選択的に視野角保証するからである。したがって、時分 割駆動しない場合は、好適に中間調を表示可能な視野角が狭くなり、その範囲外か ら見ると、白浮きなどの不具合が発生する虞れがある。
[0013] ところが、上記構成では、暗表示の場合、上記出力映像データの 1つが暗表示用 の輝度を示す値に設定されるので、当該暗表示期間には、画素の輝度が許容範囲 内に維持される視野角を拡大できる。同様に、明表示の場合は、上記出力映像デー タの 1つが暗表示用の輝度を示す値に設定されるので、当該暗表示期間には、画素 の輝度が許容範囲内に維持される視野角を拡大できる。この結果、時分割駆動しな い構成よりも、白浮きなどの不具合の発生を防止でき、視野角を拡大できる。
[0014] ここで、垂直配向モードの液晶セルをノーマリブラックモードで駆動する場合、黒表 示状態、すなわち、略垂直配向状態にある液晶分子に電界を印加して、当該液晶分 子を傾斜させようとすると、当該液晶分子は、方位 (配向方向の、基板に平行な面内 成分)と傾斜角度 (基板に垂直な方向力も配向方向への角度)との双方を決定する 必要がある。一方、既に方位が決定されている液晶分子は、電界に応じて自らの傾 斜角を決定すればよい。この結果、垂直配向モードの液晶セルをノーマリブラックモ ードで駆動する場合、画素が黒を表示している状態力 中間階調への応答時間は、 黒よりも明るい暗表示状態力も当該中間階調への応答時間よりも長くなつてしまう。
[0015] これに対して、上記構成では、上記低輝度工程にて、入力映像データが黒を示し ている場合に生成される上記複数個の出力映像データの少なくとも 1つは、黒以外 の輝度を示している。この結果、入力映像データが黒を示している場合に全出力映 像データを黒を示す値に設定する構成と比較して、中間階調への応答速度を大幅 に向上でき、動画表示時の画質を大幅に向上できる。なお、黒以外の輝度が充分に 暗ければ、画素が実際には黒を表示していなくても、何ら支障なぐユーザは、当該 画素を黒と認識する。
[0016] これらの結果、より明るく、視野角が広ぐ応答速度が速ぐし力も、動画表示時の画 質が向上された液晶表示装置を実現できる。
[0017] また、本発明に係る液晶表示装置の駆動方法は、上記課題を解決するために、垂 直配向モードの液晶セルをノーマリブラックモードで駆動する液晶表示装置の駆動 方法において、上記液晶パネルの画素への入力映像データが予め定められた閾値 よりも低 ヽ輝度を示して ヽる場合に行われ、当該入力映像データによって駆動される 単位期間を複数の期間に分割して生成される各分割期間のうち、少なくとも 1つの分 割期間には、当該画素の輝度を、暗表示用に予め定められた範囲の輝度に設定し、 残余の分割期間における画素の輝度を制御して、上記単位期間における当該画素 の輝度の時間積分値を制御する低輝度制御工程と、上記液晶パネルの画素への入 力映像データが予め定められた閾値よりも高い輝度を示している場合に行われ、当 該入力映像データによって駆動される単位期間を複数の期間に分割して生成される 各分割期間のうち、少なくとも 1つの分割期間には、当該画素の輝度を、明表示用に 予め定められた範囲の輝度に設定し、残余の分割期間における画素の輝度を制御 して、上記単位期間における当該画素の輝度の時間積分値を制御する高輝度制御 工程とを含み、上記低輝度工程にて、入力映像データが黒を示している場合、各分 割期間のうちの少なくとも 1つでは、上記画素の輝度を、黒以外の輝度に制御するこ とを特徴としている。なお、入力映像データが黒を示している場合、上記複数個の分 割期間の少なくとも 2つを、互いに異なる輝度に設定してもよい。また、暗表示用に予 め定められた範囲の輝度は、黒以外の値に設定されていてもよい。さらに、入力映像 データが黒を示している場合、上記複数個の分割期間のうち、最後の分割期間の輝 度を、上記黒以外の輝度に制御してもよい。
[0018] これらの構成でも、上記液晶表示装置の駆動方法と同様に、殆どの場合、単位期 間毎に少なくとも 1回、他の分割期間よりも画素の輝度が低い期間を設けることができ るので、液晶表示装置が動画を表示する際の画質を向上させることができる。さらに 、明表示の場合、入力映像データの示す輝度が高くなるに従って、明表示用に予め 定められた範囲の輝度に設定する分割期間(明表示期間)以外の期間における画素 の輝度が高くなつていくので、より明るい表示が可能な液晶表示装置を実現できる。
[0019] さらに、上記構成では、上記液晶表示装置の駆動方法と同様に、入力映像データ が黒を示している場合には、分割期間の少なくとも 1つは、黒以外の輝度に制御され る。この結果、入力映像データが黒を示している場合に全分割期間を黒表示に制御 する構成と比較して、中間階調への応答速度を大幅に向上でき、動画表示時の画質 を大幅に向上できる。
[0020] これらの結果、より明るく、視野角が広ぐ応答速度が速ぐし力も、動画表示時の画 質が向上された液晶表示装置を実現できる。
[0021] 一方、本発明に係る液晶表示装置の駆動装置は、上記課題を解決するために、画 素への入力映像データが入力される度に、当該画素を時分割駆動するために、当該 画素への入力映像データに応じて、当該画素への出力映像データを、当該入力周 期毎に予め定められた複数の個数生成する生成手段を有し、垂直配向モードの液 晶セルをノーマリブラックモードで駆動する液晶表示装置の駆動装置にお 、て、上 記生成手段は、上記入力映像データが予め定められた閾値よりも低い輝度を示して いる場合、上記複数個の出力映像データのうち、少なくとも 1つを、暗表示用に予め 定められた範囲の輝度を示す値に設定し、残余の出力映像データのうちの少なくとも 1つを増減して、当該複数個の出力映像データによって駆動される期間における当 該画素の輝度の時間積分値を制御する一方、上記入力映像データが予め定められ た閾値よりも高い輝度を示している場合、上記複数個の出力映像データのうち、少な くとも 1つを、明表示用に予め定められた範囲の輝度を示す値に設定し、残余の出力 映像データのうちの少なくとも 1つを増減して、当該複数個の出力映像データによつ て駆動される期間における当該画素の輝度の時間積分値を制御すると共に、上記生 成手段は、入力映像データが黒を示している場合、上記複数個の出力映像データ の少なくとも 1つを、黒以外の輝度を示す値に設定することを特徴としている。
[0022] また、上記構成に加えて、上記生成手段は、入力映像データが黒を示している場 合、上記複数個の出力映像データの少なくとも 2つを、互いに異なる値に設定しても よい。さらに、上記構成に加えて、暗表示用に予め定められた範囲の輝度を示す値 は、黒以外の値に設定されていてもよい。また、上記構成にカ卩えて、上記生成手段は 、入力映像データが黒を示している場合、上記複数個の出力映像データのうち、そ れぞれに応じて画素が駆動される期間が最も後の出力映像データを、上記黒以外の 輝度を示す値に設定してもよ ヽ。
[0023] これらの構成でも、上記液晶表示装置の駆動装置と同様に、殆どの場合、各入力 周期毎に少なくとも 1回、他の期間よりも画素の輝度が低い期間を設けることができる ので、液晶表示装置が動画を表示する際の画質を向上させることができる。さらに、 明表示の場合、入力映像データの示す輝度が高くなるに従って、明表示期間以外の 期間における画素の輝度が高くなつていくので、より明るい表示が可能な液晶表示 装置を実現できる。
[0024] さらに、上記構成では、上記液晶表示装置の駆動方法と同様に、入力映像データ が黒を示している場合に生成される上記複数個の出力映像データの少なくとも 1つ は、黒以外の輝度を示している。この結果、入力映像データが黒を示している場合に 全出力映像データを黒を示す値に設定する構成と比較して、中間階調への応答速 度を大幅に向上でき、動画表示時の画質を大幅に向上できる。
[0025] これらの結果、より明るく、視野角が広ぐ応答速度が速ぐし力も、動画表示時の画 質が向上された液晶表示装置を実現できる。
[0026] さらに、上記構成に加えて、上記生成手段は、上記残余の出力映像データのうち の特定の 1つである特定出力映像データを増減して、上記時間積分値を制御すると 共に、当該複数個の出力映像データのうち、上記特定出力映像データ以外を、上記 暗表示用に予め定められた範囲の輝度を示す値、または、明表示用に予め定められ た範囲の輝度を示す値に設定してもよ 、。
[0027] 当該構成では、上記複数個の出力映像データのうち、上記特定出力映像データ以 外の映像データは、暗表示用に予め定められた範囲の輝度を示す値、または、明表 示用に予め定められた範囲の輝度を示す値に設定されているので、これら特定出力 映像データ以外の映像データを、当該両範囲の ヽずれにも含まれな ヽ値に設定す る場合と比較して、さらに、白浮きなどの不具合の発生を防止でき、視野角を拡大で きる。
[0028] また、上記構成に加えて、上記生成手段は、上記複数個の出力映像データのそれ ぞれに応じて画素が駆動される期間を分割期間、当該複数個の分割期間からなり、 上記複数個の出力映像データに応じて当該画素が駆動される期間を単位期間とす るとき、上記入力映像データの示す輝度が一番低い領域では、各分割期間のうち、 上記単位期間の時間的な中心位置に最も近い分割期間に対応する出力映像デー タを、上記特定出力映像データとして選択すると共に、入力映像データの示す輝度 が徐々に高くなり、当該特定出力映像データが上記明表示用に予め定められた範 囲に入ると、当該分割期間の出力映像データを当該範囲内の値に設定し、残余の 分割期間のうち、上記単位期間の時間的な中心位置に最も近い分割期間に対応す る出力映像データを、新たに上記特定出力映像データとして選択してもよい。
[0029] 当該構成では、入力映像データの示す輝度に拘わらず、上記単位期間における当 該画素の輝度の時間的な重心位置が、当該単位期間の時間的な中心位置の付近 に設定されるので、以下の不具合、すなわち、時間的な重心位置が変動することに 起因して、動く物体の前端や後端において、静止時には見えない異常な明暗が見え てしまい、これが動画品質を低下させるという不具合の発生を防止でき、動画表示時 の品質を向上できる。
[0030] さらに、上記構成に加えて、上記複数の出力映像データのそれぞれによって画素 が駆動される期間同士の比率は、上記複数の出力映像データのうち、いずれの出力 映像データを上記特定出力映像データとするかを切り換えるタイミング力 当該画素 の表現可能な輝度の範囲を等分するタイミングよりも、画素の表現可能な明度の範 囲を等分するタイミングに近くなるように設定されて 、てもよ 、。
[0031] 当該構成では、上記複数個の出力映像データによって駆動される期間における当 該画素の輝度の時間積分値力 いずれの出力映像データの示す輝度によって主と して制御されるかを、適切な明度で切り換えることができるので、輝度の範囲を等分 するタイミングで切り換える場合よりも、人に認識される白浮きの量をさらに削減するこ とができ、視野角を、さらに拡大できる。
[0032] また、上記構成に加えて、上記生成手段の前または後に配され、上記入力映像デ ータまたは上記各出力映像データの一方である補正対象データを補正すると共に、 補正後の補正対象データに応じて画素が駆動される期間を補正対象データの駆動 期間と呼ぶとき、上記補正対象データの駆動期間の最後に上記画素が到達している 輝度を予測する補正手段を備え、当該補正手段は、今回の補正対象データの補正 処理を行う際、これまでの予測結果のうち、上記今回の補正対象データの駆動期間 の最初の時点で画素が到達して 、る輝度を示す予測結果に応じて、上記補正対象 データを補正すると共に、これまでの予測結果と、これまでの補正対象データと、上 記今回の補正対象データとのうち、少なくとも今回の補正対象データに基づいて、上 記今回の補正対象データの駆動期間の最後の時点の輝度を予測してもよい。
[0033] なお、上記駆動期間の最後の時点の輝度は、例えば、今回の補正対象データの示 す輝度としてもよい。この場合は、画素の応答速度が遅い場合には、ある程度の誤差 が発生するが、今回の補正対象データ自体を予測結果として用いることができるので 、予測のための構成を簡略ィ匕できる。一方、これまでの予測結果と、これまでの補正 対象データと、上記今回の補正対象データとのうち、少なくとも今回の補正対象デー タを含む複数に基づ 、て予測すれば、予測結果を今回映像データとする場合よりも 予測のための構成が複雑になる力 画素の応答速度が遅い場合でも、より正確に上 記最後の時点の輝度を予測できる。
[0034] 上記構成では、これまでの予測結果のうち、上記今回の補正対象データの駆動期 間の最初の時点で画素が到達して 、る輝度を示す予測結果に応じて、上記今回の 補正対象データを補正しているので、画素の応答速度を向上させることができ、上記 液晶表示装置の駆動装置が駆動可能な液晶表示装置の種類を増加させることがで きる。
[0035] より詳細には、上記のように、画素を時分割する場合、画素には、時分割駆動しな い場合よりも速い応答速度が求められる。ここで、画素の応答速度が充分であれば、 上記予測結果を参照せず、今回の補正対象データをそのまま出力しても、今回の駆 動期間の最後の時点における画素の輝度は、今回の補正対象データの示す輝度に 到達する。ところが、画素の応答速度が不足すると、今回の補正対象データをそのま ま出力しただけでは、上記最後の時点における画素の輝度を今回の補正対象デー タの示す輝度に到達させることが難しくなる。この結果、時分割駆動する駆動装置が 駆動可能な液晶表示装置の種類は、時分割駆動しな!ヽ場合よりも限定されやす ヽ。
[0036] これに対して、上記構成では、上記予測結果に応じて今回の補正対象データを補 正するので、例えば、応答速度が足りないと見込まれる場合は、階調遷移を強調して 画素の応答速度を向上させるなど、予測結果に応じた処理が可能になり、画素の応 答速度を向上させることができる。
[0037] 一方、本発明に係る液晶表示装置は、上記液晶表示装置の駆動装置の!/、ずれか と、当該駆動装置によって駆動される液晶表示装置とを備えていることを特徴として いる。したがって、上記液晶表示装置の駆動装置と同様、より明るく、視野角が広ぐ 応答速度が速ぐしかも、動画表示時の画質が向上された液晶表示装置を実現でき る。
[0038] また、本発明に係る液晶表示装置は、垂直配向モードの液晶セルと、ノーマリブラ ックモードで駆動する駆動装置とを有する液晶表示装置にぉ 、て、上記駆動装置は
、液晶セルの画素への入力映像データが予め定められた閾値よりも低い輝度を示し ている場合、当該入力映像データによって駆動される単位期間を複数の期間に分割 して生成される各分割期間のうち、少なくとも 1つの分割期間には、当該画素の輝度 を、暗表示用に予め定められた範囲の輝度に設定し、残余の分割期間における画 素の輝度を制御して、上記単位期間における当該画素の輝度の時間積分値を制御 する一方、上記液晶パネルの画素への入力映像データが予め定められた閾値よりも 高い輝度を示している場合、当該入力映像データによって駆動される単位期間を複 数の期間に分割して生成される各分割期間のうち、少なくとも 1つの分割期間には、 当該画素の輝度を、明表示用に予め定められた範囲の輝度に設定し、残余の分割 期間における画素の輝度を制御して、上記単位期間における当該画素の輝度の時 間積分値を制御すると共に、入力映像データが黒を示している場合、各分割期間の うちの少なくとも 1つでは、上記画素の輝度を、黒以外の輝度に制御することを特徴と している。
[0039] 当該構成でも、上述した液晶表示装置の駆動方法と同様に、殆どの場合、単位期 間毎に少なくとも 1回、他の分割期間よりも画素の輝度が低い期間を設けることができ るので、液晶表示装置が動画を表示する際の画質を向上させることができる。さらに 、明表示の場合、入力映像データの示す輝度が高くなるに従って、明表示用に予め 定められた範囲の輝度に設定する分割期間(明表示期間)以外の期間における画素 の輝度が高くなつていくので、より明るい表示が可能な液晶表示装置を実現できる。 さらに、上記構成では、上記液晶表示装置の駆動方法と同様に、入力映像データが 黒を示している場合には、分割期間の少なくとも 1つは、黒以外の輝度に制御される 。この結果、入力映像データが黒を示している場合に全分割期間を黒表示に制御す る構成と比較して、中間階調への応答速度を大幅に向上でき、動画表示時の画質を 大幅に向上できる。これらの結果、より明るぐ視野角が広ぐ応答速度が速ぐし力も 、動画表示時の画質が向上された液晶表示装置を実現できる。
[0040] また、上記構成に加えて、上記駆動装置は、上記残余の分割期間のうちの特定の 1つである特定分割期間の輝度を増減して、上記時間積分値を制御すると共に、当 該複数個の分割期間のうち、上記特定分割期間以外の輝度を、上記暗表示用に予 め定められた範囲の輝度を示す値、または、明表示用に予め定められた範囲の輝度 を示す値に設定してもよい。
[0041] 当該構成では、上記複数個の分割期間のうち、上記特定分割期間以外の分割期 間では、画素の輝度が暗表示用に予め定められた範囲の輝度、または、明表示用に 予め定められた範囲の輝度に設定されているので、これら特定分割期間以外の分割 期間を、当該両範囲のいずれにも含まれない輝度に設定する場合と比較して、さら に、白浮きなどの不具合の発生を防止でき、視野角を拡大できる。 [0042] さらに、上記構成に加えて、上記駆動装置は、上記入力映像データの示す輝度が 一番低い領域では、各分割期間のうち、上記単位期間の時間的な中心位置に最も 近い分割期間を上記特定分割期間として選択すると共に、入力映像データの示す 輝度が徐々に高くなり、当該分割期間の輝度が上記明表示用に予め定められた範 囲に入ると、当該分割期間の輝度を当該範囲内の値に設定し、残余の分割期間のう ち、上記単位期間の時間的な中心位置に最も近い分割期間を、新たに上記特定分 割期間として選択してもよ 、。
[0043] 当該構成では、入力映像データの示す輝度に拘わらず、上記単位期間における当 該画素の輝度の時間的な重心位置が、当該単位期間の時間的な中心位置の付近 に設定されるので、以下の不具合、すなわち、時間的な重心位置が変動することに 起因して、動く物体の前端や後端において、静止時には見えない異常な明暗が見え てしまい、これが動画品質を低下させるという不具合の発生を防止でき、動画表示時 の品質を向上できる。
[0044] また、上記構成に加えて、上記各分割期間同士の比率は、当該複数の分割期間の うち、いずれの分割期間を上記特定出力分割期間とするかを切り換えるタイミングが 、当該画素の表現可能な輝度の範囲を等分するタイミングよりも、画素の表現可能な 明度の範囲を等分するタイミングに近くなるように設定されて 、てもよ 、。
[0045] 当該構成では、上記単位期間における当該画素の輝度の時間積分値が、いずれ の分割期間における輝度によって主として制御されるかを、適切な明度で切り換える ことができるので、輝度の範囲を等分するタイミングで切り換える場合よりも、人に認 識される白浮きの量をさらに削減することができ、視野角を、さらに拡大できる。
[0046] さら〖こ、上記構成に加えて、テレビジョン放送を受信し、当該テレビジョン放送によ つて伝送された映像を示す映像信号を上記液晶表示装置の駆動装置へ入力する受 像手段を備え、液晶テレビジョン受像機として動作してもよい。また、上記構成に加え て、上記液晶表示装置の駆動装置には、外部から映像信号が入力されていると共に 、当該映像信号を示す映像を表示する液晶モニタ装置として動作してもよ 、。
[0047] これらの構成では、上記液晶表示装置が液晶テレビジョン受像機または液晶モニタ 装置として動作するので、より明るく、視野角が広ぐ応答速度が速ぐし力も、動画表 示時の画質の向上した液晶テレビジョン受像機または液晶モニタ装置を実現できる。
[0048] ところで、液晶表示装置を制御する装置は、ハードウェアで実現してもよ!/、し、プロ グラムをコンピュータに実行させることによって実現してもよい。具体的には、本発明 に係るプログラムは、ノーマリブラックモードで駆動される垂直配向モードの液晶セル を有する液晶表示装置を制御するコンピュータに、上記液晶表示装置の駆動方法の いずれかの各各工程を実行させるプログラムであり、本発明に係る記録媒体には、当 該プログラムが記録されて 、る。
[0049] これらのプログラムがコンピュータによって実行されると、当該コンピュータは、上記 液晶表示装置の駆動方法に従って、上記液晶表示装置を制御できる。したがって、 上記液晶表示装置の駆動方法と同様に、より明るぐ視野角が広ぐ応答速度が速く 、し力も、動画表示時の画質の向上した液晶表示装置を提供できる。
[0050] このように本発明によれば、入力映像データが黒を示している場合、分割期間の少 なくとも 1つは、黒以外の輝度に制御されるので、より明るく、視野角が広ぐ応答速 度が速ぐし力も、動画表示時の画質の向上した液晶表示装置を提供できる。したが つて、液晶テレビジョン受像機や液晶モニタをはじめとする種々の液晶表示装置の駆 動装置として、広く好適に使用できる。
[0051] 本発明のさらに他の目的、特徴、および優れた点は、以下に示す記載によって十 分わ力るであろう。また、本発明の利益は、添付図面を参照した次の説明で明白にな るであろう。
図面の簡単な説明
[0052] [図 1]本発明の実施形態を示すものであり、画像表示装置に設けられた信号処理回 路の要部構成を示すブロック図である。
[図 2]上記画像表示装置の要部構成を示すブロック図である。
[図 3(a)]上記画像表示装置を備えたテレビジョン受像機の要部構成を示すブロック図 である。
[図 3(b)]上記画像表示装置を備えた液晶モニタ装置の要部構成を示すブロック図で ある。
[図 4]上記画像表示装置に設けられた画素の構成例を示す回路図である。 圆 5]上記画像表示装置に設けられた液晶セルを示すものであり、電圧無印加状態 を示す模式図である。
圆 6]上記画像表示装置に設けられた液晶セルを示すものであり、電圧印加状態を 示す模式図である。
[図 7]上記液晶セルの構成例を示すものであり、画素電極近傍を示す平面図である。 圆 8]上記画素を時分割せずに駆動した場合に、当該画素を正面から見たときと斜め から見たときの輝度の相違を示すグラフである。
圆 9]上記信号処理回路力もの映像信号に応じて画素が駆動された場合に、当該画 素を正面から見たときと斜めから見たときの輝度の相違を示すグラフである。
[図 10]比較例を示すものであり、信号処理部に入出力される映像データの時間変化 を示すタイミングチャートである。
[図 11]上記信号処理部により画像表示装置が駆動された場合の輝度変化を示すグ ラフである。
圆 12]本実施形態に係る信号処理部に入出力される映像データの時間変化を示す タイミングチャートである。
[図 13]上記信号処理部により画像表示装置が駆動された場合の輝度変化を示すグ ラフである。
[図 14]暗表示されるサブフレームの輝度を変更しながら、黒表示時の平均輝度およ びコントラスト比を評価した結果を示す図面である。
圆 15]比較例を示すものであり、信号処理回路内の変調処理部の前段に、 γ補正回 路を設けた構成を示すブロック図である。
[図 16]上記実施形態に係る信号処理回路に設けられた変調処理部の構成例を示す ものであり、変調処理部の要部構成を示すブロック図である。
[図 17]図 14に示した輝度のグラフを明度に変換したものを示すグラフである。
[図 18]図 1に示したフレームメモリに入力される映像信号と、フレームメモリから前段 L
UT、後段 LUTに出力される映像信号を示す説明図である。
[図 19]本実施形態において、フレームを 3 : 1に分割する場合における、前段表示信 号と後段表示信号とに関する走査信号線の ONタイミングを示す説明図である。 [図 20]本実施形態において、フレームを 3 : 1に分割した場合における、予定明度と実 際明度との関係を示すグラフである。
圆 21(a)]電極間電圧の極性をフレーム周期で反転させる方法を示す説明図である。
[図 21(b)]電極間電圧の極性をフレーム周期で反転させる他の方法を示す説明図で ある。
圆 22(a)]液晶の応答速度を説明するための図であり、中間階調の表示信号を表示 する場合の、 1フレームで液晶に印加される電圧を説明した図である。
圆 22(b)]液晶の応答速度を説明するための図であり、電極間電圧を示した図である 圆 22(c)]液晶の応答速度を説明するための図であり、液晶の応答速度が遅い場合 の電極間電圧を示した図である。
[図 23]応答速度の遅い液晶を用いてサブフレーム表示を行う場合に、液晶パネルか ら出力される表示輝度 (予定輝度と実際輝度との関係)を示すグラフである。
[図 24(a)]表示輝度力Lmaxの 3Z4および 1Z4の場合に、前サブフレームおよび後 サブフレームによって表示される輝度を示すグラフである。
[図 24(b)]液晶に印加される電圧 (液晶電圧)の極性をサブフレーム周期で変えた場 合の、液晶電圧の遷移状態を示すグラフである。
圆 25(a)]電極間電圧の極性をフレーム周期で反転させる方法を示す説明図であり、
1フレームの間、同極性の電圧を印加する方法をとつたときを示している。
圆 25(b)]電極間電圧の極性をフレーム周期で反転させる方法を示す説明図であり、
1フレーム内の 2つのサブフレーム間で液晶電圧を逆極性とし、さらに、後サブフレー ムと、 1つ後のフレームの前サブフレームとを同極性とする方法をとつたときを示して いる。
[図 26(a)]液晶パネルにおける 4つのサブ画素と、各画素の液晶電圧の極性を示す説 明図である。
[図 26(b)]液晶パネルにおける 4つのサブ画素と、各画素の液晶電圧の極性を示す別 の説明図である。
[図 26(c)]液晶パネルにおける 4つのサブ画素と、各画素の液晶電圧の極性を示す別 の説明図である。
[図 26(d)]液晶パネルにおける 4つのサブ画素と、各画素の液晶電圧の極性を示す別 の説明図である。
圆 27]画素分割で駆動される液晶パネルの構成を示す説明図である。
[図 28(a)]ソースライン Sに正(≥Vcom)の表示信号が印加された場合における、部分 画素の液晶容量に印加される電圧 (液晶電圧)を示すグラフであり、補助容量配線 C S 1の補助信号が立ち上がった場合を示している。
[図 28(b)]ソースライン Sに負(≤Vcom)の表示信号が印加された場合における、部 分画素の液晶容量に印加される電圧 (液晶電圧)を示すグラフであり、補助容量配線 CS1の補助信号が立ち下がった場合を示している。
[図 28(c)]ソースライン Sに正(≥Vcom)の表示信号が印加された場合における、部分 画素の液晶容量に印加される電圧 (液晶電圧)を示すグラフであり、補助容量配線 C S2の補助信号は立ち下がった場合を示している。
[図 28(d)]ソースライン Sに負(≤Vcom)の表示信号が印加された場合における、部 分画素の液晶容量に印加される電圧 (液晶電圧)を示すグラフであり、補助容量配線 CS2の補助信号が立ち上がった場合を示している。
圆 29]画素分割駆動を行わない場合における、 2つの視野角(0° (正面)および 60
° )での、液晶パネル 21の透過率と印加電圧との関係を示すグラフである。
[図 30(a)] lフレームごとに液晶電圧の極性を反転させながらサブフレーム表示を行う 場合における、液晶電圧(1画素分)の変化を示すグラフである。
圆 30(b)]画素分割駆動において輝度の高くなる部分画素(明画素)の液晶電圧を示 すグラフである。
圆 30(c)]同じく輝度の低くなる部分画素(暗画素)の液晶電圧を示すグラフである。 圆 31(a)]図 30 (b)に対応する、明画素の輝度を示すグラフである。
[図 31(b)]図 30 (c)に対応する、暗画素の輝度を示すグラフである。
圆 32(a)]フレーム周期で極性反転を行う場合における、明画素の輝度を示すグラフ である。
[図 32(b)]フレーム周期で極性反転を行う場合における、暗画素の輝度を示すグラフ である。
圆 33]サブフレーム表示,極性反転駆動および画素分割駆動を組み合わせて表示 を行った結果 (破線および実線)と、通常ホールド表示を行った結果 (一点鎖線およ び実線)と合わせて示すグラフである。
圆 34(a)]サブフレーム周期で極性反転を行う場合における、明画素の輝度を示すグ ラフである。
[図 34(b)]サブフレーム周期で極性反転を行う場合における、暗画素の輝度を示すグ ラフである。
[図 35]均等な 3つのサブフレームにフレームを分割して表示を行った結果 (破線およ び実線)と、通常ホールド表示を行った結果 (一点鎖線および実線)とを合わせて示 すグラフである。
[図 36]フレームを 3つに分割し、フレームごとに電圧極性を反転した場合における、 液晶電圧の遷移を示すグラフである。
[図 37]フレームを 3つに分割し、サブフレームごとに電圧極性を反転した場合におけ る、液晶電圧の遷移を示すグラフである。
圆 38]輝度を調整しないサブフレームにおける、表示部に出力される信号階調(%; 表示信号の輝度階調)と、各信号階調に応じた実際輝度階調 (%)との関係 (視野角 階調特性 (実測) )を示すグラフである。
圆 39]本発明の他の実施形態を示すものであり、信号処理回路の要部構成を示す ブロック図である。
[図 40]上記信号処理回路に設けられた変調処理部の構成例を示すものであり、変調 処理部の要部構成を示すブロック図である。
[図 41]上記信号処理回路の動作を示すタイミングチャートである。
圆 42]上記信号処理回路に設けられた変調処理部の他の構成例を示すものであり、 変調処理部の要部構成を示すブロック図である。
[図 43]上記信号処理回路の動作を示すタイミングチャートである。
[図 44]変形例を示すものであり、変調処理部の要部構成を示すブロック図である。
[図 45]他の変形例を示すものであり、変調処理部の要部構成を示すブロック図である [図 46]上記液晶セルの他の構成例を示すものであり、画素電極を示す斜視図である
[図 47]上記液晶セルのさらに他の構成例を示すものであり、画素電極近傍を示す平 面図である。
[図 48]上記液晶セルの別の構成例を示すものであり、画素電極を示す斜視図である
[図 49]上記液晶セルのまた別の構成例を示すものであり、画素電極および対向電極 を示す斜視図である。
[図 50]上記液晶セルのさらに他の構成例を示すものであり、画素電極を示す平面図 である。
符号の説明
[0053] 1 画像表示装置 (液晶表示装置)
44 -44c 制御回路 (生成手段)
31 · 31a〜31f 変調処理部 (補正手段)
111 液晶セル
VS 映像信号源 (受像手段)
SPIX(I, 1) · · · サブ画素(画素)
発明を実施するための最良の形態
[0054] 〔第 1の実施形態〕
本発明の一実施形態について図 1ないし図 38に基づいて説明すると以下の通りで ある。すなわち、本実施形態に係る画像表示装置は、入力映像データが黒を示して いる場合であっても、分割期間(例えば、サブフレーム)の少なくとも 1つは、黒以外の 輝度に制御することによって、より明るぐ視野角が広ぐ応答速度が速ぐし力も、動 画表示時の画質を向上可能な液晶表示装置であって、例えば、テレビジョン受像機 の画像表示装置として、好適に使用できる。なお、当該テレビジョン受像機が受像す るテレビジョン放送の一例としては、地上波テレビジョン放送、 BS(Broadcasting Satell ite)ディジタル放送や CS(Communication Satellite)ディジタル放送などの人工衛星を 用いた放送、あるいは、ケーブルテレビテレビジョン放送などが挙げられる。
[0055] 以下では、入力映像データが黒を示している場合であってもサブフレーム期間の 少なくとも 1つを黒以外の輝度に設定するための信号処理回路について説明する前 に、本実施形態で例示する画像表示装置全体の構成について簡単に説明する。
[0056] すなわち、当該画像表示装置 (表示装置) 1のパネル 11は、例えば、 R、 G、 Bの各 色を表示可能なサブ画素から 1つの画素を構成し、各サブ画素の輝度を制御するこ とによって、カラー表示可能なパネルであって、例えば、図 2に示すように、マトリクス 状に配されたサブ画素 SPIX(1,1)〜SPIX(n,m)を有する画素アレイ(表示部) 2と、 画素アレイ 2のデータ信号線 SLl〜SLnを駆動するデータ信号線駆動回路 3と、画 素アレイ 2の走査信号線 GLl〜GLmを駆動する走査信号線駆動回路 4とを備えて いる。また、画像表示装置 1には、両駆動回路 3 ·4へ制御信号を供給する制御回路 12と、映像信号源 VSから入力される映像信号 DATに基づいて、上記制御回路 12 へ与える映像信号 DAT2を生成する信号処理回路 21とが設けられている。なお、こ れらの回路は、電源回路 13からの電力供給によって動作している。また、本実施形 態では、走査信号線 GLl〜GLmに沿った方向に隣接する 3つのサブ画素 SPIXか ら、 1つの画素 PIXが構成されている。なお、本実施形態に係るサブ画素 SPIX(1,1) • · -が特許請求の範囲に記載の画素に対応して 、る。
[0057] ここで、上記映像信号源 VSは、映像信号 DATを生成できれば、どのような装置で あってもよいが、一例として、当該画像表示装置 1を含む装置がテレビジョン受像機 の場合は、テレビジョン放送を受信し、当該テレビジョン放送によって伝送された映像 を示す映像信号を生成するチューナ (受像手段)が挙げられる。この場合、チューナ としての映像信号源 VSは、放送信号のチャネルを選択し、選択されたチャネルのテ レビ映像信号を、信号処理回路 21に伝達し、信号処理回路 21が、当該テレビ映像 信号に基づいて、信号処理後の映像信号 DAT2を生成する。また、当該画像表示 装置 1を含む装置が液晶モニタ装置の場合、上記映像信号源 VSとして、例えば、パ 一ソナルコンピュータなどが挙げられる。
[0058] より詳細には、画像表示装置 1を含む装置がテレビジョン受像機 100aの場合、当 該テレビジョン受像機 100aは、映像信号源 VSと画像表示装置 1とを備え、図 3 (a) に示すように、当該映像信号源 VSには、例えば、テレビ放送信号が入力される。さら に、当該映像信号源 VSは、当該テレビ放送信号力ゝらのチャネルを選択し、選択され たチャネルのテレビ映像信号を、映像信号 DATとして出力するチューナ部 TSを備 えている。
[0059] 一方、画像表示装置 1を含む装置が液晶モニタ装置 100bである場合、当該液晶 モニタ装置 100bは、図 3 (b)に示すように、例えば、パーソナルコンピュータなどから の映像のモニタ信号を、液晶パネル 11への映像信号として出力するモニタ信号処理 部 101を備えている。なお、当該モニタ信号処理部 101は、信号処理回路 21あるい は制御回路 12自体であってもよいし、これらの前段または後段に設けられる回路で あってもよい。
[0060] なお、以下では、説明の便宜上、例えば、 i番目のデータ信号線 SLiのように、位置 を特定する必要がある場合にのみ、位置を示す数字または英字を付して参照し、位 置を特定する必要がな ヽ場合や総称する場合には、位置を示す文字を省略して参 照する。
[0061] 上記画素アレイ 2は、複数 (この場合は、 n本)のデータ信号線 SLl〜SLnと、各デ ータ信号線 SLl〜SLnに、それぞれ交差する複数 (この場合は、 m本)の走査信号 線 GLl〜GLmとを備えており、 1力も nまでの任意の整数を i、 1力も mまでの任意の 整数を jとすると、データ信号線 SLiおよび走査信号線 GLjの組み合わせ毎に、サブ 画素 SPIX(i,j)が設けられている。
[0062] 本実施形態の場合、各サブ画素 SPIX(iJ)は、隣接する 2本のデータ信号線 SL(i- 1) ' SLiと、隣接する 2本の走査信号線 GL(j-l) 'GLjとで囲まれた部分に配されてい る。
[0063] 上記サブ画素 SPIX(U)は、例えば、図 4に示すように、スイッチング素子として、ゲ ートが走査信号線 GLjへ、ソースがデータ信号線 SLiに接続された電界効果トランジ スタ SW(i,j)と、当該電界効果トランジスタ SW(i,j)のドレインに、一方電極が接続され た画素容量 Cp(i,j)とを備えている。また、画素容量 Cp(i,j)の他端は、全サブ画素 S PIX…に共通の共通電極線に接続されている。上記画素容量 Cp(i,j)は、液晶容量 CL(i,j)と、必要に応じて付加される補助容量 Cs(i,j)とから構成されている。 [0064] 上記サブ画素 SPIX(iJ)において、走査信号線 GLjが選択されると、電界効果トラ ンジスタ SW(i,j)が導通し、データ信号線 SLiに印加された電圧が画素容量 Cp(i,j) へ印加される。一方、当該走査信号線 GLjの選択期間が終了して、電界効果トラン ジスタ SW(i,j)が遮断されている間、画素容量 Cp(i,j)は、遮断時の電圧を保持し続 ける。ここで、液晶の透過率あるいは反射率は、液晶容量 CL(i,j)に印加される電圧 によって変化する。したがって、走査信号線 GLjを選択し、当該サブ画素 SPIX(i,j) への映像データに応じた電圧をデータ信号線 SLiへ印加すれば、当該サブ画素 SPI X(i,j)の表示状態を、当該映像データに合わせて変更できる。
[0065] 本実施形態に係る上記画像表示装置 1は、液晶セルとして、垂直配向モードの液 晶セル、すなわち、電圧無印加時には、液晶分子が基板に対して略垂直に配向し、 サブ画素 SPIX(i,x)の液晶容量 CL(i,j)への印加電圧に応じて、液晶分子が垂直配 向状態から傾斜する液晶セルを採用しており、当該液晶セルをノーマリブラックモー ドで使用している。
[0066] より詳細には、本実施形態に係る画素アレイ 2は、図 5に示すように、垂直配向(VA )方式の液晶セル (液晶表示装置) 111と、当該液晶セル 111の両側に配された偏光 板 112 · 113とを積層して構成されて 、る。
[0067] 上記液晶セル 111は、各サブ画素 SPIXにそれぞれ対応する画素電極 12 laが設 けられた TFT(Thin Film Transistor)基板 11 laと、対向電極 121bが設けられた対向 基板 11 lbと、両基板 11 la' 11 lbにて挟持され、負の誘電異方性を有するネマチッ ク液晶からなる液晶層 111cとを備えている。なお、本実施形態に係る画像表示装置 1は、カラー表示可能であり、上記対向基板 111bには、各サブ画素 SPIXの色に対 応するカラーフィルタ(図示せず)が形成されて 、る。
[0068] さらに、上記 TFT基板 11 laには、液晶層 111c側の表面に垂直配向膜 122aが形 成されている。同様に、上記対向基板 11 lbの液晶層 111c側の表面には、垂直配 向膜 122bが形成されている。これにより、上記両電極 121a' 121b間に電圧が印加 されて 、な 、状態にぉ 、て、両基板 11 la' 11 lb間に配された液晶層 11 lcの液晶 分子 Mを、上記基板 11 la' 11 lb表面に対して略垂直に配向させることができる。
[0069] 一方、両電極 121a' 121b間に電圧が印加されると、液晶分子 Mは、上記基板 111 a · 11 lbの法線方向に沿った状態 (電圧無印加状態)から、印加電圧に応じた傾斜 角で傾斜する(図 6参照)。なお、両基板 11 la' 11 lbが対向しているので、特に区別 する必要がある場合を除いて、それぞれの法線方向および面内方向を、単に法線方 向あるいは面内方向と称する。
[0070] ここで、本実施形態に係る液晶セル 111は、マルチドメイン配向の液晶セルであつ て、各サブ画素 SPIXが複数の範囲(ドメイン)に分割され、配向方向、すなわち、電 圧印加時に液晶分子 Mが傾斜する際の方位 (配向方向の面内成分)が、各ドメイン 間で異なるように制御されている。
[0071] 具体的には、図 7に示すように、上記画素電極 121aには、断面形状が山型で、面 内の形状がジグザグと略直角に曲がる突起列 123a…が、ストライプ状に形成されて いる。一方、上記対向電極 121bには、面内の形状がジグザグと略直角に曲がるスリ ット(開口部:電極が形成されて 、な 、部分) 123b- "が、ストライプ状に形成されて!ヽ る。これらの突起列 123aとスリット 123bの面内方向における間隔は、予め定められ た間隔に設定されている。また、上記突起列 123aは、上記画素電極 121a上に感光 性榭脂を塗布し、フォトリソグラフィー工程で加工することで形成されている。さらに、 上記両電極 121a' 121bは、それぞれの基板 11 la' 11 lb上に ITO ( Indium Tin Oxi de )膜を成膜した後、その上にフォトレジストを塗布して電極のパターンを露光して現 像した後エッチングすることにより形成されており、上記スリット 123bは、対向電極 12 lbを形成する際に、スリット 123bの部分を除くようにパターユングすることによって形 成される。
[0072] ここで、突起列 123aの近傍では、液晶分子が、突起列 123aの斜面に垂直になる ように配向する。力!]えて、電圧印加時において、突起列 123aの近傍の電界は、突起 列 123aの斜面に平行になるように傾く。ここで、液晶分子は、長軸が電界に垂直な 方向に傾くので、液晶分子は、基板表面に対して斜め方向に配向する。さらに、液晶 の連続性によって、突起列 123aの斜面力も離れた液晶分子も斜面近傍の液晶分子 と同様の方向に配向する。
[0073] 同様に、スリット 123bのエッジ (スリット 123bと対向電極 121bとの境界)近傍の領域 では、電圧印加時において、基板表面に対して傾斜した電界が形成されるので、液 晶分子は、基板表面に対して斜め方向に配向する。さらに、液晶の連続性によって、 エッジ近傍の領域力 離れた液晶分子もエッジ近傍の液晶分子と同様の方向に配 向する。
[0074] これらの結果、各突起列 123a…およびスリット 123b…において、角部 Cと角部じと の間の部分を線部と称すると、突起列 123aの線部 L 123aとスリット 123bの線部 L 12 3bとの間の領域では、電圧印加時における液晶分子の配向方向の面内成分は、線 部 L123aから線部 L123bへの方向の面内成分と一致する。
[0075] ここで、突起列 123aおよびスリット 123bは、角部 Cで略直角に曲がっている。した がって、液晶分子の配向方向は、サブ画素 SPIX内で 4分割され、サブ画素 SPIX内 に、液晶分子の配向方向が互いに異なるドメイン D1〜D4を形成できる。
[0076] 一方、図 5に示す両偏光板 112 · 113は、偏光板 112の吸収軸 AA112と偏光板 1 13の吸収軸 AA113とが直交するように配置されている(図 7参照)。さらに、両偏光 板 112· 113は、それぞれの吸収軸 ΑΑ112·ΑΑ113と、電圧印加時における、上記 各ドメイン D1〜D4の液晶分子の配向方向の面内成分と力 45度の角度をなすよう に配置されている(図 7参照)。なお、図 5では、直交し合う吸収軸 AA112と吸収軸 A A113との例として、吸収軸 AA112を紙面に平行な軸、吸収軸 AA113を紙面に直 交する軸としている力 それぞれを 90° 回転させて、吸収軸 AA112を紙面に直交 する軸、吸収軸 AA113を紙面に平行な軸としてもよ ヽ。
[0077] 以上説明した画素アレイ 2では、画素電極 121aと対向電極 121bとの間に電圧を 印加している間、液晶セル 111の液晶分子は、図 6に示すように、基板法線方向に 対して、電圧に応じた角度だけ傾斜配向している。これにより、液晶セル 111を通過 する光には、電圧に応じた位相差が与えられる。
[0078] ここで、両偏光板 112· 113 ®ίίΧ ΑΑ112·ΑΑ113«、互いに直交するように 配置されている。したがって、出射側の偏光板 (例えば、 112)へ入射する光は、液晶 セル 111が与える位相差に応じた楕円偏光になり、当該入射光の一部が偏光板 112 を通過する。この結果、印加電圧に応じて偏光板 112からの出射光量を制御でき、 階調表示が可能となる。
[0079] さらに、上記液晶セル 111では、サブ画素内に、液晶分子の配向方向が互いに異 なるドメイン D1〜D4が形成されている。したがって、あるドメイン (例えば、 D1)に属 する液晶分子の配向方向に平行な方向から、液晶セル 111を見た結果、当該液晶 分子が透過光に位相差を与えることができない場合であっても、残余のドメイン (この 場合は、 D2〜D4)の液晶分子は、透過光に位相差を与えることができる。したがつ て、各ドメイン同士が、互いに光学的に補償し合うことができる。この結果、液晶セル 1 11を斜め方向から見た場合の表示品位を改善し、視野角を拡大できる。
[0080] これとは逆に、画素電極 121aと対向電極 121bとの間に電圧を印加していない間、 液晶セル 111の液晶分子は、図 5に示すように、垂直配向状態にある。この状態 (電 圧無印加時)では、法線方向から液晶セル 111へ入射した光は、各液晶分子によつ て位相差が与えられず、偏光状態を維持したままで液晶セル 111を通過する。この 結果、出射側の偏光板 (例えば、 112)へ入射する光は、偏光板 112の吸収軸 AA1 12に略平行な方向の直線偏光となり、偏光板 112を通過することができない。この結 果、画素アレイ 2は、黒を表示できる。
[0081] このように、本実施形態に係る画素アレイ 2では、画素電極 121aと対向電極 121b との間に電圧を印加することによって、基板表面に対して斜めの電界を発生させ、液 晶分子を傾斜配向させる。これにより、画素電極 121aへ印加する電圧レベルに応じ て、サブ画素 SPIXの透過率を変更でき、階調表示できる。
[0082] 上記構成において、図 2に示す走査信号線駆動回路 4は、各走査信号線 GL1〜G Lmへ、例えば、電圧信号など、選択期間カゝ否かを示す信号を出力している。また、 走査信号線駆動回路 4は、選択期間を示す信号を出力する走査信号線 GLjを、例え ば、制御回路 12から与えられるクロック信号 GCKやスタートパルス信号 GSPなどの タイミング信号に基づいて変更している。これにより、各走査信号線 GLl〜GLmは、 予め定められたタイミングで、順次選択される。
[0083] さらに、データ信号線駆動回路 3は、映像信号として、時分割で入力される各サブ 画素 SPIX…への映像データ…を、所定のタイミングでサンプリングするなどしてで、 それぞれ抽出する。さらに、データ信号線駆動回路 3は、走査信号線駆動回路 4が 選択中の走査信号線 GLjに対応する各サブ画素 SPIX(l,j) 〜SPIX(n,j) へ、各デー タ信号線 SLl〜SLnを介して、それぞれへの映像データに応じた出力信号を出力 する。
[0084] なお、データ信号線駆動回路 3は、制御回路 12から入力される、クロック信号 SCK およびスタートパルス信号 SSPなどのタイミング信号に基づ 、て、上記サンプリングタ イミングゃ出力信号の出力タイミングを決定して 、る。
[0085] 一方、各サブ画素 SPIX(l,j)〜SPIX(n,j)は、自らに対応する走査信号線 GLjが選 択されている間に、自らに対応するデータ信号線 SLl〜SLnに与えられた出力信号 に応じて、発光する際の輝度や透過率などを調整して、自らの明るさを決定する。
[0086] ここで、走査信号線駆動回路 4は、走査信号線 GLl〜GLmを順次選択している。
したがって、画素アレイ 2の全画素を構成するサブ画素 SPIX(1,1)〜SPIX(n,m)を、 それぞれへの映像データが示す明るさ(階調)に設定でき、画素アレイ 2へ表示され る画像を更新できる。
[0087] なお、上記各サブ画素 SPIXへの映像データ Dは、当該サブ画素 SPIXの階調レべ ルを特定できれば、階調レベル自体であってもよいし、階調レベルを算出するための パラメータであってもよいが、以下では、一例として、映像データ Dがサブ画素 SPIX の階調レベル自体である場合にっ 、て説明する。
[0088] また、上記画像表示装置 1において、映像信号源 VSから信号処理回路 21へ与え られる映像信号 DATは、後述するように、アナログ信号であってもよいし、デジタル 信号であってもよい。また、フレーム単位 (画面全体単位)で伝送されていてもよいし 、 1フレームを複数のフィールドに分割すると共に、当該フィールド単位で伝送されて いてもよいが、以下では、一例として、デジタルの映像信号 DATがフレーム単位で伝 送される場合にっ ヽて説明する。
[0089] すなわち、本実施形態に係る映像信号源 VSは、映像信号線 VLを介して、画像表 示装置 1の信号処理回路 21に映像信号 DATを伝送する際、あるフレーム用の映像 データを全て伝送した後に、次のフレーム用の映像データを伝送するなどして、各フ レーム用の映像データを時分割伝送して 、る。
[0090] また、上記フレームは、複数の水平ラインから構成されており、上記映像信号線 VL では、例えば、あるフレームにおいて、ある水平ライン用の映像データ全てが伝送さ れた後に、次に伝送する水平ライン用の映像データを伝送するなどして、各水平ライ ン用の映像データが時分割伝送されている。さらに、上記映像信号源 VSは、 1水平 ライン分の映像データを伝送する際も上記映像信号線 VLを時分割駆動しており、予 め定められた順番で、映像データが順次伝送される。
[0091] なお、当該これらの映像データは、各サブ画素への映像データ Dを特定できるもの であれば、サブ画素への映像データ D自体を個別に伝送し、当該映像データ自体を サブ画素への映像データ Dとして使用したり、当該各映像データ Dに対して、何らか のデータ処理を行ったデータを送信し、信号処理回路 21で当該データを元の各映 像データ Dに復元してもよいが、本実施形態では、例えば、画素の色を示す映像デ ータ (例えば、 RGBで表示されたデータなど)が順次伝送されており、信号処理回路 21が各画素の映像データに基づいて各サブ画素への映像データ Dを生成している 。一例として、上記映像信号 DATが XGA( extended Graphics Array)規格に沿った 映像信号の場合、上記各画素の映像データの伝送周波数 (ドットクロック)は、 65〔M Hz〕である。
[0092] 一方、信号処理回路 21は、映像信号線 VLを介して伝送される映像信号 DATに 対して、階調遷移を強調する処理と、サブフレームへの分割処理および γ変換処理 とを行って、映像信号 DAT2を出力できる。
[0093] なお、当該映像信号 DAT2は、処理後の各サブ画素への映像データ力 構成され ており、あるフレームにおける各サブ画素への映像データは、各サブフレームにおけ る各サブ画素への映像データの組み合わせとして与えられている。また、本実施形 態では、映像信号 DAT2を構成する各映像データも時分割で伝送して ヽる。
[0094] より詳細に説明すると、信号処理回路 21は、映像信号 DAT2を伝送する際、あるフ レーム用の映像データを全て伝送した後に、次のフレーム用の映像データを伝送す るなどして、各フレーム用の映像データを時分割伝送している。また、当該各フレー ムは、複数のサブフレームから構成されており、信号処理回路 21は、例えば、あるサ ブフレーム用の映像データを全て伝送した後で、次に伝送するサブフレーム用の映 像データを伝送するなどして、各サブフレーム用の映像データを時分割で伝送して いる。同様に、当該サブフレーム用の映像データは、複数の水平ライン用の映像デ ータからなり、当該水平ライン用の映像データは、各サブ画素への映像データから構 成されている。さらに、信号処理回路 21は、あるサブフレーム用の映像データを送信 する際、例えば、ある水平ライン用の映像データ全てが伝送された後に、次に伝送す る水平ライン用の映像データを伝送するなどして、各水平ライン用の映像データが時 分割伝送すると共に、各水平ライン用の映像データを送信する際、例えば、予め定 められた順番で、各サブ画素への映像データを順次伝送して ヽる。
[0095] ここで、後述するように、階調遷移強調処理を後に行ってもよいが、以下では、階調 遷移を強調した後に、サブフレームへの分割処理および γ変換処理を行う構成につ いて説明する。
[0096] すなわち、図 1に示すように、本実施形態に係る信号処理回路 21には、映像信号 DATに対して、各サブ画素 SPIXにおける階調遷移を強調する補正を行い、補正後 の映像信号 DAToを出力する変調処理部 (補正手段) 31と、当該映像信号 DATo に基づいて、サブフレームへの分割および γ変換の処理を行い、上記補正後の映 像信号 DAT2を出力するサブフレーム処理部 32とが設けられている。なお、本実施 形態に係る画像表示装置 1は、カラー表示のために、 R, G, Β用のサブ画素を備え ており、上記変調処理部 31およびサブフレーム処理部 32は、 R, G, Βのそれぞれ毎 に設けられているが、それぞれの回路は、入力される映像データ D(i,j,k)を除いて同 じ構成なので、以下では、図 1を参照しながら、 R用の回路についてのみ説明する。
[0097] 上記変調処理部 31は、詳細は後述する力 入力される映像信号が示している各サ ブ画素への映像データ (この場合は、映像データ D(i,j,k) )のそれぞれを補正し、補 正後の各映像データ (この場合は、映像データ Do(i,j,k) )からなる映像信号 DAToを 出力することができる。なお、図 1、並びに、後述する図 15、図 16、図 39、図 40、図 4 2、図 44および図 45では、ある特定のサブ画素 SPIX(U)に関する映像データのみ を例示しており、これらの映像データを記載する際、例えば、映像データ Do(k)のよう に、場所を示す符号 Uを省略している。
[0098] 一方、上記サブフレーム処理部 32は、 1フレーム期間を複数のサブフレームに分 割すると共に、あるフレーム FR(k)の映像データ Do(i,j,k)に基づいて、当該フレーム FR(k)の各サブフレーム用の映像データ S〜(i,j,k)を生成できる。
[0099] 本実施形態では、例えば、 1フレーム FR(k)を 2つのサブフレームに分割しており、 サブフレーム処理部 32は、各フレーム毎に、そのフレーム(例えば、 FR(k) )の映像 データ Do(i,j,k)に基づいて、各サブフレームのそれぞれに対応する映像データ Sol (i,j,k)および So2(i,j,k)を出力している。
[0100] なお、以下では、あるフレーム FR(k)を構成する各サブフレームのうち、時間的に 前のサブフレームを SFRl(k)、時間的に後のサブフレームを、 SFR2(k)と称し、信 号処理回路 21がサブフレーム SFRl(k)用の映像データを送信した後でサブフレー ム SFR2(k)用の映像データを送信する場合について説明する。また、サブフレーム SFRl(k)には、映像データ Sol(i,j,k)が対応し、サブフレーム SFR2(k)には、映像 データ So2(i,j,k)が対応している。さらに、信号処理回路 21に、あるフレーム FR(k) の映像データ D(i,j,k)が入力されてから、当該映像データ D(i,j,k)に対応する電圧が サブ画素 SPIX(i,j)に印加されるまでの時間は、種々の時間に設定できる力 当該時 間の長さに拘わらず、あるフレーム FR(k)の映像データ D(i,j,k)と、当該映像データ D(i,j,k)に対して、階調遷移強調処理、フレーム分割処理および γ補正処理を施し たデータ (補正後のデータ Sol(i,j,k)および So2(i,j,k) )と、当該補正後のデータに 対応する電圧 (Vl(i,j,k)および V2(i,j,k) )とを、「互いに同じフレーム FR(k)に対応 するもの」と称し、これらのデータおよび電圧に対応する期間を、フレーム FR(k)と称 する。また、これらのデータ、電圧およびフレームを、互いに同じフレーム番号(例え ば、 k )を付して参照する。
[0101] ここで、これらのデータおよび電圧に対応する期間とは、より詳細には、あるフレー ム FR(k)の映像データ D(i,j,k)がサブ画素 SPIX(iJ)に入力されてから、次のフレー ム FR(k+l)の映像データ D(i,j,k+1)が入力されるまでの期間、上記映像データ D(i,j, k)に対して上記各処理を施した補正後のデータ So l(i,j,k)および So2(i,j,k)のうちの 最初の方 (この例では、 Sol(i,j,k) )を出力してから、次の上記映像データ D(i,j,k+1) に対して上記各処理を施した補正後のデータ Sol(i,j,k+l)および So2(i,j,k+l)のうち の最初の方 (この例では、 Sol(i,j,k+l) )を出力するまでの期間、あるいは、上記映像 データ Sol(i,j,k)に応じて印加される電圧 Vl(i,j,k)がサブ画素 SPIX(i,j)に印加され てから、次の上記映像データ Sol(i,j,k+l)に応じて印加される電圧 Vl(i,j,k+1)がサ ブ画素 SPIX(U)に印加されるまでの期間である。 [0102] また、説明の便宜上、以下では、各サブフレーム、並びに、それに対応する映像デ ータまたは電圧を総称する際、例えば、サブフレーム SFR(x)のように、サブフレーム の番号を示す末尾の数字を省略して参照する。この場合、あるサブフレーム SFRl(k )および SFR2(k)は、サブフレーム SFR(x)および SFR(x+l)となる。
[0103] 上記サブフレーム処理部 32は、より詳細には、 1フレーム分の各サブ画素 SPIXへ の映像データ Dを記憶するフレームメモリ 41と、映像データと第 1のサブフレームに おける映像データ Solとの対応関係を記憶したルックアップテーブル (LUT) 42と、 映像データと第 2のサブフレームにおける映像データ So2との対応関係を記憶した L UT43と、これらを制御する制御回路 44とを備えている。なお、当該 LUT42'43が 特許請求の範囲に記載の記憶手段に対応し、制御回路 44が生成手段に対応する。
[0104] 当該制御回路 44は、各フレーム毎に 1回ずつ、そのフレーム(例えば、 FR(k) )に おける、各サブ画素 SPIX(1,1)〜(n,m)への映像データ D(l,l,k)〜D(n,m,k)を、当 該フレームメモリ 41へ書き込むと共に、各フレーム毎にサブフレームの個数(この場 合は、 2回)ずつ、当該フレームメモリ 41から、上記各映像データ D(l,l,k)〜D(n,m,k )を読み出すことができる。
[0105] また、上記 LUT42には、上記読み出した映像データ (l,l,k)〜D(n,m,k)が取り得 る値のそれぞれに関連付けて、その値を取った場合に出力すべき映像データ Solを 示す値が記憶されている。同様に、上記 LUT43〖こは、上記取り得る値のそれぞれに 関連付けて、その値を取った場合に出力すべき映像データ So2を示す値が記憶され ている。
[0106] さらに、上記制御回路 44は、 LUT42を参照して、上記読み出した映像データ D(i,j ,k)に対応する映像データ Sol(i,j,k)を出力すると共に、 LUT43を参照して、上記読 み出した映像データ D(i,j,k)に対応する映像データ So2(i,j,k)を出力することができ る。なお、各 LUT42'43に記憶されている値は、各映像データ Sol ' So2を特定でき れば、例えば、上記取り得る値との差などであってもよいが、本実施形態では、各映 像データ Sol ' So2の値自体が格納されており、制御回路 44は、各 LUT42 '43から 読み出した値を、各映像データ Sol ' So2として出力している。
[0107] 上記 LUT42'43に格納されている値は、上記各取り得る値を g、当該値 gに対応し て、それぞれに格納されている値を、 Pl、 P2とするとき、以下のように設定されている 。なお、サブフレーム SFRl(k)の映像データ Solの方が高い輝度を示すように設定 してもよいが、以下では、サブフレーム SFR2(k)の映像データ So2が、映像データ S ol以上の輝度を示すように設定されて!ヽる場合にっ ヽて説明する。
[0108] すなわち、 gが予め定められた閾値以下の階調(閾値の示す輝度と同じかより低い 輝度)を示している場合、値 P1は、暗表示用に定められた範囲内の値に設定され、 値 P2は、当該値 P1と上記値 gとに応じた値に設定されている。なお、暗表示用の範 囲の上限値は、暗表示用に予め定められた階調であり、下限値は、最低輝度を示す 階調 (黒)よりも大きな値に設定されている。なお、当該範囲は、上限値および下限値 を含んでいる。また、当該暗表示用に予め定められた階調は、後述する白浮きの量 を所望の量以下に抑制可能な値に設定することが望ましい。
[0109] これとは逆に、 gが予め定められた閾値よりも明るい階調(閾値の示す輝度よりも高 い輝度)を示している場合、値 P2は、明表示用に定められた範囲内の値に設定され 、値 P1は、当該値 P2と上記値 gとに応じた値に設定されている。なお、明表示用の 範囲は、明表示用に予め定められた階調以上の階調であり、当該明表示用に予め 定められた階調が最高輝度を示して ヽる場合は、最高輝度を示す階調(白)である。 また、当該明表示用に予め定められた階調は、後述する白浮きの量を所望の量以下 に抑制可能な値に設定することが望まし 、。
[0110] この結果、あるフレーム FR(k)における、サブ画素 SPIXGJ)への映像データ D(i,j,k )力 上記閾値以下の階調を示している場合、すなわち、低輝度領域では、当該フレ ーム FR(k)におけるサブ画素 SPIX(iJ)の輝度の高低は、主として、値 P2の大小によ つて制御される。したがって、サブ画素 SPIXGJ)の表示状態を、フレーム FR(k)のう ち、少なくともサブフレーム SFRl(k)の期間には、暗表示状態にすることができる。こ れにより、あるフレーム FR(k)における映像データ D(i,j,k)が低輝度領域の階調を示 しているときに、当該フレーム FR(k)におけるサブ画素 SPIX(iJ)の発光状態を、 CR T (Cathode-Ray Tube)のようなインパルス型発光に近づけることができ、画素アレイ 2 に動画表示する際の画質を向上できる。
[0111] また、あるフレーム FR(k)における、サブ画素 SPIXGJ)への映像データ D(i,j,k)が 、上記閾値よりも高い階調を示している場合、すなわち、高輝度領域では、当該フレ ーム FR(k)におけるサブ画素 SPIX(iJ)の輝度の高低は、主として、値 P1の大小によ つて制御される。したがって、両サブフレーム SFRl(k)および SFR2(k)の輝度を略 等分に割り振る構成と比較して、サブ画素 SPIXGJ)のサブフレーム SFRl(k)におけ る輝度と、サブフレーム SFR2(k)における輝度との差を大きく設定できる。この結果、 あるフレーム FR(k)における映像データ D(i,j,k)が高輝度領域の階調を示していると きにも、殆どの場合で、当該フレーム FR(k)におけるサブ画素 SPIX(i,j)の発光状態 をインパルス型発光に近づけることができ、画素アレイ 2に動画表示する際の画質を 向上できる。
[0112] さらに、上記構成では、上記映像データ D(i,j,k)が高輝度領域の階調を示している とき、サブフレーム SFR2(k)用の映像データ So2(i,j,k)は、明表示用に定められた 範囲内の値になり、上記映像データ D(i,j,k)の示す輝度が高くなるに従って、サブフ レーム SFRl(k)用の映像データ Sol(i,j,k)が大きくなる。したがって、白表示が指示 された場合にも暗表示する期間を必ず設ける構成と比較して、当該フレーム FR(k) におけるサブ画素 SPIX(iJ)の輝度を高くすることができる。この結果、サブ画素 SPI X(i,j)の発光状態を上記インパルス型に近づけることによって、動画表示時の画質を 向上しているにも拘わらず、サブ画素 SPIXGJ)の輝度の最高値を大幅に増大させる ことができ、より明るい画像表示装置 1を実現できる。
[0113] ここで、広視野角といわれている VAパネルでも、視野角度による階調特性の変化 を完全になくすことはできず、例えば左右方向の視野角度が大きくなると階調特性が 悪化してしまう。
[0114] 例えば、図 8に示すように、視野角度が 60度となると、正面からパネルを望む場合( 視野角度 0度)に対し、階調 γ特性が変わり、中間調の輝度が明るくなる白浮き現象 が起こってしまう。
[0115] これに対して、上記構成では、上記映像データ D(i,j,k)が高輝度領域の階調と低輝 度領域の階調とのいずれを示しているときであっても、上記両映像データ Sol(i,j,k) および So2(i,j,k)の一方は、明表示用に定められた範囲内の値、あるいは、暗表示 用に定められた範囲内の値に設定されており、当該フレーム FR(k)におけるサブ画 素 SPIX(i,j)の輝度の高低は、主として、他方の大小によって制御される。
[0116] ここで、図 8からもわ力るように、上記白浮きの量 (想定している輝度とのズレ)は、中 間階調の場合で最も大きくなり、充分に低い輝度の場合、および、充分に高い輝度 の場合には、比較的少な 、値に留められて 、る。
[0117] したがって、図 9に示すように、各サブフレーム SFRl(k) - SFR2(k)の双方を同程 度に増減して上記輝度の高低を制御する構成 (双方が中間調になる構成)、あるい は、フレーム分割せずに表示する構成と比較して、発生する白浮きの総量を大幅に 抑えることができ、画像表示装置 1の視野角特性を大幅に向上できる。
[0118] ところで、本実施形態では、画素アレイ 2が上記垂直配向モードの液晶セルである ため、液晶分子が略垂直に配向している状態 (黒表示状態)から、傾斜状態(中間階 調あるいは白表示状態)へ遷移するときの応答速度は、液晶分子が既に傾斜して ヽ る状態 (黒以外の表示状態)から、表示すべき階調に応じて傾斜角度を変更するとき の応答速度よりも遅くなる。この結果、上記暗表示用に定められた範囲内の値を黒に 設定すると、上述したようにサブフレームに分割して駆動する際の応答速度向上、あ るいは、サブ画素 SPIXの明るさの向上が制限されやすい。
[0119] より詳細には、図 5に示すように、液晶分子が略垂直に配向している状態(黒表示 状態)において、画素電極 121aに電圧を印加すると、図 7に示す突起列 123a…近 傍の領域およびスリット 123b近傍の領域の液晶分子は、上記電圧印加によって形成 される斜め電界の影響を受けて、斜め方向に配向し、これらの領域から離れた液晶 分子の配向方向は、液晶の連続性によって、上記各領域の液晶分子が配向した後 で決定される。
[0120] ただし、各液晶分子が略垂直に配向している状態では、配向方位 (配向方向の基 板に平行な面内成分)が未だ決定されていないため、電界あるいは液晶の連続性に 従って、各液晶分子が自らの配向方向を決定する際には、液晶分子の傾斜角度 (液 晶分子の配向方向の基板法線方向成分)だけではなぐ配向方位も決定する必要が ある。したがって、既に配向方位が決定されている状態から遷移する場合と比較して 、液晶分子の応答速度が遅くなる傾向にある。特に、上記近傍の領域から離れた領 域では、近傍の領域の液晶分子の配向方向が決定された後に、液晶分子の配向方 向が決定されるため、これらの液晶分子の応答速度はさらに遅くなる。これらの結果、 サブ画素 SPIXの輝度 (透過率)の応答速度は、液晶分子が既に傾斜して 、る状態( 黒以外の表示状態)から、表示すべき階調に応じて傾斜角を変更する場合と比較し て、液晶分子が略垂直に配向している状態 (黒表示状態)から、傾斜状態(中間階調 あるいは白表示状態)へ遷移するときの方が遅くなつてしまう。なお、階調遷移を強調 すれば、ある程度、応答時間を短縮できる。ただし、階調遷移を強調し過ぎると、上 記近傍の領域の応答速度と上記離れた領域の応答速度との相違によって、サブ画 素 SPIX中に、輝度の異なる領域が視認されてしまう。この結果、階調遷移強調の程 度は、輝度の異なる領域が視認されない程度、あるいは、視認されても許容されれる 程度に制限する必要があり、階調遷移強調による応答速度向上には限界がある。
[0121] 一例として、上記暗表示用に定められた範囲内の値を黒に設定した構成 (第 1の比 較例の構成)では、図 10に示すように、例えば、映像データ Dが黒を示している状態 (tO〜tlの期間)の後、 tlの時点において、上記予め定められた閾値を超える直前 の階調に変化したとする。
[0122] この場合、 tO〜tlの期間のフレーム FRを、例えば、フレーム FR(1)〜FR(5)とする と、各フレーム FR(1〜5)において、映像データ D(i,j,l〜5)は、黒を示す値 (例えば、 0 )となり、サブフレーム SFR1(1〜5)の映像データ Sol(i,j,l〜5)、および、サブフレー ム SFR2(1〜5)の映像データ So 2(i, j, 1〜5)も、黒を示す値に設定される。
[0123] 一方、 tl以降のフレーム FR(6〜)では、映像データ D(i,j,6〜)力 上記閾値を超え ていないので、サブフレーム処理部 32は、サブフレーム SFR1(6〜)の映像データ S ol(i,j,6〜)を暗表示用に定められた範囲内の値 (この場合は、黒)に設定し、サブフ レーム SFR2(6〜)の映像データ So2(i,j,6〜)を増減して、各フレーム FR(6〜)にお けるサブ画素 SPIXGJ)の輝度の時間積分値を制御しょうとする。ここで、上述したよ うに、映像データ D(i,j,6〜)は、上記閾値を超えていないが、超える直前の値である。 したがって、上記映像データ So2(i,j,6〜)は、白あるいは白に近い値に設定される。
[0124] この場合、サブ画素 SPIX(i,j)力 映像データ Sol(i,j,6)によって駆動されていた期 間から、映像データ So2(i,j,6)によって駆動される期間へと移行する時点(図中、 t2 の時点)において、サブ画素 SPIXGJ)には、黒表示状態から白状態への遷移が指 示される。ただし、上述したように、垂直配向モードの液晶セルをノーマリブラックモー ドで駆動する構成では、当該遷移の際の応答速度が遅くなつており、サブ画素 SPIX (i,j)は、この指示に充分に応答できなくなってしまう。なお、実際には、サブフレーム 処理部 32が各映像データ Sol(i,j,k) - So2(i,j,k)を生成する時点と、サブ画素 SPIX( i,j)力 これらの映像データ Sol(i,j,k) · 8ο2(ί,],1ί)によって駆動される期間の最初の 時点との間には、時間差があるが、図 10および後述する図 12、あるいは、それらの 説明では、便宜上、この時間差を 0としている。
[0125] この結果、上記閾値を超える直前の階調と黒とが繰り返して指示されると、サブ画 素 SPIXGJ)の輝度の時間変化は、図 11に示すようになる。なお、図 11は、上記閾 値力 白表示時の輝度を 1としたとき、 0. 5の輝度に設定されており、輝度を増加させ る階調遷移 (ライズの階調遷移)の速度が、輝度を減少させる階調遷移 (ディケイの階 調遷移)の 10倍遅 、場合を示して!/、る。
[0126] この場合、図 11に示すように、本来であれば、サブ画素 SPIXGJ)の最大輝度は、 白表示時と同一の輝度にまで到達すべきである力 実際には、白表示時の 0. 4倍の 輝度にまでし力到達しておらず、白表示時の 0. 5倍であるべき、サブ画素 SPIX(i,j) の平均輝度は、実際には、 0. 14倍にまで下がってしまう。
[0127] このように、上記暗表示用に定められた範囲内の値を黒に設定すると、サブ画素 S PIX(U)の応答速度が低下して、サブ画素 SPIXの明るさが低下する虞れがある。
[0128] これに対して、本実施形態に係るサブフレーム処理部 32では、上記暗表示用に定 められた範囲内の値が、黒よりも明るい値に設定された喑階調 (例えば、階調が γ 2 . 2、 8ビット表示で表現される場合の 24階調)に設定されている。
[0129] この結果、図 10と同様の映像データ D(i,j,l〜)が入力される場合に、サブフレーム 処理部 32が各フレーム FR(1〜)において生成する各映像データ Sol(i,j,l〜)およ び So2(i,j,l〜)は、図 12に示すようになり、各サブフレーム SFR1(1〜)の映像デー タ Sol(i,j,l〜)は、上記黒以外の暗階調に設定される。
[0130] この場合、図 10と同様に、上記映像データ So2(i,j,6〜)は、白あるいは白に近い値 に設定される。ところが、各サブフレーム SFR1(1〜)の映像データ Sol(i,j,l〜)は、 上記黒以外の暗階調に設定されている。したがって、サブ画素 SPIX(U)には、 tlの 時点で、黒力 暗階調への遷移が指示された後、 t2の時点では、暗階調から上記白 または白に近 、階調への遷移が指示される。
[0131] ここで、 tlの時点での階調遷移は、黒からの階調遷移である力 暗階調への遷移 なので、垂直配向モードの液晶セルをノーマリブラックモードで駆動する場合であつ ても、サブ画素 SPIXGJ)は、何ら支障なぐサブフレーム期間内に応答できる。一方 、 t2の時点での階調遷移は、黒からの階調遷移ではなぐ暗階調からの階調遷移な ので、図 10のように黒からの階調遷移させる構成と比較して、大幅に応答速度を向 上できる。
[0132] なお、上記暗表示用に定められた範囲内の値を黒以外の暗階調に設定すると、黒 に設定する場合と比較して、サブ画素 SPIX(iJ)の輝度の時間積分値は大きく(明る く)なる。ところが、黒に充分に近い暗階調と黒との間で階調遷移する場合、ライズの 階調遷移時の応答時間 τ riseは、ディケイの階調遷移時の応答時間 τ dよりも大幅 に大きいため、フレーム期間全体での輝度の時間平均値を充分暗い値に保つことが でき、使用者に黒と認識させることができる。
[0133] したがって、例えば、図 11と同様に、上記閾値を超える直前の階調と黒とが繰り返 して指示したとき、サブ画素 SPIXGJ)の輝度の時間変化は、図 13に示すようになり、 サブ画素 SPIX(i,j)の最大輝度を、白表示時と同一の輝度にまで到達させることがで きる。また、サブ画素 SPIXGJ)の平均輝度を、所望の値 (0. 5倍)に設定できる。な お、図 11の場合と比較すると、サブ画素 SPIXGJ)の平均輝度は、 3倍以上に増加さ れている。
[0134] この結果、上記暗表示用に定められた範囲内の値を黒に設定する構成と比較して 、上述したようにサブフレームに分割して駆動する際のサブ画素 SPIXGJ)の応答速 度を向上させ、サブ画素 SPIXの輝度の時間積分値を増カロさせることができる。より明 るぐしかも、動画表示時の画質の高い画像表示装置 1を実現できる。
[0135] 以下では、図 14を参照しながら、一般的な用途で、暗表示用に定められた範囲内 の値として好適な値について説明する。すなわち、上記液晶セルは、電圧無印加時 において、配向膜近傍の液晶分子が略垂直に配向しているため、液晶セルのコント ラスト比は、 TN (Twisted Nematic)方式よりも格段に向上されており、コントラスト比が 1000程度の液晶セルも数多く存在する。一方、一般的な用途として、液晶モニタ装 置、あるいは、液晶テレビジョン受像機などの用途では、約 400前後のコントラスト比 を維持していればよい。
[0136] 一例として、コントラスト比が 1000程度の液晶セルにおいて、サブフレーム SFRl(k )の輝度を変更しながら、黒表示時の平均輝度およびコントラスト比を評価したところ 、図 14の結果が得られた。なお、図では、輝度を記載する際、白表示時の輝度を 1と して正規化して記載している。このように、サブフレーム SFRl(k)の輝度が 0. 012で あれば、 400前後のコントラスト比が確保されている。したがって、ホールド表示時の 輝度が白表示時の約 1%以下の階調、すなわち、階調で記載すると、 γ値が 2. 2で 、し力も、映像データが 8ビットで表現される場合、約 32階調以下であれば、充分なコ ントラスト比を保ったままで、サブ画素 SPIX(i,j)の応答速度を向上させることができる
[0137] なお、上記では、各サブフレーム SFR1. SFR2用の映像データ Sol ' So2のうち、 上記暗表示用に定められた範囲内の値に設定される映像データ Solを、黒以外の 暗階調に変更すると共に、それ以外の映像データ So2は変更せず、黒のままに設定 する場合を例にして説明した力 当該映像データ So2も、 Solと同様に、黒以外の暗 階調に設定してもよい。一例として、映像データ Dが黒を示している場合、映像デー タ Sol · So2の双方を同じ暗階調に設定してもよ 、。
[0138] ところで、入力される映像信号 DATの γ特性と、画像表示装置 1の画素アレイ 2 (図 2参照)の γ特性とが異なっている場合には、映像信号 DATが入力されてから、それ に対応する電圧をパネル 11に印加するまでの間に、 γ補正処理を行う必要がある。 また、上記両 γ特性が一致していたとしても、ユーザの指示などによって、本来とは 異なる γ特性で画像を表示する場合には、映像信号 DATが入力されてから、それ に対応する電圧をパネル 11に印加するまでの間に、 γ補正処理を行う必要がある。
[0139] ここで、第 2の比較例として、パネル 11に入力する信号を変更せずに、パネル 11へ 印加する電圧を制御して γ補正を行う場合、基準電圧を制御する回路が必要になり 、回路規模が増大する虞れがある。特に、本実施形態のように、カラー表示する場合 に、各色成分 (例えば、 R, G, Β)毎に基準電圧を制御する回路を設けると、回路規 模が大幅に増大してしまう。
[0140] 一方、第 3の比較例として、図 15に示す信号処理回路 521のように、図 1と略同様 の回路 531〜544に加えて、変調処理部 31の前段または後段に(図の例では、前段 )、 y補正を行う y補正回路 533を設けて、パネル 11に入力する信号を変更する構 成では、基準電圧を制御する回路に代えて、 γ補正回路 533が必要になり、依然と して、回路規模が増大する虞れがある。なお、図 15の例では、 γ補正回路 533は、 入力され得る値に対応付けて、当該値に対応する γ補正後の出力値を記憶する LU T533aを参照して、 γ補正後の映像データを生成している。
[0141] これに対して、本実施形態に係る信号処理回路 21では、上記各 LUT42'43が、
0変換された、各サブフレームの映像データを示す値を記憶することによって、時分 割駆動の LUT542.543と、 γ変換用の LUT533aとを共用している。この結果、 γ 変換用の LUT533aの分だけ回路規模を削減でき、信号処理回路 21に必要な回路 規模を大幅に削減できる。
[0142] さらに、本実施形態では、上記 LUT42'43がサブ画素 SPIX(i,j)の色毎(この例で は、 R, G, Bのそれぞれ)に設けられているので、色毎に異なった映像データ Slo ' S 2οを出力でき、互いに異なる色間で同じ LUTを用いる場合よりも適切な値を出力で きる。
[0143] 特に、画素アレイ 2が液晶表示パネルの場合、表示波長に応じて複屈折が変化す るため、色毎に異なった γ特性を持っている。この結果、本実施形態のように、時分 割駆動による応答積算輝度によって階調を表現する場合には、独立した γ補正処理 をすることが望ましいので、特に効果が大きい。
[0144] さらに、 γ値が変更可能な場合、上記 LUT42'43は、変更可能な γ値毎に設けら れ、制御回路 44は、例えば、ユーザの操作などによって、 γ値の変更指示を受け付 けると、これら複数の LUT42'43の中から、当該指示に合った LUT42'43を選択し て、当該 LUT42.43を参照する。これにより、サブフレーム処理部 32は、補正すベ き γ値を切り換えることができる。
[0145] また、サブフレーム処理部 32は、 y値の変更指示に応じて、各サブフレーム SFR1 •SFR2の時間比を変更してもよい。なお、この場合、サブフレーム処理部 32は、変 調処理部 31へ指示して、変調処理部 31における各サブフレーム SFR1 ' SFR2の時 間比も変更させる。この場合は、 γ値の変更指示に応じて、各サブフレーム SFRl ' S FR2の時間比を変更できるので、詳細は後述するように、いずれの γ値への補正が 指示された場合であっても、 、ずれのサブフレーム(SFR1 · SFR2)の輝度で 1フレ ーム期間中の輝度を主として制御するかを、適切な明度で切り換えることができる。
[0146] 以下では、変調処理部 31の詳細な構成について、図 16を参照しながら説明する。
すなわち、本実施形態に係る変調処理部 31は、予測型の階調遷移強調処理を行つ ており、各サブ画素 SPIX(iJ)の予測値 E(i,j,k)を格納し、次のフレーム FR(k+l)まで 記憶するフレームメモリ(予測値記憶手段) 51と、当該フレームメモリ 51に格納されて いた、前フレーム FR(k-l)の予測値 E(i,j,k-1)を参照して、現フレーム FR(k)の各映 像データ D(i,j,k)を補正して、補正後の値を、映像データ Do(i,j,k)として出力する補 正処理部 52と、現フレーム FR(k)の各サブ画素 SPIX(iJ)への映像データ D(i,j,k)を 参照して、当該フレームメモリ 51に格納されていた当該サブ画素 SPIXGJ)に関する 予測値 E(i,j,k-1)を、新たな予測値 E(i,j,k)へと更新する予測処理部 53とを備えてい る。
[0147] 現フレーム FR(k)の上記予測値 E(i,j,k)は、補正後の映像データ Do(i,j,k)によって サブ画素 SPIXGJ)が駆動された場合に、当該サブ画素 SPIXGJ)力 次のフレーム FR(k+l)の開始時点、すなわち、次のフレーム FR(k+l)の映像データ Do(i,j,k+l)に よるサブ画素 SPIX(i,j)の駆動が開始される時点に到達して 、ると予測される輝度に 対応する階調を示す値であって、予測処理部 53は、前フレーム FR(k-l)の予測値 E (i,j,k-l)と、現フレーム FR(k)における映像データ D(i,j,k)とに基づいて、上記予測 値 E(i,j,k)を予測している。
[0148] 本実施形態では、上述したように、補正後の映像データ Do(i,j,k)に対して、フレー ム分割および γ補正処理を行って、 1フレームあたりに、 2つの映像データ Sol(i,j,k) および So2(i,j,k)を生成し、 1フレーム期間中に、それぞれに対応する電圧 Vl(i,j,k) および V2(i,j,k)を、サブ画素 SPIXGJ)に印加している。ただし、後述するように、前 フレーム FR(k- 1)の予測値 E(i,j,k-1)と、現フレーム FR(k)の映像データ D(i,j,k)とが 特定されれば、補正後の映像データ Do(i,j,k)が特定され、当該映像データ Do(i,j,k) が特定されれば、上記両映像データ Sol(i,j,k)および So2(i,j,k)、並びに、上記両 電圧 Vl(i,j,k)および V2(i,j,k)も特定される。
[0149] また、上記予測値 E(i,j,k-1)は、前フレーム FR(k-l)の予測値なので、現フレーム F R(k)を基準にして言い直すと、当該予測値 E(i,j,k-1)は、サブ画素 SPIXGJ)が現フ レーム FR(k)の開始時に到達して ヽると予測される輝度に対応する階調を示す値で あり、現フレーム FR(k)の開始時点におけるサブ画素 SPIX(iJ)の表示状態を示す 値である。なお、サブ画素 SPIXGJ)が液晶表示素子の場合、当該値は、サブ画素 S PIX(i,j)の液晶分子の配向状態をも示して 、る。
[0150] したがって、予測処理部 53による予測方法が正確であり、前フレーム FR(k-l)の予 測値 E(i,j,k-1)が正確に予測されていれば、予測処理部 53は、前フレーム FR(k-l) の予測値 E(i,j,k-1)と、現フレーム FR(k)における映像データ D(i,j,k)とに基づいて、 上記予測値 E(i,j,k)も正確に予測できる。
[0151] 一方、上記補正処理部 52は、上記前フレーム FR(k-l)の予測値 E(i,j,k-1)、すな わち、現フレーム FR(k)の開始時点におけるサブ画素 SPIX(iJ)の表示状態を示す 値と、現フレーム FR(k)の映像データ D(i,j,k)とに基づいて、当該予測値 E(i,j,k-1) の示す階調から、映像データ D(i,j,k)への階調遷移を強調するように、映像データ D( i,j,k)を補正できる。
[0152] 上記両処理部 52· 53は、 LUTのみによって実現してもよいが、本実施形態では、 LUTの参照処理と補間処理との併用によって実現して 、る。
[0153] 具体的には、本実施形態に係る補正処理部 52は、 LUT61を備えている。当該 LU T61には、映像データ D(i,j,k)と予測値 E(i,j,k-1)とが取り得る組み合わせのそれぞ れに対応付けて、当該組み合わせが入力された場合に出力すべき映像データ Doを 示す値が格納されている。なお、当該値は、上述した LUT42'43の場合と同様、映 像データ Doを特定できる値であれば、どのような値であってもよいが、以下では、映 像データ Do自体が格納されて 、る場合にっ 、て説明する。
[0154] ここで、 LUT61には、取り得る組み合わせ全てに対応する値を格納してもよいが、 本実施形態に係る LUT61は、記憶容量を削減するため、予め定められた一部の組 み合わせについてのみ、それに対応する値を格納している。また、補正処理部 52に 設けられた演算部 62は、 LUT61に格納されて 、な 、組み合わせが入力された場合 は、 LUT61から、当該入力された組み合わせに近い複数の組み合わせに対応する 値を読み出し、それらの値を予め定められた演算によって補間して、入力された組み 合わせに対応する値を算出している。
[0155] 同様に、本実施形態に係る予測処理部 53に設けられた LUT71には、映像データ D(i,j,k)と予測値 E(i,j,k-1)とが取り得る組み合わせのそれぞれに対応付けて、当該 組み合わせが入力された場合に出力すべき値を示す値が格納されている。なお、 L UT71にも、上記と同様、出力すべき値 (この場合は、予測値 E(i,j,k) )自体が格納さ れている。また、上記と同様に、 LUT71に値を格納する組み合わせも予め定められ た一部の組み合わせに制限されていると共に、予測処理部 53に設けられた演算部 7 2は、 LUT71を参照した補間演算によって、入力された組み合わせに対応する値を 算出している。
[0156] 上記構成では、フレームメモリ 51に、前フレーム FR(k- 1)の映像データ D(i,j,k- 1) 自体ではなく、予測値 E(i,j,k-1)が格納されており、補正処理部 52は、前フレーム F R(k-l)の予測値 E(i,j,k-1)、すなわち、現フレーム FR(k)の開始時点におけるサブ 画素 SPIXGJ)の表示状態を予測した値を参照して、現フレーム FR(k)の映像データ D(i,j,k)を補正している。これにより、インパルス型発光に近づけて動画表示時の画 質を向上させた結果、ライズ→ディケイの繰り返しが頻繁に発生するにも拘わらず、 不適切な階調遷移強調を防止できる。
[0157] 具体的には、応答速度の遅いサブ画素 SPIXGJ)を使用している場合、前々回から 前回への階調遷移を強調しても、前回のサブフレーム SFR(x-l)の終了時点におけ るサブ画素 SPIXGJ)の輝度 (現サブフレーム FR(x)の開始時点における輝度)が、 前サブフレーム SFR(x-l)の映像データ So(i,j,x)の示す輝度に到達していない場合 がある。この場合の例としては、階調差が大きいときや、階調遷移強調前の階調が、 最大値または最小値に近くて、階調遷移を充分に強調できな 、場合などが挙げられ る。
[0158] この場合に、信号処理回路 21が、現サブフレーム FR(x)の開始時点における輝度 が前サブフレーム SFR(x_l)の映像データ So(i,j,x)の示す輝度に到達していると見 なして、階調遷移を強調すると、階調遷移を強調し過ぎたり、階調遷移の強調が不充 分だったりする。
[0159] 特に、輝度が増加する階調遷移 (ライズの階調遷移)と、輝度が減少する階調遷移
(ディケイの階調遷移)とを繰り返している場合には、上記のように見なして階調遷移 を強調すると、階調遷移を強調し過ぎてサブ画素 SPIXGJ)の輝度が不所望に明るく なってしまう。この結果、不適切な階調遷移強調を、ユーザが視認し易くなり、画質が 低下する虞れがある。
[0160] 一方、本実施形態では、上述したように、映像データ Sol(i,j,k)および So2(i,j,k)に 対応する電圧 Vl(i,j,k)および V2(i,j,k)をサブ画素 SPIX(iJ)に印加することによって 、当該サブ画素 SPIXGJ)の発光状態をインパルス型発光に近づけているため、サブ 画素 SPIXGJ)が取るべき輝度は、サブフレーム毎に増減している。この結果、上記 のように見なして階調遷移を強調すると、不適切な階調遷移によって画質が低下す る虞れがある。
[0161] これに対して、本実施形態では、予測値 E(i,j,k)を参照することによって、上記のよ うに見なす場合よりも高精度に予測しているので、インパルス型発光に近づけた結果 、ライズ→ディケイの繰り返しが頻繁に発生するにも拘わらず、不適切な階調遷移強 調を防止できる。この結果、不適切な階調遷移強調による画質低下を招くことなぐィ ンノ ルス型に近づけた発光によって動画表示時の画質を向上できる。なお、上記の ように見なすよりも高精度な予測方法の他の例としては、例えば、これまでに入力さ れた映像データの複数を参照して予測したり、これまでの予測結果の複数を参照し て予測したりする方法や、これまでの予測結果と、これまでに入力された映像データ と、上記今回映像データとのうち、少なくとも今回映像データを含む複数を参照して 予測する方法などが挙げられる。
[0162] また、垂直配向モードかつノーマリブラックモードの液晶セルは、ディケイの階調遷 移に対する応答速度がライズの場合に比べて遅ぐ階調遷移を強調するように変調 して駆動したとしても、前々回力も前回へのディケイの階調遷移において、実際の階 調遷移と、所望の階調遷移とに差が発生しやすい。したがって、本実施形態のように 画素アレイ 2として当該液晶セルを用いた場合は、特に効果が大きい。 [0163] 以下では、図 17〜図 30 (c)を参照しながら、サブフレーム処理部 32によるサブフレ ームへの分割処理(映像データ Sloおよび S2oの生成処理)について、以下の構成 、すなわち、画素アレイ 2が VAモードのアクティブマトリックス(TFT)液晶パネルであ り、各サブ画素 SPIXが 8ビットの階調を表示可能である構成を例にして、さらに詳細 に説明する。なお、以下では、説明の便宜上、上記映像データ Sloおよび S2oを、 前段表示信号および後段表示信号と称する。
[0164] まず、液晶パネルに関する一般的な表示輝度 (パネルによって表示される画像の 輝度)について説明する。
[0165] 通常の 8ビットデータを、サブフレームを用いずに 1フレームで画像を表示する場合
(1フレーム期間で、液晶パネルの全走査信号線 GLl〜GLmを 1回だけ ONとする、 通常ホールド表示する場合)、液晶パネルに印加される信号(映像信号 DAT2)の輝 度階調 (信号階調)は、 0〜255までの段階となる。
[0166] そして、液晶パネルにおける信号階調と表示輝度とは、以下の(1)式によって近似 的に表現される。
( (T-T0) / (Tmax-TO) ) = (L/Lmax) " γ · · · (1)
ここで、 Lは 1フレームで画像を表示する場合 (通常ホールド表示で画像を表示する 場合)の信号階調 (フレーム階調)、 Lmaxは最大の輝度階調 (255)、 Tは表示輝度 、 Tmaxは最大輝度(L = Lmax = 255のときの輝度;白)、 TOは最小輝度(L = 0のと きの輝度;黒)、 γは、補正値 (通常 2. 2)である。
なお、実際の液晶パネルでは、 Τ0 = 0ではない。しかしながら、説明を簡略化するた め、以下では、 TO = 0とする。
[0167] また、この場合 (通常ホールド表示の場合)に液晶パネルから出力される表示輝度 Tは、上述した図 8に示すようになる。
図 8に示すグラフは、横軸に『出力されるはずの輝度 (予定輝度;信号階調に応じた 値,上記の表示輝度 Tに相当)』を、縦軸に『実際に出力された輝度 (実際輝度)』を 示している。
[0168] このグラフに示すように、この場合には、上記した 2つの輝度は、液晶パネルの正面
(視野角度 0度)においては等しくなる。 一方、視野角度を 60度としたときには、実際輝度が、階調 γ特性の変化によって、中 間調の輝度で明るくなつてしまう。
[0169] 次に、本構成例に係る画像表示装置 1における表示輝度について説明する。
本画像表示装置 1では、制御回路 44が、
(a)「前サブフレームおよび後サブフレームのそれぞれにおいて画素アレイ 2によって 表示される画像の輝度 (表示輝度)の時間積分値(1フレームにおける積分輝度)を、 通常ホールド表示を行う場合の 1フレームの表示輝度と等しくする」
(b)「一方のサブフレームを上記喑階調表示、または白(最大輝度)にする」 を満たすように階調表現を行うように設計されて!ヽる。
[0170] このために、本構成例に係る画像表示装置 1では、制御回路 44が、フレームを 2つ のサブフレームに均等に分割し、 1つのサブフレームによって最大輝度の半分までの 輝度を表示するように設計されて!ヽる。
[0171] すなわち、最大輝度の半分(閾輝度; TmaxZ2)までの輝度を 1フレームで出力す る場合 (低輝度の場合)、制御回路 44は、前サブフレームを喑階調表示とし、後サブ フレームの表示輝度のみを調整して階調表現を行う(後サブフレームのみを用いて 階調表現を行う)。
この場合、 1フレームにおける積分輝度は『(最小輝度 +後サブフレームの輝度) /2 』の輝度となる。
[0172] また、上記の閾輝度より高い輝度を出力する場合 (高輝度の場合)、制御回路 44は 、後サブフレームを最大輝度(白)とし、前サブフレームの表示輝度を調整して階調 表現を行う。
この場合、 1フレームにおける積分輝度は『(前サブフレームの輝度 +最大輝度) Z2 』の輝度となる。
[0173] 次に、このような表示輝度を得るための表示信号 (前段表示信号および後段表示 信号)の信号階調設定について具体的に説明する。
なお、信号階調設定については、図 1に示した制御回路 44が行う。
制御回路 44は、上記した(1)式を用いて、上記した閾輝度 (TmaxZ2)に対応する フレーム階調をあら力じめ算出しておく。 [0174] すなわち、このような表示輝度に応じたフレーム階調(閾輝度階調; Lt)は、(1)式よ り、
Lt = 0.5"(ΐ/γ) XLmax …(2)
たたし、 Lmax= max y · · · (2a)
となる。
[0175] そして、制御回路 44は、画像を表示する際、フレームメモリ 41から出力された映像 信号に基づいて、フレーム階調 Lを求める。
そして、この Lが Lt以下の場合、制御回路 44は、前段表示信号の輝度階調 (Fとする )を、前段 LUT42によって最小 (0)とする。
一方、制御回路 44は、後段表示信号の輝度階調 (Rとする)を、(1)式に基づいて、 R = 0.5"(ΐ/γ) XL …(3)
となるように、後段 LUT43を用いて設定する。
[0176] また、フレーム階調 Lが Ltより大きい場合、制御回路 44は、後段表示信号の輝度 階調 Rを最大(255)とする。
一方、制御回路 44は、前サブフレームの輝度階調 Fを、(1)式に基づいて、
F=(L"y -0.5XLmax"y) " (l/y) …(4)
とする。
[0177] 次に、本構成例に係る画像表示装置 1における表示信号の出力動作について、よ り詳細に説明する。
この場合、制御回路 44は、図 2に示す制御回路 12へ、信号処理後の映像信号 DA T2を送信することによって、データ信号線駆動回路 3に、倍クロックで、 1番目の走査 信号線 GL1のサブ画素 SPIX(n個)の前段表示信号を蓄積させる。
[0178] そして、制御回路 44は、制御回路 12を介して、走査信号線駆動回路 4に、 1番目 の走査信号線 GL1を ONにさせ (選択させ)、この走査信号線 GL1のサブ画素 SPIX に対して前段表示信号を書き込ませる。その後、制御回路 44は、データ信号線駆動 回路 3に蓄積させる前段表示信号を変えながら、同様に、 2〜m番目の走査信号線 GL2〜GLmを倍クロックで ONさせてゆく。これにより、 1フレームの半分の期間(lZ 2フレーム期間)で、全てのサブ画素 SPIXに前段表示信号を書き込める。 [0179] さらに、制御回路 44は、同様の動作を行って、残りの 1Z2フレーム期間で、全走査 信号線 GLl〜GLmのサブ画素 SPIXに後段表示信号の書き込みを行う。
これにより、各サブ画素 SPIXには、前段表示信号と後段表示信号とが、それぞれ均 等の時間(1Z2フレーム期間)ずつ書き込まれることになる。
[0180] 上述した図 9は、このような前段表示信号および後段表示信号を前'後サブフレー ムに分けて出力するサブフレーム表示を行った結果 (破線および実線)を、図 2に示 した結果 (一点鎖線および実線)と合わせて示すグラフである。
[0181] 本構成例に係る画像表示装置 1では、図 8に示したように、大きな視野角度での実 際輝度と予定輝度 (実線と同等)とのズレが、表示輝度が最小あるいは最大の場合に 最小 (0)となる一方、中間調(閾輝度近傍)で最も大きくなる液晶パネルを用いている
[0182] そして、本構成例に係る画像表示装置 1では、 1つのフレームをサブフレームに分 割するサブフレーム表示を行って 、る。
さらに、 2つのサブフレームの期間を等しく設定し、低輝度の場合、 1フレームにおけ る積分輝度を変化させない範囲で、前サブフレームを喑階調表示とし、後サブフレー ムのみを用いて表示を行って 、る。
したがって、前サブフレームでのズレが最小となるので、図 9の破線に示すように、両 サブフレームのトータルのズレを約半分に減らせる。
[0183] 一方、高輝度の場合、 1フレームにおける積分輝度を変化させない範囲で、後サブ フレームを白表示とし、前サブフレームの輝度だけを調整して表示を行っている。 このため、この場合にも、後サブフレームのズレが最小となるので、図 9の破線に示す ように、両サブフレームのトータルのズレを約半分に減らせる。
[0184] このように、本構成例に係る画像表示装置 1では、通常ホールド表示を行う構成 (サ ブフレームを用いずに 1フレームで画像を表示する構成)に比して、全体的にズレを 約半分に減らすことが可能となって 、る。
このため、図 8に示したような、中間調の画像が明るくなつて白く浮いてしまう現象(白 浮き現象)を抑制することが可能である。
[0185] なお、本構成例では、前サブフレームと後サブフレームとの期間が等しいとしている 。これは、最大値の半分までの輝度を 1つのサブフレームで表示するためである。 しかしながら、これらのサブフレームの期間を、互いに異なる値に設定してもよい。
[0186] すなわち、本構成例に係る画像表示装置 1において問題とされている白浮き現象 は、視野角度の大きい場合に実際輝度が図 8のような特性を持つことで、中間調の 輝度の画像が明るくなつて白く浮いて見える現象のことである。
[0187] なお、通常、カメラに撮像された画像は、輝度に基づいた信号となる。そして、この 画像をデジタル形式で送信する場合には、(1)式に示した γを用いて画像を表示信 号に変換する (すなわち、輝度の信号を(ΐΖ γ )乗し、均等割りして階調をつける)。 そして、このような表示信号に基づいて、液晶パネル等の画像表示装置 1によって表 示される画像は、(1)式によって示される表示輝度を有することとなる。
[0188] ところで、人間の視覚感覚は、画像を、輝度ではなく明度として受け取つている。ま た、明度(明度指数) Μとは、以下の(5) (6)式によって表されるものである(非特許文 献 3参照)。
[0189] Μ= 116 ΧΥ" (1/3) - 16, Υ>0. 008856 · · · (5)
Μ = 903. 29 ΧΥ, Υ≤0. 008856 · · · (6)
ここで、 Υは、上記した実際輝度に相当するものであり、 Y= (yZyn)なる量である。 なお、 yは、任意な色の xyz表色系における三刺激値の y値であり、また、 ynは、完全 拡散反射面の標準の光による y値であり yn= 100と定められている。
[0190] これらの式より、人間は、輝度的に暗い映像に対して敏感であり、明るい映像に対 しては鈍感になっていく傾向がある。
そして、白浮きに関しても、人間は、輝度のズレではなぐ明度のズレとして受け取つ ていると考えられる。
[0191] ここで、図 17は、図 8に示した輝度のグラフを明度に変換したものを示すグラフであ る。
このグラフは、横軸に『出力されるはずの明度 (予定明度;信号階調に応じた値,上 記の明度 Mに相当)』を、縦軸に『実際に出力された明度 (実際明度)』を示している。 このグラフに実線で示すように、上記した 2つの明度は、液晶パネルの正面 (視野角 度 0度)においては等しくなる。 [0192] 一方、このグラフの破線に示すように、視野角度を 60度とし、かつ、各サブフレーム の期間を均等とした場合 (すなわち、最大値の半分までの輝度を 1つのサブフレーム で表示する場合)には、実際明度と予定明度とのズレは、通常ホールド表示を行う従 来の場合よりは改善されている。したがって、白浮き現象を、ある程度は抑制できて いることがわ力る。
[0193] また、人間の視覚感覚にあわせて白浮き現象をより大きく抑制するためには、輝度 ではなぐ明度に合わせてフレームの分割割合を決定することがより好ましいといえる そして、実際明度と予定明度とのズレは、輝度の場合と同様に、予定明度における最 大値の半分の点で最も大きくなる。
[0194] したがって、最大値の半分までの輝度を 1つのサブフレームで表示するようにフレ ームを分割するよりも、最大値の半分までの明度を 1つのサブフレームで表示するよ うにフレームを分割する方力 人間に感じられるズレ(すなわち白浮き)を改善できる ことになる。
[0195] そこで、以下に、フレームの分割点における好ましい値について説明する。
まず、演算を簡単に行うために、上記した(5) (6)式を、以下の(6a)式のような形((1
)式に類似の形)にまとめて近似する。
Μ =Υ" ( 1/ α ) - - - (6a)
このような形に変換した場合、この式の αは、約 2. 5となる。
[0196] また、この aの値が 2. 2〜3. 0の間にあれば、(6a)式における輝度 Yと明度 Mとの 関係は適切となる(人間の視覚感覚に対応している)と考えられている。
[0197] そして、 1つのサブフレームで、最大値の半分の明度 Mを表示するためには、 2つ のサブフレームの期間を、 γ = 2. 2のときは約 1 : 3、 γ = 3. 0のときは約 1: 7とするこ とが好まし 、ことがわ力つて 、る。
なお、このようにフレームを分割する場合には、輝度の小さいときに表示に使用する 方のサブフレーム(高輝度の場合に最大輝度に維持しておく方のサブフレーム)を短 、期間とすることとなる。
[0198] 以下に、前サブフレームと後サブフレームとの期間を 3 : 1とする場合について説明 する。
まず、この場合における表示輝度について説明する。
[0199] この場合には、最大輝度の 1Z4 (閾輝度; TmaxZ4)までの輝度を 1フレームで出 力する表示する低輝度表示を行う際、制御回路 44は、前サブフレームを喑階調表示 とし、後サブフレームの表示輝度のみを調整して階調表現を行う(後サブフレームの みを用いて階調表現を行う)。
このときには、 1フレームにおける積分輝度は『(最小輝度 +後サブフレームの輝度) Z4』の輝度となる。
[0200] また、閾輝度 (TmaxZ4)より高い輝度を 1フレームで出力する場合 (高輝度の場合 )、制御回路 44は、後サブフレームを最大輝度(白)とし、前サブフレームの表示輝度 を調整して階調表現を行う。
この場合、 1フレームにおける積分輝度は『(前サブフレームの輝度 +最大輝度) Z4 』の輝度となる。
[0201] 次に、このような表示輝度を得るための表示信号 (前段表示信号および後段表示 信号)の信号階調設定について具体的に説明する。
なお、この場合にも、信号階調 (および後述する出力動作)は、上記した (a)(b)の条件 を満たすように設定される。
[0202] まず、制御回路 44は、上記した(1)式を用いて、上記した閾輝度 (TmaxZ4)に対 応するフレーム階調をあら力じめ算出しておく。
[0203] すなわち、このような表示輝度に応じたフレーム階調(閾輝度階調; Lt)は、(1)式よ り、
Lt= (l/4) " (l/ y ) X Lmax · · · (7)
そして、制御回路 44は、画像を表示する際、フレームメモリ 41から出力された映像 信号に基づいて、フレーム階調 Lを求める。
そして、この Lが Lt以下の場合、制御回路 44は、前段表示信号の輝度階調 (F)を、 前段 LUT42を用いて最小 (0)とする。
一方、制御回路 44は、後段表示信号の輝度階調 (R)を、(1)式に基づいて、 R= (l/4) " (l/ y ) X L · · · (8) となるように、後段 LUT43を用いて設定する。
[0204] また、フレーム階調 Lが Ltより大きい場合、制御回路 44は、後段表示信号の輝度 階調 Rを最大(255)とする。
一方、制御回路 44は、前サブフレームの輝度階調 Fを、(1)式に基づいて、
F= ( (L - (1/4) X Lmax" y ) ) ' ( l/ y ) · · · (9)
とする。
[0205] 次に、このような前段表示信号および後段表示信号の出力動作について説明する 上記したように、フレームを均等分割する構成では、サブ画素 SPIXには、前段表示 信号と後段表示信号とが、それぞれ均等の時間(1Z2フレーム期間)づっ書き込ま れる。
これは、倍クロックで前段表示信号を全て書き込んだ後に、後段表示信号の書き込 みを行うため、各表示信号に関する走査信号線 GL…の ON期間が均等となったた めである。
[0206] したがって、後段表示信号の書き込みの開始タイミング (後段表示信号に関する走 查信号線 GL…の ONタイミング)を変えることにより、分割の割合を変えられる。
[0207] 図 18の(a)は、図 1に示したフレームメモリ 41に入力される映像信号、図 18の(b) は、 3 : 1に分割する場合における、フレームメモリ 41から前段 LUT42に出力される 映像信号、そして、図 18の(c)は、同じく後段 LUT43に出力される映像信号を示す 説明図である。
また、図 19は、同じく 3 : 1に分割する場合における、前段表示信号と後段表示信号と に関する走査信号線 GL…の ONタイミングを示す説明図である。
[0208] これらの図に示すように、この場合、制御回路 44は、 1フレーム目の前段表示信号 を、通常のクロックで各走査信号線 GL…のサブ画素 SPIXに書き込んでゆく。
そして、 3Z4フレーム期間後に、後段表示信号の書き込みを開始する。このときから は、前段表示信号と後段表示信号とを、倍クロックで、交互に書き込んでゆく。
[0209] すなわち、「全走査信号線 GLl〜GLmの 3Z4」番目の GL(m*3/4)のサブ画素 S PIXに前段表示信号を書き込んだ後、データ信号線駆動回路 3に 1番目の走査信号 線 GL1に関する後段表示信号の蓄積し、この走査信号線 GL1を ONする。次に、デ ータ信号線駆動回路 3に「全走査信号線 GLl〜GLmの 3Z4」 + 1番目の走査信号 線 GL(m*3/4+l)に関する前段表示信号を蓄積し、この走査信号線 GL(m*3/4+l)を ONする。
[0210] このように 1フレーム目の 3Z4フレーム期間後から、倍クロックで、前段表示信号と 後段表示信号とを交互に出力することで、前サブフレームと後サブフレームとの割合 を 3 : 1とすることが可能となる。
そして、これら 2つのサブフレームにおける表示輝度の時間積分値 (積分総和)が、 1 フレームにおける積分輝度となる。
なお、フレームメモリ 41に蓄えられたデータは、走査信号線 GL…の ONタイミングに あわせてデータ信号線駆動回路 3に出力されることになる。
[0211] また、図 20は、フレームを 3 : 1に分割した場合における、予定明度と実際明度との 関係を示すグラフである。
この図に示すように、この構成では、予定明度と実際明度とのズレの最も大きくなる点 でフレームを分割できている。したがって、図 17に示した結果に比べて、視野角度を 60度とした場合における予定明度と実際明度との差が、非常に小さくなつている。
[0212] すなわち、本構成例に係る画像表示装置 1では、「TmaxZ4」までの低輝度 (低明 度)の場合、 1フレームにおける積分輝度を変化させない範囲で、前サブフレームを 喑階調表示とし、後サブフレームのみを用いて表示を行って 、る。
したがって、前サブフレームでのズレ(実際明度と予定明度との差)が最小となるので 、図 20の破線に示すように、両サブフレームのトータルのズレを約半分に減らせる。
[0213] 一方、高輝度 (高明度)の場合、 1フレームにおける積分輝度を変化させない範囲 で、後サブフレームを白表示とし、前サブフレームの輝度だけを調整して表示を行つ ている。
このため、この場合にも、後サブフレームのズレが最小となるので、図 20の破線に示 すように、両サブフレームのトータルのズレを約半分に減らせる。
[0214] このように、本構成例に係る画像表示装置 1では、通常ホールド表示を行う構成に 比して、全体的に明度のズレを約半分に減らすことが可能となっている。 このため、図 8に示したような、中間調の画像が明るくなつて白く浮いてしまう現象(白 浮き現象)を、より効果的に抑制することが可能である。
[0215] ここで、上記では、表示開始時から 3Z4フレーム期間までの間において、 1フレー ム目の前段表示信号を、通常のクロックで各全走査信号線 GL…のサブ画素 SPIXに 書き込むとしている。これは、後段表示信号を書き込むべきタイミングに達していない 力 である。
[0216] し力しながら、このような措置に変えて、ダミーの後段表示信号を用いて、表示開始 時力も倍クロックでの表示を行うようにしてもよい。すなわち、表示開始時から 3Z4フ レーム期間までの間に、前段表示信号と、信号階調 0の後段表示信号 (ダミーの後段 表示信号)とを交互に出力するようにしてもょ 、。
[0217] ここで、以下に、より一般的に、前サブフレームと後サブフレームとの割合を n: 1とす る場合について説明する。
この場合、制御回路 44は、最大輝度の lZ (n+ l) (閾輝度; TmaxZ (n+ l) )まで の輝度を 1フレームで出力する場合 (低輝度の場合)、前サブフレームを喑階調表示 とし、後サブフレームの表示輝度のみを調整して階調表現を行う(後サブフレームの みを用いて階調表現を行う)。
この場合、 1フレームにおける積分輝度は『 (最小輝度 +後サブフレームの輝度) / ( n+ l)』の輝度となる。
[0218] また、閾輝度 (TmaxZ (n+ l) )より高い輝度を出力する場合 (高輝度の場合)、制 御回路 44は、後サブフレームを最大輝度(白)とし、前サブフレームの表示輝度を調 整して階調表現を行う。
この場合、 1フレームにおける積分輝度は『 (前サブフレームの輝度 +最大輝度) / ( n+ l)』の輝度となる。
[0219] 次に、このような表示輝度を得るための表示信号 (前段表示信号および後段表示 信号)の信号階調設定について具体的に説明する。
なお、この場合にも、信号階調 (および後述する出力動作)は、上記した (a)(b)の条件 を満たすように設定される。
[0220] まず、制御回路 44は、上記した(1)式を用いて、上記した閾輝度 (TmaxZ (n+ l) )に対応するフレーム階調をあら力じめ算出しておく。
[0221] すなわち、このような表示輝度に応じたフレーム階調(閾輝度階調; Lt)は、(1)式よ り、
Figure imgf000054_0001
XLmax ··· (10)
そして、制御回路 44は、画像を表示する際、フレームメモリ 41から出力された映像 信号に基づいて、フレーム階調 Lを求める。
そして、この Lが Lt以下の場合、制御回路 44は、前段表示信号の輝度階調 (F)を、 前段 LUT42を用いて最小 (0)とする。
一方、制御回路 44は、後段表示信号の輝度階調 (R)を、(1)式に基づいて、
Figure imgf000054_0002
となるように、後段 LUT43を用いて設定する。
[0222] また、フレーム階調 Lが Ltより大きい場合、制御回路 44は、後段表示信号の輝度 階調 Rを最大(255)とする。
一方、制御回路 44は、前サブフレームの輝度階調 Fを、(1)式に基づいて、
F=((L -(l/(n+l))XLmax ))"(l/y) ·'·(12)
とする。
[0223] また、表示信号の出力動作については、フレームを 3: 1に分けた場合の動作にお いて、 1フレーム目の ηΖ(η+1)フレーム期間後から、倍クロックで、前段表示信号と 後段表示信号とを交互に出力するように設計すればよい。
[0224] また、フレームを均等分割する構成は、以下のような構成であるといえる。すなわち 、 1フレームを「1+η( = 1)」のサブフレーム期間に分割する。そして、通常クロックの 「1+η( = 1)」倍のクロックで、 1つのサブフレーム期間に前段表示信号を出力し、後 の η( = 1)個のサブフレーム期間に後段表示信号を連続的に出力する。
[0225] し力しながら、この構成では、 ηが 2以上となると、クロックを非常に速める必要がある ため、装置コストが増大する。
したがって、 ηが 2以上となる場合には、上記したような前段表示信号と後段表示信号 とを交互に出力する構成とすることが好ましい。
この場合には、後段表示信号の出力タイミングを調整することで、前サブフレームと 後サブフレームとの割合を n: 1とすることが可能となるため、必要となるクロック周波数 を、通常の 2倍に維持できる。
[0226] また、液晶パネルは、交流により駆動されることが好ましい。これは、交流駆動とする ことにより、フレーム毎に、サブ画素 SPIXの電荷極性 (液晶を挟む画素電極間の電 圧 (電極間電圧)の向き)を変えられるからである。
[0227] 直流駆動とすると、電極間に偏った電圧が力かるため、電極に電荷がたまる。そし て、この状態が続くと、電圧を印加していないときでも、電極間に電位差が発生した 状態 ( 、わゆる焼き付きと 、う状態)になってしまう。
[0228] ここで、本構成例に係る画像表示装置 1のようにサブフレーム表示を行う場合、サブ フレーム間で、画素電極間に印加される電圧値 (絶対値)が異なることが多い。
[0229] したがって、電極間電圧の極性をサブフレーム周期で反転させると、前サブフレー ムと後サブフレームとの電圧値の違いにより、印加される電極間電圧に偏りが生じる。 このため、液晶パネルを長時間駆動させると、電極に電荷がたまり、上記した焼き付 きゃフリツ力などの発生する可能性がある。
[0230] そこで、本構成例に係る画像表示装置 1では、電極間電圧の極性をフレーム周期 で反転させることが好ま 、。
なお、電極間電圧の極性をフレーム周期で反転させる方法は 2つある。 1つの方法は 、 1フレームの間、同極性の電圧を印加する方法である。
また、もう 1つの方法は、 1フレーム内の 2つのサブフレーム間で電極間電圧を逆極性 とし、さらに、後サブフレームと、 1つ後のフレームの前サブフレームとを同極性で駆 動する方法である。
[0231] 図 21 (a)に、前者の方法をとつた場合における、電圧極性 (電極間電圧の極性)と フレーム周期との関係を示す。また、図 21 (b)に、後者の方法をとつた場合における 、電圧極性とフレーム周期との関係を示す。
このようにフレーム周期で電極間電圧を交流化することにより、サブフレーム間で電 極間電圧が大きく異なっていても、焼き付きゃフリツ力を防止できる。
[0232] なお、焼き付きゃフリツ力を防止するためには、上記 2つの方法のどちらを採用して も良いが、例えば、後半のサブフレームを比較的明るい表示に使用すると決めた場 合においては、 1フレームの間同極性とする構成がより好ましい。より詳細には、サブ フレームに分割すると、 TFTの充電時間が減少するので、充電時間がたとえ設計範 囲内であったとしても、サブフレームに分割しない構成と比較すると、充電のためのマ 一ジンが減少することは否定できない。そのため、量産においては、パネル、 TFT性 能のバラツキにより充電不足による輝度バラツキが発生する虞れがある。ところが、上 記構成によると、輝度表示の主体となる後半フレームが同極性書き込みの 2回目に 相当し、輝度表示の主体となる後半フレームにおける電圧変化を少なくできる。この 結果、必要となる充電電荷量を減少させることができ、充電不足による表示不良を防 止することができる。
[0233] また、上記のように、本構成例に係る画像表示装置 1では、サブフレーム表示によ つて液晶パネルを駆動しており、これにより、白浮きを抑制している。
しかしながら、液晶の応答速度 (液晶にかかる電圧 (電極間電圧)が印加電圧と等しく なるまでの速度)が遅い場合、このようなサブフレーム表示による効果が薄れてしまう ことがある。
[0234] すなわち、通常ホールド表示を行う場合、 TFT液晶パネルでは、ある輝度階調に 対して 1つの液晶状態が対応する。したがって、液晶の応答特性は、表示信号の輝 度階調に依存しない。
[0235] 一方、本構成例に係る画像表示装置 1のようにサブフレーム表示を行う場合、前サ ブフレームが最小輝度(白)で後サブフレームが最大輝度となる、中間階調の表示信 号を表示する場合、 1フレームで液晶に印加される電圧は、図 22 (a)に示すように変 動する。
また、電極間電圧は、液晶の応答速度 (応答特性)に従って、図 22 (b)に実線 Xで示 すように変化する。
[0236] ここで、液晶の応答速度が遅い場合、このような中間調表示を行うと、電極間電圧( 実線 X)は、図 22 (c)に示すように変化する。
したがって、この場合には、前サブフレームの表示輝度が最小とならないとともに、後 サブフレームの表示輝度が最大とならな 、。
[0237] このため、予定輝度と実際輝度との関係は、図 23に示すようになる。すなわち、サ ブフレーム表示を行っても、視野角度の大きい場合における予定輝度と実際輝度と の差 (ズレ)の少なくなる輝度 (最小輝度 ·最大輝度)での表示を行えなくなる。
このため、白浮き現象の抑制効果が減少する。
[0238] したがって、本構成例に係る画像表示装置 1のようなサブフレーム表示を良好に行 うためには、液晶パネルにおける液晶の応答速度が、以下の (c)(d)を満足するように 設計されて 、ることが好ま 、。
[0239] (c)最小輝度 (黒;最小明度に相当)を表示している液晶に最大輝度(白;最大明度 に相当)となるための電圧信号 (表示信号に基づいてデータ信号線駆動回路 3によつ て生成されるもの)を与えたときに、短い方のサブフレーム期間内で、液晶の電圧(電 極間電圧) 1S 電圧信号の電圧における 90%以上の値に到達する(正面の実際明 度が最大明度の 90%に到達する。 )
(d)最大輝度 (白)を表示して 、る液晶に最小輝度 (黒)となるための電圧信号を与え たときに、短い方のサブフレーム期間内で、液晶の電圧 (電極間電圧)が、電圧信号 の電圧における 5%以下の値に到達する(正面の実際明度が最小明度の 5%に到達 する)。
[0240] また、制御回路 44は、液晶の応答速度をモニターできるように設計されていること が好ましい。
そして、環境温度の変化等によって液晶の応答速度が遅くなり、上記の (c)(d)を満足 できなくなつたと判断した場合、制御回路 44は、サブフレーム表示を中断して、液晶 パネルを、通常ホールド表示によって駆動するように設定されて 、てもよ 、。
[0241] これにより、サブフレーム表示によって白浮き現象がかえって顕著となってしまった 場合に、液晶パネルの表示方式を通常ホールド表示に切り替えられる。
[0242] なお、本構成例では、低輝度の場合に前サブフレームを喑階調表示とし、後サブフ レームのみを用いて階調表現を行うとして 、る。
しかしながら、サブフレームの前後関係を交換しても (低輝度の場合に後サブフレー ムを喑階調表示として、前サブフレームのみを用いて階調表現を行うようにしても)、 同様の表示を得られる。
[0243] また、本構成例では、(1)式を用いて表示信号 (前段表示信号および後段表示信 号)の輝度階調 (信号階調)を設定するとして!/ヽる。
しかしながら、実際のパネルでは、黒表示(階調 0)の場合でも輝度を有し、さらに液 晶の応答速度は有限であるため、したがって、信号階調の設定に関しては、これらの 要素を加味することが好ましい。すなわち、液晶パネルによって実際の画像を表示さ せて、信号階調と表示輝度との関係を実測し、実測結果に基づいて、(1)式に合うよ う LUT (出力テーブル)を決めることが好ましい。
[0244] また、本構成例では、式(6a)に示した aを、 2. 2〜3の範囲であるとしている。この 範囲は、厳密に導き出されたものではないが、人間の視覚感覚的にほぼ妥当である とされている範囲である。
[0245] また、本構成例に係る画像表示装置 1のデータ信号線駆動回路 3として通常ホー ルド表示用のデータ信号線駆動回路を用いると、入力される信号階調 (表示信号の 輝度階調)に応じて、 7 = 2. 2とした(1)式を用いて得られる表示輝度を得られるよう に、各画素 (液晶)に対して電圧信号が出力される。
[0246] そして、このようなデータ信号線駆動回路 3は、サブフレーム表示を行う場合でも、 各サブフレームにおいて、入力される信号階調に応じて、通常ホールド表示で使用 する電圧信号をそのまま出力することとなる。
[0247] しかしながら、このような電圧信号の出力方法では、サブフレーム表示における 1フ レーム内での輝度の時間積分値を、通常ホールド表示での値と同一にできな ヽ (信 号階調を表現しきれな 、)ことがある。
[0248] したがって、サブフレーム表示では、データ信号線駆動回路 3は、分割した輝度に 換算した電圧信号を出力するように設計されて!ヽることが好ま ヽ。
すなわち、データ信号線駆動回路 3が、信号階調に応じて、液晶に印加する電圧( 電極間電圧)を微調整するように設定されて!ヽることが好ま ヽ。
このため、データ信号線駆動回路 3をサブフレーム表示用に設計し、上記のような微 調整を行えるようにしておくことが好ま 、。
[0249] なお、本構成例では、液晶パネルが VAパネルであるとしている力 白浮き現象の 抑制効果であれば、これに限らず、 VAモード以外の他のモードの液晶パネルを用 いてち得ることがでさる。 [0250] すなわち、本構成例に係る画像表示装置 1のサブフレーム表示は、視野角度を大 きくしたときに予定輝度 (予定明度)と実際輝度 (実際明度)とがずれてしまう液晶パネ ル (階調ガンマの視野角特性変化するモードの液晶パネル)に対しては、白浮き現 象を抑制することが可能である。
また、特に、本構成例に係る画像表示装置 1のサブフレーム表示は、視野角度を増 カロさせると表示輝度の強くなるような特性を有している液晶パネルに有効である。
[0251] また、白浮き現象の抑制効果であれば、ノーマリブラックであっても、また、ノーマリ ホワイト(Normally White)であっても得ることができる。さらに、白浮き現象の抑制効 果であれば、液晶パネルに変えて、他の表示パネル (例えば有機 ELパネルやプラズ マディスプレイパネル)を用いても得ることができる。
[0252] また、本構成例では、フレームを 1: 3〜1: 7に分割することが好ましいとしている。し 力しながら、これに限らず、本構成例に係る画像表示装置 1を、フレームを l :nあるい は n: 1 (nは 1以上の自然数)の範囲で分割するように設計してもよい。
[0253] また、本構成例では、上記した(10)式を用いて、表示信号 (前段表示信号および 後段表示信号)の信号階調設定を行うとしている。
しかしながら、この設定は、液晶の応答速度を Omsとし、かつ、 TO (最小輝度) =0と した設定方法である。このため、実使用の際には、さらに工夫を重ねることが好ましい
[0254] すなわち、片側のサブフレーム (後サブフレーム)で出力できる最大の輝度(閾輝度 )は、液晶応答が Omsで T0 = 0の場合には、 TmaxZ (n+ l)となる。そして、閾輝度 階調 Ltは、この輝度のフレーム階調である。
Lt = ( (Tmax/(n + 1)— TO) Z (Tmax -ΤΟ))" (ΐ/ γ )
( γ = 2. 2、Τ0 = 0)
液晶の応答速度が Οでない場合、例えば、黒→白がサブフレーム内で Υ%の応答、 白→黒がサブフレーム内で Ζ%の応答、 ΤΟ=ΤΟとすると、閾輝度 (Ltの輝度) Ttは、 Tt= ( (Tmax-TO) XY/100+ (Tmax -TO) X Z/100) /2
となる。したがって、
Lt= ( (Tt TO) / (Tmax -TO) ) " (ΐ/ γ ) ( y = 2. 2)
となる。
[0255] また、実際には、 Ltはもう少し複雑になることもあり、閾輝度 Ttを単純な式では表せ ないこともある。したがって、 Ltを Lmaxで表現することが困難なこともある。
このような場合に Ltを求めるには、液晶パネルの輝度を測定した結果を用いることが 好ましい。すなわち、片側のサブフレームが最大の輝度、かつ、他方のサブフレーム の輝度が最小輝度の場合に液晶パネルカゝら照射される輝度を測定して、その輝度を Ttとする。そして、下式により、こぼれだしの階調 Ltを決める。
Lt= ( (Tt TO) / (Tmax-TO) ) " (ΐ/ γ )
( y = 2. 2)
このように、 (10)式を用いて求めた Ltについては、理想的な値であり、目安として 使用することが好まし 、場合もあると 、える。
[0256] また、上記説明は、本実施形態における表示輝度のモデルであり、説明のためわ 力りやすぐ "Tmax/2'\ "最大輝度"、 "最小輝度"などと表現している力 実際には 、滑らかな階調表現、ユーザの好む特殊なガンマなどを実現するために、多少の変 動があっても良い。すなわち、表示輝度がある閾値輝度より小さいときに、一方のフレ ームの輝度が他方のフレームの輝度より十分暗ければ、本実施形態における動画表 示および視野角の改善効果は発揮されるので、例えば、 "TmaxZ2"において、最 小輝度(10%)、最大輝度(90%)と言った比率と、その周辺が順次適当に変化する 構成でも、略同様の効果が得られる。なお、以下の説明においても、簡単のため同 様の表現を用いる力 これに限るものでない。
[0257] ここで、本構成例に係る画像表示装置 1にお!/、て、電極間電圧の極性をフレーム周 期で反転させることが好ましい点について、より詳細に説明する。
図 24 (a)は、表示輝度が Lmaxの 3Z4および 1Z4の場合に、前サブフレームおよ び後サブフレームによって表示される輝度を示すグラフである。
この図に示すように、本構成例のようにサブフレーム表示を行う場合、サブフレーム 間で、液晶に印加される電圧値 (画素電極間に印加される電圧値;絶対値)は異なる [0258] したがって、液晶に印加される電圧 (液晶電圧)の極性をサブフレーム周期で反転 させると、図 24 (b)に示すように、前サブフレームと後サブフレームとの電圧値の違い により、印加される液晶電圧に偏りが生じる(トータルの印加電圧が (ことならない)。こ のため、液晶電圧の直流成分をキャンセルできなくなり、液晶パネルを長時間駆動さ せると、電極に電荷がたまり、焼き付きゃフリツ力などの発生する可能性がある。
[0259] そこで、本構成例に係る画像表示装置 1では、液晶電圧の極性をフレーム周期で 反転させることが好ましい。
なお、液晶電圧の極性をフレーム周期で反転させる方法は 2つある。 1つの方法は、 1フレームの間、同極性の電圧を印加する方法である。
また、もう 1つの方法は、 1フレーム内の 2つのサブフレーム間で液晶電圧を逆極性と し、さらに、後サブフレームと、 1つ後のフレームの前サブフレームとを同極性とする方 法である。
[0260] 図 25 (a)は、前者の方法をとつた場合における、電圧極性 (液晶電圧の極性)とフ レーム周期および液晶電圧との関係を示すグラフである。一方、図 25 (b)は、後者の 方法をとつた場合の、同様のグラフである。
[0261] これらのグラフに示すように、液晶電圧を 1フレーム周期で反転させる場合、隣り合 う 2つのフレーム間で、前サブフレームどうしのトータル電圧、および、後サブフレーム のトータル電圧を、 OVとできる。したがって、 2フレームでのトータル電圧を OVとでき るので、印加電圧の直流成分をキャンセルすることが可能となる。
このようにフレーム周期で液晶電圧を交流化することにより、サブフレーム間で液晶 電圧が大きく異なって 、ても、焼き付きゃフリツ力を防止できる。
[0262] また、図 26 (a)〜図 26 (d)は、液晶パネルにおける 4つのサブ画素 SPIXと、各サ ブ画素 SPIXの液晶電圧の極性を示す説明図である。
上記したように、 1つのサブ画素 SPIXに印加される電圧については、フレーム周期 で極性を反転させることが好ましい。この場合、各サブ画素 SPIXの液晶電圧の極性 は、フレーム周期ごとに、図 26 (a)、図 26 (b)、図 26 (c)、図 26 (d)の順で示すように 変ィ匕することとなる。
[0263] ここで、液晶パネルの全サブ画素 SPIXに印加される液晶電圧の和については、 0 Vとすることが好ましい。このような制御については、例えば、図 26 (a)〜図 26 (d)に 示すように、隣接するサブ画素 SPIX間で電圧極性を変えることで実現できる。
[0264] また、本構成例に係る画像表示装置 1を、画素分割駆動 (面積階調駆動)するよう に設計してもよい。
以下に、本構成例に係る画像表示装置 1の画素分割駆動について説明する。図 27 は、画素分割で駆動される液晶パネルの構成を示す説明図である。
[0265] この図に示すように、画素分割駆動では、液晶パネルの走査信号線 (例えば、 GL1 )およびデータ信号線 (例えば、 SL1)に接続された 1つのサブ画素 SPIX(1,1)を、 2 つの副画素 SP1(1,1) · 8Ρ2(1,1)に分割する。なお、以下では、 R, G, Β毎に設けら れるサブ画素 SPIX(1,1)と区別するため、これらを部分画素 SP1(1,1) · 8Ρ2(1,1)と 称する。そして、各部分画素 SP1(1,1) · 8Ρ2(1,1)に印加する電圧を変えて、表示を 行うようになる。なお、このような画素分割駆動については、例えば、特許文献 7〜10 に記載されている。
[0266] 以下に、画素分割駆動について、簡単に説明する。
図 27に示すように、画素分割駆動を行う構成では、 1つのサブ画素 SPIX(1,1)を挟 むように、異なる 2本の補助容量配線 CS1 'CS2が配されている。これら補助容量配 線 CS1.CS2は、それぞれ、部分画素 SP1 - SP2の一方に接続されている。
[0267] また、各部分画素 SP1 ' SP2内には、それぞれ TFT131,液晶容量 132,補助容 量 133が設けられている。
TFT131は、走査信号線 GL1およびデータ信号線 SL1および液晶容量 132に接続 されている。補助容量 133は、 TFT131,液晶容量 132および補助容量配線 CS1あ るいは CS 2に接続されて 、る。
この補助容量配線 CS1 'CS2には、所定周波数の交流電圧信号である補助信号が 印加されている。また、補助容量配線 CS1 'CS2に印加される補助信号の位相は、 互いに反転している(180° 異なっている)。
[0268] 液晶容量 132は、 TF1T31,共通電圧 Vcomおよび補助容量 133に接続されてい る。また、液晶容量 132は、自身と走査信号線 GL1との間に生成される、寄生容量 1 34に接続される。 [0269] この構成において、走査信号線 GL1が ON状態となると、 1つのサブ画素 SPIX(1,1 )における両部分画素 SP 1 · SP2の TFT131が導通状態となる。
図 28 (a)、図 28 (c)は、このときにデータ信号線 SL1に正(≥Vcom)の表示信号が 印加された場合における、部分画素 SP1 ' SP2の液晶容量 132に印加される電圧( 液晶電圧)を示すグラフである。
この場合、これらの図 28 (a)、図 28 (c)に示すように、両部分画素 SP1 ' SP2の液晶 容量 132の電圧値は、表示信号に応じた値 (VO)まで上昇する。
[0270] そして、走査信号線 GL1が OFF状態となると、寄生容量 134に起因するゲート引き 込み現象の影響で、液晶電圧が Vdだけ下がる。
このとき、図 28 (a)に示すように、補助容量配線 CS1の補助信号が立ち上がった場 合 (ローからハイになった場合)、これに接続されている部分画素 SP1の液晶電圧は 、 Vcs (補助容量配線 CS1に流れる補助信号の振幅に応じた値)だけ上昇する。そし て、 V0から V0— Vdまでの間で、補助容量配線 CSの周波数 (補助信号の周波数) に応じて、振幅 Vcsをもって、振動することとなる。
[0271] 一方、この場合には、図 28 (c)に示すように、補助容量配線 CS2の補助信号は立 ち下がる(ハイからローになる)。そして、これに接続されている部分画素 SP2の液晶 電圧は、補助信号の振幅に応じた値 Vcsだけ下降する。その後、 VO— Vdから V0— Vd— Vcsまでの間で振動する。
[0272] また、図 28 (b)、図 28 (d)は、走査信号線 GL1が ONとなったときにデータ信号線 SL1に負(≤Vcom)の表示信号 (電圧信号)が印加された場合における、部分画素 SP1 · SP2の液晶電圧を示すグラフである。
この場合、これらの図に示すように、部分画素 SP1 ' SP2の液晶電圧は、表示信号に 応じた値(一 VI)まで下降する。
[0273] その後、走査信号線 GL1が OFF状態となると、上記の引き込み現象によって、液 晶電圧は Vdだけさらに下がる。
このとき、図 28 (b)に示すように、補助容量配線 CS1の補助信号が立ち下がった場 合、これに接続されている部分画素 SP1の液晶電圧は、 Vcsだけさらに下降する。そ して、 VO— Vd— Vcsから一 VO— Vdまでの間で振動することとなる。 [0274] 一方、この場合には、図 28 (d)に示すように、補助容量配線 CS2の補助信号は立 ち上がる。そして、これに接続されている部分画素 SP2の液晶電圧は、 Vcsだけ上昇 する。その後、 VO— Vdから VO— Vd— Vcsまでの間で振動する。
[0275] このように、補助容量配線 CS1 'CS2に位相の 180° 異なる補助信号を印加するこ とで、部分画素 SP1 ' SP2の液晶電圧を、互いに異ならせることが可能となる。
[0276] すなわち、データ信号線 SL1に印加される表示信号が正の場合、引き込み現象の 直後に立ち上がる補助信号を入力する部分画素については、液晶電圧の絶対値が 表示信号電圧より高くなる(図 28 (a) )。
一方、このときに立ち下がる補助信号を入力する部分画素については、液晶電圧の 絶対値が表示信号電圧より低くなる(図 28 (c) )。
[0277] また、データ信号線 SL1に印加される表示信号が負の場合、引き込み現象の直後 に電位が立ち下がる補助信号を入力する部分画素については、液晶容量 132の印 加電圧の絶対値が表示信号電圧より高くなる(図 28 (b) )。
一方、このときに立ち上がる補助信号を入力する部分画素については、液晶電圧の 絶対値が表示信号電圧より低くなる(図 28 (d) )。
[0278] したがって、図 28 (a)〜図 28 (d)に示した例では、部分画素 SP1の液晶電圧 (絶対 値)が、部分画素 SP2よりも高くなる(部分画素 SP1の表示輝度が、部分画素 SP2よ り高くなる)。
また、部分画素 SP1 ' SP2の液晶電圧の差 (Vcs)については、補助容量配線 CS1 ' CS2に印加する補助信号の振幅値に応じて制御できる。これにより、 2つの部分画素 SP1 ' SP2の表示輝度 (第 1輝度,第 2輝度)に、所望の差をつけることが可能となる。
[0279] 表 1に、輝度の高くなる部分画素(明画素)および輝度の低くなる部分画素(暗画素 )に印加される、液晶電圧の極性と、引き込み現象の直後での補助信号の状態をまと めて示す。なお、この表では、液晶電圧の極性を「 + ,―」でしめしている。また、引き 込み現象の直後で補助信号が立ち上がる場合を「†」で、立ち下がる場合を「 I」で 示している。
[0280] [表 1] 明画素 十, † 一, 1 暗画素 +, i ―, †
[0281] なお、画素分割駆動では、サブ画素 SPIXの輝度は、 2つの部分画素 SP1 ' SP2の 輝度 (液晶の透過率に相当)の合計となる。
[0282] 図 29は、画素分割駆動を行わない場合における、 2つの視野角(0° (正面)およ び 60° )での、液晶パネルの透過率と印加電圧との関係を示すグラフである。
このグラフに示すように、正面での透過率が NAの場合 (NAとなるように液晶電圧を 制御した場合)、視野角 60° での透過率は LAとなる。
ここで、画素分割駆動において正面の透過率を NAとするためには、 2つの部分画素 SP1. SP2に、 Vcsだけ異なる電圧を印加し、それぞれの透過率を ΝΒ1 ·ΝΒ2とすれ ばよい(ΝΑ= (ΝΒ1 +ΝΒ2) Ζ2)。
[0283] また、部分画素 SP1. SP2における 0° での透過率が NB1 ·ΝΒ2である場合、 60 ° での透過率は LB1 'LB2となる。そして、 LB1は、ほぼ 0である。したがって、 1サブ 画素 SPIXでの透過率は M (LB2Z2)となり、 LAより低くなる。
このように、画素分割駆動を行うことで、視野角特性を向上させることが可能となる。
[0284] また、例えば、画素分割駆動を用いれば、 CS信号の振幅を大きくすることにより、 一方の部分画素の輝度を喑階調表示(白表示)とし、他方の部分画素の輝度を調整 することで、低輝度 (高輝度)の画像を表示することも可能である。これにより、サブフ レーム表示と同様に、一方の部分画素における表示輝度と実際輝度とのズレを最小 にできるため、視野角特性をさらに向上させられる。
[0285] また、上記の構成において、一方の部分画素を喑階調表示(白表示)としない構成 としてもよい。すなわち、双方の部分画素に輝度差が生じれば、原理的には、視野角 を改善できる。従って、 CS振幅を小さくできるので、パネル駆動の設計が容易となる また、全ての表示信号に関して、部分画素 SP1 ' SP2の輝度に差をつける必要はな い。例えば、白表示'喑階調表示の際には、これらの輝度を等しくすることが好ましい
。従って、少なくとも 1つの表示信号 (表示信号電圧)に対して、部分画素 SP1を第 1 輝度とする一方、部分画素 SP2を、第 1輝度とは異なる第 2輝度とするように設計され ていればよい。
[0286] また、上記の画素分割駆動については、フレームごとに、データ信号線 SL1に印加 する表示信号の極性を変更することが好ましい。すなわち、あるフレームで部分画素 SP1. SP2を図 28 (a)、図 28 (c)のように駆動した場合、次のフレームでは、図 28 (b ) ,図 28 (d)のように駆動することが好ましい。
[0287] これにより、サブ画素 SPIXの 2つの液晶容量 132に力かる、 2フレームでのトータル 電圧を OVとできる。したがって、印加電圧の直流成分をキャンセルすることが可能と なる。
[0288] なお、上記した画素分割駆動では、 1つのサブ画素 SPIXを 2つに分割するとして いる。し力しながら、これに限らず、 1つのサブ画素 SPIXを 3つ上の部分画素に分割 してちよい。
[0289] また、上記したような画素分割駆動については、通常ホールド表示と組み合わせて もよいし、サブフレーム表示とを組み合わせてもよい。さらに、図 28 (a)、図 28 (b)お よび図 25 (a)、図 25 (b)を用いて示した、極性反転駆動を組み合わせてもよい。 以下に、画素分割駆動,サブフレーム表示および極性反転駆動の組み合わせにつ いて説明する。
[0290] 図 30 (a)は、図 25 (a)と同様の、 1フレームごとに液晶電圧の極性を反転させなが らサブフレーム表示を行う場合における、液晶電圧(1画素分)の変化を示すグラフで ある。
[0291] このような極性反転駆動によるサブフレーム表示と画素分割駆動と組み合わせる場 合、各部分画素の液晶電圧は、図 30 (b)、図 30 (c)に示すように変遷する。
すなわち、図 30 (b)は、画素分割駆動において輝度の高くなる部分画素(明画素)の 液晶電圧を、また、図 30 (c)は、同じく輝度の低くなる部分画素(暗画素)の液晶電 圧を示すグラフである。
なお、波線は画素分割駆動を行わない場合の液晶電圧を示す一方、実線は、画素 分割駆動を行う場合の液晶電圧を示して!/ヽる。
また、図 31 (a)、図 31 (b)は、図 30 (b)、図 30 (c)に対応する、明画素および暗画素 の輝度を示すグラフである。
[0292] なお、これらの図に示した† , 丄は、引き込み現象の直後での補助信号の状態(引 き込み現象の直後で立ち上がるか、立ち下がるか)を示す記号である。
これらの図に示すように、この場合には、各部分画素の液晶電圧極性を、 1フレーム ごとに反転させる。これは、サブフレーム間で異なる液晶電圧を、適切にキャンセル する(2フレームでのトータルの液晶電圧を OVとする)ためである。
また、補助信号の状態(引き込み現象の直後での位相; Τ , I )については、極性の 反転と同 Cf立相で反転させる。
[0293] このように駆動すると、図 30 (b)、図 30 (c)および図 31 (a)、図 31 (b)に示すように 、両サブフレームでの液晶電圧 (絶対値)および輝度は、明画素では高くなる一方、 暗画素では低くなる。
また、前サブフレームの明画素での液晶電圧の増加量は、暗画素での減少量と一致 する。同様に、後サブフレームの明画素での液晶電圧の増加量は、暗画素での減少 量と等しくなる。
[0294] したがって、 1サブ画素 SPIXに印加される液晶電圧に極性の偏りが生じることを防 止できるので、 2フレームでのトータルの液晶電圧を 0Vとできる(なお、前サブフレー ムと後サブフレームとでは、画素分割駆動による液晶電圧の増加量 (減少量)は異な る。これは、液晶の透過率に応じて容量が変化してしまうために起こる)。
[0295] ここで、上記では、各部分画素の液晶電圧極性を、 1フレームごとに反転させるとし ている。しかしながら、これに限らず、液晶電圧の極性については、フレーム周期で 反転させればよい。
したがって、図 25 (b)に示したように、 1フレーム内の 2つのサブフレーム間で液晶電 圧を逆極性とし、さらに、後サブフレームと、 1つ後のフレームの前サブフレームとを 同極性とするようにしてもよ ヽ。
[0296] 図 32 (a)、図 32 (b)は、このように極性反転を行う場合における、明画素および暗 画素の輝度を示すグラフである。 この場合も、補助信号の状態(†, I )については、極性の反転と同位相で反転させ ることで、 2フレームでのトータルの液晶電圧を OVとできる。
[0297] 図 33は、本構成例に係る画像表示装置 1によって上記のようにサブフレーム表示, 極性反転駆動および画素分割駆動を組み合わせて表示を行った結果 (破線および 実線)と、通常ホールド表示を行った結果 (一点鎖線および実線;図 13に示したもの と同様)と合わせて示すグラフである。
このグラフに示すように、視野角を 60° とする場合、サブフレーム表示と画素分割駆 動とを組み合わせることで、実際輝度を予定輝度に非常に近づけることが可能となる 。従って、サブフレーム表示と画素分割駆動との相乗効果によって、視野角特性を極 めて良好な状態とできることがわかる。
[0298] なお、上記では、補助信号の状態(引き込み現象の直後での位相 ; I )につ ヽ ては、極性の反転と同位相で反転させるとしている。これに対し、極性反転を無視し て、サブフレームごとに補助信号の状態を変えてしまうと、液晶電圧を適切にキャン セルできなくなる。
[0299] すなわち、補助信号の状態に応じた液晶電圧の変動量は、もとの液晶電圧の大き さ(絶対値)によって変わる (液晶電圧が大きい場合、変動量も大きくなる)。そして、 上記したように、前サブフレームと後サブフレームとでは、画素分割駆動による液晶 電圧の増加量 (減少量)は異なる(図 30 (b)、図 30 (c)の例では、後サブフレームの 変動量が前サブフレームより多くなる)。
[0300] したがって、図 30 (a)に示したように液晶電圧を印加する場合、サブフレームごとに 補助信号の状態 (位相)を反転させると、図 34 (a)に示すように、明画素では、後サブ フレームの液晶電圧が大きく減少する。一方、前サブフレームの液晶電圧は少しだ け増加する。
また、図 34 (b)に示すように、暗画素では、後サブフレームの液晶電圧が大きく増大 する一方、前サブフレームの液晶電圧は少しだけ減少する。
したがって、 2フレーム全体でのトータルの液晶電圧を OVとにできず(明画素では負 、暗画素では正になる)、その直流成分をキャンセルできない。このため、焼き付きや フリツ力などを充分に防止できな 、こととなる。 [0301] また、上記では、前サブフレーム期間と後サブフレーム期間との好ましい比(フレー ムの分割比)として、 3:1〜7:1を挙げているが、これに限らず、フレームの分割比を 、 1:1あるいは 2:1に設定してもよい。
[0302] 例えば、フレームの分割比を 1: 1とする場合、図 9に示したように、通常ホールド表 示に比して、実際輝度を予定輝度に近づけることが可能となる。また、図 20に示した ように、明度に関しても、通常ホールド表示に比して、実際明度を予定明度に近くで きる。
したがって、この場合でも、通常ホールド表示に比して、視野角特性を改善できること は明らかである。
[0303] また、液晶パネルでは、液晶電圧 (液晶に印加される電圧;電極間電圧)を表示信 号に応じた値とするまでに、液晶の応答速度に応じた時間がかかる。したがって、い ずれかのサブフレーム期間が短すぎると、この期間内に、液晶の電圧を表示信号に 応じた値にまで上げられな 、可能性がある。
[0304] したがって、前サブフレームと後サブフレーム期間との比を、 1:1あるいは 2:1に設 定することで、一方のサブフレーム期間を短くしすぎることを防止できる。したがって、 応答速度の遅い液晶を用いても、適切な表示を行える。
[0305] また、フレームの分割比(前サブフレームと後サブフレームとの比)については、 n: 1
(nは 7以上の自然)に設定してもよ!/、。
また、この分割比を、 n:l(nは 1以上の実数 (より好ましくは 1より大きい実数))として もよい。例えば、この分割比を 1.5:1に設定することで、 1:1とする場合に比して視 野角特性を向上させられる。また、 2:1とする場合に比べて、応答速度の遅い液晶材 料を使用することが容易となる。
[0306] また、フレームの分割比を n: 1 (nは 1以上の実数)とする場合でも、「最大輝度の (n
+ 1)分の 1 (TmaxZ (n+l))jまでの低輝度 (低明度)の画像を表示する際には、 前サブフレームを喑階調とし、後サブフレームのみを用いて表示を行うことが好まし い。
また、「TmaxZ(n+l)」以上の高輝度 (高明度)の画像を表示するときには、後サブ フレームを白表示とし、前サブフレームの輝度だけを調整して表示を行うことが好まし い。
これにより、常に 1つのサブフレームを、実際輝度と予定輝度との差のない状態として おける。したがって、本構成例に係る画像表示装置 1の視野角特性を良好にできる。
[0307] ここで、フレームの分割比を n: 1にする場合、前フレームを nとしても後フレーム nと しても実質的に同じ効果が狙える。すなわち n: lと l : nは視野角改善効果に関しては 同一である。
また、 nは 1以上の実数とした場合でも、上記した(10)〜(12)式を用いた輝度階調 の制御については有効である。
[0308] また、本構成例では、画像表示装置 1のサブフレーム表示を、フレームを 2つのサ ブフレームに分割して行う表示であるとしている。しかしながら、これに限らず、画像 表示装置 1を、フレームを 3つ以上のサブフレームに分割したサブフレーム表示を行 うように設計してもよい。
[0309] フレームを s個に分割する場合のサブフレーム表示では、輝度の非常に低い場合 には、 s—l個のサブフレームを喑階調表示とする一方、 1つのサブフレームの輝度( 輝度階調)だけを調整して表示を行う。そして、このサブフレームだけでは表現できな いくらい輝度の高くなつた場合に、このサブフレームを白表示とする。そして、 s— 2個 のサブフレームを喑階調表示とする一方、残った 1つのサブフレームの輝度を調整し て表示を行う。
[0310] すなわち、フレームを s個に分割する場合でも、 2個に分割するときと同様に、輝度 を調整する(変化させる)サブフレームを常に 1つとし、他のサブフレームを白表示あ るいは喑階調表示としておくことが好ましい。これにより、 s—l個のサブフレームを、 実際輝度と予定輝度とのズレのない状態とできる。したがって、画像表示装置 1の視 野角特性を良好にできる。
[0311] 図 35は、本構成例に係る画像表示装置 1によって、均等な 3つのサブフレームにフ レームを分割して表示を行った結果 (破線および実線)と、通常ホールド表示を行つ た結果 (一点鎖線および実線;図 8に示したものと同様)と合わせて示すグラフである このグラフに示すように、サブフレームを 3つに増やした場合、実際輝度を予定輝度 に非常に近づけることが可能となる。したがって、本構成例に係る画像表示装置 1の 視野角特性をより良好な状態とできることがわ力る。
[0312] なお、各サブフレームのうち、輝度を調整するサブフレームの位置は、当該フレー ム期間における当該サブ画素の輝度の時間的な重心位置が当該フレーム期間の時 間的な中心位置に近くなるように設定されている方が望ましい。
[0313] 例えば、サブフレームの数が 3個の構成では、 2個のサブフレームを喑階調表示に する場合には、真ん中のサブフレームの輝度を調整して表示を行う。そして、このサ ブフレームだけでは表現できないくらい輝度の高くなつた場合には、このサブフレー ム(真ん中のサブフレーム)を白表示とし、最初または最後のサブフレームの輝度を 調整して表示を行う。さらに、当該サブフレームと真ん中のサブフレーム(白表示)と だけでは表現できないくらい輝度が高くなると、残余のサブフレームの輝度を調整し て表示を行う。
[0314] 当該構成では、 1フレーム期間における当該サブ画素の輝度の時間的な重心位置
1S 当該 1フレーム期間の時間的な中心位置に近くなるように設定される。したがって
、以下の不具合、すなわち、時間的な重心位置が変動することに起因して、動く物体 の前端や後端において、静止時には見えない異常な明暗が見えてしまい、これが動 画品質を低下させるという不具合の発生を防止でき、動画表示時の品質を向上でき る。
[0315] また、フレームを s個に分割する場合でも、上記した極性反転駆動を行うことが好ま しい。図 36は、フレームを 3つに分割し、フレームごとに電圧極性を反転した場合に おける、液晶電圧の遷移を示すグラフである。
この図に示すように、この場合でも、 2フレームでのトータルの液晶電圧を OVとできる
[0316] また、図 37は、同様にフレームを 3つに分害 ijし、サブフレームごとに電圧極性を反 転した場合における、液晶電圧の遷移を示すグラフである。
このように、フレームを奇数個に分割する場合には、サブフレームごとに電圧極性を 反転させても、 2フレームでのトータルの液晶電圧を OVとできる。
したがって、フレームを s個(s ; 2以上の整数)に分割した場合には、隣接するフレー ム間の S番目(S ; l〜s)のサブフレームどうし力 異なる極性の液晶電圧を印加され ている状態とすることが好ましいといえる。これにより、 2フレームでのトータルの液晶 電圧を OVとできる。
[0317] また、フレームを s個(s ; 2以上の整数)に分割した場合には、 2フレーム (あるいはよ り多くのフレーム)でのトータルの液晶電圧を OVとするように、液晶電圧の極性を反 転させることが好ま ヽと 、える。
[0318] また、上記では、フレームを s個に分割する場合、輝度を調整するサブフレームを常 に 1つとし、他のサブフレームを白表示 (最大輝度)あるいは喑階調表示とするとして いる。
[0319] し力しながら、これに限らず、輝度を調整するサブフレームを 2つ以上としてもよい。
この場合でも少なくとも 1つのサブフレームを白表示 (最大輝度)あるいは喑階調表示 とすることで、視野角特性を向上させられる。
[0320] また、輝度を調整しな!、サブフレームの輝度を、最大輝度とする代わりに「最大また は第 2所定値より大きい値」としてもよい。また、最小輝度とする代わりに、「最小また は第 1所定値より小さ 、値」としてもよ 、。
この場合でも、輝度を調整しないサブフレームにおける実際明度と予定明度とのズレ
(明度ズレ)を充分に小さくできる。したがって、本構成例に係る画像表示装置 1の視 野角特性を向上させられる。
[0321] ここで、図 38は、輝度を調整しないサブフレームにおける、パネル 11に出力される 信号階調 (%;表示信号の輝度階調)と、各信号階調に応じた実際輝度階調 (%)と の関係 (視野角階調特性 (実測) )を示すグラフである。
[0322] なお、実際輝度階調とは、「各信号階調に応じてパネル 11の液晶パネル力 出力 された輝度 (実際輝度)を、上記した(1)式を用いて輝度階調に変換したもの」である
[0323] このグラフに示すように、上記した 2つの階調は、液晶パネルの正面 (視野角度 0度 )においては等しくなる。一方、視野角度を 60度としたときには、白浮きのため、実際 輝度階調が中間調で信号階調より明るくなる。また、この白浮きは、視野角度によら ず、輝度階調が 20%〜30%の間となるときに最大値をとる。 [0324] ここで、このような白浮きについては、上記のグラフに破線で示した「最大値の 10% 」を越えていない場合には、本構成例に係る画像表示装置 1の表示品位を充分に保 ち得る(上記した明度ズレを充分に小さくできる)ことがわ力 ている。また、白浮きが「 最大値の 10%」を越えないような信号階調の範囲は、信号階調の最大値の 80〜: LO 0%、および、 0〜0. 02%である。また、この範囲は、視野角度が変化しても不変で ある。
[0325] したがって、上記した第 2所定値としては、最大輝度の 80%に設定することが好ま しぐまた、第 1所定値としては、最大輝度の 0. 02%に設定することが好ましいといえ る。
[0326] また、輝度を調整しないサブフレームを設けなくてもよい。すなわち、 s個のサブフレ ームで表示を行う場合、各サブフレームの表示状態に差をつけなくてもよい。このよう な構成であっても、上記したような、フレーム周期で液晶電圧の極性を反転する極性 反転駆動を行うことが好ま U、。
なお、 s個のサブフレームで表示を行う場合、各サブフレームの表示状態に少しでも 差をつけるだけで、液晶パネルの視野角特性を向上させることは可能である。
[0327] 〔第 2の実施形態〕
ところで、上記では、フレーム分割および γ処理を行うサブフレーム処理部 32の前 段に、階調遷移強調処理を行う変調処理部 31を配した構成について説明した。これ に対して、本実施形態では、サブフレーム処理部の後段に変調処理部を配置する構 成について説明する。
[0328] すなわち、図 39に示すように、本実施形態に係る信号処理回路 21aでは、図 1に示 す変調処理部 31およびサブフレーム処理部 32と略同様の動作を行う変調処理部 3 laおよびサブフレーム処理部 32aが設けられている。ただし、本実施形態に係るサ ブフレーム処理部 32aは、変調処理部 31aの前段に設けられており、補正後の各映 像データ Do(i,j,k)に代えて、補正前の各映像データ D(i,j,k)に対して、フレーム分割 および γ補正処理を行い、当該映像データ D(i,j,k)に対応する、各サブフレーム SF Rl(k) - SFRl(k)の映像データ Sl(i,j,k) - S2(i,j,k)を出力している。
[0329] また、配置変更に伴なつて、変調処理部 31aは、補正前の各映像データ D(i,j,k)に 代えて、サブフレームへの分割後の映像データ S l(i,j,k) - S 2(i,j,k)のそれぞれに対 して、階調遷移を強調するように補正すると共に、補正後の映像データを、映像信号 DAT2を構成する映像データ S lo(i,j,k) · 82ο(ϋ,1ί)として出力している。なお、映像 データ S lo(i,j,k) · 82ο(ί,],1ί)も、上記映像データ So l(i,j,k) · 8ο2(ϋ,1ί)と同様に、時 分割で伝送されている。
[0330] さらに、変調処理部 31aによる補正処理および予測処理も、サブフレーム単位で行 われており、変調処理部 31aは、図示しないフレームメモリから読み出された前サブ フレーム SFR(x-l)の予測値 E(i,j,x-1)と、現サブフレーム SFR(x)におけるサブ画 素 SPIXGJ)への映像データ So(i,j,x)とに基づいて、当該現サブフレーム SFR(x)の 映像データ So(i,j,X)を補正する。また、変調処理部 3 laは、上記予測値 E(i,j,x-1)と 、映像データ So(i,j,x)とに基づいて、上記サブ画素 SPIXGJ)が次のサブフレーム S FR(x+l)の開始時に到達していると予測される輝度に対応する階調を示す値を予測 し、当該予測値 E(i,j,x)を、上記フレームメモリに格納している。
[0331] 以下では、書き込み速度をより低下させた構成例について説明する前に、図 40を 参照しながら、図 16と同様の回路で変調処理部 31aを構成した場合について説明 する。
[0332] すなわち、本構成例に係る変調処理部 3 lbには、上記各映像データ S lo(i,j,k)を 生成するための部材 51a〜53aと、上記各映像データ S 2o(i,j,k)を生成するための 部材 51b〜53bとが設けられている。これらの部材 51a〜53a並びに 51b〜53bは、 それぞれ、図 16に示す部材 51〜53と略同様に構成されている。
[0333] ただし、補正処理および予測処理がサブフレーム単位で行われている。したがって 、上記各部材 51a〜53bは、図 16の倍の速度で動作できるように構成されていると共 に、それぞれに設けられた LUT (図 40では図示せず)に格納される値も図 16の場合 とは異なっている。
[0334] さらに、補正処理部 52aおよび予測処理部 53aには、現フレーム FR(k)の各映像 データ D(i,j,k)に代えて、サブフレーム処理部 32aからの各映像データ S l(i,j,k)が入 力されており、補正処理部 52aは、補正後の映像データを、映像データ S lo(i,j,k)と して出力している。同様に、補正処理部 52bおよび予測処理部 53bには、現フレーム FR(k)の各映像データ D(i,j,k)に代えて、サブフレーム処理部 32aからの各映像デ ータ S2(i,j,k)が入力されており、補正処理部 52aは、補正後の映像データを、映像 データ S2o(i,j,k)として出力している。一方、予測処理部 53aは、上記補正処理部 52 aの参照するフレームメモリ 51aではなぐ補正処理部 52bの参照するフレームメモリ 5 lbに、予測値 El(i,j,k)を出力し、予測処理部 53bは、フレームメモリ 51aに予測値 E 2(i,j,k)を出力している。
[0335] ここで、上記予測値 El(i,j,k)は、上記補正処理部 52aの出力する映像データ Slo( i,j,k)によってサブ画素 SPIX(iJ)が駆動された場合に、当該サブ画素 SPIXGJ)が次 のサブフレーム SFR2(k)の開始時に到達していると予測される輝度に対応する階調 を示す値であって、予測処理部 53aは、現フレーム FR(k)における上記映像データ Sl(i,j,k)と、フレームメモリ 5 laから読み出した、前フレーム FR(k- 1)の予測値 E2(i,j, k-1)とに基づいて、上記予測値 El(i,j,k)を予測している。同様に、上記予測値 E2G, j,k)は、上記補正処理部 52bの出力する映像データ S2o(i,j,k)によってサブ画素 SP IX(i,j)が駆動された場合に、当該サブ画素 SPIX(U)が次のサブフレーム SFRl(k+l )の開始時に到達していると予測される輝度に対応する階調を示す値であって、予 測処理部 53bは、現フレーム FR(k)における上記映像データ S2(i,j,k)と、フレームメ モリ 51bから読み出した上記予測値 El(i,j,k)とに基づいて、上記予測値 E2(i,j,k)を 予測している。
[0336] 上記構成では、図 41に示すように、あるフレーム FR(k)の映像データ D(l,l,k)〜D (n,m,k)が信号処理回路 21aに入力されると、これらの映像データ D(l,l,k)〜D(n,m, k)は、サブフレーム処理部 32aのフレームメモリ 41 (図では、 FMと表記)に格納され ていく(t21〜t22の期間)。また、サブフレーム処理部 32aの制御回路 44は、 1フレ ームあたりに 2回ずつ、これらの映像データ D(l,l,k)〜D(n,m,k)をフレームメモリ 41 力も読み出す (t31〜t33の期間)。また、制御回路 44は、 1回目の読み出し時には、 LUT42を参照して、サブフレーム SFRl(k)用の映像データ Sl(l,l,k)〜Sl(n,m,k) を出力すると共に (t31〜t32の期間)、 2回目の読み出し時には、 LTU43を参照し て、サブフレーム SFR2(k)用の映像データ S2(l,l,k)〜S2(n,m,k)を出力する(t32 〜t33の期間)。なお、信号処理回路 21aが最初の映像データ D(l,l,k)を受け取る 時点 t21と、当該映像データ D(l,l,k)に対応するサブフレーム SFRl(k)用の映像デ ータ Sl(l,l,k)を出力する時点 t31との時間差は、ノ ッファメモリを設けることによって 増減できるが、図 41では、一例として、時間差が半フレーム分(1サブフレーム分)の 場合を図示している。
[0337] 一方、 t31〜t32の期間において、変調処理部 31bのフレームメモリ 51aには、前フ レーム FR(k- 1)のサブフレーム SFR2(k- 1)用の映像データ S2(l,l,k- 1)〜S2(n,m, k-1)を参照して更新された予測値 E2(l,l,k-1)〜E2(n,m,k-l)が蓄積されており、 補正処理部 52aは、当該予測値 E2(l,l,k-1)〜E2(n,m,k-l)を参照して、上記制御 回路 44の出力する映像データ Sl(l,l,k)〜Sl(n,m,k)をそれぞれ補正し、補正後の 映像データ Slo(l,l,k)〜Slo(n,m,k)として出力する。同様に、予測処理部 53aは、 上記映像データ S 1(1,1, k)〜Sl(n,m,k)と、予測値 E2(l,l,k- 1)〜E2(n,m,k- 1)とに 基づいて、予測値 El(l,l,k)〜予測値 El(n,m,k)を生成し、フレームメモリ 51bに格 納する。
[0338] 同様に、 t32〜t33の期間において、補正処理部 52bは、当該予測値 El(l,l,k)〜 El(n,m,k)を参照して、上記制御回路 44の出力する映像データ S2(l,l,k)〜S2(n,m ,k)をそれぞれ補正し、補正後の映像データ S2o(l,l,k)〜S2o(n,m,k)として出力す る。また、予測処理部 53bは、上記映像データ S2(l,l,k)〜S2(n,m,k)と、予測値 El( 1,1, k-1)〜El(n,m,k- 1)とに基づいて、予測値 E2(l,l,k)〜予測値 E2(n,m,k)を生 成し、フレームメモリ 5 laに格納する。
[0339] なお、厳密には、上記各回路自体の遅延時間、あるいは、タイミング調整用に各回 路間にバッファが設けられていれば、そのバッファ回路の遅延時間などによって、前 段の回路がデータを出力するタイミングは、後段の回路がデータを出力するタイミン グと異なっているが、図 41あるいは後述の図 43では、これらの遅延時間の図示を省 略している。
[0340] このように、本実施形態に係る信号処理回路 21aは、補正処理 (階調遷移の強調 処理)および予測処理をサブフレーム単位で行っている。したがって、第 1の実施形 態の構成、すなわち、これらの処理をフレーム単位で行う構成と比較して、より正確な 予測処理が可能であり、より的確に階調遷移を強調できる。この結果、不適切な階調 遷移強調による画質低下をさらに抑制しながら、動画表示時の画質を向上できる。
[0341] カ卩えて、当該構成でも、上記暗表示用に定められた範囲内の値に設定される映像 データ S1を、黒以外の暗階調に設定されているので、映像データ Dが黒を示してい る場合にサブフレーム SFR1 · SFR2用の映像データ S 1 · S 2を全て黒を示す値に設 定する構成と比較して、中間階調への応答速度を大幅に向上でき、動画表示時の画 質を大幅に向上できる。
[0342] ところで、本実施形態に係る信号処理回路 21aを構成する各部材の殆どは、高速 化のために、 1つの集積回路チップ内に集積されていることが多い。ただし、フレーム メモリ 41並びに 51a' 51bは、必要な記憶容量力 ¾ JTよりも大幅に大きぐ集積回路 内に集積することが難しいため、多くの場合、当該集積回路チップに外付けされる。
[0343] この場合、上記フレームメモリ 41並びに 51a' 51bとの間のデータ伝送経路は、外 部の信号線になるので、集積回路チップ内を伝送する場合と比較して伝送速度の向 上が難しい。また、伝送速度を向上させようとして、信号線の数を増やそうとすると、 集積回路チップのピン数が増力!]して、集積回路チップの寸法が大幅に増大してしま う。さらに、図 40に示す変調処理部 31bは、倍速で駆動しているので、フレームメモリ 41並びに 51a' 51bとして、高速に動作可能で、しかも大容量のメモリを必要とする。
[0344] 伝送速度について、さらに詳細に説明すると、フレームメモリ 41には、図 41に示す ように、 1フレーム毎に 1回ずつ、各映像データ D(l,l,k)〜D(n,m,k)が書き込まれて いる。また、当該フレームメモリ 41は、 1フレーム毎に 2回ずつ、各映像データ D(l,l,k )〜D(n,m,k)を出力している。したがって、一般的なメモリのように、読み出し時と書 き込み時とで、データを伝送する信号線が共有されているとすると、映像信号 DAT において各映像データ D…をそれぞれ伝送する際の周波数 fの 3倍以上の周波数で のアクセスが、フレームメモリ 41に要求される。なお、図 41では、読み書き時に要求 されるアクセス速度を、例えば、 r: 2倍のように、上記周波数 fでの読み出しに必要な アクセス速度または上記周波数 fでの書き込みに必要なアクセス速度書き込みに必 要なアクセス速度を 1倍としたときの比率を、読み出し Z書き込みを示す英文字 (rZ w)の後に図示している。
[0345] 一方、フレームメモリ 51aおよび 51bには、 1フレーム毎に 1回ずつ、各予測値 E2(l, l,k)〜予測値 E2(n,m,k)、並びに、各予測値 El(l,l,k)〜予測値 El(n,m,k)が読み 書きされているが、図 40の構成では、図 43に示すように、フレームメモリ 51aから読 み出す期間(例えば、 t31〜t32)と、フレームメモリ 51bから読み出す期間(例えば、 t32〜t33)とが別に設けられており、それぞれの期間がフレームの半分の期間であ る。同様に、フレームメモリ 51aおよび 51bに書き込む期間もフレームの半分の期間 である。したがって、両フレームメモリ 5 la ' 51bには、上記周波数 fの 4倍のアクセス 速度が必要になる。
[0346] この結果、図 40に示す変調処理部 31bを用いた場合は、各フレームメモリ 41 ' 51a •51bに要求されるアクセス速度が速くなり、信号処理回路 21aの製造費が高騰した り、信号線の数を増やそうとして、上記集積回路チップの寸法やピン数が増大したり する虞れがある。
[0347] これに対して、本実施形態の他の構成例に係る信号処理回路 21cでは、図 42に示 すように、 1フレーム毎にそれぞれ 2回ずつ、映像データ S 1(1,1, k)〜映像データ Sl( n,m,k)、映像データ S2(l,l,k)〜映像データ S2(n,m,k)並びに各予測値 El(l,l,k) 〜予測値 El(n,m,k)を生成すると共に、 1フレーム毎に 2回ずつ実施可能な、予測値 E2(l,l,k)〜予測値 E2(n,m,k)の生成および出力処理の半数を間引き、 1フレーム 毎に 1回ずつ予測値 E2(l,l,k)〜予測値 E2(n,m,k)をフレームメモリに格納すること によって、フレームメモリへの書き込み回数を削減して 、る。
[0348] 具体的には、本構成例に係る信号処理回路 21cでは、サブフレーム処理部 32cが 、 1フレーム毎に、 2回ずつ、映像データ S 1(1,1, k)〜Sl(n,m,k)と、映像データ S2(l, l,k)〜S2(n,m,k)とを出力できる。
[0349] より詳細には、図 40に示すサブフレーム処理部 32の制御回路 44は、映像データ S 1(1, l,k)〜Sl(n,m,k)を出力している間、映像データ S2(l,l,k)〜S2(n,m,k)の出力 を休止していた力 本構成例に係るサブフレーム処理部 32cの制御回路 44cは、図 4 3に示すように、映像データ S 1(1,1, k)〜Sl(n,m,k)を出力している間(t41〜t42の 期間)にも、映像データ S 2(1,1, k)〜S2(n,m,k)を出力し、映像データ S2(l,l,k)〜S 2(n,m,k)を出力している間(t42〜t43の期間)にも、映像データ S 1(1,1, k)〜Sl(n, m,k)を出力している。 [0350] なお、映像データ S l(i,j,k)および S2(i,j,k)の双方は、互いに同じ値、すなわち、映 像データ D(i,j,k)に基づいて生成される。したがって、制御回路 44cが、フレームメモ リ 41から 1つの映像データ D(i,j,k)を読み出す度に、当該映像データ D(i,j,k)を用い て上記両映像データ Sl(i,j,k)および S2(i,j,k)を生成することによって、フレームメモ リ 41と制御回路 44cとの間のデータ伝送量増加を防止できる。また、サブフレーム処 理部 32cと変調処理部 31cとの間のデータ伝送量は、図 40の構成よりも増加してい る力 このデータ伝送は、集積回路チップ内での伝送なので、何ら支障なく伝送でき る。
[0351] 一方、図 42に示すように、本構成例に係る変調処理部 31cは、予測値 E1および E 2をそれぞれ 1サブフレーム分ずつ記憶するフレームメモリ 5 la ' 51bの代わりに、予 測値 E2のみを 2サブフレーム分記憶すると共に、 1フレーム毎に 2回ずつ、予測値 E 2(l,l,k-l)〜予測値 E2(n,m,k-1)を出力可能なフレームメモリ(予測値記憶手段) 54 を備えている。また、本構成例に係る変調処理部 31cには、図 40の各部材 52a ' 52b • 53a ' 53bと略同様の咅材 52c ' 52d' 53c ' 53d力設けられている。なお、本構成 ί列 では、当該部材 52c · 52d' 53c ' 53dが特許請求の範囲に記載の補正手段に対応 する。
[0352] ただし、図 40の構成とは異なり、上記補正処理部 52cおよび予測処理部 53cへの 予測値 E2(l,l,k-1)〜予測値 E2(n,m,k-1)は、フレームメモリ 41aではなぐ上記フレ ームメモリ 54から与えられている。また、上記補正処理部 52dおよび予測処理部 53d への予測値 El(l,l,k)〜予測値 El(n,m,k)は、フレームメモリ 41bではなぐ上記予 測処理部 53cから与えられて 、る。
[0353] さらに、上述したように、当該予測値 E2(l, l,k-1)〜予測値 E2(n,m,k-1)並びに映 像データ Sl(l, l,k)〜Sl(n,m,k)は、 1フレーム毎に 2回ずつ出力されており、予測処 理部 53cは、図 42に示すように、これらに基づいて、 1フレーム毎に 2回ずつ、予測 値 El(l,l,k)〜El(n,m,k)を生成し出力している。なお、 1フレーム毎に出力する予 測値 E1の数が異なっている力 予測処理自体、および、予測処理部 53cの回路構 成は、図 40に示す予測処理部 53aと同一である。
[0354] また、予測値 E2(l,l,k-1)〜予測値 E2(n,m,k-1)並びに映像データ S 1(1, 1, k)〜S l(n,m,k)も、 1フレーム毎にそれぞれ 2回ずつ出力されている力 補正処理部 52cは 、これらのうちの 1回目の方に基づいて、補正後の映像データ Slo(l,l,k)〜Slo(n,m ,k)を生成し出力している(t41〜t42の期間)。さらに、補正処理部 52dは、 1フレー ム毎にそれぞれ 2回ずつ出力される、予測値 El(l,l,k)〜予測値 El(n,m,k)並びに 映像データ S2(l,l,k)〜S2(n,m,k)のうち、 2回目の方に基づいて、補正後の映像デ ータ S2o(l,l,k)〜S2o(n,m,k)を生成し出力している(t42〜t43の期間)。
[0355] ここで、映像データ S2(l,l,k)〜S2(n,m,k)並びに予測値 El(l,l,k)〜El(n,m,k) 力 Siフレーム毎に 2回ずつ出力されているので、予測値 E2(l,l,k)〜E2(n,m,k)も、 1 フレーム毎に 2回ずつ生成可能である。ただし、本構成例に係る予測処理部 53dは、 これらの予測値 E(l,l,k)〜E2(n,m,k)と、予測値 E(l,l,k)〜E2(n,m,k)との生成およ び出力処理のうち、半数を間引いて、 1フレーム毎に 1回ずつ、予測値 E(l,l,k)〜E 2(n,m,k)を生成し出力してる。なお、各フレームにおいて、予測値 E2を生成および 出力するタイミングが異なっている力 予測処理自体は、図 40に示す予測処理部 53 bと同一である。回路構成も当該予測処理部 53bと略同様であるが、間引くタイミング を決定し、生成処理および出力処理を間引く回路が付加されている。
[0356] 以下では、間引き方の一例として、両サブフレーム SFR1 ' SFR2の時間比が 1 : 1 の場合に本構成例に係る予測処理部 53dが 1つ飛ばしで上記生成および出力処理 を間引く構成について説明する。具体的には、予測処理部 53dは、 1回目の映像デ ータ S2(i,j,k)および予測値 El(i,j,k)が出力されている期間(t41〜t42の期間)、こ れらのうち、奇数番目および偶数番目のうちの予め定められた方の映像データ S2(i,j ,k)および予測値 El(i,j,k)に基づいて、予測値 E2(i,j,k)を生成する。一方、 2回目が 出力されている期間(t42〜t43の期間)には、予測処理部 53dは、残余の方に基づ いて、予測値 E(i,j,k)を生成する。これにより、予測処理部 53dは、 1フレーム毎に 1 回ずつ、全ての予測値 E2(l,l,k)〜E2(n,m,k)を出力できると共に、各予測値 E2(i,j, k)を出力する時間間隔は、図 40の構成の倍の長さになる。
[0357] 当該構成では、 1フレーム毎に 1個ずつの予測値 E2(l,l,k)〜E2(n,m,k)を、 1フレ ーム期間内に書き込めばよい。したがって、フレームメモリ 54に必要なアクセス速度 を、図 40の構成の 3/4倍にまで遅くすることができる。例えば、 XGA規格に沿った 映像信号の場合、各映像データ D(i,j,k)のドットクロックは、約 65〔MHzVので、図 40のフレームメモリ 51aおよび 51bは、その 4倍、すなわち、約 260〔MHz〕でのァク セスに応える必要がある。これに対して、本構成例に係るフレームメモリ 54は、フレー ムメモリ 41と同様、上記ドットクロックの 3倍、すなわち、約 195〔MHz〕でのアクセスに 応えるだけで充分である。
[0358] なお、上記では、両サブフレーム SFR1 ' SFR2の時間比が 1: 1の場合に本構成例 に係る予測処理部 53dが 1つ飛ばしで上記生成および出力処理を間引く構成につ いて説明したが、時間比が他の比率に設定されている場合でも、出力処理の半数が 間引かれていれば、間引かない場合と比較して、フレームメモリ 54に要求されるァク セス速度を遅くすることができる。
[0359] ところで、上記フレームメモリ 54の全記憶領域(2サブフレーム分)を上記アクセス速 度でアクセス可能に構成してもよいが、本構成例に係るフレームメモリ 54では、フレ ームメモリ 54を、 2つのフレームメモリ 54a.54b〖こより構成して、それらの一方に必要 なアクセス速度をさらに遅くしている。
[0360] 具体的には、フレームメモリ 54は、 1サブフレーム分の予測値 E2を記憶可能な、 2 つのフレームメモリ 54a ' 54bから構成されている。フレームメモリ 54aは、上記予測処 理部 53dによって各予測値 E2(i,j,k)が書き込まれるフレームメモリであって、前フレ ーム FR(k-l)において書き込まれた 1サブフレーム分の予測値 E2(l,l,k-1)〜E2(n, m,k-l) 1S 現フレーム FR(k)の予測値 E2(l,l,k)〜E2(n,m,k)によって上書きされる 前に、当該予測値 E2(l,l,k- 1)〜E2(n,m,k- 1)をフレームメモリ 54bに転送できる。 なお、フレームメモリ 54aは、 1フレーム期間内に、 1サブフレーム分の予測値 E2を 1 回ずつ読み書きできればよいので、上記周波数 fと同一の周波数でのアクセスに応 えることができればよい。
[0361] 一方、フレームメモリ 54bは、当該予測値 E2(l,l,k- 1)〜E2(n,m,k- 1)を受け取り、 1フレーム毎に 2回ずつ、当該予測値 E2(l,l,k-1)〜E2(n,m,k-l)を出力できる。こ の場合は、 1フレーム期間内に、 1サブフレーム分の予測値 E2を 1回ずつ書き込み、 2回ずつ読み出す必要があるので、上記周波数 fの 3倍の周波数でのアクセスに応答 する必要がある。 [0362] 当該構成では、予測処理部 53dによりフレームメモリ 54aに格納された予測値 E2を 、補正処理部 52cおよび予測処理部 53cに対して予測値 E2を出力するためのフレ ームメモリ 54bに転送することによって、フレームメモリ 54の記憶領域のうち、 1フレー ム毎に 2回ずつ読み出される領域を、 1サブフレーム分の記憶容量を持ったフレーム メモリ 54bに限定している。なお、図 43では、バッファに必要な記憶容量を削減する ために、フレームメモリ 54aからフレームメモリ 54bへの転送を、 1サブフレーム分だけ ズラして!/、る場合を例示して 、る。
[0363] この結果、フレームメモリ 54の全記憶領域を、上記周波数 fの 3倍の周波数でのァク セスに応答可能に構成する場合よりも、当該周波数でのアクセスに応答可能な記憶 領域の大きさを削減でき、フレームメモリ 54を、より安価かつ容易に提供できる。
[0364] なお、上記では、予測処理部 53dによる予測値 E2の生成処理および出力処理を 間引いた場合を例にして説明したが、出力処理のみを間引いてもよい。また、上記で は、 1フレーム期間毎に、 2回ずつ予測値 E2(l,l,k)〜E2(n,m,k)を生成できるように 、予測値 El(l,l,k)〜El(n,m,k)および映像データ S2(l,l,k)〜S2(n,m,k)を生成す ると共に、それらに基づく予測値 E2の生成および出力処理を間引くことによって、各 予測値 E2(l,l,k)〜E2(n,m,k)の生成タイミングを、 1フレーム期間全般に渡って分 散させている場合について説明した力 これに限るものではなぐ以下の構成でもよ い。
[0365] すなわち、変調処理部には、フレーム期間毎に生成される上記複数個の映像デー タ Sl(i,j,k) - S2(i,j,k)をそれぞれ補正し、上記フレーム期間を当該複数個に分割し たサブフレーム SFRl(k) - SFR2(k)毎に、各サブフレームに対応する補正後の映像 データ Slo(i,j,k) - S2o(i,j,k)を出力する補正処理部 52c ' 52dと、最後のサブフレー ム SFR2(k)に対応する補正後の映像データ S2o(i,j,k)に応じてサブ画素 SPIX(i,j) が駆動された場合に、当該補正後の映像データ S2o(i,j,k)に応じてサブ画素 SPIXG ,j)が駆動される期間の最後の時点で、当該サブ画素 SPIXGJ)が到達する輝度を示 す予測値 E2(i,j,k)を記憶するフレームメモリ 54とが設けられている。また、上記補正 処理部 52cは、補正対象とする映像データ Sl(i,j,k)または S2(i,j,k)が最初のサブフ レーム SFRl(k)に対応している場合(映像データ Sl(i,j,k)の場合)、上記フレームメ モリ 54から読み出した予測値 E2(i,j,k-1)の示す輝度から、映像データ Sl(i,j,k)の示 す輝度への階調遷移を強調するように、映像データ Sl(i,j,k)を補正する。さら〖こ、上 記補正処理部 52dおよび変調処理部に設けられた予測処理部 53cは、補正対象と する映像データ Sl(i,j,k)または S2(i,j,k)が 2番目以降のサブフレームに対応してい る場合(映像データ S2(i,j,k)の場合)、映像データ S2(i,j,k)と、それよりも前のサブフ レーム SFRl(k)に対応する映像データ Sl(i,j,k)と、上記フレームメモリ 54に記憶さ れた予測値 E2(i,j,k-1)とに基づいて、サブフレーム SFR2(k)の最初の時点におけ るサブ画素 SPIX(iJ)の輝度を予測し、予測された輝度 (El(i,j,k)の示す輝度)から 映像データ S2(i,j,k)の示す輝度への階調遷移を強調するように、映像データ S2(i,j, k)を補正する。さらに、変調処理部に設けられた予測処理部 53cおよび 53dは、補 正対象とする映像データ Sl(i,j,k)または S2(i,j,k) 1S 最後のサブフレーム SFR2(k) に対応している場合(映像データ S2(i,j,k)の場合)、映像データ S2(i,j,k)と、それより も前のサブフレーム SFRl(k)に対応する映像データ Sl(i,j,k)と、上記フレームメモリ 54に記憶された予測値 E2(i,j,k-1)とに基づ 、て、補正対象となる映像データ S2(i,j, k)に対応するサブフレーム SFR2(k)の最後の時点におけるサブ画素 SPIX(iJ)の輝 度を予測し、予測結果を示す予測値 E2(i,j,k)を、上記フレームメモリ 54に格納する。
[0366] 当該構成でも、図 40に示す構成とは異なって、映像データ Sl(i,j,k) - S2(i,j,k)に 対応するサブフレーム SFRl(k) - SFR2(k)の 1つ前のサブフレーム SFR2(k- 1) - SF Rl(k)の最後にサブ画素 SPIX(iJ)が到達している輝度を予測した結果 El(i,j,k) ·Ε 2(i,j,k)を、その都度、フレームメモリに格納することなぐ映像データ Sl(i,j,k) - S2(i,j ,k)を補正できる。
[0367] この結果、図 40に示すように、各サブフレームの予測結果を、その都度、フレームメ モリ(51a' 51b)に格納する構成と比較して、 1フレーム周期あたりにフレームメモリに 格納される予測値のデータ量を削減できる。なお、データ量を削減できるので、例え ば、ノ ッファなどを設けてフレームメモリに要求されるアクセス速度を低減する場合で も、より少ない規模の回路を設けるだけで、アクセス速度を低減できる。
[0368] ただし、図 42に示すように、予測処理部 53dが予測値 E(l,l,k)〜E2(n,m,k)と予測 値 E(l,l,k)〜E2(n,m,k)との生成および出力処理のうち、半数を間引いて、 1フレー ム毎に 1回ずつ、予測値 E(l,l,k)〜E2(n,m,k)を生成し出力すれば、新たなバッファ を設けることなぐフレームメモリに要求されるアクセス速度を低減できる。
[0369] ところで、上記では、変調処理部 31 · 31aが予測型の階調遷移強調処理を行う場 合を例にして説明した力 これに限るものではない。例えば、変調処理部 31は、図 4 4に示す変調処理部 31eのように構成されていてもよい。当該変調処理部 31eは、図 16に示す変調処理部 31と略同様の構成である力 予測処理部 53が省略されており 、フレームメモリ 51は、予測値 E(i,j,k)に代えて、現フレーム FR(k)の映像データ D(i,j ,k)を、次のフレーム FR(k+l)まで記憶すると共に、予測値 E(i,j,k-1)の代わりに、前 フレーム FR(k-l)にて記憶された映像データ D(i,j,k-1)を、補正処理部 52へ与えて いる。また、補正処理部 52は、前フレーム FR(k-l)の映像データ D(i,j,k-1)と、現フ レーム FR(k)の映像データ D(i,j,k)とに基づき、両者の階調遷移を強調するように、 映像データ D(i,j,k)を補正している。この場合、変調処理部 31eは、現フレーム FR(k) の映像データ D(i,j,k)による駆動によって、サブ画素 SPIXGJ)力 次のフレーム FR( k+1)の開始時点で、映像データ D(i,j,k)の示す輝度に到達していると見なしている。
[0370] 同様に、変調処理部 3 laは、図 45に示す変調処理部 3 Ifのように構成されていて もよい。当該変調処理部 31fは、図 40に示す変調処理部 31bと略同様の構成である 力 予測処理部 53a' 53bが省略されており、フレームメモリ 51a' 51bは、予測値 El( i,j,k) '予測値 E2(i,j,k)に代えて、現サブフレーム FR(k)の映像データ Sl(i,j,k) '映 像データ S2(i,j,k)を、それぞれ次のフレーム FR(k+l)まで記憶すると共に、予測値 E l(i,j,k-l) '予測値 E2(i,j,k-1)の代わりに、前フレーム FR(k-l)にて記憶された映像 データ Sl(i,j,k-1)あるいは S2(i,j,k-1)を、補正処理部 52aあるいは 53bへ与えてい る。また、補正処理部 52aは、前フレーム FR(k-l)の映像データ S2(i,j,k-1)と、現フ レーム FR(k)の映像データ Sl(i,j,k)とに基づき、両者の階調遷移を強調するように、 映像データ Sl(i,j,k)を補正している。同様に、補正処理部 52bは、現フレーム FR(k) の映像データ Sl(i,j,k-1)と、現フレーム FR(k)の映像データ S2(i,j,k)とに基づき、両 者の階調遷移を強調するように、映像データ S2(i,j,k)を補正している。なお、この場 合、変調処理部 3 Ifは、現フレーム FR(k)の映像データ Sl(i,j,k)による駆動によって 、サブ画素 SPIX(U) 1S 次のサブフレーム SFR2(k)の開始時点で、映像データ Sl( i,j,k)の示す輝度に到達していると見なしている。また、現フレーム FR(k)の映像デー タ S2(i,j,k)による駆動によって、サブ画素 SPIX(i,j)力 次のサブフレーム SFRl(k+l )の開始時点で、映像データ S2(i,j,k)の示す輝度に到達していると見なしている。
[0371] 当該構成でも、映像データ D、あるいは、映像データ S1および S2に対して、各サブ 画素 SPIXにおける階調遷移を強調する補正を行うことができる。したがって、階調遷 移強調によって、各サブ画素 SPIXの応答速度を向上できると共に、インパルス型発 光に近づけることによって、画素アレイ 2に動画表示する際の画質を向上できる。
[0372] カ卩えて、当該構成でも、上記暗表示用に定められた範囲内の値に設定される映像 データ S1を、黒以外の暗階調に設定されているので、映像データ Dが黒を示してい る場合にサブフレーム SFR1 · SFR2用の映像データ S 1 · S 2を全て黒を示す値に設 定する構成と比較して、中間階調への応答速度を大幅に向上でき、動画表示時の画 質を大幅に向上できる。
[0373] さらに、当該構成でも、サブフレーム処理部(32· 32a' 32c)の各 LUT42.43が、
Ύ変換された、各サブフレームの映像データを示すパラメータを記憶することによつ て、図 15に示す時分割駆動の LUT542' 543と、 γ変換用の LUT533aとを共用し ている。この結果、図 15の構成と比較して、 γ変換用の LUT533aの分だけ回路規 模を削減でき、信号処理回路に必要な回路規模を大幅に削減できる。
[0374] また、上記では、これまでに入力された、あるサブ画素 SPIXGJ)への映像データ D を参照して、階調遷移を強調するように、映像データ Dを補正する場合について説明 したが、これに限るものではない。変調処理部(31〜31f)を省略してもよい。この場 合でも、サブフレーム処理部(32' 32&' 32じ)の各1^17142'43が、 γ変換された各 サブフレームの映像データを示すパラメータを記憶していれば、信号処理回路 21に 必要な回路規模を大幅に削減できる。
[0375] ただし、上記構成では、フレームをサブフレームに分割して駆動するため、より高速 な応答が求められるが、例えば、液晶素子のように、応答速度の遅いサブ画素 SPIX を用いた場合には、この要求に応えられなくなる虞れがある。したがって、上記のよう に変調処理部を設けて階調遷移を強調し、サブ画素 SPIXの応答速度を向上させる と、特に効果が大きい。 [0376] なお、上記では、画素アレイ 2において、 1画素が各色毎のサブ画素 SPIX力 構 成されており、カラー表示可能な場合について説明した力 これに限るものではなぐ 単色表示の画素アレイを用いる場合でも、同様の効果が得られる。
[0377] また、上記では、例えば、温度変化など、画素 (サブ画素)の輝度の時間変化を変 化させる要因となる、画像表示装置 1の周囲の状況に拘わらず、制御回路 (44'44c )力 互いに同じ LUT(42'43)を参照する場合について説明した力 これに限るもの ではない。予め上記周囲の状況に応じた複数の LUTを設けると共に、上記画像表 示装置 1の周囲の状況を検出するセンサを設け、上記制御回路が、各サブフレーム 用の映像データを生成する際に参照する LUTを、当該センサの検出結果に応じて 切り換えてもよい。この構成では、各サブフレーム用の映像データを、上記周囲の状 況に応じて変化させることができるので、周囲の状況が変化しても、表示品質を保つ ことができる。
[0378] 例えば、液晶パネルは、環境温度 (パネル 11のおかれて 、る環境の温度 (気温)) により、その応答特性や階調輝度特性の変化する。このため、入力される映像信号 D ATが同じであったとしても、各サブフレーム用の映像データとして最適な値も、環境 温度に応じて変化する。
[0379] したがって、パネル 11が液晶パネルの場合、互いに異なる温度範囲での使用に適 した LUT(42'43)を設けると共に、上記環境温度を測定するセンサを設け、上記制 御回路 (44 '44c)力 当該センサによる環境温度の計測結果に応じて、上記参照す る LUTを切り換えれば、当該制御回路を含む信号処理部(21〜21f)は、映像信号 DATが同じであっても、より適切な映像信号 DAT2を生成し、液晶パネルに伝達で きる。したがって、想定される全ての温度範囲(例えば 0°C〜65°Cの範囲)で、より忠 実な輝度での画像表示が可能となる。
[0380] また、上記では、 LUT42.43〖こ、 γ変換された、各サブフレームの映像データを示 す値を記憶することによって、図 7に示す時分割駆動の LUT142' 143と、 γ変換用 の LUT133aとを共用する構成について説明した力 これに限るものではない。例え ば、 LUT42-43に代えて、図 7と同様の LUT142' 143および γ補正回路 133を設 けてもよい。また、 γ補正が不要な場合は、 γ補正回路 133を削除してもよい。 [0381] なお、上記では、主として、サブフレーム処理部(32 ' 32c)が、 1フレームを 2つのサ ブフレームに分割する場合を例にして説明した力 これに限るものではない。サブフ レーム処理部は、周期的に入力される画素への映像データ (入力映像データ)が予 め定められた閾値よりも低い輝度を示している場合、各サブフレーム用の映像データ (Slo ' S2o ; Sl ' S2)のうち、少なくとも 1つを、暗表示用に予め定められた範囲の輝 度を示す値に設定し、残余の各サブフレーム用の映像データのうちの少なくとも 1つ を増減して、 1フレーム期間における画素の輝度の時間積分値を制御すると共に、上 記入力映像データが予め定められた閾値よりも高い輝度を示している場合、上記各 サブフレーム用の映像データのうち、少なくとも 1つを、明表示用に予め定められた範 囲の輝度を示す値に設定し、残余のサブフレーム用の映像データのうちの少なくとも 1つを増減して、 1フレーム期間における当該画素の輝度の時間積分値を制御しても よい。
[0382] 当該構成でも、殆どの場合、各フレーム期間毎に少なくとも 1回、他の期間よりも画 素の輝度が低い期間を設けることができるので、動画表示時の画質を向上させること ができる。また、明表示の場合、入力映像データの示す輝度が高くなるに従って、明 表示期間以外の期間における画素の輝度が高くなつていくので、各フレーム周期毎 に少なくとも 1回、暗表示を行う構成と比較して、各フレーム周期全体における画素の 輝度の時間積分値を上昇させることができ、より明るい表示が可能になる。
[0383] さらに、上記構成では、暗表示の場合、上記出力映像データの 1つが暗表示用の 輝度を示す値に設定されるので、当該暗表示期間には、画素の輝度が許容範囲内 に維持される視野角を拡大できる。同様に、明表示の場合は、上記出力映像データ の 1つが暗表示用の輝度を示す値に設定されるので、当該暗表示期間には、画素の 輝度が許容範囲内に維持される視野角を拡大できる。この結果、時分割駆動しない 構成よりも、白浮きなどの不具合の発生を防止でき、視野角を拡大できる。
[0384] さらに、上記各実施形態に記載されているように、上記画素が複数である場合には 、上記構成に加えて、上記生成手段は、各画素への入力映像データに応じて、それ ぞれの画素への出力映像データを、当該入力周期毎に、上記予め定められた複数 の個数ずつ生成すると共に、上記補正手段は、各画素への各出力映像データを、そ れぞれ補正し、各画素に対応する予測結果をそれぞれ上記予測結果記憶部に格納 すると共に、上記生成手段は、上記いずれの画素についても、上記入力周期毎に生 成される、当該画素への複数個の出力映像データを、それぞれ上記予め定められた 複数の個数ずつ生成し、上記補正部は、上記いずれの画素についても、上記入力 周期毎に、当該画素に関する予測結果を、それぞれ上記予め定められた複数の回 数読み出すと共に、これらの予測結果と上記各出力映像データとから、いずれの画 素についても、上記入力周期ごとに複数回実施可能な、上記最後の時点における当 該画素の輝度の予測処理および予測結果の格納処理のうち、少なくとも 1回の予測 結果の書き込み処理を間弓 I 、てもよ 、。
[0385] 当該構成において、上記入力周期毎に生成される複数個の出力映像データは、そ れぞれ上記予め定められた複数の個数ずつ生成され、上記予測結果は、上記入力 周期毎に、それぞれ上記予め定められた複数の回数読み出される。これにより、これ らの予測結果と上記各出力映像データとに基づいて、複数回、上記最後の時点にお ける画素の輝度の予測し、予測結果の格納できるようになる。なお、上記画素は、複 数であり、上記読み出し処理、および、生成処理は、各画素に対応して行われる。
[0386] ただし、上記構成では、上記入力周期毎に複数回実施可能な予測処理および予 測結果の格納処理のうち、少なくとも 1回の予測結果の書き込み処理が間弓 Iかれる。
[0387] この結果、間引かない構成と比較して、予測結果記憶部に、各画素の予測結果を 格納する時間間隔を長くすることができ、予測結果記憶部に要求される応答速度を 遅くすることができる。
[0388] なお、少なくとも 1回の書き込み処理を間引けば効果が得られるが、補正手段によ る予測結果の書き込み処理の回数を、各画素について、 1入力周期あたり 1回になる まで間引くと、より効果が大きい。
[0389] さらに、書き込み処理を間引くか否かに拘わらず、上記暗表示期間または明表示 期間を設ける構成の場合は、上記各実施形態に記載されているように、上記構成に カロえて、上記残余のサブフレーム用の映像データのうちの特定の 1つ以外の映像デ ータを、暗表示用に予め定められた範囲の輝度を示す値、または、明表示用に予め 定められた範囲の輝度を示す値に設定し、当該特定の映像データを増減して、 1フ レーム期間における当該画素の輝度の時間積分値を制御する方が望ましい。
[0390] 当該構成では、各サブフレーム用の映像データのうち、上記特定の映像データ以 外の映像データは、暗表示用に予め定められた範囲の輝度を示す値、または、明表 示用に予め定められた範囲の輝度を示す値に設定されているので、複数のサブフレ ーム用の映像データを、両範囲のいずれにも含まれない値に設定する場合と比較し て、さらに、白浮きなどの不具合の発生を防止でき、視野角を拡大できる。
[0391] また、上記各サブフレーム用の映像データは、 1フレーム期間における当該画素の 輝度の時間的な重心位置が、当該 1フレーム期間の時間的な中心位置に近くなるよ うに設定されて 、る方が望ま 、。
[0392] 具体的には、サブフレーム処理部(32、 32c)は、入力映像データの示す輝度が一 番低い領域では、 1フレーム期間を構成する各サブフレームのうち、当該フレーム期 間の時間的な中心位置に最も近 、サブフレームに対応する映像データを、上記特 定の映像データとし、当該映像データの値を増減して、 1フレーム期間における当該 画素の輝度の時間積分値を制御する。
[0393] また、入力映像データの示す輝度が徐々に高くなり、当該特定の映像データが上 記明表示用に予め定められた範囲に入ると、当該サブフレームの映像データを当該 範囲内の値に設定し、残余のサブフレームのうち、フレーム期間の時間的な中心位 置に最も近いサブフレームに対応する映像データを、上記特定の映像データとし、 当該映像データの値を増減して、 1フレーム期間における当該画素の輝度の時間積 分値を制御する。なお、特定の映像データに対応するサブフレームの選択は、特定 の映像データが上記明表示用に予め定められた範囲に入る度に繰り返される。
[0394] 当該構成では、入力映像データの示す輝度に拘わらず、 1フレーム期間における 当該画素の輝度の時間的な重心位置が、当該 1フレーム期間の時間的な中心位置 に近くなるように設定される。したがって、以下の不具合、すなわち、時間的な重心位 置が変動することに起因して、動く物体の前端や後端において、静止時には見えな い異常な明暗が見えてしまい、これが動画品質を低下させるという不具合の発生を 防止でき、動画表示時の品質を向上できる。
[0395] さらに、回路規模よりも視野角の拡大が特に望まれる場合には、上記信号処理部( 21〜21f)は、上記各サブフレーム期間の時間比を、以下に示すように、すなわち、 上記特定の映像データに対応するサブフレームの切り換えタイミング力 画素の表現 可能な輝度の範囲を等分するタイミングよりも、画素の表現可能な明度の範囲を等分 するタイミングに近くなるように設定する方が望ま 、。
[0396] 当該構成では、いずれのサブフレームの輝度で 1フレーム期間中の輝度を主として 制御するかを、適切な明度で切り換えることができるので、輝度の範囲を等分するタ イミングで切り換える場合よりも、人に認識される白浮きの量をさらに削減することがで き、視野角を、さらに拡大できる。
[0397] なお、上記では、信号処理部が、データ信号線駆動回路 3へ入力される映像信号 DAT2の値(映像データ Sol · So2 ; Slo ; S2o)を補正して、各サブフレーム期間のう ち、少なくとも 1つの輝度を黒以外の暗階調に設定する構成について説明したが、こ れに限るものではない。
[0398] 各サブフレーム期間のうち、少なくとも 1つの輝度を黒以外の暗階調に設定できれ ば、映像信号 DAT2の値を補正する代わりに、例えば、データ信号線駆動回路 3自 体力 映像信号 DAT2の値を参照しながら、サブ画素 SPIXGJ)へ印加する電圧を 制御することによって、各サブフレーム期間のうち、少なくとも 1つの輝度を黒以外の 暗階調に設定してもよい。
[0399] 具体的には、垂直配向モードの液晶セルをノーマリブラックモードで駆動する液晶 表示装置の駆動する際、上記液晶パネルの画素への入力映像データ (D)が予め定 められた閾値よりも低 ヽ輝度を示して ヽる場合に行われ、当該入力映像データによつ て駆動されるフレーム期間を複数の期間に分割して生成される各サブフレーム期間 のうち、少なくとも 1つのサブフレーム期間には、当該画素の輝度を、暗表示用に予 め定められた範囲の輝度に設定し、残余のサブフレーム期間における画素の輝度を 制御して、上記フレーム期間における当該画素の輝度の時間積分値を制御する低 輝度制御工程と、上記液晶パネルの画素への入力映像データが予め定められた閾 値よりも高い輝度を示している場合に行われ、当該入力映像データによって駆動さ れるフレーム期間を複数の期間に分割して生成される各サブフレーム期間のうち、少 なくとも 1つのサブフレーム期間には、当該画素の輝度を、明表示用に予め定められ た範囲の輝度に設定し、残余のサブフレーム期間における画素の輝度を制御して、 上記フレーム期間における当該画素の輝度の時間積分値を制御する高輝度制御ェ 程とを含み、上記低輝度工程にて、入力映像データが黒を示している場合、各分割 期間のうちの少なくとも 1つでは、上記画素の輝度を、黒以外の輝度に制御してもよ い。
[0400] 当該構成でも、上記各実施形態と同様に、殆どの場合、フレーム期間毎に少なくと も 1回、他のサブフレーム期間よりも画素の輝度が低い期間を設けることができるので 、液晶表示装置が動画を表示する際の画質を向上させることができる。さらに、明表 示の場合、入力映像データの示す輝度が高くなるに従って、明表示用に予め定めら れた範囲の輝度に設定するサブフレーム期間(明表示期間)以外の期間における画 素の輝度が高くなつていくので、より明るい表示が可能な液晶表示装置を実現できる
[0401] さらに、上記構成では、上記各実施形態と同様に、入力映像データが黒を示してい る場合には、サブフレーム期間の少なくとも 1つは、黒以外の輝度に制御される。この 結果、入力映像データが黒を示している場合に全サブフレーム期間(=フレーム期 間)を黒表示に制御する構成と比較して、中間階調への応答速度を大幅に向上でき 、動画表示時の画質を大幅に向上できる。
[0402] これらの結果、より明るく、視野角が広ぐ応答速度が速ぐし力も、動画表示時の画 質が向上された液晶表示装置を実現できる。
[0403] ただし、上記各実施形態のように、信号処理部が、データ信号線駆動回路 3へ入力 される映像信号 DAT2の値(映像データ Sol · So2; Slo; S2o)を補正して、各サブ フレーム期間のうち、少なくとも 1つの輝度を黒以外の暗階調に設定する構成であれ ば、データ信号線駆動回路 3を変更する必要がないので、比較的容易に、上記駆動 方法で駆動される液晶表示装置を実現できる。
[0404] また、上記各実施形態では、液晶セル 111を図 5ないし図 7のように構成して、画素 における液晶分子の配向方向を 4つに分割する場合について説明した力 これに限 るものではない。
[0405] 例えば、図 7に示す突起列 123aを画素電極 121aに形成する代わりに、スリット 12 3bを形成してもよい。また、対向電極 121bにスリット 123bを形成する代わりに、突起 列 123aを形成してもよい。いずれの場合であっても、電圧印加時には、突起列 123a またはスリット 123bの近傍に斜め方向の電界が形成され、当該電界によって、これら の部材(123aまたはスリット 123b)の近傍の液晶分子は、電界に応じて配向する。ま た、これらの部材力 離れた領域の液晶分子の配向方向は、液晶の連続性によって 、上記近傍の領域の配向方向が決まった後に決定される。したがって、図 5〜図 7と 同様に、黒表示状態からの応答速度が遅くなつている。この結果、画素アレイ 2の液 晶セルとして当該構成の液晶セルを使用した場合でも、上記各実施形態と同様の効 果が得られる。
[0406] また、他の構造として、図 47に示す画素電極 121aを用いた液晶セルでは、図 7に 示す突起列 123aおよびスリット 123bが省略されており、画素電極 121aに四角錐状 の突起 124が設けられている。なお、当該突起 124も、上記突起列 123aと同様に、 画素電極 121a上に、感光性榭脂を塗布し、フォトリソグラフィー工程でカ卩ェすること によって形成できる。
[0407] この構成でも、突起 124の近傍では、液晶分子が各斜面に垂直になるように配向 する。力!]えて、電圧印加時において、突起 124の部分の電界は、突起 124の斜面に 平行になる方向に傾く。これらの結果、電圧印加時において、液晶分子の配向角度 の面内成分は、最も近い斜面の法線方向の面内成分(方向 Pl、 P2、 P3または P4) と等しくなる。したがって、画素領域は、傾斜時の配向方向が互いに異なる、 4つのド メイン D1〜D4に分割される。さらに、突起 124から離れた領域の液晶分子の配向方 向は、突起 124近傍の液晶分子の配向方向が決定された後、液晶の連続性によつ て決定される。したがって、図 5〜図 7と同様に、黒表示状態からの応答速度が遅くな つている。この結果、画素アレイ 2の液晶セルとして当該構成の液晶セルを使用した 場合でも、上記各実施形態と同様の効果が得られる。
[0408] なお、例えば、 40インチのような大型の液晶テレビを形成する場合、各画素のサイ ズは、 1mm四方程度と大きくなり、画素電極 121aに 1つずつ突起 124を設けただけ では、配向規制力が弱まり、配向が不安定になる虞れがある。したがって、この場合 のように、配向規制力が不足する場合には、各画素電極 121a上に複数の突起 124 を設ける方が望ましい。
[0409] さらに、例えば、図 47に示すように、対向基板 11 lbの対向電極 121b上に Y字状 のスリットを上下方向(面内で、略方形状の画素電極 121aのいずれかの辺に平行な 方向)に対称に連結してなる配向制御窓(電極が形成されていない領域) 125を設け ても、マルチドメイン配向を実現できる。
[0410] 当該構成では、対向基板 11 lbの表面のうち、配向制御窓 125の直下の領域では 、電圧を印加しても、液晶分子を傾斜させる程の電界がかからず、液晶分子が垂直 に配向する。一方、対向基板 111bの表面のうち、配向制御窓 125の周囲の領域で は、対向基板 11 lbに近づくに従って、配向制御窓 125を避けて広がるような電界が 発生する。ここで、液晶分子は、長軸が電界に垂直な方向に傾き、液晶分子の配向 方向の面内成分は、図中、矢印で示すように、配向制御窓 125の各辺に略垂直にな る。
[0411] また、当該構成でも、配向制御窓 125から離れた領域の液晶分子の配向方向は、 配向制御窓 125近傍の液晶分子の配向方向が決定された後、液晶の連続性によつ て決定される。したがって、図 5〜図 7と同様に、黒表示状態からの応答速度が遅くな つている。この結果、画素アレイ 2の液晶セルとして当該構成の液晶セルを使用した 場合でも、上記各実施形態と同様の効果が得られる。
[0412] また、上記では、配向方向を 4分割する場合について説明した力 図 48および図 4 9に示すように、放射状配向の液晶セル 111を用いても同様の効果が得られる。
[0413] 具体的には、図 48に示す構造では、図 46に示す突起 124に代えて、略半球状の 突起 126が設けられている。この場合も、突起 126の近傍では、液晶分子は、突起 1 26の表面に垂直になるように配向する。力!]えて、電圧印加時において、突起 126の 部分の電界は、突起 126の表面に平行になる方向に傾く。これらの結果、電圧印加 時に液晶分子が傾斜する際、液晶分子は、面内方向で突起 126を中心にした放射 状に傾きやすくなり、液晶セル 111の各液晶分子は、放射状に傾斜配向できる。な お、上記突起 126も、上記突起 124と同様の工程で形成できる。また、上記突起 124 と同様に、配向規制力が不足する場合には、各画素電極 121a上に複数の突起 126 を設ける方が望ましい。 [0414] 当該構成でも、突起 126から離れた領域の液晶分子の配向方向は、突起 126近傍 の液晶分子の配向方向が決定された後、液晶の連続性によって決定され、図 5〜図 7と同様に、黒表示状態からの応答速度が遅くなつている。この結果、画素アレイ 2の 液晶セルとして当該構成の液晶セルを使用した場合でも、上記各実施形態と同様の 効果が得られる。
[0415] また、図 49に示す構造では、図 46に示す突起 124に代えて、画素電極 121aに円 形のスリット 127が形成されている。これにより、電圧を印加した際、画素電極 121aの 表面のうち、スリット 127の直上の領域では、液晶分子を傾斜させる程の電界がかか らない。したがって、この領域では、電圧印加時でも液晶分子は垂直に配向する。一 方、画素電極 121aの表面のうち、スリット 127近傍の領域では、電界は、スリット 127 へ厚み方向で近づくに従って、スリット 127を避けるように傾斜して広がる。ここで、液 晶分子は、長軸が垂直な方向に傾き、液晶の連続性によって、スリット 127から離れ た液晶分子も同様の方向に配向する。したがって、画素電極 121aに電圧を印加した 場合、各液晶分子は、配向方向の面内成分が、図中、矢印で示すように、スリット 12 7を中心に放射状に広がるように配向、すなわち、スリット 127の中心を軸として軸対 称に配向できる。ここで、上記電界の傾斜は、印加電圧によって変化するため、液晶 分子の配向方向の基板法線方向成分 (傾斜角度)は、印加電圧によって制御できる 。なお、印加電圧が増加すると、基板法線方向に対する傾斜角が大きくなり、各液晶 分子は、表示画面に略平行で、し力も、面内では放射状に配向する。また、上記突 起 126と同様に、配向規制力が不足する場合には、各画素電極 121a上に複数のス リット 127を設ける方が望ましい。
[0416] 当該構成でも、スリット 127から離れた領域の液晶分子の配向方向は、スリット 127 近傍の液晶分子の配向方向が決定された後、液晶の連続性によって決定され、図 5 〜図 7と同様に、黒表示状態からの応答速度が遅くなつている。この結果、画素ァレ ィ 2の液晶セルとして当該構成の液晶セルを使用した場合でも、上記各実施形態と 同様の効果が得られる。
[0417] また、画素電極 121aにおいて、電極が形成されていない部分 (スリット)と電極が形 成されている部分とを逆転してもよい。具体的には、図 50に示す画素電極 121aでは 、複数のスリット 128は、それぞれの中心が正方格子を形成するように配置されており 、 1つの単位格子を形成する 4つの格子点上に中心が位置する 4つのスリット 128に よって実質的に囲まれる中実部(「単位中実部」と称する) 129は、略円形の形状を有 している。それぞれのスリット 128は、 4つの 4分の 1円弧状の辺(エッジ)を有し、且つ 、その中心に 4回回転軸を有する略星形に形成されている。なお、上記画素電極 12 laも、導電膜 (例えば ITO膜)力も形成されており、例えば、導電膜を形成後、スリット 128が上記形状になるように導電膜を除去するなどして、上記複数のスリット 128が 形成される。また、上記スリット 128は、 1つの画素電極 121a毎に複数形成されてい る力 上記各中実部 129は、基本的には、連続した単一の導電膜から形成されてい る。
[0418] 当該構成でも、画素電極 121aへ電圧を印加したときに、中実部 129とスリット 128と の境界近傍の領域 (エッジ領域)に、基板表面に対して斜め方向の電界が形成され 、エッジ領域の液晶分子は、電界に応じた傾斜方向に傾斜する。さらに、上記エッジ 領域から離れた領域の液晶分子の配向方向は、スリット 128近傍の液晶分子の配向 方向が決定された後、液晶の連続性によって決定される。したがって、図 5〜図 7と同 様に、黒表示状態からの応答速度が遅くなつている。この結果、画素アレイ 2の液晶 セルとして当該構成の液晶セルを使用した場合でも、上記各実施形態と同様の効果 が得られる。
[0419] なお、上記では、スリット 128の中心が正方格子を形成するように配置されている場 合を例にして説明したが、これに限るものではなぐ長方形の格子状など、他の形状 であってもよい。また、上記スリット 127または中実部 129が略円状の場合を例にして 説明したが、楕円状や方形状など、他の形状であってもよい。
[0420] いずれの場合であっても、電圧無印加時には、液晶分子を垂直方向に配向させる と共に、画素電極へ電圧を印加することによって、電極が形成されている部分と電極 が形成されて ヽな 、部分との境界近傍の領域 (エッジ領域)に斜め方向の電界を形 成し、当該電界によって液晶分子の配向方向を決定する液晶セルであれば、略同様 の効果が得られる。
[0421] ただし、図 50に示すように、スリット 128の中心が正方格子を形成し、中実部 129が 略円形状であれば、画素 PIX(i,j)内の液晶分子の配向方位を均等に分散させること ができるので、より視野角特性の良好な画像表示装置 1を実現できる。
[0422] なお、上記各実施形態では、信号処理回路(21〜21f)を構成する各部材がハード ウェアのみで実現されている場合を例にして説明した力 これに限るものではない。 各部材の全部または一部を、上述した機能を実現するためのプログラムと、そのプロ グラムを実行するハードウェア (コンピュータ)との組み合わせで実現してもよい。一例 として、画像表示装置 1に接続されたコンピュータが、画像表示装置 1を駆動する際 に使用されるデバイスドライバとして、信号処理回路を実現してもよい。また、画像表 示装置 1に内蔵あるいは外付けされる変換基板として、信号処理回路が実現され、フ アームウェアなどのプログラムの書き換えによって、当該信号処理回路を実現する回 路の動作を変更できる場合には、当該ソフトウェアが記録された記録媒体を配布した り、当該ソフトウェアを通信路を介して伝送するなどして、当該ソフトウェアを配布し、 上記ハードウェアに、そのソフトウェアを実行させることによって、当該ハードウェアを 、上記各実施形態の信号処理回路として動作させてもよい。
[0423] これらの場合は、上述した機能を実行可能なハードウェアが用意されていれば、当 該ハードウェアに、上記プログラムを実行させるだけで、上記各実施形態に係る信号 処理回路を実現できる。
[0424] より詳細に説明すると、ソフトウェアを用いて実現する場合、 CPU,あるいは、上述 した機能を実行可能なハードウェアなど力 なる演算手段力 ROMや RAMなどの 記憶装置に格納されたプログラムコードを実行し、図示しない入出力回路などの周辺 回路を制御することによって上記各実施形態に係る信号処理回路を実現できる。
[0425] この場合、処理の一部を行うハードウェアと、当該ハードウェアの制御や残余の処 理を行うプログラムコードを実行する上記演算手段とを組み合わせても実現すること もできる。さらに、上記各部材のうち、ハードウ アとして説明した部材であっても、処 理の一部を行うハードウェアと、当該ハードウェアの制御や残余の処理を行うプロダラ ムコードを実行する上記演算手段とを組み合わせても実現することもできる。なお、上 記演算手段は、単体であってもよいし、装置内部のノ スや種々の通信路を介して接 続された複数の演算手段が共同してプログラムコードを実行してもよい。 [0426] 上記演算手段によって直接実行可能なプログラムコード自体、または、後述する解 凍などの処理によってプログラムコードを生成可能なデータとしてのプログラムは、当 該プログラム(プログラムコードまたは上記データ)を記録媒体に格納し、当該記録媒 体を配付したり、あるいは、上記プログラムを、有線または無線の通信路を介して伝 送するための通信手段で送信したりして配付され、上記演算手段で実行される。
[0427] なお、通信路を介して伝送する場合、通信路を構成する各伝送媒体が、プログラム を示す信号列を伝搬し合うことによって、当該通信路を介して、上記プログラムが伝 送される。また、信号列を伝送する際、送信装置が、プログラムを示す信号列により 搬送波を変調することによって、上記信号列を搬送波に重畳してもよい。この場合、 受信装置が搬送波を復調することによって信号列が復元される。一方、上記信号列 を伝送する際、送信装置が、デジタルデータ列としての信号列をパケット分割して伝 送してもよい。この場合、受信装置は、受信したパケット群を連結して、上記信号列を 復元する。また、送信装置が、信号列を送信する際、時分割 Z周波数分割 Z符号分 割などの方法で、信号列を他の信号列と多重化して伝送してもよい。この場合、受信 装置は、多重化された信号列から、個々の信号列を抽出して復元する。いずれの場 合であっても、通信路を介してプログラムを伝送できれば、同様の効果が得られる。
[0428] ここで、プログラムを配付する際の記録媒体は、取外し可能である方が好ましいが、 プログラムを配付した後の記録媒体は、取外し可能か否かを問わない。また、上記記 録媒体は、プログラムが記憶されていれば、書換え (書き込み)可能か否か、揮発性 か否か、記録方法および形状を問わない。記録媒体の一例として、磁気テープや力 セットテープなどのテープ、あるいは、フロッピー(登録商標)ディスクゃノヽードディスク などの磁気ディスク、または、 CD— ROMや光磁気ディスク(MO)、ミニディスク(MD )やデジタルビデオディスク(DVD)などのディスクが挙げられる。また、記録媒体は、 ICカードや光カードのようなカード、あるいは、マスク ROMや EPROM、 EEPROM またはフラッシュ ROMなどのような半導体メモリであってもよい。あるいは、 CPUなど の演算手段内に形成されたメモリであってもよい。
[0429] なお、上記プログラムコードは、上記各処理の全手順を上記演算手段へ指示する コードであってもよいし、所定の手順で呼び出すことで、上記各処理の一部または全 部を実行可能な基本プログラム (例えば、オペレーティングシステムやライブラリなど) が既に存在して 、れば、当該基本プログラムの呼び出しを上記演算手段へ指示する コードやポインタなどで、上記全手順の一部または全部を置き換えてもよ 、。
[0430] また、上記記録媒体にプログラムを格納する際の形式は、例えば、実メモリに配置 した状態のように、演算手段がアクセスして実行可能な格納形式であってもよ 、し、 実メモリに配置する前で、演算手段が常時アクセス可能なローカルな記録媒体 (例え ば、実メモリゃノヽードディスクなど)にインストールした後の格納形式、あるいは、ネット ワークや搬送可能な記録媒体などから上記ローカルな記録媒体にインストールする 前の格納形式などであってもよい。また、プログラムは、コンノィル後のオブジェクトコ ードに限るものではなぐソースコードや、インタプリトまたはコンパイルの途中で生成 される中間コードとして格納されていてもよい。いずれの場合であっても、圧縮された 情報の解凍、符号化された情報の復号、インタプリト、コンパイル、リンク、または、実 メモリへの配置などの処理、あるいは、各処理の組み合わせによって、上記演算手段 が実行可能な形式に変換可能であれば、プログラムを記録媒体に格納する際の形 式に拘わらず、同様の効果を得ることができる。
産業上の利用の可能性
[0431] 本発明によれば、入力映像データが黒を示している場合、分割期間の少なくとも 1 つは、黒以外の輝度に制御されるので、より明るぐ視野角が広ぐ応答速度が速ぐ し力も、動画表示時の画質の向上した液晶表示装置を提供できる。したがって、液晶 テレビジョン受像機や液晶モニタをはじめとする種々の液晶表示装置の駆動装置と して、広く好適に使用できる。

Claims

請求の範囲
[1] 垂直配向モードの液晶セルをノーマリブラックモードで駆動する液晶表示装置の駆 動方法であって、画素への入力映像データが入力される度に繰り返される生成工程 を含み、当該各生成工程では、当該画素を時分割駆動するために、当該画素への 入力映像データに応じて、当該画素への出力映像データが、当該入力周期毎に予 め定められた複数の個数生成される液晶表示装置の駆動方法において、
上記各生成工程には、上記入力映像データが予め定められた閾値よりも低い輝度 を示している場合に行われ、上記複数個の出力映像データのうち、少なくとも 1つを、 暗表示用に予め定められた範囲の輝度を示す値に設定し、残余の出力映像データ のうちの少なくとも 1つを増減して、当該複数個の出力映像データによって駆動され る期間における当該画素の輝度の時間積分値を制御する低輝度工程と、
上記入力映像データが予め定められた閾値よりも高い輝度を示している場合に行 われ、上記複数個の出力映像データのうち、少なくとも 1つを、明表示用に予め定め られた範囲の輝度を示す値に設定し、残余の出力映像データのうちの少なくとも 1つ を増減して、当該複数個の出力映像データによって駆動される期間における当該画 素の輝度の時間積分値を制御する高輝度工程とが含まれていると共に、
上記低輝度工程にて、入力映像データが黒を示している場合に生成される上記複 数個の出力映像データの少なくとも 1つは、黒以外の輝度を示していることを特徴と する液晶表示装置の駆動方法。
[2] 垂直配向モードの液晶セルをノーマリブラックモードで駆動する液晶表示装置の駆 動方法において、
上記液晶パネルの画素への入力映像データが予め定められた閾値よりも低い輝度 を示している場合に行われ、当該入力映像データによって駆動される単位期間を複 数の期間に分割して生成される各分割期間のうち、少なくとも 1つの分割期間には、 当該画素の輝度を、暗表示用に予め定められた範囲の輝度に設定し、残余の分割 期間における画素の輝度を制御して、上記単位期間における当該画素の輝度の時 間積分値を制御する低輝度制御工程と、
上記液晶パネルの画素への入力映像データが予め定められた閾値よりも高い輝度 を示している場合に行われ、当該入力映像データによって駆動される単位期間を複 数の期間に分割して生成される各分割期間のうち、少なくとも 1つの分割期間には、 当該画素の輝度を、明表示用に予め定められた範囲の輝度に設定し、残余の分割 期間における画素の輝度を制御して、上記単位期間における当該画素の輝度の時 間積分値を制御する高輝度制御工程とを含み、
上記低輝度工程にて、入力映像データが黒を示している場合、各分割期間のうち の少なくとも 1つでは、上記画素の輝度を、黒以外の輝度に制御することを特徴とす る液晶表示装置の駆動方法。
[3] 画素への入力映像データが入力される度に、当該画素を時分割駆動するために、 当該画素への入力映像データに応じて、当該画素への出力映像データを、当該入 力周期毎に予め定められた複数の個数生成する生成手段を有し、垂直配向モード の液晶セルをノーマリブラックモードで駆動する液晶表示装置の駆動装置において、 上記生成手段は、上記入力映像データが予め定められた閾値よりも低い輝度を示 している場合、上記複数個の出力映像データのうち、少なくとも 1つを、暗表示用に 予め定められた範囲の輝度を示す値に設定し、残余の出力映像データのうちの少な くとも 1つを増減して、当該複数個の出力映像データによって駆動される期間におけ る当該画素の輝度の時間積分値を制御する一方、上記入力映像データが予め定め られた閾値よりも高い輝度を示している場合、上記複数個の出力映像データのうち、 少なくとも 1つを、明表示用に予め定められた範囲の輝度を示す値に設定し、残余の 出力映像データのうちの少なくとも 1つを増減して、当該複数個の出力映像データに よって駆動される期間における当該画素の輝度の時間積分値を制御すると共に、 上記生成手段は、入力映像データが黒を示している場合、上記複数個の出力映像 データの少なくとも 1つを、黒以外の輝度を示す値に設定することを特徴とする液晶 表示装置の駆動装置。
[4] 上記生成手段は、入力映像データが黒を示している場合、上記複数個の出力映像 データの少なくとも 2つを、互いに異なる値に設定することを特徴とする請求項 3記載 の表示装置の駆動装置。
[5] 暗表示用に予め定められた範囲の輝度を示す値は、黒以外の値に設定されている ことを特徴とする請求項 3記載の表示装置の駆動装置。
[6] 上記生成手段は、入力映像データが黒を示している場合、上記複数個の出力映像 データのうち、それぞれに応じて画素が駆動される期間が最も後の出力映像データ を、上記黒以外の輝度を示す値に設定することを特徴とする請求項 3記載の表示装 置の駆動装置。
[7] 上記生成手段は、上記残余の出力映像データのうちの特定の 1つである特定出力 映像データを増減して、上記時間積分値を制御すると共に、当該複数個の出力映像 データのうち、上記特定出力映像データ以外を、上記暗表示用に予め定められた範 囲の輝度を示す値、または、明表示用に予め定められた範囲の輝度を示す値に設 定することを特徴とする請求項 3記載の表示装置の駆動装置。
[8] 上記生成手段は、上記複数個の出力映像データのそれぞれに応じて画素が駆動 される期間を分割期間、当該複数個の分割期間からなり、上記複数個の出力映像デ ータに応じて当該画素が駆動される期間を単位期間とするとき、上記入力映像デー タの示す輝度が一番低い領域では、各分割期間のうち、上記単位期間の時間的な 中心位置に最も近 ヽ分割期間に対応する出力映像データを、上記特定出力映像デ ータとして選択すると共に、入力映像データの示す輝度が徐々に高くなり、当該特定 出力映像データが上記明表示用に予め定められた範囲に入ると、当該分割期間の 出力映像データを当該範囲内の値に設定し、残余の分割期間のうち、上記単位期 間の時間的な中心位置に最も近い分割期間に対応する出力映像データを、新たに 上記特定出力映像データとして選択することを特徴とする請求項 7記載の表示装置 の駆動装置。
[9] 上記複数の出力映像データのそれぞれによって画素が駆動される期間同士の比 率は、上記複数の出力映像データのうち、いずれの出力映像データを上記特定出 力映像データとするかを切り換えるタイミングが、当該画素の表現可能な輝度の範囲 を等分するタイミングよりも、画素の表現可能な明度の範囲を等分するタイミングに近 くなるように設定されていることを特徴とする請求項 7記載の表示装置の駆動装置。
[10] 上記生成手段の前または後に配され、上記入力映像データまたは上記各出力映 像データの一方である補正対象データを補正すると共に、補正後の補正対象データ に応じて画素が駆動される期間を補正対象データの駆動期間と呼ぶとき、上記補正 対象データの駆動期間の最後に上記画素が到達している輝度を予測する補正手段 を備え、
当該補正手段は、今回の補正対象データの補正処理を行う際、これまでの予測結 果のうち、上記今回の補正対象データの駆動期間の最初の時点で画素が到達して いる輝度を示す予測結果に応じて、上記補正対象データを補正すると共に、これま での予測結果と、これまでの補正対象データと、上記今回の補正対象データとのうち 、少なくとも今回の補正対象データに基づいて、上記今回の補正対象データの駆動 期間の最後の時点の輝度を予測することを特徴とする請求項 3記載の表示装置の駆 動装置。
[11] 請求項 3〜 10のいずれか一項に記載の液晶表示装置の駆動装置と、
それによつて駆動される液晶表示装置とを備えていることを特徴とする液晶表示装 置。
[12] 垂直配向モードの液晶セルと、ノーマリブラックモードで駆動する駆動装置とを有す る液晶表示装置において、
上記駆動装置は、液晶セルの画素への入力映像データが予め定められた閾値より も低い輝度を示している場合、当該入力映像データによって駆動される単位期間を 複数の期間に分割して生成される各分割期間のうち、少なくとも 1つの分割期間には 、当該画素の輝度を、暗表示用に予め定められた範囲の輝度に設定し、残余の分割 期間における画素の輝度を制御して、上記単位期間における当該画素の輝度の時 間積分値を制御する一方、上記液晶パネルの画素への入力映像データが予め定め られた閾値よりも高い輝度を示している場合、当該入力映像データによって駆動され る単位期間を複数の期間に分割して生成される各分割期間のうち、少なくとも 1つの 分割期間には、当該画素の輝度を、明表示用に予め定められた範囲の輝度に設定 し、残余の分割期間における画素の輝度を制御して、上記単位期間における当該画 素の輝度の時間積分値を制御すると共に、入力映像データが黒を示している場合、 各分割期間のうちの少なくとも 1つでは、上記画素の輝度を、黒以外の輝度に制御 することを特徴とする液晶表示装置。
[13] 上記駆動装置は、上記残余の分割期間のうちの特定の 1つである特定分割期間の 輝度を増減して、上記時間積分値を制御すると共に、当該複数個の分割期間のうち 、上記特定分割期間以外の輝度を、上記暗表示用に予め定められた範囲の輝度を 示す値、または、明表示用に予め定められた範囲の輝度を示す値に設定することを 特徴とする請求項 12記載の液晶表示装置。
[14] 上記駆動装置は、上記入力映像データの示す輝度が一番低い領域では、各分割 期間のうち、上記単位期間の時間的な中心位置に最も近い分割期間を上記特定分 割期間として選択すると共に、入力映像データの示す輝度が徐々に高くなり、当該 分割期間の輝度が上記明表示用に予め定められた範囲に入ると、当該分割期間の 輝度を当該範囲内の値に設定し、残余の分割期間のうち、上記単位期間の時間的 な中心位置に最も近い分割期間を、新たに上記特定分割期間として選択することを 特徴とする請求項 13記載の液晶表示装置。
[15] 上記各分割期間同士の比率は、当該複数の分割期間のうち、いずれの分割期間 を上記特定出力分割期間とするかを切り換えるタイミングが、当該画素の表現可能な 輝度の範囲を等分するタイミングよりも、画素の表現可能な明度の範囲を等分するタ イミングに近くなるように設定されていることを特徴とする請求項 13記載の液晶表示 装置。
[16] テレビジョン放送を受信し、当該テレビジョン放送によって伝送された映像を示す映 像信号を上記液晶表示装置の駆動装置へ入力する受像手段を備え、液晶テレビジ ヨン受像機として動作することを特徴とする請求項 11または 12記載の液晶表示装置
[17] 上記液晶表示装置の駆動装置には、外部力も映像信号が入力されていると共に、 当該映像信号を示す映像を表示する液晶モニタ装置として動作することを特徴と する請求項 11または 12記載の液晶表示装置。
[18] ノーマリブラックモードで駆動される垂直配向モードの液晶セルを有する液晶表示 装置を制御するコンピュータに、請求項 1または 2記載の各工程を実行させるプログ ラム。
[19] 請求項 18記載のプログラムが記録された記録媒体。
PCT/JP2006/304792 2005-03-15 2006-03-10 液晶表示装置の駆動方法、液晶表示装置の駆動装置、そのプログラムおよび記録媒体、並びに、液晶表示装置 WO2006098246A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007508113A JP4444334B2 (ja) 2005-03-15 2006-03-10 液晶表示装置の駆動方法、液晶表示装置の駆動装置、そのプログラムおよび記録媒体、並びに、液晶表示装置
US11/794,153 US8035589B2 (en) 2005-03-15 2006-03-10 Drive method of liquid crystal display device, driver of liquid crystal display device, program of method and storage medium thereof, and liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005073926 2005-03-15
JP2005-073926 2005-03-15

Publications (1)

Publication Number Publication Date
WO2006098246A1 true WO2006098246A1 (ja) 2006-09-21

Family

ID=36991591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/304792 WO2006098246A1 (ja) 2005-03-15 2006-03-10 液晶表示装置の駆動方法、液晶表示装置の駆動装置、そのプログラムおよび記録媒体、並びに、液晶表示装置

Country Status (3)

Country Link
US (1) US8035589B2 (ja)
JP (1) JP4444334B2 (ja)
WO (1) WO2006098246A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120017161A (ko) * 2010-08-18 2012-02-28 엘지디스플레이 주식회사 데이터전압의 극성 제어 방법과 이를 이용한 액정표시장치
US20120105513A1 (en) * 2006-12-28 2012-05-03 Lg Display Co., Ltd. Liquid crystal display device for compensating a pixel data in accordance with areas of a liquid crystal display panel and sub-frames, and driving method thereof
US8253678B2 (en) 2005-03-15 2012-08-28 Sharp Kabushiki Kaisha Drive unit and display device for setting a subframe period
JP2013182108A (ja) * 2012-03-01 2013-09-12 Mitsubishi Electric Corp 画像処理装置及び方法、並びに画像表示装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006098194A1 (ja) 2005-03-15 2006-09-21 Sharp Kabushiki Kaisha 表示装置の駆動方法、表示装置の駆動装置、そのプログラムおよび記録媒体、並びに、それを備える表示装置
WO2006100906A1 (ja) * 2005-03-18 2006-09-28 Sharp Kabushiki Kaisha 画像表示装置、画像表示モニター、およびテレビジョン受像機
US20090122207A1 (en) * 2005-03-18 2009-05-14 Akihiko Inoue Image Display Apparatus, Image Display Monitor, and Television Receiver
US7817876B2 (en) * 2006-04-12 2010-10-19 Etron Technology, Inc. Method of noisy signal analysis and apparatus thereof
US20100231617A1 (en) * 2007-11-08 2010-09-16 Yoichi Ueda Data processing device, liquid crystal display devce, television receiver, and data processing method
US9443489B2 (en) * 2008-04-28 2016-09-13 Au Optronics Corp. Gamma curve compensating method, gamma curve compensating circuit and display system using the same
JP5366051B2 (ja) 2009-04-20 2013-12-11 株式会社ジャパンディスプレイ 情報入力装置、表示装置
JP5371630B2 (ja) * 2009-08-26 2013-12-18 株式会社ジャパンディスプレイ 表示装置
KR101319354B1 (ko) * 2009-12-21 2013-10-16 엘지디스플레이 주식회사 액정 표시 장치 및 그의 영상 처리 방법
JP5923815B2 (ja) * 2011-02-07 2016-05-25 Nltテクノロジー株式会社 映像信号処理回路、該処理回路に用いられる映像信号処理方法、及び画像表示装置
JP2014199313A (ja) * 2013-03-29 2014-10-23 株式会社ジャパンディスプレイ 液晶表示装置及び電子機器
JP6070524B2 (ja) * 2013-12-04 2017-02-01 ソニー株式会社 表示パネル、駆動方法、および電子機器
US9534938B1 (en) * 2015-01-30 2017-01-03 Squadle, Inc. System and method for automatic measurement and recording
KR102370367B1 (ko) * 2017-07-17 2022-03-07 삼성디스플레이 주식회사 표시 장치 및 이의 구동 방법

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0568221A (ja) * 1991-09-05 1993-03-19 Toshiba Corp 液晶表示装置の駆動方法
JPH07294881A (ja) * 1994-04-20 1995-11-10 Kodo Eizo Gijutsu Kenkyusho:Kk 液晶表示装置
JPH11352923A (ja) * 1998-06-05 1999-12-24 Canon Inc 画像表示方法及び装置
JP2002131721A (ja) * 2000-10-26 2002-05-09 Mitsubishi Electric Corp 液晶表示装置
JP2004246312A (ja) * 2002-12-19 2004-09-02 Sharp Corp 液晶表示装置
JP2004302270A (ja) * 2003-03-31 2004-10-28 Fujitsu Display Technologies Corp 画像処理方法及びそれを用いた液晶表示装置
JP2005234552A (ja) * 2004-01-21 2005-09-02 Sharp Corp 表示装置,液晶モニター,液晶テレビジョン受像機および表示方法
WO2006030842A1 (ja) * 2004-09-17 2006-03-23 Sharp Kabushiki Kaisha 表示装置の駆動方法、駆動装置、そのプログラムおよび記録媒体、並びに、表示装置

Family Cites Families (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56117483A (en) 1980-02-20 1981-09-14 Matsushita Electric Ind Co Ltd Discriminating circuit for receiving system
JP2650479B2 (ja) 1989-09-05 1997-09-03 松下電器産業株式会社 液晶制御回路および液晶パネルの駆動方法
JP2761128B2 (ja) 1990-10-31 1998-06-04 富士通株式会社 液晶表示装置
JP3295437B2 (ja) 1991-03-29 2002-06-24 日本放送協会 表示装置
US5488389A (en) 1991-09-25 1996-01-30 Sharp Kabushiki Kaisha Display device
JP3349527B2 (ja) 1991-10-01 2002-11-25 株式会社日立製作所 液晶中間調表示装置
JP3240218B2 (ja) 1992-08-19 2001-12-17 株式会社日立製作所 多色表示可能な情報処理装置
US5390293A (en) 1992-08-19 1995-02-14 Hitachi, Ltd. Information processing equipment capable of multicolor display
JPH0683295A (ja) 1992-09-03 1994-03-25 Hitachi Ltd マルチメディア表示システム
JPH08114784A (ja) 1994-08-25 1996-05-07 Toshiba Corp 液晶表示装置
KR0171938B1 (ko) 1994-08-25 1999-03-20 사토 후미오 액정표시장치
JP3305129B2 (ja) 1994-09-02 2002-07-22 キヤノン株式会社 表示装置
US5818419A (en) 1995-10-31 1998-10-06 Fujitsu Limited Display device and method for driving the same
JPH10161600A (ja) 1996-11-29 1998-06-19 Hitachi Ltd 液晶表示制御装置
JP3703247B2 (ja) 1997-03-31 2005-10-05 三菱電機株式会社 プラズマディスプレイ装置及びプラズマディスプレイ駆動方法
JP3425083B2 (ja) 1997-07-24 2003-07-07 松下電器産業株式会社 画像表示装置及び画像評価装置
DE69841390D1 (de) 1997-07-24 2010-01-28 Panasonic Corp Bildanzeigevorrichtung und Bildbewertungseinrichtung
ES2143883T3 (es) 1998-04-17 2000-05-16 Barco Nv Conversion de una señal de video para accionar una pantalla de cristal liquido.
AUPP340998A0 (en) 1998-05-07 1998-05-28 Canon Kabushiki Kaisha A method of halftoning an image on a video display having limited characteristics
JP2000187469A (ja) 1998-12-24 2000-07-04 Fuji Film Microdevices Co Ltd 画像表示システム
EP1022714A3 (en) 1999-01-18 2001-05-09 Pioneer Corporation Method for driving a plasma display panel
JP3678401B2 (ja) 1999-08-20 2005-08-03 パイオニア株式会社 プラズマディスプレイパネルの駆動方法
JP2001296841A (ja) 1999-04-28 2001-10-26 Matsushita Electric Ind Co Ltd 表示装置
JP3556150B2 (ja) 1999-06-15 2004-08-18 シャープ株式会社 液晶表示方法および液晶表示装置
JP4519251B2 (ja) 1999-10-13 2010-08-04 シャープ株式会社 液晶表示装置およびその制御方法
JP2001215916A (ja) * 2000-02-03 2001-08-10 Kawasaki Steel Corp 画像処理装置及び液晶表示装置
JP3984772B2 (ja) 2000-03-08 2007-10-03 株式会社日立製作所 液晶表示装置及び液晶表示装置用光源
JP4240743B2 (ja) 2000-03-29 2009-03-18 ソニー株式会社 液晶表示装置及びその駆動方法
JP2001350453A (ja) 2000-06-08 2001-12-21 Hitachi Ltd 画像表示方法および画像表示装置
JP3769463B2 (ja) * 2000-07-06 2006-04-26 株式会社日立製作所 表示装置、表示装置を備えた画像再生装置及びその駆動方法
KR100442304B1 (ko) * 2000-07-07 2004-08-04 가부시끼가이샤 도시바 액정 표시 방법
JP4655341B2 (ja) 2000-07-10 2011-03-23 日本電気株式会社 表示装置
JP2002091400A (ja) 2000-09-19 2002-03-27 Matsushita Electric Ind Co Ltd 液晶表示装置
JP2002108294A (ja) 2000-09-28 2002-04-10 Advanced Display Inc 液晶表示装置
EP1227460A3 (en) 2001-01-22 2008-03-26 Toshiba Matsushita Display Technology Co., Ltd. Display device and method for driving the same
JP2002229547A (ja) 2001-02-07 2002-08-16 Hitachi Ltd 画像表示システム及び画像情報伝送方法
JP2002236472A (ja) 2001-02-08 2002-08-23 Semiconductor Energy Lab Co Ltd 液晶表示装置およびその駆動方法
JP3660610B2 (ja) 2001-07-10 2005-06-15 株式会社東芝 画像表示方法
JP2003058120A (ja) 2001-08-09 2003-02-28 Sharp Corp 表示装置およびその駆動方法
JP2003114648A (ja) 2001-09-28 2003-04-18 Internatl Business Mach Corp <Ibm> 液晶表示装置、コンピュータ装置及びそのlcdパネルの駆動制御方法
JP2003177719A (ja) 2001-12-10 2003-06-27 Matsushita Electric Ind Co Ltd 画像表示装置
JP3999081B2 (ja) 2002-01-30 2007-10-31 シャープ株式会社 液晶表示装置
JP2003222790A (ja) 2002-01-31 2003-08-08 Minolta Co Ltd カメラ
JP2003241721A (ja) 2002-02-20 2003-08-29 Fujitsu Display Technologies Corp 液晶パネルの表示制御装置および液晶表示装置
JP2003262846A (ja) 2002-03-07 2003-09-19 Mitsubishi Electric Corp 表示装置
US7427976B2 (en) 2002-05-17 2008-09-23 Sharp Kabushiki Kaisha Liquid crystal display
JP4342200B2 (ja) 2002-06-06 2009-10-14 シャープ株式会社 液晶表示装置
JP4248306B2 (ja) 2002-06-17 2009-04-02 シャープ株式会社 液晶表示装置
KR100908655B1 (ko) 2002-11-27 2009-07-21 엘지디스플레이 주식회사 데이터 공급시간의 변조방법과 이를 이용한액정표시장치의 구동방법 및 장치
JP4079793B2 (ja) 2003-02-07 2008-04-23 三洋電機株式会社 表示方法、表示装置およびそれに利用可能なデータ書込回路
JP2004258139A (ja) 2003-02-24 2004-09-16 Sharp Corp 液晶表示装置
TWI251199B (en) 2003-03-31 2006-03-11 Sharp Kk Image processing method and liquid-crystal display device using the same
JP4457572B2 (ja) 2003-04-03 2010-04-28 セイコーエプソン株式会社 画像表示装置とその階調表現方法、投射型表示装置
JP4719429B2 (ja) * 2003-06-27 2011-07-06 株式会社 日立ディスプレイズ 表示装置の駆動方法及び表示装置
JP4341839B2 (ja) 2003-11-17 2009-10-14 シャープ株式会社 画像表示装置、電子機器、液晶テレビジョン装置、液晶モニタ装置、画像表示方法、表示制御プログラムおよび記録媒体
JP2005173387A (ja) 2003-12-12 2005-06-30 Nec Corp 画像処理方法、表示装置の駆動方法及び表示装置
US20050253793A1 (en) 2004-05-11 2005-11-17 Liang-Chen Chien Driving method for a liquid crystal display
KR20060065956A (ko) 2004-12-11 2006-06-15 삼성전자주식회사 액정 표시 장치 및 표시 장치의 구동 장치
WO2006098328A1 (ja) 2005-03-15 2006-09-21 Sharp Kabushiki Kaisha 表示装置の駆動装置、表示装置
WO2006098194A1 (ja) 2005-03-15 2006-09-21 Sharp Kabushiki Kaisha 表示装置の駆動方法、表示装置の駆動装置、そのプログラムおよび記録媒体、並びに、それを備える表示装置
US20090122207A1 (en) 2005-03-18 2009-05-14 Akihiko Inoue Image Display Apparatus, Image Display Monitor, and Television Receiver
WO2006100906A1 (ja) 2005-03-18 2006-09-28 Sharp Kabushiki Kaisha 画像表示装置、画像表示モニター、およびテレビジョン受像機
JP4497067B2 (ja) 2005-03-23 2010-07-07 セイコーエプソン株式会社 電気光学装置、電気光学装置用駆動回路および電気光学装置用駆動方法
WO2007060783A1 (ja) 2005-11-25 2007-05-31 Sharp Kabushiki Kaisha 画像表示方法、画像表示装置、画像表示モニター、および、テレビジョン受像機

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0568221A (ja) * 1991-09-05 1993-03-19 Toshiba Corp 液晶表示装置の駆動方法
JPH07294881A (ja) * 1994-04-20 1995-11-10 Kodo Eizo Gijutsu Kenkyusho:Kk 液晶表示装置
JPH11352923A (ja) * 1998-06-05 1999-12-24 Canon Inc 画像表示方法及び装置
JP2002131721A (ja) * 2000-10-26 2002-05-09 Mitsubishi Electric Corp 液晶表示装置
JP2004246312A (ja) * 2002-12-19 2004-09-02 Sharp Corp 液晶表示装置
JP2004302270A (ja) * 2003-03-31 2004-10-28 Fujitsu Display Technologies Corp 画像処理方法及びそれを用いた液晶表示装置
JP2005234552A (ja) * 2004-01-21 2005-09-02 Sharp Corp 表示装置,液晶モニター,液晶テレビジョン受像機および表示方法
WO2006030842A1 (ja) * 2004-09-17 2006-03-23 Sharp Kabushiki Kaisha 表示装置の駆動方法、駆動装置、そのプログラムおよび記録媒体、並びに、表示装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8253678B2 (en) 2005-03-15 2012-08-28 Sharp Kabushiki Kaisha Drive unit and display device for setting a subframe period
US20120105513A1 (en) * 2006-12-28 2012-05-03 Lg Display Co., Ltd. Liquid crystal display device for compensating a pixel data in accordance with areas of a liquid crystal display panel and sub-frames, and driving method thereof
US8957840B2 (en) * 2006-12-28 2015-02-17 Lg Display Co., Ltd. Liquid crystal display device for compensating a pixel data in accordance with areas of a liquid crystal display panel and sub-frames, and driving method thereof
KR20120017161A (ko) * 2010-08-18 2012-02-28 엘지디스플레이 주식회사 데이터전압의 극성 제어 방법과 이를 이용한 액정표시장치
KR101705369B1 (ko) * 2010-08-18 2017-02-09 엘지디스플레이 주식회사 데이터전압의 극성 제어 방법과 이를 이용한 액정표시장치
JP2013182108A (ja) * 2012-03-01 2013-09-12 Mitsubishi Electric Corp 画像処理装置及び方法、並びに画像表示装置

Also Published As

Publication number Publication date
US20080158443A1 (en) 2008-07-03
JPWO2006098246A1 (ja) 2008-08-21
US8035589B2 (en) 2011-10-11
JP4444334B2 (ja) 2010-03-31

Similar Documents

Publication Publication Date Title
JP4444334B2 (ja) 液晶表示装置の駆動方法、液晶表示装置の駆動装置、そのプログラムおよび記録媒体、並びに、液晶表示装置
JP4197322B2 (ja) 表示装置,液晶モニター,液晶テレビジョン受像機および表示方法
JP5031553B2 (ja) 表示装置、液晶モニター、液晶テレビジョン受像機および表示方法
JP4567052B2 (ja) 表示装置,液晶モニター,液晶テレビジョン受像機および表示方法
WO2006098194A1 (ja) 表示装置の駆動方法、表示装置の駆動装置、そのプログラムおよび記録媒体、並びに、それを備える表示装置
US8253678B2 (en) Drive unit and display device for setting a subframe period
US9927871B2 (en) Image processing method, image processing circuit, and display device using the same
US9390686B2 (en) Display device and method for driving the same
JP5619119B2 (ja) 液晶表示装置とそのフレームレートコントロール方法
WO2006025506A1 (ja) 表示制御方法、表示装置の駆動装置、表示装置、並びに、プログラムおよび記録媒体
KR20080044104A (ko) 표시장치 및 이의 구동방법
KR20080082738A (ko) 표시 장치 및 그 구동 방법
US8294649B2 (en) Driving device for display device and image signal compensating method therefor
WO2006098247A1 (ja) 表示装置、表示装置の調整方法、画像表示モニター、及びテレビジョン受像機
KR100783697B1 (ko) 동화상 보정 기능을 갖는 액정 표시 장치와 이의 구동장치 및 방법
KR20070080290A (ko) 표시 장치 및 그 구동 장치
JP2010079151A (ja) 電気光学装置、その駆動方法、および電子機器
KR20060065955A (ko) 표시 장치 및 표시 장치용 구동 장치
KR20070098365A (ko) 액정표시장치의 감마보정전압 보상회로
JP4678344B2 (ja) 電気光学装置、表示データの処理回路、処理方法および電子機器
JP2006292973A (ja) 表示装置の駆動装置、および、それを備える表示装置
JP2007316380A (ja) 電気光学装置、電気光学装置の駆動方法および電子機器
KR100604272B1 (ko) 액정 표시 장치 및 그 구동 방법
KR102470471B1 (ko) 액정표시장치 및 이의 동작방법
KR100994229B1 (ko) 액정 표시 장치 및 그 구동 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007508113

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11794153

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06715562

Country of ref document: EP

Kind code of ref document: A1