WO2006098194A1 - 表示装置の駆動方法、表示装置の駆動装置、そのプログラムおよび記録媒体、並びに、それを備える表示装置 - Google Patents

表示装置の駆動方法、表示装置の駆動装置、そのプログラムおよび記録媒体、並びに、それを備える表示装置 Download PDF

Info

Publication number
WO2006098194A1
WO2006098194A1 PCT/JP2006/304433 JP2006304433W WO2006098194A1 WO 2006098194 A1 WO2006098194 A1 WO 2006098194A1 JP 2006304433 W JP2006304433 W JP 2006304433W WO 2006098194 A1 WO2006098194 A1 WO 2006098194A1
Authority
WO
WIPO (PCT)
Prior art keywords
video data
luminance
pixel
period
display
Prior art date
Application number
PCT/JP2006/304433
Other languages
English (en)
French (fr)
Inventor
Makoto Shiomi
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Priority to US11/886,226 priority Critical patent/US7956876B2/en
Publication of WO2006098194A1 publication Critical patent/WO2006098194A1/ja

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0252Improving the response speed
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0261Improving the quality of display appearance in the context of movement of objects on the screen or movement of the observer relative to the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/028Improving the quality of display appearance by changing the viewing angle properties, e.g. widening the viewing angle, adapting the viewing angle to the view direction
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0285Improving the quality of display appearance using tables for spatial correction of display data
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/16Determination of a pixel data signal depending on the signal applied in the previous frame

Definitions

  • Display device driving method display device driving device, program and recording medium thereof, and display device including the same
  • the present invention relates to a display device driving method capable of improving the image quality and brightness when displaying a moving image, a display device driving device, a program and a recording medium thereof, and a display device including the display device driving device. It is about.
  • the drive signal is modulated and driven so as to emphasize the tone transition to the previous power this time.
  • a method is also used.
  • Patent Document 1 Japanese Patent Laid-Open No. 4-302289 (Publication Date: October 26, 1994)
  • Patent Document 2 JP-A-5-68221 (Publication date: March 19, 1995)
  • Patent Document 3 Japanese Patent Laid-Open No. 2001-281625 (Publication Date: October 10, 2001)
  • Patent Document 4 Japanese Patent Laid-Open No. 2002-23707 (Publication date: January 25, 2002)
  • Patent Document 5 Japanese Patent Laid-Open No. 2003-22061 (Publication Date: January 24, 2003)
  • Patent Document 6 Japanese Patent No. 2650479 (issue date: September 3, 1997)
  • Non-Patent Document 1 New edition Color Science Handbook; 2nd edition (University of Tokyo Press; Publication date; June 10, 1998)
  • the present invention has been made in view of the above-described problems, and its object is to suppress deterioration in image quality due to over-emphasis of gradation transitions that are brighter and have a wide viewing angle. It is an object of the present invention to provide a display device with improved display image quality.
  • the display device driving method includes a generation process that is repeated every time input video data is input to a pixel.
  • the output video data to the pixel is generated in a plurality of predetermined numbers for each input cycle.
  • Performed before or after each generation step corrects the correction target data that is one of the input video data or the output video data, and corrects the pixel drive period according to the corrected correction target data.
  • the drive period of the target data it includes a correction process with prediction for predicting the luminance reached by the pixel at the end of the drive period of the correction target data.
  • a low luminance process that sets a value and controls at least one of the remaining output video data to control a time integral value of the luminance of the pixel during a period driven by the plurality of output video data; This is performed when the input video data has a brightness higher than a predetermined threshold, and at least one of the plurality of output video data has a brightness within a predetermined range for bright display.
  • each of the correction processes with prediction includes a prediction result indicating that the pixel arrives at the first time of the driving period of the correction target data and indicates the brightness.
  • the correction process for correcting the correction target data according to the prediction result, the prediction results so far, the correction target data input so far, and the correction target to be corrected this time Prediction that predicts the brightness at the end of the drive period of the current correction target data based on at least the prediction result indicating the luminance at the first time and the current correction target data. And a process is provided.
  • At least one of the plurality of output video data is set to a value indicating the luminance (brightness for bright display) in a predetermined range for bright display. At least one of the remaining output video data is increased or decreased in order to control the time integral value of the luminance of the pixel in the period driven by the plurality of output video data. Therefore, in most cases, the luminance of the pixels in a period other than the period (bright display period) driven according to the output video data indicating the brightness for bright display can be set lower than that in the bright display period.
  • the image quality at the time of moving image display can be improved as long as the difference from the luminance in the bright display period is more than a certain level. In this case, it is possible to improve the image quality when displaying a moving image.
  • the luminance of a pixel when the luminance of a pixel is close to the maximum or minimum, the luminance is kept within an allowable range, compared to the case where the luminance is in the middle.
  • the possible field of view is wide. This is because in the state close to the maximum or minimum brightness, the alignment state of the liquid crystal molecules is simple due to the demand for contrast, and it is easy to correct and is also preferred for images. This is because the viewing angle is more selectively assured particularly in the portion close to the minimum luminance. Therefore, if the time-division driving is not performed, the viewing angle at which halftones can be suitably displayed becomes narrow, and there is a possibility that problems such as whitening may occur when the external force is observed.
  • one of the output video data in the case of dark display, one of the output video data is set to a value indicating the luminance for dark display, and thus the luminance of the pixel is within an allowable range during the dark display period.
  • the maintained viewing angle can be expanded.
  • one of the output video data is set to a value indicating the brightness for dark display. Therefore, during the dark display period, the field of view in which the brightness of the pixels is maintained within the allowable range is set. The corner can be enlarged. As a result, it is possible to prevent the occurrence of defects such as whitening and to increase the viewing angle, compared to a configuration in which time-division driving is not performed.
  • the correction target data is corrected according to the prediction result indicating the luminance reached by the pixel at the beginning of the driving period of the correction target data among the previous prediction results. Therefore, the response speed of the pixels can be improved, and the types of display devices that can be driven by the driving method of the display device can be increased.
  • the pixels are required to have a faster response speed than when pixels are not time-division driven.
  • the response speed of the pixel is sufficient, the luminance of the pixel at the last point in the drive period of the correction target data is not corrected, even if the correction target data is output as it is without referring to the prediction result. The brightness indicated by is reached.
  • the response speed of the pixel is insufficient, it is difficult to achieve the luminance of the pixel at the last time point to the luminance indicated by the correction target data simply by outputting the correction target data as it is.
  • the types of display devices that can be driven by the time-division driving method are more limited than when the time-division driving is not performed.
  • the correction target data is corrected according to the prediction result. So, for example, if the response speed is expected to be insufficient, processing according to the prediction result becomes possible, such as enhancing the pixel response speed by emphasizing the gradation transition, and improving the pixel response speed. be able to.
  • the luminance at the last time point is at least the first time point among the prediction results so far, the correction target data input so far, and the correction target data to be corrected this time. Therefore, it can be predicted with higher accuracy than a configuration that assumes that the brightness indicated by the current correction target data has been reached.
  • the image quality during display can be improved.
  • At least one of the plurality of output video data is set to display brightness, and in the case of bright display, the plurality of output video data are set.
  • the viewing angle of the display device can be enlarged and the image quality at the time of moving image display can be improved.
  • the prediction since the prediction is performed as described above, the prediction can be performed with higher accuracy. Therefore, it is possible to prevent deterioration in image quality due to excessive emphasis on gradation transition, to increase the viewing angle of the display device, and to improve image quality when displaying a moving image.
  • the drive device for the display device provides the pixel to the pixel in order to time-division drive the pixel every time input video data is input to the pixel.
  • a display device driving device having generation means for generating a plurality of output video data to the pixel for each input cycle.
  • the correction target data that is arranged before or after the generating means and that is one of the input video data or each of the output video data is corrected and the pixel is driven according to the corrected correction target data.
  • the correction means predicts the luminance reached by the pixel at the end of the correction target data drive period, and the generation means includes the input video data in advance.
  • the luminance is lower than a predetermined threshold
  • at least one of the plurality of output video data is set to a value indicating the luminance within a predetermined range for dark display
  • the remaining output At least one of the video data is increased or decreased to control the time integral value of the luminance of the pixel during the period driven by the plurality of output video data
  • the input video data If the data indicates a luminance higher than a predetermined threshold, at least one of the plurality of output video data is set to a value indicating a luminance within a predetermined range for bright display, At least one of the remaining output video data is increased / decreased to control the time integral value of the luminance of the pixel during the period driven by the plurality of output video data, and the correction means includes The correction target data is corrected according to the prediction result indicating the luminance reached by
  • the correction target data input so far and the correction target data to be corrected this time at least based on the prediction result indicating the luminance at the first time point and the current correction target data. It is characterized by predicting the brightness of the last point of the driving period of the correction Target data.
  • the display device driving device in most cases, at least once in each input cycle, a period in which the luminance of the pixel is lower than the other periods is provided. Therefore, the image quality when the display device displays a moving image can be improved. Further, in the case of bright display, as the luminance indicated by the input video data increases, the luminance of the pixels in the period other than the bright display period increases, so that a display device capable of brighter display can be realized.
  • the prediction result according to the prediction result indicating the luminance reached by the pixel at the first point in the driving period of the correction target data among the prediction results so far since the correction target data can be corrected, the response speed of the pixels can be improved.
  • the types of display devices that can be driven by the display device drive device can be increased.
  • the luminance at the last time point is calculated based on the prediction results thus far, the correction target data input so far, and the correction target data to be corrected this time.
  • the prediction is based on at least the prediction result indicating the luminance at the first time point and the current correction target data
  • the luminance at the last time point can be predicted with higher accuracy. Therefore, in order to improve characteristics such as image quality, brightness, and viewing angle when displaying moving images on a display device, repeated gradation transitions with increasing and decreasing gradations frequently occur. Nevertheless, it is possible to prevent deterioration in image quality due to over-emphasis of gradation transitions and improve image quality when displaying moving images.
  • the correction target data is input video data
  • the correction unit is arranged before the generation unit, and at the end of the driving period of the correction target data.
  • the luminance reached by the pixel it is possible to predict the luminance reached at the end of the period in which the pixel is driven by a plurality of output video data generated by the generating means according to the corrected input video data.
  • a circuit for prediction for example, a value indicating a prediction result corresponding to a value that can be input is stored in advance in a storage unit, and a prediction result corresponding to an actually input value is stored in the storage unit. Force reading circuit.
  • each output video data corresponding to the corrected input video data is determined, and the plurality of output video data generated by the generation unit according to the corrected input video data
  • the luminance of the pixel at the first time point in the period in which the pixel is driven and the output video data is determined, the luminance of the pixel at the last time point is determined.
  • the correction means predicts the luminance at the last time point only once per input period, but at least the current prediction of the input video data of the current prediction results. Based on the prediction result indicating the luminance reached by the pixel at the beginning of the drive period (drive period of the correction target data) and the current input video data, the current input video data drive period that has no problem The luminance at the last time can be predicted. As a result, the correction The operation speed of the stage can be suppressed.
  • the correction means may be arranged after the generation means, and may correct each output video data as the correction target data. In this configuration, since each output video data is corrected by the correcting means, more accurate correction processing can be performed, and the response speed of the pixels can be further improved.
  • the correction means corrects the plurality of output video data generated for each input period, and divides the input period into the predetermined number. For each divided period, a correction unit that outputs corrected output video data corresponding to each divided period and a prediction result storage unit that stores a prediction result related to the last divided period among the prediction results are provided.
  • the correction unit corrects the correction target data based on the prediction result read from the prediction result storage unit when the correction target data corresponds to the first division period, and the correction unit The data corresponds to the second and subsequent division periods! In the case of speaking, the luminance at the first time point is predicted based on the output video data corresponding to the division period before the correction target data and the prediction result stored in the prediction result storage unit.
  • the correction unit corrects the correction target data according to the prediction result, and the correction unit outputs the output video data corresponding to the last divided period, the output video data corresponding to the previous divided period, and the prediction result storage unit.
  • the prediction result stored in the pixel On the basis of the prediction result stored in the pixel, the luminance of the pixel at the end of the drive period of the output video data corresponding to the last division period is predicted, and the prediction result is stored in the prediction result storage unit.
  • the result of predicting the luminance reached by the pixel at the end of the previous division period corresponding to the correction target data is stored in the prediction result storage unit each time.
  • Data to be corrected can be corrected.
  • the forecast results for each split period are Compared to the configuration stored in the prediction result storage unit, the amount of prediction result data stored in the prediction result storage unit per input cycle can be reduced.
  • the pixel includes a plurality of pixels, and the generation unit outputs the output video data to each pixel for each input cycle according to the input video data to each pixel.
  • Generating a plurality of predetermined numbers, and correcting means correcting each output video data to each pixel, respectively, and each prediction result corresponding to each pixel is stored in the prediction result storage unit.
  • the generating means generates a plurality of output video data to be generated for each of the pixels for each of the input periods, for each of the plurality of predetermined numbers.
  • the correction unit reads out the prediction result for the pixel for each of the input periods for each of the input cycles, and reads the prediction result and the output of each of the predetermined number of times.
  • the prediction processing of the luminance of the pixel at the last time point and the storage processing of the prediction result can be performed for each pixel multiple times for each input cycle.
  • the writing process of the results can be done with Interbow IV.
  • the plurality of output video data generated for each input cycle is generated for each of the plurality of predetermined numbers, and the prediction result is calculated for each input cycle.
  • Each is read a plurality of times determined in advance. This Based on these prediction results and each output video data, the brightness of the pixel at the last time point can be predicted a plurality of times and the prediction results can be stored. Note that the number of pixels is plural, and the reading process and the generation process are performed corresponding to each pixel.
  • At least one prediction result writing process is performed among the prediction process and the prediction result storage process that can be performed a plurality of times for each input period.
  • the time interval for storing the prediction result of each pixel in the prediction result storage unit can be increased in the prediction result storage unit, and the response speed required for the prediction result storage unit can be reduced compared to a configuration that does not thin out. can do.
  • the generation unit increases or decreases specific output video data, which is a specific one of the remaining output video data, and is driven by the plurality of output video data. And controlling the time integral value of the luminance of the pixel during a period of time, and indicating the luminance within a predetermined range for the dark display of the plurality of output video data other than the specific output video data It may be set to a value or a value indicating the brightness within a predetermined range for bright display.
  • video data other than the specific output video data is a value indicating a luminance in a predetermined range for dark display or a display for bright display. Is set to a value indicating the luminance in a predetermined range, so that the video data other than the specific output video data is set to a value that is not included in the difference between the two ranges. Furthermore, the occurrence of problems such as whitening can be prevented and the viewing angle can be expanded.
  • the generation means includes a period in which a pixel is driven in accordance with each of the plurality of output video data, divided into a plurality of divided periods,
  • the period during which the pixel is driven in accordance with the plurality of output video data is defined as a unit period, in the region where the luminance indicated by the input video data is the lowest, the time of the unit period is divided among the divided periods.
  • Output video data corresponding to the division period closest to the center position Is selected as the specific output video data the luminance indicated by the input video data gradually increases, and the specific output video data falls within a predetermined range for the bright display.
  • Output video data is set to a value within this range, and among the remaining divided periods, output video data corresponding to the divided period closest to the temporal center position of the unit period is newly added to the specific output video data.
  • the temporal gravity center position of the luminance of the pixel in the unit period is set near the temporal center position of the unit period.
  • the ratio of the period during which the pixels are driven by each of the plurality of output video data may be any output video data among the plurality of output video data.
  • Timing power for switching whether to convert to video data It is set closer to the timing to equally divide the range of brightness that can be expressed by the pixel than the timing to equally divide the range of brightness that can be expressed by the pixel. Moyo.
  • the time integral value power of the luminance of the pixel during the period driven by the plurality of output video data is appropriately determined as to which of the output video data indicates the luminance. Since the brightness can be switched, the amount of whitening recognized by a person can be further reduced and the viewing angle can be further expanded, compared with the case where the brightness range is switched evenly.
  • the drive device of the display device may be realized by hardware, or may be realized by causing a computer to execute a program.
  • the program according to the present invention is a program for operating a converter as each means provided in the drive device of the above-mentioned display device, and the recording medium according to the present invention includes The program is recorded.
  • the computer When these programs are executed by a computer, the computer operates as a drive device for the display device. Therefore, the same as the driving device of the display device. In addition, it is possible to realize a display device drive device that can provide a display device that is brighter, has a wider viewing angle, and suppresses deterioration in image quality due to over-emphasis of gradation transition, and that has improved image quality when displaying moving images. .
  • a display device includes any one of the drive devices for the display device and a display unit including pixels driven by the drive device.
  • the image processing apparatus includes image receiving means for receiving a television broadcast and inputting a video signal indicating an image transmitted by the television broadcast to the driving device of the display device.
  • the unit may be a liquid crystal display panel, and the display device may operate as a liquid crystal television receiver.
  • the display unit is a liquid crystal display panel, and a video signal is input from the outside to the driving device of the display device, and the display device displays a video signal indicating the video signal. Operate as a LCD monitor device that displays.
  • the display device having the above configuration includes the drive device driving device for the display device! /, Therefore, similar to the drive device for the display device, the gradation transition is emphasized with a brighter and wider viewing angle. Therefore, it is possible to realize a display device in which deterioration in image quality due to excess is suppressed and the image quality when displaying moving images is improved.
  • driving as described above suppresses image quality deterioration due to over-emphasis of gradation transitions with a brighter viewing angle and wider, and also improves image quality when displaying moving images. Therefore, it can be used widely and suitably as a driving device for various display devices such as a liquid crystal television receiver and a liquid crystal monitor.
  • FIG. 1, showing an embodiment of the present invention is a block diagram showing a main configuration of a signal processing circuit provided in an image display device.
  • FIG. 2 is a block diagram showing a main configuration of the image display device.
  • FIG. 3 (a) is a block diagram showing a main configuration of a television receiver provided with the image display device.
  • FIG. 3 (b) is a block diagram showing a main configuration of a liquid crystal monitor device provided with the image display device. is there.
  • FIG. 4 is a circuit diagram illustrating a configuration example of a pixel provided in the image display device.
  • V5 A graph showing the difference in luminance when the pixel is viewed from the front and obliquely when it is driven without time division.
  • FIG. 7 shows a comparative example, and is a block diagram showing a configuration in which a ⁇ correction circuit is provided before the modulation processing unit in the signal processing circuit.
  • FIG. 8 is a block diagram illustrating an exemplary configuration of a modulation processing unit provided in the signal processing circuit according to the embodiment, and illustrating a main configuration of the modulation processing unit.
  • FIG. 10 The video signal input to the frame memory shown in FIG. 1 and the video signal output from the frame memory to the front LUT in the case of 3: 1 division are also output to the rear LUT. It is explanatory drawing which shows a video signal.
  • FIG. 11 is an explanatory diagram showing the ON timing of the scanning signal lines related to the front display signal and the rear display signal when the frame is divided into 3: 1 in the present embodiment.
  • FIG. 12 is a graph showing the relationship between scheduled brightness and actual brightness when a frame is divided into 3: 1 in this embodiment.
  • ⁇ 13 (a)] is an explanatory diagram showing a method of inverting the polarity of the interelectrode voltage at the frame period.
  • 13 (b)] is an explanatory diagram showing another method of inverting the polarity of the interelectrode voltage at the frame period.
  • FIG. 14 (a) is an explanatory diagram illustrating an example of fluctuations in the voltage applied to the liquid crystal in one frame for explaining the response speed of the liquid crystal.
  • FIG. 14 (b) is an explanatory diagram illustrating a change in the voltage between electrodes according to the response speed of the liquid crystal, in order to explain the response speed of the liquid crystal.
  • FIG. 14 (c) is an explanatory diagram showing the voltage between the electrodes when the response speed of the liquid crystal is low, for explaining the response speed of the liquid crystal.
  • FIG.15 When displaying sub-frames using liquid crystal with slow response speed, 3 is a graph showing the display luminance (relation between planned luminance and actual luminance) output from the computer.
  • FIG. 16 (a) is a graph showing the luminance displayed by the previous subframe and the rear subframe when the display luminance force Lmax is 3Z4 and 1Z4.
  • FIG. 16 (b) is a graph showing the transition state of the liquid crystal voltage when the polarity of the voltage applied to the liquid crystal (liquid crystal voltage) is changed in the subframe period.
  • ⁇ 17 (a)] is an explanatory diagram showing a method of inverting the polarity of the interelectrode voltage at the frame period.
  • FIG. 17 (b)] is an explanatory diagram showing another method of inverting the polarity of the interelectrode voltage at the frame period.
  • FIG. 18 (a) is an explanatory diagram showing an example of the polarities of the four subpixels and the liquid crystal voltage of each subpixel in the liquid crystal panel.
  • FIG. 18 (b) is an explanatory diagram showing a case where the polarity of the liquid crystal voltage of each sub-pixel in FIG. 18 (a) is reversed.
  • FIG. 18 (c) is an explanatory diagram showing a case where the polarity of the liquid crystal voltage of each sub-pixel in FIG. 18 (b) is reversed.
  • FIG. 18 (d) is an explanatory diagram showing a case where the polarity of the liquid crystal voltage of each sub-pixel in FIG. 18 (c) is reversed.
  • FIG. 20 is a graph showing the transition of the liquid crystal voltage when the frame is divided into three and the voltage polarity is inverted for each frame.
  • FIG. 21 is a graph showing the transition of the liquid crystal voltage when the frame is divided into three and the voltage polarity is inverted for each subframe.
  • FIG. 23 is a block diagram illustrating a main configuration of a signal processing circuit, illustrating another embodiment of the present invention.
  • FIG. 24 is a block diagram illustrating a configuration example of a modulation processing unit provided in the signal processing circuit, and illustrating a configuration of a main part of the modulation processing unit.
  • FIG. 25 is a timing chart showing the operation of the signal processing circuit.
  • FIG. 26 is a block diagram showing another configuration example of the modulation processing unit provided in the signal processing circuit, and showing a main configuration of the modulation processing unit.
  • FIG. 27 is a timing chart showing the operation of the signal processing circuit.
  • the image display device is a display device in which image quality deterioration due to excessive enhancement of gradation transitions with a brighter viewing angle is suppressed, and the image quality when displaying moving images is improved.
  • it can be suitably used as an image display device of a television receiver.
  • television broadcasts received by the television receiver include broadcasts using artificial satellites such as terrestrial television broadcasts, BS (Broadcasting Satellite) digital broadcasts and CS (Communication Satellite) digital broadcasts, or Cape Television Television Broadcasting.
  • the panel 11 of the image display device (display device) 1 includes, for example, subpixels that can display R, G, and B colors, and controls the luminance of each subpixel.
  • a panel capable of color display for example, a pixel array (display) having sub-pixels SPIX (1,1) to SPIX (n, m) arranged in a matrix as shown in FIG. 2), a data signal line driving circuit 3 for driving the data signal lines SL1 to SLn of the pixel array 2, and a scanning signal line driving circuit 4 for driving the scanning signal lines GL1 to GLm of the pixel array 2.
  • the image display device 1 includes a control circuit 12 that supplies control signals to both drive circuits 3 and 4, and a video signal DAT2 that is supplied to the control circuit 12 based on the video signal DAT input from the video signal source VS. And a signal processing circuit 21 for generating. These circuits are operated by supplying power from the power supply circuit 13.
  • one pixel PIX is composed of three sub-pixels SPIX adjacent in the direction along the scanning signal lines GLl to GLm. Note that the sub-pixel SPIX (1,1) •• ⁇ according to the present embodiment corresponds to the pixel described in the claims.
  • the video signal source VS may be any device as long as it can generate the video signal DAT, but as an example, when the device including the image display device 1 is a television receiver, There is a tuner (image receiving means) that receives a television broadcast and generates a video signal indicating a video transmitted by the television broadcast.
  • the video signal source VS as a tuner selects the channel of the broadcast signal, transmits the television video signal of the selected channel to the signal processing circuit 21, and the signal processing circuit 21 converts the television video signal into the TV video signal. Based on this, a video signal DAT2 after signal processing is generated.
  • the video signal source VS include a personal computer.
  • the television receiver 100a when the device including the image display device 1 is the television receiver 100a, the television receiver 100a includes the video signal source VS and the image display device 1, and is shown in FIG. ),
  • a television broadcast signal is input to the video signal source VS.
  • the video signal source vs includes a tuner unit TS that selects a channel of the TV broadcast signal power and outputs the TV video signal of the selected channel as a video signal DAT.
  • the liquid crystal monitor device 100b receives a video monitor signal from, for example, a personal computer as shown in FIG. 3 (b).
  • a monitor signal processing unit 101 that outputs a video signal to the liquid crystal panel 11 is provided.
  • the monitor signal processing unit 101 may be the signal processing circuit 21 or the control circuit 12 itself, or may be a circuit provided in the preceding stage or the subsequent stage.
  • the pixel array 2 includes a plurality (in this case, n) of data signal lines SLl to SLn and a plurality of data signal lines SLl to SLn (in this case, m). Scanning signal lines GLl to GLm, where i is an arbitrary integer up to 1 force and n, and j is an arbitrary integer up to 1 force and m, for each combination of data signal line SLi and scanning signal line GLj Subpixel SPIX (i, j) is provided.
  • each sub-pixel SPIX (iJ) includes two adjacent data signal lines SL (i-1) ′ SLi and two adjacent scanning signal lines GL (jl) ′ GLj It is arranged in the part surrounded by.
  • the sub-pixel SPIX may be any display element, but as an example, the image display device 1 is a liquid crystal display.
  • the subpixel SPIXGJ is a field effect transistor SW having a gate connected to the scanning signal line GLj and a source connected to the data signal line SLi, as shown in FIG. (i, j) and a pixel capacitor Cp (i, j) having one electrode connected to the drain of the field effect transistor SW (i, j).
  • the other end of the pixel capacitor Cp (i, j) is connected to a common electrode line common to all the subpixels SPIX. It has been continued.
  • the pixel capacitor Cp (i, j) includes a liquid crystal capacitor CL (i, j) and an auxiliary capacitor Cs (i, j) that is added as necessary.
  • the field-effect transistor SW (i, j) becomes conductive, and the voltage applied to the data signal line SLi becomes the pixel capacitance Cp (i, applied to j).
  • the pixel capacitor Cp (i, j) continues to hold the voltage at the time of shutoff. I will.
  • the transmittance or reflectance of the liquid crystal varies depending on the voltage applied to the liquid crystal capacitor CL (i, j).
  • the scanning signal line GLj is selected and a voltage corresponding to the video data to the subpixel SPIX (i, j) is applied to the data signal line SLi, the display state of the subpixel SPIX (i, j) Can be changed according to the video data.
  • the liquid crystal display device is a vertical alignment mode liquid crystal cell as a liquid crystal cell, that is, when no voltage is applied, liquid crystal molecules are aligned substantially perpendicular to the substrate, and the subpixel SPIX (The liquid crystal cell in which the liquid crystal molecules tilt from the vertical alignment state according to the voltage applied to the liquid crystal capacitance CL (i, j) of (i, x) is adopted, and the liquid crystal cell is normally black mode (no voltage applied) Sometimes used in black display mode).
  • the scanning signal line drive circuit 4 shown in FIG. 2 outputs a signal indicating whether or not the selection period is valid, such as a voltage signal, to each of the scanning signal lines GL1 to GLm. Further, the scanning signal line drive circuit 4 changes the scanning signal line GLj that outputs a signal indicating the selection period based on timing signals such as a clock signal GCK and a start pulse signal GSP supplied from the control circuit 12, for example. ing. Thus, the scanning signal lines GLl to GLm are sequentially selected at a predetermined timing.
  • the data signal line drive circuit 3 extracts, as a video signal, the video data to each sub-pixel SPIX that is input in a time division manner by sampling at a predetermined timing. To do. Further, the data signal line driving circuit 3 sends each data signal line to each subpixel SPIX (l, j) to SPIX (n, j) corresponding to the scanning signal line GLj selected by the scanning signal line driving circuit 4. Outputs the output signal according to the video data to each via SLl-SLn.
  • the data signal line driving circuit 3 receives the clock signal SCK input from the control circuit 12. Based on the timing signal such as the start pulse signal SSP and the like, the output timing of the output signal is determined by the sampling timing.
  • each of the subpixels SPIX (l, j) to SPIX (n, j) has its corresponding data signal line SL1 to SLn while the scanning signal line GLj corresponding to itself is selected.
  • the brightness and transmittance when emitting light are adjusted to determine its own brightness.
  • the scanning signal line driving circuit 4 sequentially selects the scanning signal lines GLl to GLm.
  • the subpixels SPIX (1,1) to SPIX (n, m) that make up all the pixels of the pixel array 2 can be set to the brightness (gradation) indicated by the video data for each, and displayed on the pixel array 2. Can be updated.
  • the video data D to each of the sub-pixels SPIX may be the gradation level itself or the gradation level for calculating the gradation level as long as the gradation level of the sub-pixel SPIX can be specified. Although it may be a parameter, in the following description, as an example, the case where the video data D is the gradation level of the sub-pixel SPIX will be described.
  • the video signal DAT supplied from the video signal source VS to the signal processing circuit 21 may be an analog signal or a digital signal, as will be described later. . Also, it may be transmitted in frame units (entire screen unit), or one frame may be divided into a plurality of fields and may be transmitted in the field unit. The case where the signal DAT is transmitted in frame units will be described.
  • the video signal source VS when the video signal source VS according to the present embodiment transmits the video signal DAT to the signal processing circuit 21 of the image display device 1 via the video signal line VL, the video data for a certain frame is transmitted. After all the data has been transmitted, the video data for the next frame is transmitted in a time division manner, such as by transmitting the video data for the next frame.
  • the frame is composed of a plurality of horizontal lines.
  • the next transmission is performed.
  • video data for each horizontal line is transmitted in a time-sharing manner by transmitting video data for the horizontal line.
  • the video signal source VS drives the video signal line VL in a time-sharing manner when transmitting video data for one horizontal line.
  • the video data is sequentially transmitted in a predetermined order.
  • the video data can identify the video data D for each sub-pixel, the video data D itself is transmitted to the sub-pixel individually, and the video data itself is transmitted to the sub-pixel.
  • the video data D can be used as video data D, or data that has undergone some data processing is transmitted to each video data D, and the signal processing circuit 21 restores the data to the original video data D.
  • video data indicating the color of the pixel for example, data displayed in RGB
  • the signal processing circuit 21 is based on the video data of each pixel.
  • the video data D for each sub-pixel is generated.
  • the transmission frequency (dot clock) of the video data of each pixel is 65 [MHz].
  • the signal processing circuit 21 performs a process of enhancing gradation transition, a process of dividing into subframes, and a ⁇ conversion process on the video signal DAT transmitted via the video signal line VL.
  • Video signal DAT2 can be output.
  • the video signal DAT2 is composed of video data power to each sub-pixel after processing, and the video data to each sub-pixel in a certain frame is transmitted to each sub-pixel in each sub-frame. It is given as a combination of video data.
  • each video data constituting the video signal DAT2 is also transmitted in a time division manner.
  • the signal processing circuit 21 transmits all the video data for a certain frame and then transmits the video data for the next frame.
  • the video data for each frame is transmitted in a time division manner.
  • Each frame includes a plurality of subframes.
  • the signal processing circuit 21, for example, transmits all video data for a certain subframe and then transmits the video for the next subframe to be transmitted.
  • Video data for each subframe is transmitted in a time division manner, such as by transmitting image data.
  • the video data for the sub-frame is composed of video data for a plurality of horizontal lines
  • the video data for the horizontal line is composed of video data for each sub-pixel.
  • the signal processing circuit 21 transmits the video data for a certain horizontal line and then transmits the video data for the next time.
  • transmitting video data for each horizontal line by transmitting time-division video data for each horizontal line and transmitting video data for each horizontal line, for example, in a predetermined order, Transmit video data to each sub-pixel sequentially.
  • the gradation transition emphasis process may be performed later, but in the following, after the gradation transition is emphasized, the subframe division process and the ⁇ conversion process are performed. And explain.
  • the signal processing circuit 21 performs correction for emphasizing gradation transition in each sub-pixel SPIX on the video signal DAT, and the corrected video A modulation processing unit (correction means) 31 that outputs the signal DATo, and subframe processing that performs division into ⁇ -frames and ⁇ conversion processing based on the video signal DATo and outputs the corrected video signal DAT2 Part 32 is provided.
  • the image display device 1 according to the present embodiment includes R, G, and ⁇ sub-pixels for color display, and the modulation processing unit 31 and the subframe processing unit 32 include R, G, and Although each circuit has the same configuration except for the input video data D (i, j, k), in the following, referring to FIG. Only the circuit will be described.
  • the modulation processing unit 31 is described in detail below.
  • Each of the video data (in this case, video data D (i, j, k)) to each sub-pixel indicated by the input video signal will be described later.
  • the video signal DATo consisting of each corrected video data (in this case, video data Do (i, j, k)) can be output.
  • FIG. 1, FIG. 7, FIG. 8, FIG. 23, FIG. 24, and FIG. 26, which will be described later, exemplify only video data relating to a specific subpixel SPIXGJ). For example, the symbol U indicating the location is omitted as in the video data Do (k).
  • the subframe processing unit 32 divides one frame period into a plurality of subframes and, based on the video data Do (i, j, k) of a certain frame FR (k), Video data S to (i, j, k) for each subframe of FR (k) can be generated.
  • one frame FR (k) is divided into two subframes, and the subframe processing unit 32 determines the frame (for example, FR (k)) for each frame.
  • Video data Sol corresponding to each sub-frame based on video data Do (i, j, k) Sol (i, j, k) and So2 (i, j, k) are output.
  • the temporally previous subframe is SFRl (k)
  • the temporally subsequent subframe is SFR2 (k).
  • the case where the signal processing circuit 21 transmits the video data for the subframe SFRl (k) after transmitting the video data for the subframe SFRl (k) will be described.
  • the subframe SFRl (k) corresponds to the video data Sol (i, j, k)
  • the subframe SFR2 (k) corresponds to the video data So2 (i, j, k).
  • the voltage corresponding to the video data D (i, j, k) is changed to the subpixel SPIX.
  • the time to be applied to (i, j) is the force that can be set at various times.
  • the video data D (i, j, k) of a certain frame FR (k) is subjected to gradation transition emphasis processing, frame division processing, and ⁇ correction processing (corrected data Sol (i, j, k) and So2 (i, j, k)) and the voltages (Vl (i, j, k) and V2 (i, j, k)) corresponding to the corrected data are ⁇ corresponding to the same frame FR (k).
  • the period corresponding to these data and voltage is referred to as frame FR (k).
  • These data, voltage and frame are referred to with the same frame number (for example, k).
  • the period corresponding to these data and voltage is more specifically, the video data D (i, j, k) of a certain frame FR (k) is input to the sub-pixel SPIX (iJ). Until the video data D (i, j, k + 1) of the next frame FR (k + l) is input until the video data D (i, j, k) Output the first of the corrected data Sol (i, j, k) and So2 (i, j, k) (Sol (i, j, k) in this example) After that, the corrected data Sol (i, j, k + l) and So2 (i, j, k + l) obtained by performing the above processing on the next video data D (i, j, k + 1) l) The first one of (in this example, Sol (i, j, k + l)) is output, or it is applied according to the video data Sol (i, j, k) After the voltage Vl
  • each subframe and the video data or voltage corresponding to the subframe are collectively referred to as a subframe SFR (x), for example. References are omitted by omitting the number at the end of the number. In this case, certain subframes SFRl (k) and SFR2 (k) become subframes SFR (x) and SFR (x + l).
  • the subframe processing unit 32 includes a frame memory 41 that stores video data D to each subpixel SPIX for one frame, and video data and video data Sol in the first subframe.
  • a look-up table (LUT) 42 that stores the correspondence relationship between the image data and the LUT 43 that stores the correspondence relationship between the video data and the video data So2 in the second subframe, and a control circuit 44 that controls them. Yes.
  • the LUT 42'43 corresponds to the storage means described in the claims, and the control circuit 44 corresponds to the generation means.
  • the control circuit 44 performs video data D to each sub-pixel SPIX (1, 1) to (n, m) in the frame (for example, FR (k)) once for each frame. (l, l, k) to D (n, m, k) are written to the frame memory 41, and the number of subframes (in this case, twice) for each frame is written into the frame memory 41. From the above, each of the video data D (l, l, k) to D (n, m, k) can be read out.
  • the LUT 42 outputs when the read video data D (l, l, k) to D (n, m, k) are associated with each of the possible values.
  • a value indicating video data Sol to be stored is stored.
  • the LUT 43 is associated with each of the possible values and stores a value indicating the video data So2 to be output when the value is obtained.
  • control circuit 44 refers to the LUT 42 and outputs the video data Sol (i, j, k) corresponding to the read video data D (i, j, k).
  • the video data So2 (i, j, k) corresponding to the read video data D (i, j, k) can be output with reference.
  • the value stored in each LUT 42'43 may be, for example, a difference from the above possible value as long as each video data Sol 'So2 can be specified.
  • the value itself of the image data Sol ′ So2 is stored, and the control circuit 44 outputs the value read from each LUT 42′43 as each video data Sol ′ So2.
  • the values stored in the LUT 42'43 are as follows when the possible values are g and the values stored in the LUT 42'43 are Pl and P2, respectively. Is set to. Note that the video data Sol of subframe SFRl (k) is set to show higher brightness. However, in the following, the case where the video data So2 of the sub-frame SFR2 (k) is set so as to indicate luminance higher than the video data Sol will be described.
  • the value P1 is set to a value within the range determined for dark display.
  • the value P2 is set according to the value P1 and the value g.
  • the dark display range is a gradation equal to or lower than a gradation predetermined for dark display, and the minimum gradation is indicated when the predetermined gradation for dark display indicates the minimum luminance. It is a gradation (black) indicating luminance.
  • the value P2 is a range defined for bright display.
  • the value P1 is set to a value corresponding to the value P2 and the value g.
  • the range for bright display is a gradation greater than or equal to the gradation predetermined for bright display, and when the gradation predetermined for the bright display shows the maximum luminance, the maximum luminance is Is a gradation (white).
  • the gradation previously determined for the bright display is set to a value that can suppress the amount of whitening described later to a desired amount or less.
  • the video data D (i, j, k) force on the sub-pixel SPIXGJ) indicates a gradation equal to or lower than the above threshold value, that is, in a low luminance region
  • the brightness of the sub-pixel SPIX (iJ) in the frame FR (k) is controlled mainly by the magnitude of the value P2. Therefore, the display state of the sub-pixel SPIXGJ) can be set to the dark display state at least during the sub-frame SFRl (k) in the frame FR (k).
  • the sub-pixel SPIX (iJ) in the frame FR (k) can be brought close to an impulse type light emission such as CRT, and the image quality when displaying a moving image on the pixel array 2 can be improved.
  • the video data D (i, j, k) to the sub-pixel SPIXGJ) in a certain frame FR (k) shows a gradation higher than the threshold value, that is, in the high luminance region.
  • the brightness of the subpixel SPIX (iJ) in the frame FR (k) is mainly due to the magnitude of the value P1. Controlled. Therefore, compared with the configuration in which the luminances of both subframes SFRl (k) and SFR2 (k) are allocated approximately equally, the luminance in subframe SFRl (k) of subpixel SPIXGJ) and the subframe SFR2 (k ) Can be set large.
  • the video data So2 (i, j, k) for the subframe SFR2 (k) ) Becomes a value within the range specified for bright display, and as the luminance indicated by the video data D (i, j, k) increases, the video data Sol (i, j, k) increases. Therefore, the luminance of the sub-pixel SPIX (iJ) in the frame FR (k) can be increased as compared with a configuration in which a period for dark display is always provided even when white display is instructed.
  • the luminance value of the sub-pixel SPIX (i, j) is made closer to the impulse type described above, and the maximum value of the luminance of the sub-pixel SPIXGJ) is greatly increased despite the improved image quality during video display. Therefore, a brighter image display device 1 can be realized.
  • the gray-scale ⁇ characteristic changes and the halftone brightness becomes brighter when the panel is desired from the front (viewing angle 0 degree).
  • the floating phenomenon will occur.
  • the IPS mode liquid crystal display panel depending on the design of the optical characteristics of the optical film and the like, changes the gradation characteristics as the viewing angle increases, depending on the size.
  • the video data D (i, j, k) is either when the high luminance region gradation or the low luminance region gradation is indicated.
  • One of the video data Sol (i, j, k) and So2 (i, j, k) is a value within the range defined for bright display or within the range defined for dark display. Value, and the sub image in the frame FR (k)
  • the brightness of the element SPIX (i, j) is mainly controlled by the other size.
  • the amount of whitening (deviation from the assumed brightness) is the largest in the case of intermediate gradation, and the brightness is sufficiently low. In the case of sufficiently high brightness, the value is relatively small.
  • the video signal DAT is input, It is necessary to perform ⁇ correction processing before applying the corresponding voltage to panel 11. Even if the two ⁇ characteristics are the same, if an image is displayed with a ⁇ characteristic different from the original according to a user's instruction, etc., the video signal DAT is input and then the corresponding voltage is applied. Before applying to panel 11, it is necessary to perform gamma correction.
  • the y-correction circuit 133 that performs y-correction and changes the signal input to the panel 11 requires the ⁇ -correction circuit 133 instead of the circuit that controls the reference voltage.
  • the circuit scale may increase.
  • the ⁇ correction circuit 133 refers to the LUT 133 3a that stores the output value after ⁇ correction corresponding to the input value and stores the output data after ⁇ correction. Is generated.
  • each of the LUTs 42'43 is the LUTs 42'43.
  • the split drive LUT142.143 and the LUT133a for ⁇ conversion are shared.
  • the circuit scale can be reduced by the amount of the LUT 133a for ⁇ conversion, and the circuit scale required for the signal processing circuit 21 can be greatly reduced.
  • the LUT 42'43 is provided for each color of the sub-pixels SPIX (i, j) (in this example, R, G, and B, respectively). Different video data Sol 'So 2 can be output, and more appropriate values can be output than when using the same LUT between different colors.
  • the birefringence changes according to the display wavelength, and therefore has different ⁇ characteristics for each color.
  • the gradation is expressed by the response integrated luminance by time-division driving as in the present embodiment, it is desirable to perform independent ⁇ correction processing, which is particularly effective.
  • the LUT 42'43 is provided for each changeable ⁇ value, and the control circuit 44 receives an instruction to change the ⁇ value, for example, by a user operation or the like. If it is attached, the LUT 42'43 that matches the instruction is selected from the plurality of LUTs 42'43, and the LUT 42.43 is referred to. Thereby, the subframe processing unit 32 can switch the ⁇ value to be corrected.
  • the subframe processing unit 32 may change the time ratio of each of the subframes SFR1 and SFR2 in response to an instruction to change the y value.
  • the subframe processing unit 32 instructs the modulation processing unit 31 to change the time ratio of each subframe SFR1 ′ SFR2 in the modulation processing unit 31.
  • the time ratio of each subframe SFRl 'S FR2 can be changed in accordance with the instruction to change the ⁇ value. Therefore, as will be described in detail later, any correction to ⁇ value is instructed.
  • the modulation processing unit 31 performs prediction-type gradation transition enhancement processing, stores the predicted value E (i, j, k) of each sub-pixel SPIX (iJ), and Frame memory (predicted value storage means) 51 that stores up to the frame FR (k + l) of the current frame, and the predicted value E (i, j, k-1) of the previous frame FR (kl) stored in the frame memory 51 ), Each frame of the current frame FR (k)
  • the correction processing unit 52 that corrects the image data D (i, j, k) and outputs the corrected value as the video data Do (i, j, k), and each subframe of the current frame FR (k) With reference to the video data D (i, j, k) to the pixel SPIX (iJ), the predicted value E (i, j, k-1) related to the subpixel SPIXGJ) stored in the frame memory 51 is obtained.
  • the predicted value E (i, j, k) of the current frame FR (k) is subtracted when the subpixel SPIXGJ) is driven by the corrected video data Do (i, j, k).
  • Pixel SPIXGJ) Power Sub-pixel SPIX (i, j) at the start of the next frame FR (k + l), that is, the video data Do (i, j, k + l) of the next frame FR (k + l) ) Is the value indicating the gray level corresponding to the predicted brightness when the drive starts, and the prediction processing unit 53 predicts the predicted value E (i, j, kl) and the predicted value E (i, j, k) are predicted based on the video data D (i, j, k) in the current frame FR (k).
  • frame division and ⁇ correction processing are performed on the corrected video data Do (i, j, k) to obtain two video data per frame.
  • Sol (i, j, k) and So2 (i, j, k) are generated, and the corresponding voltages Vl (i, j, k) and V2 (i, j, k) are , Sub-pixel SPIXGJ).
  • the predicted value E (i, j, k-1) of the previous frame FR (k-1) and the video data D (i, j, k) of the current frame FR (k) are specified.
  • both the video data Sol (i, j, k) And So2 (i, j, k) as well as the two voltages Vl (i, j, k) and V2 (i, j, k) are also specified.
  • the predicted value E (i, j, k-1) is a predicted value of the previous frame FR (kl), it can be rephrased based on the current frame FR (k).
  • j, k-1) is a value indicating the gradation corresponding to the luminance that the sub-pixel SPIXGJ) is predicted to reach at the start of the current frame FR (k), and represents the current frame FR (k ) Is a value indicating the display state of the sub-pixel SPIX (iJ) at the start time.
  • the subpixel SPIX (iJ) is a liquid crystal display element
  • the value also indicates the alignment state of the liquid crystal molecules of the subpixel SPIX (i, j).
  • the prediction processing unit 53 determines whether the prediction method by the prediction processing unit 53 is accurate and the predicted value E (i, j, k-1) of the previous frame FR (kl) is accurately predicted.
  • the prediction processing unit 53 The front frame FR (kl) Based on the predicted value E (i, j, k-1) and the video data D (i, j, k) in the current frame FR (k), the predicted value E (i, j, k) is also accurate. Can be predicted.
  • the correction processing unit 52 performs the predicted value E (i, j, k-1) of the previous frame FR (kl), that is, the sub-pixel at the start time of the current frame FR (k). Based on the value indicating the display state of SPIX (iJ) and the video data D (i, j, k) of the current frame FR (k), the level indicated by the predicted value E (i, j, k-1) The video data D (i, j, k) can be corrected so as to emphasize the gradation transition from the key to the video data D (i, j, k).
  • both the processing units 52 and 53 may be realized by only the LUT, in the present embodiment, the processing units 52 and 53 are realized by using both the LUT reference processing and the interpolation processing.
  • the correction processing unit 52 includes an LUT 61.
  • this combination is input to the corresponding LU T61 in association with each of the possible combinations of the video data D (i, j, k) and the predicted value E (i, j, k-1) Stores the value indicating the video data Do to be output.
  • the value may be any value as long as the image data Do can be specified, but in the following, the image data Do itself is stored. In the case of, it will be explained.
  • values corresponding to all possible combinations may be stored in the LUT 61.
  • the LUT 61 uses some predetermined combinations in order to reduce the storage capacity. Only the matching is stored with the corresponding value.
  • the calculation unit 62 provided in the correction processing unit 52 reads values corresponding to a plurality of combinations close to the input combination from the LUT 61 when a combination is input. These values are interpolated by a predetermined calculation, and values corresponding to the input combinations are calculated.
  • video data D (i, j, k) and a predicted value E (i, j, k-1) can be taken.
  • a value indicating a value to be output when the combination is input is stored in association with each combination.
  • the LUT 71 also stores the value to be output (in this case, the predicted value E (i, j, k)) itself, as described above.
  • the combinations for storing values in the LUT 71 are limited to some predetermined combinations, and the calculation unit 7 provided in the prediction processing unit 53 2 calculates the value corresponding to the input combination by interpolation calculation referring to LUT71.
  • the predicted value E (i, j, k-1) is not stored in the frame memory 51 but the video data D (i, j, k-1) itself of the previous frame FR (k-1).
  • the correction processing unit 52 stores the predicted value E (i, j, k-1) of the previous frame FR (kl), that is, the display state of the sub-pixel SPIXGJ at the start of the current frame FR (k).
  • the video data D (i, j, k) of the current frame FR (k) is corrected with reference to the predicted value.
  • the signal processing circuit 21 reaches the luminance indicated by the video data So (i, j, x) of the previous subframe SFR (x_l) at the start time of the current subframe FR (x). If the gradation transition is emphasized, the gradation transition is overemphasized or the gradation transition is not sufficiently emphasized.
  • a gradation transition in which the brightness increases (rise gradation transition) and a gradation transition in which the brightness decreases
  • the voltages Vl (i, j, k) and V2 (i corresponding to the video data Sol (i, j, k) and So2 (i, j, k) are described.
  • j, k) to the sub-pixel SPIX (iJ) the light emission state of the sub-pixel SPIXGJ) is brought close to the impulse-type light emission.
  • the luminance that the pixel SPIX (iJ) should take increases or decreases for each subframe.
  • the prediction value E (i, j, k) is referred to, so that the prediction is performed with higher accuracy than in the case considered as described above.
  • improper gradation transition intensities can be prevented in spite of frequent rise ⁇ decay repetitions.
  • a prediction method with higher accuracy than considered as described above for example, a prediction is made by referring to a plurality of input video data, or a plurality of prediction results obtained so far. A method of predicting by referring to a method, a method of predicting by referring to a plurality of prediction results, a video data input so far, and a plurality of the current video data including at least the current video data, etc. Is mentioned.
  • the subframe processing unit 32 divides the frame into subframes (video data Sol and So2 generation processing), that is, a pixel array as described below.
  • Reference numeral 2 denotes an active matrix (TFT) liquid crystal panel in VA mode, and an example in which each subpixel SPIX can display 8-bit gradation will be described in more detail.
  • TFT active matrix
  • the video data Sol and So2 are referred to as a front display signal and a rear display signal.
  • the brightness gradation (signal gradation) of the signal (video signal DAT2) applied to the LCD panel in the normal hold display range from 0 to 255.
  • L is the signal gradation (frame gradation) when displaying an image in one frame (when displaying an image with normal hold display)
  • Lmax is the maximum luminance gradation (255)
  • T is the display luminance
  • is the correction value (usually 2.2).
  • the display brightness T output from the liquid crystal panel is as shown in FIG. 5 described above.
  • the horizontal axis indicates “brightness that should be output (scheduled luminance; value corresponding to signal gradation, equivalent to the above display luminance T)”, and the vertical axis indicates “brightness actually output. (Actual brightness) ”.
  • the actual brightness becomes brighter with a halftone brightness due to the change in the gradation ⁇ characteristics.
  • control circuit 44 is
  • the control circuit 44 includes two frames. It is designed to divide evenly into subframes and display up to half of the maximum brightness with one subframe!
  • the control circuit 44 sets the previous subframe to the minimum luminance (black), and sets the Tone expression is performed by adjusting only the display luminance of the subframe (tone expression is performed using only the subsequent subframe).
  • the integrated luminance in one frame is “(minimum luminance + luminance of subsequent subframe) / 2”.
  • the control circuit 44 sets the rear subframe to the maximum luminance (white) and adjusts the display luminance of the previous subframe to adjust the level. Make a key expression.
  • the integrated luminance in one frame is “(luminance of the previous subframe + maximum luminance) Z2”.
  • the signal gradation setting is performed by the control circuit 44 shown in FIG.
  • the control circuit 44 preliminarily calculates a frame gradation corresponding to the above-described threshold luminance (TmaxZ2) using the above-described equation (1).
  • control circuit 44 obtains the frame gradation L based on the video signal output from the frame memory 41.
  • control circuit 44 sets the luminance gradation (F) of the preceding display signal to the minimum (0) by the preceding LUT 42.
  • control circuit 44 determines the luminance gradation (R) of the subsequent display signal based on the equation (1).
  • R 0.5 "( ⁇ / ⁇ ) XL... (3)
  • the control circuit 44 sets the luminance gradation R of the subsequent display signal to the maximum (255).
  • control circuit 44 determines the luminance gradation F of the previous subframe based on the equation (1).
  • control circuit 44 transmits the video signal DAT2 after the signal processing to the control circuit 12 shown in FIG. 2, thereby sending the first scanning signal line GL1 to the data signal line driving circuit 3 with a double clock.
  • the previous stage display signals of the sub-pixels SPIX (n) are accumulated.
  • the control circuit 44 causes the scanning signal line drive circuit 4 to turn on (select) the first scanning signal line GL1 via the control circuit 12, and the subpixel SPIX of the scanning signal line GL1.
  • the previous stage display signal is written to.
  • the control circuit 44 similarly turns on the second to m-th scanning signal lines GL2 to GLm with the double clock while changing the previous display signal accumulated in the data signal line driving circuit 3.
  • the previous stage display signal can be written to all the sub-pixels SPIX in a half period of 1 frame (lZ 2 frame period).
  • control circuit 44 performs the same operation, and writes the post-stage display signal to the subpixels SPIX of all the scanning signal lines GLl to GLm in the remaining 1Z2 frame period.
  • the pre-stage display signal and the post-stage display signal are written to each subpixel SPIX by equal time (1Z2 frame period).
  • FIG. 6 described above shows the results (broken line and solid line) of the subframe display in which the preceding display signal and the subsequent display signal are divided into the front and rear subframes and output (the broken line and the solid line). It is a graph shown together with (a dashed-dotted line and a solid line).
  • the deviation between the actual luminance at the large viewing angle and the planned luminance is the minimum or maximum display luminance. In some cases, the minimum (0) is used, but the largest LCD panel is used in the halftone (near the threshold brightness). [0143] Then, the image display device 1 according to the present configuration example performs subframe display in which one frame is divided into subframes.
  • the previous subframe is displayed in black and the display is performed using only the rear subframe within the range where the integrated luminance in one frame is not changed.
  • the display is performed by adjusting the luminance of only the previous subframe, with the subsequent subframe being displayed in white within the range in which the integrated luminance in one frame is not changed. For this reason, in this case as well, the shift of the subsequent subframe is minimized, so that the total shift of both subframes can be reduced to approximately half as shown by the broken line in FIG.
  • the image display device 1 according to the present configuration example has an overall shift compared to the configuration in which the normal hold display is performed (the configuration in which the image is displayed in one frame without using the subframe). Can be reduced to about half.
  • the period of the previous subframe and that of the subsequent subframe are assumed to be equal. This is because the luminance up to half of the maximum value is displayed in one subframe. However, these subframe periods may be set to different values.
  • the white-floating phenomenon which is a problem in the image display device 1 according to the present configuration example, has a characteristic as shown in FIG. 5 when the viewing angle is large. This is a phenomenon in which an image appears bright and white.
  • an image captured by a camera is usually a signal based on luminance.
  • the image is converted into a display signal using ⁇ shown in equation (1) (that is, the luminance signal is multiplied by ( ⁇ ⁇ ) and divided equally. To add gradation).
  • an image displayed by the image display device 1 such as a liquid crystal panel has a display luminance represented by the expression (1).
  • the human visual sense perceives an image not as luminance but as brightness.
  • the lightness (lightness index) M is expressed by the following equations (5) and (6) (see Non-Patent Document 1).
  • y is the y value of tristimulus values in the xyz color system of an arbitrary color
  • yn is the y value of standard diffuse reflection surface light
  • yn 100.
  • FIG. 9 is a graph showing the luminance graph shown in FIG. 5 converted to lightness.
  • This graph shows “lightness that should be output (scheduled lightness; signal gradation) on the horizontal axis.
  • the value according to, corresponding to the above brightness M) ”), and“ the actual output brightness (actual brightness) ”on the vertical axis.
  • the two brightness values mentioned above are equal on the front of the liquid crystal panel (viewing angle 0 °).
  • the frame division ratio according to the brightness that is not brightness, in order to further suppress the white-floating phenomenon in accordance with the human visual sense.
  • the deviation from the brightness is the largest at the half of the maximum value of the planned brightness as in the case of the brightness. [0155] Therefore, rather than splitting the frame to display up to half the maximum brightness in one subframe, the frame is displayed so that the brightness up to half the maximum is displayed in one subframe.
  • Ability to divide It will be possible to improve the misalignment (ie, whitening) felt by humans.
  • ⁇ in this equation is about 2.5.
  • the subframe that is used for display when the luminance is low (the subframe that is maintained at the maximum luminance when the luminance is high) is set to a short period. It will be.
  • control circuit 44 sets the previous subframe to the minimum luminance (black) when performing a low luminance display in which the luminance up to 1 to 4 (threshold luminance; TmaxZ4) is output in one frame. ) And adjust the display luminance only in the subsequent subframe to express the gradation (use only the subsequent subframe to express the gradation).
  • the integral luminance in one frame is “(minimum luminance + luminance of subsequent subframe) Z4”.
  • the control circuit 44 sets the rear subframe to the maximum luminance (white), and displays the luminance of the previous subframe. Is used to express gradation.
  • the integrated luminance in one frame is “(luminance of the previous subframe + maximum luminance) Z4”.
  • the signal gradation (and the output operation described later) is set so as to satisfy the above conditions (a) and (b).
  • control circuit 44 preliminarily calculates the frame gradation corresponding to the above-described threshold luminance (TmaxZ4) using the above-described equation (1).
  • the control circuit 44 obtains the frame gradation L based on the video signal output from the frame memory 41 when displaying an image.
  • control circuit 44 sets the luminance gradation (F) of the previous stage display signal to the minimum (0) using the previous stage LUT 42.
  • control circuit 44 determines the luminance gradation (R) of the subsequent display signal based on the equation (1).
  • the control circuit 44 sets the luminance gradation R of the subsequent display signal to the maximum (255).
  • control circuit 44 determines the luminance gradation F of the previous subframe based on the equation (1).
  • the sub pixel SPIX has the front display signal and the rear display signal. , Each written in equal time (1Z2 frame period) It is.
  • the division ratio can be changed by changing the write start timing of the post-stage display signal (ON timing of the running signal line GL... Related to the post-stage display signal).
  • FIG. 10 is a video signal input to the frame memory 41
  • (b) in Fig. 10 is a video signal output from the frame memory 41 to the preceding LUT 42 in the case of 3: 1 division.
  • (C) in FIG. 10 is an explanatory diagram showing the video signal output to the rear stage LUT 43.
  • FIG. 11 is a front stage display signal and rear stage signal when the signal is divided into 3: 1. It is explanatory drawing which shows the ON timing of the scanning signal line GL ... regarding a display signal.
  • control circuit 44 writes the preceding display signal of the first frame to the sub-pixels SPIX of each scanning signal line GL ... with a normal clock.
  • the time integral value (integral sum) of the display luminance in these two subframes becomes the integral luminance in one frame.
  • the data stored in the frame memory 41 is at the ON timing of the scanning signal line GL ... At the same time, it is output to the data signal line driving circuit 3.
  • Fig. 12 is a graph showing the relationship between the planned brightness and the actual brightness when the frame is divided into 3: 1.
  • the frame can be divided at the point where the deviation between the planned brightness and the actual brightness is the largest. Therefore, compared with the result shown in FIG. 9, the difference between the planned brightness and the actual brightness when the viewing angle is 60 degrees is very small.
  • the previous subframe is displayed in black within a range in which the integrated luminance in one frame is not changed, Display using only the rear subframe.
  • the total deviation in both subframes can be reduced to about half as shown by the broken line in FIG.
  • the display is performed by adjusting the luminance of only the previous subframe, with the subsequent subframe being displayed in white within a range in which the integrated luminance in one frame is not changed.
  • the image display device 1 As described above, in the image display device 1 according to this configuration example, it is possible to reduce the brightness shift to about a half as compared with the configuration in which the normal hold display is performed.
  • the display start time force may be displayed with a double clock by using a dummy rear stage display signal.
  • the former display signal and the latter display signal of signal gradation 0 may be output alternately.
  • control circuit 44 outputs the previous sub-frame to the minimum luminance (in the case of low luminance) when the luminance up to lZ (n + l) (threshold luminance; TmaxZ (n + l)) of the maximum luminance is output in one frame. (Black), and adjust the display brightness only in the subsequent subframe to express the gradation (use only the subsequent subframe to express the gradation).
  • the integrated luminance in one frame is “(minimum luminance + luminance of subsequent subframe) / (n + 1)”.
  • control circuit 44 sets the rear subframe to the maximum luminance (white) and displays the previous subframe. Adjust the brightness to express the gradation.
  • the integrated luminance in one frame is “(luminance of the previous subframe + maximum luminance) / (n + 1)”.
  • the signal gradation (and the output operation described later) is set so as to satisfy the above conditions (a) and (b).
  • control circuit 44 uses the above equation (1) to calculate the above threshold luminance (TmaxZ (n + l)
  • the control circuit 44 obtains the frame gradation L based on the video signal output from the frame memory 41 when displaying an image.
  • control circuit 44 sets the luminance gradation (F) of the previous stage display signal to the minimum (0) using the previous stage LUT 42.
  • control circuit 44 determines the luminance gradation (R) of the subsequent display signal based on the equation (1). '' (11) Set by using the LUT43 in the latter stage.
  • the control circuit 44 sets the luminance gradation R of the subsequent display signal to the maximum (255).
  • the display signal output operation in the case where the frame is divided into 3: 1, after the nZ (n + l) frame period of the first frame, the previous display signal is output with a double clock. It is sufficient to design so that and the subsequent display signal are output alternately.
  • n 2 or more, it is preferable to alternately output the preceding display signal and the succeeding display signal as described above.
  • the ratio of the previous subframe and the subsequent subframe can be set to n: 1, so the required clock frequency is set to 2 Can be doubled.
  • the liquid crystal panel is preferably driven by alternating current. This is because the alternating current drive can change the charge polarity of the subpixel SPIX (the direction of the voltage between the pixel electrodes (interelectrode voltage) sandwiching the liquid crystal) for each frame.
  • One method is to apply a voltage of the same polarity for one frame.
  • the interelectrode voltage is reversed between two subframes in one frame, and the subsequent subframe and the previous subframe of the next frame are driven with the same polarity. Is the method.
  • Figure 13 (a) shows the relationship between the voltage polarity (polarity of the interelectrode voltage) and the frame period when the former method is used.
  • Figure 13 (b) shows the relationship between voltage polarity and frame period when the latter method is used.
  • either of the two methods described above may be used to prevent flickering if burn-in occurs.
  • a configuration in which the polarity is the same for one frame is more preferable. More specifically, dividing into sub-frames reduces the charging time of TFTs, so even if the charging time is within the design range, it is the margin for charging compared to a configuration that does not divide into sub-frames. It is undeniable that will decrease. Therefore, in mass production, there is a risk of brightness variations due to insufficient charging due to variations in panel and TFT performance.
  • the latter half frame that is the main display of luminance corresponds to the second writing of the same polarity, and the voltage change in the second half frame that is the main display of luminance can be reduced.
  • the required charge charge amount can be reduced, and display defects due to insufficient charge can be prevented.
  • one liquid crystal state corresponds to a certain luminance gradation in the TFT liquid crystal panel. Therefore, the response characteristics of the liquid crystal do not depend on the luminance gradation of the display signal.
  • the interelectrode voltage changes as shown by the solid line X in Fig. 14 (b) according to the response speed (response characteristics) of the liquid crystal.
  • the display brightness of the previous subframe is not minimized and the display brightness of the subsequent subframe is maximized.
  • the relationship between the planned brightness and the actual brightness is as shown in FIG. In other words, even when subframe display is performed, it is not possible to perform display with luminance (minimum luminance / maximum luminance) in which the difference (shift) between the planned luminance and the actual luminance when the viewing angle is large is small.
  • the response speed of the liquid crystal in the liquid crystal panel satisfies the following (c) and (d): Designed to be preferred.
  • the control circuit 44 is preferably designed so that the response speed of the liquid crystal can be monitored.
  • control circuit 44 interrupts the sub-frame display, It is usually set to drive by hold display.
  • the same display can be obtained even if the context of subframes is exchanged (even if the sub-frame is black in the case of low luminance and gradation is expressed using only the previous sub-frame).
  • the actual panel has brightness even in the case of black display (gradation 0), and the response speed of the liquid crystal is finite. Therefore, these factors are taken into account when setting the signal gradation. It is preferable.
  • an actual image is displayed on the liquid crystal panel, the relationship between the signal gradation and the display brightness is measured, and an LUT (output table) that satisfies Equation (1) is determined based on the actual measurement result. preferable.
  • a shown in Expression (6a) is assumed to be in the range of 2.2 to 3. This range is not strictly derived, but is a range that is considered to be almost appropriate for human visual sense.
  • the input signal gradation the luminance gradation of the display signal
  • Such a data signal line driving circuit 3 outputs the voltage signal used in the normal hold display as it is in each subframe according to the input signal gradation even when performing the subframe display. Will be.
  • the data signal line driving circuit 3 is preferably designed to output a voltage signal converted into divided luminances.
  • the data signal line driving circuit 3 is set so as to finely adjust the voltage (interelectrode voltage) applied to the liquid crystal according to the signal gradation.
  • the liquid crystal panel is a VA panel!
  • the present invention is not limited to this, and even if a liquid crystal panel of a mode other than the VA mode is used, the white-out phenomenon can be suppressed by the sub-frame display of the image display device 1 according to this configuration example.
  • the liquid crystal panel (planned brightness (planned brightness) and actual brightness (actual brightness) are shifted when the viewing angle is increased ( It is possible to suppress the white floating phenomenon for a liquid crystal panel in a mode in which the viewing angle characteristics of the gradation gamma change.
  • the sub-frame display of the image display device 1 according to the present configuration example is effective for a liquid crystal panel having such a characteristic that the display luminance increases when the viewing angle is increased.
  • the liquid crystal panel in the image display device 1 according to this configuration example may be NB (Normally Black) or NW (Normally White). May be.
  • another display panel for example, an organic EL panel or a plasma display panel
  • the liquid crystal panel may be used instead of the organic EL panel.
  • the present invention is not limited to this, and the image display device 1 according to the present configuration example is designed to divide the frame in the range of l: n or n: 1 (n is a natural number of 1 or more). Also good.
  • the signal gradation of the display signal (the front display signal and the rear display signal) is set using the above-described equation (10).
  • the threshold luminance gradation Lt is a frame gradation of this luminance.
  • Lt may be a little more complicated, and the threshold luminance Tt may not be expressed by a simple equation. Therefore, it may be difficult to express Lt with Lmax.
  • Lt obtained using Equation (10) is an ideal value, and is preferably used as a guideline.
  • the above description is a model of display luminance in the present embodiment.
  • the power is expressed as "Tmax / 2 ' ⁇ " maximum luminance "," minimum luminance ", etc.
  • special gamma preferred by the user, etc. there may be some variation, that is, when the display brightness is less than a certain threshold brightness, If the luminance of the image is sufficiently darker than the luminance of the other frame, the effect of improving the moving image display and the viewing angle in this embodiment is exhibited.
  • FIG. 16 (a) is a graph showing the luminance displayed by the previous subframe and the rear subframe when the display luminance is 3Z4 and 1Z4 with Lmax.
  • the voltage value applied to the liquid crystal (voltage value applied between pixel electrodes; absolute value) differs between subframes.
  • the image display device 1 it is preferable to invert the polarity of the liquid crystal voltage at the frame period.
  • One method is to apply a voltage of the same polarity for one frame.
  • the other method is to reverse the liquid crystal voltage between two subframes in one frame, and to make the subsequent subframe and the previous subframe of the next frame have the same polarity. It is.
  • FIG. 17 (a) is a graph showing the relationship between the voltage polarity (polarity of the liquid crystal voltage), the frame period, and the liquid crystal voltage when the former method is used.
  • Fig. 17 (b) is a similar graph when the latter method is used.
  • FIGS. 18A to 18D are explanatory diagrams showing the polarities of the four subpixels SPIX and the liquid crystal voltage of each subpixel SPIX in the liquid crystal panel.
  • the polarity of the liquid crystal voltage of each sub-pixel SPIX changes as shown in the order of FIG. 18A to FIG. 18D for each frame period.
  • the sum of the liquid crystal voltages applied to all the sub-pixels SPIX of the liquid crystal panel is preferably 0 V.
  • Such control can be realized, for example, by changing the voltage polarity between adjacent sub-pixels SPIX as shown in FIGS. 18 (a) to 18 (d).
  • 3: 1 to 7: 1 is given as a preferable ratio (frame division ratio) between the previous subframe period and the subsequent subframe period, but the present invention is not limited to this.
  • the split ratio may be set to 1: 1 or 2: 1.
  • the liquid crystal panel it takes time according to the response speed of the liquid crystal before the liquid crystal voltage (voltage applied to the liquid crystal; voltage between electrodes) is set to a value corresponding to the display signal. Therefore, if any of the subframe periods is too short, the voltage of the liquid crystal may not be raised to a value corresponding to the display signal within this period.
  • n 1
  • the division ratio may be n: l (n is a real number of 1 or more (more preferably, a real number greater than 1)). For example, by setting this division ratio to 1.5: 1, the viewing angle characteristics can be improved as compared with the case of 1: 1. In addition, it is easier to use a liquid crystal material with a slow response speed compared to 2: 1.
  • the front subframe When displaying low-brightness (low brightness) images up to 1 / (TmaxZ (n + l)) j, the front subframe should be displayed in black and only the back subframe should be used for display. Is preferred.
  • n 1
  • n l and l: n are the same in terms of viewing angle improvement effect.
  • n is a real number of 1 or more, it is effective for controlling the luminance gradation using the above equations (10) to (12).
  • the sub-frame display of the image display device 1 is a display performed by dividing the frame into two sub-frames.
  • the present invention is not limited to this, and the image display device 1 may be designed to perform subframe display in which a frame is divided into three or more subframes.
  • FIG. 19 shows the result of displaying the frame divided into three equal subframes (broken line and solid line) and the normal hold display by the image display device 1 according to the present configuration example. It is a graph that is shown together with the results (similar to that shown in Fig. 5), as shown in this graph.
  • the number of subframes is increased to 3
  • the actual luminance is very close to the planned luminance. Is possible. Therefore, it is clear that the viewing angle characteristics of the image display device 1 according to this configuration example can be made in a better state.
  • the position of the sub-frame for adjusting the luminance is such that the temporal gravity center position of the luminance of the sub-pixel in the frame period is close to the temporal center position of the frame period. It is desirable to set so that
  • FIG. 20 is a graph showing the transition of the liquid crystal voltage when the frame is divided into three and the voltage polarity is inverted for each frame.
  • the total liquid crystal voltage in 2 frames can be OV.
  • FIG. 21 is a graph showing the transition of the liquid crystal voltage when the frame is similarly divided into three and the voltage polarity is inverted for each subframe.
  • the total liquid crystal voltage in two frames can be set to OV.
  • the S-th (S; l to s) subframes between adjacent frames are applied with liquid crystal voltages of different polarities. It can be said that it is preferable to be in the state. This allows the total liquid crystal voltage in two frames to be OV.
  • the liquid crystal voltage is adjusted so that the total liquid crystal voltage in 2 frames (or more frames) is OV. It is preferable to reverse the polarity.
  • s an integer greater than or equal to 2
  • the liquid crystal voltage is adjusted so that the total liquid crystal voltage in 2 frames (or more frames) is OV. It is preferable to reverse the polarity.
  • the other subframes are displayed in white (maximum luminance) or black (minimum luminance). Talking about it.
  • viewing angle characteristics can be improved by displaying at least one subframe in white (maximum luminance) or black (minimum luminance).
  • the luminance is not adjusted!
  • the luminance of the sub-frame may be set to "a value greater than the maximum or the second predetermined value” instead of the maximum luminance.
  • “the minimum or smaller than the first predetermined value” may be used instead of setting the minimum luminance.
  • Lightness deviation can be made sufficiently small. Therefore, the viewing angle characteristics of the image display device 1 according to this configuration example can be improved.
  • FIG. 22 shows the signal gradation (%: luminance gradation of the display signal) output to panel 11 and the actual luminance gradation corresponding to each signal gradation in the sub-frame where the luminance is not adjusted. It is a graph which shows the relationship (viewing angle gradation characteristic (actual measurement)) with (%).
  • the actual luminance gradation means that "the luminance (actual luminance) output from the liquid crystal panel of panel 11 in accordance with each signal gradation is converted into the luminance gradation using the above equation (1).”
  • the display quality of the image display device 1 according to this configuration example is It is possible that it can be kept sufficiently (the above-mentioned brightness deviation can be made sufficiently small).
  • the range of the signal gradation that does not exceed 10% of the maximum value is 80 to: LO 0% and 0 to 0.02% of the maximum value of the signal gradation. This range does not change even when the viewing angle changes. [0249] Therefore, it is preferable to set the second predetermined value described above to 80% of the maximum luminance, and it is preferable to set the first predetermined value to 0.02% of the maximum luminance. Yes.
  • the viewing angle characteristics of the liquid crystal panel can be improved by making a slight difference in the display state of each subframe.
  • the modulation processing unit 3 la that performs substantially the same operation as the modulation processing unit 31 and the subframe processing unit 32 shown in FIG.
  • a subframe processing unit 32a is provided in the preceding stage of the modulation processing unit 31a, and replaces the corrected image data Do (i, j, k) with each of the uncorrected images.
  • Frame division and ⁇ correction processing are performed on video data D (i, j, k), and each subframe corresponding to the video data D (i, j, k) SF Rl (k)-SFRl (k ) Video data S l (i, j, k)-S2 (i, j, k).
  • the modulation processing unit 31a replaces the video data D (i, j, k) before correction with the video data Sl (i, i, j, k)-S2 (i, j, k), each of which is corrected so as to emphasize gradation transition, and the corrected video data is converted into video data Slo that constitutes video signal DAT2. (i, j, k) ⁇ Outputs as 82 ⁇ ( ⁇ , 1 ⁇ ). Note that the video data Slo (i, j, k) ⁇ 82 ⁇ ( ⁇ ,], 1 ⁇ ) is also time-divisionally similar to the video data Sol (i, j, k) ⁇ 8 ⁇ 2 ( ⁇ ⁇ , 1 ⁇ ). Is being transmitted.
  • correction processing and prediction processing by the modulation processing unit 31a are also performed in units of subframes.
  • the modulation processing unit 31a transmits the predicted value E (i, j, x-1) of the previous subframe SFR (xl) read from the frame memory (not shown) and the subframe SFR (x) in the current subframe SFR (x). based video data So (i to picture element SPIXGJ), j, x) and to corrects the video data So the present sub-frame SFR (x) (i, j , X).
  • the modulation processing unit 3 la based on the predicted value E (i, j, x-1) and the video data So (i, j, x), the subpixel SPIXGJ) A value indicating a gradation corresponding to the luminance predicted to be reached at the start of FR (x + l) is predicted, and the predicted value E (i, j, x) is stored in the frame memory. Yes.
  • the modulation processing unit 3 lb includes members 51a to 53a for generating the video data Slo (i, j, k) and the video data S2o (i, j , k) is provided with members 51b-53b.
  • These members 51a to 53a and 51b to 53b are configured in substantially the same manner as the members 51 to 53 shown in FIG.
  • each of the members 51a to 53b is configured to be able to operate at a speed twice that of FIG. 8, and the values stored in the LUTs (not shown in FIG. 24) provided for each of the members 51a to 53b are also illustrated. This is different from the case of 8.
  • the correction processing unit 52a and the prediction processing unit 53a receive each video data Sl from the subframe processing unit 32a in place of each video data D (i, j, k) of the current frame FR (k). (i, j, k) is input, and the correction processing unit 52a outputs the corrected video data as video data Slo (i, j, k). Similarly, in the correction processing unit 52b and the prediction processing unit 53b, each video data S2 from the subframe processing unit 32a is used instead of each video data D (i, j, k) of the current frame FR (k).
  • the correction processing unit 52a outputs the corrected video data as video data S2o (i, j, k).
  • the prediction processing unit 53a outputs the predicted value El (i, j, k) to the frame memory 5 lb referred to by the correction processing unit 52b that is not included in the frame memory 51a referred to by the correction processing unit 52a.
  • the processing unit 53b outputs the predicted value E 2 (i, j, k) to the frame memory 51a.
  • the predicted value El (i, j, k) is obtained when the sub-pixel SPIX (iJ) is driven by the video data Slo (i, j, k) output from the correction processing unit 52a.
  • the sub-pixel SPIXGJ) is a value indicating the gradation corresponding to the luminance predicted to arrive at the start of the next sub-frame SFR2 (k), and the prediction processing unit 53a receives the current frame FR (k ) Based on the video data Sl (i, j, k) and the predicted value E2 (i, j, k-1) of the previous frame FR (k-1) read from the frame memory 5 la. Predicted value El (i, j, k) is predicted. Similarly, the predicted value E2G, j, k) is calculated when the subpixel SP IX (i, j) is driven by the video data S2o (i, j, k) output from the correction processing unit 52b.
  • the sub-pixel SPIX (U) is a value indicating the gradation corresponding to the luminance predicted to arrive at the start of the next sub-frame SFRl (k + l), and the prediction processing unit 53b Based on the video data S2 (i, j, k) in FR (k) and the predicted value El (i, j, k) read from the frame memory 51b, the predicted value E2 (i, j, k) is predicted.
  • control circuit 44 outputs the video data S1 (1,1, k) to Sl (n, m, k) for the subframe SFRl (k) with reference to the LU T42 during the first reading.
  • the video data S2 (l, l, k) to S2 (n, m, k) for the subframe SFR2 (k) is referenced with reference to the LTU43. Is output (period tl2 to tl3). Note that the time tl when the signal processing circuit 21a receives the first video data D (l, l, k) and the video data for the subframe SFRl (k) corresponding to the video data D (l, l, k).
  • the time difference from the point of time Sl (l, l, k) output ti l can be increased or decreased by providing a notch memory.
  • the time difference is half a frame (one subframe). Is shown.
  • the frame memory 51a of the modulation processing unit 31b stores the video data S2 (l, 1) for the subframe SFR2 (k-1) of the previous frame FR (k-1).
  • the predicted values E2 (l, l, k-1) to E2 (n, m, kl) updated with reference to k-1) are accumulated, and the correction processing unit 52a receives the predicted value E2 (l , l, k-1) to E2 (n, m, kl), the video data Sl (l, l, k) to Sl (n, m, k) output from the control circuit 44 is corrected.
  • the corrected video data is output as Slo (l, l, k) to Slo (n, m, k).
  • the prediction processing unit 53a includes the video data S1 (1,1, k) to Sl (n, m, k) and the predicted values E2 (l, l, k-1) to E2 (n, m , k ⁇ 1), the predicted value El (l, l, k) to the predicted value El (n, m, k) are generated and stored in the frame memory 51b.
  • the correction processing unit 52b refers to the predicted values El (l, l, k) to El (n, m, k) and outputs the control circuit 44.
  • the prediction processing unit 53b includes the video data S2 (l, l, k) to S2 (n, m, k) and predicted values El (1,1, k-1) to El (n, m, k). -Based on 1), the predicted value E2 (l, l, k) to predicted value E2 (n, m, k) are generated and stored in the frame memory 5 la.
  • the signal processing circuit 21a performs the correction process (gradation transition emphasis process) and the prediction process in units of subframes. Therefore, compared to the configuration of the first embodiment, that is, the configuration in which these processes are performed in units of frames, more accurate prediction processing is possible, and gradation transition can be more accurately emphasized. As a result, it is possible to improve the image quality at the time of moving image display while further suppressing deterioration in image quality due to inappropriate gradation transition enhancement.
  • the members constituting the signal processing circuit 21a according to the present embodiment are often integrated in one integrated circuit chip in order to increase the speed.
  • the frame memories 41 and 51a '51b are difficult to integrate in an integrated circuit that is significantly larger than the required storage capacity JT, they are often externally attached to the integrated circuit chip.
  • the data transmission path between the frame memory 41 and 51a '51b is external. Therefore, it is difficult to increase the transmission speed as compared with the case of transmitting through the integrated circuit chip. Also, if you try to increase the number of signal lines in order to increase the transmission speed, the number of pins on the integrated circuit chip will increase!] And the dimensions of the integrated circuit chip will increase significantly. Further, since the modulation processing unit 31b shown in FIG. 24 is driven at double speed, the frame memory 41 and 51a ′ 51b can operate at high speed and require a large capacity memory.
  • each video data D (l, l, k) to D (n, m, k) is written.
  • the frame memory 41 outputs each video data D (l, l, k) to D (n, m, k) twice for each frame. Therefore, if a signal line for transmitting data is shared between reading and writing as in a general memory, the frequency at which each video data D ... is transmitted in the video signal DAT.
  • the frame memory 41 is required to access at a frequency three times or more than f.
  • the access speed required at the time of reading / writing is, for example, an access speed required for reading at the above frequency f or an access speed writing required for writing at the above frequency f, such as r: 2 times.
  • the ratio when the required access speed is set to 1 is shown after the letter (rZ w) indicating read Z write.
  • each predicted value E2 (l, l, k) to predicted value E2 (n, m, k) and each predicted value El are once per frame. (l, l, k) to predicted value El (n, m, k) are read and written, but in the configuration of FIG. 24, as shown in FIG. 25, the period of reading from the frame memory 51a (for example, tl 1 to tl2) and a period for reading from the frame memory 51b (for example, tl2 to tl3) are provided separately, and each period is a half period of the frame. Similarly, the period for writing to the frame memories 51a and 51b is also a half period of the frame. Therefore, both frame memories 5 la '51b require an access speed that is four times the frequency f.
  • the modulation processing unit 31b shown in FIG. 24 when the modulation processing unit 31b shown in FIG. 24 is used, the access speed required for each of the frame memories 41 ′ 51a and 51b increases, and the manufacturing cost of the signal processing circuit 21a increases. If the number of signal lines is increased, the size of the integrated circuit chip and the number of pins may increase. On the other hand, in the signal processing circuit 21c according to another configuration example of the present embodiment, as shown in FIG. 27, the video data S 1 (1, 1, 2) is performed twice for each frame.
  • the subframe processing unit 32c performs the video data S1 (1,1, k) to Sl (n) twice for each frame. , m, k) and video data S2 (l, l, k) to S2 (n, m, k).
  • control circuit 44 of the subframe processing unit 32a shown in FIG. 23 displays the video while outputting the video data Sl (l, l, k) to Sl (n, m, k).
  • the control circuit 44c of the subframe processing unit 32c according to this configuration example is as shown in FIG.
  • both of the video data Sl (i, j, k) and S2 (i, j, k) are generated based on the same value, that is, the video data D (i, j, k).
  • the control circuit 44c every time the control circuit 44c reads one video data D (i, j, k) from the frame memory 41, the video data D (i, j, k) is used to read both the video data Sl (i, , j, k) and S2 (i, j, k) can be prevented from increasing the amount of data transmission between the frame memory 41 and the control circuit 44c.
  • the amount of data transmission between the subframe processing unit 32c and the modulation processing unit 31c is greater than that in the configuration of FIG. 24. Since this data transmission is performed within the integrated circuit chip, there is no problem. Can be transmitted.
  • the modulation processing unit 31c performs prediction instead of the frame memory 5la'51b that stores the prediction values E1 and E2 for one subframe each. Only the value E2 is stored for 2 subframes and the predicted value E is twice per frame.
  • a frame memory (predicted value storage means) 54 capable of outputting 2 (l, l, kl) to predicted value E2 (n, m, k-1) is provided.
  • the modulation processing unit 31c according to the present configuration example is provided with the saddle member 52c ′ 52d ′ 53c ′ 53d force substantially the same as the members 52a ′ 52b • 53a ′ 53b of FIG. In this configuration column, the members 52c ⁇ 52d '53c' 53d correspond to the correcting means described in the claims.
  • predicted values E2 (l, l, k-1) to predicted values E2 (n, m, k-1) to the correction processing unit 52c and the prediction processing unit 53c Is supplied from the frame memory 54 which is not included in the frame memory 41a.
  • the predicted value El (l, l, k) to predicted value El (n, m, k) to the correction processing unit 52d and the prediction processing unit 53d are given from the prediction processing unit 53c, which is not included in the frame memory 41b.
  • the predicted value E2 (l, l, k-1) to the predicted value E2 (n, m, k-1) and the video data Sl (l, l, k) to Sl (n, m, k) is output twice for each frame, and the prediction processing unit 53c, based on these, outputs the predicted value twice for each frame, as shown in FIG. El (l, l, k) to El (n, m, k) are generated and output.
  • the force prediction process itself in which the number of predicted values E1 output for each frame is different and the circuit configuration of the prediction processing unit 53c are the same as those of the prediction processing unit 53a shown in FIG.
  • the predicted value E2 (l, l, k-1) to the predicted value E2 (n, m, k-1) and the video data S1 (1,1, k) to Sl (n, m, k), the force correction processing unit 52c that is output twice for each frame, the corrected video data Slo (l, l, k) to Slo is based on the first one of these. (n, m, k) is generated and output (period t21 to t22). Further, the correction processing unit 52d outputs the predicted value El (l, l, k) to the predicted value El (n, m, k) and the video data S2 (l, l, which are output twice for each frame.
  • the video data S2 (l, l, k) to S2 (n, m, k) and the predicted value El (l, l, k) to El (n, m, k) force S i every frame
  • the predicted values E2 (l, l, k) to E2 (n, m, k) can be generated twice per frame.
  • the prediction processing unit 53d has the predicted values E2 (l, l, k) to E2 (n, m, k) and the predicted values E2 (l, l, k) to E2 (n , m, k) and half of the generation and output processing, and once per frame, the predicted value E2 (l, l, k) ⁇ E2 (n, m, k) is generated and output.
  • the force prediction process itself in which the timing for generating and outputting the predicted value E2 in each frame is the same as the prediction processing unit 53b shown in FIG.
  • the circuit configuration is also the same as that of the prediction processing unit 53b, and a timing for thinning out the force is determined, and a circuit for thinning out generation processing and output processing is added.
  • the prediction processing unit 53d when the time ratio of both subframes SFR1 'SFR2 is 1: 1, the prediction processing unit 53d according to this configuration example skips the above generation and output processing by skipping one. Will be described. Specifically, the prediction processing unit 53d is the period during which the first video data S2 (i, j, k) and the predicted value El (i, j, k) are output (period t21 to t22). Of these, the predicted value E2 () is based on the odd-numbered and even-numbered video data S2 (i, j, k) and the predicted value El (i, j, k). i, j, k).
  • the prediction processing unit 53d In the period during which the second time is output (period t22 to t23), the prediction processing unit 53d generates a predicted value E (i, j, k) based on the remaining one.
  • the prediction processing unit 53d can output all the predicted values E2 (l, l, k) to E2 (n, m, k) once for each frame, and each predicted value E2 (i, The time interval for outputting j, k) is twice as long as the configuration in FIG.
  • the access speed required for the frame memory 54 can be reduced to 3Z4 times the configuration of FIG.
  • the dot clock of each video data D (i, j, k) is about 65 [MHz V, so the frame memories 51a and 51b in FIG. It is necessary to respond to access at approximately 260 [MHz].
  • the frame memory 54 according to this configuration example like the frame memory 41, only needs to respond to an access at three times the dot clock, that is, about 195 [MHz].
  • the entire storage area (for two subframes) of the frame memory 54 is allocated to the access speed.
  • the frame memory 54 is configured by two frame memories 54a.54b, and the access speed required for one of them is further increased. It is late.
  • the frame memory 54 includes two frame memories 54a '54b capable of storing the prediction value E2 for one subframe.
  • the frame memory 54a is a frame memory in which each prediction value E2 (i, j, k) is written by the prediction processing unit 53d, and the prediction for one subframe written in the previous frame FR (kl).
  • Value E2 (l, l, k-1) to E2 (n, m, kl) 1S Overwritten by predicted value E2 (l, l, k) to E2 (n, m, k) of current frame FR (k)
  • the predicted values E2 (l, l, k-1) to E2 (n, m, k-1) can be transferred to the frame memory 54b.
  • the frame memory 54a only needs to be able to read and write the predicted value E2 for one subframe at a time within one frame period, so that it can respond to access at the same frequency as the frequency f.
  • the frame memory 54b receives the predicted values E2 (l, l, k-1) to E2 (n, m, k-1), and receives the predicted values E2 ( l, l, k-1) to E2 (n, m, kl) can be output.
  • the predicted value E2 for one subframe needs to be written once and read twice each within one frame period, so it is necessary to respond to access at a frequency three times the above frequency f. is there.
  • the prediction value E2 stored in the frame memory 54a by the prediction processing unit 53d is transferred to the frame memory 54b for outputting the prediction value E2 to the correction processing unit 52c and the prediction processing unit 53c.
  • the area that is read twice per frame is limited to the frame memory 54b having a storage capacity for one subframe.
  • FIG. 27 illustrates a case where the transfer from the frame memory 54a to the frame memory 54b is shifted by one subframe in order to reduce the storage capacity required for the buffer.
  • the entire storage area of the frame memory 54 is configured to be able to respond to access at a frequency three times the frequency f, so that the storage area that can respond to access at the frequency is higher.
  • the size can be reduced, and the frame memory 54 can be provided more inexpensively and easily.
  • the generation processing and output processing of the predicted value E2 by the prediction processing unit 53d are performed. Although the case of thinning out has been described as an example, only output processing may be thinned out.
  • the predicted value El (l, l, k) is generated so that the predicted values E2 (l, l, k) to E2 (n, m, k) can be generated twice for each frame period.
  • the modulation processing unit corrects each of the plurality of video data Sl (i, j, k) ⁇ S2 (i, j, k) generated for each frame period, Output corrected video data Slo (i, j, k)-S2o (i, j, k) corresponding to each subframe for each divided subframe SFRl (k)-SFR2 (k)
  • the sub-pixel SPIX (i, j) is driven according to the correction processing unit 52c'52d and the corrected video data S2o (i, j, k) corresponding to the last subframe SFR2 (k)
  • a frame memory 54 for storing i, j, k) is provided.
  • the correction processing unit 52c determines that the video data Sl (i, j, k) or S2 (i, j, k) to be corrected corresponds to the first subframe SFRl (k) (video data).
  • the luminance of the predicted value E2 (i, j, k-1) read from the frame memory 54 indicates the video data Sl (i, j, k).
  • the video data Sl (i, j, k) is corrected so as to emphasize the gradation transition to luminance.
  • the correction processing unit 52d and the prediction processing unit 53c provided in the modulation processing unit have the second video data Sl (i, j, k) or S2 (i, j, k) to be corrected.
  • the following subframes are supported (in the case of video data S2 (i, j, k))
  • the video data S2 (i, j, k) and the previous subframe SFRl (k) are supported.
  • the first time of the subframe SFR2 (k) The luminance of the subpixel SPIX (iJ) is predicted, and the gradation transition from the predicted luminance (the luminance indicated by El (i, j, k)) to the luminance indicated by the video data S2 (i, j, k)
  • the video data S2 (i, j, k) is corrected so as to emphasize.
  • the prediction processing units 53c and 53d provided in the modulation processing unit include the video data Sl (i, j, k) or S2 (i, j, k) force to be corrected as the last subframe SFR2 (k) (For video data S2 (i, j, k)), video data S2 (i, j, k) and video data Sl corresponding to the previous subframe SFRl (k) Based on (i, j, k) and the predicted value E2 (i, j, k-1) stored in the frame memory 54, video data S2 (i, j, k) to be corrected The brightness of the subpixel SPIX (iJ) at the last time of the subframe SFR2 (k) corresponding to is predicted, and the predicted value E2 (i, j, k) indicating the prediction result is stored in the frame memory 54. .
  • subframes SFRl (k)-SFR2 (k) corresponding to video data Sl (i, j, k)-S2 (i, j, k) The result of predicting the luminance reached by the sub-pixel SPIX (iJ) at the end of the previous subframe SFR2 (k-1)-SF Rl (k) El (i, j, k)
  • Video data Sl (i, j, k) -S2 (i, j, k) can be corrected without storing i, j, k) in the frame memory each time.
  • the prediction result of each subframe is stored in the frame memory per frame period as compared with the configuration in which the prediction is stored in the frame memory (51a'51b) each time.
  • the amount of predicted value data can be reduced. Since the amount of data can be reduced, for example, even if a buffer is provided to reduce the access speed required for the frame memory, the access speed can be reduced only by providing a smaller scale circuit.
  • the prediction processing unit 53d performs prediction values E2 (l, l, k) to E2 (n, m, k) and prediction values E2 (l, l, k) to E2
  • Half of the generation and output processing with (n, m, k) is thinned out, and the predicted values E2 (l, l, k) to E2 (n, m, k) are calculated once for each frame.
  • one pixel has a sub-pixel SPIX force for each color, and the power described in the case where color display is possible is not limited to this. Even when used, the same effect can be obtained.
  • the control circuit (44'44c) regardless of the surrounding conditions of the image display device 1, which causes a change in the temporal change in luminance of the pixel (sub-pixel) such as a temperature change.
  • Force The force described when referring to the same LUT (42'43) is not limited to this.
  • a plurality of LUTs corresponding to the surrounding conditions are provided in advance, and a sensor for detecting the surrounding conditions of the image display device 1 is provided.
  • the control circuit is referred to when generating video data for each subframe. Depending on the detection result of the sensor It may be switched. In this configuration, since the video data for each subframe can be changed according to the surrounding conditions, display quality can be maintained even if the surrounding conditions change.
  • the response characteristics and gradation luminance characteristics of a liquid crystal panel change depending on the environmental temperature (the temperature of the environment where the panel 11 is placed (temperature)). For this reason, even if the input video signal DAT is the same, the optimum value as the video data for each subframe also changes according to the environmental temperature.
  • the panel 11 is a liquid crystal panel
  • an LUT (42'43) suitable for use in different temperature ranges is provided
  • a sensor for measuring the environmental temperature is provided
  • the control circuit (44 ' 44c) Force If the LUT referred to above is switched according to the measurement result of the environmental temperature by the sensor, the signal processing unit (21 to 21d) including the control circuit can be used even if the video signal DAT is the same.
  • a more appropriate video signal DAT2 can be generated and transmitted to the LCD panel. Therefore, it is possible to display an image with more brilliant luminance in all assumed temperature ranges (for example, a range of 0 ° C to 65 ° C).
  • the LUT42.43 and the ⁇ -converted LUT142'143 shown in Fig. 7 are stored in the ⁇ -converted value by storing the value indicating the video data of each subframe.
  • the configuration that shares the LUT133a for use with the camera has been explained, but it is not limited to this! /.
  • the same LUT 142 ′ 143 and ⁇ correction circuit 133 as in FIG. 7 may be provided. If ⁇ correction is unnecessary, the ⁇ correction circuit 133 may be deleted.
  • the power described mainly using the case where the subframe processing unit (32'32c) divides one frame into two subframes is not limited to this.
  • the subframe processing unit displays video data (Slo ′) for each subframe. At least one of S2o; Sl'S2) is set to a value indicating luminance within a predetermined range for dark display, and at least one of the remaining video data for each subframe is increased or decreased.
  • At least one is pre-defined for bright display Set the value to indicate the brightness of the specified range, increase or decrease at least one of the remaining subframe video data, and control the time integral value of the brightness of that pixel in one frame period. A little.
  • one of the output video data in the case of dark display, one of the output video data is set to a value indicating the luminance for dark display, and thus the luminance of the pixel is within an allowable range during the dark display period.
  • the maintained viewing angle can be expanded.
  • one of the output video data in the case of bright display, one of the output video data is set to a value indicating the luminance for dark display, so that the viewing angle at which the pixel luminance is maintained within the allowable range during the dark display period. Can be expanded.
  • the generation unit may change the number of pixels according to the input video data to each pixel.
  • Output video data to each pixel is generated for each of the input cycles in a plurality of the predetermined number, and the correction means corrects each output video data to each pixel.
  • the prediction result corresponding to each pixel is stored in the prediction result storage unit, and the generation unit generates a plurality of the pixels generated for each input cycle for each of the pixels.
  • a plurality of predetermined numbers of output video data are generated, and the correction unit generates, for each of the pixels, a prediction result for the pixel for each of the input periods.
  • the prediction process and prediction of the luminance of the pixel at the last time point can be performed for each pixel a plurality of times for each input period. At least one of the results storage process is predicted.
  • the plurality of output video data generated for each input cycle is generated for each of the plurality of predetermined numbers, and the prediction result is calculated for each input cycle.
  • Each is read a plurality of times determined in advance. Thereby, based on these prediction results and each output video data, the luminance of the pixel at the last time point can be predicted a plurality of times and the prediction results can be stored. Note that the number of pixels is plural, and the reading process and the generation process are performed corresponding to each pixel.
  • At least one prediction result writing process is performed among the prediction process and the prediction result storage process that can be performed a plurality of times for each input period.
  • the time interval for storing the prediction result of each pixel in the prediction result storage unit can be increased and the response speed required for the prediction result storage unit can be reduced compared to a configuration that does not thin out. can do.
  • the above configuration is not changed and the above
  • the video data other than a specific one of the video data for the remaining subframes is a value indicating the luminance in a predetermined range for dark display or a predetermined range for bright display. It is desirable to set a value indicating luminance, increase / decrease the specific video data, and control the temporal integration value of the luminance of the pixel in one frame period.
  • the video data other than the specific video data is a value indicating a luminance within a predetermined range for dark display, or a display for bright display. Is set to a value indicating the luminance of a predetermined range, so that the video data for a plurality of subframes is set to a value not included in either of the ranges.
  • the occurrence of defects such as white floating can be prevented and the viewing angle can be expanded.
  • the video data for each subframe is set such that the temporal center of gravity of the luminance of the pixel in one frame period is close to the temporal center position of the one frame period. Is better.
  • the subframe processing units (32, 32c) in the region where the luminance indicated by the input video data is the lowest, out of the subframes constituting one frame period, The video data corresponding to the subframe closest to the central position is set as the specific video data, and the value of the video data is increased or decreased to control the time integral value of the luminance of the pixel in one frame period.
  • the video data of the subframe is set to a value within the range.
  • the video data corresponding to the subframe closest to the temporal center position of the frame period is set as the specific video data, and the value of the video data is increased or decreased. Controls the time integral value of the brightness of the pixel in the frame period. The selection of the subframe corresponding to the specific video data is repeated every time the specific video data enters the predetermined range for the bright display.
  • the temporal gravity center position of the luminance of the pixel in one frame period is set to be close to the temporal center position of the one frame period.
  • the signal processing unit (21 to 21f) sets the time ratio of each of the subframe periods as follows: Subframe switching timing force corresponding to the specific video data Set to be closer to the timing to equally divide the range of brightness that can be represented by pixels than the timing to divide the range of luminance that can be represented by pixels would be better.
  • each member constituting the signal processing circuit is a The force described with reference to the case where it is realized only by software is not limited to this. You may implement
  • a signal processing circuit may be realized as a device driver used when a computer connected to the image display device 1 drives the image display device 1.
  • a signal processing circuit is realized as a conversion board built in or externally attached to the image display device 1, and the operation of the circuit that realizes the signal processing circuit can be changed by rewriting a program such as firmware. For example, by distributing a recording medium on which the software is recorded or transmitting the software via a communication path, the software is distributed to the hardware and the software is executed.
  • Hardware may be operated as the signal processing circuit of each of the above embodiments.
  • the signal processing circuit according to each of the above embodiments can be realized only by causing the hardware to execute the program. .
  • the CPU or hardware that can execute the functions described above is powerful computing means such as program code stored in a storage device such as ROM or RAM.
  • the signal processing circuit according to each of the above embodiments can be realized by executing and controlling peripheral circuits such as an input / output circuit (not shown).
  • the arithmetic means can also be realized by combining hardware that performs a part of the processing and the arithmetic means that executes the program code for controlling the hardware and the remaining processing. Further, among the above-described members, even the members described as hardware, the hardware for performing a part of the processing, and the arithmetic means for executing the program code for controlling the hardware and the remaining processing It can also be realized by combining.
  • the arithmetic means may be a single unit, or a plurality of arithmetic means connected via a nose inside the apparatus or various communication paths may execute the program code jointly.
  • each transmission medium constituting the communication path propagates a signal sequence indicating a program, whereby the program is transmitted via the communication path.
  • the transmission device may superimpose the signal sequence on the carrier by modulating the carrier with the signal sequence indicating the program. In this case, the signal sequence is restored by the receiving apparatus demodulating the carrier wave.
  • the transmission device may divide the signal sequence as a digital data sequence and transmit it. In this case, the receiving apparatus concatenates the received packet groups and restores the signal sequence.
  • the transmission device may multiplex and transmit the signal sequence with another signal sequence by a method such as time division Z frequency division Z code division.
  • the receiving apparatus extracts and restores individual signal sequences from the multiplexed signal sequence. In either case, the same effect can be obtained if the program can be transmitted via the communication channel.
  • the recording medium for distributing the program is removable, but it does not matter whether the recording medium after distributing the program is removable.
  • the recording medium may be rewritten (written), volatile, recording method, and shape as long as a program is stored.
  • Examples of recording media include magnetic tapes, force set tapes, etc., floppy disks (registered trademark), magnetic disks, such as node disks, CD-ROMs, magneto-optical disks (MO), and mini disks (MD). And digital video disc (DVD) discs.
  • the recording medium may be a card such as an IC card or an optical card, or a semiconductor memory such as a mask ROM, EPROM, EEPROM, or flash ROM. Alternatively, it may be a memory formed in a calculation means such as a CPU.
  • the program code may be a code for instructing the arithmetic means of all procedures of the processes, or a part or all of the processes may be executed by calling according to a predetermined procedure. If a possible basic program (for example, operating system or library) already exists, replace all or part of the above procedure with code or pointers that instruct the arithmetic means to call the basic program.
  • a possible basic program for example, operating system or library
  • the format for storing the program in the recording medium may be a storage format that can be accessed and executed by the arithmetic means, for example, in a state where the program is stored in the real memory.
  • the storage format after installation on a local recording medium that is always accessible by the computing means (for example, real memory or a node disk) before being placed in the memory, or from a network or transportable recording medium. It may be the storage format before installing on a local recording medium.
  • the program may be stored as source code that is not limited to the object code after con- taining, or as intermediate code generated during interpretation or compilation. In any case, the above calculation is performed by a process such as decompression of compressed information, decoding of encoded information, interpretation, compilation, linking, allocation to real memory, or a combination of processes. If the means can be converted into an executable format, the same effect can be obtained regardless of the format in which the program is stored in the recording medium.
  • the present invention by driving as described above, a brighter viewing angle is widened, and deterioration in image quality due to over-emphasis of gradation transition is suppressed, and the image quality when displaying moving images is improved. Therefore, it can be used widely and suitably as a driving device for various display devices such as a liquid crystal television receiver and a liquid crystal monitor.

Abstract

 サブフレーム処理部(32)は、サブ画素を暗表示する場合、サブフレーム(SFR1)用の映像データ(So1)を暗表示用の範囲内の値に設定し、サブフレーム(SFR2)用の映像データ(So2)を増減して、サブ画素の輝度を制御すると共に、明表示する場合は、映像データ(So2)を明表示用の範囲内の値に設定し、映像データ(So1)を増減して、サブ画素の輝度を制御する。また、変調処理部(31)は、各フレーム(FR)の映像データ(D)を補正して、上記サブフレーム処理部(32)に補正後の映像データ(Do)を出力すると共に、当該フレーム(FR)の最後に上記サブ画素が到達している輝度を予測し、次のフレームにおける補正および予測のために記憶する。これにより、より明るく、視野角が広く、階調遷移の強調し過ぎによる画質低下が抑制され、しかも、動画表示時の画質が向上された表示装置を実現する。

Description

明 細 書
表示装置の駆動方法、表示装置の駆動装置、そのプログラムおよび記録 媒体、並びに、それを備える表示装置
技術分野
[0001] 本発明は、動画表示時の画質および明るさを向上可能な表示装置の駆動方法、表 示装置の駆動装置、そのプログラムおよび記録媒体、並びに、当該表示装置の駆動 装置を備える表示装置に関するものである。
背景技術
[0002] 従来から、例えば、後述する特許文献 1〜5に示すように、 1画像を表示するフレー ムを複数のサブフレームに時分割して駆動する表示装置が広く使われて 、る。これら の構成では、液晶表示装置のようにホールド型の表示装置において、 1フレーム期 間内に黒表示あるいは暗表示期間を設けることによって、 CRT (Cathode-Ray Tube) のようなインパルス型発光に近づけ、動画表示時の画質を向上させている。
[0003] また、後述する特許文献 6に示すように、液晶表示装置の応答速度を向上させるた めに、前回力 今回への階調遷移を強調するように、駆動信号を変調して駆動する 方法も使用されている。
特許文献 1:特開平 4— 302289号公報 (公開日: 1994年 10月 26日)
特許文献 2 :特開平 5— 68221号公報 (公開日: 1995年 3月 19日)
特許文献 3:特開 2001— 281625号公報 (公開日: 2001年 10月 10日)
特許文献 4:特開 2002— 23707号公報 (公開日:2002年 1月 25日)
特許文献 5:特開 2003 - 22061号公報 (公開日: 2003年 1月 24日)
特許文献 6:特許第 2650479号公報 (発行日: 1997年 9月 3日)
非特許文献 1 :新編 色彩科学ハンドブック;第 2版 (東京大学出版会;公開日; 1998 年 6月 10曰)
発明の開示
発明が解決しょうとする課題
[0004] し力しながら、上記構成のいずれであっても、動画表示時の画質向上は充分では なぐより明るく、視野角が広ぐ階調遷移の強調し過ぎによる画質低下が抑制され、 し力も、動画表示時の画質が向上された表示装置が求められている。
[0005] 本発明は、上記の問題点に鑑みてなされたものであり、その目的は、より明るく、視 野角が広ぐ階調遷移の強調し過ぎによる画質低下が抑制され、し力も、動画表示時 の画質が向上された表示装置を提供することにある。
課題を解決するための手段
[0006] 本発明に係る表示装置の駆動方法は、上記課題を解決するために、画素への入 力映像データが入力される度に繰り返される生成工程を含み、当該各生成工程では 、当該画素を時分割駆動するために、当該画素への入力映像データに応じて、当該 画素への出力映像データが、当該入力周期毎に予め定められた複数の個数生成さ れる表示装置の駆動方法において、上記各生成工程の前または後に行われ、上記 入力映像データまたは上記各出力映像データの一方である補正対象データを補正 すると共に、補正後の補正対象データに応じて画素が駆動される期間を補正対象デ ータの駆動期間と呼ぶとき、上記補正対象データの駆動期間の最後に上記画素が 到達している輝度を予測する予測付き補正工程を含み、上記各生成工程には、上 記入力映像データが予め定められた閾値よりも低い輝度を示している場合に行われ 、上記複数個の出力映像データのうち、少なくとも 1つを、暗表示用に予め定められ た範囲の輝度を示す値に設定し、残余の出力映像データのうちの少なくとも 1つを増 減して、当該複数個の出力映像データによって駆動される期間における当該画素の 輝度の時間積分値を制御する低輝度工程と、上記入力映像データが予め定められ た閾値よりも高い輝度を示している場合に行われ、上記複数個の出力映像データの うち、少なくとも 1つを、明表示用に予め定められた範囲の輝度を示す値に設定し、 残余の出力映像データのうちの少なくとも 1つを増減して、当該複数個の出力映像デ ータによって駆動される期間における当該画素の輝度の時間積分値を制御する高 輝度工程とが含まれていると共に、上記各予測付き補正工程には、これまでの予測 結果のうち、上記補正対象データの駆動期間の最初の時点で画素が到達して 、る 輝度を示す予測結果に応じて、補正対象データを補正する補正工程と、これまでの 予測結果と、これまでに入力された補正対象データと、今回補正対象とする補正対 象データとのうち、少なくとも、上記最初の時点の輝度を示す予測結果と、今回の補 正対象データとに基づいて、今回の補正対象データの駆動期間の最後の時点の輝 度を予測する予測工程とが設けられて 、ることを特徴として 、る。
[0007] 上記構成では、上記入力映像データが予め定められた閾値よりも低い輝度を示し ている場合 (暗表示の場合)、上記複数個の出力映像データのうち、少なくとも 1つは 、暗表示用に予め定められた範囲の輝度(暗表示用の輝度)を示す値に設定される と共に、当該複数個の出力映像データによって駆動される期間における当該画素の 輝度の時間積分値を制御するために、残余の出力映像データのうちの少なくとも 1つ が増減される。したがって、殆どの場合で、暗表示用の輝度を示す出力映像データ に応じて駆動されている期間(暗表示期間)における画素の輝度を、残余の期間より も低く設定できる。
[0008] また、上記入力映像データが予め定められた閾値よりも高い輝度を示している場合
(明表示の場合)、上記複数個の出力映像データのうち、少なくとも 1つは、明表示用 に予め定められた範囲の輝度(明表示用の輝度)を示す値に設定されると共に、当 該複数個の出力映像データによって駆動される期間における当該画素の輝度の時 間積分値を制御するため、残余の出力映像データのうちの少なくとも 1つが増減され る。したがって、殆どの場合で、明表示用の輝度を示す出力映像データに応じて駆 動されている期間(明表示期間)以外の期間における画素の輝度を、明表示期間より も低く設定できる。
[0009] これらの結果、殆どの場合、各入力周期毎に少なくとも 1回、他の期間よりも画素の 輝度が低い期間を設けることができるので、表示装置が動画を表示する際の画質を 向上させることができる。また、明表示の場合、入力映像データの示す輝度が高くな るに従って、明表示期間以外の期間における画素の輝度が高くなつていくので、各 入力周期毎に少なくとも 1回、暗表示を行う構成と比較して、各入力周期全体におけ る画素の輝度の時間積分値を上昇させることができ、より明るい表示が可能な表示装 置を実現できる。
[0010] なお、明表示期間以外の期間における画素の輝度が高くなつても、明表示期間の 輝度との差力 ある程度以上あれば、動画表示時の画質を向上できるので、殆どの 場合に、動画表示時の画質を向上できる。
[0011] また、多くの表示装置では、画素の輝度が最大に近力つたり、最小に近力 たりす る場合の方が、それらの中間の場合よりも、その輝度を許容範囲内に維持可能な視 野角が広くなつている。これは、最大または最小輝度に近い状態では、液晶分子の 配向状態がコントラストへの要請から単純なものとなり補正しやすいと共に、映像的に も好ま U、結果を生み易 、ので、最大および最小 (特に最小の輝度に近 、部分)を、 より選択的に視野角保証するからである。したがって、時分割駆動しない場合は、好 適に中間調を表示可能な視野角が狭くなり、その範囲外力 見ると、白浮きなどの不 具合が発生する虞れがある。
[0012] ところが、上記構成では、暗表示の場合、上記出力映像データの 1つが暗表示用 の輝度を示す値に設定されるので、当該暗表示期間には、画素の輝度が許容範囲 内に維持される視野角を拡大できる。同様に、明表示の場合は、上記出力映像デー タの 1つが暗表示用の輝度を示す値に設定されるので、当該暗表示期間には、画素 の輝度が許容範囲内に維持される視野角を拡大できる。この結果、時分割駆動しな い構成よりも、白浮きなどの不具合の発生を防止でき、視野角を拡大できる。
[0013] 力!]えて、上記構成では、これまでの予測結果のうち、上記補正対象データの駆動 期間の最初の時点で画素が到達している輝度を示す予測結果に応じて、補正対象 データを補正しているので、画素の応答速度を向上させることができ、上記表示装置 の駆動方法によって駆動可能な表示装置の種類を増加させることができる。
[0014] より詳細には、上記のように、画素を時分割する場合、画素には、時分割駆動しな い場合よりも速い応答速度が求められる。ここで、画素の応答速度が充分であれば、 上記予測結果を参照せず、補正対象データをそのまま出力しても、補正対象データ の駆動期間の最後の時点における画素の輝度は、補正対象データの示す輝度に到 達する。ところが、画素の応答速度が不足すると、補正対象データをそのまま出力し ただけでは、上記最後の時点における画素の輝度を補正対象データの示す輝度に 到達させることが難しくなる。この結果、時分割駆動する駆動方法によって駆動可能 な表示装置の種類は、時分割駆動しな ヽ場合よりも限定されやす ヽ。
[0015] これに対して、上記構成では、上記予測結果に応じて補正対象データを補正する ので、例えば、応答速度が足りないと見込まれる場合は、階調遷移を強調して画素 の応答速度を向上させるなど、予測結果に応じた処理が可能になり、画素の応答速 度を向上させることができる。
[0016] さらに、上記最後の時点の輝度は、これまでの予測結果と、これまでに入力された 補正対象データと、今回補正対象とする補正対象データとのうち、少なくとも、上記最 初の時点の輝度を示す予測結果と、今回の補正対象データとに基づいて予測され ているので、単に、今回の補正対象データの示す輝度に到達していると見なす構成 よりも高精度に予測でき、動画表示時の画質を向上できる。
[0017] より詳細には、上述したように、暗表示の場合、上記複数個の出力映像データのう ち、少なくとも 1っを喑表示用の輝度に設定し、明表示の場合、上記複数個の出力映 像データのうち、少なくとも 1つを明表示用の輝度に設定する構成では、表示装置の 視野角を拡大できると共に、動画表示時の画質を向上できる。
[0018] ただし、この構成の場合には、輝度の増加する階調遷移と減少する階調遷移との 繰り返しが発生しやすい。ここで、画素の応答速度が遅い場合には、階調遷移を強 調しても、所望の輝度に到達できないことがある。この場合に、前回の階調遷移によ つて所望の輝度に到達していると予測して階調遷移を強調すると、上記繰り返しが発 生した場合に、階調遷移を強調し過ぎて、画素の輝度が不所望に高くなつたり、低く なったりする虞れがある。特に、画素の輝度が不所望に高くなると、ユーザが視認し やすいので、画質が大幅に低下してしまう。
[0019] これに対して、上記構成では、上記のように予測するので、より高精度に予測できる 。したがって、階調遷移を強調し過ぎによる画質低下を防止でき、表示装置の視野 角を拡大できると共に、動画表示時の画質を向上できる。
[0020] これらの結果、より明るぐ視野角が広ぐ階調遷移の強調し過ぎによる画質低下が 抑制され、しかも、動画表示時の画質が向上された表示装置を提供できる。
[0021] また、本発明に係る表示装置の駆動装置は、上記課題を解決するために、画素へ の入力映像データが入力される度に、当該画素を時分割駆動するために、当該画素 への入力映像データに応じて、当該画素への出力映像データを、当該入力周期毎 に予め定められた複数の個数生成する生成手段を有する表示装置の駆動装置にお いて、上記生成手段の前または後に配され、上記入力映像データまたは上記各出 力映像データの一方である補正対象データを補正すると共に、補正後の補正対象 データに応じて画素が駆動される期間を補正対象データの駆動期間と呼ぶとき、上 記補正対象データの駆動期間の最後に上記画素が到達している輝度を予測する補 正手段を備え、上記生成手段は、上記入力映像データが予め定められた閾値よりも 低い輝度を示している場合、上記複数個の出力映像データのうち、少なくとも 1つを、 暗表示用に予め定められた範囲の輝度を示す値に設定し、残余の出力映像データ のうちの少なくとも 1つを増減して、当該複数個の出力映像データによって駆動され る期間における当該画素の輝度の時間積分値を制御する一方、上記入力映像デー タが予め定められた閾値よりも高い輝度を示している場合、上記複数個の出力映像 データのうち、少なくとも 1つを、明表示用に予め定められた範囲の輝度を示す値に 設定し、残余の出力映像データのうちの少なくとも 1つを増減して、当該複数個の出 力映像データによって駆動される期間における当該画素の輝度の時間積分値を制 御すると共に、上記補正手段は、これまでの予測結果のうち、上記補正対象データ の駆動期間の最初の時点で画素が到達している輝度を示す予測結果に応じて、補 正対象データを補正すると共に、これまでの予測結果と、これまでに入力された補正 対象データと、今回補正対象とする補正対象データとのうち、少なくとも、上記最初の 時点の輝度を示す予測結果と今回の補正対象データとに基づいて、今回の補正対 象データの駆動期間の最後の時点の輝度を予測することを特徴としている。
[0022] 当該構成に係る表示装置の駆動装置は、上記表示装置の駆動方法と同様に、殆 どの場合、各入力周期毎に少なくとも 1回、他の期間よりも画素の輝度が低い期間を 設けることができるので、表示装置が動画を表示する際の画質を向上させることがで きる。さらに、明表示の場合、入力映像データの示す輝度が高くなるに従って、明表 示期間以外の期間における画素の輝度が高くなつていくので、より明るい表示が可 能な表示装置を実現できる。
[0023] また、上記表示装置の駆動方法と同様に、これまでの予測結果のうち、上記補正対 象データの駆動期間の最初の時点で画素が到達している輝度を示す予測結果に応 じて、補正対象データを補正できるので、画素の応答速度を向上させることができ、 上記表示装置の駆動装置によって駆動可能な表示装置の種類を増加させることが できる。
[0024] さらに、上記表示装置の駆動方法と同様に、上記最後の時点の輝度は、これまで の予測結果と、これまでに入力された補正対象データと、今回補正対象とする補正 対象データとのうち、少なくとも、上記最初の時点の輝度を示す予測結果と、今回の 補正対象データとに基づいて予測されているので、上記最後の時点の輝度をより高 精度に予測できる。したがって、表示装置の動画表示時の画質や、明るさ、あるいは 、視野角などの特性を向上するために、輝度の増加する階調遷移と減少する階調遷 移との繰り返しが頻繁に発生するにも拘わらず、階調遷移を強調し過ぎによる画質低 下を防止でき、動画表示時の画質を向上できる。
[0025] また、上記構成に加えて、上記補正対象データは、入力映像データであり、上記補 正手段は、上記生成手段の前に配置されており、上記補正対象データの駆動期間 の最後に上記画素が到達している輝度として、補正後の入力映像データに応じて生 成手段が生成した複数の出力映像データによって画素が駆動される期間の最後に 到達している輝度を予測してもよい。なお、予測するための回路としては、例えば、入 力され得る値に対応する予測結果を示す値を記憶手段に予め格納しておき、実際 に入力された値に対応する予測結果を当該記憶手段力 読み出す回路などが挙げ られる。
[0026] ここで、補正後の入力映像データが決定されると、それに応じた各出力映像データ が決定され、補正後の入力映像データに応じて生成手段が生成した上記複数の出 力映像データによって画素が駆動される期間の最初の時点における画素の輝度と、 上記各出力映像データとが決定されると、上記最後の時点の画素の輝度が決定され る。
[0027] したがって、補正手段は、 1入力周期あたりに 1回しか上記最後の時点の輝度を予 測していないにも拘わらず、少なくとも、これまでの予測結果のうち、今回の入力映像 データの駆動期間 (補正対象データの駆動期間)の最初の時点で画素が到達してい る輝度を示す予測結果と、今回の入力映像データとに基づいて、何ら支障なぐ今回 の入力映像データの駆動期間の最後の時点の輝度を予測できる。この結果、補正手 段の動作速度を抑えることができる。
[0028] また、上記補正手段は、上記生成手段の後に配置されており、上記補正対象デー タとして、各出力映像データを補正してもよい。当該構成では、各出力映像データが 補正手段によって補正されるので、より的確な補正処理が可能になり、画素の応答速 度をさらに向上させることができる。
[0029] さらに、上記構成に加えて、上記補正手段は、上記入力周期毎に生成される上記 複数個の出力映像データをそれぞれ補正し、上記入力周期を上記予め定められた 複数の個数に分割した分割期間毎に、各分割期間に対応する補正後の出力映像デ ータを出力する補正部と、上記予測結果のうち、最後の分割期間に関する予測結果 を記憶する予測結果記憶部とを備え、上記補正部は、補正対象データが最初の分 割期間に対応している場合、上記予測結果記憶部から読み出した予測結果に基づ いて補正対象データを補正し、上記補正部は、補正対象データが 2番目以降の分割 期間に対応して!/ヽる場合、補正対象データよりも前の分割期間に対応する出力映像 データと、上記予測結果記憶部に記憶された予測結果とに基づいて、上記最初の時 点の輝度を予測し、当該予測結果に応じて補正対象データを補正すると共に、上記 補正部は、最後の分割期間に対応する出力映像データと、それよりも前の分割期間 に対応する出力映像データと、上記予測結果記憶部に記憶された予測結果とに基 づいて、上記最後の分割期間に対応する出力映像データの駆動期間の最後の時点 における画素の輝度を予測し、上記予測結果記憶部に予測結果を格納してもよ!/、。
[0030] 当該構成では、 2番目以降の分割期間に対応する出力映像データを補正する際に は、補正対象データと、それよりも前の分割期間に対応する出力映像データと、上記 予測結果記憶部に記憶された予測結果とに基づ 、て、補正対象データに対応する 分割期間の最初の時点における画素の輝度が予測され、予測された輝度から補正 対象データの示す輝度への階調遷移を強調するように、補正対象データが補正され る。
[0031] したがって、補正対象データに対応する分割期間の 1つ前の分割期間の最後に画 素が到達している輝度を予測した結果を、その都度、予測結果記憶部に格納するこ となぐ補正対象データを補正できる。この結果、各分割期間の予測結果を、その都 度、予測結果記憶部に格納する構成と比べて、 1入力周期あたりに予測結果記憶部 に格納される予測結果のデータ量を削減できる。
[0032] なお、表示装置の画素数の増加に伴なつて、予測結果記憶部に記憶する必要の ある予測結果の数が増えるため、補正手段と予測結果記憶部とを互いに同じ集積回 路内に集積することが難しくなる。この場合には、補正手段と予測結果記憶部との間 のデータ伝送が、集積回路の外部の信号線を介して行われるため、集積回路内部 で伝送する場合よりも、伝送速度の向上が難しくなる。この結果、伝送速度を向上さ せるために信号線の数を増やしたり、集積回路のピン数を増やしたりすることが必要 になり、回路の寸法が不所望に増大しがちである。ところが、上記構成では、 1入力 周期あたりに予測結果記憶部に格納される予測結果のデータ量を削減できるので、 その都度、予測結果記憶部に格納する構成と比較して、補正手段を含む集積回路 外に予測結果記憶部が設けられている場合でも、何ら支障なぐ予測結果を伝送で きる。
[0033] また、上記構成に加えて、上記画素は、複数であり、上記生成手段は、各画素への 入力映像データに応じて、それぞれの画素への出力映像データを、当該入力周期 毎に、上記予め定められた複数の個数ずつ生成すると共に、上記補正手段は、各画 素への各出力映像データを、それぞれ補正し、各画素に対応する予測結果をそれ ぞれ上記予測結果記憶部に格納すると共に、上記生成手段は、上記いずれの画素 についても、上記入力周期毎に生成される、当該画素への複数個の出力映像デー タを、それぞれ上記予め定められた複数の個数ずつ生成し、上記補正部は、上記い ずれの画素についても、上記入力周期毎に、当該画素に関する予測結果を、それぞ れ上記予め定められた複数の回数読み出すと共に、これらの予測結果と上記各出 力映像データとから、いずれの画素についても、上記入力周期ごとに複数回実施可 能な、上記最後の時点における当該画素の輝度の予測処理および予測結果の格納 処理のうち、少なくとも 1回の予測結果の書き込み処理を間弓 I V、てもよ 、。
[0034] 当該構成において、上記入力周期毎に生成される複数個の出力映像データは、そ れぞれ上記予め定められた複数の個数ずつ生成され、上記予測結果は、上記入力 周期毎に、それぞれ上記予め定められた複数の回数読み出される。これにより、これ らの予測結果と上記各出力映像データとに基づいて、複数回、上記最後の時点にお ける画素の輝度の予測し、予測結果の格納できるようになる。なお、上記画素は、複 数であり、上記読み出し処理、および、生成処理は、各画素に対応して行われる。
[0035] ただし、上記構成では、上記入力周期毎に複数回実施可能な予測処理および予 測結果の格納処理のうち、少なくとも 1回の予測結果の書き込み処理が間弓 Iかれる。
[0036] この結果、間引かない構成と比較して、予測結果記憶部に、各画素の予測結果を 格納する時間間隔を長くすることができ、予測結果記憶部に要求される応答速度を 遅くすることができる。
[0037] なお、少なくとも 1回の書き込み処理を間引けば効果が得られるが、補正手段によ る予測結果の書き込み処理の回数を、各画素について、 1入力周期あたり 1回になる まで間引くと、より効果が大きい。
[0038] また、上記構成に加えて、上記生成手段は、上記残余の出力映像データのうちの 特定の 1つである特定出力映像データを増減して、上記複数個の出力映像データに よって駆動される期間における当該画素の輝度の時間積分値を制御すると共に、当 該複数個の出力映像データのうち、上記特定出力映像データ以外を、上記暗表示 用に予め定められた範囲の輝度を示す値、または、明表示用に予め定められた範囲 の輝度を示す値に設定してもよ 、。
[0039] 当該構成では、上記複数個の出力映像データのうち、上記特定出力映像データ以 外の映像データは、暗表示用に予め定められた範囲の輝度を示す値、または、明表 示用に予め定められた範囲の輝度を示す値に設定されているので、これら特定出力 映像データ以外の映像データを、当該両範囲の ヽずれにも含まれな ヽ値に設定す る場合と比較して、さらに、白浮きなどの不具合の発生を防止でき、視野角を拡大で きる。
[0040] さらに、上記構成に加えて、上記生成手段は、上記複数個の出力映像データのそ れぞれに応じて画素が駆動される期間を分割期間、当該複数個の分割期間からなり 、上記複数個の出力映像データに応じて当該画素が駆動される期間を単位期間と するとき、上記入力映像データの示す輝度が一番低い領域では、各分割期間のうち 、上記単位期間の時間的な中心位置に最も近い分割期間に対応する出力映像デー タを、上記特定出力映像データとして選択すると共に、入力映像データの示す輝度 が徐々に高くなり、当該特定出力映像データが上記明表示用に予め定められた範 囲に入ると、当該分割期間の出力映像データを当該範囲内の値に設定し、残余の 分割期間のうち、上記単位期間の時間的な中心位置に最も近い分割期間に対応す る出力映像データを、新たに上記特定出力映像データとして選択してもよい。
[0041] 当該構成では、入力映像データの示す輝度に拘わらず、上記単位期間における当 該画素の輝度の時間的な重心位置が、当該単位期間の時間的な中心位置の付近 に設定されるので、以下の不具合、すなわち、時間的な重心位置が変動することに 起因して、動く物体の前端や後端において、静止時には見えない異常な明暗が見え てしまい、これが動画品質を低下させるという不具合の発生を防止でき、動画表示時 の品質を向上できる。
[0042] また、上記構成に加えて、上記複数個の出力映像データのそれぞれによって画素 が駆動される期間同士の比率は、上記複数の出力映像データのうち、いずれの出力 映像データを上記特定出力映像データとするかを切り換えるタイミング力 当該画素 の表現可能な輝度の範囲を等分するタイミングよりも、画素の表現可能な明度の範 囲を等分するタイミングに近くなるように設定されて 、てもよ 、。
[0043] 当該構成では、上記複数個の出力映像データによって駆動される期間における当 該画素の輝度の時間積分値力 いずれの出力映像データの示す輝度によって主と して制御されるかを、適切な明度で切り換えることができるので、輝度の範囲を等分 するタイミングで切り換える場合よりも、人に認識される白浮きの量をさらに削減するこ とができ、視野角を、さらに拡大できる。
[0044] ところで、表示装置の駆動装置は、ハードウェアで実現してもよ 、し、プログラムをコ ンピュータに実行させることによって実現してもよい。具体的には、本発明に係るプロ グラムは、上記!/、ずれかの表示装置の駆動装置に設けられた各手段としてコンビュ ータを動作させるプログラムであり、本発明に係る記録媒体には、当該プログラムが 記録されている。
[0045] これらのプログラムがコンピュータによって実行されると、当該コンピュータは、上記 表示装置の駆動装置として動作する。したがって、上記表示装置の駆動装置と同様 に、より明るく、視野角が広ぐ階調遷移の強調し過ぎによる画質低下が抑制され、し 力も、動画表示時の画質が向上された表示装置を提供可能な表示装置の駆動装置 を実現できる。
[0046] 一方、本発明に係る表示装置は、上記表示装置の駆動装置のいずれかと、当該駆 動装置によって駆動される画素を含む表示部とを備えていることを特徴としている。ま た、当該構成に加えて、テレビジョン放送を受信し、当該テレビジョン放送によって伝 送された映像を示す映像信号を上記表示装置の駆動装置へ入力する受像手段を備 えていると共に、上記表示部は、液晶表示パネルであり、表示装置は、液晶テレビジ ヨン受像機として動作してもよい。さらに、上記構成に加えて、上記表示部は、液晶表 示パネルであり、上記表示装置の駆動装置には、外部から映像信号が入力されてい ると共に、表示装置は、当該映像信号を示す映像を表示する液晶モニタ装置として 動作してちょい。
[0047] 当該構成の表示装置は、上記表示装置の駆動装置駆動装置を備えて!/、るので、 上記表示装置の駆動装置と同様に、より明るく、視野角が広ぐ階調遷移の強調し過 ぎによる画質低下が抑制され、し力も、動画表示時の画質が向上された表示装置を 実現できる。
発明の効果
[0048] 本発明によれば、上記のように駆動することによってより明るぐ視野角が広ぐ階調 遷移の強調し過ぎによる画質低下が抑制され、し力も、動画表示時の画質が向上さ れた表示装置を提供することができるので、液晶テレビジョン受像機や液晶モニタを はじめとする種々の表示装置の駆動装置として、広く好適に使用できる。
図面の簡単な説明
[0049] [図 1]本発明の実施形態を示すものであり、画像表示装置に設けられた信号処理回 路の要部構成を示すブロック図である。
[図 2]上記画像表示装置の要部構成を示すブロック図である。
[図 3(a)]上記画像表示装置を備えたテレビジョン受像機の要部構成を示すブロック図 である。
[図 3(b)]上記画像表示装置を備えた液晶モニタ装置の要部構成を示すブロック図で ある。
圆 4]上記画像表示装置に設けられた画素の構成例を示す回路図である。
圆 5]上記画素を時分割せずに駆動した場合に、当該画素を正面から見たときと斜め から見たときの輝度の相違を示すグラフである。
圆 6]上記信号処理回路力もの映像信号に応じて画素が駆動された場合に、当該画 素を正面から見たときと斜めから見たときの輝度の相違を示すグラフである。
[図 7]比較例を示すものであり、信号処理回路内の変調処理部の前段に、 γ補正回 路を設けた構成を示すブロック図である。
[図 8]上記実施形態に係る信号処理回路に設けられた変調処理部の構成例を示す ものであり、変調処理部の要部構成を示すブロック図である。
圆 9]図 6に示した輝度のグラフを明度に変換したものを示すグラフである。
[図 10]図 1に示したフレームメモリに入力される映像信号と、 3 : 1に分割する場合にお ける、フレームメモリから前段 LUTに出力される映像信号と、同じく後段 LUTに出力 される映像信号とを示す説明図である。
[図 11]本実施形態において、フレームを 3 : 1に分割する場合における、前段表示信 号と後段表示信号とに関する走査信号線の ONタイミングを示す説明図である。
[図 12]本実施形態において、フレームを 3 : 1に分割した場合における、予定明度と実 際明度との関係を示すグラフである。
圆 13(a)]電極間電圧の極性をフレーム周期で反転させる方法を示す説明図である。 圆 13(b)]電極間電圧の極性をフレーム周期で反転させる別の方法を示す説明図で ある。
[図 14(a)]液晶の応答速度を説明するためのものであり、 1フレームで液晶に印加され る電圧の変動の一例を示す説明図である。
[図 14(b)]液晶の応答速度を説明するためのものであり、液晶の応答速度に従った電 極間電圧の変化を示す説明図である。
[図 14(c)]液晶の応答速度を説明するためのものであり、液晶の応答速度が遅い場合 における電極間電圧を示す説明図である。
[図 15]応答速度の遅い液晶を用いてサブフレーム表示を行う場合に、液晶パネルか ら出力される表示輝度 (予定輝度と実際輝度との関係)を示すグラフである。
[図 16(a)]表示輝度力Lmaxの 3Z4および 1Z4の場合に、前サブフレームおよび後 サブフレームによって表示される輝度を示すグラフである。
[図 16(b)]液晶に印加される電圧 (液晶電圧)の極性をサブフレーム周期で変えた場 合の、液晶電圧の遷移状態を示すグラフである。
圆 17(a)]電極間電圧の極性をフレーム周期で反転させる方法を示す説明図である。 圆 17(b)]電極間電圧の極性をフレーム周期で反転させる別の方法を示す説明図で ある。
[図 18(a)]液晶パネルにおける 4つのサブ画素と、各サブ画素の液晶電圧の極性の一 例を示す説明図である。
[図 18(b)]図 18 (a)における各サブ画素の液晶電圧の極性が反転した場合を示す説 明図である。
[図 18(c)]図 18 (b)における各サブ画素の液晶電圧の極性が反転した場合を示す説 明図である。
[図 18(d)]図 18 (c)における各サブ画素の液晶電圧の極性が反転した場合を示す説 明図である。
[図 19]均等な 3つのサブフレームにフレームを分割して表示を行った結果 (破線およ び実線)と、通常ホールド表示を行った結果 (一点鎖線および実線)とを合わせて示 すグラフである。
[図 20]フレームを 3つに分割し、フレームごとに電圧極性を反転した場合における、 液晶電圧の遷移を示すグラフである。
[図 21]フレームを 3つに分割し、サブフレームごとに電圧極性を反転した場合におけ る、液晶電圧の遷移を示すグラフである。
圆 22]輝度を調整しないサブフレームにおける、表示部に出力される信号階調(%; 表示信号の輝度階調)と、各信号階調に応じた実際輝度階調 (%)との関係 (視野角 階調特性 (実測) )を示すグラフである。
圆 23]本発明の他の実施形態を示すものであり、信号処理回路の要部構成を示す ブロック図である。 [図 24]上記信号処理回路に設けられた変調処理部の構成例を示すものであり、変調 処理部の要部構成を示すブロック図である。
[図 25]上記信号処理回路の動作を示すタイミングチャートである。
[図 26]上記信号処理回路に設けられた変調処理部の他の構成例を示すものであり、 変調処理部の要部構成を示すブロック図である。
[図 27]上記信号処理回路の動作を示すタイミングチャートである。
符号の説明
[0050] 1 画像表示装置 (表示装置)
2 画素アレイ (表示部)
42 -43 LUT (記憶手段)
44 -44c 制御回路 (生成手段)
31 ' 31a〜31c 変調処理部 (補正手段)
52c〜52d 補正処理部 (補正手段)
53c〜53d 予測値記憶手段 (補正手段)
51 .51a.51b · 54 フレームメモリ(予測値記憶手段)
VS 映像信号源 (受像手段)
SPIX(I, 1) · · · サブ画素(画素)
発明を実施するための最良の形態
[0051] 〔第 1の実施形態〕
本発明の一実施形態について図 1ないし図 8に基づいて説明すると以下の通りで ある。すなわち、本実施形態に係る画像表示装置は、より明るぐ視野角が広ぐ階調 遷移の強調し過ぎによる画質低下が抑制され、し力も、動画表示時の画質が向上さ れた表示装置であって、例えば、テレビジョン受像機の画像表示装置として、好適に 使用できる。なお、当該テレビジョン受像機が受像するテレビジョン放送の一例として は、地上波テレビジョン放送、 BS(Broadcasting Satellite)ディジタル放送や CS(Comm unication Satellite)ディジタル放送などの人工衛星を用いた放送、あるいは、ケープ ルテレビテレビジョン放送などが挙げられる。
[0052] 以下では、より明るく、視野角が広ぐ階調遷移の強調し過ぎによる画質低下が抑 制され、しかも、動画表示時の画質を向上するためのデータ処理を行う信号処理回 路について説明する前に、本実施形態で例示する画像表示装置全体の構成につい て簡単に説明する。
[0053] すなわち、当該画像表示装置 (表示装置) 1のパネル 11は、例えば、 R、 G、 Bの各 色を表示可能なサブ画素から 1つの画素を構成し、各サブ画素の輝度を制御するこ とによって、カラー表示可能なパネルであって、例えば、図 2に示すように、マトリクス 状に配されたサブ画素 SPIX(1,1)〜SPIX(n,m)を有する画素アレイ(表示部) 2と、 画素アレイ 2のデータ信号線 SLl〜SLnを駆動するデータ信号線駆動回路 3と、画 素アレイ 2の走査信号線 GLl〜GLmを駆動する走査信号線駆動回路 4とを備えて いる。また、画像表示装置 1には、両駆動回路 3 ·4へ制御信号を供給する制御回路 12と、映像信号源 VSから入力される映像信号 DATに基づいて、上記制御回路 12 へ与える映像信号 DAT2を生成する信号処理回路 21とが設けられている。なお、こ れらの回路は、電源回路 13からの電力供給によって動作している。また、本実施形 態では、走査信号線 GLl〜GLmに沿った方向に隣接する 3つのサブ画素 SPIXか ら、 1つの画素 PIXが構成されている。なお、本実施形態に係るサブ画素 SPIX(1,1) • · -が特許請求の範囲に記載の画素に対応して 、る。
[0054] ここで、上記映像信号源 VSは、映像信号 DATを生成できれば、どのような装置で あってもよいが、一例として、当該画像表示装置 1を含む装置がテレビジョン受像機 の場合は、テレビジョン放送を受信し、当該テレビジョン放送によって伝送された映像 を示す映像信号を生成するチューナ (受像手段)が挙げられる。この場合、チューナ としての映像信号源 VSは、放送信号のチャネルを選択し、選択されたチャネルのテ レビ映像信号を、信号処理回路 21に伝達し、信号処理回路 21が、当該テレビ映像 信号に基づいて、信号処理後の映像信号 DAT2を生成する。また、当該画像表示 装置 1を含む装置が液晶モニタ装置の場合、上記映像信号源 VSとして、例えば、パ 一ソナルコンピュータなどが挙げられる。
[0055] より詳細には、画像表示装置 1を含む装置がテレビジョン受像機 100aの場合、当 該テレビジョン受像機 100aは、映像信号源 VSと画像表示装置 1とを備え、図 3 (a) に示すように、当該映像信号源 VSには、例えば、テレビ放送信号が入力される。さら に、当該映像信号源 vsは、当該テレビ放送信号力ゝらのチャネルを選択し、選択され たチャネルのテレビ映像信号を、映像信号 DATとして出力するチューナ部 TSを備 えている。
[0056] 一方、画像表示装置 1を含む装置が液晶モニタ装置 100bである場合、当該液晶 モニタ装置 100bは、図 3 (b)に示すように、例えば、パーソナルコンピュータなどから の映像のモニタ信号を、液晶パネル 11への映像信号として出力するモニタ信号処理 部 101を備えている。なお、当該モニタ信号処理部 101は、信号処理回路 21あるい は制御回路 12自体であってもよいし、これらの前段または後段に設けられる回路で あってもよい。
[0057] なお、以下では、説明の便宜上、例えば、 i番目のデータ信号線 SLiのように、位置 を特定する必要がある場合にのみ、位置を示す数字または英字を付して参照し、位 置を特定する必要がな ヽ場合や総称する場合には、位置を示す文字を省略して参 照する。
[0058] 上記画素アレイ 2は、複数 (この場合は、 n本)のデータ信号線 SLl〜SLnと、各デ ータ信号線 SLl〜SLnに、それぞれ交差する複数 (この場合は、 m本)の走査信号 線 GLl〜GLmとを備えており、 1力も nまでの任意の整数を i、 1力も mまでの任意の 整数を jとすると、データ信号線 SLiおよび走査信号線 GLjの組み合わせ毎に、サブ 画素 SPIX(i,j)が設けられている。
[0059] 本実施形態の場合、各サブ画素 SPIX(iJ)は、隣接する 2本のデータ信号線 SL(i- 1) ' SLiと、隣接する 2本の走査信号線 GL(j-l) 'GLjとで囲まれた部分に配されてい る。
[0060] ここで、上記データ信号線および走査信号線によってサブ画素 SPIXを駆動できれ ば、サブ画素 SPIXは、いずれの表示素子であってもよいが、一例として、画像表示 装置 1が液晶表示装置の場合について説明すると、上記サブ画素 SPIXGJ)は、例 えば、図 4に示すように、スイッチング素子として、ゲートが走査信号線 GLjへ、ソース がデータ信号線 SLiに接続された電界効果トランジスタ SW(i,j)と、当該電界効果トラ ンジスタ SW(i,j)のドレインに、一方電極が接続された画素容量 Cp(i,j)とを備えてい る。また、画素容量 Cp(i,j)の他端は、全サブ画素 SPIX…に共通の共通電極線に接 続されている。上記画素容量 Cp(i,j)は、液晶容量 CL(i,j)と、必要に応じて付加され る補助容量 Cs(i,j)とから構成されている。
[0061] 上記サブ画素 SPIXGJ)において、走査信号線 GLjが選択されると、電界効果トラ ンジスタ SW(i,j)が導通し、データ信号線 SLiに印加された電圧が画素容量 Cp(i,j) へ印加される。一方、当該走査信号線 GLjの選択期間が終了して、電界効果トラン ジスタ SW(i,j)が遮断されている間、画素容量 Cp(i,j)は、遮断時の電圧を保持し続 ける。ここで、液晶の透過率あるいは反射率は、液晶容量 CL(i,j)に印加される電圧 によって変化する。したがって、走査信号線 GLjを選択し、当該サブ画素 SPIX(i,j) への映像データに応じた電圧をデータ信号線 SLiへ印加すれば、当該サブ画素 SPI X(i,j)の表示状態を、当該映像データに合わせて変更できる。
[0062] 本実施形態に係る上記液晶表示装置は、液晶セルとして、垂直配向モードの液晶 セル、すなわち、電圧無印加時には、液晶分子が基板に対して略垂直に配向し、サ ブ画素 SPIX(i,x)の液晶容量 CL(i,j)への印加電圧に応じて、液晶分子が垂直配向 状態から傾斜する液晶セルを採用しており、当該液晶セルをノーマリブラックモード( 電圧無印加時には、黒表示となるモード)で使用している。
[0063] 上記構成において、図 2に示す走査信号線駆動回路 4は、各走査信号線 GL1〜G Lmへ、例えば、電圧信号など、選択期間カゝ否かを示す信号を出力している。また、 走査信号線駆動回路 4は、選択期間を示す信号を出力する走査信号線 GLjを、例え ば、制御回路 12から与えられるクロック信号 GCKやスタートパルス信号 GSPなどの タイミング信号に基づいて変更している。これにより、各走査信号線 GLl〜GLmは、 予め定められたタイミングで、順次選択される。
[0064] さらに、データ信号線駆動回路 3は、映像信号として、時分割で入力される各サブ 画素 SPIX…への映像データ…を、所定のタイミングでサンプリングするなどして、そ れぞれ抽出する。さらに、データ信号線駆動回路 3は、走査信号線駆動回路 4が選 択中の走査信号線 GLjに対応する各サブ画素 SPIX(l,j)〜SPIX(n,j)へ、各データ 信号線 SLl〜SLnを介して、それぞれへの映像データに応じた出力信号を出力す る。
[0065] なお、データ信号線駆動回路 3は、制御回路 12から入力される、クロック信号 SCK およびスタートパルス信号 SSPなどのタイミング信号に基づ 、て、上記サンプリングタ イミングゃ出力信号の出力タイミングを決定して 、る。
[0066] 一方、各サブ画素 SPIX(l,j)〜SPIX(n,j)は、自らに対応する走査信号線 GLjが選 択されている間に、自らに対応するデータ信号線 SLl〜SLnに与えられた出力信号 に応じて、発光する際の輝度や透過率などを調整して、自らの明るさを決定する。
[0067] ここで、走査信号線駆動回路 4は、走査信号線 GLl〜GLmを順次選択している。
したがって、画素アレイ 2の全画素を構成するサブ画素 SPIX(1,1)〜SPIX(n,m)を、 それぞれへの映像データが示す明るさ(階調)に設定でき、画素アレイ 2へ表示され る画像を更新できる。
[0068] なお、上記各サブ画素 SPIXへの映像データ Dは、当該サブ画素 SPIXの階調レべ ルを特定できれば、階調レベル自体であってもよいし、階調レベルを算出するための パラメータであってもよいが、以下では、一例として、映像データ Dがサブ画素 SPIX の階調レベル自体である場合にっ 、て説明する。
[0069] また、上記画像表示装置 1において、映像信号源 VSから信号処理回路 21へ与え られる映像信号 DATは、後述するように、アナログ信号であってもよいし、デジタル 信号であってもよい。また、フレーム単位 (画面全体単位)で伝送されていてもよいし 、 1フレームを複数のフィールドに分割すると共に、当該フィールド単位で伝送されて いてもよいが、以下では、一例として、デジタルの映像信号 DATがフレーム単位で伝 送される場合にっ ヽて説明する。
[0070] すなわち、本実施形態に係る映像信号源 VSは、映像信号線 VLを介して、画像表 示装置 1の信号処理回路 21に映像信号 DATを伝送する際、あるフレーム用の映像 データを全て伝送した後に、次のフレーム用の映像データを伝送するなどして、各フ レーム用の映像データを時分割伝送して 、る。
[0071] また、上記フレームは、複数の水平ラインから構成されており、上記映像信号線 VL では、例えば、あるフレームにおいて、ある水平ライン用の映像データ全てが伝送さ れた後に、次に伝送する水平ライン用の映像データを伝送するなどして、各水平ライ ン用の映像データが時分割伝送されている。さらに、上記映像信号源 VSは、 1水平 ライン分の映像データを伝送する際も上記映像信号線 VLを時分割駆動しており、予 め定められた順番で、映像データが順次伝送される。
[0072] なお、当該これらの映像データは、各サブ画素への映像データ Dを特定できるもの であれば、サブ画素への映像データ D自体を個別に伝送し、当該映像データ自体を サブ画素への映像データ Dとして使用したり、当該各映像データ Dに対して、何らか のデータ処理を行ったデータを送信し、信号処理回路 21で当該データを元の各映 像データ Dに復元してもよいが、本実施形態では、例えば、画素の色を示す映像デ ータ (例えば、 RGBで表示されたデータなど)が順次伝送されており、信号処理回路 21が各画素の映像データに基づいて各サブ画素への映像データ Dを生成している 。一例として、上記映像信号 DATが XGA( extended Graphics Array)規格に沿った 映像信号の場合、上記各画素の映像データの伝送周波数 (ドットクロック)は、 65〔M Hz〕である。
[0073] 一方、信号処理回路 21は、映像信号線 VLを介して伝送される映像信号 DATに 対して、階調遷移を強調する処理と、サブフレームへの分割処理および γ変換処理 とを行って、映像信号 DAT2を出力できる。
[0074] なお、当該映像信号 DAT2は、処理後の各サブ画素への映像データ力 構成され ており、あるフレームにおける各サブ画素への映像データは、各サブフレームにおけ る各サブ画素への映像データの組み合わせとして与えられている。また、本実施形 態では、映像信号 DAT2を構成する各映像データも時分割で伝送して ヽる。
[0075] より詳細に説明すると、信号処理回路 21は、映像信号 DAT2を伝送する際、あるフ レーム用の映像データを全て伝送した後に、次のフレーム用の映像データを伝送す るなどして、各フレーム用の映像データを時分割伝送している。また、当該各フレー ムは、複数のサブフレームから構成されており、信号処理回路 21は、例えば、あるサ ブフレーム用の映像データを全て伝送した後で、次に伝送するサブフレーム用の映 像データを伝送するなどして、各サブフレーム用の映像データを時分割で伝送して いる。同様に、当該サブフレーム用の映像データは、複数の水平ライン用の映像デ ータからなり、当該水平ライン用の映像データは、各サブ画素への映像データから構 成されている。さらに、信号処理回路 21は、あるサブフレーム用の映像データを送信 する際、例えば、ある水平ライン用の映像データ全てが伝送された後に、次に伝送す る水平ライン用の映像データを伝送するなどして、各水平ライン用の映像データが時 分割伝送すると共に、各水平ライン用の映像データを送信する際、例えば、予め定 められた順番で、各サブ画素への映像データを順次伝送して ヽる。
[0076] ここで、後述するように、階調遷移強調処理を後に行ってもよいが、以下では、階調 遷移を強調した後に、サブフレームへの分割処理および γ変換処理を行う構成につ いて説明する。
[0077] すなわち、図 1に示すように、本実施形態に係る信号処理回路 21には、映像信号 DATに対して、各サブ画素 SPIXにおける階調遷移を強調する補正を行い、補正後 の映像信号 DAToを出力する変調処理部 (補正手段) 31と、当該映像信号 DATo に基づいて、サブフレームへの分割および γ変換の処理を行い、上記補正後の映 像信号 DAT2を出力するサブフレーム処理部 32とが設けられている。なお、本実施 形態に係る画像表示装置 1は、カラー表示のために、 R, G, Β用のサブ画素を備え ており、上記変調処理部 31およびサブフレーム処理部 32は、 R, G, Βのそれぞれ毎 に設けられているが、それぞれの回路は、入力される映像データ D(i,j,k)を除いて同 じ構成なので、以下では、図 1を参照しながら、 R用の回路についてのみ説明する。
[0078] 上記変調処理部 31は、詳細は後述する力 入力される映像信号が示している各サ ブ画素への映像データ (この場合は、映像データ D(i,j,k) )のそれぞれを補正し、補 正後の各映像データ (この場合は、映像データ Do(i,j,k) )からなる映像信号 DAToを 出力することができる。なお、図 1、並びに、後述する図 7、図 8、図 23、図 24および 図 26では、ある特定のサブ画素 SPIXGJ)に関する映像データのみを例示しており、 これらの映像データを記載する際、例えば、映像データ Do(k)のように、場所を示す 符号 Uを省略している。
[0079] 一方、上記サブフレーム処理部 32は、 1フレーム期間を複数のサブフレームに分 割すると共に、あるフレーム FR(k)の映像データ Do(i,j,k)に基づいて、当該フレーム FR(k)の各サブフレーム用の映像データ S〜(i,j,k)を生成できる。
[0080] 本実施形態では、例えば、 1フレーム FR(k)を 2つのサブフレームに分割しており、 サブフレーム処理部 32は、各フレーム毎に、そのフレーム(例えば、 FR(k) )の映像 データ Do(i,j,k)に基づいて、各サブフレームのそれぞれに対応する映像データ Sol (i,j,k)および So2(i,j,k)を出力している。
[0081] なお、以下では、あるフレーム FR(k)を構成する各サブフレームのうち、時間的に 前のサブフレームを SFRl(k)、時間的に後のサブフレームを、 SFR2(k)と称し、信 号処理回路 21がサブフレーム SFRl(k)用の映像データを送信した後でサブフレー ム SFR2(k)用の映像データを送信する場合について説明する。また、サブフレーム SFRl(k)には、映像データ Sol(i,j,k)が対応し、サブフレーム SFR2(k)には、映像 データ So2(i,j,k)が対応している。さらに、信号処理回路 21に、あるフレーム FR(k) の映像データ D(i,j,k)が入力されてから、当該映像データ D(i,j,k)に対応する電圧が サブ画素 SPIX(i,j)に印加されるまでの時間は、種々の時間に設定できる力 当該時 間の長さに拘わらず、あるフレーム FR(k)の映像データ D(i,j,k)と、当該映像データ D(i,j,k)に対して、階調遷移強調処理、フレーム分割処理および γ補正処理を施し たデータ (補正後のデータ Sol(i,j,k)および So2(i,j,k) )と、当該補正後のデータに 対応する電圧 (Vl(i,j,k)および V2(i,j,k) )とを、「互いに同じフレーム FR(k)に対応 するもの」と称し、これらのデータおよび電圧に対応する期間を、フレーム FR(k)と称 する。また、これらのデータ、電圧およびフレームを、互いに同じフレーム番号(例え ば、 k )を付して参照する。
[0082] ここで、これらのデータおよび電圧に対応する期間とは、より詳細には、あるフレー ム FR(k)の映像データ D(i,j,k)がサブ画素 SPIX(iJ)に入力されてから、次のフレー ム FR(k+l)の映像データ D(i,j,k+1)が入力されるまでの期間、上記映像データ D(i,j, k)に対して上記各処理を施した補正後のデータ So l(i,j,k)および So2(i,j,k)のうちの 最初の方 (この例では、 Sol(i,j,k) )を出力してから、次の上記映像データ D(i,j,k+1) に対して上記各処理を施した補正後のデータ Sol(i,j,k+l)および So2(i,j,k+l)のうち の最初の方 (この例では、 Sol(i,j,k+l) )を出力するまでの期間、あるいは、上記映像 データ Sol(i,j,k)に応じて印加される電圧 Vl(i,j,k)がサブ画素 SPIX(i,j)に印加され てから、次の上記映像データ Sol(i,j,k+l)に応じて印加される電圧 Vl(i,j,k+1)がサ ブ画素 SPIX(U)に印加されるまでの期間である。
[0083] また、説明の便宜上、以下では、各サブフレーム、並びに、それに対応する映像デ ータまたは電圧を総称する際、例えば、サブフレーム SFR(x)のように、サブフレーム の番号を示す末尾の数字を省略して参照する。この場合、あるサブフレーム SFRl(k )および SFR2(k)は、サブフレーム SFR(x)および SFR(x+l)となる。
[0084] 上記サブフレーム処理部 32は、より詳細には、 1フレーム分の各サブ画素 SPIXへ の映像データ Dを記憶するフレームメモリ 41と、映像データと第 1のサブフレームに おける映像データ Solとの対応関係を記憶したルックアップテーブル (LUT) 42と、 映像データと第 2のサブフレームにおける映像データ So2との対応関係を記憶した L UT43と、これらを制御する制御回路 44とを備えている。なお、当該 LUT42'43が 特許請求の範囲に記載の記憶手段に対応し、制御回路 44が生成手段に対応する。
[0085] 当該制御回路 44は、各フレーム毎に 1回ずつ、そのフレーム(例えば、 FR(k) )に おける、各サブ画素 SPIX(1,1)〜(n,m)への映像データ D(l,l,k)〜D(n,m,k)を、当 該フレームメモリ 41へ書き込むと共に、各フレーム毎にサブフレームの個数(この場 合は、 2回)ずつ、当該フレームメモリ 41から、上記各映像データ D(l,l,k)〜D(n,m,k )を読み出すことができる。
[0086] また、上記 LUT42には、上記読み出した映像データ D(l,l,k)〜D(n,m,k)が取り 得る値のそれぞれに関連付けて、その値を取った場合に出力すべき映像データ Sol を示す値が記憶されている。同様に、上記 LUT43〖こは、上記取り得る値のそれぞれ に関連付けて、その値を取った場合に出力すべき映像データ So2を示す値が記憶さ れている。
[0087] さらに、上記制御回路 44は、 LUT42を参照して、上記読み出した映像データ D(i,j ,k)に対応する映像データ Sol(i,j,k)を出力すると共に、 LUT43を参照して、上記読 み出した映像データ D(i,j,k)に対応する映像データ So2(i,j,k)を出力することができ る。なお、各 LUT42'43に記憶されている値は、各映像データ Sol ' So2を特定でき れば、例えば、上記取り得る値との差などであってもよいが、本実施形態では、各映 像データ Sol ' So2の値自体が格納されており、制御回路 44は、各 LUT42 '43から 読み出した値を、各映像データ Sol ' So2として出力している。
[0088] 上記 LUT42'43に格納されている値は、上記各取り得る値を g、当該値 gに対応し て、それぞれに格納されている値を、 Pl、 P2とするとき、以下のように設定されている 。なお、サブフレーム SFRl(k)の映像データ Solの方が高い輝度を示すように設定 してもよいが、以下では、サブフレーム SFR2(k)の映像データ So2が、映像データ S ol以上の輝度を示すように設定されて!ヽる場合にっ ヽて説明する。
[0089] すなわち、 gが予め定められた閾値以下の階調(閾値の示す輝度と同じかより低い 輝度)を示している場合、値 P1は、暗表示用に定められた範囲内の値に設定され、 値 P2は、当該値 P1と上記値 gとに応じた値に設定されている。なお、暗表示用の範 囲は、暗表示用に予め定められた階調以下の階調であり、当該暗表示用に予め定 められた階調が最低輝度を示している場合は、最低輝度を示す階調 (黒)である。ま た、当該暗表示用に予め定められた階調は、後述する白浮きの量を所望の量以下 に抑制可能な値に設定することが望まし 、。
[0090] これとは逆に、 gが予め定められた閾値よりも明るい階調(閾値の示す輝度よりも高 い輝度)を示している場合、値 P2は、明表示用に定められた範囲内の値に設定され 、値 P1は、当該値 P2と上記値 gとに応じた値に設定されている。なお、明表示用の 範囲は、明表示用に予め定められた階調以上の階調であり、当該明表示用に予め 定められた階調が最高輝度を示して ヽる場合は、最高輝度を示す階調(白)である。 また、当該明表示用に予め定められた階調は、後述する白浮きの量を所望の量以下 に抑制可能な値に設定することが望ま 、。
[0091] この結果、あるフレーム FR(k)における、サブ画素 SPIXGJ)への映像データ D(i,j,k )力 上記閾値以下の階調を示している場合、すなわち、低輝度領域では、当該フレ ーム FR(k)におけるサブ画素 SPIX(iJ)の輝度の高低は、主として、値 P2の大小によ つて制御される。したがって、サブ画素 SPIXGJ)の表示状態を、フレーム FR(k)のう ち、少なくともサブフレーム SFRl(k)の期間には、暗表示状態にすることができる。こ れにより、あるフレーム FR(k)における映像データ D(i,j,k)が低輝度領域の階調を示 しているときに、当該フレーム FR(k)におけるサブ画素 SPIX(iJ)の発光状態を、 CR Tのようなインパルス型発光に近づけることができ、画素アレイ 2に動画表示する際の 画質を向上できる。
[0092] また、あるフレーム FR(k)における、サブ画素 SPIXGJ)への映像データ D(i,j,k)が 、上記閾値よりも高い階調を示している場合、すなわち、高輝度領域では、当該フレ ーム FR(k)におけるサブ画素 SPIX(iJ)の輝度の高低は、主として、値 P1の大小によ つて制御される。したがって、両サブフレーム SFRl(k)および SFR2(k)の輝度を略 等分に割り振る構成と比較して、サブ画素 SPIXGJ)のサブフレーム SFRl(k)におけ る輝度と、サブフレーム SFR2(k)における輝度との差を大きく設定できる。この結果、 あるフレーム FR(k)における映像データ D(i,j,k)が高輝度領域の階調を示していると きにも、殆どの場合で、当該フレーム FR(k)におけるサブ画素 SPIX(i,j)の発光状態 をインパルス型発光に近づけることができ、画素アレイ 2に動画表示する際の画質を 向上できる。
[0093] さらに、上記構成では、上記映像データ D(i,j,k)が高輝度領域の階調を示している とき、サブフレーム SFR2(k)用の映像データ So2(i,j,k)は、明表示用に定められた 範囲内の値になり、上記映像データ D(i,j,k)の示す輝度が高くなるに従って、サブフ レーム SFRl(k)用の映像データ Sol(i,j,k)が大きくなる。したがって、白表示が指示 された場合にも暗表示する期間を必ず設ける構成と比較して、当該フレーム FR(k) におけるサブ画素 SPIX(iJ)の輝度を高くすることができる。この結果、サブ画素 SPI X(i,j)の発光状態を上記インパルス型に近づけることによって、動画表示時の画質を 向上しているにも拘わらず、サブ画素 SPIXGJ)の輝度の最高値を大幅に増大させる ことができ、より明るい画像表示装置 1を実現できる。
[0094] ここで、広視野角と!ヽわれて ヽる VAパネルでも、視野角度による階調特性の変化 を完全になくすことはできず、例えば左右方向の視野角度が大きくなると階調特性が 悪化してしまう。
[0095] 例えば、図 5に示すように、視野角度が 60度となると、正面からパネルを望む場合( 視野角度 0度)に対し、階調 γ特性が変わり、中間調の輝度が明るくなる白浮き現象 が起こってしまう。また、 IPSモードの液晶表示パネルに関しても、光学フィルムなど の光学特性の設計にもよるが、程度の大小はあれ、視野角度の増加に応じて階調特 性の変化が起こってしまう。
[0096] これに対して、上記構成では、上記映像データ D(i,j,k)が高輝度領域の階調と低輝 度領域の階調とのいずれを示しているときであっても、上記両映像データ Sol(i,j,k) および So2(i,j,k)の一方は、明表示用に定められた範囲内の値、あるいは、暗表示 用に定められた範囲内の値に設定されており、当該フレーム FR(k)におけるサブ画 素 SPIX(i,j)の輝度の高低は、主として、他方の大小によって制御される。
[0097] ここで、図 5からもわ力るように、上記白浮きの量 (想定している輝度とのズレ)は、中 間階調の場合で最も大きくなり、充分に低い輝度の場合、および、充分に高い輝度 の場合には、比較的少な 、値に留められて 、る。
[0098] したがって、図 6に示すように、各サブフレーム SFRl(k) - SFR2(k)の双方を同程 度に増減して上記輝度の高低を制御する構成 (双方が中間調になる構成)、あるい は、フレーム分割せずに表示する構成と比較して、発生する白浮きの総量を大幅に 抑えることができ、画像表示装置 1の視野角特性を大幅に向上できる。
[0099] ところで、入力される映像信号 DATの γ特性と、画像表示装置 1の画素アレイ 2 (図 2参照)の γ特性とが異なっている場合には、映像信号 DATが入力されてから、それ に対応する電圧をパネル 11に印加するまでの間に、 γ補正処理を行う必要がある。 また、上記両 γ特性が一致していたとしても、ユーザの指示などによって、本来とは 異なる γ特性で画像を表示する場合には、映像信号 DATが入力されてから、それ に対応する電圧をパネル 11に印加するまでの間に、 γ補正処理を行う必要がある。
[0100] ここで、第 1の比較例として、パネル 11に入力する信号を変更せずに、パネル 11へ 印加する電圧を制御して γ補正を行う場合、基準電圧を制御する回路が必要になり 、回路規模が増大する虞れがある。特に、本実施形態のように、カラー表示する場合 に、各色成分 (例えば、 R, G, Β)毎に基準電圧を制御する回路を設けると、回路規 模が大幅に増大してしまう。
[0101] 一方、第 2の比較例として、図 7に示す信号処理回路 121のように、図 1と略同様の 回路 131〜144に加えて、変調処理部 31の前段または後段に(図の例では、前段) 、 y補正を行う y補正回路 133を設けて、パネル 11に入力する信号を変更する構成 では、基準電圧を制御する回路に代えて、 γ補正回路 133が必要になり、依然とし て、回路規模が増大する虞れがある。なお、図 7の例では、 γ補正回路 133は、入力 され得る値に対応付けて、当該値に対応する γ補正後の出力値を記憶する LUT13 3aを参照して、 γ補正後の映像データを生成している。
[0102] これに対して、本実施形態に係る信号処理回路 21では、上記各 LUT42'43が、
0変換された、各サブフレームの映像データを示す値を記憶することによって、時分 割駆動の LUT142. 143と、 γ変換用の LUT133aとを共用している。この結果、 γ 変換用の LUT133aの分だけ回路規模を削減でき、信号処理回路 21に必要な回路 規模を大幅に削減できる。
[0103] さらに、本実施形態では、上記 LUT42'43がサブ画素 SPIX(i,j)の色毎(この例で は、 R, G, Bのそれぞれ)に設けられているので、色毎に異なった映像データ Sol ' S o2を出力でき、互いに異なる色間で同じ LUTを用いる場合よりも適切な値を出力で きる。
[0104] 特に、画素アレイ 2が液晶表示パネルの場合、表示波長に応じて複屈折が変化す るため、色毎に異なった γ特性を持っている。この結果、本実施形態のように、時分 割駆動による応答積算輝度によって階調を表現する場合には、独立した γ補正処理 をすることが望ましいので、特に効果が大きい。
[0105] さらに、 γ値が変更可能な場合、上記 LUT42'43は、変更可能な γ値毎に設けら れ、制御回路 44は、例えば、ユーザの操作などによって、 γ値の変更指示を受け付 けると、これら複数の LUT42'43の中から、当該指示に合った LUT42'43を選択し て、当該 LUT42.43を参照する。これにより、サブフレーム処理部 32は、補正すベ き γ値を切り換えることができる。
[0106] また、サブフレーム処理部 32は、 y値の変更指示に応じて、各サブフレーム SFR1 •SFR2の時間比を変更してもよい。なお、この場合、サブフレーム処理部 32は、変 調処理部 31へ指示して、変調処理部 31における各サブフレーム SFR1 ' SFR2の時 間比も変更させる。この場合は、 γ値の変更指示に応じて、各サブフレーム SFRl ' S FR2の時間比を変更できるので、詳細は後述するように、いずれの γ値への補正が 指示された場合であっても、 、ずれのサブフレーム(SFR1 · SFR2)の輝度で 1フレ ーム期間中の輝度を主として制御するかを、適切な明度で切り換えることができる。
[0107] 以下では、変調処理部 31の詳細な構成について、図 8を参照しながら説明する。
すなわち、本実施形態に係る変調処理部 31は、予測型の階調遷移強調処理を行つ ており、各サブ画素 SPIX(iJ)の予測値 E(i,j,k)を格納し、次のフレーム FR(k+l)まで 記憶するフレームメモリ(予測値記憶手段) 51と、当該フレームメモリ 51に格納されて いた、前フレーム FR(k-l)の予測値 E(i,j,k-1)を参照して、現フレーム FR(k)の各映 像データ D(i,j,k)を補正して、補正後の値を、映像データ Do(i,j,k)として出力する補 正処理部 52と、現フレーム FR(k)の各サブ画素 SPIX(iJ)への映像データ D(i,j,k)を 参照して、当該フレームメモリ 51に格納されていた当該サブ画素 SPIXGJ)に関する 予測値 E(i,j,k-1)を、新たな予測値 E(i,j,k)へと更新する予測処理部 53とを備えてい る。
[0108] 現フレーム FR(k)の上記予測値 E(i,j,k)は、補正後の映像データ Do(i,j,k)によって サブ画素 SPIXGJ)が駆動された場合に、当該サブ画素 SPIXGJ)力 次のフレーム FR(k+l)の開始時点、すなわち、次のフレーム FR(k+l)の映像データ Do(i,j,k+l)に よるサブ画素 SPIX(i,j)の駆動が開始される時点に到達して 、ると予測される輝度に 対応する階調を示す値であって、予測処理部 53は、前フレーム FR(k-l)の予測値 E (i,j,k-l)と、現フレーム FR(k)における映像データ D(i,j,k)とに基づいて、上記予測 値 E(i,j,k)を予測している。
[0109] 本実施形態では、上述したように、補正後の映像データ Do(i,j,k)に対して、フレー ム分割および γ補正処理を行って、 1フレームあたりに、 2つの映像データ Sol(i,j,k) および So2(i,j,k)を生成し、 1フレーム期間中に、それぞれに対応する電圧 Vl(i,j,k) および V2(i,j,k)を、サブ画素 SPIXGJ)に印加している。ただし、後述するように、前 フレーム FR(k- 1)の予測値 E(i,j,k-1)と、現フレーム FR(k)の映像データ D(i,j,k)とが 特定されれば、補正後の映像データ Do(i,j,k)が特定され、当該映像データ Do(i,j,k) が特定されれば、上記両映像データ Sol(i,j,k)および So2(i,j,k)、並びに、上記両 電圧 Vl(i,j,k)および V2(i,j,k)も特定される。
[0110] また、上記予測値 E(i,j,k-1)は、前フレーム FR(k-l)の予測値なので、現フレーム F R(k)を基準にして言い直すと、当該予測値 E(i,j,k-1)は、サブ画素 SPIXGJ)が現フ レーム FR(k)の開始時に到達して ヽると予測される輝度に対応する階調を示す値で あり、現フレーム FR(k)の開始時点におけるサブ画素 SPIX(iJ)の表示状態を示す 値である。なお、サブ画素 SPIX(iJ)が液晶表示素子の場合、当該値は、サブ画素 S PIX(i,j)の液晶分子の配向状態をも示して 、る。
[0111] したがって、予測処理部 53による予測方法が正確であり、前フレーム FR(k-l)の予 測値 E(i,j,k-1)が正確に予測されていれば、予測処理部 53は、前フレーム FR(k-l) の予測値 E(i,j,k-1)と、現フレーム FR(k)における映像データ D(i,j,k)とに基づいて、 上記予測値 E(i,j,k)も正確に予測できる。
[0112] 一方、上記補正処理部 52は、上記前フレーム FR(k-l)の予測値 E(i,j,k-1)、すな わち、現フレーム FR(k)の開始時点におけるサブ画素 SPIX(iJ)の表示状態を示す 値と、現フレーム FR(k)の映像データ D(i,j,k)とに基づいて、当該予測値 E(i,j,k-1) の示す階調から、映像データ D(i,j,k)への階調遷移を強調するように、映像データ D( i,j,k)を補正できる。
[0113] 上記両処理部 52· 53は、 LUTのみによって実現してもよいが、本実施形態では、 LUTの参照処理と補間処理との併用によって実現して 、る。
[0114] 具体的には、本実施形態に係る補正処理部 52は、 LUT61を備えている。当該 LU T61には、映像データ D(i,j,k)と予測値 E(i,j,k-1)とが取り得る組み合わせのそれぞ れに対応付けて、当該組み合わせが入力された場合に出力すべき映像データ Doを 示す値が格納されている。なお、当該値は、上述した LUT42'43の場合と同様、映 像データ Doを特定できる値であれば、どのような値であってもよいが、以下では、映 像データ Do自体が格納されて 、る場合にっ 、て説明する。
[0115] ここで、 LUT61には、取り得る組み合わせ全てに対応する値を格納してもよいが、 本実施形態に係る LUT61は、記憶容量を削減するため、予め定められた一部の組 み合わせについてのみ、それに対応する値を格納している。また、補正処理部 52に 設けられた演算部 62は、 LUT61に格納されて 、な 、組み合わせが入力された場合 は、 LUT61から、当該入力された組み合わせに近い複数の組み合わせに対応する 値を読み出し、それらの値を予め定められた演算によって補間して、入力された組み 合わせに対応する値を算出している。
[0116] 同様に、本実施形態に係る予測処理部 53に設けられた LUT71には、映像データ D(i,j,k)と予測値 E(i,j,k-1)とが取り得る組み合わせのそれぞれに対応付けて、当該 組み合わせが入力された場合に出力すべき値を示す値が格納されている。なお、 L UT71にも、上記と同様、出力すべき値 (この場合は、予測値 E(i,j,k) )自体が格納さ れている。また、上記と同様に、 LUT71に値を格納する組み合わせも予め定められ た一部の組み合わせに制限されていると共に、予測処理部 53に設けられた演算部 7 2は、 LUT71を参照した補間演算によって、入力された組み合わせに対応する値を 算出している。
[0117] 上記構成では、フレームメモリ 51に、前フレーム FR(k- 1)の映像データ D(i,j,k-1) 自体ではなく、予測値 E(i,j,k-1)が格納されており、補正処理部 52は、前フレーム F R(k-l)の予測値 E(i,j,k-1)、すなわち、現フレーム FR(k)の開始時点におけるサブ 画素 SPIXGJ)の表示状態を予測した値を参照して、現フレーム FR(k)の映像データ D(i,j,k)を補正している。これにより、インパルス型発光に近づけて動画表示時の画 質を向上させた結果、ライズ→ディケイの繰り返しが頻繁に発生するにも拘わらず、 不適切な階調遷移強調を防止できる。
[0118] 具体的には、応答速度の遅いサブ画素 SPIXGJ)を使用している場合、前々回から 前回への階調遷移を強調しても、前回のサブフレーム SFR(x-l)の終了時点におけ るサブ画素 SPIXGJ)の輝度 (現サブフレーム FR(x)の開始時点における輝度)が、 前サブフレーム SFR(x-l)の映像データ So(i,j,x)の示す輝度に到達していない場合 がある。この場合の例としては、階調差が大きいときや、階調遷移強調前の階調が、 最大値または最小値に近くて、階調遷移を充分に強調できな 、場合などが挙げられ る。
[0119] この場合に、信号処理回路 21が、現サブフレーム FR(x)の開始時点における輝度 が前サブフレーム SFR(x_l)の映像データ So(i,j,x)の示す輝度に到達していると見 なして、階調遷移を強調すると、階調遷移を強調し過ぎたり、階調遷移の強調が不充 分だったりする。
[0120] 特に、輝度が増加する階調遷移 (ライズの階調遷移)と、輝度が減少する階調遷移
(ディケイの階調遷移)とを繰り返している場合には、上記のように見なして階調遷移 を強調すると、階調遷移を強調し過ぎてサブ画素 SPIXGJ)の輝度が不所望に明るく なってしまう。この結果、不適切な階調遷移強調を、ユーザが視認し易くなり、画質が 低下する虞れがある。
[0121] 一方、本実施形態では、上述したように、映像データ Sol(i,j,k)および So2(i,j,k)に 対応する電圧 Vl(i,j,k)および V2(i,j,k)をサブ画素 SPIX(iJ)に印加することによって 、当該サブ画素 SPIXGJ)の発光状態をインパルス型発光に近づけているため、サブ 画素 SPIX(iJ)が取るべき輝度は、サブフレーム毎に増減している。この結果、上記 のように見なして階調遷移を強調すると、不適切な階調遷移によって画質が低下す る虞れがある。
[0122] これに対して、本実施形態では、予測値 E(i,j,k)を参照することによって、上記のよ うに見なす場合よりも高精度に予測しているので、インパルス型発光に近づけた結果 、ライズ→ディケイの繰り返しが頻繁に発生するにも拘わらず、不適切な階調遷移強 調を防止できる。この結果、不適切な階調遷移強調による画質低下を招くことなぐィ ンノ ルス型に近づけた発光によって動画表示時の画質を向上できる。なお、上記の ように見なすよりも高精度な予測方法の他の例としては、例えば、これまでに入力さ れた映像データの複数を参照して予測したり、これまでの予測結果の複数を参照し て予測したりする方法や、これまでの予測結果と、これまでに入力された映像データ と、上記今回映像データとのうち、少なくとも今回映像データを含む複数を参照して 予測する方法などが挙げられる。
[0123] また、垂直配向モードかつノーマリブラックモードの液晶セルは、ディケイの階調遷 移に対する応答速度がライズの場合に比べて遅ぐ階調遷移を強調するように変調 して駆動したとしても、前々回力も前回へのディケイの階調遷移において、実際の階 調遷移と、所望の階調遷移とに差が発生しやすい。したがって、画素アレイ 2として当 該液晶セルを用いた場合は、特に効果が大き 、。
[0124] 以下では、図 9〜図 22を参照しながら、サブフレーム処理部 32によるサブフレーム への分割処理(映像データ Solおよび So2の生成処理)について、以下の構成、す なわち、画素アレイ 2が VAモードのアクティブマトリックス(TFT)液晶パネルであり、 各サブ画素 SPIXが 8ビットの階調を表示可能である構成を例にして、さらに詳細に 説明する。なお、以下では、説明の便宜上、上記映像データ Solおよび So2を、前 段表示信号および後段表示信号と称する。
[0125] まず、液晶パネルに関する一般的な表示輝度 (パネルによって表示される画像の 輝度)について説明する。
[0126] 通常の 8ビットデータを、サブフレームを用いずに 1フレームで画像を表示する場合
(1フレーム期間で、液晶パネルの全走査信号線 GLl〜GLmを 1回だけ ONとする、 通常ホールド表示する場合)、液晶パネルに印加される信号(映像信号 DAT2)の輝 度階調 (信号階調)は、 0〜255までの段階となる。
[0127] そして、液晶パネルにおける信号階調と表示輝度とは、以下の(1)式によって近似 的に表現される。
( (T-TO) / (Tmax-TO) ) = (L/Lmax) " γ · · · (1)
ここで、 Lは 1フレームで画像を表示する場合 (通常ホールド表示で画像を表示する 場合)の信号階調 (フレーム階調)、 Lmaxは最大の輝度階調 (255)、 Tは表示輝度 、 Tmaxは最大輝度(L = Lmax = 255のときの輝度;白)、 TOは最小輝度(L = 0のと きの輝度;黒)、 γは、補正値 (通常 2. 2)である。
なお、実際の液晶パネルでは、 ΤΟ = 0ではない。しかしながら、説明を簡略化するた め、以下では、 TO = 0とする。
[0128] また、この場合 (通常ホールド表示の場合)に液晶パネルから出力される表示輝度 Tは、上述した図 5に示すようになる。
図 5に示すグラフは、横軸に『出力されるはずの輝度 (予定輝度;信号階調に応じた 値,上記の表示輝度 Tに相当)』を、縦軸に『実際に出力された輝度 (実際輝度)』を 示している。
[0129] このグラフに示すように、この場合には、上記した 2つの輝度は、液晶パネルの正面
(視野角度 0度)においては等しくなる。
一方、視野角度を 60度としたときには、実際輝度が、階調 γ特性の変化によって、中 間調の輝度で明るくなつてしまう。
[0130] 次に、本構成例に係る画像表示装置 1における表示輝度について説明する。
本画像表示装置 1では、制御回路 44が、
(a)「前サブフレームおよび後サブフレームのそれぞれにおいて画素アレイ 2によって 表示される画像の輝度 (表示輝度)の時間積分値(1フレームにおける積分輝度)を、 通常ホールド表示を行う場合の 1フレームの表示輝度と等しくする」
(b)「一方のサブフレームを黒 (最小輝度)、または白(最大輝度)にする」
を満たすように階調表現を行うように設計されて!ヽる。
[0131] このために、本構成例に係る画像表示装置 1では、制御回路 44が、フレームを 2つ のサブフレームに均等に分割し、 1つのサブフレームによって最大輝度の半分までの 輝度を表示するように設計されて!ヽる。
[0132] すなわち、最大輝度の半分(閾輝度; TmaxZ2)までの輝度を 1フレームで出力す る場合 (低輝度の場合)、制御回路 44は、前サブフレームを最小輝度 (黒)とし、後サ ブフレームの表示輝度のみを調整して階調表現を行う(後サブフレームのみを用い て階調表現を行う)。
この場合、 1フレームにおける積分輝度は『(最小輝度 +後サブフレームの輝度) /2 』の輝度となる。
[0133] また、上記の閾輝度より高い輝度を出力する場合 (高輝度の場合)、制御回路 44は 、後サブフレームを最大輝度(白)とし、前サブフレームの表示輝度を調整して階調 表現を行う。
この場合、 1フレームにおける積分輝度は『(前サブフレームの輝度 +最大輝度) Z2 』の輝度となる。
[0134] 次に、このような表示輝度を得るための表示信号 (前段表示信号および後段表示 信号)の信号階調設定について具体的に説明する。
なお、信号階調設定については、図 1に示した制御回路 44が行う。
制御回路 44は、上記した(1)式を用いて、上記した閾輝度 (TmaxZ2)に対応する フレーム階調をあら力じめ算出しておく。
[0135] すなわち、このような表示輝度に応じたフレーム階調(閾輝度階調; Lt)は、(1)式よ り、
Lt = 0. 5" (ΐ/ γ ) X Lmax …(2)
たたし、 Lmax= max y · · · (2a)
となる。
[0136] そして、制御回路 44は、画像を表示する際、フレームメモリ 41から出力された映像 信号に基づいて、フレーム階調 Lを求める。
そして、この Lが Lt以下の場合、制御回路 44は、前段表示信号の輝度階調 (Fとする )を、前段 LUT42によって最小 (0)とする。
一方、制御回路 44は、後段表示信号の輝度階調 (Rとする)を、(1)式に基づいて、 R = 0. 5" (ΐ/ γ ) X L …(3)
となるように、後段 LUT43を用いて設定する。
[0137] また、フレーム階調 Lが Ltより大きい場合、制御回路 44は、後段表示信号の輝度 階調 Rを最大(255)とする。
一方、制御回路 44は、前サブフレームの輝度階調 Fを、(1)式に基づいて、
F= (L" y -0. 5 X Lmax" y ) " (l/ y ) …(4)
とする。
[0138] 次に、本構成例に係る画像表示装置 1における表示信号の出力動作について、よ り詳細に説明する。
この場合、制御回路 44は、図 2に示す制御回路 12へ、信号処理後の映像信号 DA T2を送信することによって、データ信号線駆動回路 3に、倍クロックで、 1番目の走査 信号線 GL1のサブ画素 SPIX(n個)の前段表示信号を蓄積させる。
[0139] そして、制御回路 44は、制御回路 12を介して、走査信号線駆動回路 4に、 1番目 の走査信号線 GL1を ONにさせ (選択させ)、この走査信号線 GL1のサブ画素 SPIX に対して前段表示信号を書き込ませる。その後、制御回路 44は、データ信号線駆動 回路 3に蓄積させる前段表示信号を変えながら、同様に、 2〜m番目の走査信号線 GL2〜GLmを倍クロックで ONさせてゆく。これにより、 1フレームの半分の期間(lZ 2フレーム期間)で、全てのサブ画素 SPIXに前段表示信号を書き込める。
[0140] さらに、制御回路 44は、同様の動作を行って、残りの 1Z2フレーム期間で、全走査 信号線 GLl〜GLmのサブ画素 SPIXに後段表示信号の書き込みを行う。
これにより、各サブ画素 SPIXには、前段表示信号と後段表示信号とが、それぞれ均 等の時間(1Z2フレーム期間)ずつ書き込まれることになる。
[0141] 上述した図 6は、このような前段表示信号および後段表示信号を前'後サブフレー ムに分けて出力するサブフレーム表示を行った結果 (破線および実線)を、図 2に示 した結果 (一点鎖線および実線)と合わせて示すグラフである。
[0142] 本構成例に係る画像表示装置 1では、図 5に示したように、大きな視野角度での実 際輝度と予定輝度 (実線と同等)とのズレが、表示輝度が最小あるいは最大の場合に 最小 (0)となる一方、中間調(閾輝度近傍)で最も大きくなる液晶パネルを用いている [0143] そして、本構成例に係る画像表示装置 1では、 1つのフレームをサブフレームに分 割するサブフレーム表示を行って 、る。
さらに、 2つのサブフレームの期間を等しく設定し、低輝度の場合、 1フレームにおけ る積分輝度を変化させない範囲で、前サブフレームを黒表示とし、後サブフレームの みを用いて表示を行って 、る。
したがって、前サブフレームでのズレが最小となるので、図 6の破線に示すように、両 サブフレームのトータルのズレを約半分に減らせる。
[0144] 一方、高輝度の場合、 1フレームにおける積分輝度を変化させない範囲で、後サブ フレームを白表示とし、前サブフレームの輝度だけを調整して表示を行っている。 このため、この場合にも、後サブフレームのズレが最小となるので、図 6の破線に示す ように、両サブフレームのトータルのズレを約半分に減らせる。
[0145] このように、本構成例に係る画像表示装置 1では、通常ホールド表示を行う構成 (サ ブフレームを用いずに 1フレームで画像を表示する構成)に比して、全体的にズレを 約半分に減らすことが可能となって 、る。
このため、図 5に示したような、中間調の画像が明るくなつて白く浮いてしまう現象(白 浮き現象)を抑制することが可能である。
[0146] なお、本構成例では、前サブフレームと後サブフレームとの期間が等しいとしている 。これは、最大値の半分までの輝度を 1つのサブフレームで表示するためである。 しかしながら、これらのサブフレームの期間を、互いに異なる値に設定してもよい。
[0147] すなわち、本構成例に係る画像表示装置 1において問題とされている白浮き現象 は、視野角度の大きい場合に実際輝度が図 5のような特性を持つことで、中間調の 輝度の画像が明るくなつて白く浮いて見える現象のことである。
[0148] なお、通常、カメラに撮像された画像は、輝度に基づいた信号となる。そして、この 画像をデジタル形式で送信する場合には、(1)式に示した γを用いて画像を表示信 号に変換する (すなわち、輝度の信号を(ΐΖ γ )乗し、均等割りして階調をつける)。 そして、このような表示信号に基づいて、液晶パネル等の画像表示装置 1によって表 示される画像は、(1)式によって示される表示輝度を有することとなる。 [0149] ところで、人間の視覚感覚は、画像を、輝度ではなく明度として受け取つている。ま た、明度(明度指数) Mとは、以下の(5) (6)式によって表されるものである(非特許文 献 1参照)。
[0150] Μ= 116 ΧΥ" (1/3) - 16, Y>0. 008856 …(5)
Μ = 903. 29 ΧΥ, Υ≤0. 008856 · · · (6)
ここで、 Υは、上記した実際輝度に相当するものであり、 Y= (yZyn)なる量である。 なお、 yは、任意な色の xyz表色系における三刺激値の y値であり、また、 ynは、完全 拡散反射面の標準の光による y値であり yn= 100と定められている。
[0151] これらの式より、人間は、輝度的に暗い映像に対して敏感であり、明るい映像に対 しては鈍感になっていく傾向がある。
そして、白浮きに関しても、人間は、輝度のズレではなぐ明度のズレとして受け取つ ていると考えられる。
[0152] ここで、図 9は、図 5に示した輝度のグラフを明度に変換したものを示すグラフである このグラフは、横軸に『出力されるはずの明度 (予定明度;信号階調に応じた値,上 記の明度 Mに相当)』を、縦軸に『実際に出力された明度 (実際明度)』を示している。 このグラフに実線で示すように、上記した 2つの明度は、液晶パネルの正面 (視野角 度 0度)においては等しくなる。
[0153] 一方、このグラフの破線に示すように、視野角度を 60度とし、かつ、各サブフレーム の期間を均等とした場合 (すなわち、最大値の半分までの輝度を 1つのサブフレーム で表示する場合)には、実際明度と予定明度とのズレは、通常ホールド表示を行う従 来の場合よりは改善されている。したがって、白浮き現象を、ある程度は抑制できて いることがわ力る。
[0154] また、人間の視覚感覚にあわせて白浮き現象をより大きく抑制するためには、輝度 ではなぐ明度に合わせてフレームの分割割合を決定することがより好ましいといえる そして、実際明度と予定明度とのズレは、輝度の場合と同様に、予定明度における最 大値の半分の点で最も大きくなる。 [0155] したがって、最大値の半分までの輝度を 1つのサブフレームで表示するようにフレ ームを分割するよりも、最大値の半分までの明度を 1つのサブフレームで表示するよ うにフレームを分割する方力 人間に感じられるズレ(すなわち白浮き)を改善できる ことになる。
[0156] そこで、以下に、フレームの分割点における好ましい値について説明する。
まず、演算を簡単に行うために、上記した(5) (6)式を、以下の(6a)式のような形((1
)式に類似の形)にまとめて近似する。
Μ =Υ" ( 1/ α ) - - - (6a)
このような形に変換した場合、この式の αは、約 2. 5となる。
[0157] また、この aの値が 2. 2〜3. 0の間にあれば、(6a)式における輝度 Yと明度 Mとの 関係は適切となる(人間の視覚感覚に対応している)と考えられている。
[0158] そして、 1つのサブフレームで、最大値の半分の明度 Mを表示するためには、 2つ のサブフレームの期間を、 γ = 2. 2のときは約 1 : 3、 γ = 3. 0のときは約 1: 7とするこ とが好まし 、ことがわ力つて 、る。
なお、このようにフレームを分割する場合には、輝度の小さいときに表示に使用する 方のサブフレーム(高輝度の場合に最大輝度に維持しておく方のサブフレーム)を短 、期間とすることとなる。
[0159] 以下に、前サブフレームと後サブフレームとの期間を 3 : 1とする場合について説明 する。
まず、この場合における表示輝度について説明する。
[0160] この場合には、最大輝度の 1Ζ4 (閾輝度; TmaxZ4)までの輝度を 1フレームで出 力する表示する低輝度表示を行う際、制御回路 44は、前サブフレームを最小輝度( 黒)とし、後サブフレームの表示輝度のみを調整して階調表現を行う(後サブフレーム のみを用いて階調表現を行う)。
このときには、 1フレームにおける積分輝度は『(最小輝度 +後サブフレームの輝度) Z4』の輝度となる。
[0161] また、閾輝度 (TmaxZ4)より高い輝度を 1フレームで出力する場合 (高輝度の場合 )、制御回路 44は、後サブフレームを最大輝度(白)とし、前サブフレームの表示輝度 を調整して階調表現を行う。
この場合、 1フレームにおける積分輝度は『(前サブフレームの輝度 +最大輝度) Z4 』の輝度となる。
[0162] 次に、このような表示輝度を得るための表示信号 (前段表示信号および後段表示 信号)の信号階調設定について具体的に説明する。
なお、この場合にも、信号階調 (および後述する出力動作)は、上記した (a)(b)の条件 を満たすように設定される。
[0163] まず、制御回路 44は、上記した(1)式を用いて、上記した閾輝度 (TmaxZ4)に対 応するフレーム階調をあら力じめ算出しておく。
[0164] すなわち、このような表示輝度に応じたフレーム階調(閾輝度階調; Lt)は、(1)式よ り、
Figure imgf000040_0001
X Lmax · · · (7)
そして、制御回路 44は、画像を表示する際、フレームメモリ 41から出力された映像 信号に基づいて、フレーム階調 Lを求める。
そして、この Lが Lt以下の場合、制御回路 44は、前段表示信号の輝度階調 (F)を、 前段 LUT42を用いて最小 (0)とする。
一方、制御回路 44は、後段表示信号の輝度階調 (R)を、(1)式に基づいて、
Figure imgf000040_0002
となるように、後段 LUT43を用いて設定する。
[0165] また、フレーム階調 Lが Ltより大きい場合、制御回路 44は、後段表示信号の輝度 階調 Rを最大(255)とする。
一方、制御回路 44は、前サブフレームの輝度階調 Fを、(1)式に基づいて、
F= ( (L - (1/4) X Lmax" y ) ) ' ( l/ y ) · · · (9)
とする。
[0166] 次に、このような前段表示信号および後段表示信号の出力動作について説明する 上記したように、フレームを均等分割する構成では、サブ画素 SPIXには、前段表示 信号と後段表示信号とが、それぞれ均等の時間(1Z2フレーム期間)づっ書き込ま れる。
これは、倍クロックで前段表示信号を全て書き込んだ後に、後段表示信号の書き込 みを行うため、各表示信号に関する走査信号線 GL…の ON期間が均等となったた めである。
[0167] したがって、後段表示信号の書き込みの開始タイミング (後段表示信号に関する走 查信号線 GL…の ONタイミング)を変えることにより、分割の割合を変えられる。
[0168] 図 10の(a)は、フレームメモリ 41に入力される映像信号、図 10の(b)は、 3 : 1に分 割する場合における、フレームメモリ 41から前段 LUT42に出力される映像信号、そ して、図 10の(c)は、同じく後段 LUT43に出力される映像信号を示す説明図である また、図 11は、同じく 3 : 1に分割する場合における、前段表示信号と後段表示信号と に関する走査信号線 GL…の ONタイミングを示す説明図である。
[0169] これらの図に示すように、この場合、制御回路 44は、 1フレーム目の前段表示信号 を、通常のクロックで各走査信号線 GL…のサブ画素 SPIXに書き込んでゆく。
そして、 3Z4フレーム期間後に、後段表示信号の書き込みを開始する。このときから は、前段表示信号と後段表示信号とを、倍クロックで、交互に書き込んでゆく。
[0170] すなわち、「全走査信号線 GLl〜GLmの 3Z4」番目の GL(m*3/4)のサブ画素 S PIXに前段表示信号を書き込んだ後、データ信号線駆動回路 3に 1番目の走査信号 線 GL1に関する後段表示信号の蓄積し、この走査信号線 GL1を ONする。次に、デ ータ信号線駆動回路 3に「全走査信号線 GLl〜GLmの 3Z4」 + 1番目の走査信号 線 GL(m*3/4+l)に関する前段表示信号を蓄積し、この走査信号線 GL(m*3/4+l)を ONする。
[0171] このように 1フレーム目の 3Z4フレーム期間後から、倍クロックで、前段表示信号と 後段表示信号とを交互に出力することで、前サブフレームと後サブフレームとの割合 を 3 : 1とすることが可能となる。
そして、これら 2つのサブフレームにおける表示輝度の時間積分値 (積分総和)が、 1 フレームにおける積分輝度となる。
なお、フレームメモリ 41に蓄えられたデータは、走査信号線 GL…の ONタイミングに あわせてデータ信号線駆動回路 3に出力されることになる。
[0172] また、図 12は、フレームを 3 : 1に分割した場合における、予定明度と実際明度との 関係を示すグラフである。
この図に示すように、この構成では、予定明度と実際明度とのズレの最も大きくなる点 でフレームを分割できている。したがって、図 9に示した結果に比べて、視野角度を 6 0度とした場合における予定明度と実際明度との差が、非常に小さくなつている。
[0173] すなわち、本構成例に係る画像表示装置 1では、「TmaxZ4」までの低輝度 (低明 度)の場合、 1フレームにおける積分輝度を変化させない範囲で、前サブフレームを 黒表示とし、後サブフレームのみを用いて表示を行って 、る。
したがって、前サブフレームでのズレ(実際明度と予定明度との差)が最小となるので 、図 12の破線に示すように、両サブフレームのトータルのズレを約半分に減らせる。
[0174] 一方、高輝度 (高明度)の場合、 1フレームにおける積分輝度を変化させない範囲 で、後サブフレームを白表示とし、前サブフレームの輝度だけを調整して表示を行つ ている。
このため、この場合にも、後サブフレームのズレが最小となるので、図 12の破線に示 すように、両サブフレームのトータルのズレを約半分に減らせる。
[0175] このように、本構成例に係る画像表示装置 1では、通常ホールド表示を行う構成に 比して、全体的に明度のズレを約半分に減らすことが可能となっている。
このため、図 5に示したような、中間調の画像が明るくなつて白く浮いてしまう現象(白 浮き現象)を、より効果的に抑制することが可能である。
[0176] ここで、上記では、表示開始時から 3Z4フレーム期間までの間において、 1フレー ム目の前段表示信号を、通常のクロックで各全走査信号線 GL…のサブ画素 SPIXに 書き込むとしている。これは、後段表示信号を書き込むべきタイミングに達していない 力 である。
[0177] し力しながら、このような措置に変えて、ダミーの後段表示信号を用いて、表示開始 時力も倍クロックでの表示を行うようにしてもよい。すなわち、表示開始時から 3Z4フ レーム期間までの間に、前段表示信号と、信号階調 0の後段表示信号 (ダミーの後段 表示信号)とを交互に出力するようにしてもょ 、。 [0178] ここで、以下に、より一般的に、前サブフレームと後サブフレームとの割合を n: 1とす る場合について説明する。
この場合、制御回路 44は、最大輝度の lZ (n+ l) (閾輝度; TmaxZ (n+ l) )まで の輝度を 1フレームで出力する場合 (低輝度の場合)、前サブフレームを最小輝度( 黒)とし、後サブフレームの表示輝度のみを調整して階調表現を行う(後サブフレーム のみを用いて階調表現を行う)。
この場合、 1フレームにおける積分輝度は『 (最小輝度 +後サブフレームの輝度) / ( n+ l)』の輝度となる。
[0179] また、閾輝度 (TmaxZ (n+ l) )より高い輝度を出力する場合 (高輝度の場合)、制 御回路 44は、後サブフレームを最大輝度(白)とし、前サブフレームの表示輝度を調 整して階調表現を行う。
この場合、 1フレームにおける積分輝度は『 (前サブフレームの輝度 +最大輝度) / ( n+ l)』の輝度となる。
[0180] 次に、このような表示輝度を得るための表示信号 (前段表示信号および後段表示 信号)の信号階調設定について具体的に説明する。
なお、この場合にも、信号階調 (および後述する出力動作)は、上記した (a)(b)の条件 を満たすように設定される。
[0181] まず、制御回路 44は、上記した(1)式を用いて、上記した閾輝度 (TmaxZ (n+ l)
)に対応するフレーム階調をあら力じめ算出しておく。
[0182] すなわち、このような表示輝度に応じたフレーム階調(閾輝度階調; Lt)は、(1)式よ り、
Figure imgf000043_0001
X Lmax · · · (10)
そして、制御回路 44は、画像を表示する際、フレームメモリ 41から出力された映像 信号に基づいて、フレーム階調 Lを求める。
そして、この Lが Lt以下の場合、制御回路 44は、前段表示信号の輝度階調 (F)を、 前段 LUT42を用いて最小 (0)とする。
一方、制御回路 44は、後段表示信号の輝度階調 (R)を、(1)式に基づいて、
Figure imgf000043_0002
· ' · (11) となるように、後段 LUT43を用いて設定する。
[0183] また、フレーム階調 Lが Ltより大きい場合、制御回路 44は、後段表示信号の輝度 階調 Rを最大(255)とする。
一方、制御回路 44は、前サブフレームの輝度階調 Fを、(1)式に基づいて、 F=((L -(l/(n+l))XLmax ))"(l/y)
•••(12)
とする。
[0184] また、表示信号の出力動作については、フレームを 3: 1に分けた場合の動作にお いて、 1フレーム目の nZ(n+l)フレーム期間後から、倍クロックで、前段表示信号と 後段表示信号とを交互に出力するように設計すればよい。
[0185] また、フレームを均等分割する構成は、以下のような構成であるといえる。すなわち 、 1フレームを「l+n( = l)」のサブフレーム期間に分割する。そして、通常クロックの 「l+n( = l)」倍のクロックで、 1つのサブフレーム期間に前段表示信号を出力し、後 の n( = l)個のサブフレーム期間に後段表示信号を連続的に出力する。
[0186] し力しながら、この構成では、 nが 2以上となると、クロックを非常に速める必要がある ため、装置コストが増大する。
したがって、 nが 2以上となる場合には、上記したような前段表示信号と後段表示信号 とを交互に出力する構成とすることが好ましい。
この場合には、後段表示信号の出力タイミングを調整することで、前サブフレームと 後サブフレームとの割合を n: 1とすることが可能となるため、必要となるクロック周波数 を、通常の 2倍に維持できる。
[0187] また、液晶パネルは、交流により駆動されることが好ましい。これは、交流駆動とする ことにより、フレーム毎に、サブ画素 SPIXの電荷極性 (液晶を挟む画素電極間の電 圧 (電極間電圧)の向き)を変えられるからである。
[0188] 直流駆動とすると、電極間に偏った電圧が力かるため、電極に電荷がたまる。そし て、この状態が続くと、電圧を印加していないときでも、電極間に電位差が発生した 状態 ( 、わゆる焼き付きと 、う状態)になってしまう。
[0189] ここで、本構成例に係る画像表示装置 1のようにサブフレーム表示を行う場合、サブ フレーム間で、画素電極間に印加される電圧値 (絶対値)が異なることが多い。
[0190] したがって、電極間電圧の極性をサブフレーム周期で反転させると、前サブフレー ムと後サブフレームとの電圧値の違いにより、印加される電極間電圧に偏りが生じる。 このため、液晶パネルを長時間駆動させると、電極に電荷がたまり、上記した焼き付 きゃフリツ力などの発生する可能性がある。
[0191] そこで、本構成例に係る画像表示装置 1では、電極間電圧の極性をフレーム周期 で反転させることが好ま 、。
なお、電極間電圧の極性をフレーム周期で反転させる方法は 2つある。 1つの方法は 、 1フレームの間、同極性の電圧を印加する方法である。
また、もう 1つの方法は、 1フレーム内の 2つのサブフレーム間で電極間電圧を逆極性 とし、さらに、後サブフレームと、 1つ後のフレームの前サブフレームとを同極性で駆 動する方法である。
[0192] 図 13 (a)に、前者の方法をとつた場合における、電圧極性 (電極間電圧の極性)と フレーム周期との関係を示す。また、図 13 (b)に、後者の方法をとつた場合における 、電圧極性とフレーム周期との関係を示す。
このようにフレーム周期で電極間電圧を交流化することにより、サブフレーム間で電 極間電圧が大きく異なっていても、焼き付きゃフリツ力を防止できる。
[0193] なお、焼き付きゃフリツ力を防止するためには、上記 2つの方法のどちらを採用して も良いが、例えば、後半のサブフレームを比較的明るい表示に使用すると決めた場 合においては、 1フレームの間同極性とする構成がより好ましい。より詳細には、サブ フレームに分割すると、 TFTの充電時間が減少するので、充電時間がたとえ設計範 囲内であったとしても、サブフレームに分割しない構成と比較すると、充電のためのマ 一ジンが減少することは否定できない。そのため、量産においては、パネル、 TFT性 能のバラツキにより充電不足による輝度バラツキが発生する虞れがある。ところが、上 記構成によると、輝度表示の主体となる後半フレームが同極性書き込みの 2回目に 相当し、輝度表示の主体となる後半フレームにおける電圧変化を少なくできる。この 結果、必要となる充電電荷量を減少させることができ、充電不足による表示不良を防 止することができる。 [0194] また、上記のように、本構成例に係る画像表示装置 1では、サブフレーム表示によ つて液晶パネルを駆動しており、これにより、白浮きを抑制している。
しかしながら、液晶の応答速度 (液晶にかかる電圧 (電極間電圧)が印加電圧と等しく なるまでの速度)が遅い場合、このようなサブフレーム表示による効果が薄れてしまう ことがある。
[0195] すなわち、通常ホールド表示を行う場合、 TFT液晶パネルでは、ある輝度階調に 対して 1つの液晶状態が対応する。したがって、液晶の応答特性は、表示信号の輝 度階調に依存しない。
[0196] 一方、本構成例に係る画像表示装置 1のようにサブフレーム表示を行う場合、前サ ブフレームが最小輝度(白)で後サブフレームが最大輝度となる、中間階調の表示信 号を表示する場合、 1フレームで液晶に印加される電圧は、図 14 (a)に示すように変 動する。
また、電極間電圧は、液晶の応答速度 (応答特性)に従って、図 14 (b)に実線 Xで示 すように変化する。
[0197] ここで、液晶の応答速度が遅い場合、このような中間調表示を行うと、電極間電圧( 実線 X)は、図 14 (c)に示すように変化する。
したがって、この場合には、前サブフレームの表示輝度が最小とならないとともに、後 サブフレームの表示輝度が最大とならな 、。
[0198] このため、予定輝度と実際輝度との関係は、図 15に示すようになる。すなわち、サ ブフレーム表示を行っても、視野角度の大きい場合における予定輝度と実際輝度と の差 (ズレ)の少なくなる輝度 (最小輝度 ·最大輝度)での表示を行えなくなる。
このため、白浮き現象の抑制効果が減少する。
[0199] したがって、本構成例に係る画像表示装置 1のようなサブフレーム表示を良好に行 うためには、液晶パネルにおける液晶の応答速度が、以下の (c)(d)を満足するように 設計されて 、ることが好ま 、。
[0200] (c)最小輝度 (黒;最小明度に相当)を表示している液晶に最大輝度(白;最大明度 に相当)となるための電圧信号 (表示信号に基づいてデータ信号線駆動回路 3によつ て生成されるもの)を与えたときに、短い方のサブフレーム期間内で、液晶の電圧(電 極間電圧) 1S 電圧信号の電圧における 90%以上の値に到達する(正面の実際明 度が最大明度の 90%に到達する。 )
(d)最大輝度 (白)を表示して 、る液晶に最小輝度 (黒)となるための電圧信号を与え たときに、短い方のサブフレーム期間内で、液晶の電圧 (電極間電圧)が、電圧信号 の電圧における 5%以下の値に到達する(正面の実際明度が最小明度の 5%に到達 する)。
[0201] また、制御回路 44は、液晶の応答速度をモニターできるように設計されていること が好ましい。
そして、環境温度の変化等によって液晶の応答速度が遅くなり、上記の (c)(d)を満足 できなくなつたと判断した場合、制御回路 44は、サブフレーム表示を中断して、液晶 パネルを、通常ホールド表示によって駆動するように設定されて 、てもよ 、。
[0202] これにより、サブフレーム表示によって白浮き現象がかえって顕著となってしまった 場合に、液晶パネルの表示方式を通常ホールド表示に切り替えられる。
[0203] なお、本構成例では、低輝度の場合に前サブフレームを黒とし、後サブフレームの みを用いて階調表現を行うとして 、る。
しかしながら、サブフレームの前後関係を交換しても (低輝度の場合に後サブフレー ムを黒として、前サブフレームのみを用いて階調表現を行うようにしても)、同様の表 示を得られる。
[0204] また、本構成例では、(1)式を用いて表示信号 (前段表示信号および後段表示信 号)の輝度階調 (信号階調)を設定するとして!/ヽる。
しかしながら、実際のパネルでは、黒表示(階調 0)の場合でも輝度を有し、さらに液 晶の応答速度は有限であるため、したがって、信号階調の設定に関しては、これらの 要素を加味することが好ましい。すなわち、液晶パネルによって実際の画像を表示さ せて、信号階調と表示輝度との関係を実測し、実測結果に基づいて、(1)式に合うよ う LUT (出力テーブル)を決めることが好ましい。
[0205] また、本構成例では、式(6a)に示した aを、 2. 2〜3の範囲であるとしている。この 範囲は、厳密に導き出されたものではないが、人間の視覚感覚的にほぼ妥当である とされている範囲である。 [0206] また、本構成例に係る画像表示装置 1のデータ信号線駆動回路 3として通常ホー ルド表示用のデータ信号線駆動回路を用いると、入力される信号階調 (表示信号の 輝度階調)に応じて、 7 = 2. 2とした(1)式を用いて得られる表示輝度を得られるよう に、各画素 (液晶)に対して電圧信号が出力される。
[0207] そして、このようなデータ信号線駆動回路 3は、サブフレーム表示を行う場合でも、 各サブフレームにおいて、入力される信号階調に応じて、通常ホールド表示で使用 する電圧信号をそのまま出力することとなる。
[0208] しかしながら、このような電圧信号の出力方法では、サブフレーム表示における 1フ レーム内での輝度の時間積分値を、通常ホールド表示での値と同一にできな ヽ (信 号階調を表現しきれな 、)ことがある。
[0209] したがって、サブフレーム表示では、データ信号線駆動回路 3は、分割した輝度に 換算した電圧信号を出力するように設計されて!ヽることが好ま ヽ。
すなわち、データ信号線駆動回路 3が、信号階調に応じて、液晶に印加する電圧( 電極間電圧)を微調整するように設定されて!ヽることが好ま ヽ。
このため、データ信号線駆動回路 3をサブフレーム表示用に設計し、上記のような微 調整を行えるようにしておくことが好ま 、。
[0210] また、本構成例では、液晶パネルが VAパネルであるとして!/、る。しかしながら、これ に限らず、 VAモード以外の他のモードの液晶パネルを用いても、本構成例に係る画 像表示装置 1のサブフレーム表示によって、白浮き現象を抑制することが可能である
[0211] すなわち、本構成例に係る画像表示装置 1のサブフレーム表示は、視野角度を大 きくしたときに予定輝度 (予定明度)と実際輝度 (実際明度)とがずれてしまう液晶パネ ル (階調ガンマの視野角特性変化するモードの液晶パネル)に対しては、白浮き現 象を抑制することが可能である。
また、特に、本構成例に係る画像表示装置 1のサブフレーム表示は、視野角度を増 カロさせると表示輝度の強くなるような特性を有している液晶パネルに有効である。
[0212] また、本構成例に係る画像表示装置 1における液晶パネルは、 NB (Normally Black ;ノーマリーブラック)であっても、また、 NW (Normally White ;ノーマリーホワイト)であ つてもよい。
さらに、本構成例に係る画像表示装置 1では、液晶パネルに変えて、他の表示パネ ル (例えば有機 ELパネルやプラズマディスプレイパネル)を用いてもょ ヽ。
[0213] また、本構成例では、フレームを 1 : 3〜1: 7に分割することが好ましいとしている。し 力しながら、これに限らず、本構成例に係る画像表示装置 1を、フレームを l :nあるい は n: 1 (nは 1以上の自然数)の範囲で分割するように設計してもよい。
[0214] また、本構成例では、上記した(10)式を用いて、表示信号 (前段表示信号および 後段表示信号)の信号階調設定を行うとしている。
しかしながら、この設定は、液晶の応答速度を Omsとし、かつ、 TO (最小輝度) =0と した設定方法である。このため、実使用の際には、さらに工夫を重ねることが好ましい
[0215] すなわち、片側のサブフレーム (後サブフレーム)で出力できる最大の輝度(閾輝度 )は、液晶応答が Omsで TO = 0の場合には、 TmaxZ (n+ l)となる。そして、閾輝度 階調 Ltは、この輝度のフレーム階調である。
Lt = ( (Tmax/(n + 1)— TO) Z (Tmax -ΤΟ))" (ΐ/ γ )
( γ = 2. 2、Τ0 = 0)
液晶の応答速度が 0でない場合、例えば、黒→白がサブフレーム内で Υ%の応答、 白→黒がサブフレーム内で Ζ%の応答、 ΤΟ=ΤΟとすると、閾輝度 (Ltの輝度) Ttは、 Tt= ( (Tmax-TO) XY/100+ (Tmax -TO) X Z/100) /2
となる。したがって、
Lt= ( (Tt TO) / (Tmax -TO) ) " (ΐ/ γ )
( y = 2. 2)
となる。
[0216] また、実際には、 Ltはもう少し複雑になることもあり、閾輝度 Ttを単純な式では表せ ないこともある。したがって、 Ltを Lmaxで表現することが困難なこともある。
このような場合に Ltを求めるには、液晶パネルの輝度を測定した結果を用いることが 好ましい。すなわち、片側のサブフレームが最大の輝度、かつ、他方のサブフレーム の輝度が最小輝度の場合に液晶パネルカゝら照射される輝度を測定して、その輝度を Ttとする。そして、下式により、こぼれだしの階調 Ltを決める。
Lt= ( (Tt TO) / (Tmax-TO) ) " (ΐ/ γ )
( y = 2. 2)
このように、 (10)式を用いて求めた Ltについては、理想的な値であり、目安として 使用することが好まし 、場合もあると 、える。
[0217] また、上記説明は、本実施形態における表示輝度のモデルであり、説明のためわ 力りやすぐ "Tmax/2'\ "最大輝度"、 "最小輝度"などと表現している力 実際には 、滑らかな階調表現、ユーザの好む特殊なガンマなどを実現するために、多少の変 動があっても良い。すなわち、表示輝度がある閾値輝度より小さいときに、一方のフレ ームの輝度が他方のフレームの輝度より十分暗ければ、本実施形態における動画表 示および視野角の改善効果は発揮されるので、例えば、 "TmaxZ2"において、最 小輝度(10%)、最大輝度(90%)と言った比率と、その周辺が順次適当に変化する 構成でも、略同様の効果が得られる。なお、以下の説明においても、簡単のため同 様の表現を用いる力 これに限るものでない。
[0218] ここで、本構成例に係る画像表示装置 1にお!/、て、電極間電圧の極性をフレーム周 期で反転させることが好ましい点について、より詳細に説明する。
図 16 (a)は、表示輝度が Lmaxの 3Z4および 1Z4の場合に、前サブフレームおよ び後サブフレームによって表示される輝度を示すグラフである。
この図に示すように、本構成例のようにサブフレーム表示を行う場合、サブフレーム 間で、液晶に印加される電圧値 (画素電極間に印加される電圧値;絶対値)は異なる
[0219] したがって、液晶に印加される電圧 (液晶電圧)の極性をサブフレーム周期で反転 させると、図 16 (b)に示すように、前サブフレームと後サブフレームとの電圧値の違い により、印加される液晶電圧に偏りが生じる(トータルの印加電圧が (ことならない)。こ のため、液晶電圧の直流成分をキャンセルできなくなり、液晶パネルを長時間駆動さ せると、電極に電荷がたまり、焼き付きゃフリツ力などの発生する可能性がある。
[0220] そこで、本構成例に係る画像表示装置 1では、液晶電圧の極性をフレーム周期で 反転させることが好ましい。 なお、液晶電圧の極性をフレーム周期で反転させる方法は 2つある。 1つの方法は、 1フレームの間、同極性の電圧を印加する方法である。
また、もう 1つの方法は、 1フレーム内の 2つのサブフレーム間で液晶電圧を逆極性と し、さらに、後サブフレームと、 1つ後のフレームの前サブフレームとを同極性とする方 法である。
[0221] 図 17 (a)は、前者の方法をとつた場合における、電圧極性 (液晶電圧の極性)とフ レーム周期および液晶電圧との関係を示すグラフである。一方、図 17 (b)は、後者の 方法をとつた場合の、同様のグラフである。
[0222] これらのグラフに示すように、液晶電圧を 1フレーム周期で反転させる場合、隣り合 う 2つのフレーム間で、前サブフレームどうしのトータル電圧、および、後サブフレーム のトータル電圧を、 OVとできる。したがって、 2フレームでのトータル電圧を OVとでき るので、印加電圧の直流成分をキャンセルすることが可能となる。
このようにフレーム周期で液晶電圧を交流化することにより、サブフレーム間で液晶 電圧が大きく異なって 、ても、焼き付きゃフリツ力を防止できる。
[0223] また、図 18 (a)〜図 18 (d)は、液晶パネルにおける 4つのサブ画素 SPIXと、各サ ブ画素 SPIXの液晶電圧の極性を示す説明図である。
上記したように、 1つのサブ画素 SPIXに印加される電圧については、フレーム周期 で極性を反転させることが好ましい。この場合、各サブ画素 SPIXの液晶電圧の極性 は、フレーム周期ごとに、図 18 (a)〜図 18 (d)の順で示すように変化することとなる。
[0224] ここで、液晶パネルの全サブ画素 SPIXに印加される液晶電圧の和については、 0 Vとすることが好ましい。このような制御については、例えば、図 18 (a)〜図 18 (d)に 示すように、隣接するサブ画素 SPIX間で電圧極性を変えることで実現できる。
[0225] また、上記では、前サブフレーム期間と後サブフレーム期間との好ましい比(フレー ムの分割比)として、 3 : 1〜7 : 1を挙げているが、これに限らず、フレームの分割比を 、 1 : 1あるいは 2 : 1に設定してもよい。
[0226] 例えば、フレームの分割比を 1: 1とする場合、図 6に示したように、通常ホールド表 示に比して、実際輝度を予定輝度に近づけることが可能となる。また、図 9に示したよ うに、明度に関しても、通常ホールド表示に比して、実際明度を予定明度に近くでき る。
したがって、この場合でも、通常ホールド表示に比して、視野角特性を改善できること は明らかである。
[0227] また、液晶パネルでは、液晶電圧 (液晶に印加される電圧;電極間電圧)を表示信 号に応じた値とするまでに、液晶の応答速度に応じた時間がかかる。したがって、い ずれかのサブフレーム期間が短すぎると、この期間内に、液晶の電圧を表示信号に 応じた値にまで上げられな 、可能性がある。
[0228] したがって、前サブフレームと後サブフレーム期間との比を、 1 : 1あるいは 2 : 1に設 定することで、一方のサブフレーム期間を短くしすぎることを防止できる。したがって、 応答速度の遅い液晶を用いても、適切な表示を行える。
[0229] また、フレームの分割比(前サブフレームと後サブフレームとの比)については、 n: 1
(nは 7以上の自然)に設定してもよ!/、。
また、この分割比を、 n: l (nは 1以上の実数 (より好ましくは 1より大きい実数))として もよい。例えば、この分割比を 1. 5 : 1に設定することで、 1 : 1とする場合に比して視 野角特性を向上させられる。また、 2 : 1とする場合に比べて、応答速度の遅い液晶材 料を使用することが容易となる。
[0230] また、フレームの分割比を n: 1 (nは 1以上の実数)とする場合でも、「最大輝度の (n
+ 1)分の 1 (TmaxZ (n+ l) ) jまでの低輝度 (低明度)の画像を表示する際には、 前サブフレームを黒表示とし、後サブフレームのみを用いて表示を行うことが好まし い。
また、「TmaxZ (n+ l)」以上の高輝度 (高明度)の画像を表示するときには、後サブ フレームを白表示とし、前サブフレームの輝度だけを調整して表示を行うことが好まし い。
これにより、常に 1つのサブフレームを、実際輝度と予定輝度との差のない状態として おける。したがって、本構成例に係る画像表示装置 1の視野角特性を良好にできる。
[0231] ここで、フレームの分割比を n: 1にする場合、前フレームを nとしても後フレーム nと しても実質的に同じ効果が狙える。すなわち n: lと l :nは視野角改善効果に関しては 同一である。 また、 nは 1以上の実数とした場合でも、上記した(10)〜(12)式を用いた輝度階調 の制御については有効である。
[0232] また、本構成例では、画像表示装置 1のサブフレーム表示を、フレームを 2つのサ ブフレームに分割して行う表示であるとしている。しかしながら、これに限らず、画像 表示装置 1を、フレームを 3つ以上のサブフレームに分割したサブフレーム表示を行 うように設計してもよい。
[0233] フレームを s個に分割する場合のサブフレーム表示では、輝度の非常に低い場合 には、 s—l個のサブフレームを黒表示とする一方、 1つのサブフレームの輝度 (輝度 階調)だけを調整して表示を行う。そして、このサブフレームだけでは表現できないく らい輝度の高くなつた場合に、このサブフレームを白表示とする。そして、 s— 2個の サブフレームを黒表示とする一方、残った 1つのサブフレームの輝度を調整して表示 を行う。
[0234] すなわち、フレームを s個に分割する場合でも、 2個に分割するときと同様に、輝度 を調整する(変化させる)サブフレームを常に 1つとし、他のサブフレームを白表示あ るいは黒表示としておくことが好ましい。これにより、 s—l個のサブフレームを、実際 輝度と予定輝度とのズレのない状態とできる。したがって、画像表示装置 1の視野角 特性を良好にできる。
[0235] 図 19は、本構成例に係る画像表示装置 1によって、均等な 3つのサブフレームにフ レームを分割して表示を行った結果 (破線および実線)と、通常ホールド表示を行つ た結果 (一点鎖線および実線;図 5に示したものと同様)と合わせて示すグラフである このグラフに示すように、サブフレームを 3つに増やした場合、実際輝度を予定輝度 に非常に近づけることが可能となる。したがって、本構成例に係る画像表示装置 1の 視野角特性をより良好な状態とできることがわ力る。
[0236] なお、各サブフレームのうち、輝度を調整するサブフレームの位置は、当該フレー ム期間における当該サブ画素の輝度の時間的な重心位置が当該フレーム期間の時 間的な中心位置に近くなるように設定されている方が望ましい。
[0237] 例えば、サブフレームの数が 3個の構成では、 2個のサブフレームを黒表示にする 場合には、真ん中のサブフレームの輝度を調整して表示を行う。そして、このサブフ レームだけでは表現できないくらい輝度の高くなつた場合には、このサブフレーム(真 ん中のサブフレーム)を白表示とし、最初または最後のサブフレームの輝度を調整し て表示を行う。さらに、当該サブフレームと真ん中のサブフレーム(白表示)とだけで は表現できないくらい輝度が高くなると、残余のサブフレームの輝度を調整して表示 を行う。
[0238] 当該構成では、 1フレーム期間における当該サブ画素の輝度の時間的な重心位置
1S 当該 1フレーム期間の時間的な中心位置に近くなるように設定される。したがって
、以下の不具合、すなわち、時間的な重心位置が変動することに起因して、動く物体 の前端や後端において、静止時には見えない異常な明暗が見えてしまい、これが動 画品質を低下させるという不具合の発生を防止でき、動画表示時の品質を向上でき る。
[0239] また、フレームを s個に分割する場合でも、上記した極性反転駆動を行うことが好ま しい。図 20は、フレームを 3つに分割し、フレームごとに電圧極性を反転した場合に おける、液晶電圧の遷移を示すグラフである。
この図に示すように、この場合でも、 2フレームでのトータルの液晶電圧を OVとできる
[0240] また、図 21は、同様にフレームを 3つに分害 ijし、サブフレームごとに電圧極性を反 転した場合における、液晶電圧の遷移を示すグラフである。
このように、フレームを奇数個に分割する場合には、サブフレームごとに電圧極性を 反転させても、 2フレームでのトータルの液晶電圧を OVとできる。
したがって、フレームを s個(s ; 2以上の整数)に分割した場合には、隣接するフレー ム間の S番目(S ; l〜s)のサブフレームどうし力 異なる極性の液晶電圧を印加され ている状態とすることが好ましいといえる。これにより、 2フレームでのトータルの液晶 電圧を OVとできる。
[0241] また、フレームを s個 (s; 2以上の整数)に分割した場合には、 2フレーム (あるいはよ り多くのフレーム)でのトータルの液晶電圧を OVとするように、液晶電圧の極性を反 転させることが好ま ヽと 、える。 [0242] また、上記では、フレームを s個に分割する場合、輝度を調整するサブフレームを常 に 1つとし、他のサブフレームを白表示 (最大輝度)あるいは黒表示 (最小輝度)とす るとして ヽる。
[0243] し力しながら、これに限らず、輝度を調整するサブフレームを 2つ以上としてもょ 、。
この場合でも少なくとも 1つのサブフレームを白表示 (最大輝度)あるいは黒表示 (最 小輝度)とすることで、視野角特性を向上させられる。
[0244] また、輝度を調整しな!、サブフレームの輝度を、最大輝度とする代わりに「最大また は第 2所定値より大きい値」としてもよい。また、最小輝度とする代わりに、「最小また は第 1所定値より小さ 、値」としてもよ 、。
この場合でも、輝度を調整しないサブフレームにおける実際明度と予定明度とのズレ
(明度ズレ)を充分に小さくできる。したがって、本構成例に係る画像表示装置 1の視 野角特性を向上させられる。
[0245] ここで、図 22は、輝度を調整しないサブフレームにおける、パネル 11に出力される 信号階調 (%;表示信号の輝度階調)と、各信号階調に応じた実際輝度階調 (%)と の関係 (視野角階調特性 (実測) )を示すグラフである。
[0246] なお、実際輝度階調とは、「各信号階調に応じてパネル 11の液晶パネルから出力 された輝度 (実際輝度)を、上記した(1)式を用いて輝度階調に変換したもの」である
[0247] このグラフに示すように、上記した 2つの階調は、液晶パネルの正面 (視野角度 0度 )においては等しくなる。一方、視野角度を 60度としたときには、白浮きのため、実際 輝度階調が中間調で信号階調より明るくなる。また、この白浮きは、視野角度によら ず、輝度階調が 20%〜30%の間となるときに最大値をとる。
[0248] ここで、このような白浮きについては、上記のグラフに破線で示した「最大値の 10% 」を越えていない場合には、本構成例に係る画像表示装置 1の表示品位を充分に保 ち得る(上記した明度ズレを充分に小さくできる)ことがわ力 ている。また、白浮きが「 最大値の 10%」を越えないような信号階調の範囲は、信号階調の最大値の 80〜: LO 0%、および、 0〜0. 02%である。また、この範囲は、視野角度が変化しても不変で ある。 [0249] したがって、上記した第 2所定値としては、最大輝度の 80%に設定することが好ま しぐまた、第 1所定値としては、最大輝度の 0. 02%に設定することが好ましいといえ る。
[0250] また、輝度を調整しないサブフレームを設けなくてもよい。すなわち、 s個のサブフレ ームで表示を行う場合、各サブフレームの表示状態に差をつけなくてもよい。このよう な構成であっても、上記したような、フレーム周期で液晶電圧の極性を反転する極性 反転駆動を行うことが好ま U、。
なお、 s個のサブフレームで表示を行う場合、各サブフレームの表示状態に少しでも 差をつけるだけで、液晶パネルの視野角特性を向上させることは可能である。
[0251] 〔第 2の実施形態〕
ところで、上記では、フレーム分割および γ処理を行うサブフレーム処理部 32の前 段に、階調遷移強調処理を行う変調処理部 31を配した構成について説明した。これ に対して、本実施形態では、サブフレーム処理部の後段に変調処理部を配置する構 成について説明する。
[0252] すなわち、図 23に示すように、本実施形態に係る信号処理回路 21aでは、図 1に示 す変調処理部 31およびサブフレーム処理部 32と略同様の動作を行う変調処理部 3 laおよびサブフレーム処理部 32aが設けられている。ただし、本実施形態に係るサ ブフレーム処理部 32aは、変調処理部 31aの前段に設けられており、補正後の各映 像データ Do(i,j,k)に代えて、補正前の各映像データ D(i,j,k)に対して、フレーム分割 および γ補正処理を行い、当該映像データ D(i,j,k)に対応する、各サブフレーム SF Rl(k) - SFRl(k)の映像データ S l(i,j,k) - S2(i,j,k)を出力している。
[0253] また、配置変更に伴なつて、変調処理部 31aは、補正前の各映像データ D(i,j,k)に 代えて、サブフレームへの分割後の映像データ S l(i,j,k) - S 2(i,j,k)のそれぞれに対 して、階調遷移を強調するように補正すると共に、補正後の映像データを、映像信号 DAT2を構成する映像データ S lo(i,j,k) · 82ο(ϋ,1ί)として出力している。なお、映像 データ S lo(i,j,k) · 82ο(ί,],1ί)も、上記映像データ So l(i,j,k) · 8ο2(ϋ,1ί)と同様に、時 分割で伝送されている。
[0254] さらに、変調処理部 31aによる補正処理および予測処理も、サブフレーム単位で行 われており、変調処理部 31aは、図示しないフレームメモリから読み出された前サブ フレーム SFR(x-l)の予測値 E(i,j,x-1)と、現サブフレーム SFR(x)におけるサブ画 素 SPIXGJ)への映像データ So(i,j,x)とに基づいて、当該現サブフレーム SFR(x)の 映像データ So(i,j,X)を補正する。また、変調処理部 3 laは、上記予測値 E(i,j,x-1)と 、映像データ So(i,j,x)とに基づいて、上記サブ画素 SPIXGJ)が次のサブフレーム S FR(x+l)の開始時に到達していると予測される輝度に対応する階調を示す値を予測 し、当該予測値 E(i,j,x)を、上記フレームメモリに格納している。
[0255] 以下では、書き込み速度をより低下させた構成例について説明する前に、図 24を 参照しながら、図 8と同様の回路で変調処理部 31aを構成した場合について説明す る。
[0256] すなわち、本構成例に係る変調処理部 3 lbには、上記各映像データ Slo(i,j,k)を 生成するための部材 51a〜53aと、上記各映像データ S2o(i,j,k)を生成するための 部材 51b〜53bとが設けられている。これらの部材 51a〜53a並びに 51b〜53bは、 それぞれ、図 8に示す部材 51〜53と略同様に構成されている。
[0257] ただし、補正処理および予測処理がサブフレーム単位で行われている。したがって 、上記各部材 51a〜53bは、図 8の倍の速度で動作できるように構成されていると共 に、それぞれに設けられた LUT (図 24では図示せず)に格納される値も図 8の場合と は異なっている。
[0258] さらに、補正処理部 52aおよび予測処理部 53aには、現フレーム FR(k)の各映像 データ D(i,j,k)に代えて、サブフレーム処理部 32aからの各映像データ Sl(i,j,k)が入 力されており、補正処理部 52aは、補正後の映像データを、映像データ Slo(i,j,k)と して出力している。同様に、補正処理部 52bおよび予測処理部 53bには、現フレーム FR(k)の各映像データ D(i,j,k)に代えて、サブフレーム処理部 32aからの各映像デ ータ S2(i,j,k)が入力されており、補正処理部 52aは、補正後の映像データを、映像 データ S2o(i,j,k)として出力している。一方、予測処理部 53aは、上記補正処理部 52 aの参照するフレームメモリ 51aではなぐ補正処理部 52bの参照するフレームメモリ 5 lbに、予測値 El(i,j,k)を出力し、予測処理部 53bは、フレームメモリ 51aに予測値 E 2(i,j,k)を出力している。 [0259] ここで、上記予測値 El(i,j,k)は、上記補正処理部 52aの出力する映像データ Slo( i,j,k)によってサブ画素 SPIX(iJ)が駆動された場合に、当該サブ画素 SPIXGJ)が次 のサブフレーム SFR2(k)の開始時に到達していると予測される輝度に対応する階調 を示す値であって、予測処理部 53aは、現フレーム FR(k)における上記映像データ Sl(i,j,k)と、フレームメモリ 5 laから読み出した、前フレーム FR(k- 1)の予測値 E2(i,j, k-1)とに基づいて、上記予測値 El(i,j,k)を予測している。同様に、上記予測値 E2G, j,k)は、上記補正処理部 52bの出力する映像データ S2o(i,j,k)によってサブ画素 SP IX(i,j)が駆動された場合に、当該サブ画素 SPIX(U)が次のサブフレーム SFRl(k+l )の開始時に到達していると予測される輝度に対応する階調を示す値であって、予 測処理部 53bは、現フレーム FR(k)における上記映像データ S2(i,j,k)と、フレームメ モリ 51bから読み出した上記予測値 El(i,j,k)とに基づいて、上記予測値 E2(i,j,k)を 予測している。
[0260] 上記構成では、図 25に示すように、あるフレーム FR(k)の映像データ D(l,l,k)〜D (n,m,k)が信号処理回路 21aに入力されると、これらの映像データ D(l,l,k)〜D(n,m, k)は、サブフレーム処理部 32aのフレームメモリ 41 (図では、 FMと表記)に格納され ていく(tl〜t2の期間)。また、サブフレーム処理部 32aの制御回路 44は、 1フレーム あたりに 2回ずつ、これらの映像データ D(l,l,k)〜D(n,m,k)をフレームメモリ 41から 読み出す (tl l〜tl3の期間)。また、制御回路 44は、 1回目の読み出し時には、 LU T42を参照して、サブフレーム SFRl(k)用の映像データ S 1(1,1, k)〜Sl(n,m,k)を 出力すると共に (tl l〜tl2の期間)、 2回目の読み出し時には、 LTU43を参照して 、サブフレーム SFR2(k)用の映像データ S2(l,l,k)〜S2(n,m,k)を出力する(tl2〜 tl3の期間)。なお、信号処理回路 21aが最初の映像データ D(l,l,k)を受け取る時 点 tlと、当該映像データ D(l,l,k)に対応するサブフレーム SFRl(k)用の映像デー タ Sl(l,l,k)を出力する時点 ti lとの時間差は、ノ ッファメモリを設けることによって増 減できる力 図 25では、一例として、時間差が半フレーム分(1サブフレーム分)の場 合を図示している。
[0261] 一方、 tl l〜tl2の期間において、変調処理部 31bのフレームメモリ 51aには、前フ レーム FR(k- 1)のサブフレーム SFR2(k- 1)用の映像データ S2(l,l,k- 1)〜S2(n,m, k-1)を参照して更新された予測値 E2(l,l,k-1)〜E2(n,m,k-l)が蓄積されており、 補正処理部 52aは、当該予測値 E2(l,l,k-1)〜E2(n,m,k-l)を参照して、上記制御 回路 44の出力する映像データ Sl(l,l,k)〜Sl(n,m,k)をそれぞれ補正し、補正後の 映像データ Slo(l,l,k)〜Slo(n,m,k)として出力する。同様に、予測処理部 53aは、 上記映像データ S 1(1,1, k)〜Sl(n,m,k)と、予測値 E2(l,l,k- 1)〜E2(n,m,k- 1)とに 基づいて、予測値 El(l,l,k)〜予測値 El(n,m,k)を生成し、フレームメモリ 51bに格 納する。
[0262] 同様に、 tl2〜tl3の期間において、補正処理部 52bは、当該予測値 El(l,l,k)〜 El(n,m,k)を参照して、上記制御回路 44の出力する映像データ S2(l,l,k)〜S2(n,m ,k)をそれぞれ補正し、補正後の映像データ S2o(l,l,k)〜S2o(n,m,k)として出力す る。また、予測処理部 53bは、上記映像データ S2(l,l,k)〜S2(n,m,k)と、予測値 El( 1,1, k-1)〜El(n,m,k- 1)とに基づいて、予測値 E2(l,l,k)〜予測値 E2(n,m,k)を生 成し、フレームメモリ 5 laに格納する。
[0263] なお、厳密には、上記各回路自体の遅延時間、あるいは、タイミング調整用に各回 路間にバッファが設けられていれば、そのバッファ回路の遅延時間などによって、前 段の回路がデータを出力するタイミングは、後段の回路がデータを出力するタイミン グと異なっているが、図 25あるいは後述の図 27では、これらの遅延時間の図示を省 略している。
[0264] このように、本実施形態に係る信号処理回路 21aは、補正処理 (階調遷移の強調 処理)および予測処理をサブフレーム単位で行っている。したがって、第 1の実施形 態の構成、すなわち、これらの処理をフレーム単位で行う構成と比較して、より正確な 予測処理が可能であり、より的確に階調遷移を強調できる。この結果、不適切な階調 遷移強調による画質低下をさらに抑制しながら、動画表示時の画質を向上できる。
[0265] ところで、本実施形態に係る信号処理回路 21aを構成する各部材の殆どは、高速 化のために、 1つの集積回路チップ内に集積されていることが多い。ただし、フレーム メモリ 41並びに 51a' 51bは、必要な記憶容量力 ¾ JTよりも大幅に大きぐ集積回路 内に集積することが難しいため、多くの場合、当該集積回路チップに外付けされる。
[0266] この場合、上記フレームメモリ 41並びに 51a' 51bとの間のデータ伝送経路は、外 部の信号線になるので、集積回路チップ内を伝送する場合と比較して伝送速度の向 上が難しい。また、伝送速度を向上させようとして、信号線の数を増やそうとすると、 集積回路チップのピン数が増力!]して、集積回路チップの寸法が大幅に増大してしま う。さらに、図 24に示す変調処理部 31bは、倍速で駆動しているので、フレームメモリ 41並びに 51a' 51bとして、高速に動作可能で、しかも大容量のメモリを必要とする。
[0267] 伝送速度について、さらに詳細に説明すると、フレームメモリ 41には、図 25に示す ように、 1フレーム毎に 1回ずつ、各映像データ D(l,l,k)〜D(n,m,k)が書き込まれて いる。また、当該フレームメモリ 41は、 1フレーム毎に 2回ずつ、各映像データ D(l,l,k )〜D(n,m,k)を出力している。したがって、一般的なメモリのように、読み出し時と書 き込み時とで、データを伝送する信号線が共有されているとすると、映像信号 DAT において各映像データ D…をそれぞれ伝送する際の周波数 fの 3倍以上の周波数で のアクセスが、フレームメモリ 41に要求される。なお、図 25では、読み書き時に要求 されるアクセス速度を、例えば、 r: 2倍のように、上記周波数 fでの読み出しに必要な アクセス速度または上記周波数 fでの書き込みに必要なアクセス速度書き込みに必 要なアクセス速度を 1倍としたときの比率を、読み出し Z書き込みを示す英文字 (rZ w)の後に図示している。
[0268] 一方、フレームメモリ 51aおよび 51bには、 1フレーム毎に 1回ずつ、各予測値 E2(l, l,k)〜予測値 E2(n,m,k)、並びに、各予測値 El(l,l,k)〜予測値 El(n,m,k)が読み 書きされているが、図 24の構成では、図 25に示すように、フレームメモリ 51aから読 み出す期間(例えば、 tl l〜tl2)と、フレームメモリ 51bから読み出す期間(例えば、 tl2〜tl3)とが別に設けられており、それぞれの期間がフレームの半分の期間であ る。同様に、フレームメモリ 51aおよび 51bに書き込む期間もフレームの半分の期間 である。したがって、両フレームメモリ 5 la ' 51bには、上記周波数 fの 4倍のアクセス 速度が必要になる。
[0269] この結果、図 24に示す変調処理部 31bを用いた場合は、各フレームメモリ 41 ' 51a •51bに要求されるアクセス速度が速くなり、信号処理回路 21aの製造費が高騰した り、信号線の数を増やそうとして、上記集積回路チップの寸法やピン数が増大したり する虞れがある。 [0270] これに対して、本実施形態の他の構成例に係る信号処理回路 21cでは、図 27に示 すように、 1フレーム毎にそれぞれ 2回ずつ、映像データ S 1(1,1, k)〜映像データ Sl( n,m,k)、映像データ S2(l,l,k)〜映像データ S2(n,m,k)並びに各予測値 El(l,l,k) 〜予測値 El(n,m,k)を生成すると共に、 1フレーム毎に 2回ずつ実施可能な、予測値 E2(l,l,k)〜予測値 E2(n,m,k)の生成および出力処理の半数を間引き、 1フレーム 毎に 1回ずつ予測値 E2(l,l,k)〜予測値 E2(n,m,k)をフレームメモリに格納すること によって、フレームメモリへの書き込み回数を削減して 、る。
[0271] 具体的には、本構成例に係る信号処理回路 21cでは、サブフレーム処理部 32cが 、 1フレーム毎に、 2回ずつ、映像データ S 1(1,1, k)〜Sl(n,m,k)と、映像データ S2(l, l,k)〜S2(n,m,k)とを出力できる。
[0272] より詳細には、図 23に示すサブフレーム処理部 32aの制御回路 44は、映像データ Sl(l,l,k)〜Sl(n,m,k)を出力している間、映像データ S 2(1,1, k)〜S2(n,m,k)の出 力を休止していた力 本構成例に係るサブフレーム処理部 32cの制御回路 44cは、 図 27に示すように、映像データ S 1(1,1, k)〜Sl(n,m,k)を出力している間(t21〜t22 の期間)にも、映像データ S2(l,l,k)〜S2(n,m,k)を出力し、映像データ S 2(1,1, k)〜 S2(n,m,k)を出力している間(t22〜t23の期間)にも、映像データ S 1(1,1, k)〜Sl(n ,m,k)を出力している。
[0273] なお、映像データ Sl(i,j,k)および S2(i,j,k)の双方は、互いに同じ値、すなわち、映 像データ D(i,j,k)に基づいて生成される。したがって、制御回路 44cが、フレームメモ リ 41から 1つの映像データ D(i,j,k)を読み出す度に、当該映像データ D(i,j,k)を用い て上記両映像データ Sl(i,j,k)および S2(i,j,k)を生成することによって、フレームメモ リ 41と制御回路 44cとの間のデータ伝送量増加を防止できる。また、サブフレーム処 理部 32cと変調処理部 31cとの間のデータ伝送量は、図 24の構成よりも増加してい る力 このデータ伝送は、集積回路チップ内での伝送なので、何ら支障なく伝送でき る。
[0274] 一方、図 26に示すように、本構成例に係る変調処理部 31cは、予測値 E1および E 2をそれぞれ 1サブフレーム分ずつ記憶するフレームメモリ 5 la ' 51bの代わりに、予 測値 E2のみを 2サブフレーム分記憶すると共に、 1フレーム毎に 2回ずつ、予測値 E 2(l,l,k-l)〜予測値 E2(n,m,k-1)を出力可能なフレームメモリ(予測値記憶手段) 54 を備えている。また、本構成例に係る変調処理部 31cには、図 24の各部材 52a' 52b • 53a ' 53bと略同様の咅材 52c' 52d' 53c ' 53d力設けられている。なお、本構成 ί列 では、当該部材 52c · 52d' 53c' 53dが特許請求の範囲に記載の補正手段に対応 する。
[0275] ただし、図 24の構成とは異なり、上記補正処理部 52cおよび予測処理部 53cへの 予測値 E2(l,l,k-1)〜予測値 E2(n,m,k-1)は、フレームメモリ 41aではなぐ上記フレ ームメモリ 54から与えられている。また、上記補正処理部 52dおよび予測処理部 53d への予測値 El(l,l,k)〜予測値 El(n,m,k)は、フレームメモリ 41bではなぐ上記予 測処理部 53cから与えられて 、る。
[0276] さらに、上述したように、当該予測値 E2(l,l,k-1)〜予測値 E2(n,m,k-1)並びに映 像データ Sl(l,l,k)〜Sl(n,m,k)は、 1フレーム毎に 2回ずつ出力されており、予測処 理部 53cは、図 26に示すように、これらに基づいて、 1フレーム毎に 2回ずつ、予測 値 El(l,l,k)〜El(n,m,k)を生成し出力している。なお、 1フレーム毎に出力する予 測値 E1の数が異なっている力 予測処理自体、および、予測処理部 53cの回路構 成は、図 24に示す予測処理部 53aと同一である。
[0277] また、予測値 E2(l,l,k-1)〜予測値 E2(n,m,k-1)並びに映像データ S 1(1,1, k)〜S l(n,m,k)も、 1フレーム毎にそれぞれ 2回ずつ出力されている力 補正処理部 52cは 、これらのうちの 1回目の方に基づいて、補正後の映像データ Slo(l,l,k)〜Slo(n,m ,k)を生成し出力している(t21〜t22の期間)。さらに、補正処理部 52dは、 1フレー ム毎にそれぞれ 2回ずつ出力される、予測値 El(l,l,k)〜予測値 El(n,m,k)並びに 映像データ S2(l,l,k)〜S2(n,m,k)のうち、 2回目の方に基づいて、補正後の映像デ ータ S2o(l,l,k)〜S2o(n,m,k)を生成し出力している(t22〜t23の期間)。
[0278] ここで、映像データ S2(l,l,k)〜S2(n,m,k)並びに予測値 El(l,l,k)〜El(n,m,k) 力 S iフレーム毎に 2回ずつ出力されているので、予測値 E2(l,l,k)〜E2(n,m,k)も、 1 フレーム毎に 2回ずつ生成可能である。ただし、本構成例に係る予測処理部 53dは、 これらの予測値 E2(l,l,k)〜E2(n,m,k)と、予測値 E2(l,l,k)〜E2(n,m,k)との生成 および出力処理のうち、半数を間引いて、 1フレーム毎に 1回ずつ、予測値 E2(l,l,k) 〜E2(n,m,k)を生成し出力している。なお、各フレームにおいて、予測値 E2を生成 および出力するタイミングが異なっている力 予測処理自体は、図 24に示す予測処 理部 53bと同一である。回路構成も当該予測処理部 53bと略同様である力 間引くタ イミングを決定し、生成処理および出力処理を間引く回路が付加されている。
[0279] 以下では、間引き方の一例として、両サブフレーム SFR1 ' SFR2の時間比が 1 : 1 の場合に本構成例に係る予測処理部 53dが 1つ飛ばしで上記生成および出力処理 を間引く構成について説明する。具体的には、予測処理部 53dは、 1回目の映像デ ータ S2(i,j,k)および予測値 El(i,j,k)が出力されている期間(t21〜t22の期間)、こ れらのうち、奇数番目および偶数番目のうちの予め定められた方の映像データ S2(i,j ,k)および予測値 El(i,j,k)に基づいて、予測値 E2(i,j,k)を生成する。一方、 2回目が 出力されている期間(t22〜t23の期間)には、予測処理部 53dは、残余の方に基づ いて、予測値 E(i,j,k)を生成する。これにより、予測処理部 53dは、 1フレーム毎に 1 回ずつ、全ての予測値 E2(l,l,k)〜E2(n,m,k)を出力できると共に、各予測値 E2(i,j, k)を出力する時間間隔は、図 24の構成の倍の長さになる。
[0280] 当該構成では、 1フレーム毎に 1個ずつの予測値 E2(l,l,k)〜E2(n,m,k)を、 1フレ ーム期間内に書き込めばよい。したがって、フレームメモリ 54に必要なアクセス速度 を、図 24の構成の 3Z4倍にまで遅くすることができる。例えば、 XGA規格に沿った 映像信号の場合、各映像データ D(i,j,k)のドットクロックは、約 65〔MHzVので、図 24のフレームメモリ 51aおよび 51bは、その 4倍、すなわち、約 260〔MHz〕でのァク セスに応える必要がある。これに対して、本構成例に係るフレームメモリ 54は、フレー ムメモリ 41と同様、上記ドットクロックの 3倍、すなわち、約 195〔MHz〕でのアクセスに 応えるだけで充分である。
[0281] なお、上記では、両サブフレーム SFR1 ' SFR2の時間比が 1: 1の場合に本構成例 に係る予測処理部 53dが 1つ飛ばしで上記生成および出力処理を間引く構成につ いて説明したが、時間比が他の比率に設定されている場合でも、出力処理の半数が 間引かれていれば、間引かない場合と比較して、フレームメモリ 54に要求されるァク セス速度を遅くすることができる。
[0282] ところで、上記フレームメモリ 54の全記憶領域(2サブフレーム分)を上記アクセス速 度でアクセス可能に構成してもよいが、本構成例に係るフレームメモリ 54では、フレ ームメモリ 54を、 2つのフレームメモリ 54a.54b〖こより構成して、それらの一方に必要 なアクセス速度をさらに遅くしている。
[0283] 具体的には、フレームメモリ 54は、 1サブフレーム分の予測値 E2を記憶可能な、 2 つのフレームメモリ 54a ' 54bから構成されている。フレームメモリ 54aは、上記予測処 理部 53dによって各予測値 E2(i,j,k)が書き込まれるフレームメモリであって、前フレ ーム FR(k-l)において書き込まれた 1サブフレーム分の予測値 E2(l,l,k-1)〜E2(n, m,k-l) 1S 現フレーム FR(k)の予測値 E2(l,l,k)〜E2(n,m,k)によって上書きされる 前に、当該予測値 E2(l,l,k- 1)〜E2(n,m,k- 1)をフレームメモリ 54bに転送できる。 なお、フレームメモリ 54aは、 1フレーム期間内に、 1サブフレーム分の予測値 E2を 1 回ずつ読み書きできればよいので、上記周波数 fと同一の周波数でのアクセスに応 えることができればよい。
[0284] 一方、フレームメモリ 54bは、当該予測値 E2(l,l,k- 1)〜E2(n,m,k- 1)を受け取り、 1フレーム毎に 2回ずつ、当該予測値 E2(l,l,k-1)〜E2(n,m,k-l)を出力できる。こ の場合は、 1フレーム期間内に、 1サブフレーム分の予測値 E2を 1回ずつ書き込み、 2回ずつ読み出す必要があるので、上記周波数 fの 3倍の周波数でのアクセスに応答 する必要がある。
[0285] 当該構成では、予測処理部 53dによりフレームメモリ 54aに格納された予測値 E2を 、補正処理部 52cおよび予測処理部 53cに対して予測値 E2を出力するためのフレ ームメモリ 54bに転送することによって、フレームメモリ 54の記憶領域のうち、 1フレー ム毎に 2回ずつ読み出される領域を、 1サブフレーム分の記憶容量を持ったフレーム メモリ 54bに限定している。なお、図 27では、バッファに必要な記憶容量を削減する ために、フレームメモリ 54aからフレームメモリ 54bへの転送を、 1サブフレーム分だけ ズラして!/、る場合を例示して 、る。
[0286] この結果、フレームメモリ 54の全記憶領域を、上記周波数 fの 3倍の周波数でのァク セスに応答可能に構成する場合よりも、当該周波数でのアクセスに応答可能な記憶 領域の大きさを削減でき、フレームメモリ 54を、より安価かつ容易に提供できる。
[0287] なお、上記では、予測処理部 53dによる予測値 E2の生成処理および出力処理を 間引いた場合を例にして説明したが、出力処理のみを間引いてもよい。また、上記で は、 1フレーム期間毎に、 2回ずつ予測値 E2(l,l,k)〜E2(n,m,k)を生成できるように 、予測値 El(l,l,k)〜El(n,m,k)および映像データ S2(l,l,k)〜S2(n,m,k)を生成す ると共に、それらに基づく予測値 E2の生成および出力処理を間引くことによって、各 予測値 E2(l,l,k)〜E2(n,m,k)の生成タイミングを、 1フレーム期間全般に渡って分 散させている場合について説明した力 これに限るものではなぐ以下の構成でもよ い。
すなわち、変調処理部には、フレーム期間毎に生成される上記複数個の映像デー タ Sl(i,j,k) - S2(i,j,k)をそれぞれ補正し、上記フレーム期間を当該複数個に分割し たサブフレーム SFRl(k) - SFR2(k)毎に、各サブフレームに対応する補正後の映像 データ Slo(i,j,k) - S2o(i,j,k)を出力する補正処理部 52c ' 52dと、最後のサブフレー ム SFR2(k)に対応する補正後の映像データ S2o(i,j,k)に応じてサブ画素 SPIX(i,j) が駆動された場合に、当該補正後の映像データ S2o(i,j,k)に応じてサブ画素 SPIXG ,j)が駆動される期間の最後の時点で、当該サブ画素 SPIXGJ)が到達する輝度を示 す予測値 E2(i,j,k)を記憶するフレームメモリ 54とが設けられている。また、上記補正 処理部 52cは、補正対象とする映像データ Sl(i,j,k)または S2(i,j,k)が最初のサブフ レーム SFRl(k)に対応している場合(映像データ Sl(i,j,k)の場合)、上記フレームメ モリ 54から読み出した予測値 E2(i,j,k-1)の示す輝度から、映像データ Sl(i,j,k)の示 す輝度への階調遷移を強調するように、映像データ Sl(i,j,k)を補正する。さら〖こ、上 記補正処理部 52dおよび変調処理部に設けられた予測処理部 53cは、補正対象と する映像データ Sl(i,j,k)または S2(i,j,k)が 2番目以降のサブフレームに対応してい る場合(映像データ S2(i,j,k)の場合)、映像データ S2(i,j,k)と、それよりも前のサブフ レーム SFRl(k)に対応する映像データ Sl(i,j,k)と、上記フレームメモリ 54に記憶さ れた予測値 E2(i,j,k-1)とに基づいて、サブフレーム SFR2(k)の最初の時点におけ るサブ画素 SPIX(iJ)の輝度を予測し、予測された輝度 (El(i,j,k)の示す輝度)から 映像データ S2(i,j,k)の示す輝度への階調遷移を強調するように、映像データ S2(i,j, k)を補正する。さらに、変調処理部に設けられた予測処理部 53cおよび 53dは、補 正対象とする映像データ Sl(i,j,k)または S2(i,j,k)力 最後のサブフレーム SFR2(k) に対応している場合(映像データ S2(i,j,k)の場合)、映像データ S2(i,j,k)と、それより も前のサブフレーム SFRl(k)に対応する映像データ Sl(i,j,k)と、上記フレームメモリ 54に記憶された予測値 E2(i,j,k-1)とに基づ 、て、補正対象となる映像データ S2(i,j, k)に対応するサブフレーム SFR2(k)の最後の時点におけるサブ画素 SPIX(iJ)の輝 度を予測し、予測結果を示す予測値 E2(i,j,k)を、上記フレームメモリ 54に格納する。
[0289] 当該構成でも、図 24に示す構成とは異なって、映像データ Sl(i,j,k) - S2(i,j,k)に 対応するサブフレーム SFRl(k) - SFR2(k)の 1つ前のサブフレーム SFR2(k- 1) - SF Rl(k)の最後にサブ画素 SPIX(iJ)が到達している輝度を予測した結果 El(i,j,k) ·Ε 2(i,j,k)を、その都度、フレームメモリに格納することなぐ映像データ Sl(i,j,k) - S2(i,j ,k)を補正できる。
[0290] この結果、図 24に示すように、各サブフレームの予測結果を、その都度、フレームメ モリ(51a' 51b)に格納する構成と比較して、 1フレーム周期あたりにフレームメモリに 格納される予測値のデータ量を削減できる。なお、データ量を削減できるので、例え ば、ノ ッファなどを設けてフレームメモリに要求されるアクセス速度を低減する場合で も、より少ない規模の回路を設けるだけで、アクセス速度を低減できる。
[0291] ただし、図 26に示すように、予測処理部 53dが予測値 E2(l,l,k)〜E2(n,m,k)と予 測値 E2(l,l,k)〜E2(n,m,k)との生成および出力処理のうち、半数を間引いて、 1フ レーム毎に 1回ずつ、予測値 E2(l,l,k)〜E2(n,m,k)を生成し出力すれば、新たなバ ッファを設けることなぐフレームメモリに要求されるアクセス速度を低減できる。
[0292] なお、上記では、画素アレイ 2において、 1画素が各色毎のサブ画素 SPIX力 構 成されており、カラー表示可能な場合について説明した力 これに限るものではなぐ 単色表示の画素アレイを用いる場合でも、同様の効果が得られる。
[0293] また、上記では、例えば、温度変化など、画素 (サブ画素)の輝度の時間変化を変 化させる要因となる、画像表示装置 1の周囲の状況に拘わらず、制御回路 (44'44c )力 互いに同じ LUT(42'43)を参照する場合について説明した力 これに限るもの ではない。予め上記周囲の状況に応じた複数の LUTを設けると共に、上記画像表 示装置 1の周囲の状況を検出するセンサを設け、上記制御回路が、各サブフレーム 用の映像データを生成する際に参照する LUTを、当該センサの検出結果に応じて 切り換えてもよい。この構成では、各サブフレーム用の映像データを、上記周囲の状 況に応じて変化させることができるので、周囲の状況が変化しても、表示品質を保つ ことができる。
[0294] 例えば、液晶パネルは、環境温度 (パネル 11のおかれて 、る環境の温度 (気温)) により、その応答特性や階調輝度特性の変化する。このため、入力される映像信号 D ATが同じであったとしても、各サブフレーム用の映像データとして最適な値も、環境 温度に応じて変化する。
[0295] したがって、パネル 11が液晶パネルの場合、互いに異なる温度範囲での使用に適 した LUT(42'43)を設けると共に、上記環境温度を測定するセンサを設け、上記制 御回路 (44 '44c)力 当該センサによる環境温度の計測結果に応じて、上記参照す る LUTを切り換えれば、当該制御回路を含む信号処理部(21〜21d)は、映像信号 DATが同じであっても、より適切な映像信号 DAT2を生成し、液晶パネルに伝達で きる。したがって、想定される全ての温度範囲(例えば 0°C〜65°Cの範囲)で、より忠 実な輝度での画像表示が可能となる。
[0296] また、上記では、 LUT42.43〖こ、 γ変換された、各サブフレームの映像データを示 す値を記憶することによって、図 7に示す時分割駆動の LUT142' 143と、 γ変換用 の LUT133aとを共用する構成について説明したが、これに限るものではな!/、。
[0297] LUT42-43に代えて、図 7と同様の LUT142' 143および γ補正回路 133を設け てもよい。また、 γ補正が不要な場合は、 γ補正回路 133を削除してもよい。
[0298] さらに、上記では、主として、サブフレーム処理部(32 ' 32c)が、 1フレームを 2つの サブフレームに分割する場合を例にして説明した力 これに限るものではない。サブ フレーム処理部は、周期的に入力される画素への映像データ (入力映像データ)が 予め定められた閾値よりも低い輝度を示している場合、各サブフレーム用の映像デ ータ(Slo ' S2o ; Sl ' S2)のうち、少なくとも 1つを、暗表示用に予め定められた範囲 の輝度を示す値に設定し、残余の各サブフレーム用の映像データのうちの少なくとも 1つを増減して、 1フレーム期間における画素の輝度の時間積分値を制御すると共に 、上記入力映像データが予め定められた閾値よりも高い輝度を示している場合、上 記各サブフレーム用の映像データのうち、少なくとも 1つを、明表示用に予め定めら れた範囲の輝度を示す値に設定し、残余のサブフレーム用の映像データのうちの少 なくとも 1つを増減して、 1フレーム期間における当該画素の輝度の時間積分値を制 御してちょい。
[0299] 当該構成でも、殆どの場合、各フレーム期間毎に少なくとも 1回、他の期間よりも画 素の輝度が低い期間を設けることができるので、動画表示時の画質を向上させること ができる。また、明表示の場合、入力映像データの示す輝度が高くなるに従って、明 表示期間以外の期間における画素の輝度が高くなつていくので、各フレーム周期毎 に少なくとも 1回、暗表示を行う構成と比較して、各フレーム周期全体における画素の 輝度の時間積分値を上昇させることができ、より明るい表示が可能になる。
[0300] さらに、上記構成では、暗表示の場合、上記出力映像データの 1つが暗表示用の 輝度を示す値に設定されるので、当該暗表示期間には、画素の輝度が許容範囲内 に維持される視野角を拡大できる。同様に、明表示の場合は、上記出力映像データ の 1つが暗表示用の輝度を示す値に設定されるので、当該暗表示期間には、画素の 輝度が許容範囲内に維持される視野角を拡大できる。この結果、時分割駆動しない 構成よりも、白浮きなどの不具合の発生を防止でき、視野角を拡大できる。
[0301] さらに、上記各実施形態に記載されているように、上記画素が複数である場合には 、上記構成に加えて、上記生成手段は、各画素への入力映像データに応じて、それ ぞれの画素への出力映像データを、当該入力周期毎に、上記予め定められた複数 の個数ずつ生成すると共に、上記補正手段は、各画素への各出力映像データを、そ れぞれ補正し、各画素に対応する予測結果をそれぞれ上記予測結果記憶部に格納 すると共に、上記生成手段は、上記いずれの画素についても、上記入力周期毎に生 成される、当該画素への複数個の出力映像データを、それぞれ上記予め定められた 複数の個数ずつ生成し、上記補正部は、上記いずれの画素についても、上記入力 周期毎に、当該画素に関する予測結果を、それぞれ上記予め定められた複数の回 数読み出すと共に、これらの予測結果と上記各出力映像データとから、いずれの画 素についても、上記入力周期ごとに複数回実施可能な、上記最後の時点における当 該画素の輝度の予測処理および予測結果の格納処理のうち、少なくとも 1回の予測 結果の書き込み処理を間弓 I 、てもよ 、。 [0302] 当該構成において、上記入力周期毎に生成される複数個の出力映像データは、そ れぞれ上記予め定められた複数の個数ずつ生成され、上記予測結果は、上記入力 周期毎に、それぞれ上記予め定められた複数の回数読み出される。これにより、これ らの予測結果と上記各出力映像データとに基づいて、複数回、上記最後の時点にお ける画素の輝度の予測し、予測結果の格納できるようになる。なお、上記画素は、複 数であり、上記読み出し処理、および、生成処理は、各画素に対応して行われる。
[0303] ただし、上記構成では、上記入力周期毎に複数回実施可能な予測処理および予 測結果の格納処理のうち、少なくとも 1回の予測結果の書き込み処理が間弓 Iかれる。
[0304] この結果、間引かない構成と比較して、予測結果記憶部に、各画素の予測結果を 格納する時間間隔を長くすることができ、予測結果記憶部に要求される応答速度を 遅くすることができる。
[0305] なお、少なくとも 1回の書き込み処理を間引けば効果が得られるが、補正手段によ る予測結果の書き込み処理の回数を、各画素について、 1入力周期あたり 1回になる まで間引くと、より効果が大きい。
[0306] さらに、書き込み処理を間引くか否かに拘わらず、上記暗表示期間または明表示 期間を設ける構成の場合は、上記各実施形態に記載されているように、上記構成に カロえて、上記残余のサブフレーム用の映像データのうちの特定の 1つ以外の映像デ ータを、暗表示用に予め定められた範囲の輝度を示す値、または、明表示用に予め 定められた範囲の輝度を示す値に設定し、当該特定の映像データを増減して、 1フ レーム期間における当該画素の輝度の時間積分値を制御する方が望ましい。
[0307] 当該構成では、各サブフレーム用の映像データのうち、上記特定の映像データ以 外の映像データは、暗表示用に予め定められた範囲の輝度を示す値、または、明表 示用に予め定められた範囲の輝度を示す値に設定されているので、複数のサブフレ ーム用の映像データを、両範囲のいずれにも含まれない値に設定する場合と比較し て、さらに、白浮きなどの不具合の発生を防止でき、視野角を拡大できる。
[0308] また、上記各サブフレーム用の映像データは、 1フレーム期間における当該画素の 輝度の時間的な重心位置が、当該 1フレーム期間の時間的な中心位置に近くなるよ うに設定されて 、る方が望ま 、。 [0309] 具体的には、サブフレーム処理部(32、 32c)は、入力映像データの示す輝度が一 番低い領域では、 1フレーム期間を構成する各サブフレームのうち、当該フレーム期 間の時間的な中心位置に最も近 、サブフレームに対応する映像データを、上記特 定の映像データとし、当該映像データの値を増減して、 1フレーム期間における当該 画素の輝度の時間積分値を制御する。
[0310] また、入力映像データの示す輝度が徐々に高くなり、当該特定の映像データが上 記明表示用に予め定められた範囲に入ると、当該サブフレームの映像データを当該 範囲内の値に設定し、残余のサブフレームのうち、フレーム期間の時間的な中心位 置に最も近いサブフレームに対応する映像データを、上記特定の映像データとし、 当該映像データの値を増減して、 1フレーム期間における当該画素の輝度の時間積 分値を制御する。なお、特定の映像データに対応するサブフレームの選択は、特定 の映像データが上記明表示用に予め定められた範囲に入る度に繰り返される。
[0311] 当該構成では、入力映像データの示す輝度に拘わらず、 1フレーム期間における 当該画素の輝度の時間的な重心位置が、当該 1フレーム期間の時間的な中心位置 に近くなるように設定される。したがって、以下の不具合、すなわち、時間的な重心位 置が変動することに起因して、動く物体の前端や後端において、静止時には見えな い異常な明暗が見えてしまい、これが動画品質を低下させるという不具合の発生を 防止でき、動画表示時の品質を向上できる。
[0312] さらに、回路規模よりも視野角の拡大が特に望まれる場合には、上記信号処理部( 21〜21f)は、上記各サブフレーム期間の時間比を、以下に示すように、すなわち、 上記特定の映像データに対応するサブフレームの切り換えタイミング力 画素の表現 可能な輝度の範囲を等分するタイミングよりも、画素の表現可能な明度の範囲を等分 するタイミングに近くなるように設定する方が望ま 、。なお、
当該構成では、いずれのサブフレームの輝度で 1フレーム期間中の輝度を主として 制御するかを、適切な明度で切り換えることができるので、輝度の範囲を等分するタ イミングで切り換える場合よりも、人に認識される白浮きの量をさらに削減することがで き、視野角を、さらに拡大できる。
[0313] なお、上記各実施形態では、信号処理回路(21〜21c)を構成する各部材がハー ドウエアのみで実現されている場合を例にして説明した力 これに限るものではない。 各部材の全部または一部を、上述した機能を実現するためのプログラムと、そのプロ グラムを実行するハードウェア (コンピュータ)との組み合わせで実現してもよい。一例 として、画像表示装置 1に接続されたコンピュータが、画像表示装置 1を駆動する際 に使用されるデバイスドライバとして、信号処理回路を実現してもよい。また、画像表 示装置 1に内蔵あるいは外付けされる変換基板として、信号処理回路が実現され、フ アームウェアなどのプログラムの書き換えによって、当該信号処理回路を実現する回 路の動作を変更できる場合には、当該ソフトウェアが記録された記録媒体を配布した り、当該ソフトウェアを通信路を介して伝送するなどして、当該ソフトウェアを配布し、 上記ハードウェアに、そのソフトウェアを実行させることによって、当該ハードウェアを 、上記各実施形態の信号処理回路として動作させてもよい。
[0314] これらの場合は、上述した機能を実行可能なハードウェアが用意されていれば、当 該ハードウェアに、上記プログラムを実行させるだけで、上記各実施形態に係る信号 処理回路を実現できる。
[0315] より詳細に説明すると、ソフトウェアを用いて実現する場合、 CPU,あるいは、上述 した機能を実行可能なハードウェアなど力 なる演算手段力 ROMや RAMなどの 記憶装置に格納されたプログラムコードを実行し、図示しない入出力回路などの周辺 回路を制御することによって上記各実施形態に係る信号処理回路を実現できる。
[0316] この場合、処理の一部を行うハードウェアと、当該ハードウェアの制御や残余の処 理を行うプログラムコードを実行する上記演算手段とを組み合わせても実現すること もできる。さらに、上記各部材のうち、ハードウ アとして説明した部材であっても、処 理の一部を行うハードウェアと、当該ハードウェアの制御や残余の処理を行うプロダラ ムコードを実行する上記演算手段とを組み合わせても実現することもできる。なお、上 記演算手段は、単体であってもよいし、装置内部のノ スや種々の通信路を介して接 続された複数の演算手段が共同してプログラムコードを実行してもよい。
[0317] 上記演算手段によって直接実行可能なプログラムコード自体、または、後述する解 凍などの処理によってプログラムコードを生成可能なデータとしてのプログラムは、当 該プログラム(プログラムコードまたは上記データ)を記録媒体に格納し、当該記録媒 体を配付したり、あるいは、上記プログラムを、有線または無線の通信路を介して伝 送するための通信手段で送信したりして配付され、上記演算手段で実行される。
[0318] なお、通信路を介して伝送する場合、通信路を構成する各伝送媒体が、プログラム を示す信号列を伝搬し合うことによって、当該通信路を介して、上記プログラムが伝 送される。また、信号列を伝送する際、送信装置が、プログラムを示す信号列により 搬送波を変調することによって、上記信号列を搬送波に重畳してもよい。この場合、 受信装置が搬送波を復調することによって信号列が復元される。一方、上記信号列 を伝送する際、送信装置が、デジタルデータ列としての信号列をパケット分割して伝 送してもよい。この場合、受信装置は、受信したパケット群を連結して、上記信号列を 復元する。また、送信装置が、信号列を送信する際、時分割 Z周波数分割 Z符号分 割などの方法で、信号列を他の信号列と多重化して伝送してもよい。この場合、受信 装置は、多重化された信号列から、個々の信号列を抽出して復元する。いずれの場 合であっても、通信路を介してプログラムを伝送できれば、同様の効果が得られる。
[0319] ここで、プログラムを配付する際の記録媒体は、取外し可能である方が好ましいが、 プログラムを配付した後の記録媒体は、取外し可能か否かを問わない。また、上記記 録媒体は、プログラムが記憶されていれば、書換え (書き込み)可能か否か、揮発性 か否か、記録方法および形状を問わない。記録媒体の一例として、磁気テープや力 セットテープなどのテープ、あるいは、フロッピー(登録商標)ディスクゃノヽードディスク などの磁気ディスク、または、 CD— ROMや光磁気ディスク(MO)、ミニディスク(MD )やデジタルビデオディスク(DVD)などのディスクが挙げられる。また、記録媒体は、 ICカードや光カードのようなカード、あるいは、マスク ROMや EPROM、 EEPROM またはフラッシュ ROMなどのような半導体メモリであってもよい。あるいは、 CPUなど の演算手段内に形成されたメモリであってもよい。
[0320] なお、上記プログラムコードは、上記各処理の全手順を上記演算手段へ指示する コードであってもよいし、所定の手順で呼び出すことで、上記各処理の一部または全 部を実行可能な基本プログラム (例えば、オペレーティングシステムやライブラリなど) が既に存在して 、れば、当該基本プログラムの呼び出しを上記演算手段へ指示する コードやポインタなどで、上記全手順の一部または全部を置き換えてもよ 、。 [0321] また、上記記録媒体にプログラムを格納する際の形式は、例えば、実メモリに配置 した状態のように、演算手段がアクセスして実行可能な格納形式であってもよ 、し、 実メモリに配置する前で、演算手段が常時アクセス可能なローカルな記録媒体 (例え ば、実メモリゃノヽードディスクなど)にインストールした後の格納形式、あるいは、ネット ワークや搬送可能な記録媒体などから上記ローカルな記録媒体にインストールする 前の格納形式などであってもよい。また、プログラムは、コンノィル後のオブジェクトコ ードに限るものではなぐソースコードや、インタプリトまたはコンパイルの途中で生成 される中間コードとして格納されていてもよい。いずれの場合であっても、圧縮された 情報の解凍、符号化された情報の復号、インタプリト、コンパイル、リンク、または、実 メモリへの配置などの処理、あるいは、各処理の組み合わせによって、上記演算手段 が実行可能な形式に変換可能であれば、プログラムを記録媒体に格納する際の形 式に拘わらず、同様の効果を得ることができる。
産業上の利用の可能性
[0322] 本発明によれば、上記のように駆動することによってより明るぐ視野角が広ぐ階調 遷移の強調し過ぎによる画質低下が抑制され、し力も、動画表示時の画質が向上さ れた表示装置を提供することができるので、液晶テレビジョン受像機や液晶モニタを はじめとする種々の表示装置の駆動装置として、広く好適に使用できる。

Claims

請求の範囲
画素への入力映像データが入力される度に繰り返される生成工程を含み、当該各 生成工程では、当該画素を時分割駆動するために、当該画素への入力映像データ に応じて、当該画素への出力映像データが、当該入力周期毎に予め定められた複 数の個数生成される表示装置の駆動方法にお!、て、
上記各生成工程の前または後に行われ、上記入力映像データまたは上記各出力 映像データの一方である補正対象データを補正すると共に、補正後の補正対象デ ータに応じて画素が駆動される期間を補正対象データの駆動期間と呼ぶとき、上記 補正対象データの駆動期間の最後に上記画素が到達している輝度を予測する予測 付き補正工程を含み、
上記各生成工程には、上記入力映像データが予め定められた閾値よりも低い輝度 を示している場合に行われ、上記複数個の出力映像データのうち、少なくとも 1つを、 暗表示用に予め定められた範囲の輝度を示す値に設定し、残余の出力映像データ のうちの少なくとも 1つを増減して、当該複数個の出力映像データによって駆動され る期間における当該画素の輝度の時間積分値を制御する低輝度工程と、
上記入力映像データが予め定められた閾値よりも高い輝度を示している場合に行 われ、上記複数個の出力映像データのうち、少なくとも 1つを、明表示用に予め定め られた範囲の輝度を示す値に設定し、残余の出力映像データのうちの少なくとも 1つ を増減して、当該複数個の出力映像データによって駆動される期間における当該画 素の輝度の時間積分値を制御する高輝度工程とが含まれていると共に、
上記各予測付き補正工程には、これまでの予測結果のうち、上記補正対象データ の駆動期間の最初の時点で画素が到達している輝度を示す予測結果に応じて、補 正対象データを補正する補正工程と、
これまでの予測結果と、これまでに入力された補正対象データと、今回補正対象と する補正対象データとのうち、少なくとも、上記最初の時点の輝度を示す予測結果と 、今回の補正対象データとに基づいて、今回の補正対象データの駆動期間の最後 の時点の輝度を予測する予測工程とが設けられていることを特徴とする表示装置の 駆動方法。
[2] 画素への入力映像データが入力される度に、当該画素を時分割駆動するために、 当該画素への入力映像データに応じて、当該画素への出力映像データを、当該入 力周期毎に予め定められた複数の個数生成する生成手段を有する表示装置の駆動 装置において、
上記生成手段の前または後に配され、上記入力映像データまたは上記各出力映 像データの一方である補正対象データを補正すると共に、補正後の補正対象データ に応じて画素が駆動される期間を補正対象データの駆動期間と呼ぶとき、上記補正 対象データの駆動期間の最後に上記画素が到達している輝度を予測する補正手段 を備え、
上記生成手段は、上記入力映像データが予め定められた閾値よりも低い輝度を示 している場合、上記複数個の出力映像データのうち、少なくとも 1つを、暗表示用に 予め定められた範囲の輝度を示す値に設定し、残余の出力映像データのうちの少な くとも 1つを増減して、当該複数個の出力映像データによって駆動される期間におけ る当該画素の輝度の時間積分値を制御する一方、上記入力映像データが予め定め られた閾値よりも高い輝度を示している場合、上記複数個の出力映像データのうち、 少なくとも 1つを、明表示用に予め定められた範囲の輝度を示す値に設定し、残余の 出力映像データのうちの少なくとも 1つを増減して、当該複数個の出力映像データに よって駆動される期間における当該画素の輝度の時間積分値を制御すると共に、 上記補正手段は、これまでの予測結果のうち、上記補正対象データの駆動期間の 最初の時点で画素が到達して 、る輝度を示す予測結果に応じて、補正対象データ を補正すると共に、これまでの予測結果と、これまでに入力された補正対象データと 、今回補正対象とする補正対象データとのうち、少なくとも、上記最初の時点の輝度 を示す予測結果と、今回の補正対象データとに基づいて、今回の補正対象データの 駆動期間の最後の時点の輝度を予測することを特徴とする表示装置の駆動装置。
[3] 上記補正対象データは、入力映像データであり、
上記補正手段は、上記生成手段の前に配置されており、上記補正対象データの駆 動期間の最後に上記画素が到達している輝度として、補正後の入力映像データに 応じて生成手段が生成した上記複数個の出力映像データによって画素が駆動され る期間の最後に到達している輝度を予測することを特徴とする請求項 2記載の表示 装置の駆動装置。
[4] 上記補正手段は、上記生成手段の後に配置されており、上記補正対象データとし て、各出力映像データを補正することを特徴とする請求項 2記載の表示装置の駆動 装置。
[5] 上記補正手段は、上記入力周期毎に生成される上記複数個の出力映像データを それぞれ補正し、上記入力周期を上記予め定められた複数の個数に分割した分割 期間毎に、各分割期間に対応する補正後の出力映像データを出力する補正部と、 上記予測結果のうち、最後の分割期間に関する予測結果を記憶する予測結果記 憶部とを備え、
上記補正部は、補正対象データが最初の分割期間に対応している場合、上記予 測結果記憶部から読み出した予測結果に基づいて補正対象データを補正し、 上記補正部は、補正対象データが 2番目以降の分割期間に対応している場合、補 正対象データよりも前の分割期間に対応する出力映像データと、上記予測結果記憶 部に記憶された予測結果とに基づいて、上記最初の時点の輝度を予測し、当該予測 結果に応じて補正対象データを補正すると共に、
上記補正部は、最後の分割期間に対応する出力映像データと、それよりも前の分 割期間に対応する出力映像データと、上記予測結果記憶部に記憶された予測結果 とに基づ 、て、上記最後の分割期間に対応する出力映像データの駆動期間の最後 の時点における画素の輝度を予測し、上記予測結果記憶部に予測結果を格納する ことを特徴とする請求項 4記載の表示装置の駆動装置。
[6] 上記画素は、複数であり、
上記生成手段は、各画素への入力映像データに応じて、それぞれの画素への出 力映像データを、当該入力周期毎に、上記予め定められた複数の個数ずつ生成す ると共に、
上記補正手段は、各画素への各出力映像データを、それぞれ補正し、各画素に対 応する予測結果をそれぞれ上記予測結果記憶部に格納すると共に、
上記生成手段は、上記いずれの画素についても、上記入力周期毎に生成される、 当該画素への複数個の出力映像データを、それぞれ上記予め定められた複数の個 数ずつ生成し、
上記補正部は、上記いずれの画素についても、上記入力周期毎に、当該画素に 関する予測結果を、それぞれ上記予め定められた複数の回数読み出すと共に、これ らの予測結果と上記各出力映像データとから、いずれの画素についても、上記入力 周期ごとに複数回実施可能な、上記最後の時点における当該画素の輝度の予測処 理および予測結果の格納処理のうち、少なくとも 1回の予測結果の書き込み処理を 間引くことを特徴とする請求項 5記載の表示装置の駆動装置。
[7] 上記生成手段は、上記残余の出力映像データのうちの特定の 1つである特定出力 映像データを増減して、上記複数個の出力映像データによって駆動される期間にお ける当該画素の輝度の時間積分値を制御すると共に、当該複数個の出力映像デー タのうち、上記特定出力映像データ以外を、上記暗表示用に予め定められた範囲の 輝度を示す値、または、明表示用に予め定められた範囲の輝度を示す値に設定する ことを特徴とする請求項 1記載の表示装置の駆動装置。
[8] 上記生成手段は、上記複数個の出力映像データのそれぞれに応じて画素が駆動 される期間を分割期間、当該複数個の分割期間からなり、上記複数個の出力映像デ ータに応じて当該画素が駆動される期間を単位期間とするとき、上記入力映像デー タの示す輝度が一番低い領域では、各分割期間のうち、上記単位期間の時間的な 中心位置に最も近 ヽ分割期間に対応する出力映像データを、上記特定出力映像デ ータとして選択すると共に、入力映像データの示す輝度が徐々に高くなり、当該特定 出力映像データが上記明表示用に予め定められた範囲に入ると、当該分割期間の 出力映像データを当該範囲内の値に設定し、残余の分割期間のうち、上記単位期 間の時間的な中心位置に最も近い分割期間に対応する出力映像データを、新たに 上記特定出力映像データとして選択することを特徴とする請求項 7記載の表示装置 の駆動装置。
[9] 上記複数の出力映像データのそれぞれによって画素が駆動される期間同士の比 率は、上記複数の出力映像データのうち、いずれの出力映像データを上記特定出 力映像データとするかを切り換えるタイミングが、当該画素の表現可能な輝度の範囲 を等分するタイミングよりも、画素の表現可能な明度の範囲を等分するタイミングに近 くなるように設定されていることを特徴とする請求項 7記載の表示装置の駆動装置。
[10] 請求項 2〜9のいずれか 1項に記載の各手段として、コンピュータを動作させるプロ グラム。
[11] 請求項 10記載のプログラムが記録された記録媒体。
[12] 請求項 2〜9の 、ずれか一項に記載の表示装置の駆動装置と、
当該駆動装置によって駆動される画素を含む表示部とを備えていることを特徴とす る表示装置。
[13] テレビジョン放送を受信し、当該テレビジョン放送によって伝送された映像を示す映 像信号を上記表示装置の駆動装置へ入力する受像手段を備えていると共に、 上記表示部は、液晶表示パネルであり、
液晶テレビジョン受像機として動作することを特徴とする請求項 12記載の表示装置
[14] 上記表示部は、液晶表示パネルであり、
上記表示装置の駆動装置には、外部力 映像信号が入力されていると共に、 当該映像信号を示す映像を表示する液晶モニタ装置として動作することを特徴と する請求項 12記載の表示装置。
PCT/JP2006/304433 2005-03-15 2006-03-08 表示装置の駆動方法、表示装置の駆動装置、そのプログラムおよび記録媒体、並びに、それを備える表示装置 WO2006098194A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/886,226 US7956876B2 (en) 2005-03-15 2006-03-08 Drive method of display device, drive unit of display device, program of the drive unit and storage medium thereof, and display device including the drive unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-073902 2005-03-15
JP2005073902 2005-03-15

Publications (1)

Publication Number Publication Date
WO2006098194A1 true WO2006098194A1 (ja) 2006-09-21

Family

ID=36991542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/304433 WO2006098194A1 (ja) 2005-03-15 2006-03-08 表示装置の駆動方法、表示装置の駆動装置、そのプログラムおよび記録媒体、並びに、それを備える表示装置

Country Status (2)

Country Link
US (1) US7956876B2 (ja)
WO (1) WO2006098194A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8253678B2 (en) 2005-03-15 2012-08-28 Sharp Kabushiki Kaisha Drive unit and display device for setting a subframe period
JPWO2012035768A1 (ja) * 2010-09-14 2014-01-20 学校法人幾徳学園 情報表示装置

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4444334B2 (ja) * 2005-03-15 2010-03-31 シャープ株式会社 液晶表示装置の駆動方法、液晶表示装置の駆動装置、そのプログラムおよび記録媒体、並びに、液晶表示装置
US20090122207A1 (en) * 2005-03-18 2009-05-14 Akihiko Inoue Image Display Apparatus, Image Display Monitor, and Television Receiver
WO2006100906A1 (ja) * 2005-03-18 2006-09-28 Sharp Kabushiki Kaisha 画像表示装置、画像表示モニター、およびテレビジョン受像機
US8659746B2 (en) 2009-03-04 2014-02-25 Nikon Corporation Movable body apparatus, exposure apparatus and device manufacturing method
CN102473389A (zh) * 2009-07-10 2012-05-23 夏普株式会社 液晶驱动电路和液晶显示装置
JP2011102876A (ja) * 2009-11-10 2011-05-26 Hitachi Displays Ltd 液晶表示装置
KR101094304B1 (ko) * 2010-02-23 2011-12-19 삼성모바일디스플레이주식회사 표시 장치 및 그의 영상 처리 방법
WO2011125899A1 (ja) * 2010-04-02 2011-10-13 シャープ株式会社 液晶表示装置、表示方法、プログラム、および記録媒体
TWI427612B (zh) * 2010-12-29 2014-02-21 Au Optronics Corp 用於驅動顯示面板之畫素的方法
WO2015147319A1 (ja) 2014-03-28 2015-10-01 株式会社ニコン 移動体装置、露光装置、フラットパネルディスプレイの製造方法、デバイス製造方法、及び移動体駆動方法
KR20170026705A (ko) * 2015-08-26 2017-03-09 삼성디스플레이 주식회사 표시 장치 및 그 구동 방법
US10514617B2 (en) 2015-09-30 2019-12-24 Nikon Corporation Exposure apparatus, manufacturing method of flat-panel display, device manufacturing method, and exposure method
CN108139683B (zh) 2015-09-30 2021-11-05 株式会社尼康 曝光装置及曝光方法、以及平面显示器制造方法
JP6791154B2 (ja) 2015-09-30 2020-11-25 株式会社ニコン 露光装置、フラットパネルディスプレイの製造方法、及びデバイス製造方法
WO2017057577A1 (ja) 2015-09-30 2017-04-06 株式会社ニコン 露光装置、フラットパネルディスプレイの製造方法、デバイス製造方法、及び露光方法
CN108139689B (zh) 2015-09-30 2021-06-15 株式会社尼康 曝光装置及曝光方法、以及平面显示器制造方法
CN113641083A (zh) 2015-09-30 2021-11-12 株式会社尼康 曝光装置及曝光方法、以及平面显示器制造方法
CN113485076B (zh) 2015-09-30 2023-05-23 株式会社尼康 曝光装置以及平面显示器制造方法
US10242649B2 (en) * 2016-09-23 2019-03-26 Apple Inc. Reduced footprint pixel response correction systems and methods
KR102370367B1 (ko) * 2017-07-17 2022-03-07 삼성디스플레이 주식회사 표시 장치 및 이의 구동 방법
CN112017609B (zh) * 2020-09-03 2021-07-23 Tcl华星光电技术有限公司 显示面板的控制方法、显示面板以及显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002236472A (ja) * 2001-02-08 2002-08-23 Semiconductor Energy Lab Co Ltd 液晶表示装置およびその駆動方法
JP2003058120A (ja) * 2001-08-09 2003-02-28 Sharp Corp 表示装置およびその駆動方法
WO2003098588A1 (fr) * 2002-05-17 2003-11-27 Sharp Kabushiki Kaisha Dispositif d'affichage a cristaux liquides
JP2004240317A (ja) * 2003-02-07 2004-08-26 Sanyo Electric Co Ltd 表示方法、表示装置およびそれに利用可能なデータ書込回路
JP2005173387A (ja) * 2003-12-12 2005-06-30 Nec Corp 画像処理方法、表示装置の駆動方法及び表示装置

Family Cites Families (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2650479B2 (ja) 1989-09-05 1997-09-03 松下電器産業株式会社 液晶制御回路および液晶パネルの駆動方法
JP2761128B2 (ja) * 1990-10-31 1998-06-04 富士通株式会社 液晶表示装置
JP3295437B2 (ja) 1991-03-29 2002-06-24 日本放送協会 表示装置
JPH0568221A (ja) 1991-09-05 1993-03-19 Toshiba Corp 液晶表示装置の駆動方法
US5488389A (en) * 1991-09-25 1996-01-30 Sharp Kabushiki Kaisha Display device
JP3240218B2 (ja) 1992-08-19 2001-12-17 株式会社日立製作所 多色表示可能な情報処理装置
US5390293A (en) * 1992-08-19 1995-02-14 Hitachi, Ltd. Information processing equipment capable of multicolor display
JPH0683295A (ja) 1992-09-03 1994-03-25 Hitachi Ltd マルチメディア表示システム
JPH07294881A (ja) 1994-04-20 1995-11-10 Kodo Eizo Gijutsu Kenkyusho:Kk 液晶表示装置
JPH08114784A (ja) 1994-08-25 1996-05-07 Toshiba Corp 液晶表示装置
KR0171938B1 (ko) * 1994-08-25 1999-03-20 사토 후미오 액정표시장치
JP3305129B2 (ja) 1994-09-02 2002-07-22 キヤノン株式会社 表示装置
US5818419A (en) * 1995-10-31 1998-10-06 Fujitsu Limited Display device and method for driving the same
JPH10161600A (ja) 1996-11-29 1998-06-19 Hitachi Ltd 液晶表示制御装置
JP3703247B2 (ja) 1997-03-31 2005-10-05 三菱電機株式会社 プラズマディスプレイ装置及びプラズマディスプレイ駆動方法
US6310588B1 (en) * 1997-07-24 2001-10-30 Matsushita Electric Industrial Co., Ltd. Image display apparatus and image evaluation apparatus
JP3425083B2 (ja) 1997-07-24 2003-07-07 松下電器産業株式会社 画像表示装置及び画像評価装置
ES2143883T3 (es) * 1998-04-17 2000-05-16 Barco Nv Conversion de una señal de video para accionar una pantalla de cristal liquido.
AUPP340998A0 (en) * 1998-05-07 1998-05-28 Canon Kabushiki Kaisha A method of halftoning an image on a video display having limited characteristics
JPH11352923A (ja) 1998-06-05 1999-12-24 Canon Inc 画像表示方法及び装置
JP2000187469A (ja) 1998-12-24 2000-07-04 Fuji Film Microdevices Co Ltd 画像表示システム
EP1022714A3 (en) * 1999-01-18 2001-05-09 Pioneer Corporation Method for driving a plasma display panel
JP3678401B2 (ja) 1999-08-20 2005-08-03 パイオニア株式会社 プラズマディスプレイパネルの駆動方法
JP2001296841A (ja) 1999-04-28 2001-10-26 Matsushita Electric Ind Co Ltd 表示装置
JP3556150B2 (ja) 1999-06-15 2004-08-18 シャープ株式会社 液晶表示方法および液晶表示装置
JP4519251B2 (ja) 1999-10-13 2010-08-04 シャープ株式会社 液晶表示装置およびその制御方法
JP2001215916A (ja) * 2000-02-03 2001-08-10 Kawasaki Steel Corp 画像処理装置及び液晶表示装置
JP4240743B2 (ja) 2000-03-29 2009-03-18 ソニー株式会社 液晶表示装置及びその駆動方法
JP2001350453A (ja) 2000-06-08 2001-12-21 Hitachi Ltd 画像表示方法および画像表示装置
JP3769463B2 (ja) * 2000-07-06 2006-04-26 株式会社日立製作所 表示装置、表示装置を備えた画像再生装置及びその駆動方法
KR100442304B1 (ko) * 2000-07-07 2004-08-04 가부시끼가이샤 도시바 액정 표시 방법
JP4655341B2 (ja) * 2000-07-10 2011-03-23 日本電気株式会社 表示装置
JP3647364B2 (ja) * 2000-07-21 2005-05-11 Necエレクトロニクス株式会社 クロック制御方法及び回路
JP2002091400A (ja) 2000-09-19 2002-03-27 Matsushita Electric Ind Co Ltd 液晶表示装置
JP2002108294A (ja) 2000-09-28 2002-04-10 Advanced Display Inc 液晶表示装置
JP2002131721A (ja) 2000-10-26 2002-05-09 Mitsubishi Electric Corp 液晶表示装置
EP1227460A3 (en) * 2001-01-22 2008-03-26 Toshiba Matsushita Display Technology Co., Ltd. Display device and method for driving the same
JP2002229547A (ja) * 2001-02-07 2002-08-16 Hitachi Ltd 画像表示システム及び画像情報伝送方法
JP3660610B2 (ja) * 2001-07-10 2005-06-15 株式会社東芝 画像表示方法
JP2003114648A (ja) 2001-09-28 2003-04-18 Internatl Business Mach Corp <Ibm> 液晶表示装置、コンピュータ装置及びそのlcdパネルの駆動制御方法
JP2003177719A (ja) 2001-12-10 2003-06-27 Matsushita Electric Ind Co Ltd 画像表示装置
JP3999081B2 (ja) 2002-01-30 2007-10-31 シャープ株式会社 液晶表示装置
JP2003222790A (ja) 2002-01-31 2003-08-08 Minolta Co Ltd カメラ
JP2003262846A (ja) 2002-03-07 2003-09-19 Mitsubishi Electric Corp 表示装置
JP4342200B2 (ja) * 2002-06-06 2009-10-14 シャープ株式会社 液晶表示装置
JP4248306B2 (ja) * 2002-06-17 2009-04-02 シャープ株式会社 液晶表示装置
KR100908655B1 (ko) * 2002-11-27 2009-07-21 엘지디스플레이 주식회사 데이터 공급시간의 변조방법과 이를 이용한액정표시장치의 구동방법 및 장치
JP4436622B2 (ja) 2002-12-19 2010-03-24 シャープ株式会社 液晶表示装置
JP2004258139A (ja) 2003-02-24 2004-09-16 Sharp Corp 液晶表示装置
JP4413515B2 (ja) 2003-03-31 2010-02-10 シャープ株式会社 画像処理方法及びそれを用いた液晶表示装置
US8502762B2 (en) * 2003-03-31 2013-08-06 Sharp Kabushiki Kaisha Image processing method and liquid-crystal display device using the same
JP4457572B2 (ja) 2003-04-03 2010-04-28 セイコーエプソン株式会社 画像表示装置とその階調表現方法、投射型表示装置
JP4719429B2 (ja) * 2003-06-27 2011-07-06 株式会社 日立ディスプレイズ 表示装置の駆動方法及び表示装置
US20040266643A1 (en) * 2003-06-27 2004-12-30 The Procter & Gamble Company Fabric article treatment composition for use in a lipophilic fluid system
JP4341839B2 (ja) * 2003-11-17 2009-10-14 シャープ株式会社 画像表示装置、電子機器、液晶テレビジョン装置、液晶モニタ装置、画像表示方法、表示制御プログラムおよび記録媒体
JP4197322B2 (ja) 2004-01-21 2008-12-17 シャープ株式会社 表示装置,液晶モニター,液晶テレビジョン受像機および表示方法
US8112383B2 (en) * 2004-02-10 2012-02-07 Microsoft Corporation Systems and methods for a database engine in-process data provider
US20050253793A1 (en) * 2004-05-11 2005-11-17 Liang-Chen Chien Driving method for a liquid crystal display
JP4828425B2 (ja) 2004-09-17 2011-11-30 シャープ株式会社 液晶表示装置の駆動方法、駆動装置、そのプログラムおよび記録媒体、並びに、液晶表示装置
KR20060065956A (ko) 2004-12-11 2006-06-15 삼성전자주식회사 액정 표시 장치 및 표시 장치의 구동 장치
JP4444334B2 (ja) 2005-03-15 2010-03-31 シャープ株式会社 液晶表示装置の駆動方法、液晶表示装置の駆動装置、そのプログラムおよび記録媒体、並びに、液晶表示装置
WO2006098328A1 (ja) 2005-03-15 2006-09-21 Sharp Kabushiki Kaisha 表示装置の駆動装置、表示装置
WO2006100906A1 (ja) 2005-03-18 2006-09-28 Sharp Kabushiki Kaisha 画像表示装置、画像表示モニター、およびテレビジョン受像機
US20090122207A1 (en) 2005-03-18 2009-05-14 Akihiko Inoue Image Display Apparatus, Image Display Monitor, and Television Receiver
JP4497067B2 (ja) 2005-03-23 2010-07-07 セイコーエプソン株式会社 電気光学装置、電気光学装置用駆動回路および電気光学装置用駆動方法
WO2007060783A1 (ja) 2005-11-25 2007-05-31 Sharp Kabushiki Kaisha 画像表示方法、画像表示装置、画像表示モニター、および、テレビジョン受像機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002236472A (ja) * 2001-02-08 2002-08-23 Semiconductor Energy Lab Co Ltd 液晶表示装置およびその駆動方法
JP2003058120A (ja) * 2001-08-09 2003-02-28 Sharp Corp 表示装置およびその駆動方法
WO2003098588A1 (fr) * 2002-05-17 2003-11-27 Sharp Kabushiki Kaisha Dispositif d'affichage a cristaux liquides
JP2004240317A (ja) * 2003-02-07 2004-08-26 Sanyo Electric Co Ltd 表示方法、表示装置およびそれに利用可能なデータ書込回路
JP2005173387A (ja) * 2003-12-12 2005-06-30 Nec Corp 画像処理方法、表示装置の駆動方法及び表示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8253678B2 (en) 2005-03-15 2012-08-28 Sharp Kabushiki Kaisha Drive unit and display device for setting a subframe period
JPWO2012035768A1 (ja) * 2010-09-14 2014-01-20 学校法人幾徳学園 情報表示装置

Also Published As

Publication number Publication date
US7956876B2 (en) 2011-06-07
US20080129762A1 (en) 2008-06-05

Similar Documents

Publication Publication Date Title
WO2006098194A1 (ja) 表示装置の駆動方法、表示装置の駆動装置、そのプログラムおよび記録媒体、並びに、それを備える表示装置
JP4567052B2 (ja) 表示装置,液晶モニター,液晶テレビジョン受像機および表示方法
US8253678B2 (en) Drive unit and display device for setting a subframe period
JP4197322B2 (ja) 表示装置,液晶モニター,液晶テレビジョン受像機および表示方法
JP5031553B2 (ja) 表示装置、液晶モニター、液晶テレビジョン受像機および表示方法
US8624936B2 (en) Display panel control device, liquid crystal display device, electronic appliance, display device driving method, and control program
US7382383B2 (en) Driving device of image display device, program and storage medium thereof, image display device, and television receiver
US7903064B2 (en) Method and apparatus for correcting the output signal for a blanking period
JP5220268B2 (ja) 表示装置
WO2006098246A1 (ja) 液晶表示装置の駆動方法、液晶表示装置の駆動装置、そのプログラムおよび記録媒体、並びに、液晶表示装置
US8063897B2 (en) Display device
JP5110788B2 (ja) 表示装置
JP2007538268A (ja) 液晶表示装置及びその駆動方法、並びに液晶表示装置を備えた液晶テレビ及び液晶モニタ
WO2006025506A1 (ja) 表示制御方法、表示装置の駆動装置、表示装置、並びに、プログラムおよび記録媒体
US20080246784A1 (en) Display device
JP4731971B2 (ja) 表示装置の駆動装置および表示装置
JP2007333770A (ja) 電気光学装置、電気光学装置用駆動回路、及び電気光学装置の駆動方法、並びに電子機器
CN113808550B (zh) 可应用于在显示模块中进行亮度增强的设备
JP2006292973A (ja) 表示装置の駆動装置、および、それを備える表示装置
KR20070062835A (ko) 액정 표시 장치의 데이터 처리 방법 및 장치
KR20100076605A (ko) 액정표시장치 및 그 구동방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11886226

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06728752

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

WWP Wipo information: published in national office

Ref document number: 11886226

Country of ref document: US