WO2017057577A1 - 露光装置、フラットパネルディスプレイの製造方法、デバイス製造方法、及び露光方法 - Google Patents

露光装置、フラットパネルディスプレイの製造方法、デバイス製造方法、及び露光方法 Download PDF

Info

Publication number
WO2017057577A1
WO2017057577A1 PCT/JP2016/078827 JP2016078827W WO2017057577A1 WO 2017057577 A1 WO2017057577 A1 WO 2017057577A1 JP 2016078827 W JP2016078827 W JP 2016078827W WO 2017057577 A1 WO2017057577 A1 WO 2017057577A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
substrate
measurement
scale
mask
Prior art date
Application number
PCT/JP2016/078827
Other languages
English (en)
French (fr)
Inventor
青木 保夫
篤史 原
隆司 下山
川口 透
克大 島竹
伊織 野田
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to CN201680057221.XA priority Critical patent/CN108139688A/zh
Priority to CN202010477970.6A priority patent/CN111650818B/zh
Priority to US15/763,818 priority patent/US20180356739A1/en
Priority to JP2017543562A priority patent/JP6958355B2/ja
Priority to KR1020187009762A priority patent/KR20180058734A/ko
Publication of WO2017057577A1 publication Critical patent/WO2017057577A1/ja
Priority to HK18108637.2A priority patent/HK1248832A1/zh
Priority to US16/709,171 priority patent/US11126094B2/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70791Large workpieces, e.g. glass substrates for flat panel displays or solar panels
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70591Testing optical components
    • G03F7/706Aberration measurement
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70775Position control, e.g. interferometers or encoders for determining the stage position
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70808Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus
    • G03F7/70833Mounting of optical systems, e.g. mounting of illumination system, projection system or stage systems on base-plate or ground
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7085Detection arrangement, e.g. detectors of apparatus alignment possibly mounted on wafers, exposure dose, photo-cleaning flux, stray light, thermal load
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/347Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales
    • G01D5/34746Linear encoders

Definitions

  • the present invention relates to an exposure apparatus, a flat panel display manufacturing method, a device manufacturing method, and an exposure method, and more particularly, an exposure apparatus and exposure method for exposing an object with illumination light, and a flat panel using the exposure apparatus.
  • the present invention relates to a display or device manufacturing method.
  • a lithography process for manufacturing electronic devices such as liquid crystal display elements, semiconductor elements (integrated circuits, etc.), a mask (photomask) or reticle (hereinafter collectively referred to as “mask”), a glass plate or A step-and-step of transferring a pattern formed on a mask onto a substrate using an energy beam while synchronously moving a wafer (hereinafter collectively referred to as a “substrate”) along a predetermined scanning direction (scanning direction).
  • a scanning exposure apparatus a so-called scanning stepper (also called a scanner)) or the like is used.
  • an exposure apparatus including an optical interferometer system that obtains position information of a substrate to be exposed in a horizontal plane using a bar mirror (long mirror) of a substrate stage apparatus is known (for example, a patent). Reference 1).
  • the influence of so-called air fluctuation cannot be ignored.
  • the influence of the air fluctuation can be reduced by using an encoder system, it is difficult to prepare a scale capable of covering the entire movement range of the substrate due to the recent increase in size of the substrate.
  • an exposure apparatus that exposes an object with illumination light through a projection optical system, the holding apparatus holding the object, a measuring unit, and a measured unit, A position measuring unit that acquires position information of the holding unit based on an output of the measuring unit, a first driving unit that relatively moves one of the measuring unit and the measured unit on the holding unit with respect to the other; An exposure apparatus is provided.
  • a flat panel display manufacturing method comprising: exposing the object using the exposure apparatus according to the first aspect; and developing the exposed object. Provided.
  • a device manufacturing method including exposing the object using the exposure apparatus according to the first aspect and developing the exposed object.
  • an exposure method for exposing an object with illumination light through a projection optical system based on an output of the measurement unit of a position measurement unit including a measurement unit and a measurement target unit. Acquiring positional information of a holding unit that holds the object, and relatively moving one of the measurement unit and the measured unit on the holding unit with respect to the other by a first driving unit.
  • An exposure method comprising is provided.
  • FIG. 2A schematically shows a configuration of a mask encoder system provided in the liquid crystal exposure apparatus of FIG. 1, and FIG. 2B shows a part of the mask encoder system (A part of FIG. 2A). It is an enlarged view.
  • FIGS. 3A to 3E are views (Nos. 1 to 5) for explaining the head output splicing process in the mask encoder system and the substrate encoder system.
  • 4A and 4B are conceptual diagrams (a side view and a plan view, respectively) of the substrate encoder system according to the first embodiment, and FIG. 4C is a specific example of the substrate encoder system.
  • FIG. 3A to 3E are views (Nos. 1 to 5) for explaining the head output splicing process in the mask encoder system and the substrate encoder system.
  • 4A and 4B are conceptual diagrams (a side view and a plan view, respectively) of the substrate encoder system according to the first embodiment
  • FIG. 4C is a specific example of the substrate encoder system.
  • FIG. 5 (A) and 5 (B) are enlarged views of a part of the substrate encoder system (B portion in FIG. 4 (C)).
  • FIG. 8A is a diagram (part 1) illustrating the operation of the mask encoder system during the exposure operation
  • FIG. 8B is a diagram (part 1) illustrating the operation of the substrate encoder system during the exposure operation. is there.
  • FIG. 9A is a diagram (part 2) showing the operation of the mask encoder system during the exposure operation
  • FIG. 9B is a diagram (part 2) showing the operation of the substrate encoder system during the exposure operation. is there.
  • FIG. 10A is a diagram (part 3) illustrating the operation of the mask encoder system during the exposure operation
  • FIG. 10B is a diagram (part 3) illustrating the operation of the substrate encoder system during the exposure operation.
  • 11A and 11B are conceptual diagrams (side view and plan view) of the substrate encoder system according to the second embodiment, respectively
  • FIG. 11C is a specific example of the substrate encoder system.
  • FIG. It is a figure which shows the modification of the board
  • FIGS. 15A and 15B are diagrams (No. 1 and No. 2) for explaining the configuration of a measurement system for obtaining the distance between a pair of heads.
  • FIGS. 15A and 15B are diagrams (No. 1 and No. 2) for explaining the configuration of a measurement system for obtaining the tilt amount of the Y slide table. It is a figure which shows the irradiation point of the measurement beam on an encoder scale.
  • FIG. 1 schematically shows a configuration of a liquid crystal exposure apparatus 10 according to the first embodiment.
  • the liquid crystal exposure apparatus 10 employs a step-and-scan method in which a rectangular (square) glass substrate P (hereinafter simply referred to as a substrate P) used in, for example, a liquid crystal display device (flat panel display) is an exposure object.
  • a projection exposure apparatus a so-called scanner.
  • the liquid crystal exposure apparatus 10 has an illumination system 12, a mask stage apparatus 14 that holds a mask M on which a circuit pattern and the like are formed, a projection optical system 16, an apparatus body 18, and a resist (surface facing the + Z side in FIG. 1) on the surface. It has a substrate stage device 20 that holds a substrate P coated with (sensitive agent), a control system for these, and the like.
  • the direction in which the mask M and the substrate P are relatively scanned with respect to the projection optical system 16 at the time of exposure is defined as the X-axis direction
  • the direction orthogonal to the X-axis in the horizontal plane is defined as the Y-axis direction, the X-axis, and the Y-axis
  • the orthogonal direction is the Z-axis direction
  • the rotation directions around the X-axis, Y-axis, and Z-axis are the ⁇ x, ⁇ y, and ⁇ z directions, respectively.
  • the positions in the X-axis, Y-axis, and Z-axis directions are the X position, the Y position, and the Z position, respectively.
  • the illumination system 12 is configured similarly to the illumination system disclosed in, for example, US Pat. No. 5,729,331.
  • the illumination system 12 irradiates light emitted from a light source (not shown) (for example, a mercury lamp) through exposure mirrors (not shown), dichroic mirrors, shutters, wavelength selection filters, various lenses, and the like. ) Irradiate the mask M as IL.
  • a light source for example, a mercury lamp
  • the illumination light IL for example, light such as i-line (wavelength 365 nm), g-line (wavelength 436 nm), h-line (wavelength 405 nm), or the combined light of the i-line, g-line, and h-line is used.
  • the mask stage device 14 drives the mask M with a predetermined long stroke in the scanning direction (X-axis direction), for example, by holding the mask M by vacuum suction, for example, and appropriately in the Y-axis direction and the ⁇ z direction.
  • Mask driving system 91 (not shown in FIG. 1; see FIG. 7) for fine driving, and mask for obtaining positional information (including information on the amount of rotation in the ⁇ z direction) in the XY plane of the mask holder 40. Includes position measurement system.
  • the mask holder 40 is composed of a frame-like member in which an opening having a rectangular shape in plan view is formed as disclosed in, for example, US Patent Application Publication No. 2008/0030702.
  • the mask holder 40 is placed on a pair of mask guides 42 fixed to the upper base 18a that is a part of the apparatus main body 18, for example, via an air bearing (not shown).
  • the mask drive system 91 includes, for example, a linear motor (not shown).
  • the mask position measurement system includes a pair of encoder head units 44 (hereinafter simply referred to as head units 44) fixed to the upper base 18a via the encoder base 43, and the pair of head units 44 on the lower surface of the mask holder 40.
  • the projection optical system 16 is disposed below the mask stage device 14.
  • the projection optical system 16 is a so-called multi-lens projection optical system having the same configuration as the projection optical system disclosed in, for example, US Pat. No. 6,552,775, and is a double-sided telecentric equal magnification system.
  • a plurality of optical systems (for example, 11 in this embodiment, see FIG. 2A) for forming a vertical image are provided.
  • the illumination light passing through the mask M causes the mask M in the illumination area via the projection optical system 16.
  • a projection image (partial upright image) of the circuit pattern is formed in an irradiation region (exposure region) of illumination light conjugate to the illumination region on the substrate P. Then, the mask M moves relative to the illumination area (illumination light IL) in the scanning direction, and the substrate P moves relative to the exposure area (illumination light IL) in the scanning direction. Scanning exposure of one shot area is performed, and the pattern formed on the mask M is transferred to the shot area.
  • the apparatus main body 18 supports the mask stage apparatus 14 and the projection optical system 16, and is installed on the floor 11 of the clean room via a plurality of vibration isolators 19.
  • the apparatus main body 18 is configured in the same manner as the apparatus main body disclosed in, for example, US Patent Application Publication No. 2008/0030702, and an upper base 18a (also referred to as an optical surface plate or the like) that supports the projection optical system 16. ), A lower gantry 18b, and a pair of middle gantry 18c.
  • the substrate stage apparatus 20 is for positioning the substrate P with high precision with respect to the projection optical system 16 (illumination light IL).
  • the substrate stage device 20 is arranged along a horizontal plane (X-axis direction and Y-axis direction) with a predetermined amount. While driving with a long stroke, the substrate P is slightly driven in the direction of 6 degrees of freedom.
  • the configuration of the substrate stage apparatus 20 is not particularly limited.
  • the gantry type 2 as disclosed in, for example, US Patent Application Publication No. 2008/129762 or US Patent Application Publication No. 2012/0057140. It is preferable to use a so-called coarse / fine movement stage device including a two-dimensional coarse movement stage and a fine movement stage that is finely driven with respect to the two-dimensional coarse movement stage.
  • the substrate stage apparatus 20 includes a Y coarse movement stage 22Y, an X coarse movement stage 22X, and a substrate holder 34.
  • the Y coarse movement stage 22Y is driven with a predetermined long stroke in the Y-axis direction with respect to the projection optical system 16 via, for example, a Y actuator.
  • the X coarse movement stage 22X is driven with a predetermined long stroke in the X-axis direction on the Y coarse movement stage 22Y via, for example, an X actuator.
  • the X coarse movement stage 22X moves in the Y-axis direction integrally with the Y coarse movement stage 22Y.
  • the substrate holder 34 is made of a plate-like member having a rectangular shape in plan view, and the substrate P is placed on the upper surface thereof.
  • the substrate holder 34 is driven with a predetermined long stroke in the X-axis and / or Y-axis direction with respect to the projection optical system 16 integrally with the X coarse movement stage 22X by a plurality of fine movement actuators (for example, a voice coil motor). And is driven slightly in the direction of six degrees of freedom.
  • the Y actuator, X actuator, and fine actuator constitute a part of the substrate drive system 93 (see FIG. 7).
  • the liquid crystal exposure apparatus 10 has a substrate position measurement system for obtaining position information of the substrate holder 34 (that is, the substrate P) in the direction of 6 degrees of freedom.
  • the substrate position measurement system includes a Z / tilt position measurement system 98 for obtaining position information of the substrate P in the Z-axis, ⁇ x, ⁇ y directions (hereinafter referred to as Z / tilt direction), and A substrate encoder system 50 for determining position information of the substrate P in the XY plane is included.
  • the configuration of the Z / tilt position measurement system 98 is not particularly limited, but a plurality of sensors attached to a system including the substrate holder 34 as disclosed in, for example, US Patent Application Publication No. 2010/0018950 is used.
  • the configuration of the substrate encoder system 50 will be described later.
  • FIG. 2A In the regions on the + Y side and ⁇ Y side of the mask M in the mask holder 40 (more specifically, an opening (not shown) for accommodating the mask M).
  • a plurality of encoder scales 46 (hereinafter simply referred to as scales 46) are arranged.
  • the plurality of scales 46 are illustrated by solid lines and arranged on the upper surface of the mask holder 40.
  • the lower surface side of the mask holder 40 is arranged so that the Z position of the lower surface of each of the plurality of scales 46 coincides with the Z position of the lower surface (pattern surface) of the mask M. Has been placed.
  • the mask holder 40 of the present embodiment for example, three scales 46 are arranged at predetermined intervals in the X-axis direction in the + Y side and ⁇ Y side regions of the mask M, respectively. That is, the mask holder 40 has, for example, six scales 46 in total. Each of the plurality of scales 46 is substantially the same except that the scales 46 are arranged symmetrically in the vertical direction on the + Y side and ⁇ Y side of the mask M.
  • the scale 46 is made of, for example, a plate-shaped (strip-shaped) member that is made of quartz glass and extends in the X-axis direction and has a rectangular shape in plan view.
  • the mask holder 40 is made of ceramics, for example, and the plurality of scales 46 are fixed to the mask holder 40.
  • the X scale 47x is formed in the region on one side in the width direction (the ⁇ Y side in FIG. 2B) on the lower surface of the scale 46 (the surface facing the ⁇ Z side in this embodiment).
  • the X scale 47x is formed.
  • a Y scale 47y is formed in a region on the other side in the width direction on the lower surface of the scale 46 (+ Y side in FIG. 2B).
  • the X scale 47x is configured by a reflective diffraction grating (X grating) having a plurality of grating lines formed in the X axis direction at a predetermined pitch (the X axis direction is a periodic direction) and extending in the Y axis direction. .
  • the Y scale 47y is configured by a reflective diffraction grating (Y grating) formed with a predetermined pitch in the Y axis direction (with the Y axis direction as a periodic direction) and having a plurality of grating lines extending in the X axis direction.
  • Y grating reflective diffraction grating
  • the plurality of lattice lines are formed at intervals of 10 nm or less, for example.
  • the interval (pitch) between the lattices is shown much wider than actual. The same applies to the other figures.
  • a pair of encoder bases 43 are fixed to the upper surface of the upper mount 18a.
  • One pair of encoder bases 43 is arranged on the ⁇ X side of the mask guide 42 on the + X side, and the other is arranged on the + X side of the mask guide 42 on the ⁇ X side (that is, an area between the pair of mask guides 42).
  • a part of the projection optical system 16 is disposed between the pair of encoder bases 43.
  • the encoder base 43 is composed of a member extending in the X-axis direction.
  • An encoder head unit 44 (hereinafter simply referred to as the head unit 44) is fixed to the center in the longitudinal direction of each of the pair of encoder bases 43.
  • the head unit 44 is fixed to the apparatus main body 18 (see FIG. 1) via the encoder base 43.
  • the pair of head units 44 are substantially the same except that the + Y side and the ⁇ Y side of the mask M are arranged symmetrically on the paper surface, and only one ( ⁇ Y side) will be described below. To do.
  • the head unit 44 has a unit base 45 made of a plate-like member having a rectangular shape in plan view.
  • the unit base 45 is fixed with a pair of X heads 49x that are spaced apart in the X-axis direction and a pair of Y heads 49y that are spaced apart in the X-axis direction. That is, the mask encoder system 48 includes, for example, four X heads 49x and four Y heads 49y.
  • one X head 49x and one Y head 49y are housed in one housing, and the other X head 49x and the other Y head 49y are housed in another housing.
  • the pair of X heads 49x and the pair of Y heads 49y may be arranged independently of each other.
  • the pair of X heads 49x and the pair of Y heads 49y are illustrated as being disposed above the scale 46 (on the + Z side).
  • the pair of X heads 49x is disposed below the X scale 47y, and the pair of Y heads 49y is disposed below the Y scale 47y (see FIG. 1).
  • the pair of X heads 49x and the pair of Y heads 49y are separated from the unit base 45 so that the distance between the pair of X heads 49x and the distance between the pair of Y heads 49y do not change due to, for example, vibration. Is fixed. Also, the unit base 45 itself has a thermal expansion coefficient lower than that of the scale 46 so that the distance between the pair of X heads 49x and the distance between the pair of Y heads 49y do not change due to, for example, a temperature change ( Alternatively, it is made of a material equivalent to the scale 46.
  • the X head 49x and the Y head 49y are so-called diffraction interference type encoder heads as disclosed in, for example, US Patent Application Publication No. 2008/0094592, and have corresponding scales (X scale 47x, Y scale 47y). ) Is irradiated with the measurement beam, and the beam from the scale is received, so that the displacement information of the mask holder 40 (that is, the mask M, see FIG. 2A) is transferred to the main controller 90 (see FIG. 7). Supply.
  • the position information of the mask M in the X-axis direction is obtained by, for example, the four X heads 49x and the X scale 47x facing the X heads 49x (depending on the X position of the mask holder 40).
  • four X linear encoders 92x are configured, for example, four Y heads 49y and a Y scale 47y (mask holder 40) facing the Y heads 49y.
  • four Y linear encoders 92y (not shown in FIG. 2B, see FIG. 7) for obtaining positional information of the mask M in the Y-axis direction are configured.
  • the main control device 90 uses the X axis of the mask holder 40 (see FIG. 2A) based on the outputs of, for example, four X linear encoders 92 x and, for example, four Y linear encoders 92 y.
  • the position information in the direction and the Y-axis direction is obtained with a resolution of 10 nm or less, for example.
  • main controller 90 obtains ⁇ z position information (rotation amount information) of mask holder 40 based on at least two outputs of, for example, four X linear encoders 92x (or, for example, four Y linear encoders 92y).
  • the main controller 90 controls the position of the mask holder 40 in the XY plane using the mask drive system 91 based on the position information in the XY plane of the mask holder 40 obtained from the measurement value of the mask encoder system 48. .
  • the mask holder 40 has the scales 46 at predetermined intervals in the X-axis direction in the + Y side and ⁇ Y side regions of the mask M, respectively. For example, three are arranged.
  • the distance between the pair of X heads 49x and the pair of Y heads 49y included in one head unit 44 is an adjacent scale. It is set wider than the interval between 46.
  • the mask encoder system 48 at least one of the pair of X heads 49x always faces the X scale 47x, and at least one of the pair of Y heads 49y always faces the Y scale 47y. Therefore, the mask encoder system 48 can supply the position information of the mask holder 40 (see FIG. 2A) to the main controller 90 (see FIG. 7) without interruption.
  • the mask encoder system 48 is set to the X scale 47x on the + X side of the pair of adjacent X scales 47x.
  • the first state where both the pair of heads 49x face each other the state shown in FIG.
  • the X head 49x on the -X side faces the region between the pair of adjacent X scales 47x ( No X scale 47x), + X side X head 49x faces the + X side X scale 47x, -X side X head 49x faces -X side X scale 47x
  • a fifth state in which both the pair of heads 49x are opposed to the X scale 47x on the ⁇ X side.
  • at least one X head 49x always faces the X scale 47x.
  • the main controller 90 obtains the X position information of the mask holder 40 based on the average value of the outputs of the pair of X heads 49x in the first, third, and fifth states. Further, in the second state, main controller 90 obtains X position information of mask holder 40 based only on the output of + X side X head 49x, and in the fourth state, -X side X head The X position information of the mask holder 40 is obtained based only on the 49x output. Therefore, the measurement value of the mask encoder system 48 is not interrupted.
  • both the first, third, and fifth states that is, both the pair of heads are used. Facing the scale and the output is supplied from each of the pair of heads, and the second and fourth states, that is, only one of the pair of heads faces the scale, and only the one head
  • the head output connection process is performed.
  • the head joining process will be described with reference to FIGS. 3 (A) to 3 (E). For simplification of description, it is assumed that a two-dimensional lattice (grating) is formed on the scale 46 in FIGS. 3 (A) to 3 (E).
  • the outputs of the heads 49X and 49Y are assumed to be ideal values. Further, in the following description, a connection process for a pair of adjacent X heads 49X (referred to as 49X 1 and 49X 2 for convenience) will be described, but a pair of adjacent Y heads 49Y (referred to as 49Y 1 and 49Y 2 for convenience). The same splicing process is also performed in step (b).
  • a pair of X heads 49x 1, 49x 2, respectively, of the adjacent pair of scales 46 (for convenience and 46 1, 46 2), using a scale 46 2 + X side
  • the pair of X heads 49X 1 and 49X 2 both output X coordinate information.
  • the outputs of the pair of X heads 49X 1 and 49X 2 have the same value.
  • the mask holder 40 + moves in the X direction
  • X head 49x 1 is because the measurement range scale 46 2, before the said measuring range, X and invalid handles the output of the head 49X 1.
  • X position information of the mask holder 40 is determined based only on the output of the X head 49x 2.
  • the mask holder 40 (see FIG. 2 (A)) further moves in the + X direction, X head 49x 1 face scale 46 1 on the -X side.
  • the X head 49X 1 outputs the X position information of the mask holder 40 immediately after the measurement operation using the scale 46 1 is enabled, but the output of the X head 49X 1 starts from an indefinite value (or zero). Since the count is resumed, it cannot be used to calculate the X position information of the mask holder 40. Therefore, in this state, it is necessary to connect the outputs of the pair of X heads 49X 1 and 49X 2 .
  • the connecting process specifically, an undefined value and has been the output of the X heads 49x 1 (or zero), (so that for example the same value) using the output of the X heads 49x 2 performs a process of correcting. ⁇ technique process, go to further the + X direction mask holder 40, as shown in FIG. 3 (D), X head 49x 2 is completed before the measuring range scale 46 2.
  • X head 49x 2 is, when a measuring range scale 46 2, before the said measuring range, the output of the X heads 49x 2 Treat as invalid.
  • X position information of the mask holder 40 (see FIG. 2 (A)) is determined based on the output of the X heads 49x 1 only.
  • the mask holder 40 further moves in the + X direction, and each of the pair of X heads 49X 1 and 49X 2 can perform a measurement operation using the scale 46 1. immediately it became performed on X head 49x 2, a connecting process using the output of the X heads 49x 1. Thereafter, the X position information of the mask holder 40 is obtained based on the outputs of the pair of X heads 49X 1 and 49X 2 .
  • FIG. 4A and 4B are conceptual diagrams of the substrate encoder system 50.
  • FIG. 1 In the mask encoder system 48 (see FIG. 2A), the mask holder 40 that holds the plurality of scales 46 moves relative to the pair of head units 44 whose positions are fixed.
  • the pair of head units 60 is included in the substrate stage device 20 (in this embodiment, the substrate holder 34).
  • the pair of head units 60 can be driven relative to the substrate holder 34 with a predetermined stroke in the Y-axis direction by a head unit driving actuator 68 (see FIG. 7) provided on the substrate holder 34. (See arrow in FIG. 4B).
  • the type of the head unit driving actuator 68 is not particularly limited. For example, a linear motor, a feed screw device, or the like can be used.
  • the relative movement of the pair of head units 60 in the X-axis direction with respect to the substrate holder 34 is mechanically limited, for example. Accordingly, when the substrate holder 34 moves in the X-axis direction with a long stroke, the pair of head units 60 moves integrally with the substrate holder 34 in the X-axis direction with a long stroke.
  • a plurality of scales 56 are fixed to the lower surface of the upper mount 18a.
  • the scale 56 is formed of a member extending in the X-axis direction.
  • the head unit 60 has a plurality of encoder heads (details of the encoder head will be described later), like the head unit 44 in the mask encoder system 48.
  • the main controller 90 controls the Y position of the head unit 60 so that the opposed state of the head unit 60 and the scale 56 is maintained.
  • the head unit 60 When the substrate holder 34 moves in the X-axis direction in this opposed state, the head unit 60 also moves integrally in the X-axis direction, so that the opposed state of the head unit 60 and the scale 56 is maintained. Therefore, regardless of the position of the substrate holder 34 in the XY plane, the facing state of the head unit 60 and the scale 56 is maintained.
  • the head unit 60 obtains position information in the XY plane with respect to the gantry 18a (see FIG. 1) of the head unit 60 by using a plurality of scales 56 by using a part (upward head) of the plurality of encoder heads (see FIG. 1). 4 (A)).
  • a pair of recesses 36 (see FIG. 4B) is formed in the substrate holder 34, and the pair of head units 60 are respectively disposed inside the pair of recesses 36.
  • a plurality of encoder scales 52 (hereinafter simply referred to as scales 52) are fixed to the bottom surface of the recess 36.
  • the head unit 60 obtains positional information in the XY plane of the head unit 60 itself with respect to the substrate holder 34 using the plurality of scales 52 by the other parts (downward heads) of the plurality of encoder heads (see FIG. 4A). ).
  • the main controller 90 (see FIG. 7), based on the output of the upward head and the output of the downward head, position information in the XY plane of the substrate holder 34 with reference to the upper base 18a (see FIG. 1). Ask for.
  • scales 52 are provided at predetermined intervals in the Y-axis direction, for example, 4 in the + X side and ⁇ X side regions of the substrate P, respectively.
  • the substrate stage apparatus 20 has, for example, eight scales 52 in total.
  • Each of the plurality of scales 52 is substantially the same except that the scales 52 are arranged symmetrically on the + X side and the ⁇ X side of the substrate P.
  • the scale 52 is made of a plate-shaped (band-shaped) member that is formed of, for example, quartz glass and has a rectangular shape in plan view and extends in the Y-axis direction. .
  • the substrate holder 34 is separated outside the substrate holder 34 with a predetermined gap with respect to the substrate holder (however, the six-degree-of-freedom direction is moved integrally with the substrate holder 34). It may be arranged.
  • an X scale 53x is formed in a region on one side in the width direction ( ⁇ X side in FIG. 5A) on the upper surface of the scale 52.
  • a Y scale 53y is formed in a region on the other side in the width direction on the upper surface of the scale 52 (in FIG. 5A, on the + X side).
  • the configurations of the X scale 53x and the Y scale 53y are the X scale 47x and Y scale 47y formed on the scale 46 (see FIG. 2A, respectively) of the mask encoder system 48 (see FIG. 2B, respectively). Since it is the same, description is abbreviate
  • a plurality of encoder scales 56 are fixed to the lower surface of the upper base 18a (see FIG. 1 respectively) of the apparatus body 18.
  • the Y position of the scale 56 substantially coincides with the center position of the projection optical system 16 in the Y-axis direction, as shown in FIG.
  • the scale 56 is, for example, four in the region on the + X side with respect to the projection optical system 16, and four in the region on the ⁇ X side with respect to the projection optical system 16. They are spaced apart in the axial direction. That is, for example, eight scales 56 are fixed to the lower surface of the upper pedestal 18a in total.
  • Each of the plurality of scales 56 is substantially the same.
  • the scale 56 is made of a plate-shaped (strip-shaped) member that is rectangular in plan view and extends in the X-axis direction, and is made of, for example, quartz glass in the same manner as the scale 52 disposed in the substrate stage apparatus 20.
  • the plurality of scales 56 are shown by solid lines and the lattice plane is shown upward (facing the + Z direction).
  • the lattice planes of the plurality of scales 56 are actually directed downward ( ⁇ Z side).
  • an X scale 57x is formed in a region on one side in the width direction ( ⁇ Y side in FIG. 5B) on the lower surface of the scale 56.
  • a Y scale 57y is formed in a region on the other side in the width direction on the lower surface of the scale 56 (+ Y side in FIG. 3C).
  • the configuration of the X scale 57x and the Y scale 57y is the same as the X scale 47x and Y scale 47y formed on the scale 46 (see FIG. 2A, respectively) of the mask encoder system 48 (see FIG. 2B, respectively). Since it is the same, description is abbreviate
  • the two head units 60 are substantially entirely (or partially) accommodated in the substrate holder 34 as described above (see FIGS. 4A and 4B). ing.
  • each of the two head units 60 is substantially the same except that they are arranged symmetrically on the paper surface in FIG. 4C, so one (+ X side) will be described below.
  • the head unit 60 includes a Y slide table 62, a pair of X heads 64x, a pair of Y heads 64y (refer to FIG. 5B, respectively), and a pair.
  • X head 66x and a pair of Y heads 66y see FIG. 5A, respectively).
  • the Y slide table 62 is made of a plate-like member having a rectangular shape in plan view, and is attached to the substrate holder 34 (see FIG. 4C) via, for example, a mechanical Y linear guide device (not shown). Yes.
  • the X head 64x, the Y head 64y (see FIG. 5B), the X head 66x, and the Y head 66y (see FIG. 5A) are respectively the X head 49x and the Y head 49y included in the mask encoder system 48 described above.
  • the encoder head is a so-called diffraction interference type encoder head, which is the same as (see FIG. 2B), and is fixed to the Y slide table 62.
  • the distance between the pair of Y heads 64y, the pair of X heads 64x, the pair of Y heads 66y, and the pair of X heads 66x changes due to, for example, vibration. It is fixed to the Y slide table 62 so that it does not.
  • the distance between the pair of Y heads 64y, the pair of X heads 64x, the pair of Y heads 66y, and the pair of X heads 66x does not change due to, for example, a temperature change.
  • the thermal expansion coefficient is made of a material lower than the scales 52 and 56 (or equivalent to the scales 52 and 56).
  • each of the pair of X heads 64x irradiates the measurement beam to two places (two points) spaced apart from each other in the X-axis direction on the X scale 57x.
  • Each (upward head) irradiates the measurement beam to two places (two points) spaced apart from each other in the X-axis direction on the Y scale 57y.
  • the X head 64x and the Y head 64y receive the beams from the corresponding scales, so that the displacement amount information of the Y slide table 62 (not shown in FIG. 6, see FIGS. 4 and 5). Is supplied to the main controller 90 (see FIG. 7).
  • X linear encoders 94x for example for obtaining position information in the X-axis direction with respect to the projection optical system 16 (see FIG. 1) of each table 62 (that is, a pair of head units 60 (see FIG. 4C)).
  • a pair of Y slides is formed by, for example, four (2 ⁇ 2) Y heads 64y and a Y scale 57y (different depending on the X position of the Y slide table 62) facing the Y heads 64y.
  • Y linear encoders for obtaining positional information in the Y-axis direction with respect to the projection optical system 16 of each table 62.
  • a coder 94y (see FIG. 7) is configured.
  • the main controller 90 has a pair of head units 60 (see FIG. 4C) based on outputs of, for example, four X linear encoders 94 x and, for example, four Y linear encoders 94 y.
  • the position information in each X-axis direction and Y-axis direction is obtained with a resolution of 10 nm or less, for example.
  • the main controller 90 corresponds to one head unit 60, for example, based on outputs of two X linear encoders 94x (or, for example, two Y linear encoders 94y), ⁇ z position information (rotation) of the head unit 60. (Quantity information).
  • the main controller 90 controls the position of the head unit 60 in the XY plane using the head unit driving actuator 68 (see FIG. 7) based on the position information of the pair of head units 60 in the XY plane.
  • the distance between each of the pair of X heads 64x and the pair of Y heads 64y that one head unit 60 has, as shown in FIG. It is set wider than the interval between them.
  • the board encoder system 50 can obtain the position information of the Y slide table 62 without interrupting the measurement value. Accordingly, the head output splicing process similar to the head output splicing process in the mask encoder system 48 described above (see FIGS. 3A to 3E) is also performed.
  • each of the pair of X heads 66x (downward heads) irradiates the measurement beam to two places (two points) spaced apart from each other in the Y-axis direction on the X scale 53x.
  • Each of the heads 66y (downward heads) irradiates the measurement beam to two places (two points) spaced apart from each other in the Y-axis direction on the Y scale 53y.
  • the X head 66x and the Y head 66y receive beams from the corresponding scales, whereby the relative displacement between the head unit 60 and the substrate holder 34 (not shown in FIG. 6, refer to FIG. 1).
  • Quantity information is supplied to the main controller 90 (see FIG. 7).
  • a pair of head units 60 includes four (2 ⁇ 2) X heads 66x and an X scale 53x (which varies depending on the Y position of the substrate holder 34) facing the X heads 66x.
  • X linear encoders 96x (not shown in FIG. 6; refer to FIG. 7) for obtaining positional information in the X-axis direction with respect to each substrate holder 34 are configured, for example, four (2 ⁇ 2) Y heads.
  • Y linear encoders 96y (not shown in FIG. 6, refer to FIG. 7) are configured.
  • the main controller 90 includes, for example, four X linear encoders 94x and outputs of four Y linear encoders 94y, and the four X linear encoders 96x and, for example, four Y linears.
  • the main controller 90 Based on the output of the encoder 96y, that is, the calculation result of the position information of the pair of head units 60 in the XY plane with respect to the projection optical system 16 (see FIG. 1) and the position information in the XY plane of the substrate holder 34.
  • Position information in the X-axis direction and the Y-axis direction with respect to the apparatus main body 18 (see FIG. 1) of the substrate holder 34 (see FIG. 1) is obtained with a resolution of 10 nm or less, for example.
  • the main controller 90 determines the relative position of the head unit 60 and the substrate holder 34 in the ⁇ z direction based on at least two outputs of, for example, four X linear encoders 94x (or, for example, four Y linear encoders 94y). Information (rotation amount information) is obtained.
  • the main controller 90 controls the position of the substrate holder 34 in the XY plane using the substrate drive system 93 based on the position information in the XY plane of the substrate holder 34 obtained from the measurement value of the substrate encoder system 50. .
  • the substrate holder 34 has a scale 52 at predetermined intervals in the Y-axis direction, for example, in the + X side and ⁇ X side regions of the substrate P, as described above. Four are arranged.
  • the distance between the pair of X heads 66x and the pair of Y heads 66y that one head unit 60 has, as shown in FIG. It is set wider than the interval between them.
  • at least one of the pair of X heads 66x always faces the X scale 53x
  • at least one of the pair of Y heads 66y always faces the Y scale 53y.
  • the substrate encoder system 50 can obtain the relative position information between the head unit 60 and the substrate holder 34 (see FIG. 3A) without interrupting the measurement value. Accordingly, the head output splicing process similar to the head output splicing process in the mask encoder system 48 described above (see FIGS. 3A to 3E) is also performed.
  • FIG. 7 is a block diagram showing the input / output relationship of the main controller 90 that centrally configures the control system of the liquid crystal exposure apparatus 10 (see FIG. 1) and performs overall control of each component.
  • the main controller 90 includes a workstation (or a microcomputer) and the like, and comprehensively controls each part of the liquid crystal exposure apparatus 10.
  • the mask M is placed on the mask stage apparatus 14 by a mask loader (not shown) under the control of the main controller 90 (see FIG. 7).
  • the substrate P is loaded onto the substrate stage apparatus 20 (substrate holder 34) by a substrate loader (not shown).
  • the main controller 90 performs alignment measurement using an alignment detection system (not shown).
  • a step-and-scan method is sequentially applied to a plurality of shot areas set on the substrate P. An exposure operation is performed.
  • FIGS. 8A to 15B an example of the operations of the mask stage device 14 and the substrate stage device 20 during the exposure operation will be described with reference to FIGS. 8A to 15B.
  • a case where four shot areas are set on one substrate P in the case of so-called four-chamfering
  • positioning can be changed suitably.
  • FIG. 8A shows the mask stage device 14 after the alignment operation is completed
  • FIG. 8B shows the substrate stage device 20 after the alignment operation is completed (except for the members other than the substrate holder 34).
  • Exposure process is carried out from the first shot area S 1 which is set on the -Y side and the + X side of the substrate P.
  • an illumination area irradiated with illumination light IL (refer to FIG. 1 respectively) from the illumination system 12 (in the state shown in FIG. 8A).
  • the mask encoder system 48 see FIG. 7 so that the + X side end of the mask M is located somewhat on the ⁇ X side relative to the mask M that has not yet been irradiated with the illumination light IL.
  • the mask M is positioned.
  • the end of the pattern area of the mask M on the + X side with respect to the illumination area is required to reach a predetermined traveling speed (that is, a predetermined speed required for scanning exposure at a predetermined speed).
  • a scale 46 is provided so that the position of the mask M can be measured by the mask encoder system 48 at that position.
  • the main controller 90 (see FIG. 7) is also within a range in which at least three (four of the four heads 49x and four of the four heads 49y) cannot be removed from the scale 46 (is not outside the measurable range). Then, the position of the mask holder 40 is controlled.
  • an exposure region irradiated with the illumination light IL (see FIG. 1) from the projection optical system 16 (however, shown in FIG. 8B).
  • the substrate encoder system 50 in the state, still as the illumination light IL to the substrate P located at the end somewhat -X side of the first shot area S 1 of the + X side from the irradiation not), the substrate encoder system 50 (FIG. 7 The substrate P is positioned based on the output of the reference).
  • a scale 52 is provided so that the position of the substrate P can be measured by the substrate encoder system 50 at that position.
  • the main controller 90 (see FIG. 7) also has a range in which at least three (four of the four heads 64x and four of the four heads 64y) do not deviate from the scale 56 (is not outside the measurable range). The position of the substrate holder 34 is controlled. In FIG.
  • the head unit 60 on the + X side does not face the scale 56, but the position on the XY plane of the head unit 60 on the + X side is synchronized with the head unit 60 on the ⁇ X side. It can be controlled.
  • the scale 56 may be additionally provided so that the pair of head units 60 is not always detached from the scale 56.
  • the mask M and the substrate P are similarly decelerated for decelerating from the scanning exposure speed to a predetermined speed.
  • Scales 46 and 56 are provided so that the positions of the mask M and the substrate P can be measured by the mask encoder system 48 and the substrate encoder system 50, respectively, until they are further moved.
  • the positions of the mask M and the substrate P may be measured by a measurement system different from the mask encoder system 48 and the substrate encoder system 50 during at least one of the operations during acceleration and deceleration.
  • the mask holder 40 is driven in the + X direction (acceleration, constant speed drive, and deceleration), and in synchronization with the mask holder 40, FIG.
  • the substrate holder 34 is driven in the + X direction (acceleration, constant speed drive, and deceleration).
  • the main controller 90 controls the position of the mask M on the basis of the output of the mask encoder system 48 (see FIG. 7) and the substrate encoder system 50 (see FIG. 7). The position of the substrate P is controlled based on the output of the reference.
  • the pair of head units 60 When the substrate holder 34 is driven in the X-axis direction, the pair of head units 60 does not move relative to the substrate holder 34 (is made stationary with respect to the substrate holder 34), and is integrated with the substrate holder 34 in the X direction. Move in the axial direction. That is, with respect to the scanning direction, the substrate holder 34 (substrate P) and the pair of head units 60 (the plurality of heads 64x, 64y, 66x, 66y) have a common drive system (substrate drive system 93 (see FIG. 7)). ) Performs position control. While the mask holder 40 and the substrate holder 34 are driven at a constant speed in the X-axis direction, the substrate P is irradiated with illumination light IL (see FIG.
  • the substrate stage device 20 When the transfer of the mask pattern for the first shot area S 1 on the substrate P is completed, the substrate stage device 20, as shown in FIG. 10 (B), the set of the first shot area S 1 of the + Y side for exposure operation from the second shot area S 2, (approximately half the distance in the width direction dimension of the substrate P) predetermined distance substrate holder 34 in the -Y direction, based on the output of the substrate encoder system 50 (see FIG. 7) Driven (Y step).
  • the mask holder 40 At the time of the Y step operation of the substrate holder 34, as shown in FIG. 10A, the mask holder 40 is such that the end portion on the ⁇ X side of the mask M is an illumination region (however, shown in FIG. 10A). In the state, the mask M is not illuminated) and is still in a state of being located somewhat on the + X side.
  • the pair of head units 60 is operated in the + Y direction (that is, based on the output of the Y linear encoder 96y (see FIG. 7)).
  • the same distance as the mask holder 40 in the direction opposite to the substrate holder 34) is driven with respect to the mask holder 40.
  • the head unit 60 is not visually moved with respect to the projection optical system 16 in the Y-axis direction. Accordingly, the opposed state of the head unit 60 and the scale 56 is maintained.
  • the mask holder 40 is driven in the ⁇ X direction based on the output of the mask encoder system 48 (see FIG. 7).
  • the substrate holder 34 is driven in the ⁇ X direction based on the output of the substrate encoder system 50 (see FIG. 7).
  • the mask pattern is transferred to the second shot area S 2.
  • the four head units 60 are in a stationary state.
  • the mask pattern is sequentially transferred to a plurality of shot areas on the substrate P by appropriately repeating the scanning operation of the mask holder 40, the Y step operation of the substrate holder 34, and the scanning operation of the substrate holder 34. .
  • the pair of head units 60 is opposite to the substrate holder 34 every time the substrate holder 34 is stepped in the + Y direction and the ⁇ Y direction so that the opposing state of the scale 56 is maintained. Are driven by the same distance.
  • the Y scale 53y has a plurality of lattice lines extending in the X-axis direction.
  • the irradiation point 66y of the measurement beam irradiated from the Y head 66y onto the Y scale 53y extends in the Y-axis direction. It has an elliptical shape in the axial direction.
  • the Y linear encoder 94y see FIG.
  • the main controller 90 when driving the substrate holder 34 in the scan direction (X-axis direction) during the scan exposure operation, the head unit 60 (see FIG. 4B).
  • the step of the head unit 60 is performed so that the Y head 66y of the Y head 66y does not straddle a plurality of lattice lines forming the Y scale 53y, that is, the output from the Y head 66y does not change (the change is zero).
  • the position of the direction (Y position) is controlled.
  • the Y position of the Y head 66y is measured by a sensor having a resolution higher than the pitch between the lattice lines constituting the Y scale 53y, and the irradiation point of the measurement beam from the Y head 66y indicates the lattice line.
  • the Y position of the Y head 66y is controlled via the head unit drive system 86 (see FIG. 6) immediately before striding (the output of the Y head 66y is likely to change).
  • the output of the Y head 66y is driven and controlled accordingly.
  • the output from the Y head 66y may be substantially unchanged. In this case, a sensor for measuring the Y position of the Y head 66y is unnecessary.
  • the substrate P is exchanged at a predetermined substrate exchange position.
  • the substrate replacement position is set at a position away from directly below the projection optical system 16 so that the projection optical system 16 does not interfere with the substrate replacement. Therefore, the substrate holder 34 is moved to the substrate replacement position.
  • the X head 64x and the Y head 64y attached to the head unit 60 may come off from the scale 56 fixed to the apparatus body 18 (become non-opposing), and the output of the substrate encoder system 50 may be cut off.
  • the mask encoder system 48 for obtaining the position information of the mask M in the XY plane and the position information of the substrate P in the XY plane are obtained.
  • Each of the substrate encoder systems 50 (see FIG. 1 respectively) has a short optical path length of the measurement beam irradiated to the corresponding scale, so that the influence of air fluctuation can be reduced as compared with, for example, a conventional interferometer system. Therefore, the positioning accuracy of the mask M and the substrate P is improved.
  • the partial air conditioning equipment that is essential when using the conventional interferometer system can be omitted, and the cost can be reduced.
  • the interferometer system when using the interferometer system, it is necessary to provide a large and heavy bar mirror in the mask stage device 14 and the substrate stage device 20, but in the mask encoder system 48 and the substrate encoder system 50 according to the present embodiment, Since the bar mirror is not required, the system including the mask holder 40 and the system including the substrate holder 34 are reduced in size and weight, and the weight balance is improved, thereby improving the position controllability of the mask M and the substrate P. To do. Further, since there are fewer adjustment points than in the case of using the interferometer system, the cost of the mask stage device 14 and the substrate stage device 20 is reduced, and the maintainability is further improved. Also, adjustment during assembly is easy (or unnecessary).
  • the substrate encoder system 50 since the pair of head units 60 are driven in the Y-axis direction in the direction opposite to the substrate P, the opposed state of the head unit 60 and the scale 56 is maintained. There is no need to arrange a plurality of encoder heads on the holder 34 along the Y-axis direction (or to make the scale 56 on the apparatus main body 18 side wide). Therefore, the configuration of the substrate position measurement system can be simplified, and the cost can be reduced.
  • the output of a pair of adjacent encoder heads (X head 49x, Y head 49y) is appropriately switched according to the X position of the mask holder 40 while the XY plane of the mask holder 40 is used.
  • the position information of the mask holder 40 can be obtained without interruption even if a plurality of scales 46 are arranged at predetermined intervals (separated from each other) in the X-axis direction. Therefore, it is not necessary to prepare a scale having a length equivalent to the movement stroke of the mask holder 40 (about three times the length of the scale 46 of the present embodiment), and the cost can be reduced. In particular, as in the present embodiment. This is suitable for the liquid crystal exposure apparatus 10 using a large mask M.
  • the plurality of scales 52 are arranged in the Y-axis direction and the plurality of scales 56 are arranged in the X-axis direction at predetermined intervals, respectively. It is not necessary to prepare a length scale and is suitable for the liquid crystal exposure apparatus 10 using a large substrate P.
  • FIGS. 11 (A) to 11 (C) a liquid crystal exposure apparatus according to the second embodiment will be described with reference to FIGS. 11 (A) to 11 (C). Since the configuration of the liquid crystal exposure apparatus according to the second embodiment is the same as that of the first embodiment except that the configuration of the substrate encoder system 150 is different, only the differences will be described below. Elements having the same configuration and function as those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and description thereof is omitted.
  • the pair of head units 60 included in the substrate stage device 20 move in the opposite direction to the substrate P during the Y step operation of the substrate P, and the substrate
  • the Y step operation is performed integrally with the substrate P during the Y step operation of the substrate P.
  • the substrate P moves in a direction opposite to the substrate P with a long stroke.
  • the arrangement of the head unit 60, the scale 52, the scale 56, and the like constituting the substrate encoder system 50 is an arrangement configuration in which the arrangement is rotated by, for example, 90 ° around the Z axis with respect to the first embodiment. Yes.
  • FIGS. 11A and 11B show conceptual diagrams of a substrate encoder system 150 according to the second embodiment.
  • the recess 36 formed in the substrate holder 34 extends in the X-axis direction, and a scale 52 extending in the X-axis direction is fixed to the bottom surface of the recess.
  • the head unit 60 is disposed in the recess 36 and is movable with a predetermined long stroke in the X-axis direction with respect to the substrate holder 34.
  • scales 56 extending in the Y-axis direction are fixed to the + Y side and the ⁇ Y side of the projection optical system 16 (see FIG. 11C), respectively.
  • five scales 52 are arranged at predetermined intervals in the X-axis direction in each of the + Y side and ⁇ Y side regions of the substrate holder 34, and the apparatus main body 18.
  • two scales 56 are arranged at predetermined intervals on each of the lower surface of the projection optical system 16 on the + Y side and the ⁇ Y side regions (see FIG. 1).
  • the scales 52 and 54 are respectively formed with X scales 53x and 57x and Y scales 53y and 57y (see FIG. 6), and the head unit 60 uses the X scales 35x and 57x and Y scales 53y and 57y.
  • an encoder head (not shown) for measuring the relative displacement of the head unit 60 with respect to the projection optical system 16 or the substrate holder 34 is attached is the same as in the first embodiment, and will be described. Omitted. Since the plurality of scales are arranged apart from each other, the connection processing is performed between a pair of adjacent heads as in the first embodiment.
  • the pair of head units in the opposite direction and at the same distance from the substrate P so that the X position of the pair of head units 60 does not change in appearance. 60 is driven in the X-axis direction. That is, the head unit 60 is moved relative to the substrate P in the X direction. Thereby, since a pair of head unit 60 does not remove
  • the substrate holder 34 and the pair of head units 60 are integrated with a common drive system (substrate drive system 93 (see FIG. 7)) with a long stroke in the Y-axis direction. It is movable.
  • the pair of head units 60 are provided on the substrate holder 34 and the substrate holder 34 also has an actuator for driving the head unit 60.
  • the present invention is not limited to this.
  • the head unit 60 may be supported by being suspended on the gantry 18 a of the apparatus main body 18.
  • the head unit 60 is attached to the apparatus main body 18 via a guide device 256 that guides the head unit 60 linearly in the X-axis direction.
  • the substrate stage apparatus 220 has a configuration in which the Y coarse movement stage 22Y is placed on the X coarse movement stage 22X, contrary to the first embodiment.
  • the X coarse movement stage 22X is connected to an arm member 222 mechanically coupled to each of the pair of head units 60.
  • the scale 52 is disposed outside the substrate holder 34, but may be disposed on the substrate holder 34 (or in the substrate holder 34) as in the first embodiment.
  • a pair of the X coarse movement stage 22X is integrated with the X coarse movement stage 22X.
  • the head unit 60 moves in the X-axis direction with respect to the projection optical system.
  • the substrate holder 34 and the pair of head units 60 are driven by a common drive system (X actuator constituting a part of the substrate drive system 93 (see FIG. 7)).
  • the operation of the head unit 60 of this modification is the same as that of the first embodiment. According to this modification, a dedicated actuator for driving the head unit 60 is not required, so that heat generation or dust generation near the substrate P can be suppressed.
  • the pair of head units 60 is provided on the substrate holder 34 and the substrate holder 34 also has an actuator for driving the head unit 60.
  • the head unit 60 may be supported by being suspended from the gantry 18 a of the apparatus body 18.
  • the head unit 60 is attached to the apparatus main body 18 via the guide device 256 as in the modification shown in FIG.
  • the X coarse movement stage 22X is placed on the Y coarse movement stage 22Y, and the Y coarse movement stage 22Y is connected to each of the pair of head units 60.
  • a pair of arm members 222 are connected.
  • the scale 52 may be disposed on the substrate holder 34 (or in the substrate holder 34).
  • the head unit 60 has a pair of encoder heads (that is, a pair of X heads 64x, a pair of X heads 66x, a pair of Y heads 64y, and a pair of encoder heads).
  • the distances between the Y heads 66y) may be measured by the sensors 164 and 166, and the output of the substrate encoder system 50 may be corrected using the measured values.
  • the types of the sensors 164 and 166 are not particularly limited, and for example, a laser interferometer can be used.
  • the substrate encoder system 50 performs a process of connecting the outputs of the pair of encoder heads. In this connection process, it is a precondition that the distance between the pair of encoder heads is known and unchanged.
  • the Y slide table 62 to which each head is attached is formed of, for example, a material that is less affected by thermal expansion or the like, but by temporarily measuring the distance between the encoder heads as in this modification, Even if the Y slide table 62 is deformed (the interval between the pair of encoder heads is changed), the position information of the substrate P can be obtained with high accuracy.
  • the distance between the pair of encoder heads that is, the pair of X heads 49x and the pair of Y heads 49y
  • the output of the mask encoder system 48 is corrected using the measured values. You may do it. The same applies to the heads 49x and 49y of the mask encoder system 48.
  • the relative positional relationship of all the heads included in the head unit 60 (e.g., a total of eight heads in this embodiment) (a pair of downward heads 66x and 66y and a pair of upward heads 64x and 64y) is measured. The measured value may be corrected.
  • the distance between the pair of encoder heads (that is, the pair of X heads 64x, the pair of X heads 66x, the pair of Y heads 64y, and the pair of Y heads 66y) included in the head unit 60 is determined.
  • calibration points for measuring the distance between the heads calibration points for positioning the origins of the outputs of the mask encoder system 48 and the substrate encoder system 50 may be provided.
  • the positioning mark for positioning the origin may be disposed, for example, on an extension line (outside) of the plurality of scales 46, 52, or may be disposed between a pair of adjacent scales 46, 52, or The scales 46 and 52 may be formed.
  • the amount of inclination (inclination in the ⁇ x and ⁇ y directions) with respect to the horizontal plane of the Y slide table 62 to which the encoder heads 64x, 64y, 66x, and 66y are attached is obtained, and the inclination amounts (that is, the heads 64x, 64y, 66x,
  • the output of the substrate encoder system 50 may be corrected according to the tilt amount of the optical axis 66y.
  • a measurement system is used in which a plurality of Z sensors 64z are attached to the Y slide table 62, and the amount of inclination of the Y slide table 62 is obtained with reference to the upper table 18a. Can do.
  • FIG. 15A a measurement system is used in which a plurality of Z sensors 64z are attached to the Y slide table 62, and the amount of inclination of the Y slide table 62 is obtained with reference to the upper table 18a. Can do.
  • FIG. 15A a measurement system is used in which a plurality of Z sensors 64
  • a biaxial laser interferometer 264 is provided on the substrate holder 34 (see FIG. 1), and the amount of inclination of the Y slide table 62 (the amount of inclination in the ⁇ x and ⁇ y directions) and The rotation amount (rotation amount in the ⁇ z direction) may be obtained. Further, the tilt amounts of the heads 64x, 64y, 66x, 66y may be individually measured.
  • the arrangement of the encoder head and the scale may be reversed. That is, for example, the X linear encoder 92x and the Y linear encoder 92y for obtaining position information of the mask holder 40 may be configured such that an encoder head is attached to the mask holder 40 and a scale is attached to the encoder base 43. Further, the X linear encoder 96x and the Y linear encoder 96y for obtaining the position information of the substrate holder 34 may have a scale attached to the Y slide table 62 and an encoder head attached to the substrate holder 34.
  • a plurality of encoder heads attached to the substrate holder 34 are arranged along the Y-axis direction (in the case of the first embodiment) or the X-axis direction (in the case of the second embodiment), and are switched to each other. It should be configured as possible.
  • a scale may be attached to the Y slide table 62, and an encoder head may be attached to the apparatus main body 18.
  • a plurality of encoder heads attached to the encoder base 54 are arranged along the X-axis direction (in the case of the first embodiment) or the Y-axis direction (in the case of the second embodiment), and are switched to each other. It should be configured as possible. In this case, the scale fixed to the Y slide table 62 may be shared.
  • the mask encoder system 48 for example, three scales 46 are spaced apart in the X-axis direction
  • four scales 52 are arranged in the Y-axis direction, for example, four
  • the number of scales is not limited thereto, and can be appropriately changed according to the size of the mask M, the substrate P, or the movement stroke, for example. It is.
  • a plurality of scales may not necessarily be arranged apart from each other. For example, one longer scale (in the case of the above-described embodiment, for example, a scale that is approximately three times as long as the scale 46, or about 4 times the scale 52). A double length scale, a scale about four times the scale 56) may be used.
  • the lengths of the scales may be different from each other.
  • the length of the scale extending in the X-axis direction may be longer than the length of the shot area in the X-axis direction, it is possible to avoid the joining process during the scanning exposure operation.
  • the scale extending in the Y-axis direction may be different from each other.
  • the X scale (the X-axis direction measurement lattice pattern shown in the figure) and the Y scale (the Y-axis direction measurement lattice pattern shown in the figure) are independent from each other.
  • a plurality of scale members arranged on the encoder base For example, a plurality of scale members arranged on the encoder base.
  • the plurality of lattice patterns may be formed separately for each group of lattice patterns on the same long scale member. Further, a lattice pattern may be continuously formed on the same long scale member.
  • a plurality of scale groups in which a plurality of scales are arranged in series in the X-axis direction with a gap of a predetermined interval are arranged at different positions (a plurality of rows separated from each other in the Y-axis direction).
  • the position of the gap of the predetermined interval between the plurality of columns is the X-axis direction. May be arranged so as not to overlap. If a plurality of scale rows are arranged in this manner, the heads arranged corresponding to the respective scale rows are not simultaneously out of the measurement range (in other words, both heads do not face the gap at the same time).
  • X of one scale pattern for X-axis measurement
  • the length in the axial direction is the length of one shot area (the length that is formed on the substrate by irradiating the device pattern when performing scanning exposure while moving the substrate on the substrate holder in the X-axis direction).
  • the length may be such that it can be continuously measured. In this way, it is not necessary to perform head transfer control for a plurality of scales during scan exposure of a one-shot area, so that position measurement (position control) of the substrate P (substrate holder) during scan exposure can be easily performed. it can.
  • the lengths of the scales are the same in the above embodiment.
  • the arranged scale may be physically longer.
  • the distance in other words, the distance between the plurality of scales in the scale group (scale array) in which the plurality of scales are arranged continuously in the X-axis direction with a predetermined gap on the substrate holder 34.
  • the length of the gap), the length of one scale, and the two heads that move relative to the scale row (the heads disposed opposite to each other within one head unit 60, for example, two heads shown in FIG.
  • the head 66x) is arranged so as to satisfy the relationship of “one scale length> distance between opposed heads> distance between scales”. This relationship is satisfied not only between the scale provided on the substrate holder 34 and the corresponding head 60 but also between the scale 56 and the corresponding head 60.
  • the head 60 and a corresponding scale row (a scale row in which a plurality of scales are arranged in a predetermined direction through a predetermined gap) are relatively moved in the X-axis direction
  • the head When a pair of heads in 60 (for example, the X head 66x and the Y head 66y in FIG. 6) simultaneously face the gap between the scales described above and then face another scale (the heads 66x and 66y are different from each other).
  • the remaining set of heads (66x, 66y) in the head 60 which is different from the head that was transited, and another head (a head that is separated in the X-axis direction and dropped) May be used to calculate an initial value at the time of connection of the connected heads.
  • Still another head described above may be a position measuring head in the X-axis direction or a position measuring head in the Y-axis direction.
  • the head 60 moves in synchronization with the substrate holder 34, but this is a state in which the head 60 substantially maintains the relative positional relationship with respect to the substrate holder 34. It means to move, and is not limited to the case where the head 60 and the substrate holder 34 move in a state in which the positional relationship, the moving direction, and the moving speed are strictly matched.
  • the present invention is not limited to this, and for example, an XY two-dimensional scale may be used.
  • an XY two-dimensional head can also be used as the encoder head.
  • the case where the diffraction interference type encoder system is used has been described.
  • the present invention is not limited to this, and other encoders such as a so-called pickup type and magnetic type can also be used, for example, US Pat. No. 6,639,686.
  • a so-called scan encoder disclosed in the above can also be used.
  • the position information of the Y slide table 62 may be obtained by a measurement system (for example, an optical interferometer system) other than the encoder system.
  • the plurality of scales 56 are configured to be directly attached to the lower surface of the upper gantry 18a (optical surface plate).
  • the present invention is not limited to this, and a predetermined base member is separated from the lower surface of the upper gantry 18a.
  • the plurality of scales 56 may be attached to the base member.
  • the substrate stage apparatus 20 only needs to be able to drive at least the substrate P along a horizontal plane with a long stroke, and in some cases, the substrate stage device 20 may not be able to perform fine positioning in the direction of 6 degrees of freedom.
  • the substrate encoder system according to each of the above embodiments can also be suitably applied to such a two-dimensional stage apparatus.
  • the illumination light may be ultraviolet light such as ArF excimer laser light (wavelength 193 nm), KrF excimer laser light (wavelength 248 nm), or vacuum ultraviolet light such as F 2 laser light (wavelength 157 nm).
  • a single wavelength laser beam oscillated from a DFB semiconductor laser or a fiber laser is amplified by a fiber amplifier doped with, for example, erbium (or both erbium and ytterbium).
  • harmonics converted into ultraviolet light using a nonlinear optical crystal may be used.
  • a solid laser (wavelength: 355 nm, 266 nm) or the like may be used.
  • the projection optical system 16 is a multi-lens projection optical system including a plurality of optical systems has been described, but the number of projection optical systems is not limited to this, and one or more projection optical systems may be used.
  • the projection optical system is not limited to a multi-lens projection optical system, and may be a projection optical system using an Offner type large mirror. Further, the projection optical system 16 may be an enlargement system or a reduction system.
  • the use of the exposure apparatus is not limited to the exposure apparatus for liquid crystal that transfers the liquid crystal display element pattern onto the square glass plate.
  • the exposure apparatus for manufacturing an organic EL (Electro-Luminescence) panel the semiconductor manufacture
  • the present invention can also be widely applied to an exposure apparatus for manufacturing an exposure apparatus, a thin film magnetic head, a micromachine, a DNA chip, and the like.
  • microdevices such as semiconductor elements but also masks or reticles used in light exposure apparatuses, EUV exposure apparatuses, X-ray exposure apparatuses, electron beam exposure apparatuses, etc., glass substrates, silicon wafers, etc.
  • the present invention can also be applied to an exposure apparatus that transfers a circuit pattern.
  • the object to be exposed is not limited to the glass plate, but may be another object such as a wafer, a ceramic substrate, a film member, or a mask blank.
  • the thickness of the substrate is not particularly limited, and includes, for example, a film-like (flexible sheet-like member).
  • the exposure apparatus of the present embodiment is particularly effective when a substrate having a side length or diagonal length of 500 mm or more is an exposure target.
  • the step of designing the function and performance of the device the step of producing a mask (or reticle) based on this design step, and the step of producing a glass substrate (or wafer)
  • the above-described exposure method is executed using the exposure apparatus of the above embodiment, and a device pattern is formed on the glass substrate. Therefore, a highly integrated device can be manufactured with high productivity. .
  • the exposure apparatus and exposure method of the present invention are suitable for exposing an object with illumination light.
  • the manufacturing method of the flat panel display of this invention is suitable for production of a flat panel display.
  • the device manufacturing method of the present invention is suitable for the production of micro devices.
  • DESCRIPTION OF SYMBOLS 10 ... Liquid crystal exposure apparatus, 14 ... Mask stage apparatus, 20 ... Substrate stage apparatus, 34 ... Substrate holder, 40 ... Mask holder, 44 ... Head unit, 46 ... Scale, 48 ... Mask encoder system, 50 ... Substrate encoder system, 52 ... scale, 56 ... scale, 60 ... head unit, 90 ... main controller, M ... mask, P ... substrate.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

投影光学系(16)を介して照明光により基板(P)を露光する液晶露光装置は、基板(P)を保持する基板ホルダ(34)と、ヘッドユニット(60)とスケール(52、56)とを含み、ヘッドユニット(60)の出力に基づいて基板ホルダ(34)の位置情報を取得する基板エンコーダシステム(50)と、基板ホルダ(34)上のヘッドユニット(60)とスケール(52)との一方を他方に対して相対移動させる駆動部と、を備える。

Description

露光装置、フラットパネルディスプレイの製造方法、デバイス製造方法、及び露光方法
 本発明は、露光装置、フラットパネルディスプレイの製造方法、デバイス製造方法、及び露光方法に係り、更に詳しくは、照明光により物体を露光する露光装置及び露光方法、並びに前記露光装置を用いたフラットパネルディスプレイ又はデバイスの製造方法に関する。
 従来、液晶表示素子、半導体素子(集積回路等)等の電子デバイス(マイクロデバイス)を製造するリソグラフィ工程では、マスク(フォトマスク)又はレチクル(以下、「マスク」と総称する)と、ガラスプレート又はウエハ(以下、「基板」と総称する)とを所定の走査方向(スキャン方向)に沿って同期移動させつつ、マスクに形成されたパターンをエネルギビームを用いて基板上に転写するステップ・アンド・スキャン方式の露光装置(いわゆるスキャニング・ステッパ(スキャナとも呼ばれる))などが用いられている。
 この種の露光装置としては、基板ステージ装置が有するバーミラー(長尺の鏡)を用いて露光対象基板の水平面内の位置情報を求める光干渉計システムを備えるものが知られている(例えば、特許文献1参照)。
 ここで、光干渉計システムを用いて基板の位置情報を求める場合、いわゆる空気揺らぎの影響を無視することができない。また、上記空気揺らぎの影響は、エンコーダシステムを用いることにより低減できるが、近年の基板の大型化により、基板の全移動範囲をカバーすることができるスケールを用意することが困難である。
米国特許出願公開第2010/0266961号明細書
 本発明の第1の態様によれば、投影光学系を介して照明光により物体を露光する露光装置であって、前記物体を保持する保持部と、計測部と被計測部とを含み、前記計測部の出力に基づいて前記保持部の位置情報を取得する位置計測部と、前記保持部上の前記計測部と前記被計測部と一方を他方に対して相対移動させる第1駆動部と、を備える露光装置が、提供される。
 本発明の第2の態様によれば、第1の態様に係る露光装置を用いて前記物体を露光することと、露光された前記物体を現像することと、を含むフラットパネルディスプレイの製造方法が、提供される。
 本発明の第3の態様によれば、第1の態様に係る露光装置を用いて前記物体を露光することと、露光された前記物体を現像することと、を含むデバイス製造方法が、提供される。
 本発明の第4の態様によれば、投影光学系を介して照明光により物体を露光する露光方法であって、計測部と被計測部とを含む位置計測部の前記計測部の出力に基づいて、前記物体を保持する保持部の位置情報を取得することと、第1駆動部により前記保持部上の前記計測部と前記被計測部と一方を他方に対して相対移動させることと、を含む露光方法が、提供される。
第1の実施形態に係る液晶露光装置の構成を概略的に示す図である。 図2(A)は、図1の液晶露光装置が備えるマスクエンコーダシステムの構成を概略的に示す図、図2(B)は、マスクエンコーダシステムの一部(図2(A)のA部)拡大図である。 図3(A)~図3(E)は、マスクエンコーダシステム、及び基板エンコーダシステムにおけるヘッド出力の繋ぎ処理を説明するための図(その1~その5)である。 図4(A)及び図4(B)は、第1の実施形態に係る基板エンコーダシステムの概念図(それぞれ側面図、平面図)であり、図4(C)は、基板エンコーダシステムの具体例を示す図である。 図5(A)及び図5(B)は、基板エンコーダシステムの一部(図4(C)のB部)拡大図である。 基板エンコーダシステムの概念図である。 液晶露光装置の制御系を中心的に構成する主制御装置の入出力関係を示すブロック図である。 図8(A)は、露光動作時におけるマスクエンコーダシステムの動作を示す図(その1)であり、図8(B)は、露光動作時における基板エンコーダシステムの動作を示す図(その1)である。 図9(A)は、露光動作時におけるマスクエンコーダシステムの動作を示す図(その2)であり、図9(B)は、露光動作時における基板エンコーダシステムの動作を示す図(その2)である。 図10(A)は、露光動作時におけるマスクエンコーダシステムの動作を示す図(その3)であり、図10(B)は、露光動作時における基板エンコーダシステムの動作を示す図(その3)である。 図11(A)及び図11(B)は、第2の実施形態に係る基板エンコーダシステムの概念図(それぞれ側面図、平面図)であり、図11(C)は、基板エンコーダシステムの具体例を示す図である。 第1の実施形態の基板エンコーダシステムの変形例を示す図である。 第2の実施形態の基板エンコーダシステムの変形例を示す図である。 図14(A)及び図14(B)は、一対のヘッド間の距離を求めるための計測系の構成を説明するための図(その1及びその2)である。 図15(A)及び図15(B)は、Yスライドテーブルの傾き量を求めるための計測系の構成を説明するための図(その1及びその2)である。 エンコーダスケール上における計測ビームの照射点を示す図である。
《第1の実施形態》
 以下、第1の実施形態について、図1~図10(B)を用いて説明する。
 図1には、第1の実施形態に係る液晶露光装置10の構成が概略的に示されている。液晶露光装置10は、例えば液晶表示装置(フラットパネルディスプレイ)などに用いられる矩形(角型)のガラス基板P(以下、単に基板Pと称する)を露光対象物とするステップ・アンド・スキャン方式の投影露光装置、いわゆるスキャナである。
 液晶露光装置10は、照明系12、回路パターンなどが形成されたマスクMを保持するマスクステージ装置14、投影光学系16、装置本体18、表面(図1で+Z側を向いた面)にレジスト(感応剤)が塗布された基板Pを保持する基板ステージ装置20、及びこれらの制御系等を有している。以下、露光時にマスクMと基板Pとが投影光学系16に対してそれぞれ相対走査される方向をX軸方向とし、水平面内でX軸に直交する方向をY軸方向、X軸及びY軸に直交する方向をZ軸方向とし、X軸、Y軸、及びZ軸回りの回転方向をそれぞれθx、θy、及びθz方向として説明を行う。また、X軸、Y軸、及びZ軸方向に関する位置をそれぞれX位置、Y位置、及びZ位置として説明を行う。
 照明系12は、例えば米国特許第5,729,331号明細書などに開示される照明系と同様に構成されている。照明系12は、図示しない光源(例えば、水銀ランプ)から射出された光を、それぞれ図示しない反射鏡、ダイクロイックミラー、シャッター、波長選択フィルタ、各種レンズなどを介して、露光用照明光(照明光)ILとしてマスクMに照射する。照明光ILとしては、例えばi線(波長365nm)、g線(波長436nm)、h線(波長405nm)などの光(あるいは、上記i線、g線、h線の合成光)が用いられる。
 マスクステージ装置14は、マスクMを、例えば真空吸着により保持するマスクホルダ40、マスクホルダ40を走査方向(X軸方向)に所定の長ストロークで駆動するとともに、Y軸方向、及びθz方向に適宜微少駆動するためのマスク駆動系91(図1では不図示。図7参照)、及びマスクホルダ40のXY平面内の位置情報(θz方向の回転量情報も含む。以下同じ)を求めるためのマスク位置計測系を含む。マスクホルダ40は、例えば米国特許出願公開第2008/0030702号明細書に開示されるような、平面視矩形の開口部が形成された枠状部材から成る。マスクホルダ40は、装置本体18の一部である上架台部18aに固定された一対のマスクガイド42上に、例えばエアベアリング(不図示)を介して載置されている。マスク駆動系91は、例えばリニアモータ(不図示)を含む。
 マスク位置計測系は、上架台部18aにエンコーダベース43を介して固定された一対のエンコーダヘッドユニット44(以下、単にヘッドユニット44と称する)と、マスクホルダ40の下面に上記一対のヘッドユニット44に対応して配置された複数のエンコーダスケール46(図1では紙面奥行き方向に重なっている。図2(A)参照)とを含むマスクエンコーダシステム48を備える。マスクエンコーダシステム48の構成については、後に詳しく説明する。
 投影光学系16は、マスクステージ装置14の下方に配置されている。投影光学系16は、例えば米国特許第6,552,775号明細書などに開示される投影光学系と同様な構成の、いわゆるマルチレンズ投影光学系であり、例えば両側テレセントリックな等倍系で正立正像を形成する複数(本実施形態では、例えば11本。図2(A)参照)の光学系を備えている。
 液晶露光装置10では、照明系12からの照明光ILによってマスクM上の照明領域が照明されると、マスクMを通過した照明光により、投影光学系16を介してその照明領域内のマスクMの回路パターンの投影像(部分正立像)が、基板P上の照明領域に共役な照明光の照射領域(露光領域)に形成される。そして、照明領域(照明光IL)に対してマスクMが走査方向に相対移動するとともに、露光領域(照明光IL)に対して基板Pが走査方向に相対移動することで、基板P上の1つのショット領域の走査露光が行われ、そのショット領域にマスクMに形成されたパターンが転写される。
 装置本体18は、上記マスクステージ装置14、及び投影光学系16を支持しており、複数の防振装置19を介してクリーンルームの床11上に設置されている。装置本体18は、例えば米国特許出願公開第2008/0030702号明細書に開示される装置本体と同様に構成されており、上記投影光学系16を支持する上架台部18a(光学定盤などとも称される)、下架台部18b、及び一対の中架台部18cを有している。
 基板ステージ装置20は、基板Pを投影光学系16(照明光IL)に対して高精度位置決めするためのものであり、基板Pを水平面(X軸方向、及びY軸方向)に沿って所定の長ストロークで駆動するとともに、該基板Pを6自由度方向に微少駆動する。基板ステージ装置20の構成は、特に限定されないが、例えば米国特許出願公開第2008/129762号明細書、あるいは米国特許出願公開第2012/0057140号明細書などに開示されるような、ガントリタイプの2次元粗動ステージと、該2次元粗動ステージに対して微少駆動される微動ステージとを含む、いわゆる粗微動構成のステージ装置を用いることが好ましい。
 基板ステージ装置20は、Y粗動ステージ22Y、X粗動ステージ22X、及び基板ホルダ34を備えている。Y粗動ステージ22Yは、例えばYアクチュエータ等を介して投影光学系16に対してY軸方向に所定の長ストロークで駆動される。X粗動ステージ22Xは、例えばXアクチュエータ等を介してY粗動ステージ22Y上でX軸方向に所定の長ストロークで駆動される。X粗動ステージ22Xは、Y粗動ステージ22Yと一体的にY軸方向へ移動する。基板ホルダ34は、平面視矩形の板状部材から成り、その上面上に基板Pが載置される。基板ホルダ34は、複数の微動アクチュエータ(例えば、ボイスコイルモータ)により、X粗動ステージ22Xと一体的に投影光学系16に対してX軸及び/又はY軸方向に所定の長ストロークで駆動されるとともに、6自由度方向に微少駆動される。上記Yアクチュエータ、Xアクチュエータ、微動アクチュエータは、基板駆動系93(図7参照)の一部を構成する。
 また、液晶露光装置10は、基板ホルダ34(すなわち、基板P)の6自由度方向の位置情報を求めるための基板位置計測系を有している。基板位置計測系は、図7に示されるように、基板PのZ軸、θx、θy方向(以下、Z・チルト方向と称する)の位置情報を求めるためのZ・チルト位置計測系98、及び基板PのXY平面内の位置情報を求めるための基板エンコーダシステム50を含む。Z・チルト位置計測系98の構成は、特に限定されないが、例えば米国特許出願公開第2010/0018950号明細書に開示されるような、基板ホルダ34を含む系に取り付けられた複数のセンサを用いて、装置本体18(例えば下架台部18b)を基準として基板PのZ・チルト方向の位置情報を求める計測系を用いることができる。基板エンコーダシステム50の構成は、後述する。
 次に、図2(A)及び図2(B)を用いてマスクエンコーダシステム48の構成について説明する。図2(A)に模式的に示されるように、マスクホルダ40におけるマスクM(より詳細には、マスクMを収容するための不図示の開口部)の+Y側、及び-Y側の領域には、それぞれ複数のエンコーダスケール46(以下、単にスケール46と称する)が配置されている。なお、理解を容易にするために、図2(A)では、複数のスケール46が実線で図示され、マスクホルダ40の上面に配置されているように図示されているが、複数のスケール46は、実際には、図1に示されるように、複数のスケール46それぞれの下面のZ位置と、マスクMの下面(パターン面)のZ位置とが一致するように、マスクホルダ40の下面側に配置されている。
 本実施形態のマスクホルダ40において、マスクMの+Y側、及び-Y側の領域には、それぞれスケール46がX軸方向に所定間隔で、例えば3つ配置されている。すなわち、マスクホルダ40は、合計で、例えば6つのスケール46を有している。複数のスケール46それぞれは、マスクMの+Y側と-Y側とで紙面上下対称に配置されている点を除き、実質的に同じものである。スケール46は、例えば石英ガラスにより形成されたX軸方向に延びる平面視矩形の板状(帯状)の部材から成る。マスクホルダ40は、例えばセラミックスにより形成され、複数のスケール46は、マスクホルダ40に固定されている。
 図2(B)に示されるように、スケール46の下面(本実施形態では、-Z側を向いた面)における、幅方向一側(図2(B)では、-Y側)の領域には、Xスケール47xが形成されている。また、スケール46の下面における、幅方向他側(図2(B)では、+Y側)の領域には、Yスケール47yが形成されている。Xスケール47xは、X軸方向に所定ピッチで形成された(X軸方向を周期方向とする)Y軸方向に延びる複数の格子線を有する反射型の回折格子(Xグレーティング)によって構成されている。同様に、Yスケール47yは、Y軸方向に所定ピッチで形成された(Y軸方向を周期方向とする)X軸方向に延びる複数の格子線を有する反射型の回折格子(Yグレーティング)によって構成されている。本実施形態のXスケール47x、及びYスケール47yにおいて、複数の格子線は、例えば10nm以下の間隔で形成されている。なお、図2(A)及び図2(B)では、図示の便宜上、格子間の間隔(ピッチ)は、実際よりも格段に広く図示されている。その他の図も同様である。
 また、図1に示されるように、上架台部18aの上面には、一対のエンコーダベース43が固定されている。一対のエンコーダベース43は、一方が+X側のマスクガイド42の-X側、他方が-X側のマスクガイド42の+X側(すなわち一対のマスクガイド42の間の領域)に配置されている。また、上記投影光学系16の一部が、一対のエンコーダベース43の間に配置されている。エンコーダベース43は、図2(A)に示されるように、X軸方向に延びる部材から成る。一対のエンコーダベース43それぞれの長手方向中央部には、エンコーダヘッドユニット44(以下、単にヘッドユニット44と称する)が固定されている。すなわち、ヘッドユニット44は、エンコーダベース43を介して装置本体18(図1参照)に固定されている。一対のヘッドユニット44は、マスクMの+Y側と-Y側とで紙面上下対称に配置されている点を除き、実質的に同じものであるので、以下、一方(-Y側)についてのみ説明する。
 図2(B)に示されるように、ヘッドユニット44は、平面視矩形の板状部材から成るユニットベース45を有している。ユニットベース45には、X軸方向に離間して配置された一対のXヘッド49x、及びX軸方向に離間して配置された一対のYヘッド49yが固定されている。すなわち、マスクエンコーダシステム48は、Xヘッド49xを、例えば4つ有するとともに、Yヘッド49yを、例えば4つ有している。なお、図2(B)では、一方のXヘッド49xと一方のYヘッド49yとがひとつの筐体内に収容され、他方のXヘッド49xと他方のYヘッド49yとが別のひとつの筐体内に収容されているが、上記一対のXヘッド49x、及び一対のYヘッド49yは、それぞれ独立して配置されていても良い。また、図2(B)では、理解を容易にするため、一対のXヘッド49xと一対のYヘッド49yとがスケール46の上方(+Z側)に配置されたように図示されているが、実際には、一対のXヘッド49xは、Xスケール47yの下方に、一対のYヘッド49yは、Yスケール47yの下方にそれぞれ配置されている(図1参照)。
 一対のXヘッド49x、及び一対のYヘッド49yは、例えば振動などに起因して一対のXヘッド49x間の距離、及び一対のYヘッド49y間の距離が変化しないように、ユニットベース45に対して固定されている。また、ユニットベース45自体も、一対のXヘッド49x間の距離、及び一対のYヘッド49y間の距離が、例えば温度変化などに起因して変化しないように、熱膨張率がスケール46より低い(あるいはスケール46と同等の)材料で形成されている。
 Xヘッド49x、及びYヘッド49yは、例えば米国特許出願公開第2008/0094592号明細書に開示されるような、いわゆる回折干渉方式のエンコーダヘッドであり、対応するスケール(Xスケール47x、Yスケール47y)に計測ビームを照射し、そのスケールからのビームを受光することにより、マスクホルダ40(すなわち、マスクM。図2(A)参照)の変位量情報を主制御装置90(図7参照)に供給する。すなわち、マスクエンコーダシステム48では、例えば4つのXヘッド49xと、該Xヘッド49xに対向するXスケール47x(マスクホルダ40のX位置によって異なる)とによって、マスクMのX軸方向の位置情報を求めるための、例えば4つのXリニアエンコーダ92x(図2(B)では不図示。図7参照)が構成され、例えば4つのYヘッド49yと、該Yヘッド49yに対向するYスケール47y(マスクホルダ40のX位置によって異なる)とによって、マスクMのY軸方向の位置情報を求めるための、例えば4つのYリニアエンコーダ92y(図2(B)では不図示。図7参照)が構成される。
 主制御装置90は、図7に示されるように、例えば4つのXリニアエンコーダ92x、及び、例えば4つのYリニアエンコーダ92yの出力に基づいてマスクホルダ40(図2(A)参照)のX軸方向、及びY軸方向の位置情報を、例えば10nm以下の分解能で求める。また、主制御装置90は、例えば4つのXリニアエンコーダ92x(あるいは、例えば4つのYリニアエンコーダ92y)のうちの少なくとも2つの出力に基づいてマスクホルダ40のθz位置情報(回転量情報)を求める。主制御装置90は、上記マスクエンコーダシステム48の計測値から求められたマスクホルダ40のXY平面内の位置情報に基づき、マスク駆動系91を用いてマスクホルダ40のXY平面内の位置を制御する。
 ここで、図2(A)に示されるように、マスクホルダ40には、上述したように、マスクMの+Y側、及び-Y側の領域それぞれにスケール46がX軸方向に所定間隔で、例えば3つ配置されている。そして、本実施形態のマスクステージ装置14では、図2(B)に示されるように、ひとつのヘッドユニット44が有する一対のXヘッド49x、及び一対のYヘッド49yそれぞれの間隔が、隣接するスケール46間の間隔よりも広く設定されている。これにより、マスクエンコーダシステム48では、一対のXヘッド49xのうち常に少なくとも一方がXスケール47xに対向するとともに、一対のYヘッド49yのうちの少なくとも一方が常にYスケール47yに対向する。従って、マスクエンコーダシステム48は、マスクホルダ40(図2(A)参照)の位置情報を途切れさせることなく主制御装置90(図7参照)に供給することができる。
 具体的に説明すると、例えばマスクホルダ40(図2(A)参照)が+X側に移動する場合、マスクエンコーダシステム48は、隣接する一対のXスケール47xのうちの+X側のXスケール47xに対して一対のヘッド49xの両方が対向する第1の状態(図2(B)に示される状態)、-X側のXヘッド49xが上記隣接する一対のXスケール47xの間の領域に対向し(いずれのXスケール47xにも対向せず)、+X側のXヘッド49xが上記+X側のXスケール47xに対向する第2の状態、-X側のXヘッド49xが-X側のXスケール47xに対向し、且つ+X側のXヘッド49xが+X側のXスケール47xに対向する第3の状態、-X側のXヘッド49xが-X側のXスケール47xに対向し、+X側のXヘッド49xが一対のXスケール47xの間の領域に対向する(いずれのXスケール47xにも対向しない)第4の状態、及び-X側のXスケール47xに対して一対のヘッド49xの両方が対向する第5の状態、を上記順序で移行する。従って、常に少なくとも一方のXヘッド49xがXスケール47xに対向する。
 主制御装置90(図7参照)は、上記第1、第3、及び第5の状態では、一対のXヘッド49xの出力の平均値に基づいてマスクホルダ40のX位置情報を求める。また、主制御装置90は、上記第2の状態では、+X側のXヘッド49xの出力のみに基づいてマスクホルダ40のX位置情報を求め、上記第4の状態では、-X側のXヘッド49xの出力のみに基づいてマスクホルダ40のX位置情報を求める。したがって、マスクエンコーダシステム48の計測値が途切れることがない。
 より詳細に説明すると、本実施形態のマスクエンコーダシステム48では、マスクエンコーダシステム48の計測値を途切れさせないようにするために、上記第1、第3、第5の状態、すなわち一対のヘッドの両方がスケールに対向し、該一対のヘッドのそれぞれから出力が供給される状態と、上記第2、第4の状態、すなわち一対のヘッドのうちの一方のみがスケールに対向し、該一方のヘッドのみから出力が供給される状態との間を移行する際に、ヘッドの出力の繋ぎ処理を行う。以下、図3(A)~図3(E)を用いてヘッドの繋ぎ処理について説明する。なお、説明の簡略化のため、図3(A)~図3(E)において、スケール46には、2次元格子(グレーティング)が形成されているものとする。また、各ヘッド49X、49Yの出力は、理想値であるものとする。また、以下の説明では、隣接する一対のXヘッド49X(便宜上49X、49Xとする)についての繋ぎ処理について説明するが、隣接する一対のYヘッド49Y(便宜上49Y、49Yとする)においても、同様の繋ぎ処理が行われる。
 図3(A)に示されるように、一対のXヘッド49X、49Xそれぞれが、隣接する一対のスケール46(便宜上46、46とする)のうち、+X側のスケール46を用いてマスクホルダ40(図2(A)参照)のX位置情報を求める場合、一対のXヘッド49X、49Xは、双方がX座標情報を出力する。ここでは、一対のXヘッド49X、49Xの出力は、同値となる。次いで、図3(B)に示されるように、マスクホルダ40が+X方向に移動すると、Xヘッド49Xが、スケール46の計測範囲外となるので、該計測範囲外となる前に、Xヘッド49Xの出力を無効扱いとする。従って、マスクホルダ40のX位置情報は、Xヘッド49Xの出力のみに基づいて求められる。
 また、図3(C)に示されるように、マスクホルダ40(図2(A)参照)が更に+X方向に移動すると、Xヘッド49Xが-X側のスケール46に対向する。Xヘッド49Xは、スケール46を用いて計測動作可能な状態となった直後から、マスクホルダ40のX位置情報を出力するが、Xヘッド49Xの出力は、不定値(またはゼロ)からカウントを再開するのでマスクホルダ40のX位置情報の算出に用いることができない。従って、この状態で、一対のXヘッド49X、49Xそれぞれの出力の繋ぎ処理が必要となる。繋ぎ処理としては、具体的には、不定値(またはゼロ)とされたXヘッド49Xの出力を、Xヘッド49Xの出力を用いて(例えば同値となるように)補正する処理を行う。該繋ぎ処理は、マスクホルダ40が更に+X方向に移動して、図3(D)に示されるように、Xヘッド49Xが、スケール46の計測範囲外となる前に完了する。
 同様に、図3(D)に示されるように、Xヘッド49Xが、スケール46の計測範囲外となった場合には、該計測範囲外となる前に、Xヘッド49Xの出力を無効扱いとする。従って、マスクホルダ40(図2(A)参照)のX位置情報は、Xヘッド49Xのみの出力に基づいて求められる。そして、図3(E)に示されるように、更にマスクホルダ40が+X方向に移動して、一対のXヘッド49X、49Xそれぞれがスケール46を用いて計測動作を行うことが可能となった直後に、Xヘッド49Xに対して、Xヘッド49Xの出力を用いた繋ぎ処理を行う。以降は、一対のXヘッド49X、49Xそれぞれの出力に基づいて、マスクホルダ40のX位置情報が求められる。
 次に、基板エンコーダシステム50の構成について説明する。図4(A)及び図4(B)には、基板エンコーダシステム50の概念図が示されている。上記マスクエンコーダシステム48(図2(A)参照)では、位置が固定された一対のヘッドユニット44に対して複数のスケール46を保持するマスクホルダ40が移動したのに対し、基板エンコーダシステム50では、一対のヘッドユニット60は、基板ステージ装置20(本実施形態では、基板ホルダ34)が有している。
 また、一対のヘッドユニット60は、基板ホルダ34に設けられたヘッドユニット駆動用アクチュエータ68(図7参照)によって、基板ホルダ34に対してY軸方向に所定のストロークで相対駆動可能になっている(図4(B)の矢印参照)。ヘッドユニット駆動用アクチュエータ68の種類は、特に限定されないが、例えばリニアモータ、送りネジ装置などを用いることができる。また、一対のヘッドユニット60の基板ホルダ34に対するX軸方向の相対移動は、例えば機械的に制限されている。従って、基板ホルダ34がX軸方向に長ストロークで移動する際には、一対のヘッドユニット60は、該基板ホルダ34と一体的にX軸方向に長ストロークで移動する。ただし、ヘッドユニット60と基板ホルダ34とが一体的にX軸方向に長ストロークで移動する際であっても、一対のヘッドユニット60の基板ホルダ34に対するY軸方向の相対移動は、妨げられない。
 ここで、図1に示されるように、上架台部18aの下面には、複数(図1では紙面奥行き方向に重なっている)のスケール56が固定されている。スケール56は、図4(A)に示されるように、X軸方向に延びる部材から成る。これに対し、ヘッドユニット60は、上記マスクエンコーダシステム48におけるヘッドユニット44と同様に、複数のエンコーダヘッド(エンコーダヘッドの詳細に関しては後述する)を有している。基板ホルダ34がY軸方向に移動する際、主制御装置90(図7参照)は、ヘッドユニット60とスケール56との対向状態が維持されるように、ヘッドユニット60のY位置を制御する。この対向状態で基板ホルダ34がX軸方向に移動する際には、ヘッドユニット60も一体的にX軸方向に移動するので、ヘッドユニット60とスケール56との対向状態が維持される。従って、基板ホルダ34のXY平面内の位置に関わらず、ヘッドユニット60とスケール56との対向状態が維持される。ヘッドユニット60は、該複数のエンコーダヘッドの一部(上向きヘッド)により、複数のスケール56を用いてヘッドユニット60の上架台部18a(図1参照)に対するXY平面内の位置情報を求める(図4(A)参照)。
 また、基板ホルダ34には、一対の凹部36(図4(B)参照)が形成されており、上記一対のヘッドユニット60は、該一対の凹部36の内部にそれぞれ配置されている。また、凹部36の底面には、複数のエンコーダスケール52(以下、単にスケール52と称する)が固定されている。ヘッドユニット60は、上記複数のエンコーダヘッドの他部(下向きヘッド)により、複数のスケール52を用いてヘッドユニット60自体の基板ホルダ34に対するXY平面内の位置情報を求める(図4(A)参照)。主制御装置90(図7参照)は、上記上向きヘッドの出力と、下向きヘッドの出力とに基づいて、上架台部18a(図1参照)を基準とする基板ホルダ34のXY平面内の位置情報を求める。
 以下、図4(A)及び図4(B)に示される基板エンコーダシステム50の概念を、より具体化した一例について説明する。図4(C)に示されるように、本実施形態の基板ステージ装置20において、基板Pの+X側、及び-X側の領域には、それぞれスケール52がY軸方向に所定間隔で、例えば4つ配置されている。すなわち、基板ステージ装置20は、合計で、例えば8つのスケール52を有している。複数のスケール52それぞれは、基板Pの+X側と-X側とで紙面左右対称に配置されている点を除き、実質的に同じものである。スケール52は、上記マスクエンコーダシステム48のスケール46(それぞれ図2(A)参照)と同様に、例えば石英ガラスにより形成されたY軸方向に延びる平面視矩形の板状(帯状)の部材から成る。
 なお、本実施形態では、複数のスケール52が基板ホルダ34の凹部36(図4(B)参照)内に固定されている場合について説明するが、複数のスケール52の配置の位置は、これに限らず、例えば基板ホルダ34の外側に該基板ホルダに対して所定の隙間を介した状態で、分離して(ただし、6自由度方向に関しては、基板ホルダ34と一体的に移動するように)配置されていても良い。
 図5(A)に示されるように、スケール52の上面における、幅方向一側(図5(A)では、-X側)の領域には、Xスケール53xが形成されている。また、スケール52の上面における、幅方向他側(図5(A)では、+X側)の領域には、Yスケール53yが形成されている。Xスケール53x、及びYスケール53yの構成は、上記マスクエンコーダシステム48のスケール46(それぞれ図2(A)参照)に形成されたXスケール47x、及びYスケール47y(それぞれ図2(B)参照)と同じであるので説明を省略する。
 また、装置本体18の上架台部18a(それぞれ図1参照)の下面には、複数のエンコーダスケール56(以下、単にスケール56と称する)が固定されている。本実施形態において、スケール56のY位置は、図1に示されるように、投影光学系16のY軸方向の中心位置と概ね一致している。スケール56は、図4(C)に示されるように、投影光学系16よりも+X側の領域に、例えば4つ、投影光学系16よりも-X側の領域に、例えば4つ、それぞれX軸方向に離間して配置されている。すなわち、上架台部18aの下面には、合計で、例えば8つのスケール56が固定されている。複数のスケール56それぞれは、実質的に同じものである。スケール56は、X軸方向に延びる平面視矩形の板状(帯状)の部材から成り、基板ステージ装置20に配置されたスケール52と同様に、例えば石英ガラスにより形成されている。なお、理解を容易にするために、図4(C)及び図5(B)では、複数のスケール56が実線で図示され、格子面が上向きに(+Z方向を向いて)示されているが、複数のスケール56の格子面は、実際には、下方(-Z側)を向いている。
 図5(B)に示されるように、スケール56の下面における、幅方向一側(図5(B)では、-Y側)の領域には、Xスケール57xが形成されている。また、スケール56の下面における、幅方向他側(図3(C)では、+Y側)の領域には、Yスケール57yが形成されている。Xスケール57x、及びYスケール57yの構成は、上記マスクエンコーダシステム48のスケール46(それぞれ図2(A)参照)に形成されたXスケール47x、及びYスケール47y(それぞれ図2(B)参照)と同じであるので説明を省略する。
 図4(C)に戻り、例えば2つのヘッドユニット60は、上述したように(図4(A)及び図4(B)参照)、基板ホルダ34内にほぼ全体(あるいは一部)が収納されている。例えば2つのヘッドユニット60それぞれは、図4(C)で紙面左右対称に配置されている点を除き実質的に同じものであるので、以下一方(+X側)について説明する。ヘッドユニット60は、図5(A)及び図5(B)から分かるように、Yスライドテーブル62、一対のXヘッド64x、及び一対のYヘッド64y(それぞれ図5(B)参照)、並びに一対のXヘッド66x、及び一対のYヘッド66y(それぞれ図5(A)参照)を備えている。
 Yスライドテーブル62は、平面視矩形の板状の部材から成り、基板ホルダ34(図4(C)参照)に対して、例えば機械的なYリニアガイド装置(不図示)を介して取り付けられている。
 Xヘッド64x、Yヘッド64y(図5(B)参照)、Xヘッド66x、及びYヘッド66y(図5(A)参照)それぞれは、上述したマスクエンコーダシステム48が有するXヘッド49x、Yヘッド49y(それぞれ図2(B)参照)と同様の、いわゆる回折干渉方式のエンコーダヘッドであり、Yスライドテーブル62に固定されている。ここで、ヘッドユニット60において、一対のYヘッド64y、一対のXヘッド64x、一対のYヘッド66y、及び一対のXヘッド66xは、それぞれの相互間の距離が、例えば振動などに起因して変化しないように、Yスライドテーブル62に対して固定されている。また、Yスライドテーブル62自体も、一対のYヘッド64y、一対のXヘッド64x、一対のYヘッド66y、及び一対のXヘッド66xそれぞれの相互間の距離が、例えば温度変化に起因して変化しないように、熱膨張率がスケール52、56より低い(あるいはスケール52、56と同等の)材料で形成されている。
 図6に示されるように、一対のXヘッド64x(上向きヘッド)それぞれは、Xスケール57x上のX軸方向に互いに離間した2箇所(2点)に計測ビームを照射し、一対のYヘッド64y(上向きヘッド)それぞれは、Yスケール57y上のX軸方向に互いに離間した2箇所(2点)に計測ビームを照射する。基板エンコーダシステム50では、上記Xヘッド64x、及びYヘッド64yが対応するスケールからのビームを受光することにより、Yスライドテーブル62(図6では不図示。図4及び図5参照)の変位量情報を主制御装置90(図7参照)に供給する。
 すなわち、基板エンコーダシステム50では、例えば4つ(2×2)のXヘッド64xと、該Xヘッド64xに対向するXスケール57x(Yスライドテーブル62のX位置によって異なる)とによって、一対のYスライドテーブル62(すなわち、一対のヘッドユニット60(図4(C)参照))それぞれの投影光学系16(図1参照)に対するX軸方向の位置情報を求めるための、例えば4つのXリニアエンコーダ94x(図7参照)が構成され、例えば4つ(2×2)のYヘッド64yと、該Yヘッド64yに対向するYスケール57y(Yスライドテーブル62のX位置によって異なる)とによって、一対のYスライドテーブル62それぞれの投影光学系16に対するY軸方向の位置情報を求めるための、例えば4つのYリニアエンコーダ94y(図7参照)が構成される。
 主制御装置90は、図7に示されるように、例えば4つのXリニアエンコーダ94x、及び、例えば4つのYリニアエンコーダ94yの出力に基づいて、一対のヘッドユニット60(図4(C)参照)それぞれのX軸方向、及びY軸方向の位置情報を、例えば10nm以下の分解能で求める。また、主制御装置90は、1つのヘッドユニット60に対応する、例えば2つのXリニアエンコーダ94x(あるいは、例えば2つのYリニアエンコーダ94y)の出力に基づいて該ヘッドユニット60のθz位置情報(回転量情報)を求める。主制御装置90は、一対のヘッドユニット60それぞれのXY平面内の位置情報に基づき、ヘッドユニット駆動用アクチュエータ68(図7参照)を用いてヘッドユニット60のXY平面内の位置を制御する。
 また、図4(C)に示されるように、スケール56は、投影光学系16の+X側、及び-X側の領域それぞれに、X軸方向に所定間隔で、例えば4つ配置されている。そして、上記マスクエンコーダシステム48と同様に、ひとつのヘッドユニット60が有する一対のXヘッド64x、及び一対のYヘッド64yそれぞれの間隔は、図5(B)に示されるように、隣接するスケール56間の間隔よりも広く設定されている。これにより、基板エンコーダシステム50では、一対のXヘッド64xのうち常に少なくとも一方がXスケール57xに対向するとともに、一対のYヘッド64yのうちの少なくとも一方が常にYスケール57yに対向する。従って、基板エンコーダシステム50は、計測値を途切れさせることなくYスライドテーブル62の位置情報を求めることができる。従って、ここでも、上述したマスクエンコーダシステム48におけるヘッド出力の繋ぎ処理と同様のヘッド出力の繋ぎ処理(図3(A)~図3(E)参照)が行われる。
 また、図6に示されるように、一対のXヘッド66x(下向きヘッド)それぞれは、Xスケール53x上のY軸方向に互いに離間した2箇所(2点)に計測ビームを照射し、一対のYヘッド66y(下向きヘッド)それぞれは、Yスケール53y上のY軸方向に互いに離間した2箇所(2点)に計測ビームを照射する。基板エンコーダシステム50では、上記Xヘッド66x、及びYヘッド66yが対応するスケールからのビームを受光することにより、ヘッドユニット60と基板ホルダ34(図6では不図示。図1参照)との相対変位量情報を主制御装置90(図7参照)に供給する。
 すなわち、基板エンコーダシステム50では、例えば4つ(2×2)のXヘッド66xと、該Xヘッド66xに対向するXスケール53x(基板ホルダ34のY位置によって異なる)とによって、一対のヘッドユニット60それぞれの基板ホルダ34に対するX軸方向の位置情報を求めるための、例えば4つのXリニアエンコーダ96x(図6では不図示。図7参照)が構成され、例えば4つ(2×2)のYヘッド66yと、該Yヘッド66yに対向するYスケール53y(基板ホルダ34のY位置によって異なる)とによって、一対のヘッドユニット60それぞれの基板ホルダ34に対するY軸方向の位置情報を求めるための、例えば4つのYリニアエンコーダ96y(図6では不図示。図7参照)が構成される。
 主制御装置90は、図7に示されるように、例えば4つのXリニアエンコーダ94x、及び、例えば4つのYリニアエンコーダ94yの出力、並びに上記4つのXリニアエンコーダ96x、及び、例えば4つのYリニアエンコーダ96yの出力、すなわち、一対のヘッドユニット60それぞれの、投影光学系16(図1参照)に対するXY平面内の位置情報と、基板ホルダ34に対するXY平面内の位置情報との演算結果に基づいて基板ホルダ34(図1参照)の装置本体18(図1参照)に対するX軸方向、及びY軸方向の位置情報を、例えば10nm以下の分解能で求める。また、主制御装置90は、例えば4つのXリニアエンコーダ94x(あるいは、例えば4つのYリニアエンコーダ94y)のうちの少なくとも2つの出力に基づいてヘッドユニット60と基板ホルダ34とのθz方向の相対位置情報(回転量情報)を求める。主制御装置90は、上記基板エンコーダシステム50の計測値から求められた基板ホルダ34のXY平面内の位置情報に基づき、基板駆動系93を用いて基板ホルダ34のXY平面内の位置を制御する。
 また、図3(A)に示されるように、基板ホルダ34には、上述したように、基板Pの+X側、及び-X側の領域それぞれにスケール52がY軸方向に所定間隔で、例えば4つ配置されている。そして、上記マスクエンコーダシステム48と同様に、ひとつのヘッドユニット60が有する一対のXヘッド66x、及び一対のYヘッド66yそれぞれの間隔は、図5(A)に示されるように、隣接するスケール52間の間隔よりも広く設定されている。これにより、基板エンコーダシステム50では、一対のXヘッド66xのうち常に少なくとも一方がXスケール53xに対向するとともに、一対のYヘッド66yのうちの少なくとも一方が常にYスケール53yに対向する。従って、基板エンコーダシステム50は、計測値を途切れさせることなくヘッドユニット60と基板ホルダ34(図3(A)参照)との相対位置情報を求めることができる。従って、ここでも、上述したマスクエンコーダシステム48におけるヘッド出力の繋ぎ処理と同様のヘッド出力の繋ぎ処理(図3(A)~図3(E)参照)が行われる。
 図7には、液晶露光装置10(図1参照)の制御系を中心的に構成し、構成各部を統括制御する主制御装置90の入出力関係を示すブロック図が示されている。主制御装置90は、ワークステーション(又はマイクロコンピュータ)等を含み、液晶露光装置10の構成各部を統括制御する。
 上述のようにして構成された液晶露光装置10(図1参照)では、主制御装置90(図7参照)の管理の下、不図示のマスクローダによって、マスクステージ装置14上へのマスクMのロードが行われるとともに、不図示の基板ローダによって、基板ステージ装置20(基板ホルダ34)上への基板Pのロードが行なわれる。その後、主制御装置90により、不図示のアライメント検出系を用いてアライメント計測が実行され、そのアライメント計測の終了後、基板P上に設定された複数のショット領域に逐次ステップ・アンド・スキャン方式の露光動作が行なわれる。
 次に、露光動作時におけるマスクステージ装置14、及び基板ステージ装置20の動作の一例を、図8(A)~図15(B)を用いて説明する。なお、以下の説明では、1枚の基板P上に4つのショット領域が設定された場合(いわゆる4面取りの場合)を説明するが、1枚の基板P上に設定されるショット領域の数、及び配置は、適宜変更可能である。
 図8(A)には、アライメント動作が完了した後のマスクステージ装置14が、図8(B)には、アライメント動作が完了した後の基板ステージ装置20(ただし基板ホルダ34以外の部材は不図示。以下、同じ)がそれぞれ示されている。露光処理は、一例として、図8(B)に示されるように、基板Pの-Y側かつ+X側に設定された第1ショット領域Sから行われる。マスクステージ装置14では、図8(A)に示されるように、照明系12からの照明光IL(それぞれ図1参照)が照射される照明領域(ただし、図8(A)に示される状態では、まだマスクMに対し照明光ILは照射されていない)よりもマスクMの+X側の端部が幾分-X側に位置するように、マスクエンコーダシステム48(図7参照)の出力に基づいてマスクMの位置決めがされる。
 具体的には、例えば、照明領域に対してマスクMのパターン領域の+X側の端部が、所定の速度で走査露光するために必要な助走距離(すなわち、所定の速度に達するために必要な加速距離)だけ-X側に配置され、その位置においてマスクエンコーダシステム48によりマスクMの位置が計測できるようにスケール46が設けられている。主制御装置90(図7参照)も、少なくとも3つ(4つのヘッド49x、及び4つのヘッド49yのうちの3つ)のヘッドが、スケール46から外れない(計測可能範囲外とならない)範囲で、マスクホルダ40の位置制御を行う。
 また、基板ステージ装置20では、図8(B)に示されるように、投影光学系16からの照明光IL(図1参照)が照射される露光領域(ただし、図8(B)に示される状態では、まだ基板Pに対し照明光ILは照射されていない)よりも第1ショット領域Sの+X側の端部が幾分-X側に位置するように、基板エンコーダシステム50(図7参照)の出力に基づいて基板Pの位置決めがされる。具体的には、例えば、露光領域に対して基板Pの第1ショット領域Sの+X側の端部が、所定の速度で走査露光するために必要な助走距離(すなわち、所定の速度に達するために必要な加速距離)だけ-X側に配置され、その位置において基板エンコーダシステム50により基板Pの位置が計測できるようにスケール52が設けられている。主制御装置90(図7参照)も、少なくとも3つ(4つのヘッド64x、及び4つのヘッド64yのうちの3つ)のヘッドがスケール56から外れない(計測可能範囲外とならない)範囲で、基板ホルダ34の位置制御を行う。なお、図8(B)では、+X側のヘッドユニット60は、スケール56と対向しないが、-X側のヘッドユニット60と同期駆動することにより、+X側のヘッドユニット60のXY平面の位置が制御可能である。なお、一対のヘッドユニット60常にスケール56から外れないように、スケール56を追加的に設けてもよい。
 なお、ショット領域の走査露光を終えてマスクMおよび基板Pをそれぞれ減速する側においても、同様に走査露光時の速度から所定の速度まで減速させるために必要な減速距離だけマスクMおよび基板Pをさらに移動させるまでマスクエンコーダシステム48、基板エンコーダシステム50によりそれぞれマスクM、基板Pの位置を計測可能なようにスケール46、56が設けられている。あるいは、加速中および減速中の少なくとも一方の動作中には、マスクエンコーダシステム48、基板エンコーダシステム50とは別の計測系によってマスクMおよび基板Pの位置をそれぞれ計測できるようにしても良い。
 次いで、図9(A)に示されるように、マスクホルダ40が+X方向に駆動(加速、等速駆動、及び減速)されるとともに、該マスクホルダ40に同期して、図9(B)に示されるように、基板ホルダ34が+X方向に駆動(加速、等速駆動、及び減速)される。マスクホルダ40が駆動される際、主制御装置90(図7参照)は、マスクエンコーダシステム48(図7参照)の出力に基づいてマスクMの位置制御を行うとともに、基板エンコーダシステム50(図7参照)の出力に基づいて基板Pの位置制御を行う。
 基板ホルダ34がX軸方向に駆動される際、一対のヘッドユニット60は、基板ホルダ34対して相対移動せず(基板ホルダ34に対して静止状態とされ)、基板ホルダ34と一体的にX軸方向に移動する。すなわち、スキャン方向に関しては、基板ホルダ34(基板P)と、一対のヘッドユニット60(複数のヘッド64x、64y、66x、66y)とは、共通の駆動系(基板駆動系93(図7参照))によって位置制御が行われる。マスクホルダ40、及び基板ホルダ34がX軸方向に等速駆動される間、基板Pには、マスクM及び投影光学系16を通過した照明光IL(それぞれ図1参照)が照射され、これによりマスクMが有するマスクパターンがショット領域Sに転写される。この際、スケール56から外れていた+X側のヘッドユニット60がスケール56に対向するようになるので、一対のヘッドユニット60間で上述の繋ぎ処理を行うと良い。
 基板P上の第1ショット領域Sに対するマスクパターンの転写が完了すると、基板ステージ装置20では、図10(B)に示されるように、第1ショット領域Sの+Y側の設定された第2ショット領域Sへの露光動作のために、基板ホルダ34が-Y方向に所定距離(基板Pの幅方向寸法のほぼ半分の距離)、基板エンコーダシステム50(図7参照)の出力に基づいて駆動(Yステップ)される。上記基板ホルダ34のYステップ動作時において、マスクホルダ40は、図10(A)に示されるように、マスクMの-X側の端部が照明領域(ただし、図10(A)に示される状態では、マスクMは照明されない)よりも幾分+X側に位置した状態で静止している。
 また、基板ステージ装置20では、上記基板ホルダ34の-Y方向へのステップ動作と並行して、一対のヘッドユニット60がYリニアエンコーダ96y(図7参照)の出力に基づいて、+Y方向(すなわち、基板ホルダ34と逆方向)にマスクホルダ40と同じ距離、マスクホルダ40に対して駆動される。この場合、ヘッドユニット60は、見た目上は、投影光学系16に対してY軸方向に移動していないこととなる。従って、ヘッドユニット60とスケール56との対向状態が維持される。
 以下、不図示であるが、基板ホルダ34のYステップ動作が完了すると、マスクエンコーダシステム48(図7参照)の出力に基づいてマスクホルダ40が-X方向に駆動されるとともに、該マスクホルダ40に同期して、基板エンコーダシステム50(図7参照)の出力に基づいて基板ホルダ34が-X方向に駆動される。これにより、第2ショット領域Sにマスクパターンが転写される。この際も、例えば4つのヘッドユニット60は、静止状態とされる。以下、上記マスクホルダ40のスキャン動作、基板ホルダ34のYステップ動作、及び基板ホルダ34のスキャン動作を適宜繰り返すことによって、基板P上の複数のショット領域に対して、マスクパターンが順次転写される。上記露光動作時において、一対のヘッドユニット60は、スケール56との対向状態が維持されるように、基板ホルダ34が+Y方向、及び-Y方向にステップする度に、該基板ホルダ34とは反対の方向に、同距離だけ駆動される。
 ここで、上述したように、Yスケール53yは、X軸方向に延びる複数の格子線を有している。また、図16に示されるように、Yヘッド66yからYスケール53y上に照射される計測ビームの照射点66y(便宜上、Yヘッドと同じ符号を付して説明する)は、Y軸方向を長軸方向とする楕円状となっている。Yリニアエンコーダ94y(図6参照)では、Yヘッド66yとYスケール53yとがY軸方向に相対移動して計測ビームが格子線を跨ぐと、上記照射点からの±1次回折光の位相変化に基づいて、Yヘッド66yからの出力が変化する。
 これに対し、主制御装置90(図6参照)は、上記スキャン露光動作中において、基板ホルダ34をスキャン方向(X軸方向)に駆動する際に、ヘッドユニット60(図4(B)参照)が有するYヘッド66yが、Yスケール53yを形成する複数の格子線を跨がないように、すなわち、Yヘッド66yからの出力が変化しない(変化がゼロである)ように、ヘッドユニット60のステップ方向の位置(Y位置)を制御する。
 具体的には、例えばYスケール53yを構成する格子線間のピッチよりも高い分解能を有するセンサによってYヘッド66yのY位置を計測し、該Yヘッド66yからの計測ビームの照射点が格子線を跨ぎそう(Yヘッド66yの出力が変化しそう)になる直前で、Yヘッド66yのY位置をヘッドユニット駆動系86(図6参照)を介して制御する。なお、これに限らず、例えばYヘッド66yからの計測ビームが格子線を跨ぐことにより、Yヘッド66yの出力が変化した場合に、これに応じて、該Yヘッド66yを駆動制御することにより、実質的にYヘッド66yからの出力が変化しないようにしても良い。この場合、Yヘッド66yのY位置を計測するセンサが不要である。
 以上の手順によって基板P上の第1~第4ショット領域S~Sにマスクパターンの転写が完了すると、所定の基板交換位置において、基板Pの交換が行われる。ここで、一般的に基板交換位置は、投影光学系16が基板交換の支障とならないように、投影光学系16の直下から離れた位置に設定されるので、基板交換位置へ基板ホルダ34を移動させる際に、ヘッドユニット60に取り付けられたXヘッド64x、Yヘッド64yが装置本体18に固定されたスケール56から外れ(非対向状態となり)、基板エンコーダシステム50の出力が切れる可能性がある。このような場合の対策としては、装置本体18にプレート交換時のためのスケール(あるいはマーク)を設けることが考えられる。
 以上説明したように、本実施形態に係る液晶露光装置10によれば、マスクMのXY平面内の位置情報を求めるためのマスクエンコーダシステム48、及び基板PのXY平面内の位置情報を求めるための基板エンコーダシステム50(それぞれ図1参照)それぞれは、対応するスケールに対して照射される計測ビームの光路長が短いので、例えば従来の干渉計システムに比べて空気揺らぎの影響を低減できる。従って、マスクM、及び基板Pの位置決め精度が向上する。また、空気揺らぎの影響が小さいので、従来の干渉計システムを用いる場合に必須となる部分空調設備を省略でき、コストダウンが可能となる。
 さらに、干渉計システムを用いる場合には、大きくて重いバーミラーをマスクステージ装置14、及び基板ステージ装置20に備える必要があったが、本実施形態に係るマスクエンコーダシステム48、及び基板エンコーダシステム50では、上記バーミラーが不要となるので、マスクホルダ40を含む系、及び基板ホルダ34を含む系それぞれが小型・軽量化するとともに重量バランスが良くなり、これによりマスクM、基板Pの位置制御性が向上する。また、干渉計システムを用いる場合に比べ、調整箇所が少なくて済むので、マスクステージ装置14、及び基板ステージ装置20のコストダウンし、さらにメンテナンス性も向上する。また、組み立て時の調整も容易(あるいは不要)となる。
 また、本実施形態に係る基板エンコーダシステム50では、一対のヘッドユニット60を基板Pと反対方向にY軸方向に駆動することにより、ヘッドユニット60とスケール56との対向状態を維持するので、基板ホルダ34上にエンコーダヘッドをY軸方向に沿って複数配置する必要(あるいは装置本体18側のスケール56を広幅に形成する必要)がない。従って、基板位置計測系の構成をシンプルにすることができ、コストダウンが可能となる。
 また、本実施形態に係るマスクエンコーダシステム48では、隣接する一対のエンコーダヘッド(Xヘッド49x、Yヘッド49y)の出力をマスクホルダ40のX位置に応じて適宜切り換えながら該マスクホルダ40のXY平面内の位置情報を求める構成であるので、複数のスケール46をX軸方向に所定間隔で(互いに離間して)配置しても、マスクホルダ40の位置情報を途切れることなく求めることができる。従って、マスクホルダ40の移動ストロークと同等の長さ(本実施形態のスケール46の約3倍の長さ)のスケールを用意する必要がなく、コストダウンが可能であり、特に本実施形態のような大型のマスクMを用いる液晶露光装置10に好適である。本実施形態に係る基板エンコーダシステム50も同様に、複数のスケール52がY軸方向に、複数のスケール56がX軸方向に、それぞれ所定間隔で配置されるので、基板Pの移動ストロークと同等の長さのスケールを用意する必要がなく、大型の基板Pを用いる液晶露光装置10に好適である。
《第2の実施形態》
 次に、第2の実施形態に係る液晶露光装置について、図11(A)~図11(C)を用いて説明する。第2の実施形態に係る液晶露光装置の構成は、基板エンコーダシステム150の構成が異なる点を除き、上記第1の実施形態と同じであるので、以下、相違点についてのみ説明し、上記第1の実施形態と同じ構成及び機能を有する要素については、上記第1の実施形態と同じ符号を付してその説明を省略する。
 上記第1の実施形態において、基板ステージ装置20(基板ホルダ34)が有していた一対のヘッドユニット60は、基板PのYステップ動作時に該基板Pとは反対方向にステップ移動するとともに、基板Pと一体的にスキャン方向に移動する構成であったのに対し、本第2の実施形態では、これとは逆に、基板PのYステップ動作時に基板Pと一体的にYステップ動作を行うとともに、基板Pのスキャン露光動作時において、該基板Pとは反対方向に長ストロークで移動する構成となっている。従って、基板エンコーダシステム50を構成するヘッドユニット60、スケール52、スケール56等の配置を、上記第1の実施形態に対し、Z軸周りに、例えば90°回転させたような配置構成となっている。
 図11(A)及び図11(B)には、第2の実施形態の基板エンコーダシステム150の概念図が示されている。基板ホルダ34に形成された凹部36は、X軸方向に延び、該凹部の底面にX軸方向に延びるスケール52が固定されている。ヘッドユニット60は、上記第1の実施形態と同様に、凹部36内に配置されており、基板ホルダ34に対してX軸方向に所定の長ストロークで移動可能となっている。また、装置本体18(図1参照)には、Y軸方向に延びるスケール56が、投影光学系16(図11(C)参照)の+Y側と-Y側とにそれぞれ固定されている。
 図11(C)により具体的に示されるように、基板ホルダ34の+Y側及び-Y側の領域それぞれには、例えば5つのスケール52が、X軸方向に所定間隔で配置され、装置本体18(図1参照)の下面であって、投影光学系16の+Y側及び-Y側の領域それぞれには、例えば2つのスケール56が所定間隔で配置されている。各スケール52、54には、それぞれXスケール53x、57x、Yスケール53y、57y(図6参照)が形成され、ヘッドユニット60には、該Xスケール35x、57x、Yスケール53y、57yを用いてヘッドユニット60の投影光学系16、あるいは基板ホルダ34に対する相対変位量を計測するためのエンコーダヘッド(不図示)が取り付けられている点は、上記第1の実施形態と同様であるので、説明を省略する。複数のスケールが互いに離間して配置されていることから、隣接する一対のヘッド間で繋ぎ処理が行われる点も、上記第1の実施形態と同様である。
 本第2の実施形態では、基板Pのスキャン露光動作時において、見た目上、一対のヘッドユニット60のX位置が変わらないように、基板Pとは反対方向に、且つ同じ距離、一対のヘッドユニット60がX軸方向に駆動される。つまり、ヘッドユニット60は、基板Pに対してX方向へ相対移動される。これにより、一対のヘッドユニット60が対応するスケール56から外れることがないので、基板エンコーダシステム150の計測値が途切れない。これに対し、基板PのYステップ動作時には、基板ホルダ34と一対のヘッドユニット60とは、共通の駆動系(基板駆動系93(図7参照))によって一体的にY軸方向に長ストロークで移動可能となっている。
 なお、以上説明した第1及び第2の各実施形態の構成は、一例であって、適宜変更が可能である。例えば上記第1の実施形態では、一対のヘッドユニット60が基板ホルダ34に設けられるとともに、該ヘッドユニット60を駆動するためのアクチュエータも基板ホルダ34が有していたが、これに限られず、例えば図12に示されるように、ヘッドユニット60が装置本体18の上架台部18aに吊り下げ支持されていても良い。この場合、ヘッドユニット60は、該ヘッドユニット60をX軸方向に直進案内するガイド装置256を介して装置本体18に取り付けられている。また、基板ステージ装置220は、上記第1の実施形態とは逆に、X粗動ステージ22X上にY粗動ステージ22Yが載置された構成となっている。そして、X粗動ステージ22Xには、一対のヘッドユニット60それぞれに機械的に連結されたアーム部材222が接続されている。なお、図12では、スケール52が基板ホルダ34の外側に配置されているが、上記第1の実施形態と同様に、基板ホルダ34上(あるいは基板ホルダ34内)に配置されていても良い。
 本変形例では、X粗動ステージ22X(及び基板ホルダ34)がスキャン露光動作時にX軸方向に所定の長ストロークで移動すると、アーム部材222を介して該X粗動ステージ22Xと一体的に一対のヘッドユニット60が投影光学系に対してX軸方向に移動する。この際、基板ホルダ34と、一対のヘッドユニット60とは、共通の駆動系(基板駆動系93(図7参照)の一部を構成するXアクチュエータ)によって駆動される。また、基板PのYステップ動作時には、Y粗動ステージ22Y(及び基板ホルダ34)のみがY軸方向に移動するので、ヘッドユニット60の投影光学系16に対する位置は、変化しない。このように、本変形例のヘッドユニット60の動作は、上記第1の実施形態と同じである。本変形例によれば、ヘッドユニット60を駆動するための専用のアクチュエータが不要であるので、基板P近傍での発熱、あるいは発塵を抑制できる。
 また、例えば第2の実施形態でも、一対のヘッドユニット60が基板ホルダ34に設けられるとともに、該ヘッドユニット60を駆動するためのアクチュエータも基板ホルダ34が有していたが、これに限られず、例えば図13に示されるように、ヘッドユニット60が装置本体18の上架台部18aに吊り下げ支持されていても良い。ヘッドユニット60は、図12に示される変形例と同様に、ガイド装置256を介して装置本体18に取り付けられている。基板ステージ装置220は、第1の実施形態と同様に、Y粗動ステージ22Y上にX粗動ステージ22Xが載置され、Y粗動ステージ22Yには、一対のヘッドユニット60それぞれに接続された一対のアーム部材222が接続されている。本変形例でも、スケール52は、基板ホルダ34上(あるいは基板ホルダ34内)に配置されていても良い。
 本変形例では、Y粗動ステージ22X(及び基板ホルダ34)がYステップ動作時にY軸方向に所定の長ストロークで移動すると、アーム部材222を介して該Y粗動ステージ22Yと一体的に一対のヘッドユニット60が投影光学系に対してY軸方向に移動する。この際、基板ホルダ34と、一対のヘッドユニット60とは、共通の駆動系(基板駆動系93(図7参照)の一部を構成するYアクチュエータ)によって駆動される。また、基板Pのスキャン露光動作時には、X粗動ステージ22X(及び基板ホルダ34)のみがX軸方向に移動するので、ヘッドユニット60の投影光学系16に対する位置は、変化しない。このように、本変形例のヘッドユニット60の動作は、上記第2の実施形態と同じである。本変形例によれば、ヘッドユニット60を駆動するための専用のアクチュエータが不要であるので、基板P近傍での発熱、あるいは発塵を抑制できる。
 また、図14(A)及び図14(B)に示されるように、ヘッドユニット60が有する一対のエンコーダヘッド(すなわち一対のXヘッド64x、一対のXヘッド66x、一対のYヘッド64y、及び一対のYヘッド66yそれぞれ)の相互間の距離をセンサ164、166で計測し、該計測値を用いて基板エンコーダシステム50の出力を補正しても良い。センサ164、166の種類は、特に限定されないが、例えばレーザ干渉計などを用いることができる。基板エンコーダシステム50では、上述したように、一対のエンコーダヘッドの出力の繋ぎ処理を行うが、この繋ぎ処理において、一対のエンコーダヘッド間の間隔で既知、且つ不変であることが前提条件となる。このため、各ヘッドが取り付けられるYスライドテーブル62としては、例えば熱膨張などの影響が少ない材料により形成されているが、本変形例のように、エンコーダヘッド間の間隔を計測することによって、仮にYスライドテーブル62が変形(一対のエンコーダヘッド間の間隔が変化)したとしても、高精度で基板Pの位置情報を求めることができる。同様に、マスクエンコーダシステム48においても、一対のエンコーダヘッド(すなわち一対のXヘッド49x、及び一対のYヘッド49y)間の距離を計測し、該計測値を用いてマスクエンコーダシステム48の出力を補正しても良い。マスクエンコーダシステム48のヘッド49x、49yに関しても同様である。また、ヘッドユニット60が有する全て(本実施形態では、例えば合計で8つ)のヘッド(下向きの一対のヘッド66x、66y、上向きの一対のヘッド64x、64y)それぞれの相対的な位置関係を計測し、計測値を補正しても良い。
 また、上述したように、ヘッドユニット60が有する一対のエンコーダヘッド(すなわち一対のXヘッド64x、一対のXヘッド66x、一対のYヘッド64y、及び一対のYヘッド66yそれぞれ)の相互間の距離を適宜(例えば基板交換毎に)計測するキャリブレーション動作を行ってもよい。また、上記ヘッド間の間隔の測定を行うキャリブレーションポイントとは別に、マスクエンコーダシステム48、基板エンコーダシステム50それぞれの出力の原点位置決めを行うためのキャリブレーションポイントを設けても良い。該原点位置決めを行うための位置決めマークは、例えば複数のスケール46、52の延長線上(外側)に配置しても良いし、隣接する一対のスケール46、52間に配置しても良いし、あるいは、スケール46、52内に形成しても良い。
 また、各エンコーダヘッド64x、64y、66x、66yが取り付けられたYスライドテーブル62の水平面に対する傾き(θx、θy方向の傾斜)量を求め、該傾き量(すなわち、各ヘッド64x、64y、66x、66yの光軸の倒れ量)に応じて基板エンコーダシステム50の出力を補正しても良い。計測系としては、図15(A)に示されるように、複数のZセンサ64zをYスライドテーブル62に取り付け、上架台部18aを基準としてYスライドテーブル62の傾き量を求める計測系を用いることができる。あるいは、図15(B)に示されるように、2軸のレーザ干渉計264を基板ホルダ34(図1参照)に設けて、Yスライドテーブル62の傾き量(θx、θy方向の傾斜量)及び回転量(θz方向の回転量)を求めても良い。また、各ヘッド64x、64y、66x、66yの傾き量を個別に計測しても良い。
 また、例えば、上記第1実施形態のマスクエンコーダシステム48、基板エンコーダシステム50において、エンコーダヘッド、及びスケールの配置は逆であっても良い。すなわち、例えばマスクホルダ40の位置情報を求めるためのXリニアエンコーダ92x、Yリニアエンコーダ92yは、マスクホルダ40にエンコーダヘッドが取り付けられ、エンコーダベース43にスケールが取り付けられる構成であっても良い。また、基板ホルダ34の位置情報を求めるためのXリニアエンコーダ96x、Yリニアエンコーダ96yは、Yスライドテーブル62にスケールが取り付けられ、基板ホルダ34にエンコーダヘッドが取り付けられても良い。その場合、基板ホルダ34に取り付けられるエンコーダヘッドは、Y軸方向(第1の実施形態の場合)、あるいはX軸方向(第2の実施形態の場合)に沿って複数配置され、相互に切り換え動作可能に構成されると良い。同様に、Yスライドテーブル62の位置情報を求めるためのXリニアエンコーダ94x、Yリニアエンコーダ94yは、Yスライドテーブル62にスケールが取り付けられ、装置本体18にエンコーダヘッドが取り付けられても良い。その場合、エンコーダベース54に取り付けられるエンコーダヘッドは、X軸方向(第1の実施形態の場合)、あるいはY軸方向(第2の実施形態の場合)に沿って複数配置され、相互に切り換え動作可能に構成されると良い。この場合に、Yスライドテーブル62に固定されるスケールを共通化しても良い。
 また、マスクエンコーダシステム48では、例えば3つのスケール46がX軸方向に離間して配置され、第1の実施形態に係る基板エンコーダシステム50では、例えば4つのスケール52がY軸方向、例えば4つのスケール56がX軸方向にそれぞれ離間して配置される場合を説明したが、スケールの数は、これに限られず、例えばマスクM、基板Pの大きさ、あるいは移動ストロークに応じて適宜変更が可能である。また、必ずしも複数のスケールが離間して配置されていなくても良く、例えばより長いひとつのスケール(上記実施形態の場合では、例えばスケール46の約3倍の長さのスケール、スケール52の約4倍の長さのスケール、スケール56の約4倍の長さのスケール)を用いても良い。
 また、スケールを複数設ける場合、各スケールの長さが互いに異なっていても良い。例えば、X軸方向に延びるスケールの長さを、ショット領域のX軸方向の長さより長く設定することにより、走査露光動作時における繋ぎ処理を回避することができる。Y軸方向に延びるスケールについても同様である。さらに、ショット領域の数の変化に対応できるように(例えば4面取りの場合と6面取りの場合)、投影光学系16の一側に配置されるスケールと、他側に配置されるスケールとで、互いに長さを異ならせても良い。また両者をX軸方向に相対的にずらして配置するようにしても良い。
 また、上記実施形態では、Xスケール(図中に示されるX軸方向計測用の格子パターン)やYスケール(図中に示されるY軸方向計測用の格子パターン)を、互いに独立したスケール用部材(例えばエンコーダベース上に配置されている複数のスケール部材)に設けるように構成している。しかしながら、これら複数の格子パターンを、同一の長いスケール用部材上に一群の格子パターンごと分けて形成するようにしても良い。また同一の長いスケール用部材上に格子パターンを連続して形成しても良い。
 また、基板ホルダ34上において、X軸方向に複数のスケールが、所定間隔の隙間を介しながら連なって配置されたスケール群(スケール列)を、複数列、互いにY軸方向に離れた異なる位置(例えば投影光学系16に対して一方の側(+Y側)の位置と、他方(-Y側)の位置)に配置する場合に、複数列間において、上記所定間隔の隙間の位置がX軸方向において重複しないように配置しても良い。このように複数のスケール列を配置すれば、互いのスケール列に対応して配置されたヘッドが同時に計測範囲外になる(換言すれば、両ヘッドが同時に隙間に対向する)ことがない。
 また、基板ホルダ34上で、X軸方向に複数のスケールが、所定間隔の隙間を介しながら連なって配置されたスケール群(スケール列)において、1つのスケール(X軸計測用のパターン)のX軸方向の長さを、1ショット領域の長さ(基板ホルダ上の基板をX軸方向に移動させながらスキャン露光を行う際に、デバイスパターンが照射されて基板上に形成される長さ)分だけ連続して測定できるような長さにしても良い。このようにすれば、1ショット領域のスキャン露光中に、複数スケールに対するヘッドの乗継制御を行わずに済むため、スキャン露光中の基板P(基板ホルダ)の位置計測(位置制御)を容易にできる。
 また、基板ホルダ34上の、所定間隔の隙間を介しながら複数のスケールがX軸方向に連なって配置されたスケール群(スケール列)において、上記実施形態では各スケールの長さが同一の長さのものを連ねて配置しているが、互いに長さの異なるスケールを連ねて配置するようにしても良い。例えば、基板ホルダ34上のスケール列において、X軸方向における両端部寄りにそれぞれ配置されるスケール(スケール列において、各端部に配置されるスケール)のX軸方向の長さよりも、中央部に配置されるスケールの方を物理的に長くしても良い。
 なお、上記実施形態では、基板ホルダ34上の、所定間隔の隙間を介しながら複数のスケールがX軸方向に連なって配置されたスケール群(スケール列)において、複数のスケール間の距離(換言すれば隙間の長さ)と、1つのスケールの長さと、そのスケール列に対して相対移動する2つのヘッド(1つのヘッドユニット60内部において互いに対向配置されているヘッド、例えば図7に示す2つのヘッド66x)とは、「1つのスケール長さ > 対向配置されているヘッド間の距離 > スケール間の距離」の関係を満たすように配置されている。この関係は、基板ホルダ34上に設けられたスケールとそれに対応するヘッド60だけでなく、スケール56とそれに対応するヘッド60との間においても満たされている。
 なお、あるヘッド60とそれに対応するスケール列(所定の隙間を介して複数のスケールを所定方向に連なって配置されるスケール列)とがX軸方向に相対的に移動している際に、ヘッド60内のある一組のヘッド(例えば図6のXヘッド66xとYヘッド66y)が上述のスケール間の隙間に同時に対向した後で別のスケールに同時に対向した場合(ヘッド66x,66yが別のスケールに乗り継いだ場合)に、その乗り継いだヘッドの計測初期値を算出する必要がある。その際に、乗り継いだヘッドとは別の、ヘッド60内の残りの一組のヘッド(66x,66y)と、それとは更に別の1つのヘッド(X軸方向に離れて且つ、落ちたヘッドとの距離がスケール長よりも短い位置に配置されるもの)の出力とを用いて、乗り継いだヘッドの乗継の際の初期値を算出するようにしても良い。上述の更に別のヘッドは、X軸方向の位置計測用ヘッドでもY軸方向の位置計測用ヘッドでも構わない。
 また、上記各実施形態において、ヘッド60が基板ホルダ34に同期して移動する、と説明する場面があるが、これはヘッド60が、基板ホルダ34に対する相対的な位置関係を概ね維持した状態で移動することを意味し、ヘッド60、基板ホルダ34の両者間の位置関係、移動方向、及び移動速度が厳密に一致した状態で移動する場合に限定されるものではない。
 また、スケール46、52、56それぞれの表面にXスケールとYスケールとが独立に形成された場合を説明したが、これに限られず、例えばXY2次元スケールを用いても良い。この場合、エンコーダヘッドもXY2次元ヘッドを用いることができる。また、回折干渉方式のエンコーダシステムを用いる場合について説明したが、これに限られず、いわゆるピックアップ方式、磁気方式などの他のエンコーダも用いることができ、例えば米国特許第6,639,686号明細書などに開示されるいわゆるスキャンエンコーダなども用いることができる。また、Yスライドテーブル62の位置情報は、エンコーダシステム以外の計測システム(例えば光干渉計システム)により求められても良い。
 また、複数のスケール56は、上架台部18a(光学定盤)の下面に直接貼り付けられる構成であったが、これに限られず、所定のベース部材を上架台部18aの下面に対して離間した状態で吊り下げ配置し、該ベース部材に複数のスケール56を貼り付けても良い。
 また、基板ステージ装置20は、少なくとも基板Pを水平面に沿って長ストロークで駆動できれば良く、場合によっては6自由度方向の微少位置決めができなくても良い。このような2次元ステージ装置に対しても上記各実施形態に係る基板エンコーダシステムを好適に適用できる。
 また、照明光は、ArFエキシマレーザ光(波長193nm)、KrFエキシマレーザ光(波長248nm)などの紫外光や、F2レーザ光(波長157nm)などの真空紫外光であっても良い。また、照明光としては、例えばDFB半導体レーザ又はファイバーレーザから発振される赤外域、又は可視域の単一波長レーザ光を、例えばエルビウム(又はエルビウムとイッテルビウムの両方)がドープされたファイバーアンプで増幅し、非線形光学結晶を用いて紫外光に波長変換した高調波を用いても良い。また、固体レーザ(波長:355nm、266nm)などを使用しても良い。
 また、投影光学系16が複数本の光学系を備えたマルチレンズ方式の投影光学系である場合について説明したが、投影光学系の本数はこれに限らず、1本以上あれば良い。また、マルチレンズ方式の投影光学系に限らず、オフナー型の大型ミラーを用いた投影光学系などであっても良い。また、投影光学系16としては、拡大系、又は縮小系であっても良い。
 また、露光装置の用途としては角型のガラスプレートに液晶表示素子パターンを転写する液晶用の露光装置に限定されることなく、例えば有機EL(Electro-Luminescence)パネル製造用の露光装置、半導体製造用の露光装置、薄膜磁気ヘッド、マイクロマシン及びDNAチップなどを製造するための露光装置にも広く適用できる。また、半導体素子などのマイクロデバイスだけでなく、光露光装置、EUV露光装置、X線露光装置、及び電子線露光装置などで使用されるマスク又はレチクルを製造するために、ガラス基板又はシリコンウエハなどに回路パターンを転写する露光装置にも適用できる。
 また、露光対象となる物体はガラスプレートに限られず、例えばウエハ、セラミック基板、フィルム部材、あるいはマスクブランクスなど、他の物体でも良い。また、露光対象物がフラットパネルディスプレイ用の基板である場合、その基板の厚さは特に限定されず、例えばフィルム状(可撓性を有するシート状の部材)のものも含まれる。なお、本実施形態の露光装置は、一辺の長さ、又は対角長が500mm以上の基板が露光対象物である場合に特に有効である。
 液晶表示素子(あるいは半導体素子)などの電子デバイスは、デバイスの機能・性能設計を行うステップ、この設計ステップに基づいたマスク(あるいはレチクル)を製作するステップ、ガラス基板(あるいはウエハ)を製作するステップ、上述した各実施形態の露光装置、及びその露光方法によりマスク(レチクル)のパターンをガラス基板に転写するリソグラフィステップ、露光されたガラス基板を現像する現像ステップ、レジストが残存している部分以外の部分の露出部材をエッチングにより取り去るエッチングステップ、エッチングが済んで不要となったレジストを取り除くレジスト除去ステップ、デバイス組み立てステップ、検査ステップ等を経て製造される。この場合、リソグラフィステップで、上記実施形態の露光装置を用いて前述の露光方法が実行され、ガラス基板上にデバイスパターンが形成されるので、高集積度のデバイスを生産性良く製造することができる。
 なお、上記実施形態で引用した露光装置などに関する全ての米国特許出願公開明細書及び米国特許明細書の開示を援用して本明細書の記載の一部とする。
 以上説明したように、本発明の露光装置及び露光方法は、照明光により物体を露光するのに適している。また、本発明のフラットパネルディスプレイの製造方法は、フラットパネルディスプレイの生産に適している。また、本発明のデバイス製造方法は、マイクロデバイスの生産に適している。
 10…液晶露光装置、14…マスクステージ装置、20…基板ステージ装置、34…基板ホルダ、40…マスクホルダ、44…ヘッドユニット、46…スケール、48…マスクエンコーダシステム、50…基板エンコーダシステム、52…スケール、56…スケール、60…ヘッドユニット、90…主制御装置、M…マスク、P…基板。

Claims (12)

  1.  投影光学系を介して照明光により物体を露光する露光装置であって、
     前記物体を保持する保持部と、
     計測部と被計測部とを含み、前記計測部の出力に基づいて前記保持部の位置情報を取得する位置計測部と、
     前記保持部上の前記計測部と前記被計測部と一方を他方に対して相対移動させる第1駆動部と、を備える露光装置。
  2.  前記計測部と前記被計測部とを移動させる第2駆動部を備え、
     前記第1駆動部は、前記計測部と前記被計測部との一方を他方に対して第1方向へ相対移動させ、
     前記第2駆動部は、前記保持部を前記第1方向に交差する第2方向へ移動させながら、前記計測部と前記被計測部とを前記第2方向へ移動させる請求項1に記載の露光装置。
  3.  前記第1駆動部と前記第2駆動部との一方を他方が下方から支持する請求項2に記載の露光装置。
  4.  前記位置計測部は、前記第1方向に関して互いに離れて配置される複数の格子領域を有する前記被計測部と、前記被計測部に対してそれぞれ計測ビームを照射し、かつ前記第1および第2方向を含む所定平面内で移動可能な複数の前記計測部と、前記第2方向に関する複数の前記計測部の位置情報を計測する計測装置と、を有し、複数の前記計測部が前記保持部上に設けられるとともに、前記被計測部が前記計測部と対向するように設けられ、前記計測ビームが前記複数の格子領域の少なくとも1つに照射される複数の前記計測部の計測情報と、前記計測装置の計測情報とに基づいて、前記保持部の位置情報を計測する請求項1~3のいずれか一項に記載の露光装置。
  5.  前記計測装置は、前記第2方向に関して互いに離れて配置される複数の格子領域を有する前記被計測部と、前記被計測部に対してそれぞれ計測ビームを照射し、かつ前記第1および第2方向を含む所定平面内で移動可能な複数の前記計測部とを有する請求項4に記載の露光装置。
  6.  前記投影光学系を支持するフレーム部材を備え、
     前記被計測部は、前記フレーム部材に設けられる請求項1~5のいずれか一項に記載の露光装置。
  7.  所定のパターンを保持するパターン保持体と、前記パターン保持体を前記第1方向に駆動する第3駆動部とを有し、エネルギビームを用いて前記パターン保持体を介して前記物体に前記パターンを形成する形成装置を備える請求項1~6のいずれか一項に記載の露光装置。
  8.  前記物体は、フラットパネルディスプレイに用いられる基板である請求項7に記載の露光装置。
  9.  前記基板は、少なくとも一辺の長さ又は対角長が500mm以上である請求項8に記載の露光装置。
  10.  請求項8又は9に記載の露光装置を用いて前記物体を露光することと、
     露光された前記物体を現像することと、を含むフラットパネルディスプレイの製造方法。
  11.  請求項7に記載の露光装置を用いて前記物体を露光することと、
     露光された前記物体を現像することと、を含むデバイス製造方法。
  12.  投影光学系を介して照明光により物体を露光する露光方法であって、
     計測部と被計測部とを含む位置計測部の前記計測部の出力に基づいて、前記物体を保持する保持部の位置情報を取得することと、
     第1駆動部により前記保持部上の前記計測部と前記被計測部と一方を他方に対して相対移動させることと、を含む露光方法。
PCT/JP2016/078827 2015-09-30 2016-09-29 露光装置、フラットパネルディスプレイの製造方法、デバイス製造方法、及び露光方法 WO2017057577A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201680057221.XA CN108139688A (zh) 2015-09-30 2016-09-29 曝光装置、平面显示器的制造方法、组件制造方法、及曝光方法
CN202010477970.6A CN111650818B (zh) 2015-09-30 2016-09-29 曝光装置、平面显示器的制造方法、及组件制造方法
US15/763,818 US20180356739A1 (en) 2015-09-30 2016-09-29 Exposure apparatus, manufacturing method of flat-panel display, device manufacturing method, and exposure method
JP2017543562A JP6958355B2 (ja) 2015-09-30 2016-09-29 露光装置、フラットパネルディスプレイの製造方法、及びデバイス製造方法
KR1020187009762A KR20180058734A (ko) 2015-09-30 2016-09-29 노광 장치, 플랫 패널 디스플레이의 제조 방법, 디바이스 제조 방법, 및 노광 방법
HK18108637.2A HK1248832A1 (zh) 2015-09-30 2018-07-04 曝光裝置、平面顯示器的製造方法、組件製造方法、及曝光方法
US16/709,171 US11126094B2 (en) 2015-09-30 2019-12-10 Exposure apparatus, manufacturing method of flat-panel display, device manufacturing method, and exposure method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015194827 2015-09-30
JP2015-194827 2015-09-30

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/763,818 A-371-Of-International US20180356739A1 (en) 2015-09-30 2016-09-29 Exposure apparatus, manufacturing method of flat-panel display, device manufacturing method, and exposure method
US16/709,171 Continuation US11126094B2 (en) 2015-09-30 2019-12-10 Exposure apparatus, manufacturing method of flat-panel display, device manufacturing method, and exposure method

Publications (1)

Publication Number Publication Date
WO2017057577A1 true WO2017057577A1 (ja) 2017-04-06

Family

ID=58427623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/078827 WO2017057577A1 (ja) 2015-09-30 2016-09-29 露光装置、フラットパネルディスプレイの製造方法、デバイス製造方法、及び露光方法

Country Status (7)

Country Link
US (2) US20180356739A1 (ja)
JP (1) JP6958355B2 (ja)
KR (1) KR20180058734A (ja)
CN (2) CN111650818B (ja)
HK (1) HK1248832A1 (ja)
TW (1) TWI744251B (ja)
WO (1) WO2017057577A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017057465A1 (ja) * 2015-09-30 2018-07-19 株式会社ニコン 移動体装置、露光装置、フラットパネルディスプレイの製造方法、及びデバイス製造方法、並びに計測方法
JPWO2017057583A1 (ja) * 2015-09-30 2018-07-26 株式会社ニコン 露光装置、フラットパネルディスプレイの製造方法、デバイス製造方法、及び露光方法
JP2020173472A (ja) * 2015-09-30 2020-10-22 株式会社ニコン 露光装置及び露光方法、並びにフラットパネルディスプレイ製造方法
WO2024180866A1 (ja) * 2023-02-27 2024-09-06 株式会社Screenホールディングス 描画装置および描画方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111812949A (zh) * 2015-09-30 2020-10-23 株式会社尼康 曝光装置及曝光方法、以及平面显示器制造方法
US10585355B2 (en) * 2015-09-30 2020-03-10 Nikon Corporation Exposure apparatus and exposure method, and flat panel display manufacturing method
JP6885335B2 (ja) * 2015-09-30 2021-06-16 株式会社ニコン 移動体装置、露光装置、フラットパネルディスプレイの製造方法、及びデバイス製造方法、並びに物体の移動方法
CN113504712B (zh) * 2016-09-30 2023-09-19 株式会社尼康 曝光装置、平板显示器的制造方法、以及元件制造方法
CN109116593B (zh) * 2018-08-02 2021-07-20 深圳市华星光电半导体显示技术有限公司 母板曝光方法
JP7114450B2 (ja) * 2018-12-04 2022-08-08 株式会社日立ハイテク ステージ装置、及び荷電粒子線装置
KR20210011536A (ko) 2019-07-22 2021-02-02 삼성디스플레이 주식회사 미세 소자의 전사 장치 및 전사 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010122788A1 (ja) * 2009-04-21 2010-10-28 株式会社ニコン 移動体装置、露光装置、露光方法、及びデバイス製造方法
JP2011049557A (ja) * 2009-08-25 2011-03-10 Nikon Corp 露光装置及び露光方法、並びにデバイス製造方法
JP2011145150A (ja) * 2010-01-14 2011-07-28 Tohoku Univ 光学式エンコーダの設計方法
JP2012198372A (ja) * 2011-03-22 2012-10-18 Dainippon Screen Mfg Co Ltd 描画装置および描画方法
WO2015147319A1 (ja) * 2014-03-28 2015-10-01 株式会社ニコン 移動体装置、露光装置、フラットパネルディスプレイの製造方法、デバイス製造方法、及び移動体駆動方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5729331A (en) 1993-06-30 1998-03-17 Nikon Corporation Exposure apparatus, optical projection apparatus and a method for adjusting the optical projection apparatus
JPH10318791A (ja) * 1997-05-14 1998-12-04 Sony Precision Technol Inc スケール装置
JP2001215718A (ja) 1999-11-26 2001-08-10 Nikon Corp 露光装置及び露光方法
US6639686B1 (en) 2000-04-13 2003-10-28 Nanowave, Inc. Method of and apparatus for real-time continual nanometer scale position measurement by beam probing as by laser beams and the like of atomic and other undulating surfaces such as gratings or the like relatively moving with respect to the probing beams
US7561270B2 (en) * 2000-08-24 2009-07-14 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and device manufactured thereby
US20020109823A1 (en) * 2001-02-09 2002-08-15 Nikon Corporation. Wafer stage assembly
US7956876B2 (en) 2005-03-15 2011-06-07 Sharp Kabushiki Kaisha Drive method of display device, drive unit of display device, program of the drive unit and storage medium thereof, and display device including the drive unit
JP4985396B2 (ja) * 2005-03-29 2012-07-25 株式会社ニコン 露光装置、露光装置の製造方法及びマイクロデバイスの製造方法
US7432497B2 (en) 2005-09-29 2008-10-07 Mitutoyo Corporation Absolute linear encoder
JP4885670B2 (ja) * 2005-09-29 2012-02-29 株式会社ミツトヨ アブソリュート型リニアエンコーダ
EP3418807A1 (en) 2006-08-31 2018-12-26 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
WO2008129762A1 (ja) 2007-03-05 2008-10-30 Nikon Corporation 移動体装置、パターン形成装置及びパターン形成方法、デバイス製造方法、移動体装置の製造方法、並びに移動体駆動方法
DE102008010284A1 (de) * 2008-02-21 2009-08-27 Dr. Johannes Heidenhain Gmbh XY-Tisch mit einer Messanordnung zur Positionsbestimmung
JP2009281946A (ja) * 2008-05-23 2009-12-03 Nikon Corp 位置計測装置及び位置計測方法、パターン形成装置及びパターン形成方法、露光装置及び露光方法、並びにデバイス製造方法
JP2010062210A (ja) * 2008-09-01 2010-03-18 Nikon Corp 露光装置、露光方法、及びデバイス製造方法
NL2005013A (en) * 2009-07-31 2011-02-02 Asml Netherlands Bv Positioning system, lithographic apparatus and method.
JP2012033922A (ja) * 2010-07-29 2012-02-16 Nikon Corp 露光装置及びデバイス製造方法
US8988655B2 (en) 2010-09-07 2015-03-24 Nikon Corporation Exposure apparatus, movable body apparatus, flat-panel display manufacturing method, and device manufacturing method
US9360772B2 (en) * 2011-12-29 2016-06-07 Nikon Corporation Carrier method, exposure method, carrier system and exposure apparatus, and device manufacturing method
KR101448509B1 (ko) * 2013-12-04 2014-10-13 순환엔지니어링 주식회사 직선 운동 평면 구동형 겐트리 스테이지의 동적 및 열변형 에러 실시간 보상 시스템, 스테이지 장치 및 제조, 계측 및 검사 장비
US10514617B2 (en) * 2015-09-30 2019-12-24 Nikon Corporation Exposure apparatus, manufacturing method of flat-panel display, device manufacturing method, and exposure method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010122788A1 (ja) * 2009-04-21 2010-10-28 株式会社ニコン 移動体装置、露光装置、露光方法、及びデバイス製造方法
JP2011049557A (ja) * 2009-08-25 2011-03-10 Nikon Corp 露光装置及び露光方法、並びにデバイス製造方法
JP2011145150A (ja) * 2010-01-14 2011-07-28 Tohoku Univ 光学式エンコーダの設計方法
JP2012198372A (ja) * 2011-03-22 2012-10-18 Dainippon Screen Mfg Co Ltd 描画装置および描画方法
WO2015147319A1 (ja) * 2014-03-28 2015-10-01 株式会社ニコン 移動体装置、露光装置、フラットパネルディスプレイの製造方法、デバイス製造方法、及び移動体駆動方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017057465A1 (ja) * 2015-09-30 2018-07-19 株式会社ニコン 移動体装置、露光装置、フラットパネルディスプレイの製造方法、及びデバイス製造方法、並びに計測方法
JPWO2017057583A1 (ja) * 2015-09-30 2018-07-26 株式会社ニコン 露光装置、フラットパネルディスプレイの製造方法、デバイス製造方法、及び露光方法
JP2020173472A (ja) * 2015-09-30 2020-10-22 株式会社ニコン 露光装置及び露光方法、並びにフラットパネルディスプレイ製造方法
WO2024180866A1 (ja) * 2023-02-27 2024-09-06 株式会社Screenホールディングス 描画装置および描画方法

Also Published As

Publication number Publication date
HK1248832A1 (zh) 2018-10-19
TWI744251B (zh) 2021-11-01
US20200183291A1 (en) 2020-06-11
TW201723671A (zh) 2017-07-01
CN111650818A (zh) 2020-09-11
US20180356739A1 (en) 2018-12-13
KR20180058734A (ko) 2018-06-01
CN111650818B (zh) 2024-03-15
US11126094B2 (en) 2021-09-21
JPWO2017057577A1 (ja) 2018-07-26
JP6958355B2 (ja) 2021-11-02
CN108139688A (zh) 2018-06-08

Similar Documents

Publication Publication Date Title
WO2017057577A1 (ja) 露光装置、フラットパネルディスプレイの製造方法、デバイス製造方法、及び露光方法
JP6838598B2 (ja) 露光装置、フラットパネルディスプレイの製造方法及びデバイス製造方法
JP7060059B2 (ja) 露光装置、フラットパネルディスプレイの製造方法、及びデバイス製造方法
JP7176605B2 (ja) 露光装置、フラットパネルディスプレイの製造方法、及びデバイス製造方法
WO2017057546A1 (ja) 露光装置及び露光方法、並びにフラットパネルディスプレイ製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16851748

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017543562

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187009762

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16851748

Country of ref document: EP

Kind code of ref document: A1