WO2006090884A1 - 内燃機関 - Google Patents

内燃機関 Download PDF

Info

Publication number
WO2006090884A1
WO2006090884A1 PCT/JP2006/303814 JP2006303814W WO2006090884A1 WO 2006090884 A1 WO2006090884 A1 WO 2006090884A1 JP 2006303814 W JP2006303814 W JP 2006303814W WO 2006090884 A1 WO2006090884 A1 WO 2006090884A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
combustion engine
internal combustion
load
intake
Prior art date
Application number
PCT/JP2006/303814
Other languages
English (en)
French (fr)
Inventor
Tatsuo Kobayashi
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to EP06728566.8A priority Critical patent/EP1857654B1/en
Priority to ES06728566.8T priority patent/ES2564575T3/es
Publication of WO2006090884A1 publication Critical patent/WO2006090884A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B11/00Engines characterised by both fuel-air mixture compression and air compression, or characterised by both positive ignition and compression ignition, e.g. in different cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B17/00Engines characterised by means for effecting stratification of charge in cylinders
    • F02B17/005Engines characterised by means for effecting stratification of charge in cylinders having direct injection in the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B23/101Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder the injector being placed on or close to the cylinder centre axis, e.g. with mixture formation using spray guided concepts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B25/00Engines characterised by using fresh charge for scavenging cylinders
    • F02B25/02Engines characterised by using fresh charge for scavenging cylinders using unidirectional scavenging
    • F02B25/04Engines having ports both in cylinder head and in cylinder wall near bottom of piston stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/08Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air inlets
    • F02B31/085Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air inlets having two inlet valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0203Variable control of intake and exhaust valves
    • F02D13/0215Variable control of intake and exhaust valves changing the valve timing only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0269Controlling the valves to perform a Miller-Atkinson cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/023Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the cylinder pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/027Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions using knock sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3035Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3035Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode
    • F02D41/3041Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode with means for triggering compression ignition, e.g. spark plug
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
    • F02M61/1813Discharge orifices having different orientations with respect to valve member direction of movement, e.g. orientations being such that fuel jets emerging from discharge orifices collide with each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
    • F02M61/182Discharge orifices being situated in different transversal planes with respect to valve member direction of movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/12Engines characterised by fuel-air mixture compression with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B2023/102Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder the spark plug being placed offset the cylinder centre axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B2023/103Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder the injector having a multi-hole nozzle for generating multiple sprays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B2023/108Swirl flow, i.e. the axis of rotation of the main charge flow motion is vertical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/12Other methods of operation
    • F02B2075/125Direct injection in the combustion chamber for spark ignition engines, i.e. not in pre-combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B23/104Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder the injector being placed on a side position of the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • F02B29/0418Layout of the intake air cooling or coolant circuit the intake air cooler having a bypass or multiple flow paths within the heat exchanger to vary the effective heat transfer surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • F02B29/0437Liquid cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/0015Controlling intake air for engines with means for controlling swirl or tumble flow, e.g. by using swirl valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D2041/3052Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used the mode being the stratified charge compression-ignition mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2400/00Control systems adapted for specific engine types; Special features of engine control systems not otherwise provided for; Power supply, connectors or cabling for engine control systems
    • F02D2400/02Four-stroke combustion engines with electronic control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2400/00Control systems adapted for specific engine types; Special features of engine control systems not otherwise provided for; Power supply, connectors or cabling for engine control systems
    • F02D2400/04Two-stroke combustion engines with electronic control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • F02D41/064Introducing corrections for particular operating conditions for engine starting or warming up for starting at cold start
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3023Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode
    • F02D41/3029Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode further comprising a homogeneous charge spark-ignited mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3058Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used the engine working with a variable number of cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/042The valves being provided with fuel passages
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an internal combustion engine that can compress and self-ignite a mixture of gasoline fuel formed in a combustion chamber. Background technology
  • N O X produced by the combustion of an internal combustion engine using gasoline as fuel depends on the length of the combustion period during which the combustion chamber becomes hot, and decreases when this period becomes shorter.
  • premixed compression auto-ignition combustion in which the air-fuel mixture formed in the combustion chamber is compressed at a high compression ratio, the air-fuel mixture is ignited almost simultaneously at a number of locations where the air-fuel mixture is scattered. To do. For this reason, the self-ignition combustion is completed within a short period of time from the spark ignition combustion in which the fuel force S is combusted by the propagation of the flame. Therefore, an internal combustion engine that performs self-ignition combustion can reduce the amount of NOx emission less than an internal combustion engine that performs spark ignition combustion. Furthermore, self-ignition combustion can improve the fuel consumption because combustion at a high compression ratio and an ultra lean air-fuel ratio is possible.
  • the compression ratio of an internal combustion engine designed to perform self-ignition combustion is considerably higher than the compression ratio of an internal combustion engine designed to perform spark ignition combustion. Therefore, if spark ignition combustion is performed as it is in an internal combustion engine capable of performing self-ignition combustion, knocking occurs when the load is large. Therefore, the conventional internal combustion engine reduces the actual compression ratio by retarding the closing timing of the intake valve to near the top dead center of the compression stroke during the spark ignition combustion operation, thereby avoiding knocking. ing.
  • One of the objects of the present invention is to achieve an internal combustion engine capable of generating a high torque without knocking and excessive noise while achieving a reduction in NO x and an improvement in fuel cost by performing an auto-ignition combustion operation. To provide an institution.
  • An internal combustion engine comprising:
  • An internal combustion engine comprising diffusion combustion operation execution means for diffusing and burning the fuel by injecting the fuel into the air from the fuel injection means.
  • the internal combustion engine when the internal combustion engine is operated in a light load region, a homogeneous air-fuel mixture having a spatial distribution of fuel is formed and compressed, and thus the fuel is operated by homogeneous auto-ignition combustion where the fuel self-ignites. Is done. Therefore, the internal combustion engine can reduce the emission amount of NoX.
  • the internal combustion engine when the internal combustion engine is operated in a high load region where the load is greater than that in the light load region, fuel is injected into the compressed air, thereby performing an operation by diffusion combustion. Since operation by diffusion combustion is less likely to cause knocking than operation by spark ignition combustion, it is not necessary to delay the intake valve closing timing more than necessary to lower the actual compression ratio.
  • the internal combustion engine is the internal combustion engine.
  • Swirl generating means for generating an intake swirl in the combustion chamber by suction of the air into the combustion chamber
  • Spark generating means for generating an ignition spark in the combustion chamber
  • spark ignition combustion operation executing means for spark ignition combustion of fuel When the internal combustion engine is operated in a medium load region where the load is larger than the light load region and the load is smaller than the high load region, air sucked into the combustion chamber and injected from the fuel injection means The fuel is premixed and compressed while forming a homogeneous mixture with a uniform spatial distribution of the fuel, and the compressed homogeneous mixture is ignited by the spark for ignition by the spark generating means. Spark ignition combustion operation executing means for spark ignition combustion of fuel;
  • operation by self-ignition combustion is performed in the light load region
  • operation by V and spark ignition combustion is performed in the medium load region
  • operation by diffusion combustion is performed in the high load region.
  • the premixed compression ignition combustion operation execution means is
  • the intake valve is opened at a light load intake valve opening timing corresponding to the load of the internal combustion engine, and the intake valve is closed at a light load intake valve close timing corresponding to the load.
  • the homogeneous fuel-air mixture can be formed by injecting the fuel from the fuel injection means.
  • the spark ignition combustion operation execution means includes:
  • the intake valve is opened at a medium load intake valve opening timing according to the load of the internal combustion engine (for example, the light valve intake valve opening timing is also advanced).
  • the intake valve closing timing according to the same load and the intake valve closing timing at light load is also closed at the retarded side intermediate load intake valve closing timing
  • the time when the swirl due to the air sucked into the combustion chamber becomes the strongest The homogeneous fuel-air mixture is formed by injecting the fuel from the fuel injection means in the initial and / or intermediate period of the intake stroke from the intake valve opening timing at the same medium load to the intake valve closing timing at the same intermediate load.
  • the actual compression ratio is reduced by setting the intake valve closing timing to the retard side, and the fuel spatial distribution is uniform by utilizing the stirring action of the intake swirl. Since a homogeneous mixture is formed, knocking can be avoided and stable spark ignition combustion operation can be performed.
  • the diffusion combustion operation execution means includes
  • the intake valve is opened at a high load intake valve opening timing corresponding to the load of the internal combustion engine, and the intake valve closing timing according to the load is the intermediate load intake valve closing timing.
  • the intake valve is closed at the timing of intake valve closing at high load on the advance side.
  • the intake valve closing timing at the same high load may also be configured to inject the fuel from the fuel injection means at timing near the compression top dead center on the retard side. Since the intake valve closing timing is also set to the advance side during mid-load intake valve operation during spark ignition combustion operation, the actual compression ratio does not drop significantly. In addition, the fuel is diffused and burned. As a result, stable combustion can be obtained under a high compression ratio, so that the torque generated by the internal combustion engine can be improved.
  • the biston has a cavity formed at the center of the top surface of the biston, and the fuel injection means is configured to inject the fuel toward the cavity,
  • the intake valve When the internal combustion engine is operated in an extremely light load region where the load is smaller than the light load region, the intake valve is opened at an extremely light load intake valve opening timing according to the load of the internal combustion engine. In addition, the intake valve is closed at the timing of closing the intake valve at the time of extremely light load corresponding to the same load, and the middle stage of the compression stroke to the compression top dead center on the retard side from the timing of closing the intake valve at the time of the same light load.
  • the fuel is injected from the fuel injection means and the injected fuel is substantially retained in the cavity, and the fuel is self-ignited and combusted by compressing the fuel while forming a homogeneous air-fuel mixture in the cavity. It is preferable to provide a stratified self-ignition combustion operation execution means.
  • the internal combustion engine includes:
  • An in-cylinder pressure detecting means for detecting an in-cylinder pressure that is a pressure in the combustion chamber
  • an in-cylinder pressure average value obtained by averaging the detected in-cylinder pressure from the start of the compression stroke to the end of the combustion stroke for one combustion is obtained.
  • Calculate the average in-cylinder pressure average value obtained by averaging the same in-cylinder pressure average value for the past multiple combustions, and based on the absolute value of the difference between the in-cylinder pressure average value for the current combustion and the average in-cylinder pressure average value An operation for switching operation so as to execute the self-ignition combustion operation by the stratified self-ignition combustion operation execution means when the value becomes larger than a predetermined value;
  • the value ⁇ based on the absolute value of the difference is preferably a value obtained by dividing the absolute value of the difference (I P i ⁇ i ave
  • the internal combustion engine includes:
  • An in-cylinder pressure detecting means for detecting an in-cylinder pressure that is a pressure in the combustion chamber
  • the in-cylinder pressure change that is a change amount per unit time or unit crank angle of the in-cylinder pressure based on the detected in-cylinder pressure.
  • the noise resulting from the premixed compression, ignition and combustion of the homogeneous mixture is excessive based on whether or not the in-cylinder pressure variation rate is greater than the predetermined rate.
  • the in-cylinder pressure change rate is larger than the predetermined change rate and the noise associated with the premixed compression autoignition combustion of the homogeneous mixture becomes excessive
  • the autoignition by the premixed compression autoignition combustion operation executing means is performed. The operation is switched from the combustion operation to the spark ignition combustion operation by the spark ignition combustion operation execution means. Therefore, it is possible to avoid a situation where noise is excessive.
  • the internal combustion engine includes:
  • the occurrence frequency of knocking is obtained based on the detected knocking, and the diffusion is performed when the occurrence frequency of the knocking is greater than a predetermined frequency. It is preferable to include an operation switching means for switching 3 ⁇ 4 ⁇ so as to execute diffusion combustion 3 ⁇ 4 ⁇ by the combustion operation executing means.
  • the knocking detection means may detect the occurrence of knocking based on a change in the in-cylinder pressure detected by the in-cylinder pressure sensor, or may be a known knocking type that detects vibration of the internal combustion engine. A sensor may be used to detect knocking.
  • the cavity has a substantially cylindrical shape with a bottom, and the diameter of the edge that forms the entrance of the cavity is the maximum diameter inside the cavity. It is preferable that a swirl guide groove for introducing the intake swirl into the cavity is formed on the outer peripheral portion of the cavity while being formed to be small.
  • the swirl flow along the bore wall surface of the cylinder generated by the air sucked into the combustion chamber can be efficiently taken into the cavity by the swirl guide groove. Therefore, the swirl radius of the intake swirl is reduced, so that the swirl flow can be strengthened.
  • a (homogeneous) air-fuel mixture can be easily formed substantially only within the cavity, so that generation of No X can be suppressed.
  • the mixture formed outside the cavity is efficiently contained in the cavity. Therefore, a homogeneous mixture using the air in the entire combustion chamber can be formed in the cavity. Therefore, it suppresses the generation of N o X and improves the thermal efficiency (fuel consumption). You can aim for the top.
  • the diffusion combustion operation execution means mixing of fuel droplets and air (oxygen) can be promoted by a strong swirl flow generated in the cavity, so that the air utilization rate during diffusion combustion can be increased. As a result, the thermal efficiency of the internal combustion engine can be improved. Furthermore, since a large amount of oxygen can be present around the fuel droplets, the generation of smoke can be suppressed.
  • the spark generating means is an ignition brag arranged so as to include a spark generating part that generates the spark for ignition on an inner peripheral part of the cavity,
  • the internal combustion engine includes:
  • the intake valve When the internal combustion engine is started and / or when the internal combustion engine is cold, the intake valve is opened at a predetermined start cold time and the intake valve is closed at a predetermined start cold time.
  • the intake valve is closed at the timing, and the fuel is injected from the fuel injection means at the later stage of the compression stroke to the compression top dead center at a later side than the intake valve closing timing at the time of starting cold.
  • the injected fuel is substantially retained in the cavity to form a stratified mixture in the cavity, and the formed stratified mixture is ignited by an ignition spark from the spark generating means to spark the fuel. It is preferable to provide a start-up cold stratified spark ignition combustion operation executing means for ignition combustion.
  • the temperature of the air-fuel mixture hardly rises, so that the self-ignition combustion tends to become unstable. Therefore, as described above, by injecting fuel from the fuel injection means after the intake valve is closed and later in the compression stroke up to the compression top dead center, the fuel is substantially retained in the cavity. Then, a stratified mixture is formed in the inner periphery of the cavity by the swirl generated in the chamber, and the stratified mixture is ignited by a spark plug having a spark generating portion in the inner periphery of the cavity. In this way, the startability of the internal combustion engine can be improved, or stable combustion can be obtained when cold.
  • the cavity has a substantially cylindrical shape with a bottom, the diameter of the edge forming the entrance of the cavity is formed so that the maximum diameter inside the cavity is smaller, and the intake swirl is the same.
  • a swirl guide groove for introduction into the cavity is formed on the outer periphery of the cavity,
  • the ignition brag can be disposed along the swirl guide groove. According to this, since the spark plug can be disposed in the swirl guide groove, the spark generating part of the spark plug can be easily placed on the inner periphery of the cavity. Can be arranged.
  • a heat insulating layer is formed on the wall surface of the cavity.
  • the combustion gas remaining in the cavity becomes difficult to cool down.
  • the temperature of the air-fuel mixture used for fire combustion can be increased, and self-ignition combustion can be performed stably. Further, since the vaporization of the fuel injected toward the cavity can be promoted, the amount of smoke generated during diffusion combustion can be reduced.
  • the internal combustion engine according to the present invention comprises a supercharger
  • the internal combustion engine according to the invention comprises a supercharger
  • valve closing timing of the air valve and the valve opening timing of the intake valve may be controlled so that the overlap period is shortened as the load of the internal combustion engine increases. Is preferred.
  • a so-called “negative overwrap period (negative pulp overlap period)” in which the combustion gas is contained in the combustion chamber is provided, and the negative overlap period is set in the internal combustion engine. It is set to be shorter as the load increases. Therefore, when the internal combustion engine is operated in a light load region or a load region smaller than the same load, the amount of air introduced into the combustion chamber can be controlled by the negative overlap period. In addition, when the burner engine is operated in a load range larger than the load in the light load range, the amount of air introduced into the combustion chamber can be controlled by the supercharging by the turbocharger and the negative overlap period. . As a result, the throttle pulp disposed in the intake passage of the internal combustion engine can be maintained substantially fully open, so that energy loss due to the throttle valve throttle can be reduced, and the fuel consumption of the internal combustion engine can be improved.
  • the fuel injection means includes What is the first injection state in which the fuel injection angle is made narrow and the second injection state in which the fuel injection angle is made to be the same narrow angle, an angle larger than the narrow angle, and a wide angle? It is configured to be able to inject the same fuel in any state,
  • the stratified self-ignition combustion operation execution means is configured to inject the fuel from the fuel injection means in the first injection state
  • Each of the premixed compression self-ignition combustion operation execution means, the spark ignition combustion operation execution means, and the diffusion combustion operation execution means is configured to inject the fuel from the fuel injection means in the second injection state. Is preferable.
  • the fuel injection timing when the air-fuel mixture is self-ignited and combusted by the stratified self-ignition combustion operation execution means is the middle of the compression stroke. Therefore, at the timing when fuel is injected, the distance between the fuel injection means and the top surface of the biston where the cavity is formed is relatively large. For this reason, when the air-fuel mixture is self-ignited and combusted by the stratified self-ignition combustion operation execution means as in the above configuration, the fuel is injected by injecting the fuel into a conical shape with a narrow apex angle (cone shape). Fuel can be reliably introduced into the cavity formed on the piston top surface. As a result, the amount of fuel outside the cavity that does not contribute to self-ignition combustion can be reduced, so that the generation of unburned HC can be suppressed and fuel consumption can be improved.
  • the fuel has a narrow apex angle at the initial stage and Z or middle of the intake stroke, which is the time when the swirl is strongest. Injected into cones with wide and wide angles. Therefore, the injected fuel spreads throughout the combustion chamber and is agitated in the combustion chamber on a strong swirl flow. Therefore, since all the air present in the combustion chamber is used to form a homogeneous air-fuel mixture, it is possible to further reduce the amount of NOx emission and improve the thermal efficiency (fuel consumption).
  • the fuel injection means includes a narrow angle injection hole group that is opened and injects fuel when the needle is in either a low lift state or a high lift state, and when the needle is in the same high lift state.
  • a wide-angle injection hole group that is opened only to inject fuel, and a fuel injection valve having
  • the stratified self-ignition combustion operation execution means is configured to inject the fuel in the first injection state by setting the needle to the low lift state, and the premixed compression auto-ignition combustion operation execution means, Each of the spark ignition combustion operation execution means and the diffusion combustion operation execution means is configured to inject the fuel in the second injection state by setting the dollar to the high lift state.
  • spark ignition combustion operation execution means and the diffusion combustion operation execution means are configured to inject the fuel in the second injection state by setting the dollar to the high lift state.
  • the fuel injection valve includes a large number of the wide-angle injection holes as well as the narrow-angle injection holes, and the diameter of the wide-angle injection holes is smaller than the diameter of the narrow-angle injection holes,
  • the fuel is not only from the narrow angle injection holes but also from the wide angle injection holes. Be injected.
  • the fuel droplets injected from the wide-angle injection hole have a small particle size and are injected at a wide angle
  • the fuel droplets injected from the narrow-angle injection hole have a large particle size and are injected at a narrow angle.
  • the air in the combustion chamber and the fuel are sufficiently mixed. As a result, all the air present in the combustion chamber is used to form a homogeneous air-fuel mixture, so that the amount of No X emission can be further reduced and the thermal efficiency (fuel consumption) can be improved. .
  • the combustion chamber and the exhaust port are communicated with the combustion chamber and the intake port configured to generate an intake swirl in the combustion chamber being shut off.
  • the exhaust stroke is started, then the scavenging stroke is started by connecting the combustion chamber and the same intake port, then the intake chamber is started by shutting off the combustion chamber and the same exhaust port, and then the same combustion.
  • the same condition after the compression stroke is started by shutting off the chamber and the same intake port It can be configured to perform a two-cycle operation in which the combustion stroke is reached.
  • Such a two-cycle internal combustion engine can immediately use the high-temperature combustion gas to raise the temperature of the air-fuel mixture that is used for the next combustion, so that self-ignition combustion can be performed stably. It becomes. Accordingly, the range in which the self-ignition combustion operation is performed can be expanded to a lower load side region, so that the amount of NOx emission can be reduced and the fuel consumption can be improved.
  • the fuel is injected from the fuel injection means in the middle of the compression stroke, and the injected fuel is supplied to the cavity.
  • a stratified self-ignition combustion operation execution means that causes the fuel to self-ignite and burn by being substantially retained and compressed while forming a homogeneous mixture in the same cavity.
  • the premixed compression auto-ignition combustion operation execution means includes:
  • the diffusion combustion operation execution means includes
  • the fuel is injected from the fuel injection means to diffusely burn the fuel, and the diffusion combustion operation is performed. Spark ignition combustion is performed in the high load region.
  • the combustion chamber and the intake port which are set to avoid occurrence of excessive knocking when it is assumed, are cut off at the timing of the advance side. It is preferable to be configured to block the port.
  • the combustion timing set between the combustion chamber and the intake port is set so as to avoid excessive knocking when it is assumed that spark ignition combustion is performed. Since the timing for shutting off the chamber and the intake port is also the advance timing, the actual compression ratio is not greatly reduced. Fuel is burned by diffusion combustion. As a result, stable combustion can be obtained under a high compression ratio, and the generated torque of the internal combustion engine can be improved.
  • Another aspect of the internal combustion engine according to the present invention is as follows: every time the crank angle rotates 360 degrees, the combustion chamber and the intake port configured to generate an intake swirl in the combustion chamber are shut off.
  • the combustion chamber and the exhaust port are communicated to start an exhaust stroke, and then the combustion chamber and the intake port are communicated to start a scavenging stroke, and then the combustion chamber and the exhaust port are shut off.
  • And is configured to perform a two-cycle operation in which the combustion chamber and the intake port are shut off and the compression stroke is started and then the combustion stroke is reached in the same state.
  • the fuel is injected from the fuel injection means at an extremely light load injection timing in the middle of the compression stroke.
  • Stratified self-ignition combustion operation execution means for causing the injected fuel to substantially stay in the cavity, and compressing the fuel while forming a homogeneous air-fuel mixture in the cavity;
  • An internal combustion engine comprising: a supercharger that compresses air flowing into the combustion chamber through the intake port.
  • the biston includes a cavity formed at a central portion of a top surface of the biston, and the fuel injection means is disposed on a lower surface of the cylinder head at a substantially central portion of the bore of the cylinder and the cavity.
  • the exhaust port has an opening formed at one end of the lower surface of the cylinder head and around the fuel injection valve, and the exhaust valve is disposed in the opening. Is configured to be communicated with the combustion chamber by being opened by the valve and shut off from the combustion chamber by being closed by the exhaust valve,
  • One end of the intake port constitutes an opening formed in the pore wall surface of the cylinder, and the opening of the intake port moves from the top dead center toward the bottom dead center.
  • the piston moves from the bottom dead center toward the top dead center, the piston is closed by the side wall of the piston so as to be shut off from the combustion chamber. Is done. That is, this internal combustion engine is a so-called “uniflow two-cycle internal combustion engine”.
  • the premixed compression auto-ignition combustion operation execution means is the injection timing at the extreme light load.
  • the homogeneous mixture is formed by injecting the fuel from the fuel injection means at a light load injection timing on the more advanced side.
  • the diffusion combustion operation execution means is configured to inject the fuel at a high load injection timing that is a timing in the vicinity of the top dead center on the retarded side and also during the compression stroke. It is preferable that the fuel is injected from the means to diffuse and burn the fuel.
  • Such a Uniflow type two-cycle internal combustion engine can immediately use the high-temperature combustion gas to raise the temperature of the air-fuel mixture to be used for the next combustion. Can be done. Therefore, the operation range in which the self-ignition combustion operation is performed can be expanded to a lower load side region. As a result, since the auto-ignition combustion operation can be performed in the practical range, the NO x emission amount of the internal combustion engine can be reduced and the fuel consumption can be improved.
  • FIG. 1 is a schematic configuration diagram of an internal combustion engine according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the combustion chamber shown in FIG. 1 and a portion related to the combustion chamber cut along a plane passing through the axis of the cylinder.
  • FIG. 3 is a front view of the top surface of the piston shown in FIG.
  • FIG. 4 is a longitudinal sectional view of the tip portion of the fuel injection valve shown in FIG.
  • FIG. 5 is a front view of the tip portion of the fuel injection valve shown in FIG.
  • FIG. 6 is a block diagram showing functions achieved when the CPU of the electric control device shown in FIG. 1 executes a predetermined program.
  • FIG. 7 is a diagram showing an operation region map referred to by the operation switching means shown in FIG.
  • FIG. 8 shows the valve timing, fuel injection timing (fuel injection timing), and ignition timing of the internal combustion engine shown in FIG.
  • FIG. 9 is a view showing a state in which fuel is injected by the stratified auto-ignition combustion operation execution means shown in FIG.
  • FIG. 10 is a view showing a state in which fuel is injected due to a difference in level between the premixed compression auto-ignition combustion operation execution means and the spark ignition combustion operation execution means shown in FIG.
  • FIG. 11 is a diagram showing a state when fuel is injected by the diffusion combustion operation execution means shown in FIG.
  • FIG. 12 is a block diagram showing functions achieved by the CPU of the electric control device provided in the internal combustion engine according to the third embodiment of the present invention executing a predetermined program.
  • FIG. 13 is a diagram showing an operation region map referred to by the operation switching means shown in FIG. 12.
  • FIG. 14 is a diagram showing the valve timing and fuel injection timing of the internal combustion engine according to the third embodiment of the present invention. It is.
  • FIG. 15 is a diagram for explaining the outline of the operation of the internal combustion engine according to the fourth embodiment of the present invention. '
  • FIG. 16 is a schematic configuration diagram of an internal combustion engine according to the fourth embodiment of the present invention.
  • FIG. 17 is a cross-sectional view of the internal combustion engine cylinder, intake surge tank, and intake port shown in FIG. 16 cut along a cross section orthogonal to the axis of the cylinder.
  • FIG. 18 is a view of the lower surface of the cylinder head shown in FIG. 16 as viewed from the combustion chamber side.
  • FIG. 19 is a front view of the drive arm shown in FIG.
  • FIG. 20 is a block diagram showing functions achieved when the CPU of the electric control apparatus included in the internal combustion engine shown in FIG. 16 executes a predetermined program.
  • FIG. 21 is a diagram showing the exhaust valve opening / closing timing, P and air port opening / closing timing, and fuel injection timing of the internal combustion engine shown in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 shows a schematic configuration of an internal combustion engine 10 according to the first embodiment of the present invention.
  • Fig. 1 shows only a cross section of a specific cylinder, but other cylinders have the same configuration.
  • This internal combustion engine 10 is a Biston reciprocating four-cycle internal combustion engine configured to perform a four-cycle operation in which each stroke of intake, compression, combustion, and exhaust is performed every time the crank angle rotates 72 degrees. is there.
  • the fuel used for the internal combustion engine 10 is gasoline
  • the internal combustion engine 1 o includes a cylinder block 20 including a cylinder block, a cylinder block lower case and an oil pan, a cylinder head 30 fixed on the cylinder block 20, and a cylinder block
  • An intake system 40 for supplying air to the cylinder part 20 and an air system 50 for releasing exhaust gas (combustion gas) from the cylinder block part 20 to the outside are included.
  • the cylinder block portion 20 includes a hollow cylindrical cylinder 21, a piston 22, a connecting rod 23, and a crankshaft 24.
  • the piston 2 2 reciprocates in the cylinder 2 1, and the reciprocating motion of the piston 2 2 is transmitted to the crankshaft 2 4 through the connecting rod 2 3 so that the crankshaft 2 4 rotates.
  • the bore wall surface of the cylinder 21, the top surface of the piston 2 2 (piston head) and the lower surface of the cylinder head part 30 form a combustion chamber 25.
  • the cylinder head section 30 includes an intake port 31 connected to the combustion chamber 25, an intake valve 3 2 for opening and closing the intake port 31, and an intake valve driving means for driving the intake valve 32.
  • Valve drive mechanism 3 2 a exhaust port 3 3 connected to combustion chamber 2 5, exhaust valve 3 4 opening and closing exhaust port 3 3, exhaust valve drive mechanism as exhaust valve drive means driving exhaust valve 3 4 3 4 a, spark plug 3 5, igniter including ignition coil that generates high voltage to be applied to spark plug 3 5 3 6, fuel injection valve (fuel injection means) 3 that injects fuel directly into the combustion chamber 2 5 7.
  • Fuel pressure adjusting means 3 8 a including a fuel accumulating chamber and a fuel pump 3 8 b are provided.
  • the intake valve drive mechanism 3 2 a and the exhaust valve drive mechanism 3 4 a are connected to the drive circuit 39.
  • the intake port 3 1 is a well-known swirl port (or helical port), and the air flowing into the combustion chamber 25 through the periphery of the intake port 3 1 and the intake valve 3 2 enters the combustion chamber 25.
  • An intake swirl (lateral swirl) is formed along the bore wall surface of cylinder 21.
  • the intake port 31 constitutes a swirl generating means.
  • the spark plug 3 5 and the igniter 3 6 constitute a spark generating means for generating a spark for ignition in the combustion chamber 2 5.
  • the fuel pressure adjusting means 3 8 a supplies high-pressure fuel whose pressure increases as the load of the internal combustion engine 10 increases to the fuel injection valve 37.
  • the fuel pump 3 8 b pumps fuel in a fuel tank (not shown) to the fuel pressure adjusting means 3 8 a.
  • the intake system 40 is connected to the intake port 3 1 and includes an intake pipe 41 having an intake manifold that forms an intake passage together with the intake port 31.
  • a surge tank 41 connected to the intake pipe 41.
  • 4 Air intake duct with one end connected to 2 4 3, Air intake duct Air filter 4 4, turbocharger 8 1 compressor 8 1 a, bypass flow rate adjustment valve (ABV) arranged in intake duct 4 3 in order from the other end of tato 4 3 to the downstream (intake pipe 4 1) ) 4 5, Intercooler 4 6 and throttle valve 4 7
  • the intake system 40 is further provided with a bypass passage 48.
  • One end of the bypass passage 48 is connected to the bypass flow rate adjusting valve 45, and the other end is connected to the intake duct 43 at a position between the intercooler 46 and the throttle valve 47.
  • the bypass flow rate adjusting valve 45 changes the amount of air flowing into the intercooler 46 and the amount of air bypassing the intercooler 46 by changing the pulp opening (not shown) in response to the drive signal (bypass passage 48). The amount of air flowing into the air) can be adjusted.
  • the intercooler 46 is water-cooled and cools the air passing through the intake duct 43.
  • the intercooler 4 6 includes a radiator 4 6 a that releases heat of the cooling water in the inter cooler 4 6 to the atmosphere, and a circulation pump that circulates the cooling water between the inter cooler 4 6 and the radiator 4 6 a 4 6 b And connected to.
  • the slot valve 48 is rotatably supported by the intake duct 43, and is driven by a throttle valve actuator 47 to change the opening cross-sectional area of the intake passage.
  • the exhaust system 50 is connected to the exhaust port 33 and has an exhaust manifold 51 including an exhaust manifold that forms an exhaust passage together with the exhaust port 33, and a turbocharger (supercharger) disposed in the exhaust pipe 51.
  • a supercharging pressure adjusting valve 5 2 a disposed in 52 and a three-way catalyst device 53 disposed in an exhaust pipe 51 downstream of the turbine 8 1 b are provided.
  • the turbine 8 1 b of the turbocharger 8 1 is rotated by the energy of the exhaust gas, whereby the compressor 8 1 a of the intake system 40 is rotated and compresses the air. As a result, the turbocharger 8 1 compresses the air in the P and air passages and supercharges the air into the combustion chamber 25.
  • FIG. 2 is a cross-sectional view of the combustion chamber 25 and portions related to the combustion chamber 25 taken along a plane passing through the axis of the cylinder 21, and
  • FIG. 3 is a front view of the top surface of the piston 22.
  • the lower surface 30 a of the cylinder head portion 30 has the same shape as the lower surface of the cylinder head that constitutes a so-called pentrouf combustion chamber.
  • one cylinder combustion chamber 2 5
  • the peripheral portion of the top surface 2 2 a of the piston 22 is slanted along the cylinder head lower surface 30 a.
  • a cavity (concave portion) 2 2 b is formed in the center of the top surface 2 2 a of the piston 2 2.
  • the cavity 2 2 b has a substantially cylindrical shape with a bottom. The diameter of the edge forming the entrance of the cavity 2 2 b is smaller than the maximum diameter inside the cavity 2 2 b.
  • a heat insulating layer made of titanium or ceramic a layer made of a material having a lower heat transfer coefficient than that of the material constituting the piston 2 2 (for example, ano-reminium) 2 2 c. ing.
  • the swirl guide groove 2 2 d is formed at multiple locations (3 locations in this example).
  • the surface constituting the swirl guide groove 2 2 d is inclined.
  • the angle of this inclined surface is such that the width of the swirl guide groove 22 d (the distance from the center of the top surface 2 2 a of the piston 22 2 to the outer periphery of the swirl guide groove 22 d) becomes smaller.
  • the angle gradually increases from the angle along the top surface 2 2 a toward an angle substantially perpendicular to the top surface 2 2 a of the piston 2 2.
  • one of the swirl guide grooves 2 2 d has a guide groove start position St at one intake valve 3 2 in front view of the top surface 2 2 a of the piston 2 2.
  • the guide groove end position En is formed at a position facing the other intake valve 32.
  • This swirl guide groove 2 2 d is referred to as a “specific swirl guide groove” for convenience.
  • the spark plug 3 5 is placed between the two intake port small 3 1 (hence the two intake valves 3 2), and the inner periphery of the cavity 2 2 b (the inner periphery of the cavity 2 2 b)
  • This is a protruding plug arranged to have a spark generating part 3 5 a for generating a spark for ignition.
  • the vicinity of the tip of the spark plug 3 5 is along the specific scale guide groove described above (with the specific swirl guide groove It is arranged along the inclined surface at an angle parallel to the inclined surface to be formed.
  • the fuel injection valve 37 has its nozzle hole exposed on the bottom surface 30 a of the cylinder head and exposed to the center position of the combustion chamber 25, and injects gasoline fuel toward the cavity 2 2 b of the piston 2 2.
  • the cylinder head part 30 is disposed.
  • FIG. 4 which is a longitudinal sectional view of the tip portion of the fuel injection valve 37 and FIG. 5 which is a front view of the tip portion thereof, the nozzle body 3 7 a and the needle 3 7 b and two not shown
  • This is an injector equipped with an electromagnetic mechanism (lift amount control means) including a solenoid.
  • the nozzle body 37a is substantially cylindrical and has a diameter that decreases toward the tip.
  • the tip of the nozzle body 37a is hemispherical.
  • a space for accommodating the needle 37b is formed in the nozzle body 37a.
  • This space includes a large diameter portion 3 7 a 1 and a small diameter portion 3 7 a 2.
  • the large diameter portion 3 7 a 1 has a hollow cylindrical shape and is located on the proximal end side of the nozzle body 3 7 a.
  • the small diameter portion 3 7 a 2 has a hollow cylindrical shape having a diameter smaller than that of the large diameter portion 3 7 a 1.
  • the small-diameter portion 37a2 extends from the large-diameter portion 37a1 toward the tip of the nozzle body 37a.
  • the top of the small diameter portion 3 7 a 2 has a conical shape.
  • a plurality of (four in this example) narrow-angle injection holes 3 7 c and a plurality (eight in this example) wide-angle injection holes 3 7 d are formed at the hemispherical tip of the nozzle body 3 7 a. ing.
  • the number of wide-angle injection holes 37d is greater than the number of narrow-angle injection holes 37c.
  • a plurality of narrow-angle injection holes 37c are referred to as a narrow-angle injection hole group, and a plurality of wide-angle injection holes 37d are referred to as a wide-angle injection hole group. Near the tip, it is formed radially on the same nozzle body 37a.
  • the plurality of narrow-angle injection holes 37 c are arranged at equal distances from each other.
  • the angle formed by the axis of each narrow-angle injection hole 37c and the axis of the nozzle body 37a is 0-1.
  • the wide-angle injection holes 37 d are radially formed in the nozzle body 37 a on the proximal end side of the nozzle body 37 a than the narrow-angle injection hole 37 c.
  • the plurality of wide-angle injection holes 37 d are arranged equidistant from each other.
  • the angle formed by the axis of each wide-angle injection hole 37 d and the axis of the nozzle body 37 a is ⁇ 2.
  • Angle ⁇ 2 is greater than angle 0 1.
  • the diameter of the wide angle injection hole 37 d is smaller than the diameter of the narrow angle injection hole 37 c.
  • the needle 37 b includes a cylindrical base 3 7 b 1 and a cylindrical tip 3 7 b 2.
  • the diameter of the base 3 7 b 1 is slightly smaller than the diameter of the large diameter part 3 7 a 1.
  • the base portion 3 7 b 1 is accommodated in the large diameter portion 3 7 a 1.
  • the diameter of the tip 3 7 b 2 is slightly smaller than the diameter of the small diameter portion 3 7 a 2. Therefore, the diameter of the tip 3 7 b 2 is smaller than the diameter of the base 3 7 b 1.
  • the distal end portion 3 7 b 2 is formed so as to protrude from the base portion 3 7 b 1 to the distal end side of the needle 37 b and is accommodated in the small diameter portion 3 7 a 2.
  • the top of the tip 3 7 b 2 of the needle 3 7 b has a truncated cone shape.
  • the periphery (edge) of the truncated cone-shaped surface is the inner wall surface forming the conical top of the small diameter portion 3 7 a 2 of the nozzle pod 3 7 a It comes to abut against.
  • the top surface of the tip 3 7 b 2 of the needle 3 7 b and the conical top of the small diameter portion 3 7 a 2 of the nozzle body 3 7 a A sealed space S is formed between the two parts.
  • Needle 3 7 b has a narrow fuel passage along the axis 3 7 b 3 force Not shown Base 3 7 b 1 side fuel supply part and needle 3 7 b tip 3 7 b 2 top surface It is formed to communicate. Therefore, when the needle 3 7 b is not lifted, the opening on the tip end side of the fuel passage 3 7 b 3 faces only the sealed space S described above. The narrow angle injection hole 3 7 c is formed outside the sealed space S. Therefore, when the idler 3 7 b is not lifted, the sealed space S and the narrow-angle spray hole 3 7 c are blocked. -When the first solenoid (not shown) is energized, the needle 37b moves to the position LL indicated by the broken line in FIG.
  • the lift amount of the needle 37 b is a low lift amount.
  • the fuel passage 3 7 b 3 and the sealed space S communicate with the narrow-angle injection hole 3 7 c.
  • the fuel passage 3 7 b 3 and the sealed space S and the wide-angle injection hole 3 7 d are blocked.
  • the fuel supplied to the sealed space S through the fuel passage 37 b 3 is injected only from the narrow angle injection hole 37 c. That is, when the lift amount of the needle .37 b becomes a low lift amount, the first injection state in which the fuel is injected with a narrow injection angle is realized.
  • the needle 37 moves to a position HL indicated by a two-dot chain line in FIG. 4 when both the first solenoid and the second solenoid (not shown) are energized.
  • the position HL is a position closer to the base end side of the nozzle body 37a than the position LL. That is, the lift amount of the eddle 37 b is a high lift amount.
  • the fuel passage 3 7 b 3 and the sealed space S communicate with the narrow angle injection hole 3 7 c
  • the fuel passage 3 7 b 3 and the sealed space S communicate with the wide angle injection hole 3 7 d.
  • the fuel supplied to the sealed space S through the fuel passage 37 b 3 is injected from the force of the narrow angle injection hole 37 c and the wide angle injection hole 37 d.
  • the lift amount of the needle 37b becomes a high lift amount, a second injection state is realized in which the fuel is injected with a narrow angle and a wide angle larger than the narrow angle.
  • this internal combustion engine 10 includes an air flow meter 61, a crank position sensor 62, an in-cylinder pressure sensor 6 3 as an in-cylinder pressure detecting means, a cooling water temperature sensor 6 4, and an accelerator opening sensor 6 5 And an electric control device 70.
  • the air flow meter 61 outputs a signal indicating the amount of inhaled air.
  • the crank position sensor 6 2 outputs a signal having a narrow pulse every time the crankshaft 24 rotates 10 ° and a signal having a wide pulse every time the crankshaft 24 rotates 360 °. It has become. This signal represents the engine speed NE.
  • the in-cylinder pressure sensor 63 outputs a signal representing the pressure in the combustion chamber 25 (in-cylinder pressure) P.
  • Cooling water temperature sensor 6 4 is a cooling water for internal combustion engine 10 A signal indicating the temperature THW is output.
  • the accelerator opening sensor 65 outputs a signal representing the operation amount Accp of the accelerator pedal 66 operated by the driver.
  • the electric control device 70 stores a CPU 71 that executes a predetermined program connected to each other by a bus, a program executed by the CPU 71, a table (lookup table, map), and constants that are stored in advance.
  • OM 7 2 and CPU 7 1 temporarily store data as needed.
  • RAM 7 3 Stores data with power on and stores the stored data when the power is cut off. It is a computer with a microphone that consists of a backup RAM 7 4 that keeps it for a while, an interface 7 5 that includes an AD converter, and the like.
  • the interface 75 is connected to the sensors 61 to 65 and supplies signals from the sensors 61 to 65 to the CPU 71, and the igniter 36, fuel according to the instructions of the CPU 71.
  • the internal combustion engine 10 includes a stratified self-ignition combustion operation execution means F 1, a premixed compression auto-ignition combustion operation execution means F 2, a spark ignition combustion operation execution means F 3, a diffuse combustion operation Execution means F4, start cold stratified spark ignition combustion operation execution means F5, operation switching means G1 and the like are included.
  • the functions of these means are achieved by the CPU 71 of the electric control device 70 executing a predetermined program. Therefore, hereinafter, the operation switching means G 1, which will be described as the various means performing the various operations executed by the C P U 7 1, stores the operation region map shown in FIG. 7 in the ROM 7 2.
  • the operation switching means G 1 determines an operation region based on the load of the internal combustion engine 10, the engine speed N E and the operation region map, and operates in the operation method according to the determined operation region.
  • the load of the internal combustion engine 10 may be the required torque Tqtgt determined based on the operation amount Accp of the accelerator pedal 66 and the engine rotational speed NE, or simply the operation amount Accp of the accelerator pedal 66. Les.
  • the extremely light load region which is a load region smaller than the first load having a predetermined size, is larger than the stratified auto-ignition combustion operation region, the first load, and the first load.
  • the light load region which is the region of the load smaller than the second load that is larger than the load, is the homogeneous auto-ignition combustion operation region, the medium load that is the region of the soot load that is larger than the second load and smaller than the third load larger than the second load.
  • the region is defined as the homogeneous spark ignition combustion region, and the high load region, which is a region of a load larger than the third load, is the diffusion combustion region.
  • the operation switching means G 1 selects the stratified self-ignition combustion operation executing means F 1 according to the operation region map.
  • the internal combustion engine 10 is operated by the stratified self-ignition combustion operation execution means F 1.
  • the stratified self-ignition combustion operation execution means F 1 forms a homogeneous mixture only within the cavity 2 2 b (that is, combustion) Chamber 2 as a whole forms a stratified mixture), and the mixture is compressed to cause the fuel to self-ignite and burn. More specifically, the stratified self-ignition combustion operation execution means F 1 operates the internal combustion engine 10 by sequentially performing the operations described below (see FIG. 8A).
  • the intake valve 3 2 is opened at the extremely light load intake valve opening timing I O according to the load of the internal combustion engine 10. This ends the negative overlap period and opens the intake stroke.
  • Inlet valve closing timing at extremely light load Compressive top dead center on the retarded side from IC At the middle timing 0 inj of the compression stroke up to ⁇ DC, the load of the internal combustion engine 10 and the engine speed NE A predetermined amount of fuel determined based on the above is injected from the fuel injection valve 37.
  • the total amount of fuel injected in this case is an amount that makes the air-fuel ratio an ultra lean air-fuel ratio.
  • the stratified self-ignition combustion operation execution means F 1 energizes only the first solenoid of the fuel injection valve 37 so that the lift amount of the needle of the fuel injection valve 37 becomes a low lift amount. To do.
  • the injected fuel is substantially retained in the cavity 22 b as shown in FIG. 9, so that a homogeneous mixture is formed substantially only in the cavity 22 b. Then, the air-fuel mixture is compressed, and a combustion stroke in which the fuel self-ignites and burns starts.
  • an air-fuel mixture having a concentration sufficient for self-ignition can be reliably formed in the cavity 22 b, so that stable self-ignition combustion can be performed.
  • the operation range in which self-ignition operation can be performed can be expanded to a lighter load region, and spark ignition combustion operation is not performed in such a light load region. Therefore, it is possible to further reduce NOx emissions and further improve fuel efficiency.
  • the cavity 2 2 b has a substantially cylindrical shape with a bottom, and the diameter of the edge forming the entrance of the cavity is formed so that the maximum diameter inside the cavity becomes smaller, and the combustion chamber 2 Since the swirl guide groove 2 2 d for introducing the intake swirl along the bore wall surface of the cylinder generated by the air sucked into 5 into the cavity 2 2 b is formed on the outer periphery of the cavity 2 2 b, the swirl The flow can be efficiently taken into the cavity 2 2 b by the swirl guide groove 2 2 d.
  • the swirl radius can be increased because the swirl radius of the intake scale is reduced.
  • the air-fuel mixture can be easily formed substantially only in the cavity 22 b, generation of No X can be suppressed.
  • the fuel is injected in the first injection state in which the injection angle is set to a narrow angle.
  • the distance between the fuel injection valve 37 and the top surface of the piston 22 on which the cavity 22 b is formed is relatively large. Therefore, as in the above configuration, by injecting the fuel into a cone shape (cone shape) with a narrow apex angle, the injected fuel is reliably introduced and retained in the cavity 22 b. Can do.
  • the diameter of the narrow angle injection hole 37c is larger than the diameter of the wide angle injection hole 37d, and the number of the narrow angle injection holes 37c is smaller than the number of the wide angle injection holes 37d.
  • the fuel pressure by the fuel pressure adjusting means 3 8a is relatively small. Accordingly, the diameter of the fuel droplets injected from the narrow angle injection hole 37 c becomes relatively large, so that the fuel can surely reach the cavity 22 b. As a result, the amount of fuel outside the cavity 22 b that does not contribute to self-combustion combustion can be reduced, so that the generation of unburned HC can be suppressed and the fuel consumption can be improved.
  • the operation switching means G 1 selects the premixed compression auto-ignition combustion operation executing means F 2 according to the operation region map. As a result, the internal combustion engine 10 is operated by the premixed compression auto-ignition combustion operation execution means F 2.
  • the premixed compression auto-ignition combustion operation execution means F 2 is configured to preliminarily mix the air sucked into the combustion chamber 25 and the fuel injected from the fuel injection valve 37 and empty the fuel into the combustion chamber 25.
  • the fuel is self-ignited and combusted by compressing it while forming a homogeneous mixture with uniform distribution. More specifically, the premixed compression auto-ignition combustion operation execution means F 2 sequentially operates as described below to operate the internal combustion engine 10 (see FIG. 8B).
  • the intake valve 3 2 is opened at a light load intake valve opening timing I O corresponding to the load of the internal combustion engine 10. This ends the negative overlap period and starts the intake stroke.
  • the intake valve opening timing I O at light load is set to the advance side of the intake valve opening timing I O at extremely light load.
  • the fuel is injected from the fuel injection valve 3 7 at the initial and Z or middle timing of ⁇ inj 2.
  • the amount of fuel injected at this time is an amount obtained by subtracting a minute amount of fs injected earlier from a predetermined amount determined based on the load of the internal combustion engine 10 and the engine rotational speed NE. Note that the total amount of fuel injected in this case is an amount that makes the air-fuel ratio an ultra lean air-fuel ratio.
  • the premixed compression auto-ignition combustion operation execution means F 2 is the sole solenoid of the fuel injection valve 3 7 so that the lift amount of the needle of the fuel injection valve 3 7 becomes high. Energize both the second solenoid. As a result, the fuel is injected as shown in FIG.
  • the intake valve 3 2 is closed at a light load intake valve closing timing I C corresponding to the load of the internal combustion engine 10. As a result, the intake stroke ends and the compression stroke starts. Then, the homogeneous air-fuel mixture is compressed and the combustion stroke in which the fuel self-ignites and burns starts.
  • the air-fuel mixture is agitated by a strong intake swirl.
  • the air-fuel mixture outside the cavity 22b can be efficiently taken into the cavity 22b. Therefore, all the air present in the combustion chamber 25 is used to form a homogeneous mixture. As a result, it is possible to further reduce No x emissions and improve thermal efficiency (fuel cost).
  • the fuel is injected in the initial and middle stages of the intake stroke, when the swirl is strongest, while the fuel injection angle is set to a narrow angle and a wide angle larger than the narrow angle. It is injected in a state. Therefore, the injected fuel is 2 5
  • the entire body is agitated in the combustion chamber 25 while riding a strong swirl flow. This also allows all the air present in the combustion chamber 25 to be used to form a homogeneous mixture, thus further reducing the amount of NOx emissions and improving thermal efficiency (fuel consumption). be able to.
  • the fuel is also injected from the wide-angle injection hole 37 d having a relatively small diameter.
  • the fuel droplets injected with a small particle size and wide angle are agitated in a swirl flow.
  • the fuel droplets having a small particle diameter injected by the wide-angle injection hole 37 d and the fuel droplets injected by the wide-angle and the narrow-angle injection hole 37 c are injected by the narrow-angle and a large particle diameter.
  • the fuel droplets mix well the air in the combustion chamber 25 and the fuel. This also allows all the air present in the combustion chamber 25 to be used to form a homogeneous mixture, thus further reducing the amount of NOx emissions and improving thermal efficiency (fuel consumption). be able to
  • the operation switching means G 1 selects the spark ignition combustion operation executing means F 3 according to the operation region map.
  • the internal combustion engine 10 is operated by the spark ignition combustion operation execution means F3.
  • the spark ignition combustion operation execution means F3 is configured to mix the air sucked into the combustion chamber 25 and the fuel injected from the fuel injection valve 37 in advance to spatially distribute the fuel in the combustion chamber 25. Compressed while forming a homogeneous mixture with uniform distribution, and ignited the compressed homogeneous mixture with the spark for ignition generated by the ignition plug 35, which is a spark generating means, and spark ignition combustion Let More specifically, the spark ignition combustion operation execution means F 3 performs the operation described below in order to operate the internal combustion engine 1 ° (see (C) of FIG. 8).
  • the exhaust valve 3 4 is closed at the exhaust valve closing timing E C at medium load according to the load of the internal combustion engine 10. This ends the air travel and starts the negative overlap period.
  • the exhaust valve closing timing E C at medium load is set to the retard side of the exhaust valve closing timing E C at light load.
  • the intake valve 3 2 is opened at the intermediate valve intake valve opening timing I O corresponding to the load of the internal combustion engine 10. This ends the negative overlap period and starts the intake stroke.
  • the intake valve opening timing I O at medium load is set to the advance side of the intake valve opening timing I O at light load.
  • the spark ignition combustion operation execution means F 3 causes the first solenoid and the second solenoid of the fuel injection valve 3 7 so that the needle lift amount of the fuel injection valve 3 7 becomes the soot lift amount. Energize both solenoids. As a result, fuel is injected as shown in FIG.
  • the intake valve 3 2 is closed at the intake valve closing timing I C at medium load according to the load of the internal combustion engine 10. As a result, the intake stroke ends and the compression stroke starts.
  • the intake valve closing timing I C at medium load is set to the retard side of the intake valve closing timing I C at light load in order to avoid knocking by lowering the actual compression ratio.
  • a spark for ignition is generated from the spark generating part 3 5a of the ignition bracket 35, and the fuel is ignited by spark ignition.
  • the spark ignition combustion operation execution means F 3 determines the ignition timing 0 ig based on the load of the internal combustion engine 10 and the engine speed N E. This initiates the combustion stroke.
  • the fuel injection timing is set as described above, the shape of the cavity 22 b and the presence of the swirl guide groove 22 d, and the fuel is in the second injection state.
  • the air-fuel mixture is formed inside and outside the cavity 2 2 b, and the air-fuel mixture can be efficiently taken into the cavity 2 2 b.
  • thermal efficiency fuel consumption is improved.
  • the operation switching means G 1 selects the diffusion combustion operation execution means F 4 according to the operation region map. Thereby, the internal combustion engine 10 is operated by the diffusion combustion operation execution means F4.
  • the diffusion combustion operation execution means F 4 compresses the air sucked into the combustion chamber 25 in the combustion chamber 25 and injects fuel from the fuel injection valve 37 into the compressed air. To diffuse and burn the fuel.
  • the valve closing timing of the intake valve 3 2 (intake valve closing timing IC) is set more than necessary. There is no need to retard and reduce the actual compression ratio. Therefore, the internal combustion engine 10 can normally burn a sufficient amount of fuel (or air-fuel mixture) in the high load region, and can therefore generate high torque. In addition, gasoline is easier to feel than diesel.
  • the speed of diffusion combustion is high. Therefore, the internal combustion engine 10 can generate a higher output in the high speed range.
  • the diffusion combustion operation execution means F 4 operates the internal combustion engine 10 by sequentially performing the operations described below (see (D) of FIG. 8).
  • the intake valve 3 2 is opened at the high load intake valve opening timing I O corresponding to the load of the internal combustion engine 10. This ends the negative overlap period and starts the intake stroke.
  • the intake valve opening timing I O at high load is set to the advance side of the intake valve opening timing I O at medium load.
  • the intake valve 3 2 is closed at the intake valve closing timing IC corresponding to the load of the internal combustion engine 10 at high load. As a result, the intake stroke ends and the compression stroke starts.
  • the intake valve closing timing I C at high load is set to the advance side of the intake valve closing timing I C at medium load during spark ignition combustion operation. This is because diffusion combustion is less likely to cause knocking than spark ignition combustion.
  • Intake valve closing timing at high load The fuel is injected from the fuel injection valve 37 at a timing 0 inj that is retarded from the I C and near the compression top dead center.
  • the amount of fuel injected at this time is determined based on the load of the internal combustion engine 10 and the engine speed NE, and is a predetermined amount necessary to make the air-fuel ratio coincide with a predetermined lean air-fuel ratio.
  • the diffusion combustion operation execution means F 4 performs the first solenoid and the second solenoid of the fuel injection valve 37 so that the lift amount of the needle of the fuel injection valve 37 becomes a high lift amount. Energize both. As a result, fuel is injected as shown in FIG. 11, and a combustion stroke in which the fuel is combusted by diffusion combustion starts.
  • the intake valve closing timing IC (intake valve closing timing IC at high load) is set to an advance side than the intermediate load intake valve closing timing IC at the time of spark ignition combustion operation,
  • the compression ratio is not greatly reduced.
  • the fuel is burned by diffusion combustion. This results in high compression without excessive knocking Since stable combustion can be obtained under the ratio, the torque generated by the internal combustion engine 10 can be improved.
  • the fuel is injected not only from the narrow angle injection hole 37 c but also from the wide angle injection hole 37 d force.
  • the particle diameter of the fuel injected from the wide-angle injection hole 3 7 d is small. Therefore, this also sufficiently mixes fuel droplets and air (oxygen). As a result, the thermal efficiency of the internal combustion engine can be improved. Furthermore, since a large amount of oxygen can be present around the fuel droplets, the generation of smoke can be effectively suppressed.
  • the operation switching means G 1 selects the start cold time stratified spark ignition combustion operation execution means F 5.
  • the operation switching means G 1 is, for example, an idle key (not shown) is changed from OFF to ON, and it is determined that the engine is starting, and the coolant temperature T HW detected by the coolant temperature sensor 64 is the threshold value. When the water temperature is below THW th, it is determined that the water temperature is cold. As a result, the internal combustion engine 10 is operated by the start cold stratified spark ignition combustion operation execution means F 5 at the time of start or cold.
  • the cold start stratified spark ignition combustion operation execution means F 5 compresses the stratified mixture while forming a stratified mixture in the cavity 22 b, and the compressed stratified mixture is a spark generating means.
  • the fuel is ignited and burned by sparks generated by sparks. More specifically, the start cold stratified spark ignition combustion operation execution means F 5 sequentially operates as described below to operate the internal combustion engine 10.
  • the amount of fuel injected in this case is determined based on the cooling water temperature T HW and / or the load of the internal combustion engine 10 and the engine speed NE, and in order to make the air-fuel ratio coincide with the stoichiometric air-fuel ratio. This is the required amount. Further, in this case, the start cold stratified spark ignition combustion operation execution means F 5 causes the first solenoid of the fuel injection valve 37 to have a low lift amount so that the needle lift amount of the fuel injection valve 37 becomes a low lift amount. Only energize.
  • the stratified mixture formed in the cavity 22 b is compressed, and an ignition spark is generated from the ignition plug 35, which is a spark generating means, at a predetermined ignition timing near the compression top dead center T D C. This causes the fuel to ignite and burn. This initiates the combustion stroke.
  • Exhaust valve opening timing E O opens the exhaust valve 3 4 at the specified start cold time. As a result, the combustion stroke ends and the exhaust stroke starts.
  • the stratified mixture is ignited by a spark plug 35 having a spark generating portion 35 a on the inner peripheral portion of the cavity 22 b.
  • a spark plug 35 having a spark generating portion 35 a on the inner peripheral portion of the cavity 22 b.
  • the internal combustion engine 10 is based on self-ignition combustion in the light load region, spark ignition combustion in the medium load region, and diffusion combustion in the high load region. It is driven by the driving method. As a result, no excessive noise is generated due to operation by self-ignition combustion in the medium load region, and there is a large amount due to unstable combustion due to operation by diffusion combustion in the medium load region. There is no torque fluctuation.
  • the cavity 2 2 b is substantially cylindrical with a bottom, and the diameter of the edge forming the entrance of the cavity 2 2 b is the maximum diameter inside the cavity 2 2 b.
  • the swirl guide groove 2 2 d for introducing the intake swirl into the cavity 2 2 b is formed on the outer periphery of the cavity 2 2 b. Further, the spark plug 35 is disposed along the swirl guide groove 22 d. Therefore, insert spark plug 3 5 (near the tip of spark plug 3 5) into swirl guide groove 2
  • the spark generating part 3 5 a of the spark plug 3 5 can be easily arranged around the cavity 2 2 b (inside of the inside).
  • a heat insulating layer is formed on the wall surface of the cavity 22 b. Therefore, since the combustion gas remaining in the cavity 2 2 b is difficult to cool, the temperature of the air-fuel mixture used for self-ignition combustion can be increased, and the self-ignition combustion can be performed stably. It will be possible. In addition, since the vaporization of fuel injected toward the cavity 2 2 b can be promoted, the amount of smoke generated during diffusion combustion can be reduced.
  • the internal combustion engine 10 includes a turbocharger 8 1 that is a supercharger, a stratified auto-ignition combustion operation execution means F l, a premixed compression auto-ignition combustion operation execution means F 2, a spark ignition combustion operation execution means F 3 And diffusion combustion operation execution means F 4
  • the negative overlap period which is the period from the closing timing of the exhaust valve 3 4 to the opening timing of the intake valve 3 2 after closing the air valve 3 4
  • valve closing timing of the exhaust valve 34 and the valve opening timing of the intake valve 32 are controlled so that the negative overlap period becomes shorter as the load of the internal combustion engine 10 becomes larger.
  • the combustion gas is contained in the combustion chamber 25.
  • the negative overlap period is set to become shorter as the load on the internal combustion engine increases. Therefore, when the internal combustion engine 10 is operated in the light load region or the extremely light load region, the amount of air introduced into the combustion chamber 25 is controlled by the negative overlap period.
  • the combustion chamber is increased by supercharging by the turbocharger and the negative overlap period. 2
  • the amount of air introduced into 5 is controlled.
  • the throttle pulp 47 disposed in the intake passage of the internal combustion engine 10 can be maintained substantially fully open, so that energy loss due to the throttle pulp 47 being reduced is reduced, and the internal combustion engine 10 is reduced. Can improve fuel economy.
  • the fuel injection valve 37 includes a narrow-angle injection hole group that opens and injects fuel when the needle 37 b is in any of the low lift state and the soot lift state.
  • fuel can be injected in the above-described injection state (first injection state or second injection state) corresponding to each operation state. Also, fuel injection valve 3 7 Therefore, it is possible to easily increase the dynamic range (difference between the minimum and maximum fuel injection amounts), so that a sufficient amount of fuel can be supplied even at high loads.
  • the operation switching means G 1 selects each of the operation execution means F 1 to F 4 according to the operation region map shown in FIG. 7 and switches the operation.
  • the operation switching means G1 is detected by the in-cylinder pressure sensor 63 when the premixed compression autoignition combustion operation execution means F2 is executing the premixed compression autoignition combustion operation of the homogeneous mixture.
  • the cylinder pressure average value P i is obtained by averaging the cylinder pressure P from the start of the compression stroke to the end of the combustion stroke for one combustion.
  • the operation switching means G1 keeps the average in-cylinder pressure average value P i ave obtained by averaging the in-cylinder pressure average value P i for the past multiple combustions.
  • the operation switching means G 1 calculates the absolute value (IP i -P i ave I) of the difference between the in-cylinder pressure average value P i and the average in-cylinder pressure average value P i ave for the current combustion as the average in-cylinder pressure average value.
  • the operation switching means G.1 makes the self-ignition combustion by the premixed compression auto-ignition combustion operation executing means F 2 unstable because the value ⁇ based on the absolute value of the difference becomes larger than the predetermined value P th. If it is determined that the engine is in a stable state, the operation is switched from the premixed compression self-ignition combustion operation execution means F2 to the self-ignition combustion operation by the stratified self-ignition combustion operation execution means F1.
  • the operation switching means G1 is detected by the in-cylinder pressure sensor 6 3 when the premixed compression autoignition combustion operation execution means F2 is executing the premixed compression autoignition combustion operation of the homogeneous mixture.
  • Cylinder pressure change rate (d P / dt or d PZ d 0, t is time, 0 is the change amount per unit time or unit crank angle of cylinder pressure P based on cylinder pressure P (Crank angle), and when the calculated in-cylinder pressure change rate (d PZd t or dp / ⁇ ⁇ ) is greater than the predetermined change rate dP th, the premixed compression auto-ignition combustion operation execution means F 2 The operation is switched from the premixed compression auto-ignition combustion operation of the air-fuel mixture to the spark ignition combustion operation execution means F3.
  • the in-cylinder pressure change rate (dPZd t or dP no d 0) is determined from the predetermined change rate d P th to determine whether or not the noise accompanying the premixed compression auto-ignition combustion of the homogeneous mixture is excessive. Judgment is made based on whether or not the force is increased.
  • the in-cylinder pressure change rate (dPZd t or dPZd 0) is greater than the predetermined change rate dP th and the noise associated with auto-ignition combustion is excessive
  • premix compression The operation is switched from the self-ignition combustion operation by the self-ignition combustion operation execution means F 2 to the spark ignition combustion operation by the spark ignition combustion operation execution means F 3. Therefore, it is possible to avoid a situation where noise is excessive.
  • the operation switching means G1 detects knocking based on the in-cylinder pressure P detected by the in-cylinder pressure sensor 63 when the spark ignition combustion operation by the spark ignition combustion operation execution means F3 is being executed. For example, the operation switching means G1 calculates the absolute value of the difference between the minimum value P small of the in-cylinder pressure P and the maximum value P large that appears immediately after the same minimum value P small in the vicinity of the maximum value Pmax of the in-cylinder pressure P. It is detected as a fluctuation ⁇ Ph, and when this in-cylinder pressure fluctuation APh is larger than a predetermined threshold (for example, a predetermined fraction of the maximum value Pmax), it is determined that knocking has occurred (for example, JP 2004-184228 A). Refer to the Gazette.) .
  • a predetermined threshold for example, a predetermined fraction of the maximum value Pmax
  • the operation switching means G1 obtains the frequency of occurrence of knocking (for example, a value indicating how many times knocking has been detected in one combustion) based on the detected knocking, and the frequency of occurrence of the knocking is determined.
  • the frequency exceeds the predetermined frequency, the operation is switched from the spark ignition combustion operation by the spark ignition combustion operation execution means F3 to the diffusion combustion operation by the diffusion combustion operation execution means F4.
  • the knocking may be detected using a known knocking sensor of a type that detects knocking based on the vibration of the internal combustion engine.
  • This internal combustion engine has the same configuration as the soot combustion engine 10. However, this internal combustion engine shuts off the combustion chamber 25 and the intake port 31 configured to generate an intake swirl in the combustion chamber 25 every time the crank angle rotates 360 degrees (the intake valve 32 is not connected).
  • the combustion chamber 2 5 communicates with the exhaust port 3 3 (opens the exhaust valve 3 4) to start the exhaust stroke, and then the combustion chamber 2 5 communicates with the intake port 3 1 (intake valve 3 2 is opened) and the scavenging stroke is started, and then the combustion chamber 2 5 and the exhaust port 3 3 are shut off (the exhaust valve 3 4 is closed) to start the intake stroke, and then the combustion chamber 2
  • This is a two-cycle internal combustion engine that performs two-cycle operation in which the combustion stroke starts in the same state after the compression stroke is started by shutting off 5 and the intake port 3 1 (close the intake valve 3 2).
  • the internal combustion engine 90 includes a stratified self-ignition combustion operation execution means H 1, a premixed compression auto-ignition combustion operation execution means H 2, a diffusion combustion operation execution means H 3, and an operation switching means. Includes means such as G2.
  • the functions of these means are achieved by the CPU 71 of the electric control device 70 executing a predetermined program. Therefore, the operation switching means G 2 described below assuming that the various means perform the various operations executed by the C P U 7 1 stores the operation area map shown in FIG. 13 in the ROM 7 2.
  • the operation switching means G2 determines an operation region based on the load of the internal combustion engine 90, the engine rotation speed NE, and the operation region map, and performs an operation using an operation method according to the determined operation region.
  • the load of the internal combustion engine 90 may be the required torque Tqtgt determined based on the operation amount Accp of the accelerator pedal 6 6 and the engine speed NE, or simply the operation amount Accp of the accelerator pedal 66. .
  • the extremely light load region which is a load region smaller than the first load of a predetermined size
  • the stratified auto-ignition combustion operation region which is larger than the first load and the first load.
  • the light load region and medium load region (light / medium load region), which are smaller than the larger third load, are homogeneous auto-ignition combustion operation regions
  • the high load region which is the larger load region than the third load, is diffusion combustion. Luck ⁇ It is defined as S area.
  • the operation switching means G2 selects the stratified self-ignition combustion operation execution means H1 according to the operation region map.
  • the internal combustion engine 90 is operated by the stratified self-ignition combustion operation execution means H 1.
  • the stratified self-ignition combustion operation execution means HI substantially forms a homogeneous mixture only within the cavity 2 2 b (that is, The combustion chamber 25 as a whole forms a stratified mixture), and the fuel is self-ignited and combusted by compressing the mixture. More specifically, the stratified self-ignition combustion operation execution means H 1 operates the internal combustion engine 90 by sequentially performing the operations described below (see (A) in FIG. 14).
  • the intake valve 3 2 is opened at the intake valve opening timing I O at extremely light load according to the load of the internal combustion engine 90. As a result, air flows into the combustion chamber 25 via the intake port 31 and a scavenging stroke is started in which the combustion gas is discharged from the combustion chamber 25 via the exhaust port 33 by the air.
  • the injected fuel is substantially retained in the cavity 22 b as shown in FIG. 9, so that a homogeneous mixture is formed substantially only in the cavity 22 b. Then, the air-fuel mixture is compressed, and the combustion stroke in which the fuel self-ignites and burns is opened.
  • an air-fuel mixture having a concentration sufficient for self-ignition can be reliably formed in the cavity 22 b, so that stable self-ignition combustion can be performed.
  • the self-ignition operation can be performed to a lighter load region, and it is not necessary to perform the spark ignition combustion operation in such a light load region.
  • the amount can be further reduced and fuel consumption can be further improved.
  • the shape of the cavity 22 b and the swirl guide groove 22 d described above allow the intake swirl to be efficiently taken into the cavity 22 b. Therefore, the swirl flow can be strengthened by reducing the swirl radius of the intake swirl. As a result, a homogeneous mixture can be easily formed substantially only in the cavity 22 b, and generation of No X can be suppressed.
  • the fuel is injected in the first injection state in which the injection angle is injected with a narrow angle.
  • the distance between the fuel injection valve 37 and the top surface of the biston 22 where the cavity 22 b is formed is relatively large.
  • the injected fuel can be reliably introduced into the cavity 22 b by injecting the fuel into a conical shape (cone shape) with a narrow apex angle as in the above configuration.
  • the fuel is injected from the narrow-angle injection hole 37 c having a large diameter, the diameter of the injected fuel droplet becomes relatively large. The fuel can surely reach the cavity 2 2 b.
  • the amount of fuel outside the cavity 22 b that does not contribute to self-ignition combustion can be reduced, so that generation of unburned HC can be suppressed and fuel consumption can be improved.
  • the operation switching means G 2 selects the premixed compression auto-ignition combustion operation executing means H 2 according to the operation region map. As a result, the internal combustion engine 90 is operated by the premixed compression auto-ignition combustion operation execution means H2.
  • the premixed compression self-ignition combustion operation execution means H 2 performs self-ignition combustion of the fuel by compressing while forming a homogeneous mixture in the combustion chamber 25. More specifically, the premixed compression auto-ignition combustion operation execution means H 2 operates the internal combustion engine 90 by sequentially performing the operations described below (see (B) in FIG. 14). .
  • the exhaust valve 3 4 is opened at the light / medium load exhaust valve opening timing E O according to the load of the internal combustion engine 90. This ends the combustion stroke and starts the exhaust stroke.
  • the intake valve 3 2 is opened at a light / medium load intake valve opening timing I O corresponding to the load of the internal combustion engine 90. As a result, the exhaust stroke ends and the scavenging stroke starts.
  • the fuel injection valve 3 7 injects a predetermined amount of fuel determined based on the load of the internal combustion engine 90 and the engine rotational speed NE at the timing 0 inj when the swirl due to the air sucked into the chamber 25 becomes the strongest. To do.
  • the total amount of fuel injected in this case is an amount that makes the air-fuel ratio an ultra lean air-fuel ratio.
  • the premixed compression auto-ignition combustion operation execution means H 2 causes the first solenoid and the first solenoid of the fuel injection valve 37 to have a high lift amount so that the needle lift amount of the fuel injection valve 37 becomes a high lift amount. Energize both solenoids. As a result, the fuel is injected as shown in FIG.
  • the fuel injection timing is set as described above, and the fuel is injected in the second injection state, the injected fuel spreads throughout the combustion chamber 25 and rides on a strong scale flow. Stirred in combustion chamber 25. Furthermore, the cavity 2 2 b can efficiently take the air-fuel mixture outside the cavity 2 2 b into the cavity 2 2 b, so that all the air present in the combustion chamber 25 is contained in the cavity 2 2 b. Homogeneous mixture formation Used for As a result, it is possible to further reduce No X emissions and improve thermal efficiency (fuel consumption).
  • the operation switching means G2 selects the diffusion combustion operation execution means H3 according to the operation region map. As a result, the internal combustion engine 90 is operated by the diffusion combustion operation execution means H 3.
  • the diffusion combustion operation execution means H 3 compresses the air sucked into the combustion chamber 25 in the combustion chamber 25 and injects fuel from the fuel injection valve 37 into the compressed air. To diffuse and burn the fuel. More specifically, the diffusion combustion operation execution means H 3 operates the internal combustion engine 90 by sequentially performing the operations described below (see (C) of FIG. 14).
  • the intake valve 32 is opened at a high load intake valve opening timing IO corresponding to the load of the internal combustion engine 90. Thereby, the scavenging stroke described above starts.
  • the intake valve closing timing IC at high load (that is, the timing at which the combustion chamber 25 and the intake port 31 are shut off) is knocked when it is assumed that spark ignition combustion is performed in a high load region where diffusion combustion operation is performed.
  • the intake valve closing timing which is set to avoid excessive occurrence, is also set to the advanced timing (that is, approximately the same time as the intake valve closing timing IC for light / medium loads). This is because diffusion combustion is less likely to cause knocking than spark ignition combustion.
  • the timing at which the combustion chamber 25 and the intake port 31 are cut off is set so as to avoid excessive knocking when it is assumed that spark ignition combustion is performed. Since the cut-off timing is also advanced, the actual compression ratio does not drop significantly. Fuel is burned by diffusion combustion. As a result, stable combustion under a high compression ratio can be obtained without excessive knocking, and the torque generated by the internal combustion engine 90 can be improved.
  • This internal combustion engine is a so-called Uniflow type two-cycle internal combustion engine, and the fuel used is gasoline.
  • the operation cycle of the two-cycle internal combustion engine
  • This Uniflow type internal combustion engine is composed of an exhaust port EXP connected to the upper part of the combustion chamber (cylinder CY), an exhaust valve EXV that opens and closes the exhaust port EXP, and an intake port connected at one end to the bore wall of the cylinder CY (It is also called scavenging port.) It has IN P, fuel injection valve INJ, spark plug I GN, and turbocharger (in this case, turbocharger) T / C.
  • the piston PS is moved in the cylinder CY, and the exhaust valve EXV (exhaust port EXP) and the intake port INP are opened and closed, and the power is taken out by burning the mixture of fuel and air. It has become.
  • each stroke will be described in turn, taking as an example the case where a homogeneous mixture is self-ignited and combusted.
  • the exhaust valve EXV is opened at an appropriate timing when the piston PS reaches a predetermined position.
  • the pressure of the combustion gas in the cylinder CY is high, so the combustion gas is discharged out of the cylinder CY via the exhaust valve EX and the exhaust port EXP as shown in Fig. 15 (b).
  • the Biston PS continues to move toward bottom dead center.
  • the biston PS continues to move toward the top dead center and reaches the predetermined position, the end portion (opening portion) of the intake port INP is closed by the side wall of the piston PS. As a result, the intake port I NP and the cylinder CY are blocked. Immediately before or after this, the exhaust valve EXV is opened. At this point, as shown in FIG. 15 (e), fuel is injected from the fuel injection valve I N J.
  • FIG. 16 shows a schematic configuration of the soot combustion engine 100.
  • FIG. 16 shows only a cross section of a specific cylinder, but other cylinders have the same configuration. .
  • the internal combustion engine 100 includes a cylinder block 110, a cylinder head 120 fixed to the cylinder block 110, an intake system 13.0, an exhaust system 140 for discharging exhaust gas to the outside, and an electric control device 170. Contains. In the following description, the direction from the cylinder block 110 to the cylinder head 120 is referred to as upward, and the direction from the cylinder head 120 to the cylinder block 110 is referred to as downward.
  • the cylinder block 1 10 forms a hollow cylindrical cylinder 1 1 1.
  • a piston 1 12, a connecting rod 1 13, and a crank shaft 114 are accommodated inside the cylinder mouthpiece 1 10.
  • the piston 112 reciprocates in the cylinder 111, and the reciprocating motion of the viston 112 is transmitted to the crankshaft 114 via the connecting rod 113, whereby the crankshaft 114 rotates.
  • a cavity 112 a is formed at the center of the piston 112.
  • the shape of the cavity 112a is Similar to 2 2 b, it has a substantially cylindrical shape with a bottom.
  • the cylinder block 1 1 0 comprises a pair of first intake ports 1 1 6, a pair of second intake ports 1 1 7 and an intake surge tank 1 1 8, and a pair of intake control valves 1 Has 1-9.
  • the first intake port 1 1 6 is tubular.
  • the first intake port 1 1 6 is formed so that its axis is substantially parallel to a plane perpendicular to the central axis of the cylinder 1 1 1 1.
  • the first intake port 1 1 6 is connected to the intake surge tank 1 1 8 and the cylinder 1 1 1, as shown in FIG. 17 which is a schematic cross-sectional view, and air along the bore wall surface of the cylinder 1 1 1 Into the cylinder 1 1 1.
  • the first intake port 1 16 is referred to as a swirl port because air flowing into the combustion chamber 1 15 generates an intake swirl in the combustion chamber 1 15.
  • the first intake port 1 1 6 is divided into two by ribs 1 1 6 a in the vicinity of the cylinder 1 1 1. As a result, two openings 1 1 6 b and 1 1 6 c are formed in the bore wall surface of the cylinder 1 1 1.
  • the openings 1 1 6 b and 1 1 6 c are positions where the piston 1 1 2 can be opened by the side wall of the biston 1 1 2 when the piston 1 1 2 moves from top dead center to bottom dead center (ie downward) Is provided.
  • the openings 1 1 6 b and 1 1 6 c are opened, the first intake port 1 1 6 is brought into communication with the combustion chamber 1 1 5.
  • the openings 1 1 6 b and 1 1 6 c are closed by the side walls of the piston 1 1 2 when the piston 1 1 2 moves from the bottom dead center toward the top dead center (that is, upward). As a result, the first intake port 1 1 6 is blocked from the combustion chamber 1 1 5.
  • the second intake port 1 1 7 is tubular.
  • the second intake port 1 1 7 is connected to the intake surge tank 1 1 8 and the cylinder 1 1 1.
  • the second intake port 1 1 7 is formed with a gradient such that air flows into the cylinder 1 1 1 obliquely downward with respect to a plane perpendicular to the central axis of the cylinder 1 1 1.
  • the axis of the second intake port 1 1 7 faces the central axis of the cylinder 1 1 1.
  • the second intake port 1 1 7 is referred to as a straight port.
  • the second intake port 1 1 7 is divided into two by a rib 1 1 7 a in the vicinity of the cylinder 1 1 1.
  • two openings 1 1 7 b and 1 1 7 c are formed in the bore wall surface of the cylinder 1 1 1.
  • the opening 1 1 7 b of one intake port 1 1 7 is formed at the position facing the opening 1 1 7 c of the other intake port 1 1 7 with the cylinder 1 1 1 1 sandwiched between them.
  • the opening 1 1 7 c of 1 1 7 is formed at a position facing the opening 1 1 7 3 ⁇ 4) of the other one intake port 1 1 7 with the cylinder 1 1 1 in between.
  • the openings 1 1 7 b and 1 1 7 c are provided at positions where the opening can be opened by the side wall of the piston 1 1 2 when the piston 1 1 2 moves downward. Opening 1 1 7 b, 1 1 7 c Is opened, the second intake port 117 is brought into communication with the combustion chamber 115. On the other hand, the opening 1 17 b, 117 c is a piston when the piston 112 moves upward.
  • the second intake port 117 is connected to the combustion chamber.
  • the air flowing into the cylinder 111 from the second intake port 117 collides with the top surface of the piston 112 and changes its direction obliquely upward.
  • air flowing into the cylinder 1 1 1 from the two intake ports 117 (opening 1 1 7 b, 117 c) facing each other collides near the center axis of the cylinder 1 1 1, so the cylinder Ascending air flow is generated in the vicinity of the central axis of cylinder 1 1 1 in 1 1 1.
  • the intake control valve 1 19 opens and closes the second intake port 1 17 by rotating in the second intake port 117 in response to an instruction from the electric control device 170.
  • the cylinder head 120 is fixed above the cylinder block 110.
  • the cylinder head 120 generates an exhaust port 121 connected to the combustion chamber 115, an exhaust valve 122, a drive arm 123 that drives the exhaust valve 122, an electromagnetic actuator 124, a spark plug 125, and a high voltage applied to the spark plug 125.
  • An igniter 126 including an idling coil and a fuel injection valve (fuel injection means) 127 for directly injecting fuel into the combustion chamber 115 are provided.
  • the spark plug 125 and the igniter 126 constitute spark generating means for generating an ignition spark in the combustion chamber 115.
  • the exhaust port 121 is formed to open at three positions around the center of the cylinder 111 as shown in FIG. 18 when the lower surface of the cylinder head 120 is viewed from the combustion chamber 115 side. Accordingly, the cylinder head 120 is provided with three exhaust valves 122. Each air valve 122 opens and closes the opening of each air port 121. The exhaust port 121 communicates with the combustion chamber 1 15 when the opening is opened by the exhaust valve 122, and is shielded from the combustion chamber 1 15 when the opening is closed by the exhaust valve 122. It is summer.
  • the three exhaust valves 122 are arranged so that their axes are parallel to each other (parallel to the axis of the cylinder 1 1 1), and the openings formed in the combustion chambers 1 15 of the exhaust ports 121 by springs 122 a. Is urged to close.
  • Each of the three exhaust valves 122 is connected to each of the three ends 1 23a of the drive arm 123 shown in FIG.
  • the electromagnetic actuator 124 moves the central portion 123b of the drive arm 123 downward to move the exhaust valve 122 downward, thereby opening the opening formed in the combustion chamber 115 of each exhaust port 121. Nina It is.
  • the fuel injection valve 1 2 7 has the same structure as the fuel injection valve 37 described above.
  • the fuel injection valve 1 2 7 is supplied with fuel in a fuel tank (not shown) by a fuel pressure adjusting means and a fuel pump (not shown).
  • the fuel injection valve 1 2 7 is arranged at the center of the cylinder 1 1 1 as shown in FIG.
  • the fuel injection valve 1 2 7 is designed to inject fuel toward the cavity 1 1 2 a of the piston 1 1 2.
  • Intake system 1 3 0 consists of surge tank 1 3 1 communicating with intake surge tank 1 1 8, intake pipe 1 3 2 connected at one end to surge tank 1 3 1, and downstream from the other end of intake pipe 1 3 2 ( Air filter 1 3 3, turbocharger (supercharger, supercharging means) 1 5 0 compressor 1 5 1, intercooler 1 5 2 and throttle valve 1 5 4 etc.
  • the throttle pulp 1 5 4 is rotatably supported by the intake pipe 1 3 2 and is driven by the throttle valve actuator 1 5 4 a so that the opening cross-sectional area of the intake passage is variable. Yes.
  • the exhaust system 1 4 0 is connected to the exhaust port 1 2 1 and has an exhaust pipe 1 4 1 including an exhaust manifold that forms an exhaust passage together with the exhaust port 1 2 1 and a turbo provided in the exhaust pipe 1 4 1.
  • a catalytic device 1 5 5 is provided in the exhaust pipe 1 4 1 downstream of the turbine 1 5 3 of the charger 1 5 0 and the turbine 1 5 3.
  • the turbocharger 1 5 0 compresses the air in the intake passage and supercharges the air into the combustion chamber 1 1 5. .
  • the internal combustion engine 100 includes a crank position sensor 16 1, an accelerator opening sensor 16 2, and an electric control device 1.7 0 connected thereto.
  • Crank position sensor 1 6 1, accelerator opening sensor 1 6 2 and electric control device 1 70 are the same configuration and function as crank position sensor 6 2, accelerator opening sensor 6 5 and electric control device 70 It has.
  • the internal combustion engine 100 has a stratified self-ignition combustion operation execution means J 1, a premixed compression self-ignition combustion operation execution means J 2, a diffusion combustion operation execution means J 3, and the operation described above. It includes means such as switching means G2.
  • the functions of these means are achieved by the CPU of the electric control device 170 executing a predetermined program. Therefore, hereinafter, various operations executed by the CPU will be described as being performed by the above means.
  • the operation switching means G 2 selects the stratified self-ignition combustion operation execution means J 1 according to the operation region map shown in FIG. To do. As a result, the internal combustion engine 100 is operated by the stratified auto-ignition combustion operation execution means J 1.
  • the stratified auto-ignition combustion operation execution means J 1 substantially forms a homogeneous mixture only within the cavity 1 12 2 a (ie, forms a stratified mixture as a whole of the combustion chamber 25), and the mixture
  • the fuel is self-ignited and combusted by compressing the fuel. More specifically, the stratified self-ignition combustion operation execution means J 1 operates the internal combustion engine 100 by sequentially executing the operations described below (see (A) in FIG. 21).
  • the exhaust valve 1 2 2 is opened at the extremely light load exhaust valve opening timing E O corresponding to the load of the internal combustion engine 100.
  • the exhaust port 1 2 1 communicates with the combustion chamber 1 15, and the exhaust stroke in which the combustion gas is discharged from the combustion chamber 1 15 starts.
  • the piston 1 1 2 moves from the top dead center side toward the bottom dead center side, so that the first intake port 1 1 6 and the second intake air at the intake port opening timing IPO. Port 1 1 7 and combustion chamber 1 1 5 are in communication.
  • the intake control valve 1 1 9 is controlled to close the second intake port 1 1 7. Accordingly, air flows into the combustion chamber 1 15 via the first intake port 1 1 6 and intake swirl is generated. The combustion gas is pushed to the exhaust port 1 2 1 side by the inflow air and is discharged from the combustion chamber 1 1 5. That is, the scavenging stroke starts.
  • the injected fuel is substantially retained in the cavity 1 1 2 a, so that a homogeneous mixture is formed substantially only in the cavity 1 1 2 a. Then, the air-fuel mixture is compressed, and a combustion stroke in which the fuel self-ignites and burns starts.
  • the operating range in which self-ignition operation can be performed can be expanded to an extremely light load region, and it is not necessary to perform the spark ignition combustion operation in such an extremely light load region. Emissions can be further reduced and fuel consumption can be improved.
  • the amount of fuel outside the cavity 1 1 2 a that does not contribute to self-ignition combustion can be reduced. Therefore, generation of unburned HC can be suppressed and fuel consumption can be further improved.
  • the operation switching means G 2 selects the premixed compression auto-ignition combustion operation executing means J 2 according to the operation region map. As a result, the internal combustion engine 100 is operated by the premixed compression self-ignition combustion operation execution means J2.
  • the premixed compression auto-ignition combustion operation execution means J 2 performs self-ignition combustion of the fuel by compressing while forming a homogeneous mixture in the combustion chamber 1 15. More specifically, the premixed compression auto-ignition combustion operation execution means J 2 sequentially operates as described below to operate the internal combustion engine 100 (see (B) in FIG. 21). .
  • the total amount of fuel injected in this case is an amount that makes the air-fuel ratio an ultra lean air-fuel ratio.
  • the premixed compression auto-ignition combustion operation execution means J 2 is a fuel injection valve 1 2 7 Energize both the first solenoid and the second solenoid of the fuel injection valve 1 2 7 so that the needle lift amount of the needle becomes a high lift amount.
  • the intake swirl remains strong. Therefore, when the air-fuel mixture is agitated by the intake swirl, all the air present in the combustion chamber 1 15 is used to form a homogeneous air-fuel mixture.
  • the homogeneous air-fuel mixture is compressed after being taken into the cavity 1 1 2 a, and the combustion stroke in which the fuel self-ignites and burns begins. As a result, it is possible to further reduce NO x emissions and improve thermal efficiency (fuel consumption).
  • the operation switching means G2 selects the diffusion combustion operation execution means J3 according to the operation region map. As a result, the internal combustion engine 100 is operated by the diffusion combustion operation execution means J3.
  • the diffusion combustion operation execution means J3 compresses the air sucked into the combustion chamber 1 1 5 in the combustion chamber 1 1 5 and supplies fuel from the fuel injection valve 1 2 7 into the compressed air. The fuel is diffused and burned by injection. More specifically, the diffusion combustion operation execution means J3 operates the internal combustion engine 100 by sequentially performing the operations described below (see (C) in FIG. 21).
  • Inlet port closing timing I PC the first intake port 1 1 6 and the second intake port 1 1 7 are disconnected from the combustion chamber 1 15.
  • Inlet port closing timing I P C does not change with load.
  • the intake port closing timing IPC at high load is based on the assumption that spark ignition combustion is performed in the high load region where diffusion combustion operation is performed in the overhead valve type internal combustion engine as shown in FIG.
  • the intake valve closing timing I Cig is set so as to avoid excessive occurrence of knocking timing (ie, intake port closing timing at light / medium load).
  • the fuel is injected from the fuel injection valve 1 27 at the fuel injection timing 0 inj near the top dead center in the compression stroke, and the fuel is diffusely burned.
  • the amount of fuel to be injected is determined based on the load on the internal combustion engine 100 and the engine speed NE. .
  • the diffusion combustion operation execution means J 3 causes the first solenoid and the second solenoid of the fuel injection valve 1 2 7 so that the lift amount of the needle of the fuel injection valve 1 2 7 becomes a high lift amount. Energize both solenoids.
  • the shutoff timing between the combustion chamber 1 15 and the first intake port 1 1 6 and the second intake port 1 1 7 at high load is the same as that at the light and medium load. Therefore, the actual compression ratio is not greatly reduced. As a result, since the fuel is burned by diffusion combustion without excessive knocking, stable combustion can be obtained under a high compression ratio. Accordingly, the torque generated by the internal combustion engine 100 can be improved.
  • the high-temperature combustion gas can be used to immediately raise the temperature of the air-fuel mixture that is subjected to the next combustion, It becomes possible to perform self-ignition combustion stably.
  • the operating range in which the self-ignition combustion operation is performed can be expanded to a lower load side region.
  • the self-ignition combustion operation can be performed in the practical range, the NOx emission amount of the internal combustion engine can be reduced and the fuel consumption can be improved.
  • the scavenging stroke and the intake stroke are performed at the same time, but each time the crank angle is rotated 360 degrees, the combustion chamber 1 15 and the intake stroke are changed.
  • combustion port 1 1 6 shut off, combustion chamber 1 1 5 communicates with exhaust port 1 2 1 to start the exhaust stroke, and then combustion chamber 1 1 5 communicates with intake port 1 1 6 Then, the scavenging stroke is started, and then the combustion chamber 1 15 and the exhaust port 1.2 1 are shut off to start the intake stroke, and then the combustion chamber 1 1 5 and the suction port 1 1 6 are shut off and compressed. It may be configured to perform a two-cycle operation in which the combustion stroke is reached in the same state after starting the stroke.
  • each embodiment of the internal combustion engine according to the present invention is configured to perform a self-ignition combustion operation of a homogeneous mixture at least on the light load side and to perform a diffusion combustion operation on the high load side. of. Therefore, it is possible to improve fuel efficiency and reduce NOx emissions and generate high torque while avoiding knocking.
  • the spark ignition combustion operation region since it is possible to eliminate or reduce the spark ignition combustion operation region, it is possible to reduce NOx emissions and improve fuel efficiency.
  • ignition spark generating means such as an ignition Bragg igniter can be eliminated, so that the cost of the internal combustion engine can be reduced.
  • the present invention is not limited to the above-described embodiments, and various modifications can be employed within the scope of the present invention.
  • the turbocharger was a turbocharger, but it could be a mechanical supercharger.
  • sparks during operation by the stratified self-ignition combustion operation execution means, during operation by the premixed compression auto-ignition combustion operation execution means, and during operation by the diffusion combustion operation execution means, More stable combustion may be ensured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

この内燃機関10は、ガソリン燃料を燃焼室25内に噴射する燃料噴射弁37と点火プラグ35とを備える。内燃機関が軽負荷領域にて運転されるとき、吸気行程の初期及び/又は中期に燃料を噴射し、均質混合気を形成しながら圧縮することにより同燃料を自着火燃焼させる予混合圧縮自着火燃焼運転を行う。内燃機関が中負荷領域にて運転されるとき、火花点火燃焼運転を行う。内燃機関が高負荷領域にて運転されるとき、燃焼室内に吸入された空気を圧縮し、同圧縮された空気の中に燃料を噴射することにより同燃料を拡散燃焼させる拡散燃焼運転を行う。

Description

明 細 書 内燃機関 技 術 分 野
本発明は、 燃焼室内に形成されたガソリン燃料の混合気を圧縮して自着火させ ることができる内燃機関に関する。 背 景 技 術
燃料をガソリンとする内燃機関の燃焼によって生成される N O Xの量は、 燃焼 室内が高温となる燃焼期間の長さに依存し、 この期間が短くなると減少すること が知られている。 燃焼室内に形成された混合気を高圧縮比にて圧縮することによ り同混合気を着火させる予混合圧縮自着火燃焼においては、 圧縮された混合気が 散在する多数の位置においてほぼ同時に着火する。 このため、 自着火燃焼は、 火 炎の伝播により燃料力 S燃焼して行く火花点火燃焼より、 短期間内に終了する。 従 つて、 自着火燃焼を行う内燃機関は、 火花点火燃焼を行う内燃機関より、 N O x の排出量を少なくすることができる。 更に、 自着火燃焼は、 高圧縮比且つ超希薄 空燃比での燃焼が可熊であるので、 燃費も改善することができる。
係る自着火燃焼は極めて短時間のうちに終了するので、 燃料量が多い高負荷領 域にて運転されるときに燃焼室内の圧力 (筒内圧) が急激に上昇し、 燃焼騒音が 非常に大きくなる。 そこで、 燃焼騒音が小さい軽負荷領域においては声着火燃焼 運転を行い、 燃焼騒音が大きくなる高負荷領域においては混合気を点火プラグが 発生する火花により点火して燃焼させる火花点火燃焼運転を行う 4サイクル内燃 機関が開発されて来ている (例えば、 特開 2 0 0 0— 6 4 8 6 3号公報の請求項 1及ぴ図 4を参照。 ) 。
ところで、 自着火燃焼を行うように設計された内燃機関の圧縮比は、 火花点火 燃焼を行うように設計された内燃機関の圧縮比よりも相当に高い。 従って、 自着 火燃焼を行うことができる内燃機関において火花点火燃焼をそのまま行うと、 負 荷が大きいときにノッキングが発生してしまう。 そこで、 従来の内燃機関は、 火 花点火燃焼運転時において吸気弁の閉弁タイミングを圧縮行程の上死点近傍にま で遅角することにより実圧縮比を低下せしめ、 これによりノッキングを回避して いる。
し力、しながら、 高負荷領域で運転する場合においては多量の燃料を燃焼しなけ ればならないから、 吸気弁の閉弁タイミングを遅角するにも限度がある。 吸気弁 の閉弁タイミングを遅角しすぎると、 混合気量 (即ち、 燃料量) が減少してしま うからである。 これらのことから、 従来の内燃機関は、 ノッキングを十分に回避 することができず、 内燃機関の発生するトルクを増大できないという問題がある
発 明 の 開 示
本発明の目的の一つは、 自着火燃焼運転を行うことにより NO xの低減及び燃 費の向上を達成しながら、 ノッキング及び過大な騷音を発生することなく高いト ルクを発生し得る内燃機関を提供することにある。
上記目的を達成する本発明の内燃機関は、
内燃機関のビストンの頂面、 シリンダのボア壁面及びシリンダへッドの下面に より画定される燃焼室内にガソリン燃料を噴射する燃料噴射手段と、
前記内燃機関が軽負荷領域にて運転されるとき、 前記燃焼室内に吸入された空 気と前記燃料噴射手段から噴射された燃料とを予め混合して同燃料の空間的分布 がー様な均質混合気を形成しながら圧縮することにより同燃料を自着火燃焼させ る予混合圧縮自着火燃焼運転実行手段と、
を備えた内燃機関であって、
前記内燃機関が前記軽負荷領域よりも負荷が大きい高負荷領域にて運転される とき、 前記自着火燃焼に代え、 前記燃焼室内に吸入された空気を同燃焼室内にて 圧縮し、 同圧縮された空気の中に前記燃料噴射手段から燃料を噴射することによ り同燃料を拡散燃焼させる拡散燃焼運転実行手段を備えた内燃機関である。
これによれば、 内燃機関が軽負荷領域にて運転されるとき、 燃料の空間的分布 がー様な均質混合気が形成且つ圧縮され、 これにより、 燃料が自着火する均質自 着火燃焼による運転が行われる。 従って、 前記内燃機関は N o Xの排出量を低減 することができる。 一方、 前記内燃機関が前記軽負荷領域よりも負荷が大きい高 負荷領域にて運転されるとき、 圧縮された空気の中に燃料が噴射され、 これによ り拡散燃焼による運転が行われる。 拡散燃焼による運転は火花点火燃焼による運 転よりもノッキングが発生し難いので、 吸気弁の閉弁タイミングを必要以上に遅 角して実圧縮比を低下する必要がない。 従って、 前記内燃機関は、 高負荷領域に て運転されるとき、 高圧縮比の下で安定した燃焼を得ることができるから、 高ト ルクを発生することができる。 更に、 ガソリンは軽油よりも気ィ匕し易いので、 拡 散燃焼の速度が高い。 従って、 前記内燃機関は、 高回転域においてより高出力を 発生することができる。
前記内燃機関は、
クランク角が 7 2 0度回転する毎に吸気、 圧縮、 燃焼及び排気の各行程を迎え る 4サイクル運転を行うように構成されるとともに、 前記空気の前記燃焼室への吸入により同燃焼室内に吸気スワールを生成するス ワール生成手段と、
前記燃焼室に点火用火花を発生する火花発生手段と、
前記内燃機関が前記軽負荷領域よりも負荷が大きく前記高負荷領域よりも負荷 が小さレヽ中負荷領域にて運転されるとき、 前記燃焼室内に吸入された空気と前記 燃料噴射手段から噴射された燃料とを予め混合して同燃料の空間的分布が一様な 均質混合気を形成しながら圧縮し、 同圧縮された均質混合気を前記火花発生手段 による点火用火花によつて点火して同燃料を火花点火燃焼させる火花点火燃焼運 転実行手段と、
を備えることができる。
これによれば、 軽負荷領域においては自着火燃焼による運転、 中負荷領域にお V、ては火花点火燃焼による運転、 高負荷領域にぉレヽては拡散燃焼による運転が行 われる。 この結果、 中負荷領域において自着火燃焼にて運転すると過大な音が発 生し且つ中負荷領域において拡散燃焼が安定して行われ得ないような内燃機関で あっても、 そのような内燃機関を中負荷領域において過大な音を発生することな く火花点火燃焼により安定して運転することができる。
更に、 この場合、 前記予混合圧縮き着火燃焼運転実行手段は、
( 1 ) 前記内燃機関の負荷に応じた軽負荷時吸気弁開弁タイミングにて吸気弁を 開弁するとともに同負荷に応じた軽負荷時吸気弁閉弁タイミングにて同吸気弁を 閉弁し、
( 2 ) 前記燃焼室内に吸入される空気によるスワールが最も強くなる時期である 同軽負荷時吸気弁開弁タイミングから同軽負荷時吸気弁閉弁タイミングまでの吸 気行程の初期及び Z又は中期に前記燃料噴射手段から前記燃料を噴射させること により前記均質混合気を形成するように構成され得る。
これによれば、 強 、吸気スヮールによつて燃焼室全体の空気と噴射された燃料 とが混合されるので、 燃料の空間的分布が一様な均質混合気が確実に形成される 。 その結果、 N o Xの排出量を低減し、 熱効率 (燃費) の向上を図ることができ る。
また、 前記火花点火燃焼運転実行手段は、
( 1 ) 前記内燃機関の負荷に応じた中負荷時吸気弁開弁タイミング (例えば、 前 記軽負荷時吸気弁開弁タイミングょりも進角側のタイミング) にて前記吸気弁を 開弁するとともに同負荷に応じた吸気弁閉弁タイミングであって前記軽負荷時吸 気弁閉弁タイミングょりも遅角側の中負荷時吸気弁閉弁タイミングにて同吸気弁 を閉弁し、
( 2 ) 前記燃焼室内に吸入された空気によるスワールが最も強くなる時期である 同中負荷時吸気弁開弁タイミングから同中負荷時吸気弁閉弁タイミングまでの吸 気行程の初期及び/又は中期に前記燃料噴射手段から前記燃料を噴射させること により前記均質混合気を形成するように構成され得る。
これによれば、 吸気弁閉弁タイミングが遅角側に設定されることにより実圧縮 比が低減され、 且つ、 吸気スワールの攪拌作用が利用されることにより燃料の空 間的分布が一様な均質混合気が形成されるので、 ノッキングの発生が回避される とともに安定した火花点火燃焼運転を行うことができる。
更に、 前記拡散燃焼運転実行手段は、
( 1 ) 前記内燃機関の負荷に応じた高負荷時吸気弁開弁タイミングにて前記吸気 弁を開弁するとともに同負荷に応じた吸気弁閉弁タイミングであって前記中負荷 時吸気弁閉弁タイミングょりも進角側の高負荷時吸気弁閉弁タイミングにて同吸 気弁を閉弁し、
( 2 ) 同高負荷時吸気弁閉弁タイミングょりも遅角側であって圧縮上死点近傍の タイミングにて前記燃料噴射手段から前記燃料を噴射させるように構成され得る これによれば、 吸気弁閉弁タイミングが火花点火燃焼運転時の中負荷時吸気弁 閉弁タイミングょりも進角側に設定されるので、 実圧縮比が大きく低下すること がない。 また、 燃料は拡散燃焼せしめられる。 この結果、 高圧縮比の下で安定し た燃焼を得ることができるので、 内燃機関の発生トルクを向上することができる この場合、
前記ビストンは同ビストンの頂面の中央部に形成されたキヤビティを備え、 前記燃料噴射手段は前記キヤビティに向けて前記燃料を噴射するように構成さ れ、
更に、
前記内燃機関が前記軽負荷領域よりも負荷が小さい極軽負荷領域にて運転され るとき、 前記内燃機関の負荷に応じた極軽負荷時吸気弁開弁タイミングにて前記 吸気弁を開弁するとともに同負荷に応じた極軽負荷時吸気弁閉弁タイミングにて 同吸気弁を閉弁し、 同極軽負荷時吸気弁閉弁タイミングより遅角側で圧縮上死点 までの圧縮行程の中期に前記燃料噴射手段から前記燃料を噴射して同噴射された 燃料を前記キヤビティに実質的に滞留せしめ、 同キヤビティ内にて均質混合気を 形成しながら圧縮することにより同燃料を自着火燃焼させる成層自着火燃焼運転 実行手段を備えることが好適である。
これによれば、 極軽負荷運転時であって燃料量が少ないときであっても、 キヤ ビティ内に自着火に十分な濃度の混合気を確実に形成できるので、 安定した自着 火燃焼を行うことができる。 この結果、 自着火運転を行うことができる運^ B域 をより軽負荷の領域まで拡大できるので、 N o Xの排出量をより低減し、 燃費を 一層向上することができる。
更に、 前記内燃機関は、
前記燃焼室内の圧力である筒内圧を検出する筒内圧検出手段と、
前記予混合圧縮自着火燃焼運転実行手段による自着火燃焼運転を実行している 場合、 1回の燃焼に対する圧縮行程開始から燃焼行程終了まで前記検出された筒 内圧を平均化した筒内圧平均値を求めるとともに、 過去複数回の燃焼に対する同 筒内圧平均値を平均化した平均筒内圧平均値を求め、 今回の燃焼に対する筒内圧 平均値と同平均筒内圧平均値との差の絶対値に基づく値が所定値より大きくなつ たとき前記成層自着火燃焼運転実行手段による自着火燃焼運転を実行するように 運転を切り換える運 S¾0換手段と、
を備えることが好適である。
これによれば、 予混合圧縮自着火燃焼運転実行手段による自着火燃焼が不安定 な状態となった力否かが、 「今回の燃焼に対する筒内圧平均値 P i」 と 「過去複 数回の燃焼に対する筒内圧平均値の平均である平均筒内圧平均値 P i avej との差 の絶対値 ( I P i - P i ave I ) に基づく値 Δ Ρが所定値より大きくなったか否か により判定される。 そして、 前記差の絶対値に基づく値 Δ Ρが前記所定値より大 きくなつたことにより、 予混合圧縮自着火燃焼運転実行手段による自着火燃焼が 不安定な状態となったと判定されると、 予混合圧縮自着火燃焼運転実行手段によ る自着火燃焼運転から成層自着火燃焼運転実行手段による自着火燃焼運転に運転 が切り換えられる。 従って、 内燃機関の運転状態が不安定になってトルク変動等 が生じる事態を回避することができる。
なお、 前記差の絶対値に基づく値 Δ Ρは、 前記差の絶対値 ( I P i - Ρ i ave | ) を前記平均筒内圧平均値 P i aveで除した値とすることが好適である。
更に、 前記内燃機関は、
前記燃焼室内の圧力である筒内圧を検出する筒内圧検出手段と、
前記予混合圧縮自着火燃焼運転実行手段による自着火燃焼運転を実行している 場合、 前記検出される筒内圧に基づいて筒内圧の単位時間又は単位クランク角あ たりの変化量である筒内圧変化率を求めるとともに、 同求められた筒内圧変化率 が所定変化率より大きくなったとき前記火花点火燃焼運転実行手段による火花点 火燃焼運転を実行するように運転を切り換える運転切換手段と、
を備えることが好適である。
これによれば、 均質混合気の予混合圧縮 着火燃焼に伴う騒音が過大となった 力否かが、 筒内圧変ィ匕率が所定変化率より大きくなった力否かにより判定される 。 そして、 筒内圧変化率が所定変化率より大きくなって均質混合気の予混合圧縮 自着火燃焼に伴う騒音が過大となったと判定されると、 予混合圧縮自着火燃焼運 転実行手段による自着火燃焼運転から火花点火燃焼運転実行手段による火花点火 燃焼運転に運転が切り換えられる。 従って、 騒音が過大となる事態を回避するこ とができる。
更に、 前記内燃機関は、
ノッキングを検出するノッキング検出手段と、
前記火花点火燃焼運転実行手段による火花点火燃焼運転を実行している場合、 前記検出されるノッキングに基づいてノッキングの発生頻度を求めるとともに、 同ノッキングの発生頻度が所定頻度より大きくなったとき前記拡散燃焼運転実行 手段による拡散燃焼 ¾ ^を実行するように ¾ ^を切り換える運転切換手段と、 を備えることが好適である。
これによれば、 ノッキングの頻度が過大となる前に火花点火燃焼運転実行手段 による火花点火燃焼運転から拡散燃焼運転実行手段による拡散燃焼運転に運転が 切り換えられる。'従って、 ノッキングの過度な発生を回避することができる。 な お、 ノッキング検出手段は、 筒内圧センサにより検出された筒内圧の変化に基づ いてノッキングの発生を検出するものであってもよく、 或いは、 内燃機関の振動 を検出するタイプの周知のノッキングセンサを用いていてノッキングを検出する ものであってもよい。
更に、 上述したキヤビティをビストン頂面に備えた内燃機関において、 前記キヤビティは、 有底の略円筒状であって同キヤビティの入り口を形成する 縁部の径が同キヤビティ内部の最大径ょりも小さくなるように形成されるととも に、 前記吸気スワールを同キヤビティ内に導入するためのスワール案内溝が同キ ャビティの外周部に形成されていることが好適である。
これによれば、 燃焼室に吸入される空気により発生するシリンダのボア壁面に 沿うスワール流を、 スワール案内溝によってキヤビティ内に効率的に取り込むこ とができる。 従って、 吸気スワールの旋回半径が小さくなるのでスワール流を強 めることができる。
この結果、 成層自着火燃焼運転実行手段による運転時において、 実質的にキヤ ビティ内のみに' (均質な) 混合気を容易に形成できるので、 N o Xの発生を抑制 することができる。 また、 予混合圧縮自着火燃焼運転実行手段による均質混合気 の自着火燃焼時及び火花点火燃焼運転実行手段による均質混合気の火花点火燃焼 時に、 キヤビティ外に形成される混合気をキヤビティ内に効率的に取り込むこと ができ,るので、 キヤビティ内に燃焼室全体の空気を利用した均質混合気を形成す ることができる。 .従って、 N o Xの発生を抑制するとともに熱効率 (燃費) の向 上を図ることができる。 更に、 拡散燃焼運転実行手段による拡散燃焼時には、 キ ャビティ内に生じる強いスワール流により燃料滴と空気 (酸素) とのミキシング を促進できるので、 拡散燃焼中の空気利用率を高めることができる。 その結果、 内燃機関の熱効率を向上することができる。 更に、 燃料滴周りに多量の酸素を存 在させることができるので、 スモークの発生を抑制することができる。
また、 前記火花発生手段は、 前記キヤビティの内周部に前記点火用火花を発生 する火花発生部を備えるように配置された点火ブラグであり、
更に、 前記内燃機関は、
前記内燃機関の始動時及び/又は同内燃機関の冷間時、 所定の始動冷間時吸気 弁開弁タ'ィミングにて前記吸気弁を開弁するとともに所定の始動冷間時吸気弁閉 弁タイミングにて同吸気弁を閉弁し、 同始動冷間時吸気弁閉弁タイミングより遅 角側で圧縮上死点までの圧縮行程の後期に前記燃料噴射手段から前記燃料を噴射 させることにより同噴射された燃料を前記キヤビティに実質的に滞留せしめて同 キヤビティ内に成層混合気を形成し、 同形成された成層混合気を前記火花発生手 段による点火用火花によって点火させて同燃料を火花点火燃焼させる始動冷間時 成層火花点火燃焼運転実行手段を備えることが好適である。
内燃機関の始動時又は冷間時においては、 混合気の温度が上昇し難いので、 自 着火燃焼が不安定になり易い。 そこで、 上記構成のように、 吸気弁の閉弁後であ つて圧縮上死点までの圧縮行程の後期に燃料噴射手段から燃料を噴射させること により同燃料をキヤビティに実質的に滞留せしめ、 キヤビティに生成されている スワールによってキヤビティの内周部に成層混合気を形成しておき、 その成層混 合気をキヤビティの内周部に火花発生部を備えた点火プラグにより点火させる。 このよう.にすれば、 内燃機関の始動性が向上し、 或いは、 冷間時に安定した燃焼 を得ることができる。
一方、 前記内燃機関において、
前記キヤビティは、 有底の略円筒状であって同キヤビティの入り口を形成する 縁部の径が同キヤビティ内部の最大径ょりも小さくなるように形成されるととも に、 前記吸気スワールを同キヤビティ内に導入するためのスワール案内溝が同キ ャビティの外周部に形成され、
前記点火ブラグは、 前記スワール案内溝に沿うように配置されることができる これによれば、 点火プラグをスワール案内溝に配置できるので、 点火プラグの 火花発生部をキヤビティの内周部に容易に配置することができる。
更に、 前記キヤビティの壁面に断熱層が形成されることが好適である。
これによれば、.キヤビティ内に残留する燃焼ガスが冷却し難くなるので、 自着 火燃焼に供される混合気の温度を高い温度にすることができ、 自着火燃焼を安定 して行うことが可能となる。 更に、 キヤビティに向けて噴射される燃料の気化を 促進することができるので、 拡散燃焼時において発生するスモークの量を低減す ることができる。
更に、 本発明による内燃機関は過給機を備え、
前記予混合圧縮自着火燃焼運転実行手段、 前記火花点火燃焼運転実行手段及び 前記拡散燃焼運転実行手段のそれぞれは、
( 1 ) 前記吸気弁を開弁する前に前記排気弁を閉弁して同排気弁の閉弁タイミン グから同吸気弁の開弁タイミングまでの期間である負のオーバーラップ期間を発 生せしめるとともに、
( 2 ) 前記内燃機関の負荷が大きくなるほど同負のオーバーラップ期間が短くな るように同排気弁の閉弁タイミング及ぴ同吸気弁の開弁タイミングを制御するよ うに構成されることが好適である。
同様に、 本発明による内燃機関は過給機を備え、
前記成層自着火燃焼運転実行手段、 前記予混合圧縮自着火燃焼運転実行手段、 前記火花点火燃焼運転実行手段及び前記拡散燃焼運転実行手段のそれぞれは、
( 1 ) 前記吸気弁を開弁する前に前記排気弁を閉弁して同排気弁の閉弁タイミン グから同吸気弁の開弁タイミングまでの期間である負のオーバーラップ期間を発 生せしめるとともに、
( 2 ) 前記内燃機関の負荷が大きくなるほど同舞のオーバーラップ期間が短くな るように同お気弁の閉弁タイミング及び同吸気弁の開弁タイミングを牢 lj御するよ うに構成されることが好適である。
これらによれば、 燃焼ガスを燃焼室内に封じこめた状態となる所謂 「負のォー バーラップ期間 (負のパルプオーバーラップ期間) 」 が設けられ、 しかも、 その 負のオーバーラップ期間は内燃機関の負荷が大きくなるほど短くなるように設定 される。 従って、 軽負荷領域の負荷又は同負荷より小さい負荷の領域で内燃機関 が運転される場合には、 負のオーバーラップ期間により燃焼室内に導入される空 気量が制御され得る。 また、 軽負荷領域の負荷よりも大きな負荷の領域で內燃機 関が運転される場合には、 過給機による過給と負のオーバーラップ期間とにより 燃焼室内に導入される空気量が制御され得る。 この結果、 内燃機関の吸気通路に 配設されるスロットルパルプを略全開に維持することが可能となるので、 スロッ トルバルブの絞りによるエネルギー損失が低減され、 内燃機関の燃費を改善する ことができる。
また,、 前記内燃機関において、
前記燃料噴射手段は、 燃料の嘖射角を狭角としながら噴射する第 1噴射状態と、 同燃料の嘖射角を同 狭角及び同狭角よりも角度の大き 、広角としながら噴射する第 2噴射状態との何 れかの状態にて同燃料を噴射し得るように構成され、
前記成層自着火燃焼運転実行手段は、 前記燃料を前記燃料噴射手段から前記第 1噴射状態にて噴射せしめるように構成され、
前記予混合圧縮自着火燃焼運転実行手段、 前記火花点火燃焼運転実行手段及び 前記拡散燃焼運転実行手段のそれぞれは、 前記燃料を前記燃料噴射手段から前記 第 2噴射状態にて噴射せしめるように構成されることが好適である。
前述したように、 成層自着火燃焼運転実行手段により混合気を自着火燃焼させ る場合の燃料噴射時期は、 圧縮行程中期である。 従って、 燃料が噴射されるタイ ミングにおいては、 燃料噴射手段とキヤビティが形成されているビストン頂面と の距離が比較的大きい。 このため、 上記構成のように、 成層自着火燃焼運転実行 手段により混合気を自着火燃焼させる場合、 燃料を頂角が狭角の円錐形状 (コー ン状) に噴射することにより、 噴射された燃料をピストン頂面に形成されたキヤ ビティ内に確実に導入することができる。 この結果、 自着火燃焼に寄与しないキ ャビティ外の燃料の量を低減することができるので、 未燃 H Cの発生を抑制する ことができるとともに、 燃費を向上することができる。
更に、 上記構成によれば、 予混合圧縮自着火燃焼運転時及び火花点火燃焼運転 時においては、 スワールが最も強くなる時期である吸気行程の初期及び Z又は中 期において、 燃料は頂角が狭角及び広角の円錐形状 (コーン状) に噴射される。 従って、 噴射された燃料は燃焼室全体に行き渡り、 且つ、 強いスワール流に乗つ て燃焼室内にて攪拌される。 従って、 燃焼室内に存在する全空気が均質混合気の 形成に利用されるので、 N o Xの排出量をより低減し、 熱効率 (燃費) の向上を 図ることができる。
この場合、
前記燃料噴射手段は、 ニードルが低リフト状態及び高リフト状態の何れの状態 にあるときにも開かれて燃料を噴射する狭角嘖射孔群と、 同ニードルが同高リフ ト状態にあるときにのみ開かれて燃料を噴射する広角噴射孔群と、 を備えた燃料 噴射弁であり、
前記成層自着火燃焼運転実行手段は、 前記ニードルを前記低リフト状態とする ことにより前記燃料を前記第 1噴射状態にて噴射せしめるように構成され、' 前記予混合圧縮自着火燃焼運転実行手段、 前記火花点火燃焼運転実行手段及び 前記拡散燃焼運転実行手段のそれぞれは、 前記-一ドルを前記高リフト状態とす ることにより前記燃料を前記第 2噴射状態にて噴射せしめるように構成されるこ とが好適である。 . これによれば、 簡単な構成により、 各運転状態に応じた上述の噴射状態にて燃 料を噴射することができる。 また、 燃料噴射弁の燃料噴射量のダイナミックレン ヂ (燃料噴射量の最小量と最大量との差) を大きくすることが容易に可能となる ので、 高負荷時においても十分な量の燃料を噴射することができる。
このような燃料噴射弁を備えた内燃機関において、
前記燃料噴射弁は前記狭角噴射孔ょりも前記広角噴射孔を多く備え、 前記広角 噴射孔の径は前記狭角噴射孔の径よりも小さく形成され、
更に、
前記内燃機関の負荷が大きくなるほど前記燃料噴射弁から噴射される燃料の圧 力を大きくする燃料噴射圧力調整手段を備えることが好適である。
これによれば、 以下の利点がある。
( 1 ) 極軽負荷時 (成層自着火燃焼運転実行手段による運転時) には、 径が相対 的に大きな狭角噴射孔から燃料が噴射され、 且つ、 噴射される燃料の圧力が比較 的小さいため、 燃料滴の粒径が大きくなる。 従って、 燃料をキヤビティ内に確実 に到達させることができる。
( 2 ) 軽負荷時〜中負荷時 (予混合圧縮自着火燃焼運転実行手段及び火花点火燃 焼運転実行手段による運転時) には、 燃料が狭角噴射孔からのみでなく広角噴射 孔からも噴射される。 この結果、 広角噴射孔から噴射されることにより粒径が小 さく広角に噴射された燃料滴と狭角噴射孔から噴射されることにより粒径が大き く狭角に噴射された燃料滴とにより、 燃焼室内の空気と燃料とが十分に混合され る。 これにより、 燃焼室内に存在する全空気が均質混合気の形成に利 されるよ うになるので、 N o Xの排出量をより低減し、 熱効率 (燃費) の向上を図ること ができる。 .
( 3 ) 高負荷時 (拡散燃焼運転時) には、 燃料が狭角噴射孔からのみでなく広角 噴射孔からも噴射される。 また、 噴射される燃料の圧力が比較的大きい。 従って 、 広角噴射孔から噴射される燃料の粒径が小さくなるので、 その燃料滴と空気 ( 酸素) とが +分にミキシングされる。 この結果、 内燃機関の熱効率を向上するこ とができる。 更に、 燃料滴周りに多量の酸素を存在させることができるので、 ス モークの発生を効果的に抑制することができる。
•一方、 前記内燃機関は、
クランク角が 3 6 0度回転する毎に、 前記燃焼室と同燃焼室内に吸気スワール を生成するように構成された吸気ポートとを遮断した状態にて同燃焼室と排気ポ -トとを連通して排気行程を開始し、 次いで同燃焼室と同吸気ポートとを連通し て掃気行程を開始し、 次いで同燃焼室と同排気ポートとを遮断して吸気行程を開 始し、 次いで同燃焼室と同吸気ポートとを遮断して圧縮行程を開始した後に同状 態にて燃焼行程を迎える 2サイクル運転を行うように構成され得る。
このような 2サイクル内燃機関は、 高温の燃焼ガスを次の燃焼に供される混合 気の温度を上昇させるために直ちに利用することができるので、 自着火燃焼を安 定して行うことが可能となる。 従って、 自着火燃焼運転を行う運 域をより低 負荷側の領域にまで拡大できるので、 N O xの排出量を少なくし、 且つ、 燃費を 改善することができる。
この場合、 前記内燃機関は、
前記内燃機関が前記軽負荷領域よりも負荷が小さい極軽負荷領域にて運転され るとき、 前記圧縮行程の中期に前記燃料噴射手段から前記燃料を噴射して同噴射 された燃料を前記キヤビティに実質的に滞留せしめ、 同キヤビティ内にて均質混 合気を形成しながら圧縮することにより同燃料を自着火燃焼させる成層自着火燃 焼運転実行手段を備えることが好適である。
これによれば、 極軽負荷運転時であって燃料量が少ないときであっても、 キヤ ビティ内に自着火に十分な濃度の混合気を確実に形成できるので、 安定した自着 火燃焼を行うことができる。 この結果、 自着火運転を行うことができる運転領域 をより軽負荷の領域まで拡大できるので、 N o Xの排出量をより低減し、 燃費を 一層向上することができる。
更に、 この場合、
前記予混合圧縮自着火燃焼運転実行手段は、
前記燃焼室と前記吸気ポートとが連通されてから遮断されるまでの期間におい て同燃焼室内に吸入される空気によるスワールが最も強くなる時期に前記燃料噴 射手段から前記燃料を噴射することにより前記均質混合気を形成するように構成 されることが好適である。
これによれば、 強!/、吸気スヮールによつて燃焼室全体の空気と噴射された燃料 とが混合されるので、 燃料の空間的分布が一様な均質混合気が形成される。 その 結果、 N o Xの排出量を低減し、 熱効率 (燃費) の向上を図ることができる。 更に、 前記拡散燃焼運転実行手段は、
前記圧縮行程であって上死点近傍のタイミングにて前記燃料噴射手段から前記 燃料を噴射して前記燃料を拡散燃焼させるとともに、 同拡散燃焼運転が行われる 前記高負荷領域において火花点火燃焼を行ったと仮定したときにノッキングの過 度の発生を回避するように設定される前記燃焼室と前記吸気ポートとの遮断を行 ぅタイミングょりも進角側のタイミングにて、 同燃焼室と同吸気ポートとの遮断 を行うように構成されることが好適である。
これによれば、 燃焼室と吸気ポートとの遮断タイミングが、 火花点火燃焼を行 つたと仮定したときにノッキングの過度の発生を回避するように設定される燃焼 室と吸気ポートとの遮断を行うタイミングょりも進角側のタイミングとなるので 、 実圧縮比が大きく低下することがない。 また、 燃料は拡散燃焼により燃焼せし められる。 この結果、 高圧縮比の下で安定した燃焼を得ることができるので、 内 燃機関の発生トルクを向上することができる。
本発明による内燃機関の他の態様は、 - クランク角が 3 6 0度回転する毎に、 前記燃焼室と同燃焼室内に吸気スワール を生成するように構成された吸気ポートとを遮断した状態にて同燃焼室と排気ポ ートとを連通して排気行程を開始し、 次いで同燃焼室と同吸気ポートとを連通し て掃気行程を開始し、 次いで同燃焼室と同排気ポートとを遮断し且つ同燃焼室と 同吸気ポートとを遮断して圧縮行程を開始した後に同状態にて燃焼行程を迎える 2サイクル運転を行うように構成されるとともに、
前記内燃機関が前記軽負荷領域よりも負荷が小さい極軽負荷領域にて運転され るとき、 前記圧縮行程の中期の極軽負荷時噴射タイミングにて前記燃料噴射手段 から前記燃料を噴射して同噴射された燃料を前記キヤビティに実質的に滞留せし め、 同キヤビティ内にて均質混合気を形成しながら圧縮することにより同燃料を 自着火燃焼させる成層自着火燃焼運転実行手段と、
前記吸気ポートを介して前記燃焼室に流入する空気を圧縮する過給機と、 を備え 内燃機関である。
更に、
前記ビストンは、 同ビストンの頂面の中央部に形成されたキヤビティを備え、 前記燃料噴射手段は、 前記シリンダへッドの下面であって前記シリンダのボア の略中央部に配置され且つ前記キヤビティに向けて前記燃料を噴射する燃料噴射 弁であり、 .
前記排気ポートは、 その一端が前記シリンダへッドの下面であって前記燃料噴 射弁の周囲に形成された開口部を構成するとともに、 同開口部が同開口部に配設 された排気弁により開かれることにより前記燃焼室と連通させられ且つ同排気弁 により閉じられることにより同燃焼室と遮断させられるように構成され、
前記吸気ポートは、 その一端が前記シリンダのポア壁面に形成された開口部を 構成するとともに、 同開口部が前記ピストンが上死点から下死点に向けて移動す る際に同ビストンの側壁により開かれることにより前記燃焼室と連通させられ且 つ同ピストンが下死点から上死点に向けて移動する際に同ピストンの側壁により 閉じられることにより同燃焼室と遮断させられるように構成される。 つまり、 こ の内燃機関は、 所謂 「ュニフロー型の 2サイクル内燃機関」 である。
このようなュニフ口一型の 2サイクル内燃機関におレ、て、
前記予混合圧縮自着火燃焼運転実行手段は、 前記極軽負荷時噴射タイミングょ りも進角側の軽負荷時噴射タイミングにて前記燃料噴射手段から前記燃料を噴射 することにより前記均質混合気を形成するように構成され、
前記拡散燃焼運転実行手段は、 前記極軽負荷時噴射タイミングょりも遅角側の 上死点近傍のタイミングであって前記圧縮行程中のタイミングである高負荷時噴 射タイミングにて前記燃料噴射手段から前記燃料を噴射して前記燃料を拡散燃焼 させるように構成されることが好適である。
このようなュニフロー型の 2サイクル内燃機関は、 高温の燃焼ガスを次の燃焼 に供される混合気の温度を上昇させるために直ちに禾 U用することができるので、 自着火燃焼を安定して行うことが可能となる。 従って、 自着火燃焼運転を行う運 転領域をより低負荷側の領域にまで拡大できる。 この結果、 実用領域において自 着火燃焼運転することができるので、 内燃機関の NO xの排出量を少なくし、 且 つ、 燃費を改善することができる。
更に、 吸気弁及び排気弁をシリンダヘッドに備えた通常の内燃機関は、 負荷が 大きくなるに従って吸気弁閉弁タイミングが遅角側に移行するので、 高負荷領域 において実行程容積 (実圧縮行程容積) が低下してしまうのに対し、 このュニフ ロー型の 2サイクル内燃機関は、 そのような実行程容積の低下を招カゝず、 実圧縮 比を高く維持することができる。 この結果、 前記内燃機関は、 大きな最大トルク を発生することができる。
加えて、 高負荷領域において、 過給機による過給と拡散燃焼とを行うことによ り、 ノッキングを伴わない安定な燃焼を維持することができる。 この結果、 前記 内燃機関は、 大きな最大トルクを発生することができる。 . 図 面 の 簡 単 な .説 明
図 1は、 本発明の第 1実施形態に係る内燃機関の概略構成図である。
図 2は、 図 1に示した燃焼室及び燃焼室に関連する部分をシリンダの軸線を通 る平面にて切断した断面図である。
図 3は、 図 1に示したピストンの頂面の正面図である。
図 4は、 図 1に示した燃料噴射弁の先端部の縦断面図である。
図 5は、 図 1に示した燃料噴射弁の先端部の正面図である。
図 6は、 図 1に示した電気制御装置の C P Uが所定のプロダラムを実行するこ とにより達成される機能を表すブロック図である。
図 7は、 図 6に示した運転切換手段が参照する運転領域マップを示した図であ る。
図 8,は、 図 1に示した内燃機関のバルブタイミング、 燃料噴射時期 (燃料噴射 タイミング) 及び点火時期を表す図である。 図 9は、 図 6に示した成層自着火燃焼運転実行手段により燃料が噴射されたと きの様子を示した図である。
図 1 0は、 図 6に示した予混合圧縮自着火燃焼運転実行手段及び火花点火燃焼 運転実行手段のレヽずれかにより燃料が噴射されたときの様子を示した図である。 図 1 1は、 図 6に示した拡散燃焼運転実行手段により燃料が噴射されたときの 様子を示した図である。
図 1 2は、 本発明の第 3実施形態に係る内燃機関が備える電気制御装置の C P Uが所定のプログラムを実行することにより達成される機能を表すブロック図で ある。
図 1 3は、 図 1 2に示した運転切換手段が参照する運転領域マップを示した図 図 1 4は、 本発明の第 3実施形態に係る内燃機関のバルブタイミング及び燃料 噴射タイミングを表す図である。
図 1 5は、 本発明の第 4実施形態に係る内燃機関の作動の概略を説明するため の図である。 '
図 1 6は、 本発明の第 4実施形態に係る内燃機関の概略構成図である。
図 1 7は、 図 1 6に示した内燃機関のシリンダ、 吸気サージタンク及び吸気ポ ートを同シリンダの軸線に直交する断面にて切断した断面図である。
図 1 8は、 図 1 6に示したシリンダへッドの下面を燃焼室側から見た図である 図 1 9は、 図 1 6に示した駆動アームの正面図である。
図 2 0は、 図 1 6に示した内燃機関が備える電気制御装置の C P Uが所定のプ ログラムを実行することにより達成される機能を表すブロック図である。
図 2 1は、 図 1 6に示した内燃機関の排気弁開閉タイミング、 P及気ポート開閉 タイミング及び燃料噴射タイミングを表す図である。 発明を実施するための最良の形態
く第 1実施形態〉
以下、 本発明による内燃機関の各実施形態について図面を参照しつつ説明する 。 図 1は、 本発明の第 1実施形態に係る内燃機関 1 0の概略構成を示している。 なお、 図 1は、 特定気筒の断面のみを示しているが、 他の気筒も同様な構成を備 えている。
この内燃機関 1 0は、 クランク角が 7 2 0度回転する毎に吸気、 圧縮、 燃焼及 び排気の各行程を迎える 4サイクル運転を行うように構成されたビストン往復動 型 4サイクル内燃機関である。 内燃機関 1 0に使用される燃料はガソリンである 内燃機関 1 oは、 シリンダブ口ック、 シリンダブ口ックロヮーケース及びオイ ルパン等を含むシリンダブロック部 2 0と、 シリンダブロック部 2 0の上に固定 されるシリンダへッド部 3 0と、 シリンダブ口ック部 2 0に空気を供給するため の吸気系統 4 0と、 シリンダブロック部 2 0からの排ガス (燃焼ガス) を外部に 放出するためのお^気系統 5 0とを含んでいる。
シリンダブ口ック部 2 0は、 中空円筒状のシリンダ 2 1、 ピストン 2 2、 コン ロッド 2 3及びクランク軸 2 4を含んでいる。 ピストン 2 2はシリンダ 2 1内を 往復動し、 ビストン 2 2の往復動がコンロッド 2 3を介してクランク軸 2 4に伝 達され、 これにより同クランク軸 2 4が回転するようになっている。 シリンダ 2 1のボア壁面、 ピストン 2 2の頂面 (ピストンヘッド) 及ぴシリンダヘッド部 3 0の下面は、 燃焼室 2 5を形成している。
シリンダへッド部 3 0は、 燃焼室 2 5に接続された吸気ポート 3 1、 吸気ポー ト 3 1を開閉する吸気弁 3 2、 吸気弁 3 2を駆動する吸気弁駆動手段としての吸 気弁駆動機構 3 2 a、 燃焼室 2 5に接続された排気ポート 3 3、 排気ポート 3 3 を開閉する排気弁 3 4、 排気弁 3 4を駆動する排気弁駆動手段としての排気弁駆 動機構 3 4 a、 点火プラグ 3 5、 点火プラグ 3 5に与える高電圧を発生させるィ グニッションコイルを含むィグナイタ 3 6、 燃料を燃焼室 2 5内に直接噴射する 燃料噴射弁 (燃料噴射手段) 3 7、 燃料の蓄圧室を含む燃料圧力調整手段 3 8 a 及び燃料ポンプ 3 8 bを備えている。 吸気弁駆動機構 3 2 a及び排気弁駆動機構 3 4 aは、'駆動回路 3 9に接続されている。
吸気ポート 3 1は、 周知のスワールポート (又はヘリカルポート) であって、 吸気ポート 3 1及ぴ吸気弁 3 2の周囲を介して燃焼室 2 5に流入する空気により 、 燃焼室 2 5内にシリンダ 2 1のボア壁面に沿う吸気スワール (横スワール) を 形成するようになっている。 即ち、 吸気ポート 3 1はスワール生成手段を構成し ている。
点火プラグ 3 5及びィグナイタ 3 6は、 燃焼室 2 5に点火用火花を発生する火 花発生手段を構成している。
燃料圧力調整手段 3 8 aは、 内燃機関 1 0の負荷が増大するほど圧力が高くな る高圧燃料を燃料噴射弁 3 7に供給するようになっている。 燃料ポンプ 3 8 bは 、 図示しない燃料タンク内の燃料を 料圧力調整手段 3 8 aへ圧送するようにな つている。
吸気系統 4 0は、 吸気ポート 3 1に連通し同吸気ポート 3 1とともに吸気通路 を形成するインテークマ二ホールドを含む吸気管 4 1、 吸気管 4 1に連通したサ ージタンク 4 2、.サージタンク 4 2に一端が接続された吸気ダクト 4 3、 吸気ダ タト 4 3の他端部から下流 (吸気管 4 1 ) に向けて順に吸気ダクト 4 3に配設さ れたエアフィルタ 4 4、 ターボチャージャ 8 1のコンプレッサ 8 1 a、 バイパス 流量調整弁 (A B V) 4 5、 インタークーラ 4 6及びスロットルバルブ 4 7を備 えている。
吸気系統 4 0は、 更に、 パイパス通路 4 8を備えている。 バイパス通路 4 8の 一端はバイパス流量調整弁 4 5と接続され、 他端はインタークーラ 4 6とスロッ トルバルブ 4 7の間の位置にて吸気ダクト 4 3に接続されている。 パイパス流量 調整弁 4 5は、 駆動信号に応答して図示しないパルプ開度を変更することにより 、 インタークーラ 4 6へ流入する空気量とインタークーラ 4 6をパイパスする空 気量 (バイパス通路 4 8へ流入する空気量) とを調整できるようになつている。 ィンタークーラ 4 6は水冷式であって、 吸気ダクト 4 3を通過する空気を冷却 するようになつている。 インタークーラ 4 6は、 インタークーラ 4 6内の冷却水 の熱を大気中に放出するラジェタ 4 6 aと、 インタークーラ 4 6とラジェタ 4 6 aの間で冷却水を循環させる循環ポンプ 4 6 bと、 に接続されている。
スロットノレバルブ 4 7は吸気ダクト 4 3に回転可能に支持され、 スロットルバ ルプアクチユエータ 4 7 aにより駆動されることにより吸気通路の開口断面積を 可変とするようになつている。
排気系統 5 0は、 排気ポート 3 3に連通し同排気ポート 3 3とともに排気通路 を形成するェキゾーストマ二ホールドを含む排気管 5 1、 排気管 5 1に配設され たターボチャージャ (過給機、 過給手段) 8 1のタービン 8 1 b、 タービン 8 1 bをバイパスするように両端が同タービン 8 1 bの上流及び下流において排気管 5 1に連通されたウェストゲート通路 5 2、 ウェストゲート通路 5 2に配設され た過給圧調整弁 5 2 a及びタービン 8 1 bの下流の排気管 5 1に配設された三元 触媒装置 5 3を備えている。
ターボチャージャ 8 1のタービン 8 1 bは排ガスのエネルギーにより回転し、 これにより吸気系統 4 0のコンプレッサ 8 1 aが回転して空気を圧縮する。 この 結果、 ターボチャージャ 8 1は、 P及気通路の空気を圧縮して燃焼室 2 5に空気を 過給するようになっている。
ここで、 燃焼室 2 5及び燃焼室 2 5に関連する部分の構造について、 図 2及び 図 3を参照しながら詳述する。 図 2は燃焼室 2 5及び燃焼室 2 5に関連する部分 をシリンダ 2 1の軸線を通る平面にて切断した断面図、 図 3はピストン 2 2の頂 面の正面図である。
シリンダへッド部 3 0の下面 3 0 aは、 図 2に示したように、 所謂ペントルー フ型燃焼室を構成するシリンダへッド下面と同様な形状となっている。 図 3に示 したように、 一つの気筒 (燃焼室 2 5 ) には、 二つの吸気弁 3 2と二つの排気弁 3 4とが配設されている。 即ち、 内燃機関 1 0は、 所謂 「4パルプエンジン」 で め 。
ピストン 2 2の頂面 2 2 aの周部は、 図 2に示したように、 シリンダへッド下 面 3 0 aに沿うように I斜している。 ピストン 2 2の頂面 2 2 aの中央にはキヤ ビティ (凹部) 2 2 bが形成されている。 キヤビティ 2 2 bは有底の略円筒形状 をなしている。 キヤビティ 2 2 bの入り口を形成する縁部の径は、 キヤビティ 2 2 bの内部の最大径よりも小さくなつている。 キヤビティ 2 2 bの壁面 (表面) には、 チタン或いはセラミックからなる断熱層 (ピストン 2 2を構成する材質 ( 例えば、 ァノレミニゥム) より熱伝達率が小さい材質からなる層) 2 2 cが形成さ れている。
吏に、.キヤビティ 2 2 bの外周部には、 図 2及ぴ図 3に示したように、 燃焼室 2 5に流入する空気により形成される吸気スワールをキヤビティ 2 2 b内に導入 するためのスワール案内溝 2 2 dが複数箇所 (本例では 3箇所) に形成されてい る。 スワール案内溝 2 2 dを構成する面は傾斜している。 この傾斜面の角度は、 スワール案内溝 2 2 dの幅 (ビス トン 2 2の頂面 2 2 aの中心からスワール案内 溝 2 2 dの外周までの距離) が小さくなるに従って、 ピストン 2 2の頂面 2 2 a に沿った角度からピストン 2 2の頂面 2 2 aに対して略垂直な角度に向けて次第 に増カ卩している。
また、 スワール案内溝 2 2 dの一つは、 図 3に示したように、 ピストン 2 2の 頂面 2 2 aの正面視において、 その案内溝開始位置 S tがーつの吸気弁 3 2に対 向する位置に形成され、 その案内溝終了位置 E nが他の一つの吸気弁 3 2に対向 する位置に形成されている。 このスワール案内溝 2 2 dを便宜上 「特定スワール 案内溝」 と称呼する。
点火プラグ 3 5は、 二つの吸気ポー小 3 1 (従って、 二つの吸気弁 3 2 ) の間 に酉己置され、 キヤビティ 2 2 bの内周部 (キヤビティ 2 2 bの内側の周部) に点 火用火花を発生する火花発生部 3 5 aを備えるように配置された突き出しプラグ である。 点火プラグ 3 5の先端部近傍 (火花発生部 3 5 aの近傍) は、 ピストン 2 2が上死点近傍位置に到達したとき、 前述した特定スヮール案内溝に沿うよう に (特定スワール案内溝を構成する傾斜面と平行な角度で同傾斜面に沿うように ) 配置されている。
燃料噴射弁 3 7は、 その噴孔がシリンダへッド下面 3 0 aであって燃焼室 2 5 の中心位置に露呈し、 且つ、 ピストン 2 2のキヤビティ 2 2 bに向けてガソリン 燃料を噴射するように、 シリンダへッド部 3 0に配設されている。
燃料噴射弁 3 7は、 その先端部の縦断面図である図 4及び先端部の正面図であ る図 5に示したように、 ノズルボディ 3 7 aとニードル 3 7 bと図示しない二つ のソレノイドを含む電磁機構 (リフト量制御手段) とを備えたインジェクタであ る。
ノズルボディ 3 7 aは、 略円筒状であって、 先端に向うにつれて径が小さくな つている。 ノズルボディ 3 7 aの先端部は、 半球状になっている。 ノズルボディ 3 7 aの内部には、 ニードル 3 7 bを収容する空間が形成されている。 この空間 は、 大径部 3 7 a 1と小径部 3 7 a 2とを含んでいる。 大径部 3 7 a 1は、 中空 円筒状であってノズルボディ 3 7 aの基端側に位置している。 小径部 3 7 a 2は 、 大径部 3 7 a 1の径ょりも小さい径を有する中空円筒状である。 小径部 3 7 a 2は、 大径部 3 7 a 1からノズルボディ 3 7 aの先端部に向けて延設されている 。 小径部 3 7 a 2の頂部は、 円錐形状となっている。
ノズルボディ 3 7 aの半球状の先端部には、 複数 (本例では 4個) の狭角噴射 孔 3 7 cと、 複数 (本例では 8個) の広角噴射孔 3 7 dが形成されている。 広角 噴射孔 3 7 dの数は、 狭角噴射孔 3 7 cの数よりも多い。 複数の狭角噴射孔 3 7 cを狭角噴射孔群と称呼し、 複数の広角噴射孔 3 7 dを広角噴射孔群と称呼する 狭角噴射孔 3 7 cは、 ノズノレボディ 3 7 aの最先端近傍において同ノズルボデ ィ 3 7 aに放射状に形成されている。 複数の狭角嘖射孔 3 7 cは、 互いに等距離 を隔てて配列されている。 各狭角噴射孔 3 7 cの軸線とノズルボディ 3 7 aの軸 線とのなす角度は 0 1である。
広角噴射孔 3 7 dは、 狭角噴射孔 3 7 cよりもノズルボディ 3 7 aの基端側に おいて同ノズルボディ 3 7 aに放射状に形成されている。 複数の広角.噴射孔 3 7 dは、 互いに等距離を隔てて配列されている。 各広角噴射孔 3 7 dの軸線とノズ ルボディ 3 7 aの軸線とのなす角度は Θ 2である。 角度 Θ 2は角度 0 1より大き い。 広角噴射孔 3 7 dの径は、 狭角噴射孔 3 7 cの径より小さい。
ニードル 3 7 bは、 円筒状の基部 3 7 b 1と円筒状の先端部 3 7 b 2とを含ん でいる。 基部 3 7 b 1の径は大径部 3 7 a 1の径より僅かだけ小さい。 基部 3 7 b 1は大径部 3 7 a 1に収容されている。 先端部 3 7 b 2の径は小径部 3 7 a 2 の径ょりも僅かだけ小さい。 従って、 先端部 3 7 b 2の径は基部 3 7 b 1の径ょ りも小さい。 先端部 3 7 b 2は、 基部 3 7 b 1からニードル 3 7 bの先端側に突 出するように形成され、 少径部 3 7 a 2に収容されている。
ニードル 3 7 bの先端部 3 7 b 2の頂部は円錐台状である。 ニードル 3 7 bが リフトされていないとき、 この円錐台状の項面 (上面) の周部 (縁部) は、 ノズ ルポディ 3 7 aの小径部 3 7 a 2の円錐状頂部をなす内壁面に当接するようにな つている。 これにより、 ニードル 3 7 bがリフトされていないとき、 ニードル 3 7 bの先端部 3 7 b 2の頂面とノズルボディ 3 7 aの小径部 3 7 a 2の円錐状頂 部との間に密閉空間 Sが形成される。
ニードル 3 7 bには、 軸線に沿った細径の燃料通路 3 7 b 3力 図示しない基 部 3 7 b 1側の燃料供給部とニードル 3 7 bの先端部 3 7 b 2の頂面とを連通す るように形成されている。 従って、 ニードル 3 7 bがリフトされていないとき、 燃料通路 3 7 b 3の先端側開口は、 前述した密閉空間 Sのみに臨んでいる。 狭角 噴射孔 3 7 cは、 この密閉空間 Sよりも外側に形成されている。 従って、 エード ル 3 7 bがリフトされていないとき、 密閉空間 Sと狭角嘖射孔 3 7 cとは遮断さ れている。 - ニードル 3 7 bは、 図示しない第 1のソレノイドが通電されたとき、 図 4に破 線により示した位置 L Lまで移動するようになっている。 即ち、 ニードル 3 7 b のリフト量は低リフト量となる。 これにより、 燃料通路 3 7 b 3及び密閉空間 S と狭角噴射孔 3 7 cとが連通する。 一方、 燃料通路 3 7 b 3及び密閉空間 Sと広 角噴射孔 3 7 dとは遮断されている。 この結果、 燃料通路 3 7 b 3を介して密閉 空間 Sに供給される燃料は、 狭角噴射孔 3 7 cのみから噴射される。 即ち、 ニー ドル.3 7 bのリフト量が低リフト量となると、 燃料の噴射角を狭角としながら噴 射する第 1噴射状態が実現される。
ニードル 3 7 は、 図示しない第 1のソレノィド及ぴ第 2のソレノィドの両者 が通電されたとき、 図 4に二点鎖線により示した位置 H Lまで移動するようにな つている。 位置 H Lは、 位置 L Lよりもノズルボディ 3 7 aの基端側の位置であ る。 即ち、 エードル 3 7 bのリフト量は高リフト量となる。 これにより、 燃料通 路 3 7 b 3及び密閉空間 Sと狭角噴射孔 3 7 cとが連通するとともに、 燃料通路 3 7 b 3及び密閉空間 Sと広角噴射孔 3 7 dとが連通する。 この結果、 燃料通路 3 7 b 3を介して密閉空間 Sに供給される燃料は、 狭角噴射孔 3 7 c及び広角噴 射孔 3 7 d力 ら噴射される。 即ち、 ニードル 3 7 bのリフト量が高リフト量とな ると、 燃料の噴射角を狭角及び同狭角よりも角度の大きい広角としながら噴射す る第 2噴射状態が実現される。
再び図 1を参照すると、 この内燃機関 1 0は、 エアフローメータ 6 1、 クラン クポジションセンサ 6 2、 筒内圧検出手段としての筒内圧センサ 6 3、 冷却水温 センサ 6 4、 ァクセル開度センサ 6 5及び電気制御装置 7 0を含んで 、る。
エアフローメータ 6 1は吸入された空気量を表す信号を出力するようになって いる。 クランクポジションセンサ 6 2は、 クランク軸 2 4が 1 0 ° 回転する毎に 幅狭のパルスを有するとともに同クランク軸 2 4が 3 6 0 ° 回転する毎に幅広の パルスを有する信号を出力するようになっている。 この信号は、 エンジン回転速 度 N Eを表す。 筒内圧センサ 6 3は、 燃焼室 2 5内の圧力 (筒内圧) Pを表す信 号を出力するようになっている。 冷却水温センサ 6 4は、 内燃機関 1 0の冷却水 の温度 THWを表す信号を出力するようになっている。 アクセル開度センサ 6 5 は、 運転者によって操作されるアクセルペダル 6 6の操作量 Accpを表す信号を出 力するようになっている。
電気制御装置 7 0は、 互いにバスで接続された所定のプログラムを実行する C P U 7 1と、 C P U 7 1が実行するプログラム、 テーブル (ルックアップテープ ル、 マップ) 及ぴ定数等を予め記憶した R OM 7 2と、 C P U 7 1が必要に応じ てデータを一時的に格納する R AM 7 3と、 電源が投入された状態でデータを格 納するとともに同格納されたデータを電源が遮断されている間も保持するバック アップ RAM 7 4と、 ADコンバータを含むインターフェース 7 5と、 等からな るマイク口コンピュータである。
インターフェース 7 5は、 上記センサ 6 1〜6 5と接続され、 C P U 7 1にセ ンサ 6 1〜6 5からの信号を供給するとともに、 同 C P U 7 1の指示に応じてィ グナイタ 3 6、 燃料噴射弁 3 7、 燃料圧力調整手段 3 8 a、 燃料ポンプ 3 8 b、 駆動回路 3 9、 スロットルバルブァクチユエータ 4 7 a、 バイパス流量調整弁 4 5及び過給圧調整弁 5 2 aに駆動信号を送出するようになっている。
この内燃機関 1 0は、 図 6に示したように、 成層自着火燃焼運転実行手段 F 1 、 予混合圧縮自着火燃焼運転実行手段 F 2、 火花点火燃焼運転実行手段 F 3、 拡 散燃焼運転実行手段 F 4、 始動冷間時成層火花点火燃焼運転実行手段 F 5及び運 転切換手段 G 1等の手段を含んでいる。 これらの手段の機能は、 電気制御装置 7 0の C P U 7 1が所定のプログラムを実行することにより達成される。 従って、 以下、 C P U 7 1が実行する各種の動作を上記各手段が行うものとして説明する 運転切換手段 G 1は 図 7に示した運転領域マップを R OM 7 2に記憶してい る。 運転切換手段 G 1は、 内燃機関 1 0の負荷とエンジン回転速度 N Eと運転領 域マップに基づ 、て運転領域を決定し、 その決定した運転領域に従つた運転方式 にて運転を行う。 内燃機関 1 0の負荷は、 ァクセルペダル 6 6の操作量 Accpとェ ンジン回転速度 N Eとに基づいて決定される要求トルク Tqtgt であってもよく、 単にァクセルペダル 6 6の操作量 Accpであってもよレ、。
図 7に示した運転領域マップによれば、 所定の大きさの第 1負荷より小さい負 荷の領域である極軽負荷領域は成層自着火燃焼運転領域、 第 1負荷より大きく且 つ同第 1負荷より大きい第 2負荷より小さい負荷の領域である軽負荷領域は均質 自着火燃焼運転領域、 第 2負荷より大きく且つ同第 2負荷より大きい第 3負荷よ り小さ ヽ負荷の領域である中負荷領域は均質火花点火燃焼運^ 域、 第 3負荷よ り大きい負荷の領域である高負荷領域は拡散燃焼運^ g域であると定められる。 (内燃機関 1 0が前記極軽負荷領域にて運転されるとき) 従って、 内燃機関 1 0が前記極軽負荷領域にて運転されるとき、 運転切換手段 G 1は運転領域マップに従つて成層自着火燃焼運転実行手段 F 1を選択する。 こ れにより、 内燃機関 1 0は成層自着火燃焼運転実行手段 F 1によって運転される 成層自着火燃焼運転実行手段 F 1は、 キヤビティ 2 2 b内のみに均質混合気を 形成し (即ち、 燃焼室 2 5全体として成層混合気を形成し) 、 その混合気を圧縮 することにより燃料を自着火燃焼させる。 より具体的に述べると、 成層自着火燃 焼運転実行手段 F 1は、 以下に述べる作動を順に実行して内燃機関 1 0の運転を 行う (図 8の (A) を参照。 ) 。
( 1 ) 燃焼行程において、 内燃機関 1 0の負荷に応じた極軽負荷時排気弁開弁タ イミング E Oにて排気弁 3 4を開弁する。 これにより、 燃焼行程が終了し排気行 程が開始する。
( 2 ) 内燃機関 1 0の負荷に応じた極軽負荷時排気弁閉弁タイミング E Cにて排 気弁 3 4を閉弁する。 これにより、 排気行程が終了し、 負のオーバーラップ期間 が開台する。
( 3 ) 内燃機関 1 0の負荷に応じた極軽負荷時吸気弁開弁タイミング I Oにて吸 気弁 3 2を開弁する。 これにより、 負のオーバーラップ期間が終了し、 吸気行程 が開台する。
( 4 ) 内燃機関 1 0の負荷に応じた極軽負荷時吸気弁閉弁タイミング I Cにて吸 気弁 3 2を閉弁する。 これにより、 P及気行程が終了し、 圧縮行程が開始する。
( 5 ) 極軽負荷時吸気弁閉弁タイミング I Cより遅角側で圧縮上死点: Γ D Cまで の圧縮行程の中期のタイミング 0 injにて、 内燃機関 1 0の負荷とエンジン回転速 度 N Eとに基づいて定まる所定量の燃料を燃料噴射弁 3 7から噴射する。 この場 合に噴射される燃料の総量は、 空燃比を超希薄空燃比とする量である。 更に、 こ の場合、 成層自着火燃焼運転実行手段 F 1は、 燃料噴射弁 3 7のニードルのリフ ト量が低リフト量となるように、 燃料噴射弁 3 7の第 1のソレノィドのみを通電 する。
これにより、 噴射された燃料は、 図 9に示したように、 キヤビティ 2 2 b内に 実質的に滞留せしめられるので、 実質的にキヤビティ 2 2 b内のみに均質混合気 が形成される。 そして、 その混合気が圧縮され、 燃料が自着火燃焼する燃焼行程 が開始する。
従って、 燃料量が少ない極軽負荷運転時であっても、 キヤビティ 2 2 b内に自 着火に十分な濃度の混合気を確実に形成できるので、 安定した自着火燃焼を行う ことができる。 この結果、 自着火運転を行うことができる運転領域をより軽負荷 の領域まで拡大でき、 そのような軽負荷領域にて火花点火燃焼運転を行わなくて もよいから、 N o xの排出量をより低減し、 燃費を一層向上することができる。 また、 キヤビティ 2 2 bは、 有底の略円筒状であって同キヤビティの入り口を 形成する縁部の径が同キヤビティ内部の最大径ょりも小さくなるように形成され るとともに、 燃焼室 2 5に吸入される空気により発生するシリンダのボア壁面に 沿う吸気スワールをキヤビティ 2 2 b内に導入するためのスワール案内溝 2 2 d がキヤビティ 2 2 bの外周部に形成されているから、 スワール流をスワール案内 溝 2 2 dによってキヤビティ 2 2 b内に効率的に取り込むことができる。
従って、 吸気スヮールの旋回半径が小さくなるのでスワール流を強めることが できる。 この結果、 実質的にキヤビティ 2 2 b内のみに混合気を容易に形成でき るので、 N o Xの発生を抑制することができる。
一方、.燃料は、 噴射角を狭角としながら噴射する第 1噴射状態にて噴射される 。 他方、 燃料が噴射される圧縮行程中期においては、 燃料噴射弁 3 7とキヤビテ ィ 2 2 bが形成されているピストン 2 2の頂面との距離が比較的大きい。 このた め、 上記構成のように、 燃料を頂角が狭角の円錐形状 (コーン状) に噴射するこ とにより、 噴射された燃料をキヤビティ 2 2 b内に確実に導入し及び滞留させる ことができる。
更に、 狭角噴射孔 3 7 cの径は広角噴射孔 3 7 dの径より大きく、 且つ、 狭角 噴射孔 3 7 cの数は広角噴射孔 3 7 dの数より少ない。 更に、 内燃機関負荷が小 さいので、 燃料圧力調整手段 3 8 aによる燃料圧力は比較的小さい。 従って、 狭 角噴射孔 3 7 cから噴射される燃料滴の径が相対的に大きくなるので、 燃料をキ ャビティ 2 2 b内に確実に到達させることができる。 この結果、 自着 燃焼に寄 与しないキヤビティ 2 2 b外の燃料の量を低減することができるので、 未燃 H C の発生を抑制することができるとともに、 燃費を向上することができる。
(内燃機関 1 0が前記軽負荷領域にて運転されるとき)
内燃機関 1 0が前記軽負荷領域にて運転されるとき、 運転切換手段 G 1は運転 領域マップに従って予混合圧縮自着火燃焼運転実行手段 F 2を選択する。 これに より、 内燃機関 1 0は予混合圧縮自着火燃焼運転実行手段 F 2によって運転され る。
予混合圧縮自着火燃焼運転実行手段 F 2は、 燃焼室 2 5内に吸入された空気と 燃料噴射弁 3 7から噴射された燃料とを予め混合して燃焼室 2 5内に同燃料の空 間的分布が一様な均質混合気を形成しながら圧縮することにより同燃料を自着火 燃焼させる。 より具体的に述べると、 予混合圧縮自着火燃焼運転実行手段 F 2は 、 以下に述べる作動を順に実行して内燃機関 1 0の運転を行う (図 8の (B) を 参照。 .) 。
( 1 ) 燃焼行程において、 内燃機関 1 0の負荷に応じた軽負荷時排気弁開弁タイ ミング E Oにて排気弁 3 4を開弁する。 これにより、 燃焼行程が終了し排気行程 が開始する。
( 2 ) 内燃機関 1 0の負荷に応じた軽負荷時排気弁閉弁タイミング E Cにて排気 弁 3 4を閉弁する。 これにより、 排気行程が終了し、 負のオーバーラップ期間が 開始する。 軽負荷時排気弁閉弁タイミング E Cは、 極軽負荷時排気弁閉弁タイミ ング E Cよりも遅角側に設定される。
( 3 ) 微量 fsの燃料を排気上死点近傍のタイミング Θ inj 1にて燃料噴射弁 3 7か ら噴射する。
( 4 ) 内燃機関 1 0の負荷に応じた軽負荷時吸気弁開弁タイミング I Oにて吸気 弁 3 2を開弁する。 これにより、 負のオーバーラップ期間が終了し、 吸気行程が 開始する。 軽負荷時吸気弁開弁タイミング I Oは、 極軽負荷時吸気弁開弁タイミ ング I Oよりも進角側に設定される。
( 5 ) 燃焼室 2 5内に吸入される空気による吸気スワールが最も強くなる時期、 即ち、 軽負荷時吸気弁開弁タイミング I Oから後述する軽負荷時吸気弁閉弁タイ ミング I Cまでの吸気行程の初期及び Z又は中期のタイミング Θ inj 2にて、 燃料 噴射弁 3 7から燃料を噴射する。 このとき噴射される燃料の量は、 内燃機関 1 0 の負荷とェンジン回転速度 N Eとに基づいて定まる所定量から、 先に噴射された 微量 fs分を差し引いた量である。 なお、 この場合に噴射される燃料の総量は、 空 燃比を超希薄空燃比とする量である。
更に、 この場合、 予混合圧縮自着火燃焼運転実行手段 F 2は、 燃料噴射弁 3 7 のニードルのリフ.ト量が高リブト量となるように、 燃料噴射弁 3 7の寧 1のソレ ノイド及び第 2のソレノイドの両方を通電する。 これにより、 図 1 0に示したよ うに、 燃料が噴射される。
( 6 ) 内燃機関 1 0の負荷に応じた軽負荷時吸気弁閉弁タイミング I Cにて吸気 弁 3 2を閉弁する。 これにより、 吸気行程が終了し、 圧縮行程が開始する。 そし て.、 均質混合気が圧縮され、 燃料が自着火燃焼する燃焼行程が開始する。
燃料噴射時期が上記のように設定されることから、 強い吸気スワールによって 混合気が攪拌される。 また、 キヤビティ 2 2 bの上述した形状及ぴスワール案内 溝 2 2 dの存在により、 キヤビティ 2 2 b外の混合気をキヤビティ 2 2 b内に効 率的に取り込むことができる。 従って、 燃焼室 2 5内に存在する全空気が均質混 合気の形成に利用される。 その結果、 N o Xの排出量をより低減し、 熱効率 (燃 費) の向上を図ることができる。
一方、 燃料は、 スワールが最も強くなる時期である吸気行程の初期及ひブ又は 中期において、 燃料の噴射角を前記狭角及ぴ同狭角よりも角度の大きい広角とし ながら噴射する第 2噴射状態にて噴射される。 従って、 噴射された燃料は燃焼室 2 5全体に行き渡り、 且つ、 強いスワール流に乗って燃焼室 2 5内にて攪拌され る。 これによつても、 燃焼室 2 5内に存在する全空気が均質混合気の形成に利用 されるようになるので、 N o Xの排出量をより低減し、 熱効率 (燃費) の向上を 図ることができる。
更に、 燃料は径が相対的に小さい広角噴射孔 3 7 dからも噴射される。 粒径が 小さく広角に噴射された燃料滴はスワール流に乗って攪拌される。 この結果、 広 角噴射孔 3 7 dから噴射されることにより粒径が小さく広角に噴射された燃料滴 と狭角噴射孔 3 7 cから噴射されることにより粒径が大きく狭角に噴射された燃 料滴とにより、 燃焼室 2 5内の空気と燃料とが十分に混合される。 これによつて も、 燃焼室 2 5内に存在する全空気が均質混合気の形成に利用されるようになる ので、 N o Xの排出量をより低減し、 熱効率 (燃費) の向上を図ることができる
(内燃機関 1 0が前記中負荷領域にて運転されるとき)
内燃機関 1 0が前記中負荷領域にて運転されるとき、 運転切換手段 G 1は運転 領域マップに従づて火花点火燃焼運転実行手段 F 3を選択する。 これにより、 内 燃機関 1 0は火花点火燃焼運転実行手段 F 3によって運転される。
火花点火燃焼運転実行手段 F 3は、 燃焼室 2 5内に吸入された空気と燃料噴射 弁 3 7から噴射された燃料とを予め混合して同燃焼室 2 5内にて同燃料の空間的 分布が一様な均質混合気を形成しながら圧縮し、 同圧縮された均質混合気を火花 発生手段である点火ブラグ 3 5が発生する点火用火花によつて点火して同燃料を 火花点火燃焼させる。 より具体的に述べると、 火花点火燃焼運転実行手段 F 3は 、 以下に述べる作動を順に実行して内燃機関 1◦の運転を行う (図 8の (C) を 参照。 ) 。
( 1 ) 燃焼行程において、 内燃機関 1 0の負荷に応じた中負荷時排気弁開弁タイ ミング E Oにて排気弁 3 4を開弁する。 これにより、 燃焼行程が終了し排気行程 が開始する。
( 2 ) 内燃機関 1 0の負荷に応じた中負荷時排気弁閉弁タイミング E Cにて排気 弁 3 4を閉弁する。 これにより、 お気行程が終了し、 負のオーバーラップ期間が 開始する。 中負荷時排気弁閉弁タイミング E Cは、 軽負荷時排気弁閉弁タイミン グ E Cよりも遅角側に設定される。
( 3 ) 内燃機関 1 0の負荷に応じた中負荷時吸気弁開弁タイミング I Oにて吸気 弁 3 2を開弁する。 これにより、 負のオーバーラップ期間が終了し、 吸気行程が 開始する。 中負荷時吸気弁開弁タイミング I Oは、 軽負荷時吸気弁開弁タイミン グ I Oよりも進角側に設定される。
(4 ) 燃焼室 2 5内に吸入される空気による吸気スワールが最も強くなる時期、 即ち、 中負荷時吸気弁開弁タイミング I Oから後述する中負荷時吸気弁閉弁タイ ミング I Cまでの吸気行程の初期及ぴ Z又は中期のタイミング 0 injにて、 燃料嘖 射弁 3 7から燃料を噴射する。 このとき噴射される燃料の量は、 内燃機関 1 0の 負荷とエンジン回転速度 N Eとに基づいて定まり、 且つ、 空燃比を理論空燃比と —致させるために必要な所定量である。
更に、 この場合、 火花点火燃焼運転実行手段 F 3は、 燃料噴射弁 3 7のニード ルのリフト量が髙リフト量となるように、 燃料噴射弁 3 7の第 1のソレノィド及 ぴ第 2のソレノイドの両方を通電する。 これにより、 図 1 0に示したように、 燃 料が噴射される。
( 5 ) 内燃機関 1 0の負荷に応じた中負荷時吸気弁閉弁タイミング I Cにて吸気 弁 3 2を閉弁する。 これにより、 吸気行程が終了し、 圧縮行程が開始する。 中負 荷時吸気弁閉弁タイミング I Cは、 実圧縮比を低下することによりノッキングを 回避するため、 軽負荷時吸気弁閉弁タイミング I Cよりも遅角側に設定される。
( 6 ) 上死点近傍の点火時期 Θ igにて点火ブラグ 3 5の火花発生部 3 5 aから点 火用火花を発生させ、 燃料を火花点火燃焼させる。 このとき、 火花点火燃焼運転 実行手段 F 3は、 点火時期 0 igを、 内燃機関 1 0の負荷とエンジン回転速度 N E とに基づいて決定する。 これにより、 燃焼行程が開始する。
これによれば、 吸気弁閉弁タイミング I Cが遅角側に設定されることにより実 圧縮比が低減されるので、 ノッキングの発生が回避される。 更に、 軽負荷時と同 様、 燃料噴射時期が上記のように設定されること、 キヤビティ 2 2 bの上述した 形状及ぴスワール案内溝 2 2 dの存在、 並びに、 燃料が第 2噴射状態にて噴射さ れることにより、 キヤビティ 2 2 b内外に混合気が形成され、 その混合気をキヤ ビティ 2 2 b内に効率的に取り込むことができる。 この結果、 燃焼室 2 5内に存 在する全空気がキヤビティ 2 2 b内の均質混合気の形成に利用されるので、 より 安定した火花点火燃焼が実現され、 N o xの排出量がより低減し、 熱効率 (燃費 ) が向上される。
(内燃機関 1 0が前記高負荷領域にて運転されるとき)
内燃機関 1 0が前記高負荷領域にて運転されるとき、 運転切換手段 G 1は運転 領域マップに従って拡散燃焼運転実行手段 F 4を選択する。 これにより、 内燃機 関 1 0は拡散燃焼運転実行手段 F 4によって運転される。
拡散燃焼運転実行手段 F 4は、 燃焼室 2 5内に吸入された空気を同燃焼室 2 5 内にて圧縮し、 同圧縮された空気の中に燃料噴射弁 3 7から燃料を噴射すること により同燃料を拡散燃焼させる。
拡散燃焼による運転は火花点火燃焼による運転よりもノッキングが発生し難い ので、 吸気弁 3 2の閉弁タイミング (吸気弁閉弁タイミング I C) を必要以上に 遅角して、 実圧縮比を低下する必要がない。 従って、 内燃機関 1 0は、 高負荷領 域にて十分な量の燃料 (或いは混合気) を正常に燃焼させることができるから、 高トルクを発生することができる。 更に、 ガソリンは軽油よりも気ィ匕し易いので
、 拡散燃焼の速度が高い。 従って、 内燃機関 1 0は、 高回転域においてより高出 力を発生することができる。
より具体的に述べると、 拡散燃焼運転実行手段 F 4は、 以下に述べる作動を順 に実行して内燃機関 1 0の運転を行う (図 8の (D) を参照。 ) 。
( 1 ) 燃焼行程において、 内燃機関 1 0の負荷に応じた高負荷時排気弁開弁タイ ミング E Oにて排気弁 3 4を開弁する。 これにより、 燃焼行程が終了し排気行程 が開始する。 '
( 2 ) 内燃機関 1 0の負荷に応じた高負荷時排気弁閉弁タイミング E Cにて排気 弁 3 4を閉弁する。 これにより、 排気行程が終了し、 負のオーバーラップ期間が 開始する。 高負荷時排気弁閉弁タイミング E Cは、 中負荷時排気弁閉弁タイミン グ E Cよりも遅角側に設定される。
( 3 ) 内燃機関 1 0の負荷に応じた高負荷時吸気弁開弁タイミング I Oにて吸気 弁 3 2を開弁する。 これにより、 負のオーバーラップ期間が終了し、 吸気行程が 開始する。 高負荷時吸気弁開弁タイミング I Oは、 中負荷時吸気弁開弁タイミン グ I Oよりも進角側に設定される。
( 4 ) 内燃機関 1 0の負荷に応じた高負荷時吸気弁閉弁タイミング I Cにて吸気 弁 3 2を閉弁する。 これにより、 吸気行程が終了し、 圧縮行程が開始する。 高負 荷時吸気弁閉弁タイミング I Cは、 火花点火燃焼運転時の中負荷時吸氖弁閉弁タ イミング I Cよりも進角側に設定される。 拡散燃焼の場合は火花点火燃焼の場合 よりノッキング発生の可能性が小さいからである。
( 5 ) 高負荷時吸気弁閉弁タイミング I Cよりも遅角側であって圧縮上死点近傍 のタイミング 0 injにて燃料噴射弁 3 7から燃料を噴射する。 このとき噴射される 燃料の量は、 内燃機関 1 0の負荷とエンジン回転速度 N Eとに基づいて定まり、 ' 且つ、 空燃比を所定の希薄空燃比と一致させるために必要な所定量である。 更に 、 この場合、 拡散燃焼運転実行手段 F 4は、 燃料噴射弁 3 7のニードルのリフト 量が高リフト量となるように、 燃料噴射弁 3 7の第 1のソレノィド及ぴ第 2のソ レノイドの両方を通電する。 これにより、 図 1 1に示したように燃料が噴射され 、 拡散燃焼により燃料が燃焼する燃焼行程が開始する。
これによれば、 吸気弁閉弁タイミング I C (高負荷時吸気弁閉弁タイミング I C) が火花点火燃焼運転時の中負荷時吸気弁閉弁タイミング I Cよりも進角側に 設定されるので、 実圧縮比が大きく低下することがない。 また、 燃料は拡散燃焼' により燃焼せしめられる。 この結果、 過度のノッキングを伴うことなく、 高圧縮 比の下で安定した燃焼を得ることができるので、 内燃機関 1 0の発生トルクを向 上することができる。
また、 キヤビティ 2 2 bの上述した形状及びスワール案内溝 2 2 dの存在によ り強いスワール流が生成され、 このスワール流により燃料滴と空気 (酸素) との ミキシングが促進されるので、 拡散燃焼中の空気利用率を高めることができる。 その結果、 内燃機関 1 0の熱効率を向上することができる。 更に、 燃料滴周りに 多量の酸素を存在させることができるので、 スモークの発生を抑制することがで さる。
更に、 燃料は、 狭角噴射孔 3 7 cのみでなく広角噴射孔 3 7 d力 らも噴射され る。 広角噴射孔 3 7 dから噴射される燃料の粒径が小さレ、。 従って、 これによつ ても、 燃料滴と空気 (酸素) とが十分にミキシングされる。 その結果、 内燃機関 の熱効率を向上することができる。 更に、 燃料滴周りに多量の酸素を存在させる ことができるので、 スモークの発生を効果的に抑制することができる。
(内燃機関 1 0の始動時又は冷間時)
一方、 内燃機関 1 0の始動時又は冷間時において、 運転切換手段 G 1は始動冷 間時成層火花点火燃焼運転実行手段 F 5を選択する。 運転切換手段 G 1は、 例え ば、 図示しないイダ二ッション ·キーがオフからオンへと変更された.とき始動時 であると判定し、 冷却水温センサ 6 4が検出した冷却水温 T HWが閾値水温 T H W t h以下のとき冷間時であると判定する。 これにより、 内燃機関 1 0は、 始動 時又は冷間時において、 始動冷間時成層火花点火燃焼運転実行手段 F 5によって 運転される。
始動冷間時成層火花点火燃焼運転実行手段 F 5は、 キヤビティ 2 2 b内にて成 層混合気を形成しながら圧縮し、 同圧縮された成層混合気を火花発生手段である 点火ブラグ 3 5が発生する点火用火花によって点火して燃料を火花点火燃焼させ る。 より具体的に述べると、 始動冷間時成層火花点火燃焼運転実行手段 F 5は、 以下に述べる作動を順に実行して内燃機関 1 0の運転を行う。
( 1 ) 所定の始動冷間時吸気弁開弁タイミング I Oにて吸気弁 3 2を開弁する。 これにより、 吸気行程が開始する。
( 2 ) 所定の始動冷間時吸気弁閉弁タイミング I Cにて吸気弁 3 2を閉弁する。 これにより、 吸気行程が終了し、 圧縮行程が開始する。
( 3 ) 始動冷間時吸気弁閉弁タイミング I Cより遅角側で圧縮上死点 TDじまで の圧縮行程の後期の所定噴射タイミングにて、 燃料噴射弁 3 7から燃料を噴射す る。 これにより、 噴射された燃料はキヤビティ 2 2 bに実質的に滞留せしめられ る。 また、 この時点に いては、 キヤビティ内に強いスワール流が生成されてい る。 従って、 このスワール流により、 キヤビティ 2 2 b内に成層混合気が形成さ れる。
なお、 この場合に噴射される燃料の量は、 冷却水温 T HW及び/又は内燃機関 1 0の負荷とエンジン回転速度 N Eとに基づいて定まり、 且つ、 空燃比を理論空 燃比と一致させるために必要な所定量である。 更に、 この場合、 始動冷間時成層 火花点火燃焼運転実行手段 F 5は、 燃料噴射弁 3 7のニードルのリフト量が低リ フト量となるように、 燃料噴射弁 3 7の第 1のソレノィドのみを通電する。
( 4 ) キヤビティ 2 2 b内に形成された成層混合気を圧縮し、 圧縮上死点 T D C 近傍の所定点火時期にて火花発生手段である点火ブラグ 3 5から点火用火花を発 生させる。 これにより、 燃料が火花点火燃焼する。 これにより、 燃焼行程が開始 する。
( 5 ) 所定の始動冷間時排気弁開弁タイミング E Oにて排気弁 3 4を開弁する。 その結果、 燃焼行程が終了し排気行程が開始する。
( 6 ) 所定の始動冷間時排気弁閉弁タイミング E Cにて排気弁 3 4を閉弁する。 内燃機関 1 0の始動時又は冷間時においては、 均質混合気の温度が上昇し難い ので、. 自着火燃焼が不安定になり易い。 そこで、 上記構成のように、 吸気弁 3 2 の閉弁後であつて圧縮上死点 T D Cまでの圧縮行程の後期に燃料噴射弁 3 7から 燃料を噴射させる。 これにより、 燃料がキヤビティ 2 2 bに実質的に滞留し、 キ ャビティ 2 2 bの上述した形状及びスワール案内溝 2 2 dの存在によりキヤビテ ィ 2 2 b内に形成される強い吸気スワールによってキヤビティ 2 2 bの内周部に 成層混合気が形成される。 そして、 その成層混合気をキヤビティ 2 2 bの内周部 に火花発生部 3 5 aを備えた点火プラグ 3 5により点火させる。 この精果、 内燃 機関 1 0の始動性を向上させ、 或いは、 冷間時に安定した火花点火燃焼を得るこ とができる。
以上、 説明したように、 本発明の第 1実施形態に係る内燃機関 1 0は、 軽負荷 領域においては自着火燃焼、 中負荷領域においては火花点火燃焼、 高負荷領域に おいては拡散燃焼による運転方式にて運転される。 この結果、 中負荷領域におい て自着火燃焼により運転することに起因する過大な音の発生がなく、 且つ、 中負 荷領域において拡散燃焼により運転することに起因する不安定な燃焼に伴う大き なトルク変動の発生もない。
更に、 上記記内燃機関 1 0において、 キヤビティ 2 2 bは、 有底の略円筒状で あって同キヤビティ 2 2 bの入り口を形成する縁部の径が同キヤビティ 2 2 b内 部の最大径ょりも小さくなるように形成されるとともに、 吸気スワールをキヤビ ティ 2 2 b内に導入するためのスワール案内溝 2 2 dがキヤビティ 2 2 bの外周 部に开多成されている。 また、 点火プラグ 3 5は、 スワール案内溝 2 2 dに沿うよ うに配置されている。 従って、 点火プラグ 3 5 (点火プラグ 3 5の先端部近傍) をスワール案内溝 2
2 dに配置できるので、 点火プラグ 3 5の火花発生部 3 5 aをキヤビティ 2 2 b の周辺 (内部の周側) に容易に配置することができる。
更に、 キヤビティ 2 2 bの壁面には断熱層が形成されている。 従って、 キヤビ ティ 2 2 b内に残留する燃焼ガスが冷却し難くなるので、 自着火燃焼に供される 混合気の温度を高い温度にすることができ、 自着火燃焼を安定して行うことが可 能となる。 加えて、 キヤビティ 2 2 bに向けて噴射される燃料の気化を促進する ことができるので、 拡散燃焼時において発生するスモークの量を低減することが できる。
また、 上記内燃機関 1 0は過給機であるターボチャージャ 8 1を備え、 成層自 着火燃焼運転実行手段 F l、 予混合圧縮自着火燃焼運転実行手段 F 2、 火花点火 燃焼運転実行手段 F 3及び拡散燃焼運転実行手段 F 4のそれぞれは、
( 1 ) 吸気弁 3 2を開弁する前に 気弁 3 4を閉弁して排気弁 3 4の閉弁タイミ ングから吸気弁 3 2の開弁タイミングまでの期間である負のオーバーラップ期間 を発生せしめるとともに、
( 2 ) 内燃機関 1 0の負荷が大きくなるほど負のオーバーラップ期間が短くなる ように排気弁 3 4の閉弁タイミング及び吸気弁 3 2の開弁タイミングを制御する ように構成されている。
「負のオーバーラップ期間 (負のバルブオーバーラップ期間) 」 においては、 燃焼ガスが燃焼室 2 5内に封じこめられた状態となる。 その負のオーバーラップ 期間は内燃機関の負荷が大きくなるほど短くなるように設定される。 .従って、 軽 負荷領域又は極軽負荷領域で内燃機関 1 0が運転される場合には、 負のオーバー ラップ期間により燃焼室 2 5内に導入される空気量が制御される。
また、 軽負荷領域の負荷よりも大きな負荷の領域 (中負荷領域又は高負荷領域 ) で内燃機関が運転される場合には、 過給機による過給と負のオーバーラップ期 間とにより燃焼室 2 5内に導入される空気量が制御される。 この結果、 内燃機関 1 0の吸気通路に配設されるスロットルパルプ 4 7を略全開に維持することが可 能となるので、 スロットルパルプ 4 7の絞りによるエネルギー損失が低減され、 内燃機関 1 0の燃費を改善することができる。
更に、 燃料噴射弁 3 7は、 ニードル 3 7 bが低リフト状態及ぴ髙リフト状態の 何れの状態にあるときにも開力れて燃料を噴射する狭角噴射孔群と、 同ニードル
3 7 bが同高リフト状態にあるときにのみ開力れて燃料を噴射する広角噴射孔群 と、 を備えている。
従って、 簡単な構成により、 各運転状態に応じた上述の噴射状態 (第 1噴射状 態又は第 2噴射状態) にて燃料を噴射することができる。 また、 燃料噴射弁 3 7 のダイナミックレンヂ (燃料噴射量の最小量と最大量との差) を大きくすること が容易に可能となるので、 高負荷時においても十分な量の燃料を供給することが できる。
く第 2実施形態 >
次に、 本発明の第 2実施形態に係る内燃機関について説明する。 この内燃機関 は、 運転切換手段 G 1に更に以下の機能が付加されている点のみにおいて、 第 1 実施形態に係る内燃機関 1 0と相違する。 従って、 以下、 係る相違点を中心とし て説明する。
(均質予混合圧縮自着火運転から成層自着火燃焼運転への切換え)
上述したように運転切換手段 G 1は、 図 7に示した運転領域マップに従って、 各運転実行手段 F 1〜F 4を選択し、 運転の切換えを行う。
更に、 運転切換手段 G 1は、 予混合圧縮自着火燃焼運転実行手段 F 2により均 質混合気の予混合圧縮自着火燃焼運転を実行している場合、 筒内圧センサ 6 3に より検出される筒内圧 Pを 1回の燃焼に対する圧縮行程開始から燃焼行程終了ま で平均化することにより筒内圧平均値 P iを求める。 また、 運転切換手段 G 1は 、 過去複数回の燃焼に対する筒内圧平均値 P iを平均ィヒした平均筒内圧平均値 P i aveを永める。
更に、 運転切換手段 G 1は、 今回の燃焼に対する筒内圧平均値 P iと平均筒内 圧平均値 P i aveとの差の絶対値 ( I P i - P i ave I ) を平均筒内圧平均値 P i aveで除すことにより、 差の絶対値 ( I P i - P i ave I ) に基づく値 Δ Ρ ( Δ Ρ = I P i - Ρ i ave I /P i ave) を求める。 そして、 運転切換手段 G .1は、 前記 差の絶対値に基づく値 Δ Ρが所定値 P t hより大きくなつたことにより、 予混合 圧縮自着火燃焼運転実行手段 F 2による自着火燃焼が不安定な状態となったと判 定すると、 予混合圧縮自着火燃焼運転実行手段 F 2による予混合庄縮自着火運転 から成層自着火燃焼運転実行手段 F 1による自着火燃焼運転へ運転の切換えを行
5 o
これによれば、 予混合圧縮自着火燃焼運転実行手段 F 2による自着火燃焼が不 安定な状態となったと判定されると、 成層自着火燃焼運転実行手段 F 1による自 着火燃焼運転へと運転が切り換えられる。 従って、 内燃機関の運転状態が不安定 になってトルク変動等が生じる事態を回避することができる。
(予混合圧縮自着火 «I云から火花点火燃焼藤への切換え)
カロえて、 運転切換手段 G 1は、 予混合圧縮自着火燃焼運転実行手段 F 2により 均質混合気の予混合圧縮自着火燃焼運転を実行している場合、 筒内圧センサ 6 3 により.検出される筒内圧 Pに基づいて筒内圧 Pの単位時間又は単位クランク角あ たりの変化量である筒内圧変化率 (d P/ d t又は d PZ d 0、 tは時間、 0は クランク角) を求めるとともに、 求められた筒内圧変化率 (d PZd t又は d p /ά θ ) が所定変化率 dP t hより大きくなつたとき、 予混合圧縮自着火燃焼運 転実行手段 F 2による均質混合気の予混合圧縮自着火燃焼運転から火花点火燃焼 運転実行手段 F 3による均質混合気の火花点火燃焼運転へ運転の切換えを行う。 これによれば、 均質混合気の予混合圧縮自着火燃焼に伴う騒音が過大となった か否かが、 筒内圧変化率 (dPZd t又は dPノ d 0) が所定変化率 d P t hよ り大きくなつた力否かにより判定される。 そして、 筒内圧変化率 (dPZd t又 は dPZd 0) が所定変化率 dP t hより大きくなつて均質混合気の予混合圧縮 自着火燃焼に伴う騒音が過大となったと判定されると、 予混合圧縮自着火燃焼運 転実行手段 F 2による自着火燃焼運転から火花点火燃焼運転実行手段 F 3による 火花点火燃焼運転に運転が切り換えられる。 従って、 騒音が過大となる事態を回 避することができる。 ―
(均質混合気の火花点火燃焼運転から拡散燃焼運転への切換え)
加えて、 運転切換手段 G1は、 火花点火燃焼運転実行手段 F 3による火花点火 燃焼運転が実行されている場合、 筒内圧センサ 63により検出される筒内圧 Pに 基づいてノッキングを検出する。 例えば、 運転切換手段 G1は、 筒内圧 Pの最大 値 Pmax近傍において、 筒内圧の極小値 P smallと、 同極小値 P smallの直後に現れ る極大値 P largeとの差の絶対値を筒内圧変動 Δ P hとして検出し、 この筒内圧変 動 APhが所定の閾値 (例えば、 最大値 Pmaxの所定数分の 1) より大きいとき、 ノッキングが発生したと判定する (例えば、 特開 2004— 184228号公報 を参照。 ) 。 .
そして、 運転切換手段 G1は、 検出されるノッキングに基づいてノッキングの 発生頻度 (例えば、 一回の燃焼に何回ノッキングが検出されたかを表す値) を求 めるとともに、 同ノッキングの発生頻度が所定頻度より大きくなつたとき、 火花 点火燃焼運転実行手段 F 3による火花点火燃焼運転から拡散燃焼運転実行手段 F 4による拡散燃焼運転へ運転の切換えを行う。
これによれば、 ノッキングの頻度が過大となる前に火花点火燃焼運転から拡散 燃焼運転に運転が切り換えられる。 従って、 ノッキングの過度な発生を回避する ことができる。 なお、 ノッキングは、 内燃機関の振動に基づいてノッキングを検 出するタイプの周知のノッキングセンサを用いて検出してもよい。
<第 3実施形態 >
次に、 本発明の第 3実施形態に係る内燃機関について説明する。 この内燃機関 は、 內燃機関 10と同様な構成を備えている。 ただし、 この内燃機関は、 クラン ク角が 360度回転する毎に、 燃焼室 25と同燃焼室 25内に吸気スワールを生 成するように構成された吸気ポート 31とを遮断 (吸気弁 32を閉弁) した状態 にて燃焼室 2 5と排気ポート 3 3とを連通 (排気弁 3 4を開弁) して排気行程を 開始し、 次いで同燃焼室 2 5と同吸気ポート 3 1とを連通 (吸気弁 3 2を開弁) して掃気行程を開始し、 次いで同燃焼室 2 5と同排気ポート 3 3とを遮断 (排気 弁 3 4を閉弁) して吸気行程を開始し、 次いで同燃焼室 2 5と同吸気ポート 3 1 とを遮断 (吸気弁 3 2を閉弁) して圧縮行程を開始した後に同状態にて燃焼行程 を迎える 2サイクル運転を行う 2サイクル内燃機関である。
この内燃機関 9 0は、 図 1 2に示したように、 成層自着火燃焼運転実行手段 H 1、 予混合圧縮自着火燃焼運転実行手段 H 2、 拡散燃焼運転実行手段 H 3及び運 転切換手段 G 2等の手段を含んでいる。 これらの手段の機能は、 電気制御装置 7 0の C P U 7 1が所定のプログラムを実行することにより達成される。 従って、 以下、 C P U 7 1が実行する各種の動作を上記各手段が行うものとして説明する 運転切換手段 G 2は、 図 1 3に示した運転領域マップを R OM 7 2に記憶して いる。 運転切換手段 G 2は、 内燃機関 9 0の負荷とエンジン回転速度 N Eと運転 領域マップに基づいて運転領域を決定し、 その決定した運転領域に従った運転方 式にて運転を行う。 内燃機関 9 0の負荷は、 アクセルペダル 6 6の操作量 Accpと エンジン回転速度 N Eとに基づいて決定される要求トルク Tqtgt であってもよく 、 単にァクセノレペダル 6 6の操作量 Accpであってもよい。
図 1 3に示した運転領域マップによれば、 所定の大きさの第 1負荷より小さい 負荷の領域である極軽負荷領域は成層自着火燃焼運転領域、 第 1負荷より大きく 且つ同第 1負荷より大きい第 3負荷より小さい負荷の領域である軽負荷領域及び 中負荷領域 (軽 ·中負荷領域) は均質自着火燃焼運転領域、 第 3負荷より大きい 負荷の領域である高負荷領域は拡散燃焼運^ S域であると定められている。
(内燃機関 9 0が前記極軽負荷領域にて運転されるとき)
従って、 内燃機関 9 0が俞記極軽負荷領域にて運転されるとき、 運転切換手段 G 2は運転領域マップに従つて成層自着火燃焼運転実行手段 H 1を選択する。 こ れにより、 内燃機関 9 0は成層自着火燃焼運転実行手段 H 1によって運転される 成層自着火燃焼運転実行手段 H Iは、 実質的にキヤビティ 2 2 b内のみに均質 混合気を形成し (即ち、 燃焼室 2 5全体として成層混合気を形成し) 、 その混合 気を圧縮することにより燃料を自着火燃焼させる。 より具体的に述べると、 成層 自着火燃焼運転実行手段 H 1は、 以下に述べる作動を順に実行して内燃機関 9 0 の運転を行う (図 1 4の (A) を参照。 ) 。
( 1 ),燃焼行程において、 内燃機関 9 0の負荷に応じた極軽負荷時排気弁開弁タ イミング E Oにて排気弁 3 4を開弁する。 これにより、 燃焼ガスが排気ポート 3 3を介して燃焼室 2 5から排出される排気行程が開始する。
( 2 ) 内燃機関 9 0の負荷に応じた極軽負荷時吸気弁開弁タイミング I Oにて吸 気弁 3 2を開弁する。 これにより、 空気が吸気ポート 3 1を介して燃焼室 2 5内 に流入するとともに、 その空気により燃焼ガスが排気ポート 3 3を介して燃焼室 2 5から排出される掃気行程が開始する。
( 3 ) 内燃機関 9 0の負荷に応じた極軽負荷時排気弁閉弁タイミング E Cにて排 気弁 3 4を閉弁する。 これにより、 掃気行程が終了し、 P及気行程が開始する。
( 4 ) 内燃機関 9 0の負荷に応じた極軽負荷時吸気弁閉弁タイミング I Cにて吸 気弁 3 2を閉弁する。 これにより、 圧縮行程が開始する。
( 5 ) 極軽負荷時吸気弁閉弁タイミング I Cより遅角側で圧縮上死点 T D Cまで の圧縮行程の中期のタイミング 0 injにて、 内燃機関 9 0の負荷とエンジン回転速 度 N Eとに基づいて定まる所定量の燃料を燃料噴射弁 3 7から噴射する。 この場 合に噴射される燃料の総量は、 空燃比を超希薄空燃比とする量である。 更に、 こ の場合、 成層自着火燃焼運転実行手段 H 1は、 燃料噴射弁 3 7のニードルのリフ ト量が低リフト量となるように、 燃料噴射弁 3 7の第 1のソレノィドのみを通電 する。
これにより、 噴射された燃料は、 図 9に示したように、 キヤビティ 2 2 b内に 実質的に滞留せしめられるので、 実質的にキヤビティ 2 2 b内のみに均質混合気 が形成される。 そして、 その混合気が圧縮され、 燃料が自着火燃焼する燃焼行程 が開台する。
従って、 燃料量が少なレヽ極軽負荷運転時であっても、 キヤビティ 2 2 b内に自 着火に十分な濃度の混合気を確実に形成できるので、 安定した自着火燃焼を行う ことができる。 この結果、 自着火運転を行うことができる運^ g域をより軽負荷 の領域まで拡大でき、 そのような軽負荷領域にて火花点火燃焼運転を行わなくて もよいから、 N o Xの排出量をより低減し、 燃費を一層向上することができる。 また、 上述したキヤビティ 2 2 bの形状及ぴスワール案内溝 2 2 dにより、 吸 気スワールをキヤビティ 2 2 b内に効率的に取り込むことができる。 従って、 吸 気スワールの旋回半径が小さくなつてスワール流を強めることができる。 この結 果、 実質的にキヤビティ 2 2 b内のみに均質混合気を容易に形成できるので、 N o Xの発生を抑制することができる。
一方、 燃料は、 嘖射角を狭角としながら噴射する第 1噴射状態にて噴射される 。 他方、 燃料が噴射される圧縮行程中期においては、 燃料噴射弁 3 7とキヤビテ ィ 2 2 bが形成されているビストン 2 2の頂面との距離が比較的大きい。 このた め、 上記構成のように、 燃料を頂角が狭角の円錐形状 (コーン状) に噴射するこ とにより、 噴射された燃料をキヤビティ 2 2 b内に確実に導入することができる 更に、 燃料は径が大きい狭角噴射孔 3 7 cから噴射されるので、 噴射される燃 料滴の径が相対的に大きくなる。 燃料をキヤビティ 2 2 b内に確実に到達させる ことができる。 この結果、 自着火燃焼に寄与しないキヤビティ 2 2 b外の燃料の 量を低減することができるので、 未燃 H Cの発生を抑制することができるととも に、 燃費を向上することができる。
(内燃機関 9 0が前記軽 ·中負荷領域にて運転されるとき)
内燃機関 9 0が前記軽 ·中負荷領域にて運転されるとき、 運転切換手段 G 2は 運転領域マップに従って予混合圧縮自着火燃焼運転実行手段 H 2を選択する。 こ れにより、 内燃機関 9 0は予混合圧縮自着火燃焼運転実行手段 H 2によつて運転 される。
予混合圧縮自着火燃焼運転実行手段 H 2は、 燃焼室 2 5内に均質混合気を形成 しながら圧縮することにより燃料を自着火燃焼させる。 より具体的に述べると、 予混合圧縮自着火燃焼運転実行手段 H 2は、 以下に述べる作動を順に実行して内 燃機関 9 0の運転を行う (図 1 4の (B) を参照。 ) 。
( 1 ) 燃焼行程において、 内燃機関 9 0の負荷に応じた軽'中負荷時排気弁開弁 タイミング E Oにて排気弁 3 4を開弁する。 これにより、 燃焼行程が終了し排気 行程が開始する。
( 2 ) 内燃機関 9 0の負荷に応じた軽 ·中負荷時吸気弁開弁タイミング I Oにて 吸気弁 3 2を開弁する。 これにより、 排気行程が終了し、 掃気行程が開始する。
( 3 ) 燃焼室 2 5と吸気ポート 3 1とが連通されてから遮断されるま.での期間 ( 吸気弁 3 2が開弁せしめられてから閉弁せしめられるまでの期間) において、 燃 焼室 2 5内に吸入される空気によるスワールが最も強くなるタイミング 0 inj に て、 内燃機関 9 0の負荷とエンジン回転速度 N Eとに基づいて定まる所定量の燃 料を燃料噴射弁 3 7から噴射する。
この場合に噴射される燃料の総量は、 空燃比を超希薄空燃比とする量である。 更に、 この場合、 予混合圧縮自着火燃焼運転実行手段 H 2は、 燃料噴射弁 3 7の ニードルのリフト量が高リフト量となるように、 燃料噴射弁 3 7の第 1のソレノ イド及び第 2のソレノイドの両方を通電する。 これにより、 図 1 0に示したよう に、 燃料が噴射される。
燃料噴射タイミングが上記のように設定され、 及び、 燃料は第 2噴射状態にて 噴射されるので、 噴射された燃料は燃焼室 2 5全体に行き渡り、 且つ、 強いスヮ ール流に乗って燃焼室 2 5内にて攪拌される。 更に、 キヤビティ 2 2 bは、 キヤ ビティ 2 2 b外の混合気をキヤビティ 2 2 b内に効率的に取り込むことができる ので、 燃焼室 2 5内に存在する全空気がキヤビティ 2 2 b内の均質混合気の形成 に利用される。 その結果、 N o Xの排出量をより低減し、 熱効率 (燃費) の向上 を図ることができる。
( 4 ) 内燃機関 9 0の負荷に応じた軽 ·中負荷時排気弁閉弁タイミング E Cにて 排気弁 3 4を閉弁する。 これにより、 掃気行程が終了し、 吸気行程が開始する。
( 5 ) 内燃機関 9 0の負荷に応じた軽 ·中負荷時吸気弁閉弁タイミング I Cにて 吸気弁 3 2を閉弁する。 これにより、 吸気行程が終了し、 圧縮行程が開始する。 そして、 形成された均質混合気が圧縮され、 燃料が自着火燃焼する燃焼行程が始 まる。
(内燃機関 9 0が前記高負荷領域にて運転されるとき)
内燃機関 9 0が前記高負荷領域にて運転されるとき、 運転切換手段 G 2は運転 領域マップに従って拡散燃焼運転実行手段 H 3を選択する。 これにより、 内燃機 関 9 0は拡散燃焼運転実行手段 H 3によって運転される。
拡散燃焼運転実行手段 H 3は、 燃焼室 2 5内に吸入された空気を同燃焼室 2 5 内にて圧縮し、 同圧縮された空気の中に燃料噴射弁 3 7から燃料を噴射すること により同燃料を拡散燃焼させる。 より具体的に述べると、 拡散燃焼運転実行手段 H 3は、 以下に述べる作動を順に実行して内燃機関 9 0の運転を行う (図 1 4の (C) を参照。 ) 。
( 1 ) 燃焼行程において、 内燃機関 9 0の負荷に応じた高負荷時排気弁開弁タイ ミング E Oにて排気弁 3 4を開弁する。 これにより、 上述した排気行程が開始す る。
( 2 ) 内燃機関 9 0の負荷に応じた高負荷時吸気弁開弁タイミング I Oにて吸気 弁 3 2を開弁する。 これにより、 上述した掃気行程が開始する。
( 3 ) 内燃機関 9 0の負荷に応じた高負荷時排気弁閉弁タイミング E Cにて排気 弁 3 4を閉弁する。 これにより、 上述した吸気行程が開始する。
( 4 ) 内燃機関 9 0の負荷に応じた高負荷時吸気弁閉弁タイミング I Cにて吸気 弁 3 2を閉弁する。 これにより、 上述した圧縮行程が開始する。
高負荷時吸気弁閉弁タイミング I C (即ち、 燃焼室 2 5と吸気ポート 3 1との 遮断タイミング) は、 拡散燃焼運転が行われる高負荷領域において火花点火燃焼 を行ったと仮定したときにノッキングの過度の発生を回避するように設定される 吸気弁閉弁タイミングょりも進角側のタイミング (即ち、 軽 ·中負荷時吸気弁閉 弁タイミング I Cと略同時期) に設定される。 拡散燃焼の場合は火花点火燃焼の 場合よりノッキング発生の可能性が小さいからである。
( 5 ) 次いで、 圧縮行程であって上死点近傍の燃料噴射タイミング 0 injにて燃料 噴射弁 3 7から燃料を噴射し、 その燃料を拡散燃焼させる燃焼行程を開始する。 このとき噴射される燃料の量は、 内燃機関 9 0の負荷とエンジン回転速度 N Eと に基づいて定まり、 且つ、 空燃比を所定の希薄空燃比と一致させるために必要な 所定量である。 更に、 この場合、 拡散燃焼運転実行手段 H 3は、 燃料噴射弁 37 のニードルのリフト量が高リフト量となるように、 燃料噴射弁 37の第 1のソレ ノイド及び第 2のソレノイドの両方を通電する。 これにより、 図 1 1に示したよ うに、 燃料が噴射される。
これによれば、 燃焼室 25と吸気ポート 31との遮断タイミングが、 火花点火 燃焼を行つたと仮定したときにノッキングの過度の発生を回避するように設定さ れる燃焼室 25と吸気ポート 31との遮断タイミングょりも進角側のタイミング となるので、 実圧縮比が大きく低下することがない。 また、 燃料は拡散燃焼によ り燃焼する。 この結果、 過度のノッキングを伴うことなく、 高圧縮比の下で安定 した燃焼を得ることができるので、 内燃機関 90の発生トルクを向上することが できる。
く第 4実施形態〉
次に、 本発明の第 4実施形態に係る内燃機関について説明する。 この内燃機関 は、 所謂ュニフロー型の 2サイクル内燃機関であり、 使用される燃料はガソリン である。 先ず、 かかる 2サイクル内燃機関の作動 (運転サイクル) の概略につい て、 図 15を参照しながら説明する。
このュニフロー型の内燃機関は、 燃焼室 (シリンダ CY) の上部に接続された 排気ポート EXPと、 排気ポート EXPを開閉する排気弁 E XVと、 シリンダ C Yのボア壁に一端が接続された吸気ポート (掃気ポートとも称呼される。 ) IN Pと、 燃料噴射弁 I N J、 点火プラグ I GN及び過給機 (この場合、 ターボチヤ 一ジャ) T/Cと、 を備えている。 この内燃機関は、 ピストン PSをシリンダ C Y内において移動させ、 排気弁 EXV (排気ポート EXP) と吸気ポート INP を開閉させながら、 燃料と空気との混合気を燃焼させることにより動力を取り出 すようになっている。 以下、 各行程について、 均質混合気を自着火燃焼させる場 合を例にとりながら順に説明する。
図 15の (a) に示したように、 混合気が着火すると、 混合気が燃焼を開始し てシリンダ CY内には高圧の燃焼ガスが発生し、 ビストン P Sが上死点から下死 点に向けて移動する燃焼行程 (膨張行程) が開始する。
次に、 ピストン P Sが所定の位置に到達した適当なタイミングにおいて排気弁 EXVが開弁させられる。 この時点において、 シリンダ CY内の燃焼ガスの圧力 は高い圧力であるから、 図 15の (b) に示したように、 燃焼ガスは排気弁 EX 及び排気ポート EXPを介してシリンダ CY外に排出される。 ビストン P Sは下 死点に向けて移動を続ける。
その後、 ビストン PSが更に下死点に向けて移動して所定の位置に到達すると 、 ピストン P Sの側壁により閉じられていた吸気ポート I N Pの端部 (開口部、 掃気口) が開かれ、 これにより吸気ポート I NPとシリンダ CYとが連通する。 吸気ポート I NP内は過給機 TZCによって加圧されている。 従って、 吸気ポー ト I NPの開口部が開力れると、 吸気ポート I NP内の空気がシリンダ CY内に 流入し、 この空気がシリンダ CY内の燃焼ガスを排気弁 EXVに向けて押し出す 。 これにより、 図 15の (c) に示したように、 燃焼ガスは 気ポート EXPを 介して更に排出させられる。 即ち、 掃気が開始する。
次いで、 ピストン P Sは下死点を通過し、 上死点に向けて移動し始める。 この 段階においても、 吸気ポート I NP内の空気の圧力は高いから、 図 15の (d) に示したように、 掃気が継続する。
その後、 ビストン PSが上死点に向けて移動を続けて前記所定の位置に到達す ると、 吸気ポート I N Pの端部 (開口部) がピストン P Sの側壁により閉じられ る。 これにより吸気ポート I NPとシリンダ CYとが遮断する。 この直前又は直 後に、 排気弁 EXVが開弁させられる。 この時点において、 図 15の (e) に示 したように、 燃料噴射弁 I N Jから燃料が噴射される。
ピストン P Sは上死点に向けて移動を続ける。 この結果、 図 15の (f) に示 したように、 均質混合気が形成されながら圧縮され、 上死点近傍で自着火燃焼を 開始する。 以上が、 ュニフロー型 2サイクル内燃機関の作動の概略である。
以下、 このュニフロー型内燃機関の構成について説明する。 図 16は、 內燃機 関 100の概略構成を示している。 なお、 図 16は、 特定気筒の断面のみを示し ているが、 他の気筒も同様な構成を備えている。 .
内燃機関 100は、 シリンダブロック 1 10と、 シリンダブロック 110に固 定されるシリンダへッド 120と、 吸気系統 13.0と、 排ガスを外部に放出する ための排気系統 140と、 電気制御装置 170とを含んでいる。 なお、 以下の説 明において、 シリンダブロック 1 10からシリンダヘッド 120に向う方向を上 方と称呼し、 シリンダへッド 120からシリンダブロック 1 10に向う方向を下 方と称呼する。
シリンダブ口ック 1 10は、 中空円筒状のシリンダ 1 1 1を形成している。 シ リンダブ口ック 1 10の内部には、 ピストン 1 12、 コンロッド 1 13及びクラ ンク軸 114が収容されている。 ピストン 1 12はシリンダ 11 1内を往復動し 、 ビストン 1 12の往復動がコンロッド 1 13を介してクランク軸 114に伝達 され、 これにより同クランク軸 1 14が回転するようになっている。 シリンダ 1 1 1のボア壁面、 ピストン 112の頂面 (ビストンへッド) 及ぴシリンダへッド 120,の下面は、 燃焼室 115を形成している。 ピストン 1 12の中央部にはキ ャビティ 112 aが形成されている。 キヤビティ 112 aの形状は、 キヤビティ 2 2 bと同様な有底の略円筒状である。
更に、 シリンダブ口ック 1 1 0は、 一対の第 1の吸気ポート 1 1 6、 一対の第 2の吸気ポート 1 1 7及び吸気サージタンク 1 1 8を構成するとともに、 一対の 吸気制御弁 1 1 9を備えている。
第 1の吸気ポート 1 1 6は、 管状である。 第 1の吸気ポート 1 1 6は、 その軸 線がシリンダ 1 1 1の中心軸に垂直な平面に略平行となるように形成されている 。 第 1の吸気ポート 1 1 6は、 概略断面図である図 1 7に示したように、 吸気サ ージタンク 1 1 8及びシリンダ 1 1 1に接続され、 シリンダ 1 1 1のボア壁面に 沿って空気をシリンダ 1 1 1内に流入するようになっている。 これにより、 第 1 の吸気ポート 1 1 6は、 燃焼室 1 1 5に流入する空気により燃焼室 1 1 5内に吸 気スワールを生成するので、 スワールポートと称呼される。
第 1の吸気ポート 1 1 6は、 シリンダ 1 1 1の近傍にてリブ 1 1 6 aにより二 分割されている。 これにより、 シリンダ 1 1 1のボア壁面に二つの開口部 1 1 6 b, 1 1 6 cが形成されている。 開口部 1 1 6 b , 1 1 6 cは、 ピストン 1 1 2 が上死点から下死点に向けて (即ち、 下方に) 移動する際にビストン 1 1 2の側 壁により開力れる位置に設けられている。 開口部 1 1 6 b, 1 1 6 cが開かれる と、 第 1の吸気ポート 1 1 6は燃焼室 1 1 5と連通させられる。 一方、 開口部 1 1 6 b , 1 1 6 cは、 ピストン 1 1 2が下死点から上死点に向けて (即ち、 上方 に) 移動する際にピストン 1 1 2の側壁により閉じられる。 これにより、 第 1の 吸気ポート 1 1 6は燃焼室 1 1 5と遮断させられる。
第 2の吸気ポート 1 1 7は、 管状である。 第 2の吸気ポート 1 1 7.は、 吸気サ ージタンク 1 1 8及びシリンダ 1 1 1に接続されている。 第 2の吸気ポート 1 1 7は、 シリンダ 1 1 1の中心軸に垂直な平面に対して空気が斜め下向きにシリン ダ 1 1 1内に流入するような勾配をもって形成されている。 第 2の吸気ポート 1 1 7の軸線は、 シリンダ 1 1 1の中心軸に向っている。 第 2の吸気ポート 1 1 7 は、 ストレートポートと称呼される。
第 2の吸気ポート 1 1 7は、 シリンダ 1 1 1の近傍にてリブ 1 1 7 aにより二 分割されている。 これにより、 シリンダ 1 1 1のボア壁面に二つの開口部 1 1 7 b, 1 1 7 cが形成されている。 一つの吸気ポート 1 1 7の開口部 1 1 7 bは他 の一つの吸気ポート 1 1 7の開口部 1 1 7 cにシリンダ 1 1 1を挟んで対向する 位置に形成され、 一つの吸気ポート 1 1 7の開口部 1 1 7 cは他の一つの吸気ポ ート 1 1 7の開口部 1 1 7 ¾)にシリンダ 1 1 1を挟んで対向する位置に形成され ている。
開口部 1 1 7 b , 1 1 7 cは、 ピストン 1 1 2が下方に移動する際にピストン 1 1 2の側壁により開力、れる位置に設けられている。 開口部 1 1 7 b , 1 1 7 c が開かれると、 第 2の吸気ポート 11 7は燃焼室 1 15と連通させられる。 一方 、 開口部 1 17 b, 117 cは、 ピストン 112が上方に移動する際にピストン
112の側壁により閉じられる。 これにより、 第 2の吸気ポート 117は燃焼室
115と遮断させられる。
このような構成により、 第 2吸気ポート 117からシリンダ 111内に流入し た空気は、 ピストン 112の頂面に衝突し、 その向きを斜め上方に変更する。 ま た、 互いに対向する二つの吸気ポート 117 (の開口部 1 1 7 b, 117 c) か らシリンダ 1 1 1内に流入する空気がシリンダ 1 1 1の中心軸付近にて衝突する ので、 シリンダ 1 1 1内にシリンダ 1 1 1の中心軸近傍に沿って上昇する上昇気 流が発生する。
吸気制御弁 1 19は、 電気制御装置 170からの指示に応じて第 2吸気ポート 117内にて回動することにより、 第 2吸気ポート 1 1 7の開閉を行うようにな つている。
再び、 図 16を参照すると、 シリンダへッド 120は、 シリンダブ口ック 1 1 0の上方に固定されている。 シリンダへッド 120は、 燃焼室 115に接続され た排気ポート 121、 排気弁 122、 排気弁 122を駆動する駆動アーム 123 、 電磁ァクチユエータ 124、 点火プラグ 125、 点火プラグ 125に与える高 電圧を発生させるイダニッシヨンコィルを含むィグナイタ 126及び燃料を燃焼 室 1 15内に直接噴射する燃料噴射弁 (燃料噴射手段) 127等を備えている。 点火プラグ 125及びィグナイタ 126は、 燃焼室 1 15に点火用火花を発生す る火花発生手段を構成している。 ,
排気ポート 121は、 シリンダへッド 120の下面を燃焼室 115側から見た 図 18に示したように、 シリンダ 11 1の中心の.回りの 3箇所に開口するように 形成されている。 従って、 シリンダヘッド 120には 3個の排気弁 122が備え られている。 各 気弁 122は、 各 ^気ポート 121の開口を開閉するようにな つている。 排気ポート 121は、 その開口が排気弁 122により開力れたとき燃 焼室 1 15と連通し、 その開口が排気弁 122により閉じられたとき燃焼室 1 1 5と遮 K ^しめられるようになつている。
3個の排気弁 122は、 各軸線が互いに平行 (シリンダ 1 1 1の軸線に平行) となるように配置されていて、 スプリング 122 aにより各排気ポート 121の 燃焼室 1 15に形成された開口を閉じるように付勢されている。 3個の排気弁 1 22のそれぞれは、 上端部にて図 19に示した駆動アーム 123の 3つの端部 1 23 aのそれぞれに接続されている。 電磁ァクチユエータ 124は、 駆動アーム 123の中心部 123 bを下方に移動させて排気弁 122を下方に移動させ、 こ れにより、 各排気ポ ト 121の燃焼室 1 15に形成された開口を開くようにな つている。
燃料噴射弁 1 2 7は、 上述の燃料噴射弁 3 7と同一の構造を備えている。 燃料 噴射弁 1 2 7には、 図示しない燃料圧力調整手段及び燃料ポンプにより、 図示し ない燃料タンク内の燃料が供給されるようになっている。 燃料噴射弁 1 2 7は、 図 1 8に示したように、 シリンダ 1 1 1の中心に配置されている。 燃料噴射弁 1 2 7は、 ピストン 1 1 2のキヤビティ 1 1 2 aに向けて蛾料を噴射するようにな つている。
吸気系統 1 3 0は、 吸気サージタンク 1 1 8に連通したサージタンク 1 3 1、 サージタンク 1 3 1に一端が接続された吸気管 1 3 2、 吸気管 1 3 2の他端から 下流 (サージタンク 1 3 1 ) に向けて順に吸気管 1 3 2に配設されたエアフィル タ 1 3 3、 ターボチャージャ (過給機、 過給手段) 1 5 0のコンプレッサ 1 5 1 、 インタークーラ 1 5 2及びスロットルバルブ 1 5 4等を備えている。
スロットルパルプ 1 5 4は吸気管 1 3 2に回転可能に支持され、 スロットルバ ルブァクチユエータ 1 5 4 aにより駆動されることにより吸気通路の開口断面積 を可変とするよう'になっている。
排気系統 1 4 0は、 排気ポート 1 2 1に連通し同排気ポート 1 2 1とともに排 気通路を形成するェキゾーストマ二ホールドを含む排気管 1 4 1、 排気管 1 4 1 に配設されたターボチャージャ 1 5 0のタービン 1 5 3及びタービン 1 5 3の下 流の排気管 1 4 1に配設された触媒装置 1 5 5を備えている。 ターボチャージャ 1 5 0は、 ターボチャージャ 8 1と同様に吸気通路の空気を圧縮して燃焼室 1 1 5に空気を過給するようになっている。 .
この内燃機関 1 0 0は、 クランクポジションセンサ 1 6 1、 アクセル開度セン サ 1 6 2及ぴこれらと接続された電気制御装置 1 .7 0を含んでいる。 クランクポ ジションセンサ 1 6 1、 アクセル開度センサ 1 6 2及ぴ電気制御装置 1 7 0は、 クランクポジシヨンセンサ 6 2、 ァクセル開度センサ 6 5及び電気制御装置 7 0 とそれぞれ同一の構成及び機能を備えている。
この内燃機関 1 0 0は、 図 2 0に示したように、 成層自着火燃焼運転実行手段 J 1、 予混合圧縮自着火燃焼運転実行手段 J 2、 拡散燃焼運転実行手段 J 3及び 前述した運転切換手段 G 2等の手段を含んでいる。 これらの手段の機能は、 電気 制御装置 1 7 0の C P Uが所定のプログラムを実行することにより達成される。 従って、 以下、 C P Uが実行する各種の動作を上記各手段が行うものとして説明 する。
(内燃機関 1 0 0が謝己極軽負荷領域にて ¾云されるとき)
内燃機関 1 0 0が前記極軽負荷領域にて運転されるとき、 運転切換手段 G 2は 図 1 3に示した運転領域マップに従って成層自着火燃焼運転実行手段 J 1を選択 する。 これにより、 内燃機関 1 0 0は成層自着火燃焼運転実行手段 J 1によって 運転される。
成層自着火燃焼運転実行手段 J 1は、 実質的にキヤビティ 1 1 2 a内のみに均 質混合気を形成し (即ち、 燃焼室 2 5全体として成層混合気を形成し) 、 その混 合気を圧縮することにより燃料を自着火燃焼させる。 より具体的に述べると、 成 層自着火燃焼運転実行手段 J 1は、 以下に述べる作動を順に実行して内燃機関 1 0 0の運転を行う (図 2 1の (A) を参照。 ) 。
( 1 ) 燃焼行程において、 内燃機関 1 0 0の負荷に応じた極軽負荷時排気弁開弁 タイミング E Oにて排気弁 1 2 2を開弁する。 これにより、 排気ポート 1 2 1と 燃焼室 1 1 5とが連通し、 燃焼ガスが燃焼室 1 1 5から排出される排気行程が開 始する。
( 2 ) 次レ、で、 ピストン 1 1 2が上死点側から下死点側に向けて移動することに より、 吸気ポート開タイミング I P Oにて第 1吸気ポート 1 1 6及ぴ第 2吸気ポ ート 1 1 7と燃焼室 1 1 5とが連通せしめられる。 このとき、 吸気制御弁 1 1 9 は第 2吸気ポート 1 1 7を閉じるように制御されている。 従って、 空気が第 1吸 気ポート 1 1 6を介して燃焼室 1 1 5内に流入し、 吸気スワールが発生する。 燃 焼ガスは、 その流入空気により排気ポート 1 2 1側に押しやられて燃焼室 1 1 5 から排出される。 即ち、 掃気行程が開始する。
( 3 ) 次いで、 ピストン 1 1 2が下死点側から上死点側に向けて移動することに より、 吸気ポート閉タイミング I P Cにて第 1吸気ポート 1 1 6及ぴ第 2吸気ポ ート 1 1 7と燃焼室 1 1 5とが遮断せしめられる。 同時に、 内燃機関 1 0 0の負 荷に応じた極軽負荷時排気弁閉弁タイミング E Cが到来するので、 排気弁 1 2 2 を閉弁する。 これにより、 圧縮行程が開始する。 .
( 4 ) 吸気ポート閉タイミング I P C及び極軽負荷時排気弁閉弁タイミング E C より遅角側で圧縮上死点 T D Cまでの圧縮行程の中期のタイミング Θ injにて、 内 燃機関 1 0 0の負荷とエンジン回転速度 N Eとに基づいて定まる所定量の燃料を 燃料噴射弁 1 2 7から噴射する。 この場合に噴射される燃料の総量は、 空燃比を 超希薄空燃比とする量である。 更に、 この場合、 成層自着火燃焼運転実行手段 J 1は、 燃料噴射弁 1 2 7のニードルのリフト量が低リフト量となるように、 燃料 噴射弁 1 2 7の第 1のソレノイドのみを通電する。
これにより、 噴射された燃料は、 キヤビティ 1 1 2 a内に実質的に滞留せしめ られるので、 実質的にキヤビティ 1 1 2 a内のみに均質混合気が形成される。 そ して、 その混合気が圧縮され、 燃料が自着火燃焼する燃焼行程が開始する。
従って、 燃料量が少ない極軽負荷運転時であっても、 キヤビティ 1 1 2 a内に 自着火に十分な濃度の混合気を確実に形成できるので、 安定した自着火燃焼を行 うことができる。 この結果、 自着火運転を行う'ことができる運転領域をより極軽 負荷の領域まで拡大でき、 そのような極軽負荷領域にて火花点火燃焼運転を行わ なくてもよいから、 N o Xの排出量をより低減し、 燃費を向上することができる 。 また、 自着火燃焼に寄与しないキヤビティ 1 1 2 a外の燃料の量を低減するこ とができる。 従って、 未燃 H Cの発生を抑制することができるとともに、 燃費を 一層向上することができる。
(内燃機関 1 0 0が前記軽 ·中負荷領域にて運転されるとき)
内燃機関 1 0 0が前記軽 ·中負荷領域にて運転されるとき、 運転切換手段 G 2 は運転領域マップに従つて予混合圧縮自着火燃焼運転実行手段 J 2を選択する。 これにより、 内燃機関 1 0 0は予混合圧縮自着火燃焼運転実行手段 J 2によって 運転される。
予混合圧縮自着火燃焼運転実行手段 J 2は、 燃焼室 1 1 5内に均質混合気を形 成しながら圧縮することにより燃料を自着火燃焼させる。 より具体的に述べると 、 予混合圧縮自着火燃焼運転実行手段 J 2は、 以下に述べる作動を順に実行して 内燃機関 1 0 0の運転を行う (図 2 1の (B ) を参照。 ) 。
( 1 ) 燃焼行程において、 内燃機関 1 0 0の負荷に応じた軽 ·中負荷時排気弁開 弁タイミング E Oにて排気弁 1 2 2を開弁する。 これにより、 上述した排気行程 が開始する。
( 2 ) 次いで、 吸気ポート開タイミング I P Oにて第 1吸気ポート 1 1 6及び第 2吸気ポート 1 1 7と燃焼室 1 1 5とが連通せしめられる。 これにより、 掃気行 程が開始する。 このとき、 吸気制御弁 1 1 9は第 2吸気ポート 1 1 7 ?:閉じるよ うに制御されている。 従って、 吸気スワールが発生する。 また、 この掃気行程で は吸気も行われる。
( 3 ) 次いで、 気ポート閉タイミング I P Cにて第 1吸気ポート 1 1 6及び第 2吸気ポート 1 1 7と燃焼室 1 1 5とが遮断せしめられる。 その後、 内燃機関 1 0 0の負荷に応じた軽 ·中負荷時排気弁閉弁タイミング E Cが到来するので、 排 気弁 1 2 2を閉弁する。 これにより、 圧縮行程が開始する。
( 4 ) 軽 ·中負荷時排気弁閉弁タイミング E Cと同時或いは若干だけ遅角側の圧 縮行程の初期のタイミング Θ injにて、 内燃機関 1 0 0の負荷とエンジン回転速度 N Eとに基づいて定まる所定量の燃料を燃料噴射弁 1 2 7から噴射する。 即ち、 矛混合圧縮自着火燃焼運転実行手段 J 2は、 極軽負荷時噴射タイミング 0 injより も進角側の軽 ·中負荷時噴射タイミング 0 injにて燃料を噴射することにより均質 混合気を形成する。
この場合に噴射される燃料の総量は、 空燃比を超希薄空燃比とする量である。 更に、 この場合、 予混合圧縮自着火燃焼運転実行手段 J 2は、 燃料噴射弁 1 2 7 のニードルのリフト量が高リフト量となるように、 燃料噴射弁 1 2 7の第 1のソ レノィド及ぴ第 2のソレノィドの両方を通電する。
この段階では、 吸気スワールが強い状態にて残存している。 従って、 混合気が 吸気スワールにより攪拌されることにより、 燃焼室 1 1 5内に存在する全空気が 均質混合気の形成に利用される。 そして、 その均質混合気は、 キヤビティ 1 1 2 aに取り込まれたのちに圧縮され、 燃料が自着火燃焼する燃焼行程が始まる。 そ の結果、 N o Xの排出量をより低減し、 熱効率 (燃費) の向上を図ることができ る。
(内燃機関 1 0 0が lift己高負荷領域にて運転されるとき)
内燃機関 1 0 0が前記高負荷領域にて運転されるとき、 運転切換手段 G 2は運 転領域マップに従って拡散燃焼運転実行手段 J 3を選択する。 これにより、 内燃 機関 1 0 0は拡散燃焼運転実行手段 J 3によって運転される。
拡散燃焼運転実行手段 J 3は、 燃焼室 1 1 5内に吸入された空気を同燃焼室 1 1 5内にて圧縮し、 同圧縮された空気の中に燃料噴射弁 1 2 7から燃料を噴射す ることにより同燃料を拡散燃焼させる。 より具体的に述べると、 拡散燃焼運転実 行手段 J 3は、 以下に述べる作動を順に実行して内燃機関 1 0 0の運転を行う ( 図 2 1の (C) を参照。 ) 。
( 1 ) 燃焼行程において、 内燃機関 1 0 0の負荷に応じた高負荷時排気弁開弁タ ィミング E Oにてお気弁 1 2 2を開弁する。 これにより、 排気行程が開始する。
( 2 ) 次いで、 吸気ポート開タイミング I P Oにて第 1吸気ポート 1 1 6及び第 2吸気ポート 1 1 7と燃焼室 1 1 5とが連通せしめられる。 これにより、 掃気行 程が開始する。 このとき、 吸気制御弁 1 1 9は第 2吸気ポート 1 1 7を開くよう に制御されている。
( 3 ) 次いで、 吸気ポート閉タイミング I P Cにて第 1吸気ポート 1 1 6及び第 2吸気ポート 1 1 7と燃焼室 1 1 5とが遮断せしめられる。 吸気ポート閉タイミ ング I P Cは負荷により変ィ匕しない。 換言すると、 高負荷時の吸気ポート閉タイ ミング I P Cは、 図 1に示したような頭上弁式の内燃機関において、 拡散燃焼運 転が行われる高負荷領域で火花点火燃焼を行ったと仮定したとき、 ノッキングの 過度の発生を回避するように設定される吸気弁閉弁タイミング I Cigよりも進角 側のタイミング (即ち、 軽 ·中負荷時の吸気ポート閉タイミング) となる。
( 4 ) 次いで、 燃機関 1 0 0の負荷に応じた高負荷時排気弁閉弁タイミング E C が到来するので、 排気弁 1 2 2を閉弁する。 これにより、 圧縮行程が開始する。
( 5 ) 次いで、 圧縮行程であって上死点近傍の燃料噴射タイミング 0 injにて燃料' 噴射弁 1 2 7から燃料を噴射し、 その燃料を拡散燃焼させる。 噴射する燃料の量 は、 内燃機関 1 0 0の負荷とエンジン回転速度 N Eとに基づいて定まる量である 。 更に、 この場合、 拡散燃焼運転実行手段 J 3は、 燃料噴射弁 1 2 7のニードル のリフト量が高リフト量となるように、 燃料噴射弁 1 2 7の第 1のソレノイド及 び第 2のソレノィドの両方を通電する。
これによれば、 高負荷時における燃焼室 1 1 5と第 1吸気ポート 1 1 6及び第 2吸気ポート 1 1 7との遮断タイミングが、 軽 ·中負荷時における同遮断タイミ ングと同じタイミングになるので、 実圧縮比が大きく低下することがない。 この 結果、 過度のノッキングを伴うことなく、 更に、 燃料は拡散燃焼により燃焼する ので、 高圧縮比の下で安定した燃焼を得ることができる。 従って、 内燃機関 1 0 0の発生トルクを向上することができる。
また、 2サイクル内燃機関 9 0と同様、 2サイクル内燃機関 1 0 0においては 、 高温の燃焼ガスを直ちに次の燃焼に供される混合気の温度を上昇させるために 利用することができるので、 自着火燃焼を安定して行うことが可能となる。 従つ て、 自着火燃焼運転を行う運転領域をより低負荷側の領域にまで拡大できる。 こ の結果、 実用領域において自着火燃焼運転することができるので、 内燃機関の N O xの排出量を少なくし、 且つ、 燃費を改善することができる。
加えて、 高負荷領域において、 過給機 1 5 0による過給と拡散燃焼を行うこと により、 ノッキングを伴わない燃焼が可能となる。 この結果、 内燃機関 1 0 0は 、 大きな最大トルクを発生することができる。
なお、 内燃機関 1 0 0では、 掃気行程と吸気行程とが同時に行われているが、 内燃機関 1 0 0を、 クランク角が 3 6 0度回転する毎に、 燃焼室 1 1 5と吸気ポ ート 1 1 6とを遮断した状態にて燃焼室 1 1 5と排気ポート 1 2 1と.を連通して 排気行程を開始し、 次いで燃焼室 1 1 5と吸気ポート 1 1 6とを連通して掃気行 程を開始し、 次いで燃焼室 1 1 5と排気ポート 1.2 1とを遮断して吸気行程を開 始し、 次いで燃焼室 1 1 5と吸気ポート 1 1 6とを遮断して圧縮行程を開始した 後に同状態にて燃焼行程を迎える 2サイクル運転を行うように構成してもよい。 以上、 説明したように、 本発明による内燃機関の各実施形態は、 少なくとも軽 負荷側で均質混合気の自着火燃焼運転を行 ヽ、 高負荷側で拡散燃焼運転を行うよ うに構成されているの。 従って、 燃費の向上や N o X排出量の低減を実現できる とともに、 ノッキングを回避しながら高トルクを発生することができる。 また、 火花点火燃焼運転領域を排除又は縮小することが可能となるので、 N o X排出量 の低減及び燃費の向上が実現できる。 更に、 火花点火燃焼運転領域を排除できる 場合、 点火ブラグゃィグナイタ等の点火用火花発生手段を排除することができる ので、 内燃機関のコストを低減することができる。
なお、 本発明は上記各実施形態に限定されることはなく、 本発明の範囲内にお いて種々の変形例を採用することができる。 例えば、 上記各実施形態における過 給機はターボチャージャであったが、 機械式過給機 (スーパーチャージャ) であ つてもよい。 また、 上記成層自着火燃焼運転実行手段による運転時、 上記予混合 圧縮自着火燃焼運転実行手段による運転時及び上記拡散燃焼運転実行手段による 運転時において、 点火用火花を補助的に発生させることにより、 より安定した燃 焼を確保してもよい。

Claims

請 求 の 範 囲
1 . 内燃機関のビストンの頂面、 シリンダのボア壁面及ぴシリンダへッドの下面 により画定される燃焼室内にガソリン燃料を噴射する燃料噴射手段と、
前記内燃機関が軽負荷領域にて運転されるとき、 前記燃焼室内に吸入された空 気と前記燃料噴射手段から噴射された燃料とを予め混合して同燃料の空間的分布 がー様な均質混合気を形成しながら圧縮することにより同燃料を自着火燃焼させ る予混合圧縮自着火燃焼運転実行手段と、
を備えた内燃機関であって、
前記内燃機関が前記軽負荷領域よりも負荷が大きい高負荷領域にて運転される とき、 前記自着火燃焼に代え、 前記燃焼室内に吸入された空気を同燃焼室内にて 圧縮し、 同圧縮された空気の中に前記燃料噴射手段から燃料を噴射することによ り同燃料を拡散燃焼させる拡散燃焼運転実行手段を備えた内燃機関。
2. 請求の範囲 1に記載の内燃機関であって、
クランク角が 7 2 0度回転する毎に吸気、 圧縮、 燃焼及び排気の各行程を迎え る 4サイクル運転を行うように構成されるとともに、
前記空気の前記燃焼室への吸入により同燃焼室内に吸気スワールを生成するス ワール生成手段と、
前記燃焼室に点火用火花を発生する火花発生手段と、
前記内燃機関が前記軽負荷領域よりも負荷が大きく前記高負荷領域.よりも負荷 が小さレヽ中負荷領域にて運転されるとき、 前記燃焼室内に吸入された空気と前記 燃料噴射手段から噴射された燃料とを予め混合して同燃料の空間的分布が一様な 均質混合気を形成しながら圧縮し、 同圧縮された均質混合気を前 ff己火花発生手段 による点火用火花によつて点火して同燃料を火花点火燃焼させる火花点火燃焼運 転実行手段と、
を備 、
前記予混合圧縮自着火燃焼運転実行手段は、
前記内燃機関の負荷に応じた軽負荷時吸気弁開弁タイミングにて吸気弁を開弁 するとともに同負荷に応じた軽負荷時吸気弁閉弁タイミングにて同吸気弁を閉弁 し、 前記燃焼室内に吸入される空気によるスワールが最も強くなる時期である同 軽負荷時吸気弁開弁タイミングから同軽負荷時吸気弁閉弁タイミングまでの吸気 行程の初期及び Z又は中期に前記燃料噴射手段から前記燃料を噴射させることに より前記均質混合気を形成するように構成され、
前記火花点火燃焼 実行手段は、 前記内燃機関の負荷に応じた中負荷時吸気弁開弁タイミングにて前記吸気弁を 開弁するとともに同負荷に応じた吸気弁閉弁タイミングであって前記軽負荷時吸 気弁閉弁タイミングょりも遅角側の中負荷時吸気弁閉弁タイミングにて同吸気弁 を閉弁し、 前記燃焼室内に吸入された空気によるスワールが最も強くなる時期で ある同中負荷時吸気弁開弁タイミングから同中負荷時吸気弁閉弁タイミングまで の吸気行程の初期及び Z又は中期に前記燃料噴射手段から前記燃料を噴射させる ことにより前記均質混合気を形成するように構成され、
前記拡散燃焼運転実行手段は、
前記内燃機関の負荷に応じた高負荷時吸気弁開弁タイミングにて前記吸気弁を 開弁するとともに同負荷に応じた吸気弁閉弁タイミングであって前記中負荷時吸 気弁閉弁タイミングょりも進角側の高負荷時吸気弁閉弁タイミングにて同吸気弁 を閉弁し、 同高負荷時吸気弁閉弁タイミングょりも遅角側であって圧縮上死点近 傍のタイミングにて前記燃料噴射手段から前記燃料を噴射させるように構成され た内燃機関。
3. 請求の範囲 2に記載の内燃機関であって、
前記ピストンは同ビストンの頂面の中央部に形成されたキヤビティを備え、 前記燃料噴射手段は前記キヤビティに向けて前記燃料を噴射するように構成さ れ、
吏に、
前記内燃機関が前記軽負荷領域よりも負荷が小さい極軽負荷領域に^:運転され るとき、 前記内燃機関の負荷に応じた極軽負荷時吸気弁開弁タイミングにて前記 吸気弁を開弁するとともに同負荷に応じた極軽負荷時吸気弁閉弁タイミングにて 同吸気弁を閉弁し、 同極軽負荷時吸気弁閉弁タイミングょり遅角側で圧縮上死点 までの圧縮行程の中期に前記燃料噴射手段から前記燃料を噴射して同噴射された 燃料を前記キヤビティに実質的に滞留せしめ、 同キヤビティ内にて均質混合気を 形成しながら圧縮することにより同燃料を自着火燃焼させる成層き着火燃焼運転 実行手段を備えた内燃機関。
4. 請求の範囲 2又は請求の範囲 3に記載の内燃機関であって、
前記燃焼 ^内の圧力である筒内圧を検出する筒内圧検出手段と、
前記予混合圧縮自着火燃焼運転実行手段による自着火燃焼運転を実行している 場合、 1回の燃焼に対する圧縮行程開始から燃焼行程終了まで前記検出された筒 内圧を平均ィ匕した筒内圧平均値を求めるとともに、 過去複数回の燃焼に対する同 筒内圧平均値を平均化した平均筒内圧平均値を求め、 今回の燃焼に対する筒内圧 平均値と同平均筒内圧平均値との差の絶対値に基づく値が所定値より大きくなつ たとき前記成層自着火燃焼運転実行手段による自着火燃焼運転を実行するように 運転を切り換える運 ^3換手段と、
を備えた内燃機関。
5 . 請求の範囲 2又は請求の範囲 3に記載の内燃機関であって、
前記燃焼室内の圧力である筒内圧を検出する筒内圧検出手段と、
前記予混合圧縮自着火燃焼運転実行手段による自着火燃焼運転を実行している 場合、 前記検出される筒内圧に基づいて筒内圧の単位時間又は単位クランク角あ たりの変ィ匕量である筒内圧変化率を求めるとともに、 同求められた筒内圧変化率 が所定変化率より大きくなつたとき前記火花点火燃焼運転実行手段による火花点 火燃焼運転を実行するように運転を切り換える運転切換手段と、
を備えた内燃機関。
6 . 請求の範囲 2又は請求の範囲 3に記載の内燃機関であって、
ノッキングを検出するノッキング検出手段と、
前記火花点火燃焼運転実行手段による火花点火燃焼運転を実行している場合、 前記検出されるノッキングに基づレ、てノッキングの発生頻度を求めるとともに、 同ノッキングの発生頻度が所定頻度より大きくなつたとき前記拡散燃焼運転実行 手段による拡散燃焼運転を実行するように ¾云を切り換える運転切換手段と、 を備えた内燃機関。
7 . 請求の範囲 3に記載の内燃機関において、
前記キヤビティは、 有底の略円筒状であって同キヤビティの入り口を形成する 縁部の径が同キヤビティ内部の最大径ょりも小さくなるように形成されるととも に、 前記咴気スワールを同キヤビティ内に導入するためのスワール案内溝が同キ ャビティの外周部に形成されてなる内燃機関。
8 . 請求の範囲 3に記載の内燃機関であって、
前記火花発生手段は、 前記キヤビティの内周部に前記点火用火花を発生する火 花発生部を備えるように配置された点火プラグであり、
更に、
前記内燃機関の始動時及び z又は同内燃機関の冷間時、 所定の始動冷間時吸気 弁開弁タイミングにて前記吸気弁を開弁するとともに所定の始動冷間時吸気弁閉 弁タイミングにて同吸気弁を閉弁し、 同始動冷間時吸気弁閉弁タイミングょり遅 角側で圧縮上死点までの圧縮行程の後期に前記燃料噴射手段から前記燃料を噴射 させることにより同嘖射された燃料を前記キヤビティに実質的に滞留せしめて同 キヤビティ内に成層混合気を形成し、 同形成された成層混合気を前記火花発生手 段による点火用火花によって点火させて同燃料を火花点火燃焼させる始動冷間時 成層火花点火燃焼運転実行手段を備えた内燃機関。
9. 請求の範囲 8に記載の内燃機関において、
前記キヤビティは、 有底の略円筒状であって同キヤビティの入り口を形成する 縁部の径が同キヤビティ内部の最大径ょりも小さくなるように形成されるととも に、 前記吸気スワールを同キヤビティ内に導入するためのスワール案内溝が同キ ャビティの外周部に形成され、
前記点火ブラグは、 前記スワール案内溝に沿うように配置された内燃機関。
1 0 . 請求の範囲 3、 請求の範囲 7、 請求の範囲 8及び請求の範囲 9の何れか一 項に記載の内燃機関であって、
前記キャビティの壁面に断熱層が形成されてなる内燃機関。
1 1 . 請求の範囲 2に記載の内燃機関であって、
過系合機を備えるとともに、
前記予混合圧縮自着火燃焼運転実行手段、 前記火花点火燃焼運転実行手段及び 前記拡散燃焼運転実行手段のそれぞれは、 前記吸気弁を開弁する前に 記排気弁 を閉弁して同お気弁の閉弁タイミングから同吸気弁の開弁タイミングまでの期間 である負のオーバーラップ期間を発生せしめるとともに、 前記内燃機関の負荷が 大きくなるほど同負のオーバーラップ期間が短くなるように同排気弁の閉弁タイ ミング及ぴ同吸気弁の開弁タイミングを制御するように構成された内燃機関。
1 2. 請求の範囲 3に記載の内燃機関であって、
過糸合機を備えるとともに、
前記成層自着火燃焼運転実行手段、 前記予混合圧縮自着火燃焼運転実行手段、 前記火花点火燃焼運転実行手段及び前記拡散燃焼運転実行手段のそれぞれは、 前 記吸気弁を開弁する前に前記排気弁を閉弁して同排気弁の閉弁タイミングから同 吸気弁の開弁タイミングまでの期間である負のオーバーラップ期間を発生せしめ るとともに、 前記内燃機関の負荷が大きくなるほど同負のォーパーラップ期間が 短くなるように同排気弁の閉弁タイミング及び同吸気弁の開弁タイミングを制御 するように構成された内燃機関。
1 3 . 請求の範囲 3に記載の内燃機関において、
前記燃料噴射手段は、
燃料の噴射角を狭角としながら噴射する第 1噴射状態と、 同燃料の噴射角を同 狭角及び同狭角よりも角度の大きい広角としながら嘖射する第 2噴射状態との何 れカゝの状態にて同燃料を噴射し得るように構成され、
前記成層自着火燃焼運転実行手段は、 前記燃料を前記燃料噴射手段から前記第 1噴射状態にて噴射せしめるように構成され、
前記予混合圧縮自着火燃焼運転実行手段、 前記火花点火燃焼運転実行手段及び 前記拡散燃焼運転実行手段のそれぞれは、 前記燃料を前記燃料噴射手段から前記 第 2噴射状態にて噴射せしめるように構成されてなる内燃機関。
1 . 請求の範囲 1 3に記載の内燃機関であって、
前記燃料噴射手段は、 ユードルが低リフト状態及び高リフト状態の何れの状態 にあるときにも開カれて燃料を噴射する狭角噴射孔群と、 同ニードルが同高リフ ト状態にあるときにのみ開力れて燃料を噴射する広角噴射孔群と、 を備えた燃料 噴射弁であり、
前記成層自着火燃焼運転実行手段は、 前記ニードルを前記低リフト状態とする ことにより前記燃料を前記第 1噴射状態にて噴射せしめるように構成され、 前記予混合圧縮自着火燃焼運転実行手段、 前記火花点火燃焼運転実行手段及び 前記拡散燃焼運転実行手段のそれぞれは、 前記ニードルを前記高リフ.ト状態とす ることにより前記燃料を前記第 2噴射状態にて噴射せしめるように構成されてな る内燃機関。
1 5 . 請求の範囲 1 4に記載の内燃機関であって、
前記燃料噴射弁は前記狭角噴射孔ょりも前記広角噴射孔を多く備え、 前記広角 噴射孔の径は前記狭角噴射孔の径よりも小さく形成され、
更に、
前記内燃機関の負荷が大きくなるほど前記燃料噴射弁から噴射される燃料の圧 力を大きくする燃料噴射圧力調整手段を備えた内燃機関。
1 6 . 請求の範囲 1に記載の内燃機関であって、
クランク角が 3 6 0度回転する毎に、 前記燃焼室と同燃焼室内に吸気スワール を生成するように構成された吸気ポートとを遮断した状態にて同燃焼室と排気ポ ートとを連通して排気行程を開始し、 次いで同燃焼室と同吸気ポートとを連通し て掃気行程を開始し、 次いで同燃焼室と同排気ポートとを遮断して吸気行程を開 始し、 次レ、で同燃焼室と同吸気ポートとを遮断して圧縮行程を開始した後に同状 態にて燃焼行程を迎える 2サイクル運転を行うように構成されるとともに、 前記内燃機関が前記軽負荷領域よりも負荷が小さい極軽負荷領域にて運転され るとき、 前記圧縮行程の中期に前記燃料噴射手段から前記燃料を噴射して同噴射 された燃料を前記キヤビティに実質的に滞留せしめ、 同キヤビティ内にて均質混 合気を形成しながら圧縮することにより同燃料を自着火燃焼させる成層自着火燃 焼運転実行手段を備え、
更に、
前記予混合圧縮自着火燃焼運転実行手段は、
前記燃焼室と前記吸気ポートとが連通されてから遮断されるまでの期間におい て同燃焼室内に吸入される空気によるスワールが最も強くなる時期に前記燃料噴 射手段から前記燃料を噴射することにより前記均質混合気を形成するように構成 され、
前記拡散燃焼運転実行手段は、
前記圧縮行程であって上死点近傍のタイミングにて前記燃料噴射手段から前記 燃料を噴射して前記燃料を拡散燃焼させるとともに、 同拡散燃焼運転が行われる 前記高負荷領域にぉレ、て火花点火燃焼を行つたと仮定したときにノッキングの過 度の発生を回避するように設定される前記燃焼室と前記吸気ポートとの遮断を行 ぅタイミングょりも進角側のタイミングにて、 同燃焼室と同吸気ポートとの遮断 を行うように構成された内燃機関。 ,
1 7 . 請求の範囲 1に記載の内燃機関であって、 .
クランク角が 3 6 0度回転する毎に、 前記燃焼室と同燃焼室内に吸気スワール を生成するように構成された吸気ポートとを遮断した状態にて同;^焼室と排気ポ ートとを連通して排気行程を開始し、 次いで同燃焼室と同吸気ポートとを連通し て掃気行程を開始し、 次いで同燃焼室と同排気ポートとを遮断し且つ同燃焼室と 同吸気ポートとを遮断して圧縮行程を開始した後に同状態にて燃焼行程を迎える 2サイクル運転を行うように構成されるとともに、
前記内燃機関が前記軽負荷領域よりも負荷が小さい極軽負荷領域にて運転され るとき、 前記圧縮行程の中期の極軽負荷時噴射タイミングにて前記燃料噴射手段 から前記燃料を噴射して同噴射された燃料を前記キヤビティに実質的に滞留せし め、 同キヤビティ内にて均質混合気を形成しながら圧縮することにより同燃料を 自着火燃焼させる成層自着火燃焼運転実行手段と、
前記吸気ポートを介して前記燃焼室に流入する空気を圧縮する過給機と、 を備え、 且つ、
前記ビストンは、 同ビストンの頂面の中央部に形成されたキヤビティを備え、 前記燃料噴射手段は、 前記シリンダへッドの下面であって前記シリンダのボア の略中央部に配置され且つ前記キヤビティに向けて前記燃料を噴射する燃料噴射 弁であり、
前記お気ポートは、 その一端が前記シリンダへッドの下面であって前記燃料噴 射弁の周囲に形成された開口部を構成するとともに、 同開口部が同開口部に配設 された排気弁により開かれることにより前記燃焼室と連通させられ且つ同排気弁 により閉じられることにより同燃焼室と遮断させられるように構成され、
前記吸気ポートは、 その一端が前記シリンダのボア壁面に形成された開口部を 構成するとともに、 同開口部が前記ビストンが上死点から下死点に向けて移動す る際に同ビストンの側壁により開かれることにより前記燃焼室と連通させられ且 つ同ピストンが下死点から上死点に向けて移動する際に同ピストンの側壁により 閉じられることにより同燃焼室と遮断させられるように構成され、
前記予混合圧縮自着火燃焼運転実行手段は、 前記極軽負荷時噴射タイミングょ りも進角側の軽負荷時噴射タイミングにて前記燃料噴射手段から前記燃料を噴射 することにより前記均質混合気を形成するように構成され、
前記拡散燃焼運転実行手段は、 前記極軽負荷時噴射タイミングょりも遅角側の 上死点近傍のタイミンクであって前記圧縮行程中のタイミングである高負荷時噴 射タイミングにて前記燃料噴射手段から前記燃料を噴射して前記燃料を拡散燃焼 させるように構成された内燃機関。
PCT/JP2006/303814 2005-02-24 2006-02-22 内燃機関 WO2006090884A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP06728566.8A EP1857654B1 (en) 2005-02-24 2006-02-22 Inernal combustion engine
ES06728566.8T ES2564575T3 (es) 2005-02-24 2006-02-22 Un motor de combustión interna

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005048514A JP4100401B2 (ja) 2005-02-24 2005-02-24 内燃機関
JP2005-048514 2005-02-24

Publications (1)

Publication Number Publication Date
WO2006090884A1 true WO2006090884A1 (ja) 2006-08-31

Family

ID=36927513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/303814 WO2006090884A1 (ja) 2005-02-24 2006-02-22 内燃機関

Country Status (6)

Country Link
US (1) US7681550B2 (ja)
EP (1) EP1857654B1 (ja)
JP (1) JP4100401B2 (ja)
CN (1) CN100564828C (ja)
ES (1) ES2564575T3 (ja)
WO (1) WO2006090884A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111201373A (zh) * 2017-11-21 2020-05-26 戴姆勒股份公司 用于机动车的内燃机以及运行这种内燃机的方法

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7793638B2 (en) * 2006-04-20 2010-09-14 Sturman Digital Systems, Llc Low emission high performance engines, multiple cylinder engines and operating methods
JP4466616B2 (ja) * 2006-06-19 2010-05-26 トヨタ自動車株式会社 多種燃料内燃機関
JP4535051B2 (ja) 2006-09-28 2010-09-01 トヨタ自動車株式会社 多種燃料内燃機関
JP4788554B2 (ja) * 2006-09-29 2011-10-05 マツダ株式会社 火花点火式直噴ガソリンエンジン
US7832370B2 (en) * 2006-11-16 2010-11-16 Gm Global Technology Operations, Inc. Low-load operation extension of a homogeneous charge compression ignition engine
JP4778879B2 (ja) * 2006-11-22 2011-09-21 本田技研工業株式会社 内燃機関の過給圧制御装置
JP4438792B2 (ja) 2006-12-18 2010-03-24 株式会社日立製作所 圧縮自己着火式内燃機関の制御装置
JP4780059B2 (ja) * 2007-08-09 2011-09-28 トヨタ自動車株式会社 内燃機関の制御装置
JP4803151B2 (ja) * 2007-10-03 2011-10-26 マツダ株式会社 ガソリンエンジンの制御装置
US7954472B1 (en) 2007-10-24 2011-06-07 Sturman Digital Systems, Llc High performance, low emission engines, multiple cylinder engines and operating methods
JP4863980B2 (ja) * 2007-12-07 2012-01-25 日立オートモティブシステムズ株式会社 火花点火式内燃機関の制御装置
US7958864B2 (en) 2008-01-18 2011-06-14 Sturman Digital Systems, Llc Compression ignition engines and methods
JP5040951B2 (ja) * 2009-03-31 2012-10-03 マツダ株式会社 直噴エンジンの制御方法および直噴エンジン
JP5359629B2 (ja) * 2009-07-13 2013-12-04 日産自動車株式会社 内燃機関の燃焼制御装置
FR2948413A3 (fr) * 2009-07-23 2011-01-28 Renault Sa Gestion de la combustion dans un moteur a injection directe pour vehicule automobile.
US8596230B2 (en) 2009-10-12 2013-12-03 Sturman Digital Systems, Llc Hydraulic internal combustion engines
WO2011048676A1 (ja) * 2009-10-21 2011-04-28 トヨタ自動車株式会社 内燃機関の燃焼制御装置
EP2497925B1 (en) * 2009-11-05 2014-12-17 Toyota Jidosha Kabushiki Kaisha Intake apparatus of engine
FR2955358B1 (fr) * 2010-01-19 2012-06-08 Inst Francais Du Petrole Procede de balayage des gaz brules residuels d'un moteur multi cylindres a combustion interne suralimente a injection directe fonctionnant a charges partielles
JP5525317B2 (ja) * 2010-04-20 2014-06-18 本田技研工業株式会社 車両の制御装置
EP2381082A1 (en) * 2010-04-20 2011-10-26 Kwang Yang Motor Co., Ltd. Method and device for controlling operation of an injection engine
US8408191B2 (en) 2010-06-23 2013-04-02 Delphi Technologies, Inc. Engine combustion control using ignition dwell
US8887690B1 (en) 2010-07-12 2014-11-18 Sturman Digital Systems, Llc Ammonia fueled mobile and stationary systems and methods
DE102010047795A1 (de) * 2010-10-07 2012-04-12 Daimler Ag Betriebsverfahren für eine Brennkraftmaschine
US20130213349A1 (en) * 2010-10-26 2013-08-22 Delphi Technologies, Inc High-Efficiency Internal Combustion Engine and Method for Operating Employing Full-Time Low-Temperature Partially-Premixed Compression Ignition with Low Emissions
JP5533732B2 (ja) * 2011-02-24 2014-06-25 マツダ株式会社 火花点火式ガソリンエンジンの制御装置
JP5500102B2 (ja) * 2011-02-24 2014-05-21 マツダ株式会社 火花点火式ガソリンエンジンの制御装置
JP5500103B2 (ja) * 2011-02-24 2014-05-21 マツダ株式会社 火花点火式ガソリンエンジンの制御装置
JP5609767B2 (ja) * 2011-05-13 2014-10-22 トヨタ自動車株式会社 内燃機関の燃料噴射装置
US9206738B2 (en) 2011-06-20 2015-12-08 Sturman Digital Systems, Llc Free piston engines with single hydraulic piston actuator and methods
US9464569B2 (en) 2011-07-29 2016-10-11 Sturman Digital Systems, Llc Digital hydraulic opposed free piston engines and methods
JP5862161B2 (ja) 2011-09-27 2016-02-16 スズキ株式会社 内燃機関
CN103946510B (zh) * 2011-11-17 2017-02-22 川崎重工业株式会社 机动二轮车的发动机的进气结构及具备该进气结构的机动二轮车
JP5765819B2 (ja) * 2012-04-11 2015-08-19 三菱重工業株式会社 2サイクルガスエンジン
DE102012018692A1 (de) * 2012-09-21 2014-03-27 Daimler Ag Verfahren zum Betreiben einer zumindest ein Einlassventil aufweisenden Brennkraftmaschine, insbesondere eines Ottomotors
CN105121825B (zh) * 2013-04-16 2018-10-26 德尔福技术有限公司 用于汽油直喷压燃(gdci)的活塞和碗状物
JP5876462B2 (ja) 2013-12-02 2016-03-02 トヨタ自動車株式会社 内燃機関の制御装置
JP2015113805A (ja) 2013-12-13 2015-06-22 トヨタ自動車株式会社 内燃機関
EP3140527B1 (en) * 2014-04-29 2020-11-18 Volvo Truck Corporation Combustion chamber for an internal combustion engine and an internal combustion engine
EP3280898B1 (en) * 2015-04-09 2020-06-17 Westport Power Inc. Ignition apparatus and method for a premixed charge in a gaseous-fuelled engine
KR101807027B1 (ko) * 2015-12-10 2017-12-08 현대자동차 주식회사 연속 가변 밸브 듀레이션 엔진의 밸브 타이밍 제어 시스템 및 방법
JP6337912B2 (ja) * 2016-01-25 2018-06-06 トヨタ自動車株式会社 内燃機関
JP6601430B2 (ja) * 2017-01-27 2019-11-06 トヨタ自動車株式会社 内燃機関の制御装置
JP6620783B2 (ja) * 2017-06-02 2019-12-18 マツダ株式会社 エンジンの燃焼室構造
JP6558404B2 (ja) * 2017-08-24 2019-08-14 マツダ株式会社 圧縮着火式エンジンの制御装置
AT520847B1 (de) * 2018-01-23 2019-11-15 Avl List Gmbh Verfahren zum betreiben einer otto-brennkraftmaschine
JP7040312B2 (ja) * 2018-06-19 2022-03-23 マツダ株式会社 予混合圧縮着火式エンジン
CN110284982A (zh) * 2019-06-19 2019-09-27 东风汽车集团有限公司 一种缸内直喷汽油机从分层燃烧到均质燃烧的切换控制方法
JP2021021338A (ja) 2019-07-24 2021-02-18 マツダ株式会社 エンジンの燃料噴射制御装置
JP2021021340A (ja) 2019-07-24 2021-02-18 マツダ株式会社 エンジンの燃料噴射制御装置
JP2021021339A (ja) * 2019-07-24 2021-02-18 マツダ株式会社 エンジンの燃料噴射制御装置
JP7266545B2 (ja) * 2020-03-19 2023-04-28 三菱重工業株式会社 燃料噴射制御装置
CN118273798A (zh) * 2022-12-30 2024-07-02 比亚迪股份有限公司 发动机以及车辆

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4985407A (ja) * 1972-12-20 1974-08-16
JPH084535A (ja) * 1994-06-17 1996-01-09 Kubota Corp 直接噴射式ディーゼルエンジンのピストン
JP2001003800A (ja) * 1999-06-23 2001-01-09 Hitachi Ltd エンジン制御システム及び制御方法
JP2001020765A (ja) * 1999-07-06 2001-01-23 Hitachi Ltd 圧縮着火エンジン及び圧縮着火式エンジンの制御方法
JP2001073905A (ja) * 1999-09-06 2001-03-21 Bosch Automotive Systems Corp 燃料噴射ノズル
JP2001323828A (ja) * 2000-05-16 2001-11-22 Nissan Motor Co Ltd 圧縮自己着火式ガソリン機関
JP2002188468A (ja) * 2000-12-15 2002-07-05 Mazda Motor Corp ディーゼルエンジンの燃焼制御装置
JP2002242730A (ja) * 2001-02-16 2002-08-28 Fuji Heavy Ind Ltd エンジンの燃焼制御装置
JP2002242715A (ja) * 2001-02-16 2002-08-28 Fuji Heavy Ind Ltd 圧縮着火式エンジン
JP2003232256A (ja) * 2002-02-12 2003-08-22 Osaka Gas Co Ltd ノッキング判定装置及びそれを備えたエンジン
JP2004028022A (ja) * 2002-06-27 2004-01-29 Toyota Motor Corp 混合気を圧縮自着火させて運転する内燃機関、および内燃機関の制御方法
JP2004044498A (ja) * 2002-07-12 2004-02-12 Toyota Motor Corp 混合気を圧縮自着火させる内燃機関、および内燃機関の制御方法
JP2004245171A (ja) * 2003-02-17 2004-09-02 Toyota Motor Corp 混合気を圧縮自着火させる自着火運転が可能な内燃機関
JP2004245126A (ja) * 2003-02-13 2004-09-02 Toyota Motor Corp 高圧縮比過給式リーンバーンエンジンの運転モード制御装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3558370B2 (ja) * 1994-06-07 2004-08-25 株式会社豊田中央研究所 圧縮着火式ガソリン機関
JP3998338B2 (ja) * 1998-07-29 2007-10-24 三井化学株式会社 炭化水素化合物および有機電界発光素子
JP4326044B2 (ja) * 1998-08-21 2009-09-02 日産自動車株式会社 4サイクル内燃機関
JP4122630B2 (ja) 1999-05-12 2008-07-23 日産自動車株式会社 圧縮自己着火式ガソリン機関
JP3815163B2 (ja) * 2000-01-25 2006-08-30 日産自動車株式会社 圧縮自己着火式内燃機関
JP3978965B2 (ja) 2000-01-27 2007-09-19 日産自動車株式会社 内燃機関の燃焼制御装置
US6675748B2 (en) * 2000-02-11 2004-01-13 Westport Research Inc. Method and apparatus for fuel injection into an internal combustion engine
US6912992B2 (en) * 2000-12-26 2005-07-05 Cummins Westport Inc. Method and apparatus for pilot fuel introduction and controlling combustion in gaseous-fuelled internal combustion engine
AT5135U1 (de) * 2001-02-08 2002-03-25 Avl List Gmbh Verfahren zum betreiben einer mit benzinähnlichen kraftstoffen, insbesondere benzin, betriebenen brennkraftmaschine
US6598584B2 (en) * 2001-02-23 2003-07-29 Clean Air Partners, Inc. Gas-fueled, compression ignition engine with maximized pilot ignition intensity
JP2002285844A (ja) 2001-03-23 2002-10-03 Nissan Motor Co Ltd 圧縮自己着火式内燃機関
JP2003065116A (ja) * 2001-08-24 2003-03-05 Nissan Motor Co Ltd 内燃機関の排気浄化装置
DE60306568T2 (de) * 2002-03-27 2007-07-05 Mazda Motor Corp. Verbrennungssteuerapparat für einen Motor, Motor, Verbrennungssteuerverfahren dafür, Speichermedium und Computerprogramm
JP3879672B2 (ja) * 2002-03-28 2007-02-14 マツダ株式会社 エンジンの燃焼制御装置
JP3767519B2 (ja) 2002-06-07 2006-04-19 日産自動車株式会社 圧縮自己着火式内燃機関の制御装置
JP2004132304A (ja) 2002-10-11 2004-04-30 Toyota Motor Corp 4サイクル運転と2サイクル運転とを行う可変サイクルエンジン
US7000596B2 (en) * 2003-10-03 2006-02-21 Cummins Westport Inc. Method and apparatus for controlling an internal combustion engine using combustion chamber pressure sensing

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4985407A (ja) * 1972-12-20 1974-08-16
JPH084535A (ja) * 1994-06-17 1996-01-09 Kubota Corp 直接噴射式ディーゼルエンジンのピストン
JP2001003800A (ja) * 1999-06-23 2001-01-09 Hitachi Ltd エンジン制御システム及び制御方法
JP2001020765A (ja) * 1999-07-06 2001-01-23 Hitachi Ltd 圧縮着火エンジン及び圧縮着火式エンジンの制御方法
JP2001073905A (ja) * 1999-09-06 2001-03-21 Bosch Automotive Systems Corp 燃料噴射ノズル
JP2001323828A (ja) * 2000-05-16 2001-11-22 Nissan Motor Co Ltd 圧縮自己着火式ガソリン機関
JP2002188468A (ja) * 2000-12-15 2002-07-05 Mazda Motor Corp ディーゼルエンジンの燃焼制御装置
JP2002242730A (ja) * 2001-02-16 2002-08-28 Fuji Heavy Ind Ltd エンジンの燃焼制御装置
JP2002242715A (ja) * 2001-02-16 2002-08-28 Fuji Heavy Ind Ltd 圧縮着火式エンジン
JP2003232256A (ja) * 2002-02-12 2003-08-22 Osaka Gas Co Ltd ノッキング判定装置及びそれを備えたエンジン
JP2004028022A (ja) * 2002-06-27 2004-01-29 Toyota Motor Corp 混合気を圧縮自着火させて運転する内燃機関、および内燃機関の制御方法
JP2004044498A (ja) * 2002-07-12 2004-02-12 Toyota Motor Corp 混合気を圧縮自着火させる内燃機関、および内燃機関の制御方法
JP2004245126A (ja) * 2003-02-13 2004-09-02 Toyota Motor Corp 高圧縮比過給式リーンバーンエンジンの運転モード制御装置
JP2004245171A (ja) * 2003-02-17 2004-09-02 Toyota Motor Corp 混合気を圧縮自着火させる自着火運転が可能な内燃機関

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1857654A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111201373A (zh) * 2017-11-21 2020-05-26 戴姆勒股份公司 用于机动车的内燃机以及运行这种内燃机的方法
US11280279B2 (en) 2017-11-21 2022-03-22 Daimler Ag Internal combustion engine for a motor vehicle, and method for operating such an internal combustion engine
CN111201373B (zh) * 2017-11-21 2022-08-16 戴姆勒股份公司 用于机动车的内燃机以及运行这种内燃机的方法

Also Published As

Publication number Publication date
JP2006233839A (ja) 2006-09-07
US7681550B2 (en) 2010-03-23
EP1857654A1 (en) 2007-11-21
EP1857654B1 (en) 2016-02-03
ES2564575T3 (es) 2016-03-23
JP4100401B2 (ja) 2008-06-11
US20080275621A1 (en) 2008-11-06
EP1857654A4 (en) 2014-07-30
CN100564828C (zh) 2009-12-02
CN101128656A (zh) 2008-02-20

Similar Documents

Publication Publication Date Title
WO2006090884A1 (ja) 内燃機関
US10697391B2 (en) Control system of compression-ignition engine
US10487720B2 (en) Control system of compression-ignition engine
JP6458814B2 (ja) 内燃機関
WO2018096744A1 (ja) エンジンの制御装置
JP6562165B2 (ja) エンジンの制御装置
JP6555309B2 (ja) エンジンの燃料噴射装置
JPWO2018096747A1 (ja) エンジンの制御装置
US10895215B2 (en) Control system for pre-mixture compression-ignition engine
JP6562166B2 (ja) エンジンの制御装置
JPWO2018096745A1 (ja) エンジンの制御装置
JP2019039359A (ja) エンジンの燃料噴射装置
JP2019039362A (ja) 圧縮着火式エンジンの制御装置
JP6558406B2 (ja) エンジンの制御装置
US20200191087A1 (en) Premixed compression ignition type engine with supercharging system
JP2006316777A (ja) 内燃機関
JP2018193989A (ja) 圧縮着火式エンジンの制御装置
US11028797B2 (en) Engine control method and engine control device
JP2019039391A (ja) 過給機付き圧縮自己着火式エンジン
US11242812B2 (en) Engine control method and engine control device
JP6597736B2 (ja) エンジンの制御装置
JP2006257999A (ja) 内燃機関
JP2005163686A (ja) 混合気を圧縮自着火させる自着火運転が可能な内燃機関
JP4412055B2 (ja) 予混合圧縮自着火内燃機関
JP2003120391A (ja) 圧縮着火式内燃機関

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006728566

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200680006107.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2006728566

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11884674

Country of ref document: US