WO2006088087A1 - ノルボルネン系樹脂成形体およびその製造方法 - Google Patents

ノルボルネン系樹脂成形体およびその製造方法 Download PDF

Info

Publication number
WO2006088087A1
WO2006088087A1 PCT/JP2006/302725 JP2006302725W WO2006088087A1 WO 2006088087 A1 WO2006088087 A1 WO 2006088087A1 JP 2006302725 W JP2006302725 W JP 2006302725W WO 2006088087 A1 WO2006088087 A1 WO 2006088087A1
Authority
WO
WIPO (PCT)
Prior art keywords
norbornene
filler
based resin
resin molded
reaction
Prior art date
Application number
PCT/JP2006/302725
Other languages
English (en)
French (fr)
Inventor
Takahiro Miura
Tomohiko Takimoto
Original Assignee
Rimtec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rimtec Corporation filed Critical Rimtec Corporation
Priority to US11/884,569 priority Critical patent/US20080234422A1/en
Priority to JP2007503700A priority patent/JP4944765B2/ja
Priority to CN2006800130456A priority patent/CN101163741B/zh
Priority to EP06713866A priority patent/EP1849832A1/en
Publication of WO2006088087A1 publication Critical patent/WO2006088087A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/04Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
    • C08G61/06Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds
    • C08G61/08Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds of carbocyclic compounds containing one or more carbon-to-carbon double bonds in the ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/24Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 characterised by the choice of material
    • B29C67/246Moulding high reactive monomers or prepolymers, e.g. by reaction injection moulding [RIM], liquid injection moulding [LIM]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L45/00Compositions of homopolymers or copolymers of compounds having no unsaturated aliphatic radicals in side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic or in a heterocyclic ring system; Compositions of derivatives of such polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/08Copolymers of ethylene
    • B29K2023/083EVA, i.e. ethylene vinyl acetate copolymer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/38Polymers of cycloalkenes, e.g. norbornene or cyclopentene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • C08K2003/265Calcium, strontium or barium carbonate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to a norbornene-based resin molded article containing a specific filler and a method for producing the same. Moreover, this invention relates to the reaction undiluted solution used suitably for this manufacturing method. Background art
  • reaction liquid containing a norbornene monomer and a metathesis catalyst is injected into a mold by a reaction injection molding method (RIM), and a ring-opening polymerization is performed to produce a molded body made of a norbornene resin.
  • RIM reaction injection molding method
  • the reaction solution is usually obtained by instantaneously mixing two or more reaction stock solutions with a collision mixer or the like.
  • the raw reaction solution is not bulk polymerized with only one liquid, but when all liquids are mixed, it becomes a reaction liquid containing each component in a predetermined ratio, and the norbornene monomer is bulk polymerized.
  • Patent Document 3 It has also been proposed to use a filler having a specific particle size such as calcium carbonate (Patent Document 3). However, the effect of improving the rigidity was insufficient with this method.
  • Patent Document 1 JP-A-58-129013
  • Patent Document 2 JP-A-2-185558
  • Patent Document 3 Japanese Patent Laid-Open No. 2003-321597
  • a norbornene-based resin molded product obtained by bulk polymerization of a norbornene-based monomer in a mold, having an aspect ratio of 5 to: LOO
  • a norbornene-based resin molded article characterized by containing a material and a particulate filler having an aspect ratio of 1 to 2.
  • the fibrous filler is preferably wollastonite, and the particulate filler is preferably calcium carbonate.
  • the amount ratio of the fibrous filler and the particulate filler is preferably 95: 5 to 55:45 in terms of a weight ratio of fibrous filler: particulate filler.
  • the total content of the fibrous filler and the particulate filler is preferably 5 to 60% by weight with respect to 100% by weight of the whole norbornene-based resin molded body.
  • the norbornene-based resin molded body may be a composite molded body formed integrally with a composite member.
  • the amount ratio of the fibrous filler and the particulate filler, and the total content of the fibrous filler and the particulate filler are multiple.
  • the quantity ratio and content in the norbornene-based resin portion excluding the composite member are shown.
  • a method for producing the norbornene-based resin molded article comprising the norbornene-based monomer, a metathesis catalyst, the fibrous filler, and the particulate filler. Injecting the reaction solution into a mold, and bulk polymerization in the mold. A featured manufacturing method is provided.
  • the reaction solution is preferably prepared by mixing a reaction stock solution containing at least the norbornene-based monomer, the fibrous filler, and the particulate filler with another reaction stock solution.
  • a composite member may be installed in the mold.
  • reaction stock solution (H) used in the method for producing the norbornene-based resin molded product, the norbornene-based monomer, the fibrous filler, and the particulate filler.
  • the total content of the fibrous filler and the particulate filler is the whole reaction stock solution ( ⁇ ).
  • the norbornene-based resin molded article of the present invention is highly rigid and has excellent dimensional stability with little rigidity anisotropy. Therefore, various types of housing equipment, general building parts, electrical parts, automobile parts, etc. It can be suitably used for a wide range of applications.
  • the reaction stock solution ( ⁇ ) of the present invention suppresses sedimentation of the filler, there is no clogging of piping when used for reaction injection molding, and a uniform molded product can be obtained.
  • the norbornene-based resin molded product of the present invention (hereinafter, sometimes simply referred to as “molded product”) is a molded product of norbornene-based resin obtained by bulk polymerization of norbornene-based monomers in a mold. And a fibrous filler and a particulate filler.
  • the molded article of the present invention can be produced by the production method of the present invention.
  • the production method of the present invention is characterized in that a reaction liquid containing a norbornene-based monomer, a metathesis catalyst, a fibrous filler, and a particulate filler is injected into a mold, and bulk polymerization is performed in the mold. .
  • the reaction solution used in the production method of the present invention is a mixture of a reaction stock solution prepared by dividing a norbornene monomer, a metathesis catalyst, a fibrous filler, a particulate filler and an optional component into two or more liquids. Is obtained.
  • the reaction stock solution does not bulk polymerize with only one solution, When all the liquids are mixed, a reaction liquid containing each component in a predetermined ratio is obtained, and the norbornene monomer is polymerized in a bulk manner.
  • Examples of the optional component include an activator, an activity regulator, an elastomer, and an antioxidant.
  • the norbornene monomer used in the present invention is a compound having a norbornene ring structure, and any compound may be used as long as it is such a compound. Among them, it is preferable to use a tricyclic or higher polycyclic norbornene-based monomer because a molded product having excellent heat resistance can be obtained.
  • norbornene-based monomer examples include bicyclic compounds such as norbornene and norbornagen; tricyclic compounds such as dicyclopentagen (cyclopentagen dimer) and dihydrodicyclopentagen; tetracyclododecene Tetracycles such as cyclopentagen trimer; heptacycles such as cyclopentagen tetramer; alkyls such as methyl, ethyl, propyl, butyl, etc., and alkyls such as butyl.
  • Substituents such as alkylidene such as ethylidene, aryl, such as phenol, tolyl and naphthyl; and substituents having polar groups such as ester group, ether group, cyano group and halogen atom;
  • Dicyclopentagen which is preferred as a tricyclic, tetracyclic, or pentacyclic monomer, is particularly preferred because it is readily available, has excellent reactivity, and excellent heat resistance of the resulting molded product! /.
  • the ring-opening polymer to be produced is a thermosetting type.
  • a reactive cyclopentagen trimer or the like is used. It is preferable to use one containing at least a crosslinkable monomer having two or more double bonds. The proportion of such a crosslinkable monomer in all norbornene monomers is preferably 2 to 30% by weight.
  • the fibrous filler used in the present invention is a solid material insoluble in a norbornene-based monomer and has an aspect ratio of 5 to 100.
  • the aspect ratio is preferably 10 to 50, more preferably 15 to 35. If the aspect ratio is too small, the molded body may have insufficient rigidity and dimensional stability. On the other hand, if it is too large, the injection nozzle may become clogged when it is injected into the mold.
  • the aspect ratio of the filler is a ratio between the average major axis diameter of the filler and the 50% volume cumulative diameter.
  • the average major axis diameter is a number average major axis diameter calculated as an arithmetic average value of the major axis diameters of 100 fillers randomly selected from an optical micrograph.
  • the 50% volume cumulative diameter is a value obtained by measuring the particle size distribution by the X-ray transmission method.
  • the 50% volume cumulative diameter of the fibrous filler is preferably 0.1 to 50 m, and more preferably 1 to 30 / z m. If the 50% volume cumulative diameter is excessively small, the molded body may have insufficient rigidity and dimensional stability. On the other hand, if it is too large, it may settle in the tank piping or clog the injection nozzle when the reaction solution is injected into the mold.
  • the fibrous filler include glass fiber, wollastonite, potassium titanate, zonolite, basic magnesium sulfate, aluminum borate, tetrapot type zinc oxide, gypsum fiber, and phosphate fiber. , Alumina fibers, acicular calcium carbonate, acicular bermite, and the like. Of these, wollastonite is preferred because it can increase rigidity with a small amount of use and does not inhibit the bulk polymerization reaction.
  • the particulate filler used in the present invention is a solid material insoluble in a norbornene-based monomer and has an aspect ratio of 1 to 2.
  • the aspect ratio is preferably 1 to 1.5.
  • the 50% volume cumulative diameter of the particulate filler is preferably 0.1 to 50 m, more preferably 1 to 30 111, and particularly preferably 1 to: LO m. If the 50% volume cumulative diameter is too small, the molded body may have insufficient rigidity and dimensional stability. On the other hand, if the reaction liquid is excessively large, it may settle in the tank or piping when the reaction liquid is injected into the mold or the injection nozzle may be clogged.
  • particulate filler examples include calcium carbonate, calcium silicate, calcium sulfate. Rum, aluminum hydroxide, magnesium hydroxide, titanium oxide, zinc oxide, barium titanate, silica, alumina, carbon black, graphite, antimony oxide, red phosphorus, various metal powders, clay, various ferrites, hydrite You can list sites. These particulate fillers may be hollow bodies. Of these, calcium carbonate is preferred because it does not inhibit the bulk polymerization reaction.
  • the fibrous filler and the particulate filler have a hydrophobic surface.
  • the filler can be uniformly dispersed in the resulting molded body, the rigidity and dimensional stability of the resulting molded body can be made uniform, and anisotropy can be reduced. Can be small.
  • the treating agent used in the hydrophobizing treatment include silane coupling agents, titanate coupling agents, aluminum coupling agents, fatty acids, fats and oils, surfactants, waxes, and other polymers.
  • the method of the hydrophobization treatment is not particularly limited.
  • the untreated filler and the hydrophobizing treatment agent are contained in separate reaction stock solutions, and two or more reaction stock solutions are mixed, Force capable of simultaneously performing hydrophobization treatment of filler It is preferable to prepare a reaction stock solution using a hydrophobized filler.
  • the hydrophobized filler By using the hydrophobized filler, the aggregation of the filler can be prevented, so that the dispersibility in the reaction stock solution is improved and the sedimentation of the filler can be suppressed.
  • the amount of the filler in the reaction solution is preferably 5 to 60% by weight, more preferably 10 to 50% by weight in total of the fibrous filler and the particulate filler. If the amount of the filler is too large, it may settle in the tank or piping when the reaction solution is injected into the mold, or the injection nozzle may be clogged. On the other hand, if the amount is too small, the resulting molded article may have insufficient rigidity and dimensional stability.
  • the amount ratio of the filler in the reaction solution is preferably in the range of 95: 5 to 55:45 in terms of weight ratio, fibrous filler: particulate filler: 80: 20-60: 40 More preferred to be in the range! / ⁇ .
  • the amount ratio of the fibrous filler and the particulate filler is within this range, the effect of the present invention becomes more remarkable.
  • the metathesis catalyst used in the production method of the present invention is a reaction injection molding method (RIM method). Any known one can be used as long as it can ring-open polymerization the norbornene-based monomer.
  • RIM method reaction injection molding method
  • metathesis catalysts examples include compounds of Group 5 or Group 6 transition metals in the periodic table.
  • Examples of the compounds of Group 5 or Group 6 transition metals in the periodic table include, for example, halides, oxyhalides, oxides, organic ammonium salts, oxyacid salts, and heteropolypolyesters of these transition metals. Examples include acid salts. Among these, organic ammonium salts are more preferable, which are preferably halides, oxyhalogenides, and organic ammonium salts. As transition metals, molybdenum, tungsten and tantalum are preferred, molybdenum and tungsten are more preferred! / ,.
  • metathesis catalysts examples of which include tridodecyl ammonium molybdate and tungstate, methyl tricapryl ammonium. And molybdate and tungstate of tri (tridecyl) ammonium, and molybdate and tungstate of trioctylammonium.
  • the amount used is usually from 0.01 to 50 midimono relative to 1 mol of norbornene monomer in the reaction solution.
  • the girls are 0.1 to 20 midimonore.
  • the metathesis catalyst it is also preferable to use a metal rubene complex having a metal element of Group 8 of the periodic table as a central metal.
  • a metal carbene complex with a metal atom of Group 8 of the periodic table as the central metal has a carbene compound bonded to the central metal atom, which is a metal atomic energy of Group 8 of the periodic table, and the metal atom (M) and carbene carbon.
  • a force rubene compound is a general term for compounds having a carbene carbon, that is, a methylene free radical.
  • the metal atom of Group 8 of the periodic table is particularly preferably ruthenium, which is preferably ruthenium and osmium.
  • metal carbene complexes include benzylidene (1,3-dimesitylimimi Dazolidine-2-ylidene) (tricyclohexylphosphine) ruthenium dichloride, benzylidene (1,3-dimesitylmimidazolidine-2-ylidene) (tricyclohexylphosphine) ruthenium dichloride, benzylidene (1,3-dimesityl-4) , 5-Dib mouth imidazoline-2-ylidene) (tricyclohexylphosphine) ruthenium dichloride, bis (tricyclohexylphosphine) benzylidene ruthenium dichloride, and the like.
  • the amount used is usually 0.001 to 1 millimonore, preferably 0.002 to 0.1 millimole, relative to 1 monomer monoreaction in the reaction solution. It is.
  • the amount of the metathesis catalyst used is too small, the polymerization activity is too low, the reaction takes time, and the production efficiency deteriorates. On the other hand, if the amount used is too large, the reaction becomes too violent, and bulk polymerization proceeds before the reaction solution is sufficiently filled in the mold, and the catalyst tends to precipitate and can be stored homogeneously. It becomes difficult.
  • the metathesis catalyst may be used by dissolving or dispersing in a small amount of an inert solvent.
  • the inert solvent in this case include chain aliphatic hydrocarbon solvents such as pentane, hexane and heptane; fats such as cyclopentane, cyclohexane, methylcyclohexane, decahydronaphthalene, tricyclodecane and cyclooctane.
  • Cyclic hydrocarbon solvents aromatic hydrocarbon solvents such as benzene, toluene and xylene; ether solvents such as jetyl ether and tetrahydrofuran;
  • a liquid anti-aging agent, a plasticizer or an elastomer may be used as a solvent as long as it does not reduce the activity as a catalyst.
  • aromatic hydrocarbon solvents, aliphatic hydrocarbon solvents, and alicyclic hydrocarbon solvents that are widely used in industry are preferred.
  • Activating agents include alkylaluminum halides such as ethylaluminum dichloride and jetylaluminum chloride; alkoxyalkylaluminum halides in which a part of the alkyl groups of these alkylaluminum halides are substituted with alkoxy groups; organotin compounds; It is done.
  • the amount of the activator to be used is not particularly limited, but is usually 0.1 to LOO mol, preferably 1 to 10 mol with respect to 1 mol of the metathesis catalyst used in the whole reaction solution.
  • the activity regulator can change the reaction rate, the mixing force of the reaction solution, the time to start the reaction, the reaction activity, and the like.
  • Examples of activity regulators in the case of using a transition metal group 5 or 6 transition metal compound as a metathesis catalyst include compounds that have the effect of reducing the metathesis catalyst, and include alcohols, haloalcohols, esters. , Ethers, nitriles and the like can be used. Of these, haloalcohols are preferred because alcohols and haloalcohols are preferred.
  • alcohols include n -propanol, n-butanol, n-hexanol, 2-butanol, isobutyl alcohol, isopropyl alcohol, and t-butyl alcohol.
  • haloalcohols include 1,3 dichloro-2-propanol, 2-chloroethanol, 1 chlorobutanol and the like.
  • Examples of the activity regulator in the case of using a metal carbene complex as a metathesis catalyst include a Lewis base compound.
  • Lewis base compounds include Lewis base compounds containing phosphorus atoms such as tricyclopentylphosphine, tricyclohexylphosphine, triphenylphosphine, triphenylphosphite, n-butylphosphine; n-butylamine, pyridine, 4 — Lewis base compounds containing nitrogen atoms such as butylpyridine, acetonitrile, ethylenediamine, N benzylidenemethylamine, pyrazine, piperidine, imidazole, and the like.
  • Norbornene substituted with an alkenyl group such as burnorbornene, probe norbornene, and isopropanol norbornene, is a norbornene-based monomer and also serves as an activity regulator.
  • the amount of these activity regulators used varies depending on the compound used and is not uniform.
  • Examples of the elastomer include natural rubber, polybutadiene, polyisoprene, styrene butadiene copolymer (SBR), styrene butadiene styrene block copolymer (SBS), styrene isoprene styrene copolymer (SIS), and ethylene propylene copolymer.
  • SBR styrene butadiene copolymer
  • SBS styrene butadiene styrene block copolymer
  • SIS styrene isoprene styrene copolymer
  • ethylene propylene copolymer examples include enterpolymer (EPDM), ethylene acetate butyl copolymer (EVA), and hydrides thereof.
  • the viscosity of the reaction solution can be adjusted by dissolving the elastomer in the reaction solution.
  • the impact resistance of the obtained norbornene-based resin molded product and composite molded product can be improved by adding an elastomer.
  • antioxidants examples include various plastics such as phenol, phosphorus and amine, and antioxidants for rubber.
  • the reaction stock solution is prepared by dividing each component described above into two or more solutions.
  • a reaction stock solution (solution A) containing a norbornene-based monomer and an activator and a reaction stock solution (solution B) containing a norbornene-based monomer and a metathesis catalyst are mixed, and the reaction solution is mixed.
  • a reaction stock solution (solution C) that contains norbornene-based monomers and does not contain any shift in the metathesis catalyst and activator may be used in combination.
  • reaction stock solution (i) containing a norbornene monomer and a reaction stock solution (ii) containing a metathesis catalyst are mixed. By doing so, the reaction solution can be obtained.
  • the reaction stock solution (ii) a solution obtained by dissolving or dispersing a metathesis catalyst in a small amount of an inert solvent is usually used.
  • the fibrous filler, the particulate filler and the above-mentioned optional components may be contained in any reaction stock solution.
  • the fibrous filler and the particulate filler are preferably contained in the reaction stock solution containing a norbornene monomer.
  • the fibrous filler is contained in one reaction stock solution selected from the liquid A, the liquid B, and the liquid C, and the reaction is different in the particulate filler.
  • reaction stock solution (i) an embodiment in which the fibrous filler and the particulate filler are simultaneously contained in one kind of reaction stock solution (i);
  • reaction stock solution (i) As an embodiment, the reaction stock solution (i) containing a fibrous filler and not containing a particulate filler, and the reaction stock solution (i) containing a particulate filler and no fibrous filler are used in combination. Is mentioned.
  • reaction stock solution (a) of the present invention is preferable.
  • the reaction stock solution ( ⁇ ) of the present invention contains a norbornene monomer, the above-mentioned fibrous filler and particulate filler, and is used in the production method of the present invention. That is, it is preferable that the fibrous filler and the particulate filler are contained in the same reaction stock solution. Specifically, the embodiment (a2) and the embodiment (bl) are preferred.
  • the reaction stock solution ( ⁇ ) of the present invention has such properties that the fibrous filler and the particulate filler are contained in the same reaction stock solution, so that sedimentation of the filler is suppressed and storage stability is excellent. Yes.
  • the amount of the filler in the reaction stock solution (a) is preferably 20 to 80% by weight, more preferably 30 to 75% by weight, and particularly preferably 40 to 70% by weight in total of the fibrous filler and the particulate filler. %. If the amount of filler is too large, it may settle in the tank or piping during storage.
  • the amount ratio of the fibrous filler to the particulate filler in the reaction stock solution (iii) is preferably a weight ratio of 95: 5 to 55:45 for the fibrous filler: particulate filler. 80:20 to 60:40 is more preferable.
  • the amount ratio of the fibrous filler to the particulate filler is within this range, the effect of the present invention can be easily obtained, and the storage stability is particularly low with the filler settling particularly small.
  • reaction injection molding is performed using the reaction stock solution described above.
  • a collision mixing apparatus conventionally known as a reaction injection (RIM) molding apparatus can be used for mixing the reaction stock solution. Then, two or more reaction stock solutions are instantaneously mixed with a mixing head of a RIM machine, the resulting reaction solution is poured into a mold, and bulk polymerization is performed in the mold to obtain the norbornene-based resin molded article of the present invention. can get.
  • RIM reaction injection
  • dynamic mixers static mixers, etc.
  • Other low pressure injectors can also be used.
  • the mold used for the reaction injection molding does not necessarily need to be a high-rigidity and expensive metal mold, and is not limited to a metal mold, and a resin mold or a simple mold can be used. This is because reaction injection molding can be performed at a relatively low temperature and low pressure using a low-viscosity reaction stock solution. In addition, it is preferable to replace the inside of the mold with an inert gas such as nitrogen gas before injecting the reaction solution.
  • the mold temperature is preferably 10 to 150 ° C, more preferably 30 to 120 ° C, and still more preferably 50 to 100 ° C.
  • Clamping pressure is usually in the range of 0.01 ⁇ : LOMPa.
  • the bulk polymerization time may be appropriately selected, but is usually 20 seconds to 20 minutes, preferably 20 seconds to 5 minutes after the completion of the injection of the reaction stock solution.
  • the norbornene-based resin molded body of the present invention which is a composite molded body formed integrally with the composite member, is obtained.
  • “being formed integrally” means that the norbornene-based resin and the composite member are in close contact with each other without being easily peeled off. It can be in close contact, or it can be in close contact through an adhesive layer.
  • the composite saddle member used in the present invention is a material that can be placed in a mold and does not have fluidity at the mold temperature during bulk polymerization.
  • the material of the composite metal member include inorganic materials such as metal, glass, ceramics, and wood; and organic materials such as rubber and rubber.
  • inorganic material metal or glass is preferable.
  • organic material rosin is preferred.
  • resin polyolefin resin, acrylic resin, ABS resin, vinyl chloride resin, unsaturated polyester resin, melamine resin, epoxy resin, phenol resin, polyurethane resin, polyamide resin, norbornene series Examples include rosin.
  • acrylic resin is particularly preferable.
  • the shape of the composite member is not particularly limited, and may be a sheet, a plate, a rod, a woven or non-woven fabric, various three-dimensional shapes, and the like.
  • an adhesive layer is formed on at least a part of the surface of the composite member that comes into contact with the reaction solution. I should do it.
  • the material used to form the adhesive layer should not inhibit the bulk polymerization reaction. If it is not specifically limited, it is preferable to contain a block copolymer of styrene and conjugated gen or a hydride thereof.
  • block copolymers include styrene butadiene block copolymer (SB), styrene isoprene block copolymer (SI), styrene butadiene styrene block copolymer (SBS), styrene isoprene styrene.
  • SB styrene butadiene block copolymer
  • SI styrene butadiene styrene block copolymer
  • SBS styrene butadiene styrene block copolymer
  • SBIS styrene isoprene styrene
  • the composite resin member and the norbornene-based resin are in close contact with each other via an adhesive layer because the adhesiveness between the two is high.
  • the molded article of the present invention is obtained.
  • the amount of the filler in the molded body of the present invention is preferably 5 to 60% by weight, more preferably 10 to 50% by weight in total of the above fibrous filler and particulate filler.
  • the molded body of the present invention is a composite molded body, the above represents the amount of filler in the norbornene-based resin portion excluding the composite rubber member. If the amount of the filler is too large, the impact resistance of the molded product may decrease. On the other hand, if the amount is too small, the molded body may have insufficient rigidity and dimensional stability.
  • the amount ratio of the filler in the molded article of the present invention is preferably in the range of 95: 5 to 55:45 in terms of weight ratio of fibrous filler: particulate filler. A range of 80:20 to 60:40 is more preferable.
  • the molded product of the present invention is a composite molded product, the above represents the amount ratio of the filler in the norbornene-based resin portion excluding the composite member. When the amount ratio between the fibrous filler and the particulate filler is within this range, the effect of the present invention becomes more remarkable.
  • the 50% volume cumulative diameter of the filler is determined by X-ray using a cedy graph (Micromeritix). The particle size distribution was measured by the transmission method.
  • the aspect ratio of the filler was determined by measuring the long axis diameter of 100 randomly selected fillers in the optical micrograph, and calculating the number average long axis diameter as the arithmetic average value, and the above 50% volume. It calculated
  • reaction stock solution B solution or C solution
  • the sedimentation rate of the filler was determined by the following formula 1. The smaller the sedimentation rate, the better the storage stability of the reaction stock solution.
  • Sedimentation rate (%) (height of supernatant) Z (height of liquid surface) X 100... Equation 1
  • the flexural modulus of the norbornene-based resin molded product was measured according to JIS K 7171.
  • the linear expansion coefficient of the norbornene-based resin molded product was measured according to JIS K 7197. However, the test piece was 10 mm long, 5 mm wide, and 4 mm thick.
  • Two stainless steel plates are prepared, facing each other, and a silicon packing having a thickness of 4 mm and a width of 15 mm is installed at both ends in the vertical direction and one end in the horizontal direction.
  • a simple mold having a space (cavity) of 245 mm in length X 210 mm in width X 4 mm in thickness was produced by sandwiching between stainless steel plates. Then, with the side not covered with silicon packing facing up, this simple mold was set up vertically, and a hole was formed in the lowermost part of one stainless steel plate to form a reaction liquid injection hole.
  • a heater wire was attached to the entire surface of the other stainless steel plate so that it could be heated.
  • the mold was heated to 80 ° C, and 40.2 parts of Liquid A and 59.8 parts of Liquid B were injected while mixing with a static mixer to start bulk polymerization. At this time, the mixing ratio of liquid A and liquid B is 1: 1 by volume, the amount of fibrous filler injected is 22.5 parts, and the amount of particulate filler is 7.5 parts. .
  • E is a test piece fy prepared so that the length direction of the test piece is parallel to the lateral direction of the mold.
  • sp is the measured value for the test piece prepared so that the length direction of the test piece is parallel to the vertical direction of the mold, and a is the length direction of the test piece parallel to the horizontal direction of the mold.
  • a reaction stock solution (solution B) was obtained in the same manner as in Example 1 except that the amount of the fibrous filler was 42.75 parts and the amount of the particulate filler was 14.25 parts. The amount ratio between the fibrous filler and the particulate filler is 75:25 by weight. The specific gravity of the B liquid thus obtained is 1.28. Table 1 shows the results of measuring the sedimentation rate of the filler for this B liquid.
  • Example 1 and Example 1 were used except that the B liquid and the A liquid were used, and the respective usage amounts were A liquid power 3.4 parts and B liquid 56.6 parts.
  • a norbornene-based resin molded product was obtained.
  • the mixing ratio of liquid A and liquid B injected into the mold is 1: 1 by volume, the amount of fibrous filler injected is 15 parts, and the amount of particulate filler is 5 parts. there were.
  • the obtained norbornene-based resin molded product was subjected to bending elastic modulus and linear expansion coefficient in the same manner as in Example 1. Was measured. The results are shown in Table 1.
  • a reaction stock solution (liquid B) was obtained in the same manner as in Example 1, except that the amount of the fibrous filler was 138 parts and the amount of the particulate filler was 46 parts.
  • the weight ratio of fibrous filler to particulate filler is 75:25 by weight.
  • the specific gravity of the liquid B thus obtained was 1.67. Table 1 shows the results of measuring the filler sedimentation rate for this B liquid.
  • Example 1 In Example 1, except that the B liquid and the A liquid were used, and the usage amounts thereof were 37.0 parts for the A liquid and 63.0 parts for the B liquid, respectively. Similarly, a norbornene-based resin molded product was obtained. At this time, the mixing ratio of liquid A and liquid B injected into the mold is 1: 1 by volume, the amount of injected fibrous filler is 30 parts, and the amount of particulate filler is 10 parts. . With respect to the obtained norbornene-based resin molded article, the flexural modulus and linear expansion coefficient were measured in the same manner as in Example 1. The results are shown in Table 1.
  • a reaction stock solution (Liquid B) was obtained in the same manner as in Example 1, except that the addition of the fibrous filler and the particulate filler was intensive.
  • the specific gravity of the B liquid thus obtained was 0.98.
  • Example 1 and Example 1 were used except that the solution B and the solution A were used, and the usage amounts of the solution A were 50.0 parts for the solution A and 50.0 parts for the solution B, respectively.
  • a norbornene-based resin molded product was obtained.
  • the mixing ratio of the liquid A and the liquid B injected into the mold is 1: 1.
  • the obtained norbornene-based resin molded body was measured for the flexural modulus and linear expansion coefficient in the same manner as in Example 1. The results are shown in Table 1.
  • reaction stock solution composed of 90 parts of dicyclopentagen and 10 parts of tricyclopentagen
  • 135 parts of a fibrous filler and 45 parts of a particulate filler were added and mixed by stirring to obtain a reaction stock solution (solution C).
  • the fibrous filler and the particulate filler were the same as in Example 1.
  • the amount ratio between the fibrous filler and the particulate filler is 75:25 by weight.
  • the specific gravity of the liquid C thus obtained was 1.71. Table 1 shows the results of measuring the sedimentation rate of the filler for this C liquid.
  • a reaction stock solution (liquid B) was obtained in the same manner as in Example 1, except that the amount of the fibrous filler was 56.5 parts and the particulate filler was not added.
  • the specific gravity of the B liquid thus obtained was 1.46. Table 1 shows the results of measuring the sedimentation rate of the filler using this B liquid.
  • Example 1 In Example 1 except that the B liquid and the A liquid were used, and the respective usage amounts were set to 0.2 parts of the A liquid power and 59.8 parts of the B liquid. Similarly, a norbornene-based resin molded product was obtained. At this time, the mixing ratio of liquid A and liquid B injected into the mold is 1: 1 by volume, and the amount of fibrous filler injected is 30 parts. The resulting norbornene-based resin molding! In the same manner as in Example 1, the flexural modulus and linear expansion coefficient were measured. The results are shown in Table 1.
  • Example 1 In Example 1, except that the B liquid and the A liquid were used, and the usage amounts of the B liquid and the B liquid were 0.2 parts and 59.8 parts, respectively. Similarly, a norbornene-based resin molded product was obtained. At this time, the mixing ratio of liquid A and liquid B injected into the mold is 1: 1 by volume, and the amount of fibrous filler injected is 30 parts. The resulting norbornene-based resin molding! In the same manner as in Example 1, the flexural modulus and linear expansion coefficient were measured. The results are shown in Table 1.
  • Comparative Example 4 A reaction stock solution (Liquid B) was obtained in the same manner as in Example 1 except that the amount of the particulate filler was 56.5 parts and the fibrous filler was not added. The specific gravity of the B liquid thus obtained was 1.46. Table 1 shows the results of measuring the sedimentation rate of the filler using this B liquid.
  • Example 1 In Example 1, except that the B liquid and the A liquid were used, and the usage amounts thereof were 0.2 parts for A liquid and 59.8 parts for B liquid, respectively. Similarly, a norbornene-based resin molded product was obtained. At this time, the mixing ratio of the liquid A and the liquid B injected into the mold is 1: 1 by volume, and the amount of the particulate filler injected is 30 parts. The resulting norbornene-based resin molding! In the same manner as in Example 1, the flexural modulus and linear expansion coefficient were measured. The results are shown in Table 1.
  • the reaction stock solution (iii) of the present invention containing the fibrous filler and the particulate filler is found to have excellent storage stability with less sedimentation of the filler. (Examples 1-4). On the other hand, the reaction stock solution containing only one of the fibrous filler and the particulate filler has a large sedimentation of the filler (Comparative Examples 2 to 4).
  • the norbornene-based resin molded article of the present invention containing a fibrous filler and a particulate filler has high rigidity and dimensional stability, and also has rigidity anisotropy. It can be seen that it is small (Examples 1 to 4). On the other hand, a molded body containing no filler or only containing a particulate filler has low rigidity and dimensional stability (Comparative Examples 1 and 4). On the other hand, it contains only fibrous filler! / The molded product with improved bending modulus (rigidity) and linear expansion coefficient in the vertical direction, but with little improvement in the horizontal direction, large rigidity anisotropy and poor dimensional stability. (Comparative Examples 2 and 3).
  • a simple mold having a space (cavity) of 245 mm in length X 210 mm in width X 8 mm in thickness was prepared in the same manner as in Example 1 except that a silicon packing having a thickness of 8 mm and a width of 15 mm was used. Then, with the side not covered by the silicon packing facing up, this simple mold was set up vertically, and a hole was formed in the lowermost part of one stainless steel plate to form a reaction liquid injection hole. In addition, a heater wire was attached to the entire surface of the other stainless steel plate so that it could be heated.
  • acrylic of 245 mm long ⁇ 210 mm wide ⁇ 4 mm thick A greaves board (paragrass PG SG90 P0004: made of Kurarene) was prepared.
  • One side of this acrylic resin board is coated with a 5% toluene solution of polystyrene poly (ethylene Z propylene) block copolymer (Septon 4055: manufactured by Kralene Earth) with a styrene content of 30%.
  • polystyrene poly (ethylene Z propylene) block copolymer Septon 4055: manufactured by Kralene Earth
  • the composite member having the adhesive layer thus obtained was placed in the mold cavity. Specifically, the composite member was installed so that the surface on which the adhesive layer was not formed was in contact with the stainless steel plate with the heater wire attached. Next, the mold was heated to 80 ° C., and liquids A and B were injected therein to start bulk polymerization. The types and amounts of liquid A and liquid B are the same as in Example 1.
  • Mold shrinkage [%] 100- [(length in the longitudinal direction of the composite molding) / (length in the longitudinal direction of the mold cavity) X 100]... Equation 2
  • Mold shrinkage (%) 0.3 1.0 0.3 0.3 0.3 Warpage of composite molded body No Yes No No No No Flexural modulus
  • a composite molded body was obtained in the same manner as in Example 5 except that the types and injection amounts of Liquid A and Liquid B were the same as in Comparative Examples:! Each characteristic was measured for the obtained composite molded body. The results are shown in Table 2.
  • the composite molded body which is the norbornene-based resin molded body of the present invention has small molding shrinkage and no warpage, and is excellent in dimensional stability.
  • the composite molded body has high rigidity and small rigidity anisotropy (Example 5).
  • the composite molded body containing no filler in the norbornene-based resin part shows large warping and shrinkage (Comparative Example 5).
  • the composite molded article containing only the particulate filler in the norbornene-based resin part is not sufficiently improved in rigidity (Comparative Example 8).
  • the composite molded body containing only the fibrous filler in the norbornene-based resin part was a composite molded body having high rigidity anisotropy (Comparative Examples 6 and 7).

Abstract

 ノルボルネン系モノマー、メタセシス触媒、アスペクト比が5~100である繊維状充填材、およびアスペクト比が1~2である粒子状充填材を含有してなる反応液を型内に注入し、該型内で塊状重合させて得られるノルボルネン系樹脂成形体。本発明によれば、剛性および寸法安定性に優れたノルボルネン系樹脂成形体が提供される。

Description

明 細 書
ノルボルネン系樹脂成形体およびその製造方法
技術分野
[0001] 本発明は、特定の充填材を含有するノルボルネン系榭脂成形体およびその製造方 法に関する。また本発明は、該製造方法に好適に用いられる反応原液に関する。 背景技術
[0002] 従来から反応射出成形法 (RIM)により、ノルボルネン系モノマーおよびメタセシス 触媒を含む反応液を金型内に注入し、塊状開環重合させることによりノルボルネン系 榭脂からなる成形体を製造することが実用化されている。反応液は、通常、 2以上の 反応原液を衝突混合装置などで瞬間的に混合して得られる。カゝかる反応原液は、 1 液のみでは塊状重合しないが、全ての液を混合すると、各成分を所定の割合で含む 反応液となり、ノルボルネン系モノマーが塊状重合するものである。
[0003] RIM法で得られる成形体に剛性や寸法安定性 (温度変化によって膨張 '収縮しに くぐかつ、膨張,収縮に異方性が少ないこと)を付与する目的で、反応液に各種の充 填材を添加して成形することが知られている。しかし、従来の方法では、剛性が十分 でなぐ剛性に異方性 (成形体の剛性が方向によりばらつくこと)があり、また、寸法安 定性が悪い場合があった。また、充填材は反応原液に添加して用いられるが、かかる 反応原液の保存安定性が低!、場合があった。
[0004] 例えば、ガラス繊維やウォラストナイトなどを充填材として用いることが提案されてい る(特許文献 1および 2)。し力しこれら繊維状の充填材を用いた場合には、得られる 成形体の剛性に異方性がある場合があった。また、反応液に多量に充填材を添加す ると、金型への注入時に注入ノズルが詰まると!ヽぅ問題もあった。
[0005] また、炭酸カルシウムなどの特定の粒子径の充填材を用いることも提案されて 、る ( 特許文献 3)。し力しこの方法では剛性の改善効果は不十分であった。
[0006] さらに、上記いずれの場合にも、反応原液中で充填材が沈降し、配管が詰まったり 、得られる成形品が不均一になるという問題もあった。
特許文献 1 :特開昭 58— 129013号公報 特許文献 2 :特開平 2— 185558号公報
特許文献 3 :特開 2003— 321597号公報
発明の開示
発明が解決しょうとする課題
[0007] 本発明の目的は、高剛性で、剛性の異方性が少なぐ寸法安定性に優れた榭脂成 形体およびその製造方法を提供することにある。また本発明の他の目的は、保存安 定性に優れ、上記の製造方法に好適な反応原液を提供することにある。
課題を解決するための手段
[0008] 本発明者らは、鋭意検討の結果、特定範囲のアスペクト比を有する、繊維状の充填 材と、粒子状の充填材とを併用することで上記課題を解決できることを見出し、この知 見に基づき本発明を完成するに到った。
[0009] 力べして本発明の第一によれば、ノルボルネン系モノマーを型内で塊状重合させて 得られるノルボルネン系榭脂成形体であって、アスペクト比が 5〜: LOOである繊維状 充填材、およびアスペクト比が 1〜2である粒子状充填材を含有していることを特徴と するノルボルネン系榭脂成形体が提供される。前記繊維状充填材はウォラストナイト であることが好ましぐ前記粒子状充填材は炭酸カルシウムであることが好ま 、。
また、前記繊維状充填材および粒子状充填材の量比は、重量比で、繊維状充填 材:粒子状充填材が 95: 5〜55 :45であることが好ましい。
前記繊維状充填材と粒子状充填材との合計の含有量が、前記ノルボルネン系榭脂 成形体全体 100重量%に対して、 5〜60重量%であることが好ましい。
前記ノルボルネン系榭脂成形体は、複合化部材と一体的に形成してある複合成形 体であってもよい。
なお、本発明の成形体が複合成形体である場合は、前記繊維状充填材および粒 子状充填材の量比、および繊維状充填材と粒子状充填材との合計の含有量は、複 合ィ匕部材を除くノルボルネン系榭脂部分における、量比および含有量を表す。
[0010] 本発明の第二によれば、前記ノルボルネン系榭脂成形体を製造する方法であって 、前記ノルボルネン系モノマー、メタセシス触媒、前記繊維状充填材、および前記粒 子状充填材を含有してなる反応液を型内に注入し、該型内で塊状重合させることを 特徴とする製造方法が提供される。
前記反応液は、前記ノルボルネン系モノマー、前記繊維状充填材および前記粒子 状充填材を少なくとも含有する反応原液と、その他の反応原液と、を混合することに より調製されることが好ましい。
前記型内には、複合化部材が設置されて ヽてもよ ヽ。
[0011] 本発明の第三によれば、前記ノルボルネン系榭脂成形体の製造方法に用いられる 反応原液であって、前記ノルボルネン系モノマー、前記繊維状充填材および前記粒 子状充填材、を含有する反応原液が提供される(以下、このような構成を有する本発 明の反応原液を「反応原液(ひ)」とする。 ) o
前記繊維状充填材と粒子状充填材との合計の含有量は、前記反応原液( α )全体
100重量%に対して、 20〜80重量%であることが好まし!/、。
発明の効果
[0012] 本発明のノルボルネン系榭脂成形体は、高剛性で、剛性の異方性が少なぐ寸法 安定性に優れているので、住宅設備、一般建築部品、電気部品、自動車部品、など 各種の広範な用途に好適に用いることができる。また、本発明の反応原液( α )は、 充填材の沈降が抑制されているので、反応射出成形に用いた場合に配管の詰まり 等がなぐまた、均一な成形体を得ることができる。
発明を実施するための最良の形態
[0013] 本発明のノルボルネン系榭脂成形体 (以下、単に「成形体」ということがある)は、ノ ルボルネン系モノマーを型内で塊状重合させて得られるノルボルネン系榭脂の成形 体であり、繊維状充填材、および粒子状充填材を含有していることを特徴とする。 上記本発明の成形体は、本発明の製造方法により製造できる。本発明の製造方法 は、ノルボルネン系モノマー、メタセシス触媒、繊維状充填材、および粒子状充填材 を含有してなる反応液を型内に注入し、該型内で塊状重合させることを特徴とする。
[0014] 反]^液
本発明の製造方法に用いられる反応液は、ノルボルネン系モノマー、メタセシス触 媒、繊維状充填材、粒子状充填材および任意成分を、通常、 2以上の液に分けて調 製した反応原液を混合して得られる。反応原液は、 1液のみでは塊状重合しないが、 全ての液を混合すると、各成分を所定の割合で含む反応液となり、ノルボルネン系モ ノマーが塊状重合するものである。
前記任意成分としては、活性剤、活性調節剤、エラストマ一、および酸化防止剤な どが挙げられる。
まず、反応液に含有させる各成分について、説明する。
[0015] ノルボルネン系モノマー
本発明で用いるノルボルネン系モノマーは、ノルボルネン環構造を有する化合物で あり、そのような化合物であればいずれでもよい。中でも、耐熱性に優れた成形体が 得られることから、三環体以上の多環ノルボルネン系モノマーを用いることが好ましい
[0016] ノルボルネン系モノマーの具体例としては、ノルボルネン、ノルボルナジェン等の二 環体;ジシクロペンタジェン(シクロペンタジェンニ量体)、ジヒドロジシクロペンタジェ ン等の三環体;テトラシクロドデセン等の四環体;シクロペンタジェン三量体等の五環 体;シクロペンタジェン四量体等の七環体;これらのメチル、ェチル、プロピル、ブチ ル等のアルキル、ビュル等のアルケ -ル、ェチリデン等のアルキリデン、フエ-ル、トリ ル、ナフチル等のァリール等の置換体;更にこれらのエステル基、エーテル基、シァ ノ基、ハロゲン原子などの極性基を有する置換体;などが例示される。これらのモノマ 一は、 2種以上を組み合わせて用いてもよい。入手が容易であり、反応性に優れ、得 られる成形体の耐熱性に優れる点から、三環体、四環体、または五環体のモノマー が好ましぐジシクロペンタジェンが特に好まし!/、。
[0017] また、生成する開環重合体が熱硬化型となることが好ましぐそのためには、上記ノ ルボルネン系モノマーの中でも、対称性のシクロペンタジェン三量体等の、反応性の 二重結合を二個以上有する架橋性モノマーを少なくとも含むものを用いることが好ま しい。全ノルボルネン系モノマー中における、このような架橋性モノマーの割合は、 2 〜 30重量%が好ましい。
[0018] なお、本発明の目的を損なわな 、範囲で、ノルボルネン系モノマーと開環共重合し 得るシクロブテン、シクロペンテン、シクロペンタジェン、シクロオタテン、シクロドデセ ン等の単環シクロォレフィン等を、コモノマーとして用いてもよ 、。 [0019] mmikifM .粒 :!:直材
本発明で用いる繊維状充填材とは、ノルボルネン系モノマーに不溶な固体の材料 であり、そのアスペクト比が 5〜100のものである。アスペクト比は、 10〜50であること が好ましぐ 15〜35であることがより好ましい。アスペクト比が過度に小さいと成形体 の剛性や寸法安定性が不十分となる場合がある。一方、過度に大きいと型内に注入 する時に注入ノズルが詰まるおそれがある。
[0020] なお、本発明にお 、て充填材のアスペクト比とは、充填材の平均長軸径と 50%体 積累積径との比である。ここで、平均長軸径は光学顕微鏡写真で無作為に選んだ 1 00個の充填材の長軸径を測定し、その算術平均値として算出される個数平均長軸 径である。また、 50%体積累積径は、 X線透過法で粒度分布を測定することにより求 められる値である。
[0021] 繊維状充填材の 50%体積累積径は、好ましくは 0. 1〜50 m、より好ましくは 1〜 30 /z mである。 50%体積累積径が過度に小さいと、成形体の剛性や寸法安定性が 不十分となる場合がある。一方、過度に大きいと、反応液を型内に注入する時にタン クゃ配管内で沈降したり、注入ノズルが詰まったりする場合がある。
[0022] 繊維状充填材の具体例としては、ガラス繊維、ウォラストナイト、チタン酸カリウム、ゾ ノライト、塩基性硫酸マグネシウム、ホウ酸アルミニウム、テトラポット型酸ィ匕亜鉛、石 膏繊維、ホスフェート繊維、アルミナ繊維、針状炭酸カルシウム、針状べ一マイトなど を挙げることができる。中でも、少ない使用量で剛性を高めることができ、かつ塊状重 合反応を阻害しな ヽのでウォラストナイトが好ま ヽ。
[0023] 本発明で用いる粒子状充填材は、ノルボルネン系モノマーに不溶な固体の材料で あり、そのアスペクト比が 1〜2のものである。アスペクト比は、 1〜1. 5であることが好 ましい。また、粒子状充填材の 50%体積累積径は、好ましくは 0. 1〜50 m、より好 ましくは1〜30 111、特に好ましくは 1〜: LO mである。 50%体積累積径が過度に小 さいと成形体の剛性や寸法安定性が不十分となる場合がある。一方、過度に大きい と、反応液を型内に注入する時にタンクや配管内で沈降したり、注入ノズルが詰まつ たりする場合がある。
[0024] 粒子状充填材の具体例としては、炭酸カルシウム、ケィ酸カルシウム、硫酸カルシ ゥム、水酸化アルミニウム、水酸化マグネシウム、酸化チタン、酸化亜鉛、チタン酸バ リウム、シリカ、アルミナ、カーボンブラック、グラフアイト、酸化アンチモン、赤燐、各種 金属粉、クレー、各種フェライト、ハイド口タルサイトなどを挙げることができる。これら の粒子状充填材は中空体としたものであってもよい。中でも、塊状重合反応を阻害し な 、ので炭酸カルシウムが好まし 、。
[0025] 繊維状充填材および粒子状充填材は、表面を疎水化処理されて 、ることが好まし い。疎水化処理された充填材を用いることで、得られる成形体中に充填材を均一に 分散させることができ、得られる成形体の剛性や寸法安定性を均一にでき、さらには 異方性を小さくすることができる。疎水化処理に用いられる処理剤としては、シラン力 ップリング剤、チタネートカップリング剤、アルミニウムカップリング剤、脂肪酸、油脂、 界面活性剤、ワックス、その他の高分子などが挙げられる。
[0026] 疎水化処理の方法は特に限定されず、たとえば、未処理の充填材と疎水化処理剤 とを別々の反応原液に含有させ、 2以上の反応原液を混合する時に反応液の調製と 充填材の疎水化処理とを同時に行うことも可能である力 疎水化処理済の充填材を 用いて反応原液を調製することが好ましい。疎水化処理済の充填材を用いることで、 充填材の凝集を防止できるので、反応原液中での分散性が向上し、充填材の沈降 を抑制できる。
[0027] 反応液中の充填材量は、上記の繊維状充填材と粒子状充填材との合計で、好まし くは 5〜60重量%、より好ましくは 10〜50重量%である。充填材量が多すぎると反応 液を型内に注入する時にタンクや配管内で沈降したり、注入ノズルが詰まったりする 場合がある。一方、少なすぎると得られる成形体の剛性や寸法安定性が不十分な場 合がある。
[0028] 反応液中の充填材の量比は、重量比で、繊維状充填材:粒子状充填材が 95: 5〜 55: 45の範囲であることが好ましく、 80: 20-60: 40の範囲であることがより好まし!/ヽ 。繊維状充填材と粒子状充填材との量比がこの範囲にあると、本発明の効果がより 一層顕著になる。
[0029] メタセシス触媒
本発明の製造方法に用いられるメタセシス触媒は、反応射出成形法 (RIM法)にお いて、ノルボルネン系モノマーを開環重合できるものであれば特に限定されず、公知 のもので良い。
このようなメタセシス触媒としては、周期表第 5族または第 6族の遷移金属の化合物 などが挙げられる。
[0030] 周期表第 5族または第 6族の遷移金属の化合物としては、たとえば、これらの遷移 金属のハロゲン化物、ォキシハロゲンィ匕物、酸化物、有機アンモ-ゥム塩、酸素酸塩 およびへテロポリ酸塩などが挙げられる。これらのなかでも、ハロゲン化物、ォキシハ ロゲン化物および有機アンモニゥム塩が好ましぐ有機アンモニゥム塩がより好ましい 。また、遷移金属としては、モリブデン、タングステンおよびタンタルが好ましぐモリブ デンおよびタングステンがより好まし!/、。
メタセシス触媒としての周期表第 5族または第 6族の遷移金属の化合物の特に好ま し 、具体例としては、トリドデシルアンモ-ゥムのモリブデン酸塩およびタングステン 酸塩、メチルトリカプリルアンモ-ゥムのモリブデン酸塩およびタングステン酸塩、トリ( トリデシル)アンモ-ゥムのモリブデン酸塩およびタングステン酸塩、ならびにトリオク チルアンモ-ゥムのモリブデン酸塩およびタングステン酸塩などが挙げられる。
[0031] これら周期表第 5族または第 6族の遷移金属の化合物をメタセシス触媒として用い る場合の使用量は、反応液中のノルボルネン系モノマー 1モルに対し、通常、 0. 01 〜50ミジモノレ、女子ましくは 0. 1〜 20ミジモノレである。
[0032] また、メタセシス触媒としては、周期表第 8族の金属元素を中心金属とする金属力 ルベン錯体を用いることも好まし 、。
周期表第 8族の金属原子を中心金属とする金属カルべン錯体は、周期表第 8族の 金属原子力 なる中心金属原子にカルベンィ匕合物が結合し、金属原子 (M)とカル ベン炭素( > C: )とが直接に結合した構造 (M = C)を錯体中に有するものである。力 ルベン化合物とは、カルベン炭素すなわちメチレン遊離基を有する化合物の総称で ある。
周期表第 8族の金属原子としては、ルテニウムおよびオスミウムが好ましぐルテ- ゥムが特に好ましい。
金属カルべン錯体の好ましい具体例としては、ベンジリデン(1, 3—ジメシチルイミ ダゾリジン一 2—イリデン)(トリシクロへキシルホスフィン)ルテニウムジクロリド、ベンジ リデン(1, 3—ジメシチルイミダゾリジンー2—イリデン)(トリシクロへキシルホスフィン) ルテニウムジクロリド、ベンジリデン(1, 3—ジメシチル— 4, 5—ジブ口モイミダゾリン —2—イリデン)(トリシクロへキシルホスフィン)ルテニウムジクロリド、およびビス(トリシ クロへキシルホスフィン)ベンジリデンルテニウムジクロリドなどが挙げられる。
[0033] これらの金属カルベン錯体をメタセシス触媒として用いる場合の使用量は、反応液 中のモノマー 1モノレに対し、通常、 0. 001〜1ミリモノレ、好ましく ίま 0. 002〜0. 1ミリ モルである。
[0034] メタセシス触媒の使用量が少なすぎると、重合活性が低すぎて反応に時間が力かり 、生産効率が悪くなる。一方、使用量が多すぎると、反応が激しくなりすぎてしまい、 反応液が型内に十分に充填される前に塊状重合が進行したり、触媒が析出し易くな り均質に保存することが困難になる。
[0035] メタセシス触媒は少量の不活性溶剤に溶解または分散させて用いてもよい。かかる 場合の不活性溶剤としては、例えば、ペンタン、へキサン、ヘプタンなどの鎖状脂肪 族炭化水素溶剤;シクロペンタン、シクロへキサン、メチルシクロへキサン、デカヒドロ ナフタレン、トリシクロデカン、シクロオクタンなどの脂環式炭化水素溶剤;ベンゼン、ト ルェン、キシレンなどの芳香族炭化水素溶剤;ジェチルエーテル、テトラヒドロフラン などのエーテル系溶剤;などを使用することができる。また、触媒としての活性を落と さないようなものであれば、液状の老化防止剤、可塑剤やエラストマ一を溶剤として 用いても良い。これらの溶剤の中では、工業的に汎用されている芳香族炭化水素溶 剤、脂肪族炭化水素溶剤および脂環式炭化水素溶剤が好まし ヽ。
[0036] 仵意成分
活性剤としては、ェチルアルミニウムジクロリド、ジェチルアルミニウムクロリドなどの アルキルアルミニウムハライド;これらのアルキルアルミニウムハライドの、アルキル基 の一部をアルコキシ基で置換したアルコキシアルキルアルミニウムハライド;有機スズ 化合物;などが用いられる。活性剤の使用量は、特に限定されないが、通常、反応液 全体で使用するメタセシス触媒 1モルに対して、 0. 1〜: LOOモル、好ましくは 1〜10 モルである。 [0037] 活性調節剤は、反応速度や、反応液の混合力も反応開始までの時間、反応活性な どを変ィ匕させることができる。
メタセシス触媒として周期表第 5族または第 6族の遷移金属の化合物を用いる場合 の活性調節剤としては、メタセシス触媒を還元する作用を持つ化合物などが挙げら れ、アルコール類、ハロアルコール類、エステル類、エーテル類、二トリル類などを用 いることができる。 中でもアルコール類およびハロアルコール類が好ましぐハロアル コール類が特に好ましい。
アルコール類の具体例としては、 n—プロパノール、 n—ブタノール、 n—へキサノー ル、 2—ブタノール、イソブチルアルコール、イソプロピルアルコール、 t ブチルアル コールなどが挙げられる。ハロアルコール類の具体例としては、 1, 3 ジクロロー 2— プロパノール、 2—クロ口エタノール、 1 クロロブタノールなどが挙げられる。
[0038] メタセシス触媒として金属カルベン錯体を用いる場合の活性調節剤としては、ルイ ス塩基化合物が挙げられる。ルイス塩基ィ匕合物としては、トリシクロペンチルホスフィ ン、トリシクロへキシルホスフィン、トリフエ-ルホスフィン、トリフエ-ルホスフアイト、 n— ブチルホスフィンなどのリン原子を含むルイス塩基化合物; n—ブチルァミン、ピリジン 、 4—ビュルピリジン、ァセトニトリル、エチレンジァミン、 N ベンジリデンメチルァミン 、ピラジン、ピぺリジン、イミダゾールなどの窒素原子を含むルイス塩基ィ匕合物;など が挙げられる。また、ビュルノルボルネン、プロべ-ルノルボルネンおよびイソプロべ -ルノルボルネンなどの、ァルケ-ル基で置換されたノルボルネンは、前記のノルボ ルネン系モノマーであると同時に、活性調節剤としても働く。これらの活性調節剤の 使用量は、用いる化合物によって変わり、一様ではない。
[0039] エラストマ一としては、例えば、天然ゴム、ポリブタジエン、ポリイソプレン、スチレン ブタジエン共重合体(SBR)、スチレン ブタジエン スチレンブロック共重合体( SBS)、スチレン イソプレン スチレン共重合体(SIS)、エチレン プロピレンージ エンターポリマー(EPDM)、エチレン 酢酸ビュル共重合体(EVA)およびこれらの 水素化物などが挙げられる。エラストマ一を反応液に溶解させて用いることにより、反 応液の粘度を調節することができる。また、エラストマ一を添加することで、得られるノ ルボルネン系榭脂成形体および複合成形体の耐衝撃性を改良できる。エラストマ一 の使用量は、反応液中のノルボルネン系モノマー 100重量部に対し、通常 0. 5〜20 重量部、好ましくは 2〜: L0重量部である。
[0040] 酸化防止剤としては、フエノール系、リン系、アミン系など各種のプラスチック 'ゴム 用酸化防止剤が挙げられる。
[0041] 反]^原液の調製
反応原液は、上記した各成分を、 2以上の液に分けて調製されるものである。
力かる 2以上の反応原液の組み合わせとしては、用いるメタセシス触媒の種類によ り、下記 (a)、(b)の二通りが挙げられる。
[0042] (a):前記メタセシス触媒として、単独では重合反応活性を有しな ヽが、活性剤を併 用することで重合反応活性を発現するものを用いることができる。この場合は、ノルボ ルネン系モノマーおよび活性剤を含む反応原液 (A液)と、ノルボルネン系モノマー およびメタセシス触媒を含む反応原液 (B液)とを用い、これらを混合することで前記 の反応液を得ることができる。さらに、ノルボルネン系モノマーを含み、かつメタセシス 触媒および活性剤の 、ずれも含まな ヽ反応原液 (C液)を併用してもょ ヽ。
[0043] (b):また、メタセシス触媒として、単独で重合反応活性を有するものを用いる場合 は、ノルボルネン系モノマーを含む反応原液 (i)と、メタセシス触媒を含む反応原液 (i i)とを混合することで前記の反応液を得ることができる。このとき反応原液 (ii)としては 、通常、メタセシス触媒を少量の不活性溶剤に溶解または分散させたものが用いられ る。
[0044] Vヽずれの場合にお 、ても、繊維状充填材、粒子状充填材および前記の任意成分 は、どの反応原液に含まれていてもよい。中でも、繊維状充填材および粒子状充填 材は、ノルボルネン系モノマーを含む反応原液に含まれていることが好ましい。具体 的には、前記 (a)の場合においては、(al)繊維状充填材が A液、 B液、および C液か ら選ばれる一つの反応原液に含まれ、粒子状充填材が異なる反応原液に含まれる 態様;(a2)繊維状充填材および粒子状充填材カ A液、 B液、および C液から選ば れる一つの反応原液に同時に含まれる態様;(a3) C液として、繊維状充填材を含み 粒子状充填材を含まな!/ヽ C液と、粒子状充填材を含み繊維状充填材を含まな!/ヽ C液 とを二種併用する態様;などが挙げられる。 [0045] また、前記 (b)の場合は、(bl)繊維状充填材および粒子状充填材が、一種の反応 原液 (i)に同時に含まれている態様;(b2)反応原液 (i)として、繊維状充填材を含み 粒子状充填材を含まない反応原液 (i)と、粒子状充填材を含み繊維状充填材を含ま な 、反応原液 (i)とを二種併用する態様;などが挙げられる。
[0046] これらのなかでも、本発明の反応原液( a )を用いる態様が好ま 、。
本発明の反応原液( α )は、ノルボルネン系モノマー、前記の繊維状充填材および 粒子状充填材、を含有し、本発明の製造方法に用いられるものである。すなわち、繊 維状充填材および粒子状充填材は同じ反応原液に含まれて ヽることが好ま ヽ。具 体的には、上記 (a2)の態様および (bl)の態様が好適である。
[0047] 本発明の反応原液(α )は、繊維状充填材および粒子状充填材が同じ反応原液に 含まれていることで、充填材の沈降が抑制され、保存安定性に優れるという性質を有 する。反応原液( a )中の充填材量は、繊維状充填材と粒子状充填材との合計で、 好ましくは 20〜80重量%、より好ましくは 30〜75重量%、特に好ましくは 40〜70重 量%である。充填材量が多すぎると保存時にタンクや配管内で沈降するおそれがあ る。充填材量が少なすぎると、反応原液の粘度が上がらないため充填材が沈降する おそれがあり、また、得られる成形体中の充填材の量が少なくなるため、剛性や寸法 安定性の改善効果が不十分となる場合がある。
[0048] 反応原液(ひ)中の、繊維状充填材と粒子状充填材との量比は、重量比で、繊維状 充填材:粒子状充填材が 95 : 5〜55 : 45が好ましぐ 80 : 20〜60 : 40力 り好ましい 。繊維状充填材と粒子状充填材との量比がこの範囲であると、本発明の効果が得ら れ易ぐまた、充填材の沈降が特に少なぐ保存安定性が良好である。
Figure imgf000012_0001
次に、上記した反応原液を用いて、反応射出成形を行う。
本発明の製造方法においては、従来から反応射出 (RIM)成形装置として公知の 衝突混合装置を、反応原液を混合するために使用することができる。そして、 2以上 の反応原液を RIM機のミキシング ·ヘッドで瞬間的に混合させ、得られる反応液を型 中に注入し、該型内で塊状重合させて本発明のノルボルネン系榭脂成形体が得ら れる。また、衝突混合装置以外にも、ダイナミックミキサーやスタティックミキサーなど の低圧注入機も使用することができる。
[0050] 反応射出成形に用いる型は、必ずしも剛性の高い高価な金型である必要はなぐ 金属製の型に限らず、榭脂製の型、または単なる型枠を用いることができる。反応射 出成形は、低粘度の反応原液を用い、比較的低温低圧で成形できるためである。ま た、反応液を注入する前に、型内を窒素ガスなどの不活性ガスで置換することが好ま しい。
[0051] 型温度は、好ましくは、 10〜150°C、より好ましくは、 30〜120°C、さらに好ましくは 、 50〜100°Cである。型締め圧力は通常 0. 01〜: LOMPaの範囲である。塊状重合 の時間は適宜選択すればよいが、反応原液の注入終了後、通常 20秒〜 20分、好ま しくは 20秒〜 5分である。
[0052] 本発明の製造方法において、型内に複合化部材が設置されていると、複合化部材 と一体的に形成されてなる複合成形体である本発明のノルボルネン系榭脂成形体を 得ることができる。ここで、「一体的に形成されてなる」とは、ノルボルネン系榭脂と複 合化部材とが容易に剥離しな 、ように密着されて 、ることを言 、、榭脂の融着により 密着されて 、てもよ 、し、接着剤層を介して密着されて 、てもよ 、。
[0053] 本発明で用いられる複合ィ匕部材は、型内に設置可能であり、塊状重合時の型温度 において流動性を有しない材料である。複合ィ匕部材の材質としては、金属、ガラス、 セラミックス、木材などの無機材料;榭脂ゃゴムなどの有機材料;が挙げられる。無機 材料としては、金属またはガラスが好ましい。有機材料としては、榭脂が好ましい。榭 脂としては、ポリオレフイン榭脂、アクリル榭脂、 ABS榭脂、塩化ビニル榭脂、不飽和 ポリエステル榭脂、メラミン榭脂、エポキシ榭脂、フエノール榭脂、ポリウレタン榭脂、 ポリアミド榭脂、ノルボルネン系榭脂などが挙げられる。中でも、アクリル榭脂が特に 好ましい。
複合化部材の形状も特に限定されず、シート、板、棒、織布または不織布、各種三 次元形状物などの 、ずれでもよ 、。
[0054] 複合ィ匕部材とノルボルネン系榭脂とを、接着剤層を介して密着させる場合には、該 複合化部材の、反応液と接触する表面の少なくとも一部に、接着剤層を形成してお けばよ ヽ。接着剤層の形成に用いられる材料は塊状重合反応を阻害しな ヽものであ れば特に限定されず、用いる複合ィ匕部材により異なる力 スチレンと共役ジェンとの ブロック共重合体またはその水素化物を含有して 、ることが好まし 、。このようなブロ ック共重合体の具体例としては、スチレン ブタジエンブロック共重合体(SB)、スチ レン イソプレンブロック共重合体(SI)、スチレン ブタジエン スチレンブロック共 重合体(SBS)、スチレン イソプレン スチレンブロック共重合体(SIS)、スチレン —ブタジエン—イソプレン—スチレンブロック共重合体(SBIS)などが挙げられる。複 合ィ匕部材とノルボルネン系榭脂とが、接着剤層を介して密着されていると、両者の密 着性が高いので好ましい。
[0055] ノルボルネン系榭脂成形体
以上のようにして、本発明の成形体が得られる。本発明の成形体中の充填材量は、 上記の繊維状充填材と粒子状充填材との合計で、好ましくは 5〜60重量%、より好ま しくは 10〜50重量%である。ただし、本発明の成形体が複合成形体である場合は、 上記は複合ィ匕部材を除くノルボルネン系榭脂部分における充填材量を表す。充填 材量が多すぎると成形体の耐衝撃性が低下する場合がある。一方、少なすぎると成 形体の剛性や寸法安定性が不十分な場合がある。
[0056] また、本発明の成形体中の充填材の量比は、重量比で、繊維状充填材:粒子状充 填材が 95 : 5〜55 :45の範囲であることが好ましぐ 80 : 20〜60 :40の範囲であるこ とがより好ましい。ただし、本発明の成形体が複合成形体である場合は、上記は複合 化部材を除くノルボルネン系榭脂部分における充填材の量比を表す。繊維状充填 材と粒子状充填材との量比がこの範囲であると、本発明の効果がより一層顕著となる 実施例
[0057] 以下、本発明を実施例に基づきさらに詳細に説明するが、本発明はこれら実施例 に限定されるものではない。なお、実施例および比較例における部および%は、特 に断りのない限り重量基準である。また、各特性は、下記に示す方法により測定した
[0058] (1)充填材の 50%体積累積径
充填材の 50%体積累積径は、セディグラフ(マイクロメリテイクス社製)を用い、 X線 透過法で粒度分布を測定して求めた。
[0059] (2)充填材のアスペクト比
充填材のアスペクト比は、光学顕微鏡写真で無作為に選んだ 100個の充填材の長 軸径を測定し、その算術平均値として算出される個数平均長軸径と、上記の 50%体 積累積径との比として求めた。
[0060] (3)充填材の沈降率
充填材を含有する反応原液 (B液または C液)を円筒型のガラス容器に入れ、静置 する。 24時間後に、充填材の沈降に伴い生じる上澄み部分の高さおよび液面の高さ を測定し、下記式 1により充填材の沈降率を求めた。沈降率が小さいほど、反応原液 が保存安定性に優れる。
沈降率(%) = (上澄み部分の高さ) Z (液面の高さ) X 100 …式 1
[0061] (4)曲げ弾性率 (成形体の剛性の代表値)
ノルボルネン系榭脂成形体の曲げ弾性率は、 JIS K 7171に従い測定した。
[0062] (5)線膨張率 (成形体の寸法安定性の代表値)
ノルボルネン系榭脂成形体の線膨張率は、 JIS K 7197に準じて測定した。ただ し、試験片としては、長さ 10mm、幅 5mm、厚さ 4mmのものを用いた。
[0063] ¾細
ジシクロペンタジェン 90部およびトリシクロペンタジェン 10部からなる混合モノマー に、スチレン一イソプレン一スチレンブロック共重合体(クインタック 3421 :日本ゼオン 社製)を 3部溶解させた。次いで、ここに活性剤としてジェチルアルミニウムクロライド と、活性調節剤として 1, 3—ジクロロ— 2—プロパノールと、をそれぞれ 100ミリモル Z kg濃度となるように添加し、さらに四塩ィ匕珪素を 0. 1部添加して均一に混合分散し、 反応原液 (A液)を得た。 A液の比重は 0. 98であった。
[0064] これとは別に、ジシクロペンタジェン 90部およびトリシクロペンタジェン 10部からな る混合モノマーに、スチレン一イソプレン一スチレンブロック共重合体(クインタック 34 21)を 3部溶解させた。次いで、ここにフエノール系酸ィ匕防止剤 (ィルガノックス 1010 :チバスべシャリティーケミカルズ社製)を 2部溶解させ、さらに重合触媒としてトリ(トリ デシル)アンモ-ゥムモリブデートを 25ミリモル Zkg濃度となるように添カ卩して均一に 混合分散し、混合液を得た。
[0065] 得られた混合液 100部に、繊維状充填材として 50%体積累積径が 20 μ m、ァスぺ タト比が 18のウォラストナイト(SH— 400 :キンセイマテック社製、ビュルシランで表面 処理されているもの) 78. 75部と、粒子状充填材として 50%体積累積径が 1. 4 μ ΐη 、アスペクト比が 1の重質炭酸カルシウム(SCP— Ε # 2300 :三共精粉社製、ステアリ ン酸で表面処理されているもの) 26. 25部と、を加えて攪拌混合し、反応原液 (Β液) を得た。 Β液中における、繊維状充填材と粒子状充填材との量比は、重量比で 75 : 2 5である。こうして得られた Β液の比重は 1. 46であった。この Β液について充填材沈 降率を測定した結果を表 1に示す。
[0066] ステンレス板を 2枚用意し、これらを対向させ、縦方向の両端部と横方向の片端部と に、厚み 4mm、幅 15mmのシリコンパッキングを設置して、このシリコンパッキングを 2枚のステンレス板で挟み、内部に縦 245mm X横 210mm X厚さ 4mmの空間(キヤ ビティ)を有する簡易金型を作製した。そして、シリコンパッキングで塞がれていない 辺を上にした状態で、この簡易金型を垂直に立てて、一枚のステンレス板の最下部 に孔を開けて反応液注入孔を形成した。また、もう一枚のステンレス板には、全面に ヒーター線を貼り、加温できるようにした。
[0067] 前記金型を 80°Cに加温し、ここに A液 40. 2部および B液 59. 8部をスタティックミ キサ一で混合しながら注入して塊状重合を開始した。このときの A液および B液の混 合比は体積比で 1 : 1であり、注入される繊維状充填材の量は 22. 5部、粒子状充填 材の量は 7. 5部である。
[0068] 2分間の反応後、金型を解体してノルボルネン系榭脂成形体を取り出した。このノ ルボルネン系榭脂成形体から長さ 80mm、幅 10mm、厚さ 4mmの試験片を切り出し 、上記方法に従い曲げ弾性率を測定した。結果を表 1に示す。ここで、 E は、試験片
fx
の長さ方向が金型の縦方向と平行になるように作製した試験片についての測定値で ある。 E は、試験片の長さ方向が金型の横方向と平行になるように作製した試験片 fy
についての測定値である。 E および E が大きいほど剛性が高いことを表す。また、 E
fx fy
および E の比 (E /E )が大きいほど、方向による剛性のばらつきが少なぐ異方 fx fy fy fx
性が小さいことを表す。 [0069] また、このノルボルネン系榭脂成形体から長さ 10mm、幅 5mm、厚さ 4mmの試験 片を切り出し、上記方法に従い線膨張率を測定した。結果を表 1に示す。ここで、 a
sp は、試験片の長さ方向が金型の縦方向と平行になるように作製した試験片について の測定値であり、 a は、試験片の長さ方向が金型の横方向と平行になるように作製
spy
した試験片についての測定値である。 a および α 力 S小さぐ a および α の
spx spy spx spy 比(a / a
spx spy )が大きいほど、寸法安定性に優れることを表す。
[0070] [表 1]
Figure imgf000017_0001
[0071] 列 2
繊維状充填材の量を 42. 75部、粒子状充填材の量を 14. 25部とした他は、実施 例 1と同様にして反応原液 (B液)を得た。繊維状充填材と粒子状充填材との量比は 、重量比で 75 : 25である。こうして得られた B液の比重は 1. 28である。この B液につ レ、て充填材沈降率を測定した結果を表 1に示す。
[0072] 次 、で、この B液と前記 A液とを用い、それぞれの使用量を A液力 3. 4部、 B液が 56. 6部となるようにした他は、実施例 1と同様にしてノルボルネン系榭脂成形体を得 た。このとき金型に注入される A液および B液の混合比は、体積比で 1 : 1であり、注入 される繊維状充填材の量は 15部、粒子状充填材の量は 5部であった。得られたノル ボルネン系榭脂成形体にっ 、て、実施例 1と同様にして曲げ弾性率および線膨張率 を測定した。結果を表 1に示す。
[0073] 実施例 3
繊維状充填材の量を 138部、粒子状充填材の量を 46部とした他は、実施例 1と同 様にして反応原液 (B液)を得た。繊維状充填材と粒子状充填材との量比は、重量比 で 75 : 25である。こうして得られた B液の比重は 1. 67であった。この B液について充 填材沈降率を測定した結果を表 1に示す。
[0074] 次 、で、この B液と前記 A液とを用い、それぞれの使用量を A液が 37. 0部、 B液が 63. 0部となるようにした他は、実施例 1と同様にしてノルボルネン系榭脂成形体を得 た。このとき金型に注入される A液および B液の混合比は体積比で 1 : 1であり、注入 される繊維状充填材の量は 30部、粒子状充填材の量は 10部である。得られたノル ボルネン系榭脂成形体について、実施例 1と同様にして曲げ弾性率および線膨張率 を測定した。結果を表 1に示す。
[0075] 比較例 1
繊維状充填材および粒子状充填材を添加しな力つた他は、実施例 1と同様にして 反応原液 (B液)を得た。こうして得られた B液の比重は 0. 98であった。
[0076] 次 、で、この B液と前記 A液とを用い、それぞれの使用量を A液が 50. 0部、 B液が 50. 0部となるようにした他は、実施例 1と同様にしてノルボルネン系榭脂成形体を得 た。このとき金型に注入される A液および B液の混合比は体積比で 1 : 1である。得ら れたノルボルネン系榭脂成形体につ!ヽて、実施例 1と同様にして曲げ弾性率および 線膨張率を測定した。結果を表 1に示す。
[0077] 実施例 4
ジシクロペンタジェン 90部およびトリシクロペンタジェン 10部からなる混合モノマー に、繊維状充填材 135部と粒子状充填材 45部とを加えて攪拌混合し、反応原液 (C 液)を得た。なお、繊維状充填材および粒子状充填材は、実施例 1と同じ物を用いた 。また、繊維状充填材と粒子状充填材との量比は、重量比で 75 : 25である。こうして 得られた C液の比重は 1. 71であった。この C液について充填材沈降率を測定した結 果を表 1に示す。
[0078] 次 、で、前記金型を 80°Cに加温し、ここに上記 C液 44. 2部と、比較例 1で用いた ものと同じ A液および B液それぞれ 27. 9部とを、スタティックミキサーで混合しながら 注入して塊状重合を開始した。このとき金型に注入される A液、 B液および C液の混 合比は体積比で 1: 1: 1であり、注入される繊維状充填材の量は 22. 5部、粒子状充 填材の量は 7. 5部である。 2分間の反応後、金型を解体してノルボルネン系榭脂成 形体を取り出した。得られたノルボルネン系榭脂成形体について、実施例 1と同様に して曲げ弾性率および線膨張率を測定した。結果を表 1に示す。
[0079] 比較例 2
繊維状充填材の量を 56. 5部とし、粒子状充填材を添加しな力つた他は、実施例 1 と同様にして反応原液 (B液)を得た。こうして得られた B液の比重は 1. 46であった。 この B液にっ 、て充填材沈降率を測定した結果を表 1に示す。
[0080] 次 、で、この B液と前記 A液とを用い、それぞれの使用量を A液力 0. 2部、 B液が 59. 8部となるようにした他は、実施例 1と同様にしてノルボルネン系榭脂成形体を得 た。このとき金型に注入される A液および B液の混合比は体積比で 1 : 1であり、注入 される繊維状充填材の量は 30部である。得られたノルボルネン系榭脂成形体につ!、 て、実施例 1と同様にして曲げ弾性率および線膨張率を測定した。結果を表 1に示す
[0081] 比較例 3
繊維状充填材として、アスペクト比が 6のウォラストナイト(FPW350:キンセイマテツ ク社製、シランカップリング剤で表面処理されているもの) 56. 5部用いた他は、比較 例 2と同様にして反応原液 (B液)を得た。こうして得られた B液の比重は 1. 46であつ た。この B液にっ 、て充填材沈降率を測定した結果を表 1に示す。
[0082] 次 、で、この B液と前記 A液とを用い、それぞれの使用量を A液力 0. 2部、 B液が 59. 8部となるようにした他は、実施例 1と同様にしてノルボルネン系榭脂成形体を得 た。このとき金型に注入される A液および B液の混合比は体積比で 1 : 1であり、注入 される繊維状充填材の量は 30部である。得られたノルボルネン系榭脂成形体につ!、 て、実施例 1と同様にして曲げ弾性率および線膨張率を測定した。結果を表 1に示す
[0083] 比較例 4 粒子状充填材の量を 56. 5部とし、繊維状充填材を添加しな力つた他は、実施例 1 と同様にして反応原液 (B液)を得た。こうして得られた B液の比重は 1. 46であった。 この B液にっ 、て充填材沈降率を測定した結果を表 1に示す。
[0084] 次 、で、この B液と前記 A液とを用い、それぞれの使用量を A液力 0. 2部、 B液が 59. 8部となるようにした他は、実施例 1と同様にしてノルボルネン系榭脂成形体を得 た。このとき金型に注入される A液および B液の混合比は体積比で 1 : 1であり、注入 される粒子状充填材の量は 30部である。得られたノルボルネン系榭脂成形体につ!、 て、実施例 1と同様にして曲げ弾性率および線膨張率を測定した。結果を表 1に示す
[0085] 以上力も明らかなように、繊維状充填材と粒子状充填材とを含む本発明の反応原 液(ひ)は、充填材の沈降が少なぐ保存安定性に優れていることが分かる(実施例 1 〜4)。これに対し、繊維状充填材または粒子状充填材の一方しか含まない反応原液 は、充填材の沈降が大きい (比較例 2〜4)。
[0086] そして、繊維状充填材と粒子状充填材を含有して!/ヽる本発明のノルボルネン系榭 脂成形体は、高い剛性と寸法安定性を有し、かつ剛性の異方性も小さいことが分か る(実施例 1〜4)。これに対し、充填材を含まないか、または粒子状充填材のみを含 有する成形体は、剛性および寸法安定性が低い (比較例 1, 4)。一方、繊維状充填 材のみを含有して!/ヽる成形体は、曲げ弾性率 (剛性)および線膨張率が縦方向には 向上するものの、横方向の向上が少なぐ剛性の異方性が大きぐ寸法安定性が悪 い成形体であった (比較例 2, 3)。
[0087] 実施例 5
シリコンパッキングとして厚み 8mm、幅 15mmのものを用いた他は、実施例 1と同様 にして内部に縦 245mm X横 210mm X厚さ 8mmの空間(キヤビティ)を有する簡易 金型を作製した。そして、シリコンパッキングで塞がれていない辺を上にした状態で、 この簡易金型を垂直に立てて、一枚のステンレス板の最下部に孔を開けて反応液注 入孔を形成した。また、もう一枚のステンレス板には、全面にヒーター線を貼り、加温 できるようにした。
[0088] これとは別に、複合化部材として、縦 245mm X横 210mm X厚さ 4mmのアクリル 榭脂板 (パラグラス PG SG90 P0004 :クラレネ土製)を用意した。このアクリル榭脂板 の片面に、スチレン含有率が 30%であるポリスチレン ポリ(エチレン Zプロピレン) ブロック共重合体 (セプトン 4055:クラレネ土製)の 5%トルエン溶液を塗布し、次 、で 8 0°Cで 15分乾燥することにより、上記ブロック共重合体力もなる厚さ 15 mの接着剤 層を形成した。
[0089] こうして得られた接着剤層を有する複合化部材を、上記金型のキヤビティ内に設置 した。具体的には、接着剤層が形成されていない面がヒーター線を貼ったステンレス 板と接触するように、前記複合化部材を設置した。次いで、金型を 80°Cに加温し、こ こに A液および B液を注入して塊状重合を開始した。 A液および B液の種類および注 入量は、実施例 1と同じである。
[0090] 2分間の反応後、金型を解体してノルボルネン系榭脂とアクリル榭脂との複合成形 体を取り出した。得られた複合成形体を目視観察したところ、反りは見られなかった。 また、この複合成形体について、下記式 2より算出される成形収縮率は、 0. 3%であ つた o
成形収縮率 [%] = 100- [ (複合成形体の縦方向の長さ) / (金型キヤビティの縦 方向の長さ) X 100〕 …式 2
[0091] 次いで、この複合成形体から長さ 80mm、幅 10mm、厚さ 8mmの試験片を切り出 し、曲げ弾性率を測定した。結果を表 2に示す。ここで、 E および E は実施例 1と同
fx fy
じ意味である。
[0092] [表 2]
実施例 5 比較例 5 比較例 6 比較例 7 比較例 8 繊維状充填材
アスペクト比 18 - 18 6 - 成形体中の量(%) 22.5 0 30 30 0 粒子状充填材
成形体中の量 (%) 7.5 0 0 0 30 成形体中の
充填材総量 (%) 30 0 30 30 30 複合成形体特性
成形収縮率(%) 0.3 1.0 0.3 0.3 0.3 複合成形体の反り なし あり なし なし なし 曲げ弾性率
3.6 1.9 5.2 3.4 2.5
E GPa) 3.0 1.9 2.7 2.5 2.5
E 0.83 1.00 0.52 0.74 1.00
[0093] 比較例 5〜8
A液および B液の種類および注入量を、それぞれ比較例:!〜 4と同じとした他は、実 施例 5と同様にして複合成形体を得た。得られた複合成形体について、各特性を測 定した。結果を表 2に示す。
[0094] 以上から明らかなように、本発明のノルボルネン系榭脂成形体である複合成形体は 、成形収縮が小さぐかつ反りも見られず、寸法安定性に優れることが分かる。そして 、該複合成形体は、高い剛性を有し、かつ剛性の異方性も小さい(実施例 5)。これに 対し、ノルボルネン系榭脂部分に充填材を含まない複合成形体は、成形収縮が大き ぐ反りが見られ、また剛性も小さい(比較例 5)。また、ノルボルネン系榭脂部分に粒 子状充填材のみを含む複合成形体も、剛性の向上は不十分である(比較例 8)。一 方、ノルボルネン系榭脂部分に繊維状充填材のみを含む複合成形体は、剛性の異 方性の大きい複合成形体となった (比較例 6, 7)。

Claims

請求の範囲
[1] ノルボルネン系モノマーを型内で塊状重合させて得られるノルボルネン系榭脂成形 体であって、アスペクト比が 5〜: LOOである繊維状充填材、およびアスペクト比が 1〜 2である粒子状充填材を含有していることを特徴とするノルボルネン系榭脂成形体。
[2] 前記繊維状充填材がウォラストナイトである請求項 1に記載のノルボルネン系榭脂 成形体。
[3] 前記粒子状充填材が炭酸カルシウムである請求項 1または 2に記載のノルボルネン 系榭脂成形体。
[4] 前記繊維状充填材および粒子状充填材の量比が、重量比で、繊維状充填材:粒 子状充填材 = 95: 5〜55 :45である請求項 1〜3のいずれかに記載のノルボルネン 系榭脂成形体。
[5] 前記繊維状充填材と粒子状充填材との合計の含有量が、前記ノルボルネン系榭脂 成形体全体 100重量%に対して、 5〜60重量%である請求項 1〜4のいずれかに記 載のノルボルネン系榭脂成形体。
[6] 前記ノルボルネン系榭脂成形体が、複合化部材と一体的に形成されてなる複合成 形体である請求項 1〜5のいずれかに記載のノルボルネン系榭脂成形体。
[7] 請求項 1〜6の ヽずれかに記載のノルボルネン系榭脂成形体を製造する方法であ つて、
前記ノルボルネン系モノマー、メタセシス触媒、前記繊維状充填材、および前記粒 子状充填材を含有してなる反応液を型内に注入し、該型内で塊状重合させることを 特徴とするノルボルネン系榭脂成形体の製造方法。
[8] 前記反応液は、前記ノルボルネン系モノマー、前記繊維状充填材および前記粒子 状充填材を少なくとも含有する反応原液と、その他の反応原液と、を混合することに より調製される請求項 7に記載のノルボルネン系榭脂成形体の製造方法。
[9] 前記型内に複合ィ匕部材が設置されていることを特徴とする請求項 7または 8に記載 のノルボルネン系榭脂成形体の製造方法。
[10] 請求項 7〜9のいずれかに記載の製造方法に用いられる反応原液であって、 前記ノルボルネン系モノマー、前記繊維状充填材および前記粒子状充填材を含有 する反応原液。
[11] 前記繊維状充填材と粒子状充填材との合計の含有量が、前記反応原液全体 100 重量%に対して、 20〜80重量%である請求項 10に記載の反応原液。
PCT/JP2006/302725 2005-02-18 2006-02-16 ノルボルネン系樹脂成形体およびその製造方法 WO2006088087A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US11/884,569 US20080234422A1 (en) 2005-02-18 2006-02-16 Norbornene-Based Resin Molded Article and Method of Production Thereof
JP2007503700A JP4944765B2 (ja) 2005-02-18 2006-02-16 ノルボルネン系樹脂成形体およびその製造方法
CN2006800130456A CN101163741B (zh) 2005-02-18 2006-02-16 降冰片烯类树脂成型体及其制造方法
EP06713866A EP1849832A1 (en) 2005-02-18 2006-02-16 Norbornene resin molded body and method for manufacturing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005042395 2005-02-18
JP2005-042395 2005-02-18
JP2005-306394 2005-10-20
JP2005306394 2005-10-20

Publications (1)

Publication Number Publication Date
WO2006088087A1 true WO2006088087A1 (ja) 2006-08-24

Family

ID=36916488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/302725 WO2006088087A1 (ja) 2005-02-18 2006-02-16 ノルボルネン系樹脂成形体およびその製造方法

Country Status (6)

Country Link
US (1) US20080234422A1 (ja)
EP (1) EP1849832A1 (ja)
JP (1) JP4944765B2 (ja)
KR (1) KR20070120092A (ja)
CN (1) CN101163741B (ja)
WO (1) WO2006088087A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007331378A (ja) * 2006-05-16 2007-12-27 Cleanup Corp 複合成形体およびその製造方法
JP2011148875A (ja) * 2010-01-20 2011-08-04 Panasonic Corp ノルボルネン系樹脂スラリー及びその製造方法、ならびにこのノルボルネン系樹脂スラリーを用いた樹脂モールド型コンデンサ
JP2015178580A (ja) * 2014-03-20 2015-10-08 日本ゼオン株式会社 樹脂組成物及びその利用

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007058249A1 (ja) * 2005-11-18 2007-05-24 Rimtec Corporation ノルボルネン系樹脂成形体およびその製造方法
JP4953795B2 (ja) * 2006-12-22 2012-06-13 パナソニック株式会社 電子部品、及びその作成方法
US20130131405A1 (en) * 2011-11-18 2013-05-23 Metton America, Inc. Liquid molding resin with nonswelling mica
EP3162832A4 (en) * 2014-06-27 2018-04-04 Rimtec Corporation Gelling promoter
WO2017069236A1 (ja) * 2015-10-23 2017-04-27 宇部マテリアルズ株式会社 フィラー組成物

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05301296A (ja) * 1991-03-25 1993-11-16 Nippon Zeon Co Ltd 繊維強化樹脂成形品
JPH11322903A (ja) * 1998-05-15 1999-11-26 Hitachi Chem Co Ltd 充填材入りシクロオレフィン系重合体成形物の製造法
JP2001254033A (ja) * 2000-03-09 2001-09-18 Seiko Epson Corp インクジェット用インク及びそれを用いた印刷方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5842639A (ja) * 1981-09-07 1983-03-12 Toa Nenryo Kogyo Kk ポリオレフイン組成物
US4430468A (en) * 1982-07-21 1984-02-07 E. I. Du Pont De Nemours And Company Surfactant-containing filled and plasticized thermoplastic compositions based on ethylene interpolymers
JPH07121982B2 (ja) * 1988-06-04 1995-12-25 日本ゼオン株式会社 熱硬化性樹脂の製造法およびその反応原液
JPH0757811B2 (ja) * 1988-06-21 1995-06-21 日本ゼオン株式会社 ガラス繊維強化ノルボルネン系ポリマーおよびその製造法
GB8827264D0 (en) * 1988-11-22 1988-12-29 Shell Int Research Copolymerization of dicyclopentadiene with norbornene derivatives & copolymers obtainable therewith
US5276093B1 (en) * 1989-11-14 1996-12-10 Mitsubishi Petrochemical Co Resin molding
JPH0428714A (ja) * 1990-05-23 1992-01-31 Nippon Zeon Co Ltd 高重合活性ジシクロペンタジエンの製造法およびその重合法
US5660901A (en) * 1991-04-30 1997-08-26 Dexter Corporation Oriented expanded molded products
US5409996A (en) * 1993-02-23 1995-04-25 Japan Synthetic Rubber Co., Ltd. Thermoplastic resin composition
US5468819A (en) * 1993-11-16 1995-11-21 The B.F. Goodrich Company Process for making polymers containing a norbornene repeating unit by addition polymerization using an organo (nickel or palladium) complex
JP2000043079A (ja) * 1998-07-31 2000-02-15 Hitachi Chem Co Ltd シクロオレフィン系重合体成形物の製造法
US6350832B1 (en) * 1998-12-09 2002-02-26 The B. F. Goodrich Company Mold addition polymerization of norbornene-type monomers using group 10 metal complexes
JP2003321597A (ja) * 2002-02-28 2003-11-14 Hitachi Housetec Co Ltd ノルボルネン系樹脂組成物及び成形品の製造法
JP4517121B2 (ja) * 2004-03-03 2010-08-04 日東紡績株式会社 ガラス繊維強化ジシクロペンタジエン樹脂成形品の製造方法
WO2007058249A1 (ja) * 2005-11-18 2007-05-24 Rimtec Corporation ノルボルネン系樹脂成形体およびその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05301296A (ja) * 1991-03-25 1993-11-16 Nippon Zeon Co Ltd 繊維強化樹脂成形品
JPH11322903A (ja) * 1998-05-15 1999-11-26 Hitachi Chem Co Ltd 充填材入りシクロオレフィン系重合体成形物の製造法
JP2001254033A (ja) * 2000-03-09 2001-09-18 Seiko Epson Corp インクジェット用インク及びそれを用いた印刷方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007331378A (ja) * 2006-05-16 2007-12-27 Cleanup Corp 複合成形体およびその製造方法
JP2011148875A (ja) * 2010-01-20 2011-08-04 Panasonic Corp ノルボルネン系樹脂スラリー及びその製造方法、ならびにこのノルボルネン系樹脂スラリーを用いた樹脂モールド型コンデンサ
JP2015178580A (ja) * 2014-03-20 2015-10-08 日本ゼオン株式会社 樹脂組成物及びその利用

Also Published As

Publication number Publication date
JP4944765B2 (ja) 2012-06-06
KR20070120092A (ko) 2007-12-21
JPWO2006088087A1 (ja) 2008-07-03
EP1849832A1 (en) 2007-10-31
US20080234422A1 (en) 2008-09-25
CN101163741B (zh) 2011-03-02
CN101163741A (zh) 2008-04-16

Similar Documents

Publication Publication Date Title
WO2006088087A1 (ja) ノルボルネン系樹脂成形体およびその製造方法
JP2755642B2 (ja) 無機材料充填重合体成型物およびその製造方法
EP3031841B1 (en) Norbornene cross-linked polymer and method for producing same
JP5772600B2 (ja) 表面被覆型補強材、反応射出成形用配合液、及び反応射出成形体
JP5357428B2 (ja) ノルボルネン系樹脂成形体およびその製造方法
JP2007224123A (ja) ノルボルネン系樹脂成形体の製造方法
JP2010235699A (ja) 高分子成形用配合液、高分子成形体、及び複合高分子成形体
KR102124871B1 (ko) 반응 사출 성형용 배합액, 반응 사출 성형체의 제조 방법 및 반응 사출 성형체
JP2859300B2 (ja) 無機材料充填重合体成型物及びその製造方法
WO2021024956A1 (ja) 重合性組成物、シクロオレフィン系重合体および金属樹脂複合体
RU2620374C2 (ru) Жидкая формовочная смола с ненабухающей слюдой
JP2009263469A (ja) 反応射出成形用反応原液、反応射出成形方法及び反応射出成形体
JP2007009055A (ja) ノルボルネン系樹脂成形体およびその製造方法
EP0439650A1 (en) Molded polymer article filled with inorganic material and production of said article
JP2009202444A (ja) 複合成形体
JP2007009063A (ja) ノルボルネン系樹脂成形体およびその製造方法
JP2007009043A (ja) ノルボルネン系樹脂成形体およびその製造方法
JP2011246671A (ja) 成形体および成形体の製造方法
JP2009029865A (ja) 反応射出成形用配合液、反応射出成形体の製造方法及び反応射出成形体
JPH026525A (ja) ガラス強化重合体成型物及びその製造方法
JP2009072958A (ja) ノルボルネン系樹脂成形体および配合液
JP2008126417A (ja) 複合成形体
JP2005271535A (ja) 反応射出成形方法およびそれに用いる反応原液
WO2014050890A1 (ja) 重合性組成物および樹脂成形体の製造方法
CA2008332A1 (en) Molded polymer article filled with inorganic material and production of said articl

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680013045.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007503700

Country of ref document: JP

Ref document number: 1020077018724

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006713866

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2006713866

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11884569

Country of ref document: US