WO2014050890A1 - 重合性組成物および樹脂成形体の製造方法 - Google Patents

重合性組成物および樹脂成形体の製造方法 Download PDF

Info

Publication number
WO2014050890A1
WO2014050890A1 PCT/JP2013/075914 JP2013075914W WO2014050890A1 WO 2014050890 A1 WO2014050890 A1 WO 2014050890A1 JP 2013075914 W JP2013075914 W JP 2013075914W WO 2014050890 A1 WO2014050890 A1 WO 2014050890A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymerizable composition
atom
norbornene
group
monomer
Prior art date
Application number
PCT/JP2013/075914
Other languages
English (en)
French (fr)
Inventor
西岡 直樹
伸人 亀井
Original Assignee
Rimtec株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rimtec株式会社 filed Critical Rimtec株式会社
Priority to CN201380045698.2A priority Critical patent/CN104619743B/zh
Priority to KR1020157005387A priority patent/KR102054752B1/ko
Priority to JP2014538530A priority patent/JP6104263B2/ja
Priority to US14/431,150 priority patent/US9777086B2/en
Priority to EP13841272.1A priority patent/EP2902428B1/en
Publication of WO2014050890A1 publication Critical patent/WO2014050890A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F132/00Homopolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system
    • C08F132/08Homopolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system having condensed rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/04Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
    • C08G61/06Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds
    • C08G61/08Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds of carbocyclic compounds containing one or more carbon-to-carbon double bonds in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D165/00Coating compositions based on macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/33Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
    • C08G2261/332Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms
    • C08G2261/3324Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms derived from norbornene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/418Ring opening metathesis polymerisation [ROMP]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/59Stability

Definitions

  • the present invention relates to a polymerizable composition that enables industrial production of a fine resin molded article having excellent storage stability and excellent quality stability, and a method for producing a resin molded article using the polymerizable composition About.
  • the norbornene polymer obtained by polymerizing a polymerizable monomer containing a norbornene monomer in the presence of a metathesis polymerization catalyst is excellent in electrical characteristics, mechanical characteristics, impact resistance characteristics, heat resistance, weather resistance, etc. Practical use is progressing for compacts in a wide range of fields.
  • Such a norbornene-based polymer is produced by, for example, injecting a reaction liquid containing a polymerizable monomer containing a norbornene-based monomer and a metathesis polymerization catalyst into a mold by a reaction injection molding method and performing bulk polymerization. Manufactured by.
  • the norbornene-based monomer has high reactivity with the metathesis polymerization catalyst. Therefore, when these are mixed in advance, the polymerization reaction proceeds and a problem that a good molded product cannot be obtained occurs. Therefore, in order to avoid such problems, when obtaining a norbornene polymer by a reaction injection molding method or the like, a monomer liquid containing a norbornene monomer and a catalyst liquid containing a metathesis polymerization catalyst are separately prepared. It was necessary to go through a step of preparing and preparing a separately prepared monomer solution and catalyst solution to be instantaneously mixed with a collision mixing device or the like immediately before being injected into a molding die.
  • the monomer liquid and the catalyst liquid are mixed immediately before being injected into the molding die, so that a relatively large molded body is manufactured.
  • a minute molded body for example, a molded body having a weight of less than 100 g.
  • Patent Document 1 in order to improve polymerization stability, when a mixture containing a norbornene monomer and a metathesis polymerization catalyst is polymerized, a retarder or the like is added to reduce the gel time of the mixture to 15%.
  • a polymerization method in which the time is set to a second or more is disclosed.
  • the gel time in Patent Document 1 refers to the time from the addition of the metathesis polymerization catalyst to the monomer liquid containing the norbornene monomer until the norbornene monomer reacts and gels due to the action of the metathesis polymerization catalyst. It means the so-called gelation time.
  • Patent Document 1 can increase the time required for the norbornene-based monomer to react and gel, but to a certain extent, a fine resin molded body (for example, weight) However, it is still insufficient to suppress the raw material loss while ensuring sufficient mixing of the monomer liquid and the catalyst liquid in the industrial production of the resin molded body having a weight of less than 100 g). Proved to be very difficult.
  • the present invention relates to a polymerizable composition that enables industrial production of a fine resin molded article (for example, a resin molded article having a weight of less than 100 g) having excellent storage stability and excellent quality stability, and the polymerization It aims at providing the manufacturing method of the resin molding using an adhesive composition.
  • the present inventors have found that the above object can be achieved by a polymerizable composition obtained by cooling and solidifying a mixture containing a norbornene monomer and a metathesis polymerization catalyst.
  • the invention has been completed.
  • a polymerizable composition obtained by cooling and solidifying a mixture containing a norbornene-based monomer and a metathesis polymerization catalyst [2] The polymerizable composition according to [1], wherein the norbornene-based monomer has a freezing point of 20 ° C. or higher.
  • the polymerizable composition according to [1] or [2], wherein the metathesis polymerization catalyst is a ruthenium carbene complex [4]
  • the ruthenium carbene complex is represented by the following general formula (1) or (2): (In General Formulas (1) and (2), R 1 and R 2 each independently include a hydrogen atom, a halogen atom, or a halogen atom, an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, or a silicon atom.
  • X 1 and X 2 Each independently represents an anionic ligand;
  • L 1 and L 2 represent a heteroatom-containing carbene compound or a neutral electron-donating compound other than a heteroatom-containing carbene compound;
  • R 1 , R 2 , X 1 , X 2 , L 1 and L 2 may be bonded to each other alone and / or in any combination to form a multidentate chelating ligand.
  • the polymerizable composition according to the above [3] which is a compound represented by: [5]
  • the polymerizable composition according to any one of the above [1] to [4], wherein the cooling temperature at the time of cooling and solidifying is a temperature that is 20 ° C. or more lower than the freezing point of the norbornene monomer, [6]
  • a polymerizable composition that enables industrial production of a fine resin molded article (for example, a resin molded article having a weight of less than 100 g) having excellent storage stability and excellent quality stability, and A method for producing a resin molded body using the polymerizable composition can be provided.
  • the polymerizable composition of the present invention is a polymerizable composition obtained by cooling and solidifying a mixture (a mixture for a polymerizable composition) containing a norbornene-based monomer and a metathesis polymerization catalyst.
  • the norbornene-based monomer is not particularly limited as long as it is a compound having a norbornene ring structure, but a tricyclic ring such as norbornene and norbornadiene; a tricyclic ring such as dicyclopentadiene (cyclopentadiene dimer) and dihydrodicyclopentadiene. Tetracyclododecene and other tetracycles; cyclopentadiene trimer and other pentacycles; cyclopentadiene tetramer and other hemicycles; and the like.
  • These norbornene monomers include an alkyl group such as a methyl group, an ethyl group, a propyl group, and a butyl group; an alkenyl group such as a vinyl group; an alkylidene group such as an ethylidene group; an aryl group such as a phenyl group, a tolyl group, and a naphthyl group; And the like. Further, these norbornene monomers may have a polar group such as a carboxy group, an alkoxycarbonyl group, an acyloxy group, an oxy group, a cyano group, or a halogen atom.
  • norbornene-based monomers include dicyclopentadiene, tricyclopentadiene, cyclopentadiene-methylcyclopentadiene codimer, 5-ethylidene norbornene, norbornene, norbornadiene, 5-cyclohexenyl norbornene, 1,4,4 5,8-Dimethano-1,4,4a, 5,6,7,8,8a-octahydronaphthalene, 1,4-methano-1,4,4a, 5,6,7,8,8a-octahydro Naphthalene, 6-ethylidene-1,4,5,8-dimethano-1,4,4a, 5,6,7,8,8a-octahydronaphthalene, 6-ethylidene-1,4-methano-1,4 4a, 5,6,7,8,8a-octahydronaphthalene, 1,4,5,8-dimethano-1,4,4a, 5,6,7,8,8a-octa
  • those having a freezing point of 20 ° C. or higher are preferred, those having a freezing point of 28 ° C. or higher are preferred, and those having a freezing point of 35 ° C. or higher are preferred.
  • dicyclopentadiene (freezing point 31 ° C.) and tricyclopentadiene (freezing point 68 ° C.) are preferable because they are easily available, have excellent reactivity, and the resulting molded article has excellent heat resistance.
  • Dicyclopentadiene is particularly preferred.
  • monocyclic cycloolefins such as cyclobutene, cyclopentene, cyclopentadiene, cyclooctene, and cyclododecene, which can be ring-opening copolymerized with norbornene-based monomers, may be used as a comonomer within a range not impairing the object of the present invention.
  • the metathesis polymerization catalyst is a complex formed by bonding a plurality of ions, atoms, polyatomic ions and / or compounds with a transition metal atom as a central atom.
  • transition metal atoms atoms of Groups 5, 6 and 8 (long-period periodic table, the same applies hereinafter) are used.
  • the atoms of each group are not particularly limited, examples of the Group 5 atom include tantalum, examples of the Group 6 atom include molybdenum and tungsten, and examples of the Group 8 atom include: Examples include ruthenium and osmium. Of these transition metal atoms, Group 8 ruthenium and osmium are preferred.
  • the metathesis polymerization catalyst used in the present invention is preferably a complex having ruthenium or osmium as a central atom, and more preferably a complex having ruthenium as a central atom.
  • a complex having ruthenium as a central atom a ruthenium carbene complex in which a carbene compound is coordinated to ruthenium is preferable.
  • the “carbene compound” is a general term for compounds having a methylene free group, and refers to a compound having an uncharged divalent carbon atom (carbene carbon) as represented by (> C :).
  • the ruthenium carbene complex has excellent catalytic activity during bulk polymerization, when the molded composition is obtained by subjecting the polymerizable composition of the present invention to bulk polymerization, the resulting molded body has less odor derived from unreacted monomers. A high-quality molded product with good productivity can be obtained. In addition, it is relatively stable to oxygen and moisture in the air and is not easily deactivated, so that it can be used even in the atmosphere.
  • Examples of the ruthenium carbene complex include those represented by the following general formula (1) or general formula (2).
  • R 1 and R 2 each independently include a hydrogen atom; a halogen atom; or a halogen atom, an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, or a silicon atom. And these groups may have a substituent or may be bonded to each other to form a ring. Examples of R 1 and R 2 bonded to each other to form a ring include an indenylidene group which may have a substituent, such as a phenylindenylidene group.
  • organic group having 1 to 20 carbon atoms which may contain a halogen atom, oxygen atom, nitrogen atom, sulfur atom, phosphorus atom or silicon atom include an alkyl group having 1 to 20 carbon atoms and 2 to 2 carbon atoms.
  • These organic groups having 1 to 20 carbon atoms which may contain a halogen atom, oxygen atom, nitrogen atom, sulfur atom, phosphorus atom or silicon atom may have a substituent.
  • substituents include an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, and an aryl group having 6 to 10 carbon atoms.
  • X 1 and X 2 each independently represent an arbitrary anionic ligand.
  • An anionic ligand is a ligand having a negative charge when pulled away from a central metal atom, such as a halogen atom, a diketonate group, a substituted cyclopentadienyl group, an alkoxyl group, an aryloxy group, A carboxyl group etc. can be mentioned.
  • L 1 and L 2 represent a hetero atom-containing carbene compound or a neutral electron donating compound other than the hetero atom-containing carbene compound.
  • the heteroatom-containing carbene compound and the neutral electron-donating compound other than the heteroatom-containing carbene compound are compounds having a neutral charge when separated from the central metal. From the viewpoint of improving the catalytic activity, a heteroatom-containing carbene compound is preferred.
  • a heteroatom means an atom of Groups 15 and 16 of the periodic table, and specific examples include a nitrogen atom, an oxygen atom, a phosphorus atom, a sulfur atom, an arsenic atom, and a selenium atom. .
  • a nitrogen atom, an oxygen atom, a phosphorus atom, and a sulfur atom are preferable, and a nitrogen atom is particularly preferable.
  • heteroatom-containing carbene compound a compound represented by the following general formula (3) or (4) is preferable, and a compound represented by the following general formula (3) is particularly preferable from the viewpoint of improving catalytic activity.
  • R 3 , R 4 , R 5 and R 6 are each independently a hydrogen atom; a halogen atom; or a halogen atom, an oxygen atom, a nitrogen atom, a sulfur atom, phosphorus
  • R 5 and R 6 are hydrogen atoms.
  • R 3 and R 4 are preferably an aryl group which may have a substituent, more preferably a phenyl group having an alkyl group having 1 to 10 carbon atoms as a substituent, and particularly preferably a mesityl group.
  • neutral electron donating compound examples include oxygen atom, water, carbonyls, ethers, nitriles, esters, phosphines, phosphinites, phosphites, sulfoxides, thioethers, amides, imines , Aromatics, cyclic diolefins, olefins, isocyanides, thiocyanates and the like.
  • R 1 , R 2 , X 1 , X 2 , L 1 and L 2 are bonded to each other alone and / or in any combination to form a polydentate chelate
  • a fluorinated ligand may be formed.
  • Z is an oxygen atom, a sulfur atom, a selenium atom, NR 12 , PR 12 or AsR 12 , and R 12 is a hydrogen atom; a halogen atom; or a halogen atom, an oxygen atom, a nitrogen atom ,
  • R 12 is a hydrogen atom; a halogen atom; or a halogen atom, an oxygen atom, a nitrogen atom
  • An organic group having 1 to 20 carbon atoms which may contain a sulfur atom, a phosphorus atom or a silicon atom; however, since the effect of the present invention becomes more remarkable, an oxygen atom is preferable as Z.
  • R 1 , R 2 , X 1 and L 1 are the same as those in the above general formulas (1) and (2), and are bonded individually and / or in any combination to form a polydentate A chelating ligand may be formed, but X 1 and L 1 do not form a polydentate chelating ligand, and R 1 and R 2 are bonded to each other to form a ring Is more preferable, and an indenylidene group which may have a substituent is more preferable, and a phenylindenylidene group is particularly preferable.
  • organic group having 1 to 20 carbon atoms which may contain a halogen atom, an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom or a silicon atom include those represented by the general formulas (1) and (2). Same as the case.
  • R 7 and R 8 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, or a heteroaryl having 6 to 20 carbon atoms. These groups may have a substituent and may be bonded to each other to form a ring. Examples of the substituent include an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, and an aryl group having 6 to 10 carbon atoms.
  • the ring is an aromatic ring Any of alicyclic ring and heterocyclic ring may be used, but it is preferable to form an aromatic ring, more preferably an aromatic ring having 6 to 20 carbon atoms, and an aromatic ring having 6 to 10 carbon atoms to be formed. It is particularly preferable to do this.
  • R 9 , R 10 and R 11 each independently include a hydrogen atom; a halogen atom; or a halogen atom, an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom or a silicon atom.
  • These organic groups each having 1 to 20 carbon atoms may have a substituent and may be bonded to each other to form a ring.
  • Specific examples of the organic group having 1 to 20 carbon atoms which may contain a halogen atom, oxygen atom, nitrogen atom, sulfur atom, phosphorus atom or silicon atom include those represented by the general formulas (1) and (2). Same as the case.
  • R 9 , R 10 and R 11 are preferably a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, and particularly preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • m is 0 or 1.
  • m is preferably 1, in which case Q is an oxygen atom, a nitrogen atom, a sulfur atom, a methylene group, an ethylene group or a carbonyl group, preferably a methylene group.
  • R 1 , X 1 , X 2 and L 1 are the same as those in the above general formulas (1) and (2), and are bonded to each other alone and / or in any combination to form multidentate chelation
  • a ligand may be formed, it is preferable that X 1 , X 2 and L 1 do not form a multidentate chelating ligand and R 1 is a hydrogen atom.
  • R 13 to R 21 are a hydrogen atom; a halogen atom; or an organic group having 1 to 20 carbon atoms which may contain a halogen atom, an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, or a silicon atom; These groups may have a substituent and may be bonded to each other to form a ring.
  • Specific examples of the organic group having 1 to 20 carbon atoms which may contain a halogen atom, an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom or a silicon atom include those represented by the general formulas (1) and (2). Same as the case.
  • R 13 is preferably an alkyl group having 1 to 20 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms, R 14 to R 17 are preferably hydrogen atoms, and R 18 to R 21 are Preferably they are a hydrogen atom or a halogen atom.
  • the amount of the so-called metathesis polymerization catalyst is usually 0.01 mmol or more, preferably 0.1 to 50 mmol, more preferably 0.1 to 20 mmol with respect to 1 mol of the monomer used in the reaction.
  • the polymerizable composition of the present invention may contain other components other than the norbornene-based monomer and the metathesis polymerization catalyst described above.
  • examples of such other components include activators and polymerization retarders. And fillers.
  • the soot activator is a compound that acts as a cocatalyst of the above-described metathesis polymerization catalyst and improves the polymerization activity of the above-described metathesis polymerization catalyst.
  • Such an activator is not particularly limited, but specific examples thereof include organoaluminum compounds such as alkylaluminum halides such as ethylaluminum dichloride and diethylaluminum chloride, and alkoxyalkylaluminum halides; organotin compounds such as tetrabutyltin; Organozinc compounds such as diethyl zinc; chlorosilane compounds such as dimethylmonochlorosilane, dimethyldichlorosilane, diphenyldichlorosilane, tetrachlorosilane, bicycloheptenylmethyldichlorosilane, phenylmethyldichlorosilane, dihexyldichlorosilane, phenyl
  • the amount of the activator used is not particularly limited, but is preferably 0.1 mol or more, more preferably 1 mol or more with respect to 1 mol of the metathesis polymerization catalyst, and the upper limit of the amount used is preferably 100 mol or less, More preferably, it is 20 mol or less. If the amount of the activator used is too small, the polymerization activity becomes too low, and the time required for the reaction becomes long, so that the production efficiency deteriorates. On the other hand, if the amount used is too large, the reaction becomes so intense that it may be difficult to obtain a desired resin molded body.
  • the polymerization retarder is a mixture of a monomer liquid containing a norbornene monomer and a catalyst liquid containing a metathesis polymerization catalyst, and may be referred to as a liquid polymerizable composition mixture (hereinafter referred to as a liquid mixture). ) Is prepared and cooled and solidified to prepare the polymerizable composition of the present invention, which is useful for suppressing polymerization from starting during the preparation.
  • a polymerization retarder include phosphines, phosphites, vinyl ether derivatives, ethers, esters, nitrile compounds, pyridine derivatives, alcohols, acetylenes and ⁇ -olefins.
  • the effect as a polymerization retarder is high, and when mixing a norbornene monomer and a metathesis polymerization catalyst, it is possible to effectively suppress thickening of the resulting liquid mixture, phosphines, or the following A pyridine derivative represented by the formula (7) is particularly preferable.
  • R 22 , R 23 and R 24 each independently represent a hydrogen atom, an alkyl group having 1 to 10 carbon atoms which may have a substituent, or a substituent.
  • at least two of R 22 , R 23 and R 24 may have a substituent, an alkyl group having 1 to 10 carbon atoms, or an optionally substituted group having 2 to 2 carbon atoms. 10 alkenyl groups. That is, in the pyridine derivative represented by the general formula (7), two or three of the two meta positions and one para position (the 3-position, the 4-position, and the 5-position) have a substituent.
  • the alkyl group which may have a substituent constituting R 22 , R 23 and R 24 has 1 to 10 carbon atoms, preferably 1 to 6 carbon atoms, more preferably 1 to 4 carbon atoms.
  • the carbon number of the alkenyl group which may have a substituent is usually 2 to 10, preferably 2 to 6, and more preferably 2 to 4.
  • a pyridine derivative represented by the general formula (7) two meta-positions are substituted (R 22 and R 24 are substituted), one meta-position and para-position are substituted. Any of the disubstituted (substituted for R 22 and R 23 ), the substituted at the two meta and para positions (substituted for R 22 , R 23 and R 24 ) However, a disubstituted product in which two meta positions are substituted or a disubstituted product in which one meta position and a para position are substituted is preferable from the viewpoint that the addition effect becomes more remarkable.
  • the amount of the polymerization retarder used is not particularly limited, but is preferably 15 to 1800 parts by weight, more preferably 50 to 900 parts by weight, and still more preferably 150 to 500 parts by weight with respect to 100 parts by weight of the metathesis polymerization catalyst. It is.
  • the polymerization retarder is used not only when preparing a polymerizable composition from a liquid mixture, but also when preparing a polymerizable composition from a solid polymerizable composition mixture described later. To be used as appropriate.
  • the soot filler is not particularly limited, and examples thereof include a fibrous filler having an aspect ratio of 5 to 100 and a particulate filler having an aspect ratio of 1 to 2. These fibrous fillers and particulate fillers can also be used in combination.
  • the fibrous filler examples include glass fiber, wollastonite, potassium titanate, zonolite, basic magnesium sulfate, aluminum borate, tetrapot type zinc oxide, gypsum fiber, phosphate fiber, alumina fiber, acicular carbonate Calcium, acicular boehmite and the like can be mentioned.
  • wollastonite is preferable from the viewpoint that the rigidity can be increased with a small addition amount and the bulk polymerization reaction is not inhibited.
  • the particulate filler examples include calcium carbonate, calcium hydroxide, calcium silicate, calcium sulfate, aluminum hydroxide, magnesium hydroxide, titanium oxide, zinc oxide, barium titanate, silica, alumina, carbon black, graphite , Antimony oxide, red phosphorus, various metal powders, clay, various ferrites, hydrotalcite and the like.
  • calcium carbonate, silica, alumina, and aluminum hydroxide are preferable because they do not inhibit the bulk polymerization reaction.
  • the filler has a hydrophobic surface.
  • the filler can be prevented from agglomerating and settling, and the filler can be uniformly dispersed in the bulk polymer of the norbornene monomer.
  • Treatment agents used for hydrophobizing treatment include silane coupling agents such as vinyltrimethoxysilane, titanate coupling agents, aluminate coupling agents, fatty acids such as stearic acid, fats and oils, surfactants, waxes, etc. Can be mentioned.
  • the hydrophobic treatment of the filler can be performed by mixing the hydrophobic treatment agent simultaneously with the filler when preparing the mixture for the polymerizable composition as will be described later. It is preferable to prepare a mixture for the polymerizable composition using the filler.
  • the blending amount of the filler in the polymerizable composition of the present invention is preferably 10 to 1000 parts by weight, more preferably 100 to 500 parts by weight with respect to 100 parts by weight of the norbornene monomer.
  • the polymerizable composition of the present invention may contain various additives other than those described above.
  • additives include modifiers, anti-aging agents, colorants, light stabilizers, flame retardants, and the like.
  • the polymerizable composition of the present invention prepares a mixture for a polymerizable composition containing a norbornene-based monomer and a metathesis polymerization catalyst, which are essential components, and other components such as an activator and a polymerization retarder that are optionally added, It is prepared by cooling and solidifying the mixture.
  • a polymerizable composition mixture or polymerizable composition when there are a plurality of norbornene-based monomers constituting the polymerizable composition mixture or polymerizable composition, the freezing point of the norbornene-based monomer was measured according to JIS K0065 for the mixture of norbornene-based monomers used. Value.
  • the mixture for polymerizable composition can be prepared, for example, by the following two methods.
  • the monomer is not substantially melted with the norbornene-based monomer that has been cooled to the solidification point or lower in advance to form a solid, the metathesis polymerization catalyst, and other components such as a filler that is optionally added.
  • a mixture for a polymerizable composition is prepared by mixing while cooling at a temperature.
  • a solid polymerizable composition mixture (hereinafter sometimes referred to as a solid mixture) is obtained.
  • the form of the solid norbornene-based monomer is not particularly limited as long as it can be handled by a pulverizer or a mixer described later.
  • Examples of the form include a block form and a powder form.
  • the block-shaped norbornene-based monomer usually has a size of about 50 to 300 mm on a side, and the powder-shaped norbornene-based monomer generally has a size of about 0.2 to 20 mm in average particle size.
  • the average particle diameter can be measured by a laser diffraction scattering method.
  • the solid norbornene-based monomer may be handled as a solid at a predetermined temperature, and may be partially melted.
  • the metathesis polymerization catalyst may be mixed as a powder, or may be mixed as a catalyst liquid dispersed or dissolved in a solvent.
  • the metathesis polymerization catalyst may be coated in advance with an inert solid having a melting point of 40 to 80 ° C.
  • an inert solid for example, paraffin is preferably used. By doing so, the stability of the metathesis polymerization catalyst can be improved.
  • the solvent used in the catalyst solution is not particularly limited as long as it is an inert solvent for the metathesis polymerization catalyst.
  • aromatic hydrocarbons such as toluene, xylene, ethylbenzene, and trimethylbenzene; methyl ethyl ketone, cyclohexane
  • ketones such as pentanone, cyclohexanone, 2-heptanone and 4-hydroxy-4-methyl-2-pentanone
  • cyclic ethers such as tetrahydrofuran; diethyl ether, dichloromethane, dimethyl sulfoxide, ethyl acetate and the like.
  • aromatic hydrocarbons are preferable, and toluene is particularly preferable.
  • the norbornene-based monomer When other components are used, they may be added in advance to the norbornene-based monomer, may be added to the catalyst solution, or added separately in the form of a mixed solution when mixing each component. May be.
  • the temperature at the time of mixing each component is usually a temperature range lower than the freezing point of the norbornene-based monomer to be used, preferably 5 ° C. or more lower than the freezing point of the norbornene-based monomer, and 10 ° C. lower than the freezing point. More preferably, the temperature is set. If the mixing temperature is within such a range, the norbornene-based monomer is not substantially melted and the progress of bulk polymerization is suppressed, and a uniform mixture for a polymerizable composition can be obtained efficiently.
  • the mixing temperature is typically 25 ° C. or lower.
  • the solid norbornene-based monomer may be pulverized at the same time, or each component may be simply mixed.
  • a block-shaped norbornene-based monomer is preferably used, and in the latter case, a powdered norbornene-based monomer is preferably used.
  • a pulverizer such as a screen cutter, a hammer mill, and a rotary cutter is preferably used in the former case, and a mixer such as a Henschel mixer and a planetary mixer is preferably used in the latter case.
  • the ball mill can be used in both cases.
  • the mixing operation may be performed according to a known method, and may be performed in one step or in two or more steps. Moreover, you may use combining a grinder and a mixer suitably.
  • a solid mixture can be obtained as described above, but the norbornene-based monomer is preferably in the form of a powder because of excellent moldability during cooling and solidification described later.
  • a liquid norbornene monomer, a metathesis polymerization catalyst, and other components such as a filler to be added as desired are mixed at a temperature at which the resulting mixture is kept in a liquid state.
  • a composition mixture is prepared.
  • a liquid polymerizable composition mixture is obtained.
  • Examples of this method include a method in which a catalyst liquid containing a metathesis polymerization catalyst is mixed with a monomer liquid containing a norbornene-based monomer and stirred.
  • the mixing temperature at the time of mixing the catalyst liquid containing the metathesis polymerization catalyst with the monomer liquid containing the norbornene monomer is usually a temperature higher than the freezing point of the norbornene monomer, and is 10 ° C. higher than the freezing point of the norbornene monomer. It is preferable to set it as a range up to 5 ° C. from the freezing point, and more preferable.
  • the mixing temperature of the monomer liquid and the catalyst liquid is typically 30 to 60 ° C., preferably 35 to 45 ° C.
  • the metathesis polymerization catalyst can also be blended as a powder.
  • components When other components are used, they may be contained in either the monomer solution or the catalyst solution, or may be added separately in the form of a mixed solution or the like when the components are mixed.
  • the mixture for the polymerizable composition can be prepared as described above. However, in the solid mixture, the norbornene monomer coagulates and loses fluidity, and even when mixed with the metathesis polymerization catalyst, bulk polymerization is not possible. There is no progress. On the other hand, in a liquid mixture, since bulk polymerization may proceed, it is necessary to perform temperature control more strictly, and it is necessary to shorten the time until subsequent cooling and solidification. Accordingly, since the degree of freedom of operation is high and the mixture for the polymerizable composition can be obtained more stably, the mixture for the polymerizable composition is preferably prepared by the first method.
  • cooling solidification means solidifying under cooling.
  • the polymerizable composition of the present invention can be prepared by pressure-forming under cooling with a tableting machine or press molding machine and solidifying by cooling.
  • molding is not specifically limited, Usually, it is about 10 Mpa.
  • the polymerizable composition of the present invention is prepared in the mold by packing and solidifying the solid mixture directly into the mold to be used under cooling. May be.
  • the polymerizable composition of the present invention can be prepared by cooling and solidifying immediately while appropriately forming a predetermined amount.
  • a molding die described later can be used.
  • the cooling temperature at which the mixture for the polymerizable composition is cooled and solidified may be set according to the type of norbornene-based monomer to be used, but is preferably a temperature that is 20 ° C. or more lower than the freezing point of the norbornene-based monomer. More preferably, the temperature is lower by 30 ° C. or more.
  • the specific cooling temperature is preferably ⁇ 60 to 0 ° C., more preferably ⁇ 40 to ⁇ 10 ° C.
  • the mixture for the polymerizable composition is prepared by mixing the norbornene monomer and the metathesis polymerization catalyst in consideration of the necessary amount of the mixture from the viewpoint of eliminating the raw material loss and increasing the production efficiency of the resin molded body. , Each preferably using an optimum amount that can be immediately and thoroughly mixed.
  • the monomer liquid and the catalyst liquid to be used and liquids having similar viscosities are prepared, and the optimal amount of both liquids can be determined appropriately by checking the mixing properties. it can.
  • the mixture for the polymerizable composition obtained by mixing the norbornene monomer and the metathesis polymerization catalyst is cooled and solidified, the mixture is weighted according to the molded body to be manufactured in advance before cooling and solidifying. It is preferable to make a configuration so as to obtain a cooled and solidified body having a weight corresponding to a molded body to be manufactured in advance.
  • the cooling solidified body having the same weight as the molded body to be manufactured may be obtained, or a plurality of cooling solidified bodies corresponding to the molded body to be manufactured may be obtained.
  • the method for producing a resin molded body of the present invention includes a step of bulk polymerization of the above-described polymerizable composition of the present invention, thereby obtaining a resin molded body.
  • the above-described polymerizable composition of the present invention when the above-described polymerizable composition of the present invention is bulk-polymerized to obtain a resin molded body, a molding die corresponding to a desired shape is usually used, and the cooled solidified body is used in the molding die. By heating and polymerizing the polymerizable composition in this state, a resin molded body having a desired shape can be obtained.
  • the scissors mold is not particularly limited.
  • a mold formed of a male mold and a female mold can be used.
  • the mold to be used is not necessarily an expensive metal mold with high rigidity, and is not limited to a metal mold, and a resin mold or a simple mold can be used.
  • the material in the case of using a metal mold is not particularly limited, and examples thereof include steel, aluminum, zinc alloy, nickel, copper, chrome, etc., and can be manufactured by any method such as casting, forging, thermal spraying, and electroforming. Or may be plated.
  • the structure of the mold may be determined in consideration of the pressure when the polymerizable composition is injected into the mold.
  • the mold clamping pressure is usually about 0.1 to 9.8 MPa in terms of gauge pressure.
  • the mold temperature may be appropriately selected according to the type of norbornene-based monomer to be used, but is preferably set to a temperature that is 30 ° C or higher than the freezing point of the norbornene-based monomer, and is set to a temperature that is 50 ° C or higher than the freezing point. Is more preferable. Typically, the mold temperature is usually 60 to 160 ° C, preferably 80 to 120 ° C.
  • the bulk polymerization time may be appropriately selected, but it is usually 20 seconds to 20 minutes, preferably 20 seconds to 5 minutes after the polymerizable composition in a cooled and solidified state is placed in the mold.
  • the mold temperature T1 (° C.) of the design surface side mold is defined as the design surface. It is preferable to set it higher than the mold temperature T2 (° C.) of the mold on the opposite side. Thereby, the surface appearance of a molded object can be made beautiful without sinks or bubbles.
  • T1-T2 is preferably 5 ° C. or higher, more preferably 10 ° C. or higher, and the upper limit is preferably 60 ° C.
  • the upper limit of T1 is preferably 110 ° C, more preferably 95 ° C, and the lower limit is preferably 50 ° C.
  • the upper limit of T2 is preferably 70 ° C, more preferably 60 ° C, and the lower limit is preferably 30 ° C.
  • a resin molded body can be obtained by opening the mold and removing the mold.
  • the polymerizable composition of the present invention is obtained by cooling and solidifying a mixture containing a norbornene monomer and a metathesis polymerization catalyst, the norbornene monomer is excellent in storage stability without proceeding bulk polymerization, Moreover, since the norbornene-based monomer and the metathesis polymerization catalyst are already in a sufficiently mixed state, the polymer composition of the present invention is heated, melted, polymerized and cured, so that a fine resin molded article excellent in quality stability is obtained. Can be efficiently produced on an industrial scale.
  • the norbornene-based monomer and the metathesis polymerization catalyst are uniformly mixed, and the resulting mixture is weighed to a weight corresponding to a desired resin molded body, Can be solidified by cooling, so that even when a small resin molded body is obtained by bulk polymerization of the obtained polymerizable composition (for example, when a molded body having a weight of less than 100 g is obtained). Can achieve excellent quality stability.
  • Curing time Time (unit: minute) until the entire polymerizable composition is cured after placing the polymerizable composition on a mold heated to a predetermined temperature by the method shown in Examples and Comparative Examples. ) And measured as the curing time.
  • Tg glass transition temperature
  • the value of the intersection of the straight line extending the base line on the low temperature side from the inflection point and the straight line extending the base line on the high temperature side from the inflection point is read, and this is obtained as the glass transition temperature. (Tg).
  • Example 1 (Preparation of catalyst solution) As a metathesis polymerization catalyst, 0.6 parts of a ruthenium catalyst (VC843, manufactured by Strem Chemicals) represented by the following formula (8) and 15 parts of 2,6-di-t-butyl-p-cresol (BHT, anti-aging agent) was dissolved in 82 parts of cyclopentanone, and then 2.2 parts of 3,4-dimethylpyridine and 0.1 part of phenyltrichlorosilane were mixed to obtain a catalyst solution.
  • a ruthenium catalyst VC843, manufactured by Strem Chemicals
  • BHT 2,6-di-t-butyl-p-cresol
  • Example plate molding To 100 parts of dicyclopentadiene heated to 40 ° C., 0.5 part of triphenylphosphine and 3.3 parts of the catalyst solution prepared above are added and mixed to prepare a mixture for the polymerizable composition. The resulting mixture for the polymerizable composition was subdivided into 100 g, 50 g, and 10 g, respectively. Then, it was rapidly frozen to ⁇ 20 ° C. quickly to obtain a polymerizable composition in a cooled and solidified state.
  • an aluminum female mold having a space of 250 mm in length, 200 mm in width, and 4 mm in thickness was prepared as a mold and heated to 70 ° C.
  • the polymerizable composition 100 g, 50 g, 10 g each of the polymerizable composition
  • the molded article was taken out from the metal mold
  • the glass transition temperature (Tg) was measured.
  • the molding of the sample plate and the removal from the mold were repeated, and the mold cleaning frequency was measured according to the method described above.
  • Example 2 A polymerizable composition and a sample plate in a cooled solid state were obtained in the same manner as in Example 1 except that tetracyclododecene was used instead of dicyclopentadiene, and evaluation was performed in the same manner. The results are shown in Table 1.
  • Example 3 A polymerizable composition and a sample plate in a cooled solid state were obtained in the same manner as in Example 1 except that ethylidenetetracyclododecene was used in place of dicyclopentadiene, and evaluation was performed in the same manner. The results are shown in Table 1.
  • Example 4 When obtaining the mixture for a polymerizable composition, the polymerizable composition in the state of a cooled solidified body was obtained in the same manner as in Example 1 except that 150 parts of aluminum hydroxide was further added to 100 parts of dicyclopentadiene. Sample plates were obtained and evaluated in the same manner. The results are shown in Table 1.
  • Example 5 A sample plate was obtained in the same manner as in Example 1 except that the mold temperature was set to 40 ° C., and evaluated in the same manner. The results are shown in Table 1.
  • Example 6 A solid monomer composition was obtained by dissolving 0.5 part of triphenylphosphine in 100 parts of dicyclopentadiene heated to 40 ° C. and rapidly freezing to ⁇ 20 ° C. Next, 100 parts of the above monomer composition was added as it was to a planetary mixer holding the tank at 15 ° C., and then 3.3 parts of the catalyst solution prepared in the same manner as in Example 1 was added and mixed for 10 minutes for polymerization. A mixture for the sexual composition was obtained. The mixture was subdivided into 100 g, 50 g, and 10 g, rapidly frozen to ⁇ 20 ° C., and pressure-molded to obtain a polymerizable composition. Using the obtained polymerizable composition, a sample plate was obtained in the same manner as in Example 1 and evaluated in the same manner. The results are shown in Table 1.
  • Example 7 (Preparation of catalyst solution) As a metathesis polymerization catalyst, a catalyst solution was obtained by dissolving 0.6 parts of a ruthenium catalyst (Zhan 1N) represented by the following formula (9) and 15 parts of BHT in 82 parts of cyclopentanone.
  • a ruthenium catalyst Zhan 1N represented by the following formula (9)
  • Example plate molding Using the catalyst solution obtained above, in the same manner as in Example 1, a polymerizable composition and a sample plate in a cooled and solidified state were obtained and evaluated in the same manner. The results are shown in Table 1.
  • Example 8 A polymerizable composition and a sample plate were obtained in the same manner as in Example 6 except that the catalyst solution used was changed to a catalyst solution produced in the same manner as in Example 7, and evaluated in the same manner. The results are shown in Table 1.
  • Comparative Example 1 Using a high-impact collision mixing type RIM machine, 100.5 parts of a monomer liquid consisting of 3.3 parts of a catalyst solution prepared in the same manner as in Example 1, 100 parts of dicyclopentadiene and 0.5 parts of triphenylphosphine This was carried out except that 100 g, 50 g and 10 g / s were discharged at a discharge speed of 100 g / s, and the obtained mixed liquids 100 g, 50 g and 10 g were directly discharged into the same mold as in Example 1, respectively. Sample plates were obtained in the same manner as in Example 1 and evaluated in the same manner. The results are shown in Table 2.
  • Comparative Example 2 A sample plate was obtained and evaluated in the same manner as in Comparative Example 1 except that tetracyclododecene was used instead of dicyclopentadiene. The results are shown in Table 2.
  • Comparative Example 3 A sample plate was obtained in the same manner as in Comparative Example 1 except that 250.5 parts of monomer liquid consisting of 100 parts of dicyclopentadiene, 0.5 parts of triphenylphosphine and 150 parts of aluminum hydroxide was used as the monomer liquid. The same evaluation was performed. The results are shown in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

 ノルボルネン系モノマーとメタセシス重合触媒とを含む混合物を冷却固化してなる重合性組成物を提供する。好ましくは、前記ノルボルネン系モノマーの凝固点は20℃以上であり、また、好ましくは、前記メタセシス重合触媒が、ルテニウムカルベン錯体である。本発明によれば、保存安定性に優れ、かつ、品質安定性に優れた微小な樹脂成形体の工業生産を可能にする重合性組成物を提供することができる。

Description

重合性組成物および樹脂成形体の製造方法
  本発明は、保存安定性に優れ、かつ、品質安定性に優れた微小な樹脂成形体の工業生産を可能にする重合性組成物、および該重合性組成物を用いた樹脂成形体の製造方法に関する。
  ノルボルネン系モノマーを含む重合性単量体を、メタセシス重合触媒存在下で重合させて得られるノルボルネン系重合体は、電気特性、機械的特性、耐衝撃特性、耐熱性、耐候性などに優れるため、幅広い分野の成形体について実用化が進められている。
  このようなノルボルネン系重合体は、たとえば、反応射出成形法により、ノルボルネン系モノマーを含む重合性単量体と、メタセシス重合触媒とを含む反応液を、金型内に注入し、塊状重合させることにより製造される。
  しかしながら、ノルボルネン系モノマーは、メタセシス重合触媒に対する反応性が高く、そのため、これらを予め混合しておくと重合反応が進行してしまい良好な成形体を得ることができないという不具合が生じてしまう。よってこのような不具合を生じさせないために、反応射出成形法などによりノルボルネン系重合体を得る際には、ノルボルネン系モノマーを含有するモノマー液と、メタセシス重合触媒を含有する触媒液とを、別々に調製しておき、別々に調製したモノマー液および触媒液を成形用の金型内に注入する直前に衝突混合装置などで瞬間的に混合させる工程を経る必要があった。
  そして、このように反応射出成形法においては、モノマー液と、触媒液とは、成形用の金型内に注入する直前に混合させるという方法を採用しているため、比較的大きい成形体を製造する際には、良好な成形体が得られるものの、微小な成形体(たとえば、重量が100g未満の成形体)を得ようとすると、モノマー液と触媒液との混合性を高めるために、それらを多量に用いると原料ロスが過大となり、一方、少量では混合性が不十分となり、結果として、硬化が十分でない箇所が局所的に存在してしまい、良好な成形体を得ることができないという課題があった。
  一方、特許文献1には、重合安定性を向上させるために、ノルボルネン系モノマーとメタセシス重合触媒とを含有する混合物を重合させる際に、遅延剤などを添加することにより、該混合物のゲルタイムを15秒以上に設定する重合方法が開示されている。ここで、特許文献1におけるゲルタイムとは、ノルボルネン系モノマーを含有するモノマー液に、メタセシス重合触媒を添加してから、メタセシス重合触媒の作用により、ノルボルネン系モノマーが反応してゲル化するまでの、いわゆるゲル化時間を意味している。
特開2002-121266号公報
  しかしながら、本発明者らが検討したところ、上記特許文献1の方法では、ノルボルネン系モノマーが反応してゲル化するまでの時間をある程度長くすることができるものの、微小な樹脂成形体(たとえば、重量が100g未満の樹脂成形体)を工業生産するに当たってモノマー液と触媒液との充分な混合性を確保しつつ原料ロスを抑えるには未だ不充分であり、当該樹脂成形体の工業規模での生産は非常に困難であることが明らかになった。
  本発明は、保存安定性に優れ、かつ、品質安定性に優れた微小な樹脂成形体(たとえば、重量が100g未満の樹脂成形体)の工業生産を可能にする重合性組成物、および該重合性組成物を用いた樹脂成形体の製造方法を提供することを目的とする。
  本発明者らは、上記目的を達成するために鋭意研究した結果、ノルボルネン系モノマーとメタセシス重合触媒とを含む混合物を冷却固化してなる重合性組成物により、上記目的を達成できることを見出し、本発明を完成させるに至った。
  すなわち、本発明によれば、
〔1〕ノルボルネン系モノマーとメタセシス重合触媒とを含む混合物を冷却固化してなる重合性組成物、
〔2〕前記ノルボルネン系モノマーの凝固点が20℃以上である前記〔1〕に記載の重合性組成物、
〔3〕前記メタセシス重合触媒が、ルテニウムカルベン錯体である前記〔1〕または〔2〕に記載の重合性組成物、
〔4〕前記ルテニウムカルベン錯体が、以下の一般式(1)または(2):
Figure JPOXMLDOC01-appb-C000002
(一般式(1)および(2)中、RおよびRは、それぞれ独立して、水素原子、ハロゲン原子、またはハロゲン原子、酸素原子、窒素原子、硫黄原子、リン原子もしくは珪素原子を含んでいてもよい炭素数1~20の有機基を表し、これらの基は、置換基を有していてもよく、また、互いに結合して環を形成していてもよく;XおよびXは、それぞれ独立して、アニオン性配位子を表し;LおよびLは、ヘテロ原子含有カルベン化合物またはヘテロ原子含有カルベン化合物以外の中性電子供与性化合物を表し;R、R、X、X、LおよびLは、それぞれ単独で、および/または任意の組合せで互いに結合して、多座キレート化配位子を形成していてもよい。)
で表される化合物である前記〔3〕に記載の重合性組成物、
〔5〕前記冷却固化を行う際の冷却温度を、前記ノルボルネン系モノマーの凝固点よりも20℃以上低い温度とする前記〔1〕~〔4〕のいずれかに記載の重合性組成物、ならびに、
〔6〕前記〔1〕~〔5〕のいずれかに記載の重合性組成物を塊状重合する工程を有する樹脂成形体の製造方法、
が提供される。
  本発明によれば、保存安定性に優れ、かつ、品質安定性に優れた微小な樹脂成形体(たとえば、重量が100g未満の樹脂成形体)の工業生産を可能にする重合性組成物、および該重合性組成物を用いた樹脂成形体の製造方法を提供することができる。
  本発明の重合性組成物は、ノルボルネン系モノマーとメタセシス重合触媒とを含む混合物(重合性組成物用混合物)を冷却固化してなる重合性の組成物である。
(ノルボルネン系モノマー)
  ノルボルネン系モノマーとしては、ノルボルネン環構造を有する化合物であればよく、特に限定されないが、ノルボルネン、ノルボルナジエン等の二環体;ジシクロペンタジエン(シクロペンタジエン二量体)、ジヒドロジシクロペンタジエン等の三環体;テトラシクロドデセン等の四環体;シクロペンタジエン三量体等の五環体;シクロペンタジエン四量体等の七環体;等を挙げることができる。
  これらのノルボルネン系モノマーは、メチル基、エチル基、プロピル基、ブチル基等のアルキル基;ビニル基等のアルケニル基;エチリデン基等のアルキリデン基;フェニル基、トリル基、ナフチル基等のアリール基;等の置換基を有していてもよい。さらに、これらのノルボルネン系モノマーは、カルボキシ基、アルコキシカルボニル基、アシルオキシ基、オキシ基、シアノ基、ハロゲン原子等の極性基を有していてもよい。
  このようなノルボルネン系モノマーの具体例としては、ジシクロペンタジエン、トリシクロペンタジエン、シクロペンタジエン-メチルシクロペンタジエン共二量体、5-エチリデンノルボルネン、ノルボルネン、ノルボルナジエン、5-シクロヘキセニルノルボルネン、1,4,5,8-ジメタノ-1,4,4a,5,6,7,8,8a-オクタヒドロナフタレン、1,4-メタノ-1,4,4a,5,6,7,8,8a-オクタヒドロナフタレン、6-エチリデン-1,4,5,8-ジメタノ-1,4,4a,5,6,7,8,8a-オクタヒドロナフタレン、6-エチリデン-1,4-メタノ-1,4,4a,5,6,7,8,8a-オクタヒドロナフタレン、1,4,5,8-ジメタノ-1,4,4a,5,6,7,8,8a-ヘキサヒドロナフタレン、エチレンビス(5-ノルボルネン)等が挙げられる。
  ノルボルネン系モノマーは、1種を単独で使用してもよく、2種以上を組み合わせて用いてもよい。
  本発明においては、上記ノルボルネン系モノマーのなかでも、室温での取り扱いが容易であることから、凝固点が20℃以上のものが好ましく、凝固点が28℃以上のものがより好ましく、凝固点が35℃以上のものがさらに好ましい。なかでも、入手が容易であり、反応性に優れ、得られる成形体が耐熱性に優れたものとなる点から、ジシクロペンタジエン(凝固点31℃)及びトリシクロペンタジエン(凝固点68℃)が好ましく、ジシクロペンタジエンが特に好ましい。
  なお、本発明の目的を損なわない範囲で、ノルボルネン系モノマーと開環共重合し得るシクロブテン、シクロペンテン、シクロペンタジエン、シクロオクテン、シクロドデセン等の単環シクロオレフィン等を、コモノマーとして用いてもよい。
(メタセシス重合触媒)
  メタセシス重合触媒は、遷移金属原子を中心原子として、複数のイオン、原子、多原子イオンおよび/または化合物が結合してなる錯体である。遷移金属原子としては、第5,6および8族(長周期型周期表、以下同様)の原子が使用される。それぞれの族の原子は特に限定されないが、第5族の原子としては、たとえばタンタルが挙げられ、第6族の原子としては、たとえばモリブデンやタングステンが挙げられ、第8族の原子としては、たとえばルテニウムやオスミウムが挙げられる。これら遷移金属原子の中でも、第8族のルテニウムやオスミウムが好ましい。すなわち、本発明に使用されるメタセシス重合触媒としては、ルテニウムまたはオスミウムを中心原子とする錯体が好ましく、ルテニウムを中心原子とする錯体がより好ましい。ルテニウムを中心原子とする錯体としては、カルベン化合物がルテニウムに配位してなるルテニウムカルベン錯体が好ましい。ここで、「カルベン化合物」とは、メチレン遊離基を有する化合物の総称であり、(>C:)で表されるような電荷のない2価の炭素原子(カルベン炭素)を持つ化合物をいう。ルテニウムカルベン錯体は、塊状重合時の触媒活性に優れるため、本発明の重合性組成物を塊状重合に供して成形体を得る場合、得られる成形体には未反応のモノマーに由来する臭気が少なく、生産性良く良質な成形体が得られる。また、酸素や空気中の水分に対して比較的安定であって、失活しにくいので、大気下でも使用可能である。
  ルテニウムカルベン錯体としては、下記一般式(1)または一般式(2)で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000003
  上記一般式(1)および(2)において、RおよびRは、それぞれ独立して、水素原子;ハロゲン原子;またはハロゲン原子、酸素原子、窒素原子、硫黄原子、リン原子もしくは珪素原子を含んでいてもよい炭素数1~20の有機基;であり、これらの基は、置換基を有していてもよく、また、互いに結合して環を形成していてもよい。RおよびRが互いに結合して環を形成した例としては、フェニルインデニリデン基などの、置換基を有していてもよいインデニリデン基が挙げられる。
  ハロゲン原子、酸素原子、窒素原子、硫黄原子、リン原子もしくは珪素原子を含んでいてもよい炭素数1~20の有機基の具体例としては、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数6~20のアリール基、炭素数1~20のアルコキシ基、炭素数2~20のアルケニルオキシ基、炭素数2~20のアルキニルオキシ基、炭素数6~20のアリールオキシ基、炭素数1~8のアルキルチオ基、カルボニルオキシ基、炭素数1~20のアルコキシカルボニル基、炭素数1~20のアルキルスルホニル基、炭素数1~20のアルキルスルフィニル基、炭素数1~20のアルキルスルホン酸基、炭素数6~20のアリールスルホン酸基、ホスホン酸基、炭素数6~20のアリールホスホン酸基、炭素数1~20のアルキルアンモニウム基、および炭素数6~20のアリールアンモニウム基等を挙げることができる。これらの、ハロゲン原子、酸素原子、窒素原子、硫黄原子、リン原子もしくは珪素原子を含んでいてもよい炭素数1~20の有機基は、置換基を有していてもよい。置換基の例としては、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、および炭素数6~10のアリール基等を挙げることができる。
  XおよびXは、それぞれ独立して、任意のアニオン性配位子を示す。アニオン性配位子とは、中心金属原子から引き離されたときに負の電荷を持つ配位子であり、例えば、ハロゲン原子、ジケトネート基、置換シクロペンタジエニル基、アルコキシル基、アリールオキシ基、カルボキシル基などを挙げることができる。
  LおよびLは、ヘテロ原子含有カルベン化合物またはヘテロ原子含有カルベン化合物以外の中性電子供与性化合物を表す。ヘテロ原子含有カルベン化合物及びヘテロ原子含有カルベン化合物以外の中性電子供与性化合物は、中心金属から引き離されたときに中性の電荷を持つ化合物である。触媒活性向上の観点からヘテロ原子含有カルベン化合物が好ましい。ヘテロ原子とは、周期律表第15族および第16族の原子を意味し、具体的には、窒素原子、酸素原子、リン原子、硫黄原子、ヒ素原子、およびセレン原子などを挙げることができる。これらの中でも、安定なカルベン化合物が得られる観点から、窒素原子、酸素原子、リン原子、および硫黄原子が好ましく、窒素原子が特に好ましい。
  前記ヘテロ原子含有カルベン化合物としては、下記一般式(3)または(4)で示される化合物が好ましく、触媒活性向上の観点から、下記一般式(3)で示される化合物が特に好ましい。
Figure JPOXMLDOC01-appb-C000004
  上記一般式(3)および(4)中、R、R、RおよびRは、それぞれ独立して、水素原子;ハロゲン原子;またはハロゲン原子、酸素原子、窒素原子、硫黄原子、リン原子もしくは珪素原子を含んでいてもよい炭素数1~20個の有機基;を表す。ハロゲン原子、酸素原子、窒素原子、硫黄原子、リン原子もしくは珪素原子を含んでいてもよい炭素数1~20の有機基の具体例は、上記一般式(1)および(2)の場合と同様である。
  また、R、R、RおよびRは任意の組合せで互いに結合して環を形成していてもよい。
  なお、本発明の効果がより一層顕著になることから、RおよびRが水素原子であることが好ましい。また、RおよびRは、置換基を有していてもよいアリール基が好ましく、置換基として炭素数1~10のアルキル基を有するフェニル基がより好ましく、メシチル基が特に好ましい。
  前記中性電子供与性化合物としては、例えば、酸素原子、水、カルボニル類、エーテル類、ニトリル類、エステル類、ホスフィン類、ホスフィナイト類、ホスファイト類、スルホキシド類、チオエーテル類、アミド類、イミン類、芳香族類、環状ジオレフィン類、オレフィン類、イソシアニド類、チオシアネート類等が挙げられる。
 上記一般式(1)および(2)において、R、R、X、X、LおよびLは、それぞれ単独で、および/または任意の組合せで互いに結合して、多座キレート化配位子を形成してもよい。
  また、本発明で用いるルテニウムカルベン錯体としては、上記一般式(1)または(2)で表される化合物のなかでも、本発明の作用効果がより顕著になるという点より、上記一般式(1)で表される化合物が好ましく、中でも、以下に示す一般式(5)または一般式(6)で表される化合物であることがより好ましい。  
 一般式(5)を以下に示す。
Figure JPOXMLDOC01-appb-C000005
  上記一般式(5)中、Zは、酸素原子、硫黄原子、セレン原子、NR12、PR12またはAsR12であり、R12は、水素原子;ハロゲン原子;またはハロゲン原子、酸素原子、窒素原子、硫黄原子、リン原子もしくは珪素原子を含んでいてもよい炭素数1~20の有機基;であるが、本発明の効果がより一層顕著になることから、Zとしては酸素原子が好ましい。
 なお、R、R、XおよびLは、上記一般式(1)および(2)の場合と同様であり、それぞれ単独で、および/または任意の組み合わせで互いに結合して、多座キレート化配位子を形成しても良いが、XおよびLが多座キレート化配位子を形成せず、かつ、RおよびRは互いに結合して環を形成していることが好ましく、置換基を有していてもよいインデニリデン基であることがより好ましく、フェニルインデニリデン基であることが特に好ましい。
  また、ハロゲン原子、酸素原子、窒素原子、硫黄原子、リン原子または珪素原子を含んでいてもよい炭素数1~20の有機基の具体例としては、上記一般式(1)および(2)の場合と同様である。
  上記一般式(5)中、RおよびRは、それぞれ独立して、水素原子、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、または炭素数6~20のヘテロアリール基で、これらの基は、置換基を有していてもよく、また、互いに結合して環を形成していてもよい。置換基の例としては、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基または炭素数6~10のアリール基を挙げることができ、環を形成する場合の環は、芳香環、脂環およびヘテロ環のいずれであってもよいが、芳香環を形成することが好ましく、炭素数6~20の芳香環を形成することがより好ましく、炭素数6~10の芳香環を形成することが特に好ましい。
  上記一般式(5)中、R、R10およびR11は、それぞれ独立して、水素原子;ハロゲン原子;またはハロゲン原子、酸素原子、窒素原子、硫黄原子、リン原子もしくは珪素原子を含んでいてもよい炭素数1~20の有機基;であり、これらの基は、置換基を有していてもよく、互いに結合して環を形成していてもよい。また、ハロゲン原子、酸素原子、窒素原子、硫黄原子、リン原子もしくは珪素原子を含んでいてもよい炭素数1~20の有機基の具体例としては、上記一般式(1)および(2)の場合と同様である。
  R、R10およびR11は、水素原子または炭素数1~20のアルキル基であることが好ましく、水素原子または炭素数1~3のアルキル基であることが特に好ましい。
  なお、上記一般式(5)で表わされる化合物の具体例およびその製造方法としては、たとえば、国際公開第03/062253号(特表2005-515260)に記載のもの等が挙げられる。
 一般式(6)を以下に示す。
Figure JPOXMLDOC01-appb-C000006
  上記一般式(6)中、mは、0または1である。mは1が好ましく、その場合、Qは、酸素原子、窒素原子、硫黄原子、メチレン基、エチレン基またはカルボニル基であり、好ましくはメチレン基である。
Figure JPOXMLDOC01-appb-C000007
は、単結合または二重結合であり、好ましくは単結合である。
 R、X、XおよびLは、上記一般式(1)および(2)の場合と同様であり、それぞれ単独で、および/または任意の組み合わせで互いに結合して、多座キレート化配位子を形成しても良いが、X、XおよびLが多座キレート化配位子を形成せず、かつ、Rは水素原子であることが好ましい。
 R13~R21は、水素原子;ハロゲン原子;またはハロゲン原子、酸素原子、窒素原子、硫黄原子、リン原子もしくは珪素原子を含んでいてもよい炭素数1~20の有機基;であり、これらの基は、置換基を有していてもよく、互いに結合して環を形成していてもよい。また、ハロゲン原子、酸素原子、窒素原子、硫黄原子、リン原子または珪素原子を含んでいてもよい炭素数1~20の有機基の具体例としては、上記一般式(1)および(2)の場合と同様である。
 R13は、好ましくは炭素数1~20のアルキル基、より好ましくは炭素数1~3のアルキル基であり、R14~R17は、好ましくは水素原子であり、R18~R21は、好ましくは水素原子またはハロゲン原子である。
  なお、上記一般式(6)で表わされる化合物の具体例およびその製造方法としては、たとえば、国際公開第11/079799(特表2013-516392)に記載のもの等が挙げられる。
  メタセシス重合触媒の使用量は、反応に使用するモノマー1モルに対して、通常、0.01ミリモル以上であり、好ましくは0.1~50ミリモル、より好ましくは0.1~20ミリモルである。メタセシス重合触媒の使用量を上記範囲とすることにより、得られる重合性組成物の反応性と保存安定性とを高度にバランスさせることができる。
(その他の成分)
  また、本発明の重合性組成物は、上述したノルボルネン系モノマーおよびメタセシス重合触媒以外のその他の成分を含有するものであってもよく、このようなその他の成分としては、活性剤、重合遅延剤、充填材などが挙げられる。
  活性剤は、上述したメタセシス重合触媒の共触媒として作用し、上述したメタセシス重合触媒の重合活性を向上させる化合物である。このような活性剤としては、特に限定されないが、その具体例としては、エチルアルミニウムジクロリド、ジエチルアルミニウムクロリド等のアルキルアルミニウムハライド、アルコキシアルキルアルミニウムハライド等の有機アルミニウム化合物;テトラブチル錫等の有機スズ化合物;ジエチル亜鉛等の有機亜鉛化合物;ジメチルモノクロロシラン、ジメチルジクロロシラン、ジフェニルジクロロシラン、テトラクロロシラン、ビシクロヘプテニルメチルジクロロシラン、フェニルメチルジクロロシラン、ジヘキシルジクロロシラン、フェニルトリクロロシラン、メチルトリクロロシラン等のクロロシラン化合物;等が挙げられる。
  活性剤の使用量は、特に限定されないが、メタセシス重合触媒1モルに対して、好ましくは0.1モル以上、より好ましくは1モル以上であり、使用量の上限は、好ましくは100モル以下、より好ましくは20モル以下である。活性剤の使用量が少なすぎると、重合活性が低くなりすぎて、反応に要する時間が長くなるため生産効率が悪くなる。逆に、使用量が多すぎると、反応が激しくなり過ぎてしまい、所望の樹脂成形体を得難くなる場合がある。
  重合遅延剤は、後述するように、ノルボルネン系モノマーを含有するモノマー液とメタセシス重合触媒を含有する触媒液とを混合し、液状の重合性組成物用混合物(以下、液状混合物という場合がある。)を調製し、これを冷却固化して、本発明の重合性組成物を調製する際、調製中に重合が開始してしまうことを抑制するのに有用である。このような重合遅延剤としては、ホスフィン類、ホスファイト類、ビニルエーテル誘導体、エーテル、エステル、ニトリル化合物、ピリジン誘導体、アルコール類、アセチレン類およびα-オレフィン類などが挙げられる。これらのなかでも、重合遅延剤としての効果が高く、ノルボルネン系モノマーとメタセシス重合触媒とを混合した際に、得られる液状混合物の増粘を効果的に抑制できるという点より、ホスフィン類、又は下記式(7)で表されるピリジン誘導体が特に好ましい。
Figure JPOXMLDOC01-appb-C000008
  上記一般式(7)中、R22、R23およびR24は、それぞれ独立して、水素原子、または、置換基を有していてもよい炭素数1~10のアルキル基、もしくは置換基を有していてもよい炭素数2~10のアルケニル基である。また、R22、R23およびR24のうち、少なくとも2つは、置換基を有していてもよい炭素数1~10のアルキル基、または置換基を有していてもよい炭素数2~10のアルケニル基である。すなわち、上記一般式(7)で表されるピリジン誘導体は、2つのメタ位および1つのパラ位(3位、4位および5位)のうち、2箇所または3箇所が置換基を有していてもよい炭素数1~10のアルキル基、または置換基を有していてもよい炭素数2~10のアルケニル基で置換されており、かつ、2つのオルト位(2位および6位)が、いずれも置換基で置換されていない(2つのオルト位には、いずれも、水素原子が結合している)化合物である。
  R22、R23およびR24を構成する置換基を有していてもよいアルキル基の炭素数は、1~10であり、好ましくは1~6、より好ましくは1~4である。また、置換基を有していてもよいアルケニル基の炭素数は、通常2~10であり、好ましくは2~6、より好ましくは2~4である。なお、これらアルキル基またはアルケニル基に導入される置換基としては、ハロゲン原子、ヒドロキシル基(アルコール性水酸基)、-C(=O)-R、-OR、-C(=O)-O-R、-OC(=O)-R(Rは、いずれも炭素数1~10のアルキル基または炭素数6~11のアリール基である。)などが挙げられる。
  上記一般式(7)で表されるピリジン誘導体としては、2つのメタ位が置換されている(R22およびR24が置換されている)2置換体、1つのメタ位およびパラ位が置換されている(R22およびR23が置換されている)2置換体、2つのメタ位およびパラ位が置換されている(R22、R23およびR24が置換されている)3置換体のいずれでもよいが、その添加効果がより顕著になるという点より、2つのメタ位が置換されている2置換体、または、1つのメタ位およびパラ位が置換されている2置換体が好ましい。
  重合遅延剤の使用量は、特に限定されないが、メタセシス重合触媒100重量部に対して、好ましくは15~1800重量部であり、より好ましくは50~900重量部、さらに好ましくは150~500重量部である。
 なお、重合遅延剤は、液状混合物により重合性組成物を調製する場合だけでなく、後述する固形状の重合性組成物用混合物により重合性組成物を調製する場合にも、工程安定化の観点から、適宜用いられる。
  充填材としては、特に限定されないが、たとえば、アスペクト比が5~100の繊維状充填材や、アスペクト比が1~2の粒子状充填材が挙げられる。また、これら繊維状充填材と粒子状充填材を組み合わせて用いることもできる。
  繊維状充填材の具体例としては、ガラス繊維、ウォラストナイト、チタン酸カリウム、ゾノライト、塩基性硫酸マグネシウム、ホウ酸アルミニウム、テトラポット型酸化亜鉛、石膏繊維、ホスフェート繊維、アルミナ繊維、針状炭酸カルシウム、針状ベーマイトなどを挙げることができる。なかでも、少ない添加量で剛性を高めることができ、しかも塊状重合反応を阻害しないという点より、ウォラストナイトが好ましい。
  粒子状充填材の具体例としては、炭酸カルシウム、水酸化カルシウム、ケイ酸カルシウム、硫酸カルシウム、水酸化アルミニウム、水酸化マグネシウム、酸化チタン、酸化亜鉛、チタン酸バリウム、シリカ、アルミナ、カーボンブラック、グラファイト、酸化アンチモン、赤燐、各種金属粉、クレー、各種フェライト、ハイドロタルサイト等を挙げることができる。これらの中でも、塊状重合反応を阻害しないので、炭酸カルシウム、シリカ、アルミナおよび水酸化アルミニウムが好ましい。
  また、上記充填材は、その表面を疎水化処理したものであることが好ましい。疎水化処理した充填材を用いることにより、充填材の凝集・沈降を防止でき、また、ノルボルネン系モノマーの塊状重合体中における充填材の分散を均一にすることができる。疎水化処理に用いられる処理剤としては、ビニルトリメトキシシラン等のシランカップリング剤、チタネート系カップリング剤、アルミネート系カップリング剤、ステアリン酸等の脂肪酸、油脂、界面活性剤、ワックス等を挙げることができる。充填材の疎水化処理は、後述するようにして重合性組成物用混合物を調製する際に、疎水化処理剤を充填剤と同時に混合することによっても可能であるが、予め疎水化処理を行なった充填材を用いて重合性組成物用混合物の調製を行なうのが好ましい。
  本発明の重合性組成物中における、充填材の配合量は、ノルボルネン系モノマー100重量部に対して、10~1000重量部であることが好ましく、100~500重量部であることがより好ましい。充填材の配合量を上記範囲とすることにより、得られる樹脂成形体の強度を十分なものとすることができる。
  また、本発明の重合性組成物には、上記以外の各種添加剤を含有させてもよい。このような添加剤としては、改質剤、老化防止剤、着色剤、光安定剤、難燃剤などが例示される。
(重合性組成物の調製)
 本発明の重合性組成物は、必須成分であるノルボルネン系モノマーおよびメタセシス重合触媒、ならびに所望により添加される活性剤や重合遅延剤などのその他の成分を含む重合性組成物用混合物を調製し、該混合物を冷却固化することにより調製される。
 なお、本発明において、重合性組成物用混合物または重合性組成物を構成するノルボルネン系モノマーが複数ある場合、ノルボルネン系モノマーの凝固点とは、使用するノルボルネン系モノマーの混合物につき、JIS K0065に従って測定した値をいう。
 重合性組成物用混合物は、たとえば、以下の2つの方法により調製することができる。
 第1の方法では、予め凝固点以下に冷却して固形状としたノルボルネン系モノマーと、メタセシス重合触媒と、所望により添加される充填剤等のその他の成分とを、該モノマーが実質的に融解しない温度下で冷却しながら混合することにより、重合性組成物用混合物を調製する。本方法では、固形状の重合性組成物用混合物(以下、固形状混合物という場合がある。)が得られる。
 固形状のノルボルネン系モノマーの形態としては、後述する粉砕機または混合機で取り扱い可能なものであればよく、特に限定されない。当該形態としては、たとえば、ブロック状や粉末状が挙げられる。ブロック状のノルボルネン系モノマーとしては、通常、一辺が50~300mm程度の大きさであり、粉末状のノルボルネン系モノマーとしては、通常、平均粒径0.2~20mm程度の大きさである。当該平均粒径は、レーザー回折散乱法により測定可能である。
 なお、固形状のノルボルネン系モノマーは、所定の温度下に固形物として取り扱うことができればよく、一部融解した状態のものが含まれていてもよい。
 メタセシス重合触媒は、粉末として混合しても、または溶媒中に分散もしくは溶解してなる触媒液として混合してもよい。
 粉末として混合する場合、たとえば、融点40~80℃の不活性固体により、予めメタセシス重合触媒をコーティングしておいてもよい。かかる不活性固体としては、たとえば、パラフィンが好適に用いられる。そのようにすることで、メタセシス重合触媒の安定性を向上させることができる。
 触媒液に用いられる前記溶媒としては、メタセシス重合触媒に対して不活性な溶媒であればよく、特に限定されないが、たとえば、トルエン、キシレン、エチルベンゼン、トリメチルベンゼン等の芳香族炭化水素;メチルエチルケトン、シクロペンタノン、シクロヘキサノン、2-ヘプタノン、4-ヒドロキシ-4-メチル-2-ペンタノン等のケトン類;テトラヒドロフラン等の環状エーテル類;ジエチルエーテル、ジクロロメタン、ジメチルスルホキシド、酢酸エチルなどが挙げられる。中でも、芳香族炭化水素が好ましく、トルエンが特に好ましい。
 その他の成分を用いる場合、それらはノルボルネン系モノマーに予め添加しておいてもよいし、触媒液に含有させておいてもよいし、または、各成分の混合時に混合液等の形で別途添加してもよい。
 各成分を混合する際の温度としては、通常、使用するノルボルネン系モノマーの凝固点より低い温度範囲であり、ノルボルネン系モノマーの凝固点から5℃以上低い温度とすることが好ましく、凝固点から10℃以上低い温度とすることがより好ましい。混合温度がかかる範囲内にあれば、ノルボルネン系モノマーが実質的に融解することなく、塊状重合の進行が抑えられ、均一な重合性組成物用混合物が効率よく得られる。混合温度としては典型的には25℃以下が好適である。
 各成分の混合時、同時に固形状のノルボルネン系モノマーの粉砕を行ってもよいし、または単に各成分の混合のみを行ってもよい。前者の場合、ブロック状のノルボルネン系モノマーが、後者の場合、粉末状のノルボルネン系モノマーが、好適に用いられる。また、各成分の混合に用いる装置としては、前者の場合、スクリーンカッター、ハンマーミルおよびロータリーカッターなどの粉砕機が、後者の場合、ヘンシェルミキサーおよびプラネタリーミキサーなどの混合機が、好適に用いられる。なお、ボールミルは両者の場合に用いることができる。混合操作は、公知の方法に従って行えばよく、一段階で行っても二段階以上で行ってもよい。また、粉砕機と混合機とを適宜組み合わせて用いてもよい。
 以上により固形状混合物が得られるが、後述する冷却固化時における成形性に優れることから、ノルボルネン系モノマーは粉末状であるのが好ましい。
 第2の方法では、液状のノルボルネン系モノマーと、メタセシス重合触媒と、所望により添加される充填剤等のその他の成分とを、得られる混合物が液状を保つ温度下で混合することにより、重合性組成物用混合物を調製する。本方法では、液状の重合性組成物用混合物が得られる。
 本方法としては、たとえば、ノルボルネン系モノマーを含有するモノマー液に、メタセシス重合触媒を含有する触媒液を混合し、攪拌する方法が挙げられる。ノルボルネン系モノマーを含有するモノマー液に、メタセシス重合触媒を含有する触媒液を混合する際の混合温度は、通常、ノルボルネン系モノマーの凝固点以上の温度であり、ノルボルネン系モノマーの凝固点から10℃高い温度までの範囲とすることが好ましく、凝固点から5℃高い温度までの範囲とすることがより好ましい。混合温度がかかる範囲内にあれば、ノルボルネン系モノマーの塊状重合の進行を実質的に抑えて、均一な重合性組成物用混合物を効率的に得ることができる。モノマー液と触媒液との混合温度としては、典型的には、30~60℃、好ましくは35℃~45℃である。
 なお、メタセシス重合触媒は粉末として配合することもできる。
  その他の成分を用いる場合、これらはモノマー液、触媒液のいずれかに含有させておいてもよいし、または、各成分の混合時に混合液等の形で別途添加してもよい。
 重合性組成物用混合物は以上のようにして調製することができるが、固形状混合物では、ノルボルネン系モノマーは凝固して流動性を失っており、メタセシス重合触媒と混合しても、塊状重合が進行することがない。一方、液状混合物では、塊状重合が進行する可能性があるため、温度管理をより厳密に行う必要があり、また、続く冷却固化までの時間をより短時間にする必要がある。したがって、操作自由度が高く、より安定して重合性組成物用混合物が得られることから、重合性組成物用混合物は第1の方法により調製するのが好適である。
  次いで、得られた重合性組成物用混合物を冷却固化し、本発明の重合性組成物を得る。冷却固化の方法としては、特に限定されないが、たとえば、以下の方法が挙げられる。なお、本発明において「冷却固化」とは、冷却下に固めることを意味する。
 固形状混合物の場合、所定量ずつ、打錠機やプレス成型機にて冷却下に加圧成形して冷却固化することにより、本発明の重合性組成物を調製することができる。成形時の圧力は、特に限定されないが、通常、10MPa程度である。なお、後述するようにして樹脂成形体を製造する際、冷却下、用いる成形型に対し直接、固形状混合物を詰め込んで固めることにより、当該成形型内において本発明の重合性組成物を調製してもよい。
 液状混合物の場合、ノルボルネン系モノマーの塊状重合が実質的に進行する前に、冷却固化する必要がある。たとえば、液状混合物を得ると、所定量ずつ適宜成形しつつ、即座に冷却固化することにより、本発明の重合性組成物を調製することができる。
 なお、上記成形においては、後述の成形型を利用することができる。
  重合性組成物用混合物を冷却固化する際の冷却温度としては、使用するノルボルネン系モノマーの種類に応じて設定すればよいが、ノルボルネン系モノマーの凝固点よりも20℃以上低い温度とすることが好ましく、30℃以上低い温度とすることがより好ましい。具体的な冷却温度としては、-60~0℃が好ましく、-40~-10℃がより好ましい。冷却温度を上記範囲とすることにより、ノルボルネン系モノマーの塊状重合を適切に停止させることができ、しかも、再度加熱等することにより、ノルボルネン系モノマーの塊状重合を開始させた際における反応性を、十分かつ安定したものとすることができる。
  本発明において、重合性組成物用混合物の調製は、原料ロスをなくし樹脂成形体の生産効率を高める観点から、当該混合物の必要量を考慮し、ノルボルネン系モノマーとメタセシス重合触媒とを混合した際、各々、それらが即座に充分に混合されうる最適量を用いて行うのが好ましい。特に液状混合物を調製するに当たっては、例えば、用いるモノマー液と触媒液と、それぞれ同様な粘度を有する液体を用意し、その混合性を確認することで、両液の最適量を適宜決定することができる。
  ノルボルネン系モノマーとメタセシス重合触媒とを混合して得られる重合性組成物用混合物を冷却固化する際には、冷却固化を行なう前に、該混合物を、予め製造する成形体に応じた重量となるように秤量し、予め製造する成形体に応じた重量の冷却固化体を得るような構成とすることが好ましい。この際には、製造する成形体と同じ重量の冷却固化体を得るような構成としてもよいし、あるいは、製造する成形体に対応する複数の冷却固化体を得るような構成としてもよい。
(樹脂成形体の製造方法)
  本発明の樹脂成形体の製造方法は、上述した本発明の重合性組成物を、塊状重合する工程を備え、これにより、樹脂成形体を得るものである。
  本発明においては、上述した本発明の重合性組成物を塊状重合させ、樹脂成形体を得る際には、通常、所望の形状に応じた成形型を用い、該成形型中で、冷却固化体の状態の重合性組成物を加熱して塊状重合させることにより、所望の形状を有する樹脂成形体を得ることができる。
  成形型としては、特に限定されないが、たとえば、雄型と雌型とで形成される金型を用いることができる。また、用いる型は、必ずしも剛性の高い高価な金型である必要はなく、金属製の型に限らず、樹脂製の型、または単なる型枠を用いることができる。金属製の型を用いる場合の材質としては、特に限定されないが、スチール、アルミニウム、亜鉛合金、ニッケル、銅、クロム等が挙げられ、鋳造、鍛造、溶射、電鋳等のいずれの方法で製造されたものでもよく、また、メッキされたものであってもよい。型の構造は型に重合性組成物を注入する際の圧力を勘案して決めるとよい。また、金型の型締め圧力は、通常、ゲージ圧で0.1~9.8MPa程度である。
  型温度は、使用するノルボルネン系モノマーの種類に応じて適宜選定すればよいが、ノルボルネン系モノマーの凝固点よりも30℃以上高い温度とすることが好ましく、凝固点よりも50℃以上高い温度とすることがより好ましい。典型的には、型温度としては、通常、60~160℃、好ましくは80~120℃である。塊状重合の時間は適宜選択すればよいが、冷却固化体の状態の重合性組成物を型内に配置させた後、通常20秒~20分、好ましくは20秒~5分である。
  雄型および雌型を対とする金型で形成されるキャビティ内に重合性組成物を供給して塊状重合させる場合において、一般に意匠面側金型の金型温度T1(℃)を意匠面と反対側の金型の金型温度T2(℃)より高く設定しておくことが好ましい。これにより、成形体の表面外観をヒケや気泡のない美麗なものとすることができる。T1-T2は、好ましくは5℃以上、より好ましくは10℃以上であり、上限が好ましくは60℃である。T1は、上限が好ましくは110℃、より好ましくは95℃であり、下限が好ましくは50℃である。T2は、上限が好ましくは70℃、より好ましくは60℃であり、下限が好ましくは30℃である。
  金型温度を調整する方法としては、たとえば、ヒータによる金型温度の調整;金型内部に埋設した配管中に循環させる温調水、油等の熱媒体の温度調整;等が挙げられる。
  塊状重合の終了後、例えば、金型を型開きして脱型することにより、樹脂成形体を得ることができる。
  本発明の重合性組成物は、ノルボルネン系モノマーとメタセシス重合触媒とを含む混合物を冷却固化してなるものであるため、ノルボルネン系モノマーの塊状重合が進行することなく保存安定性に優れており、しかも、ノルボルネン系モノマーとメタセシス重合触媒とが既に充分な混合状態にあるため、本発明の重合性組成物を加熱して溶融、重合硬化させることで、品質安定性に優れた微小な樹脂成形体を工業規模で効率的に生産することができる。本発明によれば、重合性組成物を調製する段階において、ノルボルネン系モノマーとメタセシス重合触媒とを均一に混合し、得られた混合物を、所望の樹脂成形体に応じた重量に秤量し、これを冷却固化することができるため、得られた重合性組成物を塊状重合させることで、たとえ微小な樹脂成形体を得る場合(たとえば、重量が100g未満の成形体を得る場合)であっても、優れた品質安定性を実現することができる。
  以下に、実施例および比較例を挙げて本発明を具体的に説明する。以下において、特記しない限り「部」は重量基準である。なお、試験、評価は以下によった。
(1)硬化時間
  実施例、比較例に示す方法により所定温度に加温した金型上に重合性組成物を載置した後、重合性組成物全体が硬化に至るまでの時間(単位:分)を計測し、これを硬化時間とした。
(2)金型クリーニング頻度
  実施例、比較例に示す方法により、サンプル板の成形および得られたサンプル板を金型から取り出す作業を繰り返し行い、サンプル板の離型性が悪く、変形・破壊が発生し、これにより金型のクリーニングが必要となった時の回数を計測し、その値を金型クリーニング頻度として計測した。
(3)ガラス転移温度(Tg)の測定
  実施例、比較例に示す方法によりサンプル板を成形し、得られたサンプル板をφ3×1mmの大きさに加工し、φ3×1mmの大きさとしたサンプル板を用いて、示差走査熱量計(DSC-6220、セイコーインスツル社製)により、昇温速度10℃/minで30℃から220℃までDSC曲線の測定を行った。
  そして、得られたDSC曲線より、変極点よりも低温側のベースラインを延長した直線と、変極点よりも高温側のベースラインを延長した直線との交点の値を読み取り、これをガラス転移温度(Tg)とした。
実施例1
(触媒液の調製)
  メタセシス重合触媒として、下記式(8)で示すルテニウム触媒(VC843、Strem Chemicals社製)0.6部、および2,6-ジ-t-ブチル-p-クレゾール(BHT、老化防止剤)15部をシクロペンタノン82部に溶解させ、次いで、3,4-ジメチルピリジン2.2部、およびフェニルトリクロロシラン0.1部混合することで、触媒液を得た。
Figure JPOXMLDOC01-appb-C000009
(サンプル板の成形)
  40℃に加温したジシクロペンタジエン100部に、トリフェニルホスフィン0.5部、および上記にて調製した触媒液3.3部を添加し、これらを混合して重合性組成物用混合物を調製し、得られた重合性組成物用混合物を、それぞれ100g、50g、10gになるよう小分けした。そして、その後速やかに-20℃まで急速冷凍することで、冷却固化体の状態の重合性組成物を得た。
  そして、上記とは別に、金型として、内部に縦250mm×横200mm×厚さ4mmの空間を有するアルミニウム製雌型を準備して70℃に加温した。その後、上記にて得られた冷却固化体の状態の重合性組成物(100g、50g、10gの小分けにしたそれぞれの重合性組成物)を金型上に置き、塊状重合を開始させた。そして、上述した方法にしたがい、硬化時間の計測を行った後、硬化終了した後所定時間経過後に金型より成形品を取り出し、サンプル板を得た。そして、得られたサンプル板について、上述した方法にしたがい、ガラス転移温度(Tg)の測定を行なった。また、その後、このようなサンプル板の成形および金型からの取り出しを繰り返し行い、上述した方法にしたがい、金型クリーニング頻度の測定を行なった。これらの結果を表1に示す。
実施例2
  ジシクロペンタジエンの代わりに、テトラシクロドデセンを使用した以外は、実施例1と同様にして、冷却固化体の状態の重合性組成物およびサンプル板を得て、同様に評価を行った。結果を表1に示す。
実施例3
  ジシクロペンタジエンの代わりに、エチリデンテトラシクロドデセンを使用した以外は、実施例1と同様にして、冷却固化体の状態の重合性組成物およびサンプル板を得て、同様に評価を行った。結果を表1に示す。
実施例4
  重合性組成物用混合物を得る際に、ジシクロペンタジエン100部に対し、水酸化アルミニウム150部をさらに添加した以外は、実施例1と同様にして、冷却固化体の状態の重合性組成物およびサンプル板を得て、同様に評価を行った。結果を表1に示す。
実施例5
  金型温度を40℃とした以外は、実施例1と同様にしてサンプル板を得て、同様に評価を行った。結果を表1に示す。
実施例6
 40℃に加温したジシクロペンタジエン100部に、トリフェニルホスフィン0.5部を溶解させ、-20℃まで急速冷凍することで、固形状のモノマー組成物を得た。
 次いで、タンクを15℃に保持したプラネタリーミキサーに上記モノマー組成物をそのまま100部投入し、次いで実施例1と同様にして作製した触媒液3.3部を投入し、10分間混合して重合性組成物用混合物を得た。当該混合物を、それぞれ100g、50g、10gになるよう小分けし、-20℃まで急速冷凍すると共に加圧成形し、重合性組成物を得た。得られた重合性組成物を用い、実施例1と同様にしてサンプル板を得て、同様に評価を行った。結果を表1に示す。
実施例7
(触媒液の調製)
  メタセシス重合触媒として、下記式(9)で示すルテニウム触媒(Zhan 1N)0.6部、およびBHT 15部をシクロペンタノン82部に溶解させることで、触媒液を得た。
Figure JPOXMLDOC01-appb-C000010
(サンプル板の成形)
 上記で得られた触媒液を使用し、実施例1と同様にして、冷却固化体の状態の重合性組成物およびサンプル板を得て、同様に評価を行った。結果を表1に示す。
実施例8
 使用した触媒液を、実施例7と同様にして作製した触媒液に替えたこと以外は実施例6と同様にして重合性組成物およびサンプル板を得て、同様に評価を行った。結果を表1に示す。
比較例1
  高比率衝突混合方式のRIM機を使用し、実施例1と同様にして調製した触媒液3.3部と、ジシクロペンタジエン100部およびトリフェニルホスフィン0.5部からなるモノマー液100.5部を吐出速度100g/s、50g/s、10g/sで衝突混合させ、それぞれ得られた混合液100g、50g、10gを、実施例1と同様の金型に、それぞれ直接吐出した以外は、実施例1と同様にしてサンプル板を得て、同様に評価を行った。結果を表2に示す。
比較例2
  ジシクロペンタジエンの代わりに、テトラシクロドデセンを使用した以外は、比較例1と同様にして、サンプル板を得て、同様に評価を行った。結果を表2に示す。
比較例3
  モノマー液として、ジシクロペンタジエン100部、トリフェニルホスフィン0.5部、および水酸化アルミニウム150部からなるモノマー液250.5部を使用した以外は、比較例1と同様にして、サンプル板を得て、同様に評価を行った。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
  表1に示すように、本発明所定の冷却固化体の状態の重合性組成物を用いた実施例1~8においては、100gの樹脂成形体を成形した場合に加えて、50g、10gと微小な樹脂成形体を成形した場合においても、100gの樹脂成形体を成形した場合と同程度のガラス転移温度を有する良好な成形体を得ることができた。しかも、実施例1~8においては、金型クリーニング頻度、すなわち、不完全な成形体が得られてしまい、これにより金型からの離型性が悪く、変形・破壊が発生し、金型のクリーニングが必要になった時の回数である金型クリーニング頻度についても、100g、50g、10gの樹脂成形体いずれの場合でも良好であり、いずれの場合でも適切な成形体を連続的に得ることが可能であることが確認できた。
  一方、表2に示すように、従来と同様に、高比率衝突混合方式のRIM機を使用して、触媒液と、モノマー液とを衝突混合させ、得られた混合液を用いて、樹脂成形体を得た比較例1~3においては、100gの樹脂成形体については、比較的良好な結果が得られるものの、50g、10gと微小な樹脂成形体を成形した場合には、樹脂成形体を得ることができなかったり、また、樹脂成形体を得ることができても、ガラス転移温度が検出されず、不完全な成形体となる結果となった。また、比較例1~3においては、50g、10gと微小な樹脂成形体を成形した場合には、樹脂成形体を得ることができなかったり、あるいは、不完全な成形体しか得ることができなかったため、1度の成形で金型のクリーニングが必要となる結果となった。

Claims (6)

  1.   ノルボルネン系モノマーとメタセシス重合触媒とを含む混合物を冷却固化してなる重合性組成物。
  2.   前記ノルボルネン系モノマーの凝固点が20℃以上である請求項1に記載の重合性組成物。
  3.   前記メタセシス重合触媒が、ルテニウムカルベン錯体である請求項1または2に記載の重合性組成物。
  4.   前記ルテニウムカルベン錯体が、以下の一般式(1)または(2):
    Figure JPOXMLDOC01-appb-C000001
    (一般式(1)および(2)中、RおよびRは、それぞれ独立して、水素原子、ハロゲン原子、またはハロゲン原子、酸素原子、窒素原子、硫黄原子、リン原子もしくは珪素原子を含んでいてもよい炭素数1~20の有機基を表し、これらの基は、置換基を有していてもよく、また、互いに結合して環を形成していてもよく;XおよびXは、それぞれ独立して、アニオン性配位子を表し;LおよびLは、ヘテロ原子含有カルベン化合物またはヘテロ原子含有カルベン化合物以外の中性電子供与性化合物を表し;R、R、X、X、LおよびLは、それぞれ単独で、および/または任意の組合せで互いに結合して、多座キレート化配位子を形成していてもよい。)
    で表される化合物である請求項3に記載の重合性組成物。
  5.  前記冷却固化を行う際の冷却温度を、前記ノルボルネン系モノマーの凝固点よりも20℃以上低い温度とする請求項1~4のいずれかに記載の重合性組成物。
  6.   請求項1~5のいずれかに記載の重合性組成物を塊状重合する工程を有する樹脂成形体の製造方法。
PCT/JP2013/075914 2012-09-26 2013-09-25 重合性組成物および樹脂成形体の製造方法 WO2014050890A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201380045698.2A CN104619743B (zh) 2012-09-26 2013-09-25 聚合性组合物及树脂成型体的制造方法
KR1020157005387A KR102054752B1 (ko) 2012-09-26 2013-09-25 중합성 조성물 및 수지 성형체의 제조 방법
JP2014538530A JP6104263B2 (ja) 2012-09-26 2013-09-25 重合性組成物および樹脂成形体の製造方法
US14/431,150 US9777086B2 (en) 2012-09-26 2013-09-25 Polymerizable composition and method of production of resin shaped article
EP13841272.1A EP2902428B1 (en) 2012-09-26 2013-09-25 Polymerizable composition and method for producing resin molded article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012211745 2012-09-26
JP2012-211745 2012-09-26

Publications (1)

Publication Number Publication Date
WO2014050890A1 true WO2014050890A1 (ja) 2014-04-03

Family

ID=50388285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/075914 WO2014050890A1 (ja) 2012-09-26 2013-09-25 重合性組成物および樹脂成形体の製造方法

Country Status (6)

Country Link
US (1) US9777086B2 (ja)
EP (1) EP2902428B1 (ja)
JP (1) JP6104263B2 (ja)
KR (1) KR102054752B1 (ja)
TW (1) TW201418319A (ja)
WO (1) WO2014050890A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021172227A1 (ja) 2020-02-27 2021-09-02

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07292079A (ja) * 1993-12-29 1995-11-07 Teijin Meton Kk 新規な化学物質、製造方法、組成物およびこれを用いた成形方法
JP2002121266A (ja) 2000-10-12 2002-04-23 Sekisui Chem Co Ltd ノルボルネン系モノマーの重合方法
JP2002201258A (ja) * 2001-01-09 2002-07-19 Tonekkusu:Kk 架橋性シクロオレフィン系重合体組成物からなる成型品の製造方法
WO2003062253A1 (en) 2002-01-22 2003-07-31 Universiteit Gent Metal complexes for use in metathesis
JP2009029865A (ja) * 2007-07-25 2009-02-12 Rimtec Kk 反応射出成形用配合液、反応射出成形体の製造方法及び反応射出成形体
WO2009119467A1 (ja) * 2008-03-25 2009-10-01 東レ株式会社 エポキシ樹脂組成物、繊維強化複合材料、およびその製造方法
WO2011079799A1 (en) 2009-12-30 2011-07-07 Zannan Scitech Co., Ltd. Highly active metathesis catalysis selective for romp and rcm

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5266665A (en) * 1990-06-01 1993-11-30 Monsanto Company Metathesis polymerization catalyst and method of polymerizing cyclic olefins therewith
JPH05329868A (ja) 1992-06-01 1993-12-14 Nippon Zeon Co Ltd ノルボルネン系樹脂成形品の製造方法
US6310121B1 (en) 1996-12-02 2001-10-30 Cymetech, Llc Polymeric composites including dicyclopentadiene and related monomers
US6759537B2 (en) * 2001-03-23 2004-07-06 California Institute Of Technology Hexacoordinated ruthenium or osmium metal carbene metathesis catalysts
US6872792B2 (en) * 2001-06-25 2005-03-29 Lord Corporation Metathesis polymerization adhesives and coatings
US6660813B2 (en) * 2001-08-03 2003-12-09 University Of Florida Solid state metathesis chemistry
JP2003127512A (ja) * 2001-10-22 2003-05-08 Tohoku Ricoh Co Ltd 孔版印刷装置
JP2003171447A (ja) * 2001-12-03 2003-06-20 Sekisui Chem Co Ltd ノルボルネン系重合体の製造方法及びノルボルネン系重合体
GB0517137D0 (en) * 2005-08-22 2005-09-28 Viacatt N V Multicoordinated metal complexes for use in metalthesis reactions
JP2008163249A (ja) * 2006-12-28 2008-07-17 Nippon Zeon Co Ltd 重合性組成物及び架橋性樹脂並びにそれの製造方法
EP2042537B1 (en) * 2007-09-28 2014-05-14 Rimtec Corporation Polycycloolefin (PCO) thermoset assembly and process for its preparation
JP5563748B2 (ja) * 2008-04-24 2014-07-30 Rimtec株式会社 反応射出成形用反応原液、反応射出成形方法及び反応射出成形体
EP2280017B1 (en) * 2009-07-21 2013-01-02 Rimtec Corporation Catalytic complex for olefin metathesis reactions, process for the preparation thereof and use thereof
US8338613B2 (en) * 2009-09-17 2012-12-25 Rimtec Corporation Process for the preparation of bidentate schiff base ruthenium catalysts containing a salicylaldimine-type ligand
CN103180387A (zh) 2010-11-12 2013-06-26 日本瑞翁株式会社 热固性交联环烯烃树脂膜及其制造方法
EP2460587B1 (en) * 2010-12-01 2017-10-18 Rimtec Corporation Ruthenium catalyst system for olefin metathesis
JP2013076007A (ja) * 2011-09-30 2013-04-25 Rimtec Kk 重合性組成物および樹脂成形体の製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07292079A (ja) * 1993-12-29 1995-11-07 Teijin Meton Kk 新規な化学物質、製造方法、組成物およびこれを用いた成形方法
JP2002121266A (ja) 2000-10-12 2002-04-23 Sekisui Chem Co Ltd ノルボルネン系モノマーの重合方法
JP2002201258A (ja) * 2001-01-09 2002-07-19 Tonekkusu:Kk 架橋性シクロオレフィン系重合体組成物からなる成型品の製造方法
WO2003062253A1 (en) 2002-01-22 2003-07-31 Universiteit Gent Metal complexes for use in metathesis
JP2005515260A (ja) 2002-01-22 2005-05-26 ウニベルズィタイト・ヘント 複分解に使用される金属錯体
JP2009029865A (ja) * 2007-07-25 2009-02-12 Rimtec Kk 反応射出成形用配合液、反応射出成形体の製造方法及び反応射出成形体
WO2009119467A1 (ja) * 2008-03-25 2009-10-01 東レ株式会社 エポキシ樹脂組成物、繊維強化複合材料、およびその製造方法
WO2011079799A1 (en) 2009-12-30 2011-07-07 Zannan Scitech Co., Ltd. Highly active metathesis catalysis selective for romp and rcm
JP2013516392A (ja) 2009-12-30 2013-05-13 ザンナン・サイテック・カンパニー・リミテッド Rompとrcm反応に対する高効率複分解触媒

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2902428A4

Also Published As

Publication number Publication date
US20150240007A1 (en) 2015-08-27
US9777086B2 (en) 2017-10-03
EP2902428B1 (en) 2020-08-12
TW201418319A (zh) 2014-05-16
CN104619743A (zh) 2015-05-13
JPWO2014050890A1 (ja) 2016-08-22
EP2902428A1 (en) 2015-08-05
JP6104263B2 (ja) 2017-03-29
KR20150060681A (ko) 2015-06-03
KR102054752B1 (ko) 2019-12-11
EP2902428A4 (en) 2016-03-09

Similar Documents

Publication Publication Date Title
JP6802875B2 (ja) ノルボルネン系架橋重合体からなる絶縁材料
JP5772600B2 (ja) 表面被覆型補強材、反応射出成形用配合液、及び反応射出成形体
JPWO2016152623A1 (ja) 樹脂成形体及びその製造方法
JP5681837B2 (ja) 反応射出成形用配合液、反応射出成形体の製造方法および反応射出成形体
JP5363982B2 (ja) ノルボルネン系モノマー含有反応射出成形用配合液、反応射出成形体の製造方法及び反応射出成形体
KR20070120092A (ko) 노르보르넨계 수지 성형체 및 그 제조 방법
JP2007224123A (ja) ノルボルネン系樹脂成形体の製造方法
JP5563748B2 (ja) 反応射出成形用反応原液、反応射出成形方法及び反応射出成形体
JP6104263B2 (ja) 重合性組成物および樹脂成形体の製造方法
JP2013076007A (ja) 重合性組成物および樹脂成形体の製造方法
JP5436336B2 (ja) 触媒液、配合液、ノルボルネン系樹脂成形体およびその成形方法
JP2008163105A (ja) 配合液、反応射出成形体の製造方法及び反応射出成形体
CN104619743B (zh) 聚合性组合物及树脂成型体的制造方法
JP2007009055A (ja) ノルボルネン系樹脂成形体およびその製造方法
JP2007009063A (ja) ノルボルネン系樹脂成形体およびその製造方法
CA2951826A1 (en) Gelling promoter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13841272

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014538530

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157005387

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14431150

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013841272

Country of ref document: EP