WO2007058249A1 - ノルボルネン系樹脂成形体およびその製造方法 - Google Patents

ノルボルネン系樹脂成形体およびその製造方法 Download PDF

Info

Publication number
WO2007058249A1
WO2007058249A1 PCT/JP2006/322840 JP2006322840W WO2007058249A1 WO 2007058249 A1 WO2007058249 A1 WO 2007058249A1 JP 2006322840 W JP2006322840 W JP 2006322840W WO 2007058249 A1 WO2007058249 A1 WO 2007058249A1
Authority
WO
WIPO (PCT)
Prior art keywords
norbornene
filler
based resin
resin molded
molded product
Prior art date
Application number
PCT/JP2006/322840
Other languages
English (en)
French (fr)
Inventor
Tomohiko Takimoto
Takahiro Miura
Original Assignee
Rimtec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rimtec Corporation filed Critical Rimtec Corporation
Priority to CN2006800509937A priority Critical patent/CN101360772B/zh
Priority to EP06832729A priority patent/EP1950236A4/en
Priority to JP2007545285A priority patent/JP5357428B2/ja
Priority to US12/085,149 priority patent/US20090042045A1/en
Publication of WO2007058249A1 publication Critical patent/WO2007058249A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/24Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 characterised by the choice of material
    • B29C67/246Moulding high reactive monomers or prepolymers, e.g. by reaction injection moulding [RIM], liquid injection moulding [LIM]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F287/00Macromolecular compounds obtained by polymerising monomers on to block polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/006Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to block copolymers containing at least one sequence of polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/08Copolymers of ethylene
    • B29K2023/083EVA, i.e. ethylene vinyl acetate copolymer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/38Polymers of cycloalkenes, e.g. norbornene or cyclopentene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/016Additives defined by their aspect ratio
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/10Silicon-containing compounds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0158Polyalkene or polyolefin, e.g. polyethylene [PE], polypropylene [PP]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0242Shape of an individual particle
    • H05K2201/0251Non-conductive microfibers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • Y10T428/31692Next to addition polymer from unsaturated monomers

Definitions

  • the present invention relates to a norbornene-based resin molded product obtained by bulk polymerization of a norbornene-based monomer in a mold, and a method for producing the same, more specifically, a norbornene-based resin having excellent rigidity and dimensional stability.
  • the present invention relates to a molded body and a manufacturing method thereof.
  • reaction liquid containing a norbornene monomer and a metathesis catalyst is injected into a mold by a reaction injection molding method (RIM), and a ring-opening polymerization is performed to produce a molded body made of a norbornene resin.
  • RIM reaction injection molding method
  • the reaction solution is usually obtained by instantaneously mixing two or more reaction stock solutions with a collision mixer or the like. Such a reaction stock solution is not bulk polymerized with only one liquid, but when all the liquids are mixed, a reaction liquid containing each component in a predetermined ratio is obtained, and as a result, the norbornene monomer is bulk polymerized.
  • Patent Documents 1 and 2 propose using glass fiber or wollastonite as a filler.
  • these fibrous fillers were used, there was a problem that when the filler was added in a large amount to the reaction solution, the injection nozzle was clogged during injection into the mold. Therefore, in these documents, it was hard to obtain sufficient rigidity.
  • a filler such as calcium carbonate having a specific particle size (for example, Patent Document 3).
  • Patent Document 3 the effect of improving the rigidity was insufficient with this method.
  • Patent Documents 1 to 3 also have a problem that the filler settles in the reaction stock solution and the piping is clogged, and the resulting molded product becomes non-uniform. o [0006] Patent Document 1: Japanese Patent Laid-Open No. 58-129013
  • Patent Document 2 JP-A-2-185558
  • Patent Document 3 Japanese Patent Laid-Open No. 2003-321597
  • the present invention has been made in view of such a situation, and an object of the present invention is to provide a resin molded article excellent in rigidity and dimensional stability, and a method for producing the resin molded article. is there.
  • the present inventors have found a hybrid filler (composite filler) obtained by high-speed stirring of two or more fillers in a dry manner. It has been found that the above-mentioned object can be achieved by inclusion in a molded fat, and the present invention has been completed based on this finding.
  • the norbornene-based resin molded product of the present invention is
  • It is characterized by containing a hybrid filler obtained by high-speed stirring of two or more kinds of fillers in a dry process.
  • At least one of the above mentioned and filled fillers at least, the fibrous filler having an aspect ratio of 5 to: LOO and the particulate filler having an aspect ratio of 1 to 2 are dry-mixed at high speed. It is a filler that can be obtained from Sukkotoko.
  • the fibrous filler is wollastonite.
  • the previous particulate filler is calcium carbonate.
  • the norbornene-based resin molding of the present invention is formed integrally with the composite member.
  • the norbornene-based resin molded article of the present invention has a plating layer formed on the surface.
  • the plating layer includes a first plating layer formed on the surface of the norbornene-based resin molded body by chemical bonding and a first plating layer formed on the surface of the first plating layer by electric plating. 2 plating layers.
  • a method for producing a norbornene-based resin molded article according to the present invention is a method for producing any one of the above-described resin-molded articles, comprising: the norbornene-based monomer; a metathesis catalyst; and the hybrid filler. It is characterized by injecting the reaction solution contained therein into a mold and performing bulk polymerization in the mold.
  • a composite member is installed in the mold.
  • the norbornene-based resin molded article of the present invention is excellent in rigidity and dimensional stability, it should be suitably used for various applications such as housing equipment, general building parts, electrical parts, and automobile parts. Can do.
  • a hybrid filler composite filler obtained by high-speed stirring of two or more kinds of fillers in a dry process is used, the cohesiveness of the filler (filler) can be eliminated.
  • the dispersion and redispersibility in the reaction stock solution can be improved.
  • the ratio of the filler added to the reaction stock solution can be increased, and as a result, the resulting norbornene-based resin composition is obtained.
  • the amount of addition inside can be increased.
  • the filler addition ratio can be increased, the rigidity and dimensional stability of the norbornene-based resin molded body can be further improved.
  • the norbornene-based resin molded product of the present invention (hereinafter sometimes simply referred to as “molded product”) is a molded product of norbornene-based resin obtained by bulk polymerization of norbornene-based monomers in a mold. It is characterized by containing a hybrid filler (composite filler) obtained by high-speed stirring of two or more kinds of fillers in a dry process.
  • molded product is a molded product of norbornene-based resin obtained by bulk polymerization of norbornene-based monomers in a mold. It is characterized by containing a hybrid filler (composite filler) obtained by high-speed stirring of two or more kinds of fillers in a dry process.
  • Such a molded article of the present invention can be produced by the production method of the present invention.
  • the production method of the present invention is characterized by injecting a reaction liquid containing a norbornene-based monomer, a metathesis catalyst, and the above-described hybrid filler into a mold and performing bulk polymerization in the mold. First, the production method of the present invention will be described.
  • the reaction liquid used in the production method of the present invention is a reaction prepared by dividing the norbornene-based monomer, metathesis catalyst, hybrid filler and optional components contained in the norbornene-based resin molded body into two or more liquids. It is obtained by mixing the stock solution. That is, the reaction solution is obtained by mixing two or more reaction stock solutions. This reaction stock solution does not bulk polymerize with only one liquid, but when all the liquids are mixed, it becomes a reaction liquid containing each component at a predetermined ratio, and the norbornene monomer is bulk polymerized.
  • optional components include activators, activity regulators, elastomers, and antioxidants.
  • the norbornene monomer used in the present invention is a compound having a norbornene ring structure, and any compound may be used as long as it is such a compound. Among these, it is preferable to use a tricyclic or higher polycyclic norbornene-based monomer because a molded product having excellent heat resistance can be obtained.
  • norbornene-based monomers include bicyclic compounds such as norbornene and norbornagen; tricyclic compounds such as dicyclopentagen (cyclopentagen dimer) and dihydrodicyclopentagen; tetracyclododecene Tetracycles such as cyclopentagen trimer, etc .; heptacycles such as cyclopentagen tetramer, etc .; these methyl, ethyl, propyl, buty Substituents such as alkyls such as alkenyl, alkylidenes such as vinyl, alkylidenes such as ethylidene, aryls such as phenyl, tolyl and naphthyl; and further substituents having polar groups such as ester groups, ether groups, cyano groups and halogen atoms Etc.
  • bicyclic compounds such as norbornene and norbornagen
  • tricyclic compounds such as dicyclopentagen (cyclopentagen dimer) and di
  • Two or more of these monomers may be used in combination. Of these, tricyclic, tetracyclic, or pentacyclic monomers are preferred because they are easily available, have excellent reactivity, and have excellent heat resistance of the resulting molded product! /.
  • the ring-opening polymer to be produced is a thermosetting type.
  • a reactive cyclopentagen trimer or the like is used among the norbornene-based monomers. It is preferable to use at least a crosslinkable monomer having two or more heavy bonds. The proportion of such a crosslinkable monomer (excluding dicyclopentagen) in the total norbornene monomer is preferably 2 to 30% by weight.
  • monocyclic cycloolefins such as cyclobutene, cyclopentene, cyclopentagen, cyclootaten, and cyclododecene, which can be ring-opening copolymerized with a norbornene-based monomer, are used as a comonomer without departing from the object of the present invention. Moyo.
  • the hybrid filler used in the present invention is a filler obtained by agitating two or more fillers at high speed in a dry manner.
  • the hybrid filler is not particularly limited as long as it can be obtained by high-speed stirring of two or more kinds of fillers in a dry process.
  • a Henschel mixer, etc. Is used for stirring so that the peripheral speed (blade tip speed) of the rotary blade is usually 10 to 60 mZs, preferably 15 to 55 mZs.
  • the dispersibility in the norbornene-based monomer can be improved.
  • the two or more kinds of fillers constituting the hybrid filler are not particularly limited.
  • at least a fibrous filler and a particulate filler are contained, and these fibrous fillers and The particulate filler is preferably obtained by dry stirring at high speed.
  • the fibrous filler is a solid material that is insoluble in the norbornene-based monomer, and has a paste ratio of 5 to LOO.
  • the aspect ratio is preferably 10 to 50, more preferably 15 to 35. If the aspect ratio is too small, the resulting molded article may have insufficient rigidity and dimensional stability. On the other hand, if it is too large, the injection nozzle may become clogged when it is injected into the mold.
  • the aspect ratio of the filler is a ratio between the average major axis diameter of the filler and the 50% volume cumulative diameter.
  • the average major axis diameter is a number average major axis diameter calculated as an arithmetic average value of the major axis diameters of 100 fillers randomly selected from an optical micrograph.
  • the 50% volume cumulative diameter is a value obtained by measuring the particle size distribution by the X-ray transmission method.
  • the 50% volume cumulative diameter of the fibrous filler is preferably 0.1 to 50 m, more preferably 1 to 30 m. If the 50% volume cumulative diameter is too small, the resulting molded article may have insufficient rigidity and dimensional stability. On the other hand, if it is too large, the tank may settle in the piping when the reaction solution is injected into the mold, or the injection nozzle may be clogged.
  • the fibrous filler include glass fiber, wollastonite, potassium titanate, zonolite, basic magnesium sulfate, aluminum borate, tetrapot-type zinc oxide, gypsum fiber, and phosphate fiber. , Alumina fibers, acicular calcium carbonate, acicular bermite, and the like.
  • wollastonite is preferred because it can increase the rigidity with a small addition amount and does not inhibit the bulk polymerization reaction.
  • the particulate filler is a solid material that is insoluble in the norbornene-based monomer and has a paste ratio of 1 to 2.
  • the aspect ratio is preferably 1 to 1.5.
  • the 50% volume cumulative diameter of the particulate filler is preferably 0.1 to 50 ⁇ m, more preferably 1 to 30 ⁇ m. If the 50% volume cumulative diameter is too small, the resulting molded article may have insufficient rigidity and dimensional stability. On the other hand, if it is too large, it may settle in the tank or piping when the reaction solution is injected into the mold or the injection nozzle may be clogged.
  • particulate filler examples include calcium carbonate, calcium silicate, calcium sulfate, aluminum hydroxide, magnesium hydroxide, titanium oxide, zinc oxide, barium titanate, silica, alumina, and carbon black.
  • Graphite, antimony oxide, red phosphorus various Examples thereof include metal powder, clay, various ferrites, and hydrated talcite.
  • These particulate fillers may be hollow bodies. Of these, calcium carbonate is preferred over the point where it does not inhibit the bulk polymerization reaction.
  • the 95: 5-50: 50 range is more preferred
  • the 80: 20-60: 40 range is particularly preferred! / ,.
  • the ratio of the fibrous filler to the particulate filler within the above range, the rigidity and dimensional stability of the obtained molded body can be improved and uniformization can be achieved.
  • the fibrous filler as described above and the particulate filler are dry-stirred at a high speed to obtain a hybrid filler containing these fibrous filler and the particulate filler.
  • the following effects can be obtained. That is, the aggregates of the fibrous filler and the particulate filler can be crushed, and the force can also be uniformly dispersed. Therefore, when the filler is contained in the reaction stock solution, Can be improved. Therefore, it can be dispersed well in the obtained molded body, and therefore the effect of adding these fillers can be further enhanced.
  • the surface should be hydrophobized. Is preferred.
  • the hydrophobization treatment By performing the hydrophobization treatment, the dispersibility in the reaction stock solution can be further improved, and as a result, the rigidity and dimensional stability of the obtained molded body can be further improved.
  • Treatment agents used for hydrophobizing treatment include silane coupling agents, titanate coupling agents, aluminum coupling agents, fatty acids, oils and fats, surfactants, waxes, and other polymers. Ring agents and titanate coupling agents are preferred. These may be used in combination.
  • the method for hydrophobizing the hybrid filler is not particularly limited.
  • (1) the fillers and the processing agent constituting the hybrid filler are added together and stirred at high speed in a dry process.
  • Method 2 Charge each filler together, stir dry at high speed and then add treatment agent, then dry dry at high speed, (3) Add treatment agent to each filler separately A method of mixing after high-speed stirring in a dry method and further stirring at high speed in a dry method , Etc.
  • the method (2) is preferred, and particularly in this case, when adding the treatment agent, it is preferable to gradually add it by a spraying method or the like.
  • the content of the hybrid filler in the reaction solution is preferably 5 to 35% by weight, more preferably 10 to 30% by weight with respect to 100% by weight of the whole reaction solution.
  • the hybrid filler used in the present invention has a high dispersibility in the reaction solution, so that it can be added in a relatively large amount to the reaction solution. As a result, the rigidity and dimensional stability of the resulting molded body can be improved. Further improvement is possible.
  • the metathesis catalyst used in the production method of the present invention is not particularly limited as long as it can perform ring-opening polymerization of a norbornene monomer in a reaction injection molding method (RIM method), and may be a known one.
  • RIM method reaction injection molding method
  • metathesis catalysts examples include compounds of Group 5 or Group 6 transition metals and metal carbene complexes having a metal atom of Group 8 of the periodic table as a central metal.
  • the compounds of Group 5 or Group 6 transition metals include, for example, halides, oxyhalides, oxides, organic ammonium salts, oxyacid salts, and heteropoly- hydrides of these transition metals.
  • Examples include acid salts.
  • organic ammonium salts are more preferable, which are preferably halides, oxyhalogenides, and organic ammonium salts.
  • transition metals molybdenum, tungsten and tantalum are preferred, molybdenum and tungsten are more preferred! / ,.
  • Particularly preferred metathesis catalysts include, but are not limited to, tridodecyl ammonium molybdate and tungstate, methyl tricapryl ammonium molybdate and tungstate, and tri (tridecyl) ammonium. -Um molybdate and tandastate, and trioctyl ammonium molybdate and tungstate.
  • the amount used is usually 0.01 per mol of norbornene-based monomer in the reaction solution. ⁇ 50 midimonore, girls or 0.1 to 20 midimonore.
  • a metal carbene complex having a metal atom of Group 8 of the periodic table as the central metal has a carbene compound bonded to the metal atom (M) of the central metal atom of Group 8 of the periodic table.
  • the carbene compound is a general term for compounds having a carbene carbon, that is, a methylene free radical.
  • the metal atom of Group 8 of the periodic table is particularly preferably ruthenium, which is preferably ruthenium and osmium.
  • Preferred examples of the metal carbene complex include benzylidene (1,3-dimesitymylimidazolidine-2-ylidene) (tricyclohexylphosphine) ruthenium dichloride, benzylidene (1,3-dimesityl-4,5-diib mouth imidazoline- 2-Iridene) (tricyclohexylphosphine) ruthenium dichloride, bis (tricyclohexylphosphine) benzylideneruthenium dichloride, and the like.
  • the amount used is usually 0.001 to 1 millimono, preferably 0.002 to 0.1 millimol, with respect to 1 monomer of the monomer in the reaction solution. It is.
  • the amount of the metathesis catalyst used is too small, the polymerization activity is too low and the reaction takes time, and the production efficiency tends to decrease. On the other hand, if the amount used is too large, the reaction becomes so intense that bulk polymerization proceeds before the reaction solution is sufficiently filled in the mold, and the catalyst is liable to precipitate and can be stored homogeneously. It tends to be difficult.
  • the metathesis catalyst may be used by dissolving or dispersing in a small amount of an inert solvent.
  • inert solvents include chain aliphatic hydrocarbon solvents such as pentane, hexane, and heptane; fats such as cyclopentane, cyclohexane, methylcyclohexane, decahydronaphthalene, tricyclodecane, and cyclooctane.
  • Cyclic hydrocarbon solvents aromatic hydrocarbon solvents such as benzene, toluene and xylene
  • ether solvents such as jetyl ether and tetrahydrofuran.
  • a liquid anti-aging agent a plasticizer or an elastomer may be used as a solvent as long as it does not decrease the activity as a catalyst.
  • these solvents industrially used aromatic hydrocarbon solvents, chain fats Aliphatic hydrocarbon solvents and alicyclic hydrocarbon solvents are preferred.
  • the activator is used for causing the metathesis catalyst to exhibit the polymerization reaction activity when the above-mentioned metathesis catalyst is not used alone.
  • Activating agents include alkyl aluminum halides such as ethyl aluminum dichloride and jetyl aluminum chloride; alkoxyalkyl aluminum halides in which part of the alkyl groups of these alkyl aluminum halides are substituted with alkoxy groups; organotin compounds
  • the amount of the activator to be used is not particularly limited, but is usually 0.1 to L00 mol, preferably 110 mol, with respect to 1 mol of the metathesis catalyst used in the whole reaction solution. is there.
  • the activity regulator has an effect of changing the reaction rate, the time from mixing the reaction liquid to the start of the reaction, the reaction activity, and the like.
  • examples of the activity regulator include compounds having an action of reducing the metathesis catalyst, alcohols, haloalcohols, Esters, ethers, nitriles and the like can be used. Of these, alcohols and haloalcohols are preferable, and haloalcohols are particularly preferable.
  • Specific examples of alcohols include n-propanol, n-butanol, n-xanol, 2-butanol, isobutyl alcohol, isopropyl alcohol, and t-butyl alcohol.
  • Specific examples of haloalcohols include 1,3 dichloro1-2propanol, 2-chloroethanol, 1-butanol and the like.
  • examples of the activity regulator include Lewis basic compounds.
  • Lewis base compounds include Lewis bases containing phosphorus atoms such as tricyclopentylphosphine, tricyclohexylphosphine, triphenylphosphine, triphenylphosphite, n-butylphosphine; n-butylamine, pyridine, 4-vinyl And Lewis basic compounds containing nitrogen atoms such as pyridine, acetonitrile, ethylenediamine, N-benzylidenemethylamine, pyrazine, piperidine, imidazole, and the like.
  • burnorbornene, probe norbornene and iso Norbornene substituted with a alkenyl group such as probe norbornene, is a norbornene-based monomer and also acts as an activity regulator.
  • the amount of these activity regulators used varies depending on the compound used and is not uniform.
  • Examples of the elastomer include natural rubber, polybutadiene, polyisoprene, styrene-butadiene copolymer (SBR), styrene-butadiene-styrene block copolymer (SBS), and styrene-isoprene-styrene copolymer (SIS), ethylene-propylene-diene terpolymer (EPDM), ethylene-vinyl acetate copolymer (EVA), and hydrides thereof.
  • SBR styrene-butadiene copolymer
  • SBS styrene-butadiene-styrene block copolymer
  • SIS styrene-isoprene-styrene copolymer
  • EPDM ethylene-propylene-diene terpolymer
  • EVA ethylene-vinyl acetate copolymer
  • the viscosity of the reaction solution
  • the impact resistance of the obtained molded product can be improved by adding an elastomer.
  • the amount of the elastomer used is usually 0.5 to 20 parts by weight, preferably 2 to 10 parts by weight, based on 100 parts by weight of the norbornene monomer in the reaction solution.
  • antioxidants examples include various plastics such as phenol, phosphorus and amine, and antioxidants for rubber.
  • the reaction stock solution is prepared by dividing each component described above into two or more solutions.
  • Examples of combinations of two or more reaction stock solutions include the following two types (a) and (b) depending on the type of metathesis catalyst used.
  • a metathesis catalyst that does not have a polymerization reaction activity by itself but exhibits a polymerization reaction activity when used in combination with an activator
  • a norbornene monomer and an activator are used.
  • Prepare a reaction stock solution by dividing it into a reaction stock solution (al) containing a reaction and a reaction stock solution (a2) containing a norbornene-based monomer and a metathesis catalyst.
  • the reaction solution described above can be obtained by using these reaction stock solutions and mixing them.
  • the reaction stock solution (a3) may be used in combination with a norbornene-based monomer and also including no shift in the metathesis catalyst and activator.
  • reaction stock solution (bl) containing a norbornene monomer and a reaction stock solution (b2) containing a metathesis catalyst are used. Separately, prepare the reaction stock solution. Then, using these reaction stock solutions and mixing them, the above-mentioned reaction solution can be obtained. At this time, the reaction stock solution (b2) Usually, a solution obtained by dissolving or dispersing a metathesis catalyst in a small amount of an inert solvent is used.
  • the hybrid filler may be contained in any reaction stock solution, but is contained in the reaction stock solution containing a norbornene-based monomer. It is preferable that That is, in the case of (a) above, it may be contained in one or more of the reaction stock solutions (al), (a2) and (a3), but from the viewpoint of easy reaction control, (a2 ) Or (a3) preferably contains a hybrid filler. In the case of (b) above, it is preferably contained in the reaction stock solution (bl).
  • the content of the hybrid filler in the reaction stock solution is preferably 20 to 80 wt%, more preferably 35 to 70 wt%.
  • the filler is added to the reaction stock solution as a noble filler, the dispersibility in the reaction stock solution can be improved. As a result, even when the amount added is relatively large, The liquid viscosity is relatively low, and the storage stability can be excellent. Further, by increasing the amount of the hybrid filler (filler) added in the reaction stock solution, the amount added in the resulting molded body can be increased. As a result, the rigidity and dimensional stability of the molded body can be increased. Further improvements are possible.
  • Reaction injection molding is performed by mixing two or more of the above reaction stock solutions, injecting the resulting reaction solution into a mold, and bulk polymerizing norbornene monomers in the mold. As a result of the bulk polymerization, the norbornene-based resin molded product of the present invention can be obtained.
  • a collision mixing apparatus conventionally known as a reaction injection (RIM) molding apparatus can be used for mixing the reaction stock solution. Then, two or more reaction stock solutions are instantaneously mixed with a mixing head of a RIM machine to form a reaction solution, this reaction solution is injected into a mold, and a norbornene monomer is polymerized in this mold.
  • RIM reaction injection
  • low-pressure injectors such as dynamic mixers and static mixers can also be used.
  • the mold used for the reaction injection molding does not necessarily need to be a high-rigidity and expensive metal mold, and is not limited to a metal mold, and a resin mold or a simple mold can be used. Reaction This is because the extrusion molding can be performed at a relatively low temperature and low pressure using a low-viscosity reaction stock solution. In addition, it is preferable to replace the inside of the mold with an inert gas such as nitrogen gas before injecting the reaction solution.
  • the mold temperature is preferably 10 to 150 ° C, more preferably 30 to 120 ° C, and still more preferably 50 to 100 ° C.
  • Clamping pressure is usually in the range of 0.01 ⁇ : LOMPa.
  • the time for bulk polymerization may be selected as appropriate, but is usually 20 seconds to 20 minutes, preferably 20 seconds to 5 minutes after the injection of the reaction stock solution.
  • a composite molded body in which a composite member is installed in a mold and the norbornene-based resin molded product of the present invention is integrally formed with the composite member may be used.
  • “being formed integrally” means that the norbornene-based resin and the composite resin member are in close contact with each other without being easily peeled off. It may be, or it may be in close contact with the adhesive layer.
  • the composite saddle member used in the present invention is a material that can be placed in a mold and does not have fluidity at the mold temperature during bulk polymerization.
  • the material of the composite metal member include inorganic materials such as metal, glass, ceramics, and wood; and organic materials such as rubber and rubber.
  • inorganic material metal or glass is preferable.
  • organic material rosin is preferred.
  • resin polyolefin resin, acrylic resin, ABS resin, vinyl chloride resin, unsaturated polyester resin, melamine resin, epoxy resin, phenol resin, polyurethane resin, polyamide resin, norbornene series Examples include rosin. Of these, acrylic resin is particularly preferable.
  • the shape of the composite member is not particularly limited, and may be a sheet, a plate, a bar, a woven or non-woven fabric, various three-dimensional shapes, and the like.
  • the adhesive layer is formed on at least a part of the surface of the composite member that comes into contact with the reaction solution. You should keep it.
  • the material used for forming the adhesive layer is not particularly limited as long as it does not inhibit the bulk polymerization reaction, and varies depending on the composite material used, but it is a block copolymer of styrene and conjugated gen or its hydrogen. It is preferable to contain a chemical.
  • block copolymers include styrene butadiene block copolymer (SB), styrene Examples include isoprene block copolymer (SI), styrene butadiene-styrene block copolymer (SBS), styrene isoprene styrene block copolymer (SIS), and styrene-butadiene-isoprene-styrene block copolymer (SBIS). It is preferable that the composite material and the norbornene-based resin are in close contact with each other through the adhesive layer because the adhesiveness between the two is high.
  • the molded article of the present invention can be obtained.
  • the content of the hybrid filler as a filler in the molded body of the present invention is preferably 5 to 35% by weight, more preferably 10 to 30% by weight, based on 100% by weight of the entire molded body.
  • the molded body of the present invention is a composite molded body formed integrally with the composite member, the above range represents the content in the norbornene-based resin portion excluding the composite base member. If the content of the hybrid filler as a filler is too large, the impact resistance of the molded product may be lowered. On the other hand, if the amount is too small, the molded body may have insufficient rigidity and dimensional stability.
  • the norbornene-based resin molded article of the present invention has excellent adhesion to the plating layer, it is preferable that a plating layer is formed on the surface.
  • the norbornene-based resin molded body having a plating layer formed on the surface is formed by applying a plating treatment to the surface of the norbornene-based resin molded body.
  • the thickness of the plating layer is preferably 10 to 300 / ⁇ ⁇ , particularly preferably 50 to 150 ⁇ .
  • the plating treatment method for forming the plating layer is not particularly limited, but in the present invention, first, the first plating layer (chemicals) is formed on the surface of the norbornene-based resin molded body by chemical plating (electroless plating). A method in which a second plating layer is formed on the first plating layer by electroplating (electrolytic plating) is then preferable. That is, it is preferable that the plating layer according to the present invention has a configuration in which the first plating layer formed by chemical plating and the second plating layer formed by electric plating have power.
  • the norbornene-based resin molded body is pretreated before chemical bonding to the surface of the norbornene-based resin molded body.
  • Such pretreatment includes degreasing, chemical Examples include an etching process, a sensitivity imparting (sensitizing) process, and an activity (activating) process.
  • general methods are employed as these pretreatment methods.
  • the degreasing step is a step of removing oily soil adhering to the surface of the resin molded body by a method such as alkali degreasing, solvent degreasing, emulsification degreasing, electrolytic degreasing, or mechanical degreasing.
  • chemical etching is performed on the norbornene-based resin molded product that has been degreased (chemical etching step).
  • chemical etching step a chemical etching solution containing sulfuric acid, nitric acid, hydrochloric acid, acetic acid, chromic acid, phosphoric acid, a permanganate compound, a chromic acid compound, or a salty ferric compound is used.
  • the norbornene-based resin molded body subjected to chemical etching is subjected to sensitivity imparting and activation (sensitivity imparting step and activation step).
  • sensitivity imparting step and the activation step 0.001 to 10% by weight of a metal such as silver, noradium, zinc or cobalt or a salt complex thereof in water, an alcohol or an organic solvent such as black mouth form.
  • a norbornene-based resin molding by dipping in a solution dissolved in a concentration of 1% (may contain acid, alkali, complexing agent, reducing agent, etc. if necessary) and then reducing the metal.
  • the catalyst is attached to the surface and activated.
  • the first plating layer is obtained by immersing the norbornene-based resin molding in a bath with a chemical plating solution to perform chemical plating. Is formed. Set the conditions for chemical plating according to the solution.
  • the plating solution used for chemical plating is not particularly limited, and a known autocatalytic electroless plating solution can be used.
  • An electroless plating solution such as an electroless nickel-cobalt-phosphorous plating solution using sodium hypophosphite as a reducing agent can be used.
  • these electroless plating solutions include known complexing agents such as tartaric acid, ethylenediaminetetraacetic acid, citrate, and acetic acid, and boric acid. Buffers, caustic soda and other pH adjusters may be added as appropriate.
  • the norbornene-based resin molded body on which the first plating layer is formed by chemical plating is electroplated to form a second plating layer on the first plating layer.
  • the second plating layer formed by electroplating may be a single layer film made of a single metal or a multilayer film having a plurality of types of metal forces.
  • the metal constituting the second plating layer is not particularly limited, and for example, a force including copper, silver, nickel, gold, tin, cobalt, chromium, and the like. Norbornene-based resin molding finally obtained What is necessary is just to determine suitably according to the use of a body.
  • the plating layers may be formed so as to cover the entire surface of the norbornene-based resin molded body, or the norbornene-based resin. It may be formed in an arbitrary pattern on the surface of the molded body.
  • a method of forming a pattern layer (1) First, the entire surface of the norbornene-based resin molded body is subjected to scouring to form the first plating layer, and then the plating is formed thereon. A resist pattern is formed using a resist, and a second plating layer is formed by electrical plating through the resist pattern. Then, the resist is removed, and an unnecessary first plating layer portion is removed by etching.
  • the second plating layer is a multilayer film having a plurality of types of metal forces, after forming one or more metal films constituting the second plating layer.
  • a method of removing the resist and etching, and then forming the remaining metal film may be employed.
  • the norbornene-based iron having a plating layer formed on the surface of the present invention thus obtained is obtained.
  • the resin molded product has the properties of high rigidity, excellent dimensional stability, excellent design properties due to the plating layer, and high adhesion between the norbornene-based resin molded product and the plating layer. is doing.
  • the molded body is a molded body having a decorative metal such as an electronic component material such as a pre-preda, a printed wiring board, an insulating sheet, an interlayer insulating film and an antenna substrate, a housing facility such as a kitchen sink and a kitchen counter, and a bumper. Examples that can be suitably used for
  • the viscosity of the filler liquid was measured using a B-type viscometer at a liquid temperature of 25 ° C, using a No. 22 rotor and agitating for 1 minute under the condition of 60 rpm. The viscosity was measured.
  • the flexural modulus of the norbornene-based resin molded product was measured according to JIS K 7171.
  • the linear expansion coefficient of the norbornene-based resin molded product was measured according to JIS K 7197. However, the test piece was 10 mm long, 5 mm wide, and 4 mm thick.
  • the adhesion between the norbornene-based resin molded body having a plating layer formed on the surface and the norbornene-based resin molded body and the plating layer was evaluated by measuring the adhesion strength according to JIS H 8630.
  • Wollastonite as a fibrous filler in a 500 L Henschel mixer (SH-400 50% volume cumulative diameter: 20 m, aspect ratio: 18) as a fibrous filler: 75 parts, particulate Calcium carbonate (Sankyo Seimitsu Co., Ltd. Escalon # 2000 50% cumulative volume diameter: 1. 8 m, aspect ratio: 1): 25 parts are charged, the temperature in the tank is 30 ° C, and the rotation speed is 360 rpm. Stir with.
  • 0.5 parts of a silane coupling agent Shin-Etsu Chemical Co., Ltd.
  • KB M-1003 was added to the mixer by spraying, and after spraying, the mixture was stirred for 7 minutes at a rotational speed of 720 rpm (circumferential speed 40 mZs). . Thereafter, the temperature in the tank was raised to 110 ° C., and the filler was dried by stirring for 10 minutes at a rotational speed of 360 rpm (circumferential speed 20 mZs). Next, 0.75 parts of titanate coupling agent (Ajinomoto Fine Technone clay product KR-TTS) was added to the mixer by spraying. After spraying, the hybrid filler was obtained by stirring for 5 minutes at a rotational speed of 360 rpm (circumferential speed 20 m / s).
  • titanate coupling agent Ajinomoto Fine Technone clay product KR-TTS
  • reaction stock solutions A and B (both RIMTEC PENTAM # 4000) were prepared.
  • the reaction stock solution A is a reaction stock solution containing an activator, an activity adjusting agent and an elastomer in addition to the norbornene monomer mixture
  • the reaction stock solution B is added to the norbornene monomer mixture, a metathesis catalyst, A reaction stock solution containing an elastomer and an antioxidant.
  • the prepared reaction stock solution B and the filler solution prepared above were added so that the volume ratio was 1: 1, and the mixture was sufficiently uniformly mixed to obtain a mixed solution.
  • 230 parts of the filler liquid and 145 parts of the reaction stock solution B were present.
  • a gun static mixer with a cartridge capacity of 2: 1 was prepared, and the mixed solution prepared above was filled into a large-capacity cartridge, and the reaction stock solution A was filled into the other cartridge with a small capacity.
  • the simple mold prepared above is heated to 80 ° C., and the mixed solution and the reaction stock solution A are mixed into the heated simple mold while being mixed with a static mixer, and then a lump is formed. Polymerization was started.
  • the volume ratio of the reaction stock solution A and the mixed solution was 1: 2, and the hybrid filler was added to 100 parts of the whole reaction solution (the whole norbornene-based resin molded product). The amount was 25 parts.
  • a test piece having a length of 80 mm, a width of 10 mm, and a thickness of 4 mm was cut out from the obtained norbornene-based resin molded article, and the flexural modulus was measured according to the above method. The results are shown in Table 2.
  • E was prepared so that the length direction of the specimen was parallel to the longitudinal direction of the mold.
  • E is the length direction of the test piece is the transverse direction of the mold
  • spx is a value measured for a test piece prepared so that the length direction of the test piece is parallel to the longitudinal direction of the mold. A is so that the length direction of the specimen is parallel to the lateral direction of the mold.
  • Example 2 A filler liquid and a norbornene-based resin molded product were obtained in the same manner as in Example 1, except that the amount of the hybrid filler added in preparing the filler liquid was changed to 170 parts. It was. And about the obtained filler liquid and norbornene-based resin molded body, Example
  • Example 2 Evaluation was performed in the same manner as in 1.
  • the amount of reaction stock solution A and reaction stock solution B was changed to 159 parts each so that the ratio of the reaction stock solution A to the mixed solution was 1: 2. did.
  • the amount of hybrid filler added to 100 parts of the whole reaction solution (the whole norbornene-based resin molded body) was 29 parts. The results are shown in Table 2.
  • a filler liquid and a norbornene-based resin molded product were obtained in the same manner as in Example 1 except that the filler liquid was prepared by the following method.
  • wollastonite manufactured by Kinsei Matech Co., Ltd.
  • a silane coupling agent to a norbornene monomer mixture consisting of 90 parts of dicyclopentagen and 10 parts of tricyclopentagen.
  • SH-400S 97.5 parts
  • calcium carbonate previously surface-treated with a silane coupling agent 32.5 parts
  • titanate coupling agent 5.2 parts
  • the filler liquid was prepared by shear dispersion under conditions of a rotational speed of 13500 rpm and 10 minutes.
  • Example 2 the obtained filler liquid and norbornene-based resin molded body were evaluated by the same method as in Example 1.
  • the amount of the hybrid filler added was 25 parts with respect to 100 parts of the entire reaction solution (the whole norbornene-based resin molded body). The results are shown in Table 2.
  • Example 1 Comparative Example 1 Mixed monomer (parts by weight) 100 100 100 Form of addition of filler No. W Pride Hybrid
  • Wollastonite rice cake (parts by weight) 97.5 127.5 97.5 Calcium carbonate (straight: 3 ⁇ 4 part) 32.5 42.5 32.5 Total amount of fillers (parts by weight) 130 170 130 Quantity of filler in one liquid of filler (% by weight) 57 63 57 Viscosity of filler liquid ⁇ mPa-s) 320 640 810
  • Examples 1 and 2 in which fillers (fillers) were added to the filler liquid (reaction stock solution) in the form of a noble and filled filler were simply blended because of good dispersibility. It can be confirmed that the viscosity of the resulting filler liquid can be lowered as compared with Comparative Example 1 alone. In addition, the filler liquids of Examples 1 and 2 were excellent in storage stability. In particular, from the results of Example 2, it can be confirmed that good results can be obtained even when the content of the hybrid filler (filler) is increased to 60% by weight or more. On the other hand, in Comparative Example 1 in which the filler (filler) was simply blended, the viscosity of the filler liquid was increased and the storage stability was inferior.
  • Wollastonite (SH-400: manufactured by Kinsei Matec Co., Ltd., 50% volume cumulative diameter, 20 / ⁇ ⁇ , aspect ratio of 18 and surface treatment with bursilane. 135 parts and heavy coal as particulate filler 45 parts of calcium oxide (SCP—E # 2300: manufactured by Sankyo Seimitsu Co., Ltd., 50% volume cumulative diameter is 1., aspect ratio is 1, surface treated with stearic acid) Stirring was carried out under conditions of a bath temperature of 30 ° C. and a rotation speed of 360 rpm.
  • a silane coupling agent (Shin-Etsu Chemical KBM-1003) was added to the mixer by spraying, and after completion of the spraying, the mixture was stirred at a rotational speed of 360 rpm (circumferential speed 20 mZs) for 7 minutes. Thereafter, the temperature inside the tank was raised to 110 ° C., and stirred for 10 minutes at a rotational speed of 360 rpm (circumferential speed 20 mZs), thereby drying the filler.
  • 0.75 parts of a titanate coupling agent (Ajinomoto Fine Tetano Preect KR-TTS) was added to the mixer by spraying. After spraying, a hybrid filler was obtained by stirring for 5 minutes at a rotational speed of 360 rpm (circumferential speed 20 mZs).
  • a reaction injection mold having a space (cavity) of 500 mm in length X 500 mm in width X 4 mm in thickness was prepared, and one was heated to 90 ° C and the other to 60 ° C. Then, 26.8 parts of A liquid, 26.8 parts of B liquid and 46.4 parts of C liquid prepared above are fed into the mixing head, and then 5 MPa or less in the reaction injection mold. The injection was carried out at an injection pressure of 1, and bulk polymerization was started and the reaction was carried out for 3 minutes.
  • the mixing ratio of liquid A, liquid B and liquid C at this time is 1: 1: 1 by volume, the amount of injected fibrous filler is 22.5 parts, and the amount of particulate filler is 7. It was 5 parts. Thereafter, the norbornene-based resin molded product was taken out from the mold.
  • the norbornene-based resin molded product produced above was cut into a size of 347 mm long ⁇ 210 mm wide ⁇ 4 mm thick, and the cut resin molded product was subjected to pretreatment before plating as described below. Went. That is, by first immersing the cut norbornene-based resin molded product in an aqueous solution in which 10 Oml of sulfuric acid and 1.5 g of a surfactant are dissolved per liter at 50 ° C. for 5 minutes. The degreasing process was performed.
  • the norbornene-based resin molded product that has been degreased is immersed in an aqueous solution (chemical etching solution) in which 100 ml of sulfuric acid and 400 g of chromic anhydride are dissolved per liter at 65 ° C for 5 minutes.
  • chemical etching was performed.
  • the norbornene-based resin molded body subjected to chemical etching was subjected to acid cleaning at 25 ° C. for 2 minutes using an aqueous solution in which 50 ml of 35% hydrochloric acid was dissolved per liter.
  • the cleaned norbornene-based resin molded product is immersed in an aqueous solution in which 20 g of stannous chloride (2 hydrates) and 50 ml of 35% hydrochloric acid are dissolved at 25 ° C. for 5 minutes per liter. Thus, sensitivity was imparted.
  • the norbornene-based resin molded article to which sensitivity was imparted was immersed in an aqueous solution in which 0.4 g of palladium chloride and 3 ml of 35% hydrochloric acid were dissolved per liter at 25 ° C. for 5 minutes. Activation was performed.
  • the norbornene-based resin molded product subjected to the active kneading is 15 g of sulfuric acid-kelke (hexahydrate), sodium citrate (dihydrate), hypophosphorous acid per liter.
  • an aqueous solution pHIO
  • 10 g of soda (monohydrate) and 3 ml of lactic acid are dissolved under the conditions of 40 ° C and 8 minutes.
  • chemical adhesion is performed, and the surface of the norbornene-based resin molded product is formed.
  • a chemical plating layer was formed.
  • the norbornene-based resin molded body in which the chemical adhesion layer was formed was immersed in an aqueous solution in which 50 ml of sulfuric acid was dissolved per liter at 25 ° C for 20 seconds. After that, it was immersed in an aqueous solution in which 150 g of copper sulfate (pentahydrate) and 60 g of sulfuric acid were dissolved per liter, and treated using a copper anode at 25 ° C for 3 minutes under the conditions of a cathode current density of 2 AZdm 2 . .
  • the obtained norbornene-based resin molding was manufactured and evaluated in the same manner. The results are shown in Table 3.
  • a norbornene-based resin molding in which a plating layer is formed on the surface containing a hybrid filler obtained by high-speed stirring of two or more fillers in a dry process in a norbornene-based resin molding.
  • the body was excellent in flexural modulus and linear expansion coefficient, and was excellent in rigidity and dimensional stability. Sarakuko also had good adhesion between the norbornene-based resin molded body and the plating layer ( Examples 3 and 4).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

 ノルボルネン系モノマーを型内で塊状重合させて得られるノルボルネン系樹脂成形体であって、2種以上の充填材を乾式にて高速撹拌することにより得られるハイブリッドフィラーを、含有していることを特徴とするノルボルネン系樹脂成形体。好ましくは、前記ハイブリッドフィラーが、少なくとも、アスペクト比が5~100である繊維状充填材と、アスペクト比が1~2である粒子状充填材と、を乾式にて高速撹拌することにより得られるフィラーである。本発明によれば、剛性および寸法安定性に優れたノルボルネン系樹脂成形体、およびこのノルボルネン系樹脂成形体を製造するための方法を提供することができる。

Description

明 細 書
ノルボルネン系樹脂成形体およびその製造方法
技術分野
[0001] 本発明は、ノルボルネン系モノマーを型内で塊状重合させて得られるノルボルネン 系榭脂成形体、およびその製造方法に係り、さらに詳しくは、剛性および寸法安定性 に優れたノルボルネン系榭脂成形体、およびその製造方法に関する。
背景技術
[0002] 従来から反応射出成形法 (RIM)により、ノルボルネン系モノマーおよびメタセシス 触媒を含む反応液を金型内に注入し、塊状開環重合させることによりノルボルネン系 榭脂からなる成形体を製造することが実用化されている。反応液は、通常、 2以上の 反応原液を衝突混合装置などで瞬間的に混合して得られる。このような反応原液は 、 1液のみでは塊状重合しないが、全ての液を混合すると、各成分を所定の割合で 含む反応液となり、その結果、ノルボルネン系モノマーが塊状重合するものである。
[0003] RIM法で得られる成形体に剛性や寸法安定性を付与する目的で、反応液に各種 の充填材を添加して成形することが知られている。しかし、従来の方法では、剛性を 十分に高められない場合があった。また、充填材は反応原液に添加して用いられる 力 このように反応原液に充填材を含有させると、保存安定性が低くなる場合があつ た。
[0004] たとえば、特許文献 1, 2では、ガラス繊維やウォラストナイトなどを充填材として用い ることが提案されている。しカゝしこれら繊維状の充填材を用いた場合には、反応液に 多量に充填材を添加すると、金型への注入時に注入ノズルが詰まるという問題があ つた。そのため、これらの文献では、十分な剛性を得ることができな力つた。また、特 定の粒子径を有する炭酸カルシウムなどの充填材を用いることも提案されて 、る(た とえば、特許文献 3)。し力しこの方法では剛性の改善効果は不十分であった。
[0005] さらに、特許文献 1〜3においては、反応原液中で充填材が沈降してしまい、配管 が詰まってしまうという問題や、得られる成形品が不均一になってしまうという問題もあ つた o [0006] 特許文献 1 :特開昭 58— 129013号公報
特許文献 2 :特開平 2— 185558号公報
特許文献 3 :特開 2003— 321597号公報
発明の開示
発明が解決しょうとする課題
[0007] 本発明は、このような実状に鑑みてなされ、その目的は、剛性および寸法安定性に 優れた榭脂成形体、およびこの榭脂成形体を製造するための方法を提供することで ある。
課題を解決するための手段
[0008] 本発明者等は、上記目的を達成するために鋭意検討を行った結果、 2種以上の充 填材を、乾式にて高速撹拌することにより得られるハイブリッドフィラー (複合フィラー) を榭脂成形体中に含有させることにより、上記目的を達成できることを見出し、この知 見に基づき本発明を完成させるに至った。
[0009] すなわち、本発明のノルボルネン系榭脂成形体は、
ノルボルネン系モノマーを型内で塊状重合させて得られるノルボルネン系榭脂成形 体であって、
2種以上の充填材を乾式にて高速撹拌することにより得られるハイブリッドフィラー を、含有していることを特徴とする。
[0010] 好ましくは、前記ノ、イブリツドフイラ一力 少なくとも、アスペクト比が 5〜: LOOである繊 維状充填材と、アスペクト比が 1〜2である粒子状充填材と、を乾式にて高速撹拌す ること〖こより得られるフィラーである。
好ましくは、前記繊維状充填材がウォラストナイトである。
好ましくは、前前記粒子状充填材が炭酸カルシウムである。
好ましくは、前記繊維状充填材および粒子状充填材の比率が、重量比で、繊維状 充填材:粒子状充填材 = 95: 5〜50: 50である。
好ましくは、前記ノ、イブリツドフイラ一力 シランカップリング剤および Zまたはチタネ ートカップリング剤で表面処理されて 、る。
好ましくは、本発明のノルボルネン系榭脂成形体は、複合化部材と一体的に形成し てある複合成形体である。
好ましくは、本発明のノルボルネン系榭脂成形体は、表面にめっき層が形成された ものである。
好ましくは、前記めつき層は、化学めつきにより、前記ノルボルネン系榭脂成形体の 表面に形成された第 1めっき層と、電気めつきにより、前記第 1めっき層の表面に形成 された第 2めっき層と、を有する。
[0011] 本発明のノルボルネン系榭脂成形体の製造方法は、上記いずれかの榭脂成形体 を製造する方法であって、前記ノルボルネン系モノマーと、メタセシス触媒と、前記ハ イブリツドフイラ一と、を含有してなる反応液を型内に注入し、前記型内で塊状重合さ せることを特徴とする。
[0012] 本発明のノルボルネン系榭脂成形体の製造方法にお!、て、好ましくは、前記型内 に複合化部材が設置されて ヽる。
発明の効果
[0013] 本発明のノルボルネン系榭脂成形体は、剛性および寸法安定性に優れて ヽるので 、住宅設備、一般建築部品、電気部品、自動車部品、など各種の広範な用途に好適 に用いることができる。特に、本発明では、 2種以上の充填材を、乾式にて高速撹拌 することにより得られるハイブリッドフィラー (複合フィラー)を用いて 、るため、フィラー (充填材)の凝集性を解消でき、また、反応原液への分散および再分散性を良好とす ることがでさる。
そのため、フィラーの添加量を、従来と同量の添加量とした場合においても、剛性 および寸法安定性のさらなる向上が可能となる。
[0014] また、反応原液への分散性および再分散性が良好であるため、反応原液中への、 充填材の添加割合を増カロさせることがき、その結果、得られるノルボルネン系榭脂成 形体中の添加割合を増カロさせることができる。そして、フィラーの添加割合の増加が 可能となることにより、ノルボルネン系榭脂成形体の剛性および寸法安定性のさらな る向上を図ることも可能となる。
さらに、本発明のノルボルネン系榭脂成形体にめっき層を形成した場合には、上記 剛性および寸法安定性に優れる上に、めっき層との密着性にも優れる。 発明を実施するための最良の形態
[0015] 本発明のノルボルネン系榭脂成形体 (以下、単に「成形体」ということがある)は、ノ ルボルネン系モノマーを型内で塊状重合させて得られるノルボルネン系榭脂の成形 体であり、 2種以上の充填材を乾式にて高速撹拌することにより得られるハイブリッド フィラー (複合フィラー)を、含有していることを特徴とする。
このような本発明の成形体は、本発明の製造方法により製造できる。本発明の製造 方法は、ノルボルネン系モノマーと、メタセシス触媒と、上記したハイブリッドフィラーと 、を含有する反応液を型内に注入し、この型内で塊状重合させることを特徴とする。 まず、本発明の製造方法について、説明する。
[0016] 反]^液
本発明の製造方法に用いられる反応液は、ノルボルネン系榭脂成形体中に含有さ れる、ノルボルネン系モノマー、メタセシス触媒、ハイブリッドフィラーおよび任意成分 を、通常、 2以上の液に分けて調製した反応原液を混合して得られる。すなわち、反 応液は、 2以上の反応原液を混合して得られるものである。そして、この反応原液は、 1液のみでは塊状重合しないが、全ての液を混合すると、各成分を所定の割合で含 む反応液となり、ノルボルネン系モノマーが塊状重合するものである。
なお、任意成分としては、活性剤、活性調節剤、エラストマ一、および酸化防止剤 などが挙げられる。
まず、反応液に含有させる各成分について、説明する。
[0017] ノルボルネン系モノマー
本発明で用いるノルボルネン系モノマーは、ノルボルネン環構造を有する化合物で あり、そのような化合物であればいずれでもよい。なかでも、耐熱性に優れた成形体 が得られることから、三環体以上の多環ノルボルネン系モノマーを用いることが好まし い。
[0018] ノルボルネン系モノマーの具体例としては、ノルボルネン、ノルボルナジェン等の二 環体;ジシクロペンタジェン(シクロペンタジェンニ量体)、ジヒドロジシクロペンタジェ ン等の三環体;テトラシクロドデセン等の四環体;シクロペンタジェン三量体等の五環 体;シクロペンタジェン四量体等の七環体;これらのメチル、ェチル、プロピル、ブチ ルなどのアルキル、ビニル等のアルケニル、ェチリデン等のアルキリデン、フエニル、 トリル、ナフチル等のァリール等の置換体;さらにこれらのエステル基、エーテル基、 シァノ基、ハロゲン原子などの極性基を有する置換体などが挙げられる。これらのモ ノマ一は、 2種以上を組み合わせて用いてもよい。これらのなかでも、入手が容易で あり、反応性に優れ、得られる成形体の耐熱性に優れる点から、三環体、四環体、ま たは五環体のモノマーが好まし!/、。
[0019] また、生成する開環重合体が熱硬化型となることが好ましぐそのためには、上記ノ ルボルネン系モノマーの中でも、対称性のシクロペンタジェン三量体等の、反応性の 二重結合を二個以上有する架橋性モノマーを少なくとも用いることが好ましい。全ノ ルボルネン系モノマー中における、このような架橋性モノマー(ただし、ジシクロペンタ ジェンは除く)の割合は、 2〜30重量%が好ましい。
[0020] なお、本発明の目的を損なわな 、範囲で、ノルボルネン系モノマーと開環共重合 可能なシクロブテン、シクロペンテン、シクロペンタジェン、シクロオタテン、シクロドデ セン等の単環シクロォレフィン等を、コモノマーとして用いてもよ 、。
[0021] ノヽイブリツドフイラ一
本発明で用いるハイブリッドフイラ一は、 2種以上の充填材を、乾式にて高速撹拌す ること〖こより得られるフィラーである。
ノ、イブリツドフイラ一は、 2種以上の充填材を、乾式にて高速撹拌することにより得ら れるものであれば良ぐ高速撹拌する際の撹拌条件は特に限定されないが、たとえ ば、ヘンシェルミキサー等を用いて、回転翼の周速 (翼先端速度)が、通常 10〜60m Zs、好ましくは 15〜55mZsとなるように、撹拌することにより得られる。
2種以上の充填材を高速撹拌し、ハイブリッドフィラー化することにより、上記したノ ルボルネン系モノマー中への分散性を高めることができる。
[0022] また、ハイブリッドフィラーを構成する 2種以上の充填材としては、特に限定されない 力 本発明では、繊維状充填材と、粒子状充填材と、を少なくとも含有し、これら繊維 状充填材と、粒子状充填材と、を乾式にて高速撹拌することにより得られるものである ことが好ましい。特に、このような繊維状および粒子状の充填材を用いることにより、 本発明の効果がより一層顕著なものとなる。 [0023] 繊維状充填材は、ノルボルネン系モノマーに不溶な固体の材料であり、そのァスぺ タト比が 5〜: LOOのものである。アスペクト比は、好ましくは 10〜50であり、より好ましく は 15〜35である。アスペクト比が小さすぎると、得られる成形体の剛性や寸法安定 性が不十分となる場合がある。一方、大きすぎると、型内に注入する際に注入ノズル が詰まるおそれがある。
[0024] なお、本発明にお 、て充填材のアスペクト比とは、充填材の平均長軸径と 50%体 積累積径との比である。ここで、平均長軸径は光学顕微鏡写真で無作為に選んだ 1 00個の充填材の長軸径を測定し、その算術平均値として算出される個数平均長軸 径である。また、 50%体積累積径は、 X線透過法で粒度分布を測定することにより求 められる値である。
[0025] 繊維状充填材の 50%体積累積径は、好ましくは 0. 1〜50 m、より好ましくは 1〜 30 mである。 50%体積累積径が小さすぎると、得られる成形体の剛性や寸法安定 性が不十分となる場合がある。一方、大きすぎると、反応液を型内に注入する時にタ ンクゃ配管内で沈降したり、注入ノズルが詰まったりする場合がある。
[0026] 繊維状充填材の具体例としては、ガラス繊維、ウォラストナイト、チタン酸カリウム、ゾ ノライト、塩基性硫酸マグネシウム、ホウ酸アルミニウム、テトラポット型酸ィ匕亜鉛、石 膏繊維、ホスフェート繊維、アルミナ繊維、針状炭酸カルシウム、針状べ一マイトなど を挙げることができる。なかでも、少ない添加量で剛性を高めることができ、し力も塊 状重合反応を阻害しな 、と 、う点より、ウォラストナイトが好ま 、。
[0027] 粒子状充填材は、ノルボルネン系モノマーに不溶な固体の材料であり、そのァスぺ タト比が 1〜2のものである。アスペクト比は、好ましくは 1〜1. 5である。また、粒子状 充填材の 50%体積累積径は、好ましくは 0. 1〜50 μ m、より好ましくは 1〜30 μ m である。 50%体積累積径が小さすぎると、得られる成形体の剛性や寸法安定性が不 十分となる場合がある。一方、大きすぎると、反応液を型内に注入する時にタンクや 配管内で沈降したり、注入ノズルが詰まったりする場合がある。
[0028] 粒子状充填材の具体例としては、炭酸カルシウム、ケィ酸カルシウム、硫酸カルシ ゥム、水酸化アルミニウム、水酸化マグネシウム、酸化チタン、酸化亜鉛、チタン酸バ リウム、シリカ、アルミナ、カーボンブラック、グラフアイト、酸化アンチモン、赤燐、各種 金属粉、クレー、各種フェライト、ハイド口タルサイトなどを挙げることができる。これら の粒子状充填材は、中空体としたものであってもよい。なかでも、塊状重合反応を阻 害しな ヽと 、う点より、炭酸カルシウムが好まし 、。
[0029] これら繊維状充填材と、粒子状充填材と、を使用する場合における、これらの比率 は、重量比で、繊維状充填材:粒子状充填材 = 95 : 5〜5 : 95の範囲が好ましぐ 95 : 5〜50: 50の範囲がより好ましぐ 80: 20〜60: 40の範囲が特に好まし!/、。
繊維状充填材と粒子状充填材との比率を、上記範囲とすることにより、得られる成 形体の剛性や寸法安定性が向上するとともに、均一化を図ることができる。
[0030] そして、上記のような繊維状充填材と、粒子状充填材と、を乾式にて高速撹拌し、こ れら繊維状充填材と、粒子状充填材と、を含むハイブリッドフィラーとすることにより、 次のような効果を奏する。すなわち、繊維状充填材および粒子状充填材の凝集塊を 解砕することができ、し力もこれらの充填材を均一に分散させることができるため、反 応原液中に含有させた場合における、分散性を向上させることができる。そのため、 得られる成形体中へも良好に分散させることができ、そのため、これらの充填材の添 加効果をさらに高めることができる。
[0031] なお、 2種以上の充填材 (たとえば、繊維状充填材、粒子状充填材)を乾式にて高 速撹拌し、ノ、イブリツドフイラ一化する際には、表面を疎水化処理することが好ましい 。疎水化処理することにより、反応原液中への分散性のさらなる向上を図ることができ 、その結果、得られる成形体の剛性および寸法安定性のさらなる向上を図ることがで きる。疎水化処理に用いられる処理剤としては、シランカップリング剤、チタネートカツ プリング剤、アルミニウムカップリング剤、脂肪酸、油脂、界面活性剤、ワックス、その 他の高分子などが挙げられる力 特に、シランカップリング剤、チタネートカップリング 剤が好ましい。なお、これらは、併用しても良い。
[0032] また、ハイブリッドフィラーを疎水化処理する方法としては、特に限定されず、たとえ ば、(1)ハイブリッドフィラーを構成する各充填材及び処理剤を合わせて仕込み、乾 式にて高速撹拌する方法、(2)各充填材を合わせて仕込み、乾式にて高速撹拌した 後に処理剤を添加し、さらに乾式にて高速撹拌する方法、(3)各充填材に別々に処 理剤を添加し、乾式にて高速撹拌した後に混合し、更に乾式にて高速撹拌する方法 、などが挙げられる。これらのなかでも、上記(2)の方法が好ましぐ特にこの場合に おいては、処理剤を添加する際には、噴霧する方法などにより除々に添加していくこ とが好ましい。
[0033] 反応液中のハイブリッドフィラーの含有量は、反応液全体 100重量%に対して、好 ましくは 5〜35重量%、より好ましくは 10〜30重量%である。本発明で用いられるハ イブリツドフイラ一は、反応液中への分散性が高いため、反応液中に比較的に多く添 加することができ、その結果、得られる成形体の剛性および寸法安定性のさらなる向 上が可能となる。
[0034] メタセシス触媒
本発明の製造方法に用いられるメタセシス触媒は、反応射出成形法 (RIM法)にお いて、ノルボルネン系モノマーを開環重合できるものであれば特に限定されず、公知 のもので良い。
このようなメタセシス触媒としては、周期表第 5族または第 6族の遷移金属の化合物 や、周期表第 8族の金属原子を中心金属とする金属カルべン錯体などが挙げられる
[0035] 周期表第 5族または第 6族の遷移金属の化合物としては、たとえば、これらの遷移 金属のハロゲン化物、ォキシハロゲンィ匕物、酸化物、有機アンモ-ゥム塩、酸素酸塩 およびへテロポリ酸塩などが挙げられる。これらのなかでも、ハロゲン化物、ォキシハ ロゲン化物および有機アンモニゥム塩が好ましぐ有機アンモニゥム塩がより好ましい 。また、遷移金属としては、モリブデン、タングステンおよびタンタルが好ましぐモリブ デンおよびタングステンがより好まし!/、。
メタセシス触媒の特に好まし 、具体例としては、トリドデシルアンモ-ゥムのモリブデ ン酸塩およびタングステン酸塩、メチルトリカプリルアンモ-ゥムのモリブデン酸塩お よびタングステン酸塩、トリ(トリデシル)アンモ-ゥムのモリブデン酸塩およびタンダス テン酸塩、ならびにトリオクチルアンモ-ゥムのモリブデン酸塩およびタングステン酸 塩などが挙げられる。
[0036] これら周期表第 5族または第 6族の遷移金属の化合物をメタセシス触媒として用い る場合の使用量は、反応液中のノルボルネン系モノマー 1モルに対し、通常、 0. 01 〜50ミジモノレ、女子ましくは 0. 1〜 20ミジモノレである。
[0037] 周期表第 8族の金属原子を中心金属とする金属カルべン錯体は、周期表第 8族の 金属原子力 なる中心金属原子にカルベンィ匕合物が結合し、金属原子 (M)とカル ベン炭素( > C: )が直接に結合した構造 (M = C)を錯体中に有するものである。カル ベン化合物とは、カルベン炭素すなわちメチレン遊離基を有する化合物の総称であ る。
周期表第 8族の金属原子としては、ルテニウムおよびオスミウムが好ましぐルテ- ゥムが特に好ましい。
金属カルべン錯体の好ましい具体例としては、ベンジリデン(1, 3—ジメシチルイミ ダゾリジン一 2—イリデン)(トリシクロへキシルホスフィン)ルテニウムジクロリド、、ベン ジリデン(1, 3—ジメシチルー 4, 5—ジブ口モイミダゾリンー2—イリデン)(トリシクロへ キシルホスフィン)ルテニウムジクロリド、およびビス(トリシクロへキシルホスフィン)ベ ンジリデンルテニウムジクロリドなどが挙げられる。
[0038] これらの金属カルベン錯体をメタセシス触媒として用いる場合の使用量は、反応液 中のモノマー 1モノレに対し、通常、 0. 001〜1ミリモノレ、好ましく ίま 0. 002〜0. 1ミリ モルである。
[0039] メタセシス触媒の使用量が少なすぎると、重合活性が低すぎて反応に時間が力かり 、生産効率が低下する傾向にある。一方、使用量が多すぎると、反応が激しくなりす ぎてしまい、反応液が型内に十分に充填される前に塊状重合が進行したり、触媒が 析出し易くなり均質に保存することが困難になる傾向にある。
[0040] メタセシス触媒は少量の不活性溶剤に溶解または分散させて用いてもよい。このよ うな不活性溶剤としては、たとえば、ペンタン、へキサン、ヘプタンなどの鎖状脂肪族 炭化水素溶剤;シクロペンタン、シクロへキサン、メチルシクロへキサン、デカヒドロナ フタレン、トリシクロデカン、シクロオクタンなどの脂環式炭化水素溶剤;ベンゼン、トル ェン、キシレンなどの芳香族炭化水素溶剤;ジェチルエーテル、テトラヒドロフランな どのエーテル系溶剤などが挙げられる。また、触媒としての活性を低下させないよう なものであれば、液状の老化防止剤、可塑剤やエラストマ一を溶剤として用いても良 い。これらの溶剤の中では、工業的に汎用されている芳香族炭化水素溶剤、鎖状脂 肪族炭化水素溶剤および脂環式炭化水素溶剤が好ましい。
[0041] 仵意成分
活性剤は、上記メタセシス触媒として、単独では重合反応活性を有しないものを使 用する場合に、メタセシス触媒に重合反応活性を発現させるために用いられる。活性 剤としては、ェチルアルミニウムジクロリド、ジェチルアルミニウムクロリドなどのアルキ ルアルミニウムハライド;これらのアルキルアルミニウムハライドの、アルキル基の一部 をアルコキシ基で置換したアルコキシアルキルアルミニウムハライド;有機スズ化合物
;などが用いられる。活性剤を使用する場合における、その使用量は、特に限定され ないが、通常、反応液全体で使用するメタセシス触媒 1モルに対して、 0. 1〜: L00モ ル、好ましくは 1 10モルである。
[0042] 活性調節剤は、反応速度や、反応液の混合から反応開始までの時間、反応活性な どを変化させる効果を有する。
メタセシス触媒として周期表第 5族または第 6族の遷移金属の化合物を用いる場合 においては、活性調節剤としては、メタセシス触媒を還元する作用を持つ化合物など が挙げられ、アルコール類、ハロアルコール類、エステル類、エーテル類、二トリル類 などを用いることができる。なかでもアルコール類およびハロアルコール類が好ましく 、ハロアルコール類が特に好ましい。アルコール類の具体例としては、 n プロパノー ル、 n—ブタノール、 n キサノール、 2—ブタノール、イソブチルアルコール、イソ プロピルアルコール、 t ブチルアルコールなどが挙げられる。ハロアルコール類の 具体例としては、 1, 3 ジクロロ一 2 プロパノール、 2 クロ口エタノール、 1—クロ口 ブタノールなどが挙げられる。
メタセシス触媒として金属カルベン錯体を用いる場合にぉ ヽては、活性調節剤とし ては、ルイス塩基ィ匕合物が挙げられる。ルイス塩基ィ匕合物としては、トリシクロペンチ ルホスフィン、トリシクロへキシルホスフィン、トリフエニルホスフィン、トリフエニルホスフ アイト、 n ブチルホスフィンなどのリン原子を含むルイス塩基化物; n—ブチルァミン 、ピリジン、 4 ビニルピリジン、ァセトニトリル、エチレンジァミン、 N べンジリデンメ チルァミン、ピラジン、ピぺリジン、イミダゾールなどの窒素原子を含むルイス塩基ィ匕 合物;が挙げられる。また、ビュルノルボルネン、プロべ-ルノルボルネンおよびイソ プロべ-ルノルボルネンなどの、ァルケ-ル基で置換されたノルボルネンは、前記の ノルボルネン系モノマーであると同時に、活性調節剤としても働く。
これらの活性調節剤の使用量は、用いる化合物によって変わり、一様ではない。
[0043] エラストマ一としては、たとえば、天然ゴム、ポリブタジエン、ポリイソプレン、スチレン -ブタジエン共重合体(SBR)、スチレン-ブタジエン-スチレンブロック共重合体(SBS )、スチレン-イソプレン-スチレン共重合体(SIS)、エチレン-プロピレン-ジエンター ポリマー(EPDM)、エチレン-酢酸ビニル共重合体(EVA)およびこれらの水素化物 などが挙げられる。エラストマ一を反応液に溶解させて用いることにより、反応液の粘 度を調節することができる。また、エラストマ一を添加することで、得られる成形体の耐 衝撃性を改良できる。エラストマ一の使用量は、反応液中のノルボルネン系モノマー 100重量部に対し、通常 0. 5〜20重量部、好ましくは 2〜 10重量部である。
[0044] 酸化防止剤としては、フエノール系、リン系、アミン系など各種のプラスチック 'ゴム 用酸化防止剤が挙げられる。
[0045] 反]^原液の調製
反応原液は、上記した各成分を、 2以上の液に分けて調製されるものである。このよ うな 2以上の反応原液の組み合わせとしては、用いるメタセシス触媒の種類により、下 記 (a)、 (b)の二通りが挙げられる。
[0046] すなわち、(a)メタセシス触媒として、単独では重合反応活性を有しないが、活性剤 を併用することで重合反応活性を発現するものを用いる場合には、ノルボルネン系モ ノマーおよび活性剤を含む反応原液(al)と、ノルボルネン系モノマーおよびメタセシ ス触媒を含む反応原液 (a2)と、に分けて反応原液を調製する。そして、これらの反 応原液を用い、これらを混合することで、上記した反応液を得ることができる。なお、こ の場合においては、さらに、ノルボルネン系モノマーを含み、かつメタセシス触媒およ び活性剤の 、ずれも含まな 、反応原液 (a3)を併用してもょ 、。
[0047] また、(b)メタセシス触媒として、単独で重合反応活性を有するものを用いる場合に は、ノルボルネン系モノマーを含む反応原液 (bl)と、メタセシス触媒を含む反応原液 (b2)と、に分けて反応原液を調製する。そして、これらの反応原液を用い、これらを 混合することで、上記した反応液を得ることができる。このとき反応原液 (b2)としては 、通常、メタセシス触媒を少量の不活性溶剤に溶解または分散させたものが用いられ る。
[0048] なお、上記 (a)、(b)いずれの場合においても、ハイブリッドフイラ一は、どの反応原 液に含まれて 、ても良 、が、ノルボルネン系モノマーを含む反応原液に含まれて ヽ ることが好ましい。すなわち、上記 (a)の場合には、反応原液 (al)、(a2)および (a3) の 1種または 2種以上に含まれていれば良いが、反応制御が容易な点から、(a2)又 は(a3)にハイブリッドフィラーを含有させることが好ましい。また、上記 (b)の場合には 、反応原液 (bl)に含まれていることが好ましい。
[0049] 反応原液中のハイブリッドフィラーの含有量は、好ましくは 20〜80重量%、より好ま しくは 35〜70重量%である。本発明においては、充填材をノヽイブリツドフイラ一として 、反応原液中に添加するため、反応原液中への分散性を向上させることができ、その 結果、添加量を比較的に多くした場合においても、液粘度が比較的に低ぐし力も保 存安定性に優れたものとすることができる。そして、反応原液中における、ハイブリツ ドフイラ一(充填材)の添加量を多くすることにより、得られる成形体中における添加量 を増加させることができ、その結果、成形体の剛性および寸法安定性のさらなる向上 が可能となる。
Figure imgf000013_0001
反応射出成形は、上記した 2以上の反応原液を混合し、得られる反応液を型内に 注入し、この型内でノルボルネン系モノマーを塊状重合させることにより行われる。そ して、塊状重合の結果、本発明のノルボルネン系榭脂成形体を得ることができる。
[0051] 本発明の製造方法においては、従来から反応射出 (RIM)成形装置として公知の 衝突混合装置を、反応原液を混合するために使用することができる。そして、 2以上 の反応原液を RIM機のミキシング ·ヘッドで瞬間的に混合させ、反応液とし、この反 応液を型中に注入し、この型内でノルボルネン系モノマーを重合させることにより行 われる。また、衝突混合装置以外にも、ダイナミックミキサーやスタティックミキサーな どの低圧注入機も使用することができる。
[0052] 反応射出成形に用いる型は、必ずしも剛性の高い高価な金型である必要はなぐ 金属製の型に限らず、榭脂製の型、または単なる型枠を用いることができる。反応射 出成形は、低粘度の反応原液を用い、比較的低温低圧で成形できるためである。ま た、反応液を注入する前に、型内を窒素ガスなどの不活性ガスで置換することが好ま しい。
[0053] 型温度は、好ましくは 10〜150°C、より好ましくは 30〜120°C、さらに好ましくは 50 〜100°Cである。型締め圧力は通常 0. 01〜: LOMPaの範囲である。塊状重合の時 間は適宜選択すればよいが、反応原液の注入終了後、通常 20秒〜 20分、好ましく は 20秒〜 5分である。
[0054] 本発明においては、型内に複合化部材を設置し、本発明のノルボルネン系榭脂成 形体を、複合化部材と一体的に形成してある複合成形体としても良い。ここで、「一体 的に形成してある」とは、ノルボルネン系榭脂と複合ィ匕部材とが容易に剥離しな 、よう に密着していることを言い、榭脂の融着により密着していてもよいし、あるいは接着剤 層を介して密着して 、てもよ 、。
[0055] 本発明で用いられる複合ィ匕部材は、型内に設置可能であり、塊状重合時の型温度 において流動性を有しない材料である。複合ィ匕部材の材質としては、金属、ガラス、 セラミックス、木材などの無機材料;榭脂ゃゴムなどの有機材料;が挙げられる。無機 材料としては、金属またはガラスが好ましい。有機材料としては、榭脂が好ましい。榭 脂としては、ポリオレフイン榭脂、アクリル榭脂、 ABS榭脂、塩化ビニル榭脂、不飽和 ポリエステル榭脂、メラミン榭脂、エポキシ榭脂、フエノール榭脂、ポリウレタン榭脂、 ポリアミド榭脂、ノルボルネン系榭脂などが挙げられる。なかでも、アクリル榭脂が特 に好ましい。
[0056] 複合化部材の形状も特に限定されず、シート、板、棒、織布または不織布、各種三 次元形状物などの 、ずれでもよ 、。
[0057] 複合ィ匕部材とノルボルネン系榭脂とを、接着剤層を介して密着させる場合には、複 合化部材の、反応液と接触する表面の少なくとも一部に、接着剤層を形成しておけ ばよ ヽ。接着剤層の形成に用いられる材料は塊状重合反応を阻害しな ヽものであれ ば特に限定されず、用いる複合ィ匕部材により異なるが、スチレンと共役ジェンとのブ ロック共重合体またはその水素化物を含有して 、ることが好まし 、。このようなブロック 共重合体の具体例としては、スチレン ブタジエンブロック共重合体(SB)、スチレン イソプレンブロック共重合体(SI)、スチレン ブタジエン-スチレンブロック共重合 体(SBS)、スチレン イソプレン スチレンブロック共重合体(SIS)、スチレンーブタ ジェン—イソプレン—スチレンブロック共重合体 (SBIS)などが挙げられる。複合化部 材とノルボルネン系榭脂とが、接着剤層を介して密着していると、両者の密着性が高 いので好ましい。
[0058] ノルボルネン系榭脂成形体
以上のようにして、本発明の成形体を得ることができる。本発明の成形体中におけ る、充填材としてのハイブリッドフィラーの含有量は、成形体全体 100重量%に対して 、好ましくは 5〜35重量%、より好ましくは 10〜30重量%である。ただし、本発明の 成形体が、複合化部材と一体的に形成してある複合成形体である場合は、上記範囲 は複合ィ匕部材を除くノルボルネン系榭脂部分における含有量を表す。充填材として のハイブリッドフィラーの含有量が多すぎると成形体の耐衝撃性が低下する場合があ る。一方、少なすぎると成形体の剛性や寸法安定性が不十分な場合がある。
[0059] 表 rifにめつき層が形成されたノルボルネン系榭脂成形体
本発明のノルボルネン系榭脂成形体は、メツキ層との密着性が優れることから、表 面にめっき層が形成されていることが好ましい。表面にめっき層が形成されたノルボ ルネン系榭脂成形体は、ノルボルネン系榭脂成形体表面にめっき処理を施すこと〖こ より形成される。なお、めっき層の厚みは、好ましくは 10〜300 /ζ πι、特に好ましくは 50〜150 πιである。
めっき層を形成する場合におけるめっき処理方法としては特に限定されないが、本 発明では、まず、化学めつき (無電解めつき)により、ノルボルネン系榭脂成形体表面 に第 1めっき層(ィ匕学めつき層)を形成し、次いで、電気めつき (電解めつき)により、第 1めっき層の上に第 2めっき層(ィ匕学めつき層)を形成する方法が好ましい。すなわち 、本発明に係るめっき層は、化学めつきにより形成される第 1めっき層と、電気めつき により形成される第 2めっき層と、力もなる構成であることが好ましい。
以下、本発明に係るめっき層の形成方法について説明する。
[0060] まず、本発明では、ノルボルネン系榭脂成形体表面に化学めつきを行う前に、ノル ボルネン系榭脂成形体に前処理を施す。このような前処理としては、脱脂工程、化学 エッチング工程、感応性付与 (センシタイジング)工程、および活性ィ匕 (ァクティべィテ イング)工程等が挙げられ、本発明では、これらの前処理方法として一般的な方法が 採用される。
[0061] 具体的には、まず、得られたノルボルネン系榭脂成形体表面の脱脂処理を行う(脱 脂工程)。脱脂工程は、榭脂成形体表面に付着している油脂性の汚れを、アルカリ 脱脂、溶剤脱脂、ェマルジヨン脱脂、電解脱脂、または機械脱脂などの方法により除 去する工程である。
[0062] 次 、で、脱脂処理を行ったノルボルネン系榭脂成形体に、化学エッチングを行う( 化学エッチング工程)。化学エッチング工程では、硫酸、硝酸、塩酸、酢酸、クロム酸 、リン酸、過マンガン酸化合物、クロム酸ィ匕合物、または塩ィ匕第二鉄化合物などを含 む化学エッチング液を用いる。
[0063] 次 、で、化学エッチングを行ったノルボルネン系榭脂成形体に、感応性付与およ び活性化を行う (感応性付与工程および活性化工程)。感応性付与工程および活性 化工程では、銀、ノ ラジウム、亜鉛、コバルトなどの金属やこれらの塩ゃ錯体を、水ま たはアルコール、あるいはクロ口ホルムなどの有機溶媒に 0. 001〜10重量%の濃度 で溶解した溶液 (必要に応じて酸、アルカリ、錯化剤、還元剤などを含有していてもよ い)に浸漬した後、金属を還元することにより、ノルボルネン系榭脂成形体表面にめ つき触媒を付着させ、活性化させる。
[0064] 以上のような前処理をノルボルネン系榭脂成形体に施した後、化学めつき液の入つ ためつき浴にノルボルネン系榭脂成形体を浸して化学めつきを行い第 1めっき層を形 成する。化学めつきの条件はめつき液に応じて設定すればょ 、。
[0065] 化学めつきに用いるめっき液としては、特に限定されず、公知の自己触媒型の無電 解めつき液を用いることができる。
たとえば、次亜リン酸アンモ-ゥム、次亜リン酸、水素化硼素アンモ-ゥム、ヒドラジ ンおよびホルマリンなどを還元剤とする無電解銅めつき液、次亜リン酸ナトリウムなど を還元剤とする無電解ニッケル リンめつき液、ジメチルァミノボランを還元剤とする 無電解ニッケル ホウ素めつき液、無電解パラジウムめっき液、次亜リン酸ナトリウム を還元剤とする無電解パラジウム—リンめつき液、無電解金めつき液、無電解銀めつ き液、次亜リン酸ナトリウムを還元剤とする無電解ニッケル—コバルト—リンめつき液 等の無電解めつき液を用いることができる。また、これら無電解めつき液にはめつき液 の安定性や、めっき析出の速度を制御する目的で、酒石酸、エチレンジァミン四酢酸 、クェン酸、および酢酸などの公知の錯化剤、ホウ酸などの緩衝剤、苛性ソーダなど の pH調整剤などを適宜添加して用いても良 、。
[0066] 次いで、化学めつきにより第 1めっき層を形成したノルボルネン系榭脂成形体に、電 気めつきを行い、第 1めっき層の上に第 2めっき層を形成する。
電気めつき方法としては、特に限定されず、公知の方法を採用することができる。ま た、電気めつきにより形成する第 2めっき層としては、単一の金属からなる単層膜でも 良いし、あるいは複数種の金属力もなる多層膜としても良い。また、第 2めっき層を構 成する金属としても、特に限定されず、たとえば、銅、銀、ニッケル、金、スズ、コバル ト、クロム等が挙げられる力 最終的に得られるノルボルネン系榭脂成形体の用途に 応じて、適宜決定すればよい。
[0067] 本発明に係るめっき層(第 1めっき層および第 2めっき層)は、ノルボルネン系榭脂 成形体表面全体を覆うように形成されたものであってもょ 、し、ノルボルネン系榭脂 成形体表面に任意のパターン状に形成されたものであってもよい。パターン状にめつ き層を形成する方法としては、(1)まず、ノルボルネン系榭脂成形体の表面全体に化 学めつきを施して、第 1めっき層を形成した後、その上にめっきレジストを用いてレジ ストノ ターンを形成し、レジストノ ターンを介して電気めつきにより第 2めっき層を形成 し、次いで、レジストを除去し、さらにエッチング処理により不要な第 1めっき層部分を 除去して、パターン状のめっき層を形成する方法、あるいは、(2)まず、ノルボルネン 系榭脂成形体表面に、所望のノターンでィ匕学めつきを施すことにより、所望のパター ンを有する第 1めっき層を形成し、次いで、このパターン状の第 1めっき層の上に、第 2めっき層を形成する方法が挙げられる。なお、上記(1)の方法において、第 2めっき 層を複数種の金属力 なる多層膜とする場合には、第 2めっき層を構成する一種ある いは二種以上の金属膜を形成した後、レジスト除去およびエッチング処理を行い、そ の後、残りの金属膜を形成する方法を採用しても良い。
[0068] このようにして得られる本発明の、表面にめっき層が形成されたノルボルネン系榭 脂成形体は、高剛性で、寸法安定性に優れ、めっき層により優れた意匠性が付与さ れており、かつ、ノルボルネン系榭脂成形体とめっき層との密着性が高いという性質 を有している。そして、該成形体は、プリプレダ、プリント配線板、絶縁シート、層間絶 縁膜、アンテナ基板などの電子部品材料や、キッチンシンク、キッチンカウンターなど の住宅設備、バンパーなどの装飾めつきを有する成形体に好適に用いることができる 実施例
[0069] 以下、本発明を実施例に基づきさらに詳細に説明するが、本発明はこれら実施例 に限定されるものではない。なお、実施例および比較例における部および%は、特 に断りのない限り重量基準である。また、各特性は、下記に示す方法により測定した
[0070] フィラー夜の粘度
フィラー液 (充填材を含む反応原液)の粘度は、 B型粘度計を用いて、液温 25°Cと し、 No. 22のローターを用い、回転数 60rpmの条件で 1分間撹拌したときの粘度を 測定した。
[0071] 曲げ弾性率
ノルボルネン系榭脂成形体の曲げ弾性率は、 JIS K 7171に従い測定した。
[0072] 膨張率
ノルボルネン系榭脂成形体の線膨張率は、 JIS K 7197に準じて測定した。ただ し、試験片としては、長さ 10mm、幅 5mm、厚さ 4mmのものを用いた。
[0073] ノルボルネン系榭脂成形体 めつ 層 の密着件
表面にめっき層が形成されたノルボルネン系榭脂成形体の、ノルボルネン系榭脂 成形体とめっき層との密着性は、 JIS H 8630に準じて、密着強度を測定すること により評価した。
[0074] 実施例 1
ノ、イブリツドフイラ一の製诰
500Lのヘンシェルミキサーに、繊維状充填材としてウォラストナイト(キンセイマテツ ク社製 SH-400 50%体積累積径: 20 m、アスペクト比: 18) : 75部と、粒子状 充填材として炭酸カルシウム (三共精粉社製 エスカロン # 2000 50%体積累積径 : 1. 8 m、アスペクト比: 1) : 25部とを投入し、槽内温度 30°C、回転速度 360rpmの 条件で撹拌した。次いで、ミキサー内に、シランカップリング剤 (信越ィ匕学工業 KB M- 1003) 0. 5部を噴霧することにより添加し、噴霧終了後、回転速度 720rpm (周 速 40mZs)で 7分間撹拌した。その後、槽内温度を 110°Cに昇温し、回転速度 360r pm (周速 20mZs)で 10分間撹拌することにより、フィラーを乾燥した。次いで、ミキ サー内に、チタネート系カップリング剤(味の素ファインテクノネ土製 プレンァクト KR- TTS) 0. 75部を噴霧することにより添加した。噴霧終了後、回転速度 360rpm (周速 20m/s)で 5分間撹拌することにより、ハイブリッドフィラーを得た。
[0075] フィラー液の調製
ジシクロペンタジェン: 90部およびトリシクロペンタジェン: 10部からなるノルボルネ ン系モノマー混合物に、上記にて製造したノ、イブリツドフイラ一: 130部を添加し、ホ モジナイザーを用いて、回転数 13500rpmおよび 10分間の条件でせん断分散する ことにより、ノルボルネン系モノマーと、ハイブリッドフィラーと、を含有するフイラ一液 を得た。得られたフィラー液について、上記した方法により、粘度を測定した。結果を 表 1に示す。
[0076] ノルボルネン系榭脂成形体の製诰
まず、反応原液 Aおよび B (ともに、 RIMTEC社製 PENTAM # 4000)を準備し た。なお、反応原液 Aは、ノルボルネン系モノマー混合物にカ卩えて、活性剤、活性調 節剤およびエラストマ一を含有する反応原液であり、反応原液 Bは、ノルボルネン系 モノマー混合物に加えて、メタセシス触媒、エラストマ一および酸ィ匕防止剤を含有す る反応原液である。そして、準備した反応原液 Bと、上記にて調製したフィラー液とを 体積比で 1 : 1となるように添加し、十分に均一に混合させ、混合液を得た。この時、フ イラ一液 230部、反応原液 Bが 145部の割合であった。
[0077] 次いで、上記とは別に、縦 260mm X横 240mmのステンレス板を 2枚準備し、これ らを対向させ、縦方向の両端部と横方向の片端部とに、厚み 4mm、幅 15mmのシリ コンパッキングを設置して、このシリコンパッキングを 2枚のステンレス板で挟むことに より、内部に縦 245mm X横 210mm X厚さ 4mmの空間(キヤビティ)を有する簡易 金型を作製した。そして、シリコンパッキングで塞がれていない辺を上にした状態で、 この簡易金型を垂直に立てて、一枚のステンレス板の最下部に孔を開けることにより 反応液注入孔を形成した。また、もう一枚のステンレス板には、全面にヒーター線を 貼り、加温できるようにした。
[0078] 次いで、カートリッジ容量が 2 : 1であるガンスタティックミキサーを準備し、容量の大 きいカートリッジに、上記にて作製した混合液を、容量の小さい他方のカートリッジに 、反応原液 Aを充填した。次いで、上記にて作製した簡易金型を 80°Cに加温し、加 温した簡易金型内に、これら混合液と反応原液 Aとをスタティックミキサーで混合しな がら、注入することにより塊状重合を開始した。なお、本実施例では、反応原液 Aと、 混合液と、の比率を、体積比で 1 : 2とし、また、反応液全体 (ノルボルネン系榭脂成形 体全体) 100部に対する、ハイブリッドフィラーの添加量を 25部とした。
[0079] そして、 2分間反応させた後に、簡易金型を解体し、成形体を取り出すことにより、ノ ルボルネン系榭脂成形体を得た。
得られたノルボルネン系榭脂成形体から、長さ 80mm、幅 10mm、厚さ 4mmの試 験片を切り出し、上記の方法に従って曲げ弾性率を測定した。結果を表 2に示す。表 2において、 E は試験片の長さ方向が金型の縦方向と平行になるように作製した
fx
試験片について測定した値である。また、 E は試験片の長さ方向が金型の横方向
fy
と平行になるように作製した試験片について測定した値である。 E および E が大
fx fy きいほど曲げ弾性率が高ぐ剛性に優れることを表す。
また、得られたノルボルネン系榭脂成形体から、長さ 10mm、幅 5mm、厚さ 4mm の試験片を切り出し、線膨張率を測定した。結果を表 2に示す。表 2において、 a
spx は試験片の長さ方向が金型の縦方向と平行になるように作製した試験片について測 定した値である。また、 a は試験片の長さ方向が金型の横方向と平行になるように
spy
作製した試験片について測定した値である。 a および α が小さいほど寸法安
spx spy
定性が高いことを表す。
[0080] 実施例 2
フィラー液を調製する際における、ハイブリッドフィラーの添加量を 170部に変更し た以外は、実施例 1と同様にして、フィラー液およびノルボルネン系榭脂成形体を得 た。そして、得られたフィラー液およびノルボルネン系榭脂成形体について、実施例
1と同様の方法により、それぞれ評価を行った。なお、実施例 2においては、反応原 液 Aと、混合液と、の比率が、体積比で 1 : 2となるように、反応原液 Aおよび反応原液 Bの使用量を、それぞれ 159部に変更した。また、反応液全体 (ノルボルネン系榭脂 成形体全体) 100部に対する、ハイブリッドフィラーの添加量を 29部とした。結果を表 2に示す。
[0081] 比較例 1
フィラー液を以下の方法により調製した以外は、実施例 1と同様にして、フィラー液 およびノルボルネン系榭脂成形体を得た。
すなわち、比較例 1においては、まず、ジシクロペンタジェン: 90部およびトリシクロ ペンタジェン: 10部からなるノルボルネン系モノマー混合物に、予めシランカップリン グ剤で表面処理されたウォラストナイト (キンセイマテック社製 SH-400S) : 97. 5 部、予めシランカップリング剤で表面処理された炭酸カルシウム: 32. 5部、およびチ タネート系カップリング剤: 5. 2部を添加し、これらをホモジナイザーを用いて、回転 数 13500rpmおよび 10分間の条件でせん断分散することにより、フィラー液を調製 した。
[0082] そして、得られたフィラー液およびノルボルネン系榭脂成形体について、実施例 1と 同様の方法により、それぞれ評価を行った。なお、比較例 1においては、反応液全体 (ノルボルネン系榭脂成形体全体) 100部に対する、ハイブリッドフィラーの添加量を 25部とした。結果を表 2に示す。
[0083] [表 1]
実施例 1 実施例 2 比較例 1 混合モノマー (重量部) 100 100 100 フイラ一の添加の形態 ノ Wプリッド ハイブリッド
単純ブレンド フイラ一 フイラ一
ウォラストナイ卜 (重量部) 97.5 127.5 97.5 炭酸カルシウム (直: ¾部) 32.5 42.5 32.5 フィラーの合計量 (重量部) 130 170 130 フイラ一液中のフイラ一量 (重量%) 57 63 57 フィラー液の粘度 ^mPa-s) 320 640 810
[0084] [表 2] 表 2 実施例 1 実施例 2 比較例 1 混合モノマ一 (重量部) 100 100 100 フイラ一液
フイラ一の合計量 t虛 M部) 130 170 130 反応原液 A (重量部) 145 159 145 反応原液 B (重量部) 145 159 145 成形体中のフイラ一量 (重量%) 25 29 25 曲げ弾性率
f (MPa) 3740 4290 3270
Ε¾ (MPa) 2440 2590 2370 線膨張率
SP, ( X 10~V°C) 2 2 3 SP ( 10"V°C) 5 5 6
[0085] 表 1より、フィラー液 (反応原液)中に、フィラー(充填材)を、ノ、イブリツドフイラ一の 形態で添加した実施例 1, 2は、分散性が良好であるため、単にブレンドしただけの 比較例 1と比べて、得られるフィラー液の粘度を低くできることが確認できる。なお、実 施例 1, 2のフイラ一液は、保存安定性にも優れたものであった。特に、実施例 2の結 果より、ハイブリッドフィラー(充填材)の含有量を、 60重量%以上に増加させた場合 でも、良好な結果が得られることが確認できる。 これに対して、フィラー(充填材)を単にブレンドしただけの比較例 1は、フィラー液 の粘度が高くなつてしまい、また、保存安定性にも劣るものであった。
[0086] また、表 2より、実施例 1および 2のノルボルネン系榭脂成形体は、曲げ弾性率およ び線膨張率に優れ、剛性および寸法安定性に優れていることが確認できる。特に、 実施例 2の結果より、ハイブリッドフィラーの含有量を多くすることにより、曲げ弾性率 のさらなる向上が可能となることが確認できる。また、実施例 1と比較例 1とを比較する ことにより、たとえフィラーの含有量を同じ量としたとしても、フィラーを単にブレンドし ただけでは、曲げ弾性率や線膨張率に劣る結果となることが確認できる。
[0087] 実施例 3
ノルボルネン系榭脂成形体の製诰
ジシクロペンタジェン 90部およびトリシクロペンタジェン 10部からなるノルボルネン 系モノマー混合物に、スチレン一イソプレン一スチレンブロック共重合体(クインタック 3421 :日本ゼオン (株)製)を 3部溶解させた。次いで、活性剤としてジェチルアルミ -ゥムクロライドと、活性調節剤として 1, 3—ジクロロ一 2—プロノ V—ルと、をそれぞ れ 100ミリモル Zkg濃度となるように添加し、さらに四塩化珪素を 0. 1部添加して、均 一に混合分散し、反応原液 (A液)を得た。 A液の比重は 0. 98であった。
[0088] これとは別に、ジシクロペンタジェン 90部およびトリシクロペンタジェン 10部からな るノルボルネン系モノマー混合物に、スチレン一イソプレン一スチレンブロック共重合 体 (クインタック 3421)を 3部溶解させた。次いで、フエノール系酸ィ匕防止剤 (ィルガノ ックス 1010:チバスべシャリティーケミカルズ (株)製)を 2部溶解させ、さらに重合触 媒としてトリ(トリデシル)アンモ-ゥムモリブデートを 25ミリモル Zkg濃度となるように 添加して、均一に混合分散し、反応原液 (B液)を得た。 B液の比重は 0. 98であった
[0089] 次に、繊維状充填材および粒子状充填材を、予め高速撹拌することにより、ハイブ リツドフイラ一化した後、反応原液 (C液)を調製した。
すなわち、まず、 500Lのヘンシェルミキサーに、繊維状充填材であるウォラストナイ ト(SH— 400 :キンセイマテック (株)製、 50%体積累積径が 20 /ζ πι、アスペクト比が 18、ビュルシランで表面処理されているもの) 135部と、粒子状充填材である重質炭 酸カルシウム(SCP—E# 2300 :三共精粉 (株)製、 50%体積累積径が 1. 、ァ スぺタト比が 1、ステアリン酸で表面処理されているもの) 45部とを投入し、槽内温度 3 0°C、回転速度 360rpmの条件で撹拌した。次いで、ミキサー内に、シランカップリン グ剤 (信越化学工業 KBM— 1003) 0. 5部を噴霧することにより添加し、噴霧終了 後、回転速度 360rpm (周速 20mZs)で 7分間撹拌した。その後、槽内温度を 110 °Cに昇温し、回転速度 360rpm (周速 20mZs)で 10分間撹拌することにより、フイラ 一を乾燥した。次いで、ミキサー内に、チタネート系カップリング剤(味の素ファインテ タノ社製 プレンァクト KR— TTS) 0. 75部を噴霧することにより添加した。噴霧終了 後、回転速度 360rpm (周速 20mZs)で 5分間撹拌することにより、ハイブリッドフイラ 一を得た。
そして、ジシクロペンタジェン 90部およびトリシクロペンタジェン 10部からなるノルボ ルネン系モノマー混合物に、上記にて製造したノ、イブリツドフイラ一 180部を添加し、 ホモジナイザーを用いて、回転数 13500rpmおよび 10分間の条件でせん断分散す ることにより、ノルボルネン系モノマーと、ハイブリッドフィラーと、を含有する反応原液 (C液)を得た。
[0090] 内部に縦 500mm X横 500mm X厚さ 4mmの空間(キヤビティ)を有する反応射出 成形用金型を準備し、一方を 90°C、もう一方を 60°Cに加温した。そして、上記にて調 製した A液 26. 8部、 B液 26. 8部および C液 46. 4部をミキシングヘッド内に送液し、 次いで、反応射出成形用金型内に、 5MPa以下の注入圧力で注入し、塊状重合を 開始して、 3分間反応を行った。このときの A液、 B液および C液の混合比は体積比 で 1: 1: 1であり、注入された繊維状充填材の量は 22. 5部、粒子状充填材の量は 7. 5部であった。その後、金型から、ノルボルネン系榭脂成形体を取り出した。
[0091] 得られたノルボルネン系榭脂成形体にっ ヽて、曲げ弾性率および線膨張率の測定 を行った。結果を表 3に示す。
[0092] めっき層の形成
上記にて製造したノルボルネン系榭脂成形体を、縦 347mm X横 210mm X厚さ 4 mmの大きさに切り出し、切り出した榭脂成形体について、以下に説明するように、め つき前の前処理を行った。 [0093] すなわち、まず、切り出したノルボルネン系榭脂成形体を、 1リットル当たり、硫酸 10 Omlおよび界面活性剤 1. 5gを溶解した水溶液に、 50°C、 5分間の条件で浸漬する ことにより、脱脂処理を行った。次いで、脱脂処理を行ったノルボルネン系榭脂成形 体を、 1リットル当たり、硫酸 100mlおよび無水クロム酸 400gを溶解した水溶液 (ィ匕学 エッチング液)に、 65°C、 5分間の条件で浸漬することにより、化学エッチングを行つ た。次いで、化学エッチングを行ったノルボルネン系榭脂成形体を、 1リットル当たり、 35%塩酸 50mlを溶解した水溶液を用いて、 25°C、 2分間の条件で酸洗浄を行った 。次いで、洗浄したノルボルネン系榭脂成形体を、 1リットル当たり、塩化第一錫(2水 和物) 20gおよび 35%塩酸 50mlを溶解した水溶液に、 25°C、 5分間の条件で浸漬 することにより、感応性を付与した。次いで、感応性付与を行ったノルボルネン系榭 脂成形体を、 1リットル当たり、塩化パラジウム 0. 4gおよび 35%塩酸 3mlを溶解した 水溶液に、 25°C、 5分間の条件で浸漬することにより、活性化を行った。
[0094] そして、活性ィ匕を行ったノルボルネン系榭脂成形体を、 1リットル当たり、硫酸-ッケ ル(6水和物) 15g、クェン酸ソーダ(2水和物)、次亜リン酸ソーダ(1水和物) 10gおよ び乳酸 3mlを溶解した水溶液 (pHIO)に、 40°C、 8分間の条件で浸漬することにより 、化学めつきを行い、ノルボルネン系榭脂成形体表面に化学めつき層を形成した。
[0095] さらに、化学めつき層を形成したノルボルネン系榭脂成形体を、 1リットル当たり、硫 酸 50mlを溶解した水溶液中に、 25°C、 20秒の条件で浸漬した。その後、 1リットル 当たり、硫酸銅(5水和物) 150g、硫酸 60gを溶解した水溶液に浸漬して、銅陽極を 用いて、 25°C、 3分、陰極電流密度 2AZdm2の条件で処理した。そして、最後に、 1 リットル当たり、硫酸銅(5水和物) 200g、硫酸 60gおよび適量の光沢剤を溶解した水 溶液に浸漬し、銅陽極を用いて、 25°C、 30分、 4AZdm2の条件で、電気めつきを行 い、厚さ 40 mの光沢銅めつき層を形成し、表面にめっき層が形成されたノルボル ネン系榭脂成形体を得た。該成形体について、密着強度の測定を行った。結果を表 3に示す。
[0096] 実施例 4
ノルボルネン系榭脂成形体全体 100部に対して、ハイブリッドフイラ一として添加す る繊維状充填材の量が 15部、粒子状充填材の量が 5部となるように反応原液 (C液) を調製した以外は、実施例 1と同様にして、ノルボルネン系榭脂成形体および表面に めっき層が形成されたノルボルネン系榭脂成形体を製造し、同様に評価を行った。 結果を表 3に示す。
[0097] 比較例 2
反応原液 (C液)を調製する際に、繊維状充填材および粒子状充填材を添加しなか つた以外は、実施例 3と同様にして、ノルボルネン系榭脂成形体および表面にめっき 層が形成されたノルボルネン系榭脂成形体を製造し、同様に評価を行った。結果を 表 3に示す。
[0098] 比較例 3
繊維状充填材および粒子状充填材の代わりに、水酸化アルミニウム (ハイジライト H 34 :昭和電工 (株)製)を使用した以外は、実施例 3と同様にして、ノルボルネン系 榭脂成形体および表面にめっき層が形成されたノルボルネン系榭脂成形体を製造し 、同様に評価を行った。なお、水酸ィ匕アルミニウムの添カ卩量は、ノルボルネン系榭脂 成形体全体 100部に対して、 30部とした。結果を表 3に示す。
[0099] [表 3]
実施例 3 実施例 4 比較例 2 比較例 3 繊維状充填材
アスペクト比 18 18
ノルポルネン系樹脂成形体中の量 (重量%) 22.5 15 0 0 粒子状充填材
アスペクト比 1 1 - 1 ノルポルネン系樹脂成形体中の量(重量%) 7.5 5 0 30 ノルポルネン系樹脂成形体中の
30 20 0 30 充填材の総量(重量%)
ノルボルネン系樹脂成形体の特性
曲げ弾性率
E^CGPa) 4.5 3.7 1.9 2.3
¾ (GPa) 3.5 2.5 1.9 2.3 線膨張率
a spx ( X 10- 5Z。C) 2.1 2.7 7.5 5.7 spy ( X 10"V°C) 5.2 5.7 7.5 5.7 複合成形体の特性
めっき層の密着強度 (kgfZcm) 2.4 2.1 1.6 2.4
表 3より、次の点が確認できる。
すなわち、ノルボルネン系榭脂成形体中に、 2種以上の充填材を乾式にて高速攪 拌することにより得られるハイブリッドフィラーを含有させた、表面にめっき層が形成さ れたノルボルネン系榭脂成形体は、曲げ弾性率および線膨張率に優れ、剛性およ び寸法安定性に優れており、さら〖こは、ノルボルネン系榭脂成形体とめっき層との密 着性も良好であった(実施例 3および 4)。
一方、充填材を添加しなカゝつた場合には、曲げ弾性率および線膨張率が不十分で あり、剛性、寸法安定性および密着性に劣る結果となった (比較例 2)。さら〖こ、充填 材として水酸ィ匕アルミニウムを使用した場合には、ノルボルネン系榭脂成形体とめつ き層との密着性は比較的に良好であったものの、曲げ弾性率および線膨張率が不 十分であり、剛性および寸法安定性に劣る結果となった (比較例 3)。

Claims

請求の範囲
[1] ノルボルネン系モノマーを型内で塊状重合させて得られるノルボルネン系榭脂成形 体であって、
2種以上の充填材を乾式にて高速撹拌することにより得られるハイブリッドフィラー を、含有して 、ることを特徴とするノルボルネン系榭脂成形体。
[2] 前記ノ、イブリツドフイラ一力 少なくとも、アスペクト比が 5〜: LOOである繊維状充填 材と、アスペクト比が 1〜2である粒子状充填材と、を乾式にて高速撹拌することにより 得られるフィラーである請求項 1に記載のノルボルネン系榭脂成形体。
[3] 前記繊維状充填材がウォラストナイトである請求項 2に記載のノルボルネン系榭脂 成形体。
[4] 前記粒子状充填材が炭酸カルシウムである請求項 2または 3に記載のノルボルネン 系榭脂成形体。
[5] 前記繊維状充填材および粒子状充填材の比率が、重量比で、繊維状充填材:粒 子状充填材 = 95: 5〜50: 50である請求項 2〜4の!、ずれかに記載のノルボルネン 系榭脂成形体。
[6] 前記ノ、イブリツドフイラ一力 シランカップリング剤および Zまたはチタネートカツプリ ング剤で表面処理されて!、る請求項 1〜5の 、ずれかに記載のノルボルネン系榭脂 成形体。
[7] 前記ノルボルネン系榭脂成形体が、複合化部材と一体的に形成してある複合成形 体である請求項 1〜6のいずれか〖こ記載のノルボルネン系榭脂成形体。
[8] 表面にめっき層が形成された請求項 1〜7のいずれかに記載のノルボルネン系榭 脂成形体。
[9] 前記めつき層は、化学めつきにより、前記ノルボルネン系榭脂成形体の表面に形成 された第 1めっき層と、
電気めつきにより、前記第 1めっき層の表面に形成された第 2めっき層と、を有する 請求項 8に記載のノルボルネン系榭脂成形体。
[10] 請求項 1〜9の ヽずれかに記載のノルボルネン系榭脂成形体を製造する方法であ つて、前記ノルボルネン系モノマーと、メタセシス触媒と、前記ハイブリッドフィラーと、 を含有してなる反応液を型内に注入し、前記型内で塊状重合させることを特徴とする ノルボルネン系榭脂成形体の製造方法。
前記型内に複合ィ匕部材が設置されている請求項 10に記載のノルボルネン系榭脂 成形体の製造方法。
PCT/JP2006/322840 2005-11-18 2006-11-16 ノルボルネン系樹脂成形体およびその製造方法 WO2007058249A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2006800509937A CN101360772B (zh) 2005-11-18 2006-11-16 降冰片烯系树脂成型体及其制备方法
EP06832729A EP1950236A4 (en) 2005-11-18 2006-11-16 NORBORNENE RESIN MOLDINGS AND METHOD FOR MANUFACTURING THE SAME
JP2007545285A JP5357428B2 (ja) 2005-11-18 2006-11-16 ノルボルネン系樹脂成形体およびその製造方法
US12/085,149 US20090042045A1 (en) 2005-11-18 2006-11-16 Norbornene-Based Resin Molded Article and the Method of Production Thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-334719 2005-11-18
JP2005334719 2005-11-18

Publications (1)

Publication Number Publication Date
WO2007058249A1 true WO2007058249A1 (ja) 2007-05-24

Family

ID=38048632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/322840 WO2007058249A1 (ja) 2005-11-18 2006-11-16 ノルボルネン系樹脂成形体およびその製造方法

Country Status (6)

Country Link
US (1) US20090042045A1 (ja)
EP (1) EP1950236A4 (ja)
JP (1) JP5357428B2 (ja)
KR (1) KR20080066803A (ja)
CN (1) CN101360772B (ja)
WO (1) WO2007058249A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009066928A (ja) * 2007-09-13 2009-04-02 Rimtec Kk 複合成形体
US20100091425A1 (en) * 2006-12-22 2010-04-15 Panasonic Corporation Electronic component and method for producing the same
WO2015098620A1 (ja) * 2013-12-26 2015-07-02 日本ゼオン株式会社 重合性組成物の製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1849832A1 (en) * 2005-02-18 2007-10-31 Rimtec Corporation Norbornene resin molded body and method for manufacturing same
CN103890237A (zh) * 2011-09-14 2014-06-25 马特里亚公司 含有用第8族烯烃复分解催化剂聚合的树脂组合物的改进电解池盖
US20150004423A1 (en) * 2013-06-28 2015-01-01 Saint-Gobain Performance Plastics Corporation Resins and radomes including them
IT201600131259A1 (it) * 2016-12-27 2018-06-27 Eni Spa Materiale trasportatore di lacune e dispositivo fotovoltaico che lo utilizza
JP7132794B2 (ja) * 2018-08-24 2022-09-07 パナソニックホールディングス株式会社 複合樹脂成形体

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH026525A (ja) * 1988-06-27 1990-01-10 Teijin Ltd ガラス強化重合体成型物及びその製造方法
JP2001279065A (ja) * 2000-03-30 2001-10-10 Hitachi Chem Co Ltd プラスチック成形体
JP2002338664A (ja) * 2001-05-18 2002-11-27 Nippon Zeon Co Ltd ノルボルネン系樹脂成形体の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4101033A (en) * 1977-06-08 1978-07-18 The Plastic Forming Company, Inc. Molded case for supporting and enclosing an article
JPH07121982B2 (ja) * 1988-06-04 1995-12-25 日本ゼオン株式会社 熱硬化性樹脂の製造法およびその反応原液
JPH0428714A (ja) * 1990-05-23 1992-01-31 Nippon Zeon Co Ltd 高重合活性ジシクロペンタジエンの製造法およびその重合法
US5409996A (en) * 1993-02-23 1995-04-25 Japan Synthetic Rubber Co., Ltd. Thermoplastic resin composition
DE19608389A1 (de) * 1996-03-05 1997-09-11 Bakelite Ag Verfahren zur Herstellung von duroplastischen Formmassen
US6127017A (en) * 1997-04-30 2000-10-03 Hitachi Maxell, Ltd. Substrate for information recording disk, mold and stamper for injection molding substrate, and method for making stamper, and information recording disk
DE69925939T2 (de) * 1998-12-09 2006-05-04 Sumitomo Bakelite Co. Ltd. Additionspolymerisation in einer form unter benutzung von polymeren des norbornentyps mit gruppe-3-metallkomplexen
EP1849832A1 (en) * 2005-02-18 2007-10-31 Rimtec Corporation Norbornene resin molded body and method for manufacturing same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH026525A (ja) * 1988-06-27 1990-01-10 Teijin Ltd ガラス強化重合体成型物及びその製造方法
JP2001279065A (ja) * 2000-03-30 2001-10-10 Hitachi Chem Co Ltd プラスチック成形体
JP2002338664A (ja) * 2001-05-18 2002-11-27 Nippon Zeon Co Ltd ノルボルネン系樹脂成形体の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1950236A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100091425A1 (en) * 2006-12-22 2010-04-15 Panasonic Corporation Electronic component and method for producing the same
JP2009066928A (ja) * 2007-09-13 2009-04-02 Rimtec Kk 複合成形体
WO2015098620A1 (ja) * 2013-12-26 2015-07-02 日本ゼオン株式会社 重合性組成物の製造方法

Also Published As

Publication number Publication date
US20090042045A1 (en) 2009-02-12
JPWO2007058249A1 (ja) 2009-05-07
EP1950236A4 (en) 2010-10-27
EP1950236A1 (en) 2008-07-30
CN101360772B (zh) 2011-05-18
JP5357428B2 (ja) 2013-12-04
KR20080066803A (ko) 2008-07-16
CN101360772A (zh) 2009-02-04

Similar Documents

Publication Publication Date Title
WO2007058249A1 (ja) ノルボルネン系樹脂成形体およびその製造方法
CN102164995B (zh) 半固化物、固化物、叠层体、半固化物的制造方法以及固化物的制造方法
JP2755642B2 (ja) 無機材料充填重合体成型物およびその製造方法
JP5772600B2 (ja) 表面被覆型補強材、反応射出成形用配合液、及び反応射出成形体
US4832989A (en) Method of improving the bond strength of electrolessly deposited metal layers on plastic-material surfaces
JP4904814B2 (ja) 積層体およびその製造方法
JP4944765B2 (ja) ノルボルネン系樹脂成形体およびその製造方法
JP2007224123A (ja) ノルボルネン系樹脂成形体の製造方法
JP5563748B2 (ja) 反応射出成形用反応原液、反応射出成形方法及び反応射出成形体
JPH02276852A (ja) 無機材料充填重合体成型物及びその製造方法
Lee et al. Electroless Ni-P metallization on palladium activated polyacrylonitrile (PAN) fiber by using a drying process
JP2008126417A (ja) 複合成形体
TW200302849A (en) Polymerizable composition and cured resin composition
JP5436336B2 (ja) 触媒液、配合液、ノルボルネン系樹脂成形体およびその成形方法
JP2013076007A (ja) 重合性組成物および樹脂成形体の製造方法
JP2007009055A (ja) ノルボルネン系樹脂成形体およびその製造方法
EP0436153A2 (en) Mold release agent
JPH064918B2 (ja) ポリフエニレンスルフイド樹脂成形品の表面金属化方法
JPH03197558A (ja) メッキ層形成用樹脂組成物およびその用途
JP2009066928A (ja) 複合成形体
JP2001031788A (ja) メッキされた架橋重合体成形物
JPS61250174A (ja) ポリフエニレンスルフイド樹脂成形品の表面金属化方法
Tengsuwan Environmentally-benign Electroless Nickel-Phosphorus Plating on Thermoplastic Polymers using Co-polymer based Hydrophilic Modification and Supercritical Carbon Dioxide Pd-complex Infusion
Tengsuwan Environmentally-benign Electroless Nickel-Phosphorus Plating
JP2811474B2 (ja) メッキされた成形品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007545285

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006832729

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020087011631

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 12085149

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 200680050993.7

Country of ref document: CN