WO2006075687A1 - パターン欠陥検査方法及び半導体装置の製造方法 - Google Patents

パターン欠陥検査方法及び半導体装置の製造方法 Download PDF

Info

Publication number
WO2006075687A1
WO2006075687A1 PCT/JP2006/300349 JP2006300349W WO2006075687A1 WO 2006075687 A1 WO2006075687 A1 WO 2006075687A1 JP 2006300349 W JP2006300349 W JP 2006300349W WO 2006075687 A1 WO2006075687 A1 WO 2006075687A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern
inspection
defect inspection
defect
reference pattern
Prior art date
Application number
PCT/JP2006/300349
Other languages
English (en)
French (fr)
Inventor
Kenji Kudou
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to JP2006552973A priority Critical patent/JP4644210B2/ja
Publication of WO2006075687A1 publication Critical patent/WO2006075687A1/ja
Priority to US11/777,630 priority patent/US7953269B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • G01N21/95607Inspecting patterns on the surface of objects using a comparative method
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/82Auxiliary processes, e.g. cleaning or inspecting
    • G03F1/84Inspecting
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/7065Defects, e.g. optical inspection of patterned layer for defects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • H01L22/24Optical enhancement of defects or not directly visible states, e.g. selective electrolytic deposition, bubbles in liquids, light emission, colour change

Definitions

  • the present invention relates to a pattern defect inspection method and a semiconductor device manufacturing method including the pattern defect inspection, and more particularly to a pattern defect inspection method for a reticle or a semiconductor wafer and a semiconductor device including the pattern defect inspection. This relates to the manufacturing method.
  • a pattern defect inspection a method is used in which a pattern to be inspected, such as a reticle pattern or wafer pattern, is compared with a reference pattern drawn based on design data and the deviation is detected.
  • a reticle pattern is formed of a chrome pattern force formed on a quartz substrate through a photolithographic process and a dry etching process.
  • the pinholes of chrome produced during the etch process are often due to chrome deposits.
  • Such a shift in pattern shape does not substantially act as a defect if it is small enough not to affect the operation of the semiconductor IC. Therefore, in pattern defect inspection, an allowable value for deviation from the reference pattern is preliminarily determined, and when the detected pattern deviation force exceeds the value, it is regarded as a defect. .
  • the threshold value determines the inspection sensitivity in the pattern defect inspection. In order to increase the inspection sensitivity, the threshold value is set to a small value, and in order to decrease the inspection sensitivity, the threshold value is set to a large value.
  • the threshold value is usually set to a value obtained by adding a predetermined margin (higher inspection sensitivity) so that the generated defect can be recognized without leaking. For this reason, even those that are not inherently defects are treated as defects, and a great deal of time is required to correct them in later processes. To do. It should be noted that defects that do not substantially act as defects among those detected as defects are called “pseudo defects”.
  • the appropriate value of inspection sensitivity to be set also differs.
  • the inspection sensitivity is often set to the same value for all reticles used for manufacturing the same semiconductor IC. In such a case, as described above, the place where the highest inspection sensitivity is required. It is necessary to match the inspection sensitivity. Therefore, there is a problem that the inspection sensitivity is set unnecessarily high at other points.
  • Patent Document 1 Japanese Patent Laid-Open No. 2004-45066
  • the inspection sensitivity can be set appropriately as in the above example. However, if the pattern shape becomes more complex and minute,
  • the cause of the deviation from the reference pattern is, in addition to these factors, an excess or deficiency of exposure amount in a photolithographic process or an excess or deficiency of dry etching. There is a cause. Even in the case of these excesses and deficiencies, the reference pattern force shifts similarly. For example, when the chrome film is excessively etched, the pattern width is narrowed, which is detected as a pattern shift of the reference pattern force.
  • the present invention has been made in view of the above problems, and is a pattern of a complicated shape formed on a reticle or a semiconductor wafer (these patterns are also called “actual patterns”). )),
  • the purpose is to reduce the number of pseudo-defects and greatly reduce the time required for defect inspection.
  • the present inventor has found that there is regularity in the occurrence of the deviation with respect to the deviation between the actual pattern and the reference pattern, and that the regularity is related to the shape of the reference pattern.
  • the present invention has been made.
  • the inspection sensitivity is adjusted according to the shape (complexity) of the reference pattern, so that the inspection sensitivity is set appropriately.
  • the number of pseudo defects contained in pattern defects is greatly reduced.
  • the pattern defect inspection method of the present invention is a pattern defect inspection in which an image of a pattern to be inspected is compared with an image of a reference pattern to inspect the defect of the pattern to be inspected. According to the method, the inspection sensitivity is adjusted according to the pattern shape in the reference pattern.
  • a pattern defect inspection method of the present invention includes a storage unit. According to a pattern defect inspection method for inspecting a defect of the pattern to be inspected by comparing the image of the reference pattern with the image of the pattern to be inspected by the pattern defect inspection apparatus provided, and according to the pattern shape in the reference pattern Storing the inspection sensitivity association information in the storage unit in advance, and adjusting the inspection sensitivity of the pattern defect inspection apparatus based on the association information extracted from the storage unit. And
  • the pattern defect inspection method of the present invention detects a pattern defect in a pattern to be inspected formed on a reticle or a semiconductor wafer by a pattern defect inspection apparatus.
  • a pattern defect inspection method detects a pattern defect in a pattern to be inspected formed on a reticle or a semiconductor wafer by a pattern defect inspection apparatus.
  • the pattern defect inspection method of the present invention includes an inspection target formed on a reticle or semiconductor wafer for each predetermined inspection region by a pattern defect inspection apparatus.
  • a pattern defect inspection method for detecting a pattern defect in a pattern a reference pattern image based on design data is compared with an image of the pattern to be inspected.
  • the threshold value when the number is equal to or greater than a predetermined value is set to a value larger than the threshold value when the number of corners in the inspection object is smaller than the predetermined value, and the extraction is performed. It is characterized by this.
  • a method of manufacturing a semiconductor device of the present invention includes a semiconductor that forms a pattern on a wafer using a reticle that has been subjected to pattern defect inspection.
  • the reticle pattern defect inspection is performed by comparing an image of a pattern to be inspected with an image of a reference pattern and inspecting a defect of the pattern to be inspected according to a pattern shape in the reference pattern. It is characterized by adjusting the inspection sensitivity.
  • a method for manufacturing a semiconductor device is a method for manufacturing a semiconductor device in which a pattern is formed on a wafer using a reticle subjected to pattern defect inspection.
  • the pattern defect inspection of the reticle is a method for inspecting a defect of the pattern to be inspected by comparing a reference pattern image and an image of the pattern to be inspected by a pattern defect inspection apparatus having a storage unit.
  • the method for manufacturing a semiconductor device of the present invention inspects a defect in the inspection pattern by comparing an image of the inspection pattern with an image of a reference pattern.
  • the inspection sensitivity is changed according to the complexity of the pattern. Compared to the conventional method, it is possible to set the inspection sensitivity more appropriately.
  • the pattern defect inspection method of the present invention makes it possible to significantly reduce the number of pseudo defects, and is useful for improving inspection accuracy and shortening inspection time.
  • FIG. 1 is a block diagram showing a pattern defect inspection apparatus according to an embodiment of the present invention.
  • FIG. 2 is a diagram (part 1) illustrating a reticle pattern and a reference pattern according to Example 1 of the invention.
  • FIG. 3 is a diagram (part 2) illustrating a reticle pattern and a reference pattern according to Example 1 of the invention.
  • FIG. 4 is a diagram (No. 3) illustrating a reticle pattern and a reference pattern according to Example 2 of the invention.
  • FIG. 5 is a diagram (No. 4) illustrating a reticle pattern and a reference pattern according to Embodiment 2 of the invention.
  • FIG. 10 is a diagram (No. 5) illustrating a reticle pattern and a reference pattern according to Example 3 of the invention.
  • FIG. 7 is a diagram (No. 6) illustrating a reticle pattern and a reference pattern according to Embodiment 3 of the present invention.
  • FIG. 8 is a view (No. 7) showing a reticle pattern and a reference pattern according to Embodiment 4 of the invention.
  • FIG. 9 is a view (No. 8) showing a reticle pattern and a reference pattern according to Embodiment 4 of the invention.
  • FIG. 10 is an inspection flow according to Embodiment 5 of the present invention.
  • FIG. 11 is an example of image data synthesis according to Embodiment 5 of the present invention.
  • FIG. 12 is a specific example of setting the inspection sensitivity according to the fifth embodiment of the present invention in a grid shape.
  • FIG. 13 is a specific example of a method for detecting a defect according to Embodiment 5 of the present invention.
  • FIG. 14 is an example of inspection object setting in units of micro inspection areas according to Embodiment 5 of the present invention.
  • FIG. 15 is an example of identifying a pseudo defect and a defect based on the number of copies according to Example 5 of the present invention.
  • FIG. 16 is a specific example of the inspection sensitivity condition according to Example 5 of the present invention.
  • FIG. 17 is a diagram showing the effect of setting the inspection sensitivity based on the inspection conditions.
  • FIG. 1 is a block diagram showing a pattern defect inspection apparatus used for carrying out the present invention.
  • the pattern defect device includes, for example, a reticle 1, an XY stage 2, an illumination light source 3, an objective lens 4, a half mirror 5, a CCD image sensor 6, an image acquisition unit 7, and a comparison.
  • 8 includes an image processing unit 9, a stage control unit 10, a reference data generation unit 11, an inspection sensitivity setting unit 12, a defect determination unit 13, a defect storage unit 14, and the like.
  • reticle 1 to be inspected is fixed to XY stage 2.
  • the surface of the reticle 1 is divided into a plurality of inspection areas, and each inspection area is inspected.
  • the XY stage 2 moves according to an instruction from the stage control unit 10 and scans the surface of the reticle 1 in the X direction and the Y direction for each inspection region.
  • an illumination optical system including a reticle illumination light source 3, a half mirror 5, and an objective lens 4 and a CCD image sensor 6 are arranged, and light emitted from the reticle illumination light source 3 Is reflected by the half mirror 5, narrowed by the objective lens 4, and then enters the reticle 1. Then, the reflected light passes through the objective lens 4 and the half mirror 5 and is taken into the CCD image sensor 6 and sent to the image acquisition unit 7 as an image signal.
  • the image acquisition unit 7 converts the image signal sent from the CCD image sensor 6 into a reticle pattern to be inspected, and inputs the converted reticle pattern to the comparison unit 8.
  • the design data force corresponding to each inspection area of reticle 1 in the design data of the reticle pattern is taken into reference data generation unit 11 in synchronization with the scanning range of XY stage 2.
  • the stage control unit 10 controls the XY stage 2 and sends information on the range of the XY stage 2 to the reference data generation unit 11.
  • the reference data captured by the reference data generation unit 11 is sent to the image processing unit 9 and converted into a reference pattern.
  • This reference pattern corresponds to the reticle pattern (actual pattern) previously generated by the image acquisition unit 7.
  • the reference pattern generated by the image processing unit 9 in this way is input to the comparison unit 8.
  • the comparison unit 8 compares the reticle pattern with the shape of the reference pattern. If there is a mismatch portion, the position coordinate and the pattern mismatch width are detected, and the mismatch information is sent to the defect determination unit 13.
  • the mismatch information refers to information including the amount of mismatch (shift amount) with the coordinates at the location where the mismatch (pattern shift) occurs.
  • the defect determination unit 13 determines whether or not the pattern mismatch width sent from the comparison unit 8 exceeds a predetermined threshold value. When the pattern mismatch width exceeds a predetermined threshold value, the mismatch location is determined as a defect, and the position coordinates of the defect location are stored in the defect storage unit 14.
  • a predetermined threshold is set as a reference for determining whether or not the defect is present.
  • the threshold value determines the inspection sensitivity in the pattern defect inspection, and is set for each inspection region by the inspection sensitivity setting unit 12. Thereafter, the set value (threshold value set for each inspection region) is notified to the defect determination unit 13.
  • the inspection sensitivity is adjusted according to the complexity of the pattern shape.
  • the number of corners of the pattern (hereinafter referred to as “the number of each part”) is used as an index indicating the complexity of the pattern shape, and this differs depending on whether or not the number of corners exceeds a predetermined number. Set the threshold.
  • the inspection sensitivity setting unit 12 sets a value of 20 nm for a pattern in which the number of corners of the reference pattern exceeds 5, and does not exceed the pattern! Set the threshold 5nm. Then, these set values are notified to the defect determination unit 13.
  • FIG. 2A shows a reference pattern 21 included in one inspection region
  • FIG. 2B shows a reticle pattern 22 which is an actual pattern corresponding to the reference pattern 21.
  • the reference pattern 21 has seven corners in total at positions a to g surrounded by circles in the figure. In the coordinates where the reticle pattern 22 shown in Fig. 2 (b) is drawn, the reference pattern 21 drawn with a dotted line is ( Overlaid on the reticle pattern 22).
  • the comparison unit 8 compares the reference pattern 21 and the reticle pattern 22 to detect a pattern mismatch width for each corner. For example, as shown in Fig. 2 (b), the pattern mismatch width detected at corner a is 15 nm.
  • the defect determination unit 13 determines that the corner a is not a defect because the pattern mismatch width at the corner a does not exceed the threshold of 20 nm, and does not notify the defect storage unit 14 of the corner a. Similar determinations are made for the other corners from b to g.
  • FIGS. 3 (a) and 3 (b) show a reference pattern 23 different from the reference pattern 21 shown in FIG.
  • a reticle pattern 24 corresponding to the pattern 23 is shown.
  • the reference pattern 23 drawn with a dotted line is (in this reticle pattern 24), in order to easily show the pattern deviation from the reference pattern 23.
  • the pattern mismatch width detected at the corner a is also lOnm.
  • the threshold value is set to 5 nm. Therefore, since the mismatch width between the reference pattern 23 and the reticle pattern 24 exceeds the threshold value 5 nm, the defect determination unit 13 determines that the corner a is a defect (although the maximum mismatch width is lOnm). The position coordinates are notified to the defect storage unit 14. The same processing is performed for the other corners b, c, and d.
  • the reticle pattern 22 having a mismatch width of 20 nm is not a defect
  • the reticle pattern 24 having a mismatch width lOnm is determined to be a defect.
  • This is a result obtained in consideration of the difference in the shapes of the reticle patterns 22 and 24 according to the present invention, and more appropriate defect determination can be made as compared with the conventional case.
  • the detection sensitivity adjustment as described above is normally performed for a predetermined specified area (or specified pattern).
  • the area set as the lowest detection sensitivity threshold is determined not to be a defect. It is desirable to set a threshold value for the detection sensitivity so that 100% of defects are not present (ie, there is no defect extraction failure V).
  • an angle at the pattern corner is used as an index indicating the complexity of the pattern shape instead of the number of pattern corners.
  • the threshold value is different depending on whether the angle exceeds a predetermined value or not.
  • the inspection sensitivity setting unit 12 sets a threshold value of 20 nm when the angle of the corner portion in the reference pattern does not exceed 90 degrees, and sets a threshold value of 5 nm smaller than this when it exceeds 90 degrees. Shall be notified.
  • FIG. 4A shows a reference pattern 25 included in one inspection area
  • FIG. 4B shows a reticle pattern 26 corresponding to the reference pattern 25.
  • the reference pattern 25 is drawn with a dotted line over the reticle pattern 26 in order to make it easy to deviate between the reference pattern 25 and the reticle pattern 26! /!
  • the angle at the corner a of the reference pattern 25 in the figure is 20 degrees, and since the angle does not exceed 90 degrees, 20 nm is set as the threshold value.
  • the comparison unit 8 compares the reference pattern 25 and the reticle pattern 26 and detects the mismatch width.
  • the pattern mismatch width at the corner a is 15 nm. Since the pattern mismatch width at the corner a does not exceed the threshold value 20 nm, the defect determination unit 13 determines that the corner a is not a defect and does not notify the defect storage unit 14 of the corner a.
  • FIGS. 5A and 5B show a reference pattern 27 different from the reference pattern 25 shown in FIG. 4 and a reticle pattern 28 corresponding to the reference pattern 27.
  • a reference pattern 27 drawn with a dotted line is drawn in an overlapping manner (on the reticle pattern 28).
  • the defect determination unit 13 determines that the corner portion a is a defect, and the position coordinate is determined. Notify the defect storage unit 14.
  • the pattern mismatch width increases as the angle of the pattern corner decreases.
  • the reason why such a phenomenon occurs is that, as the angle of the pattern corner becomes smaller, the pattern shape force S photolithography process and the etching process are more easily affected.
  • the detected mismatch width does not necessarily mean that all of the detected mismatch widths act as defects. Therefore, the pseudo defects can be reduced by the inspection sensitivity setting shown in the present embodiment.
  • the distance between adjacent corners in the reference pattern is used as an index indicating the complexity of the pattern, and different threshold values are set according to whether or not the distance exceeds a predetermined value. To do.
  • the pattern defect inspection apparatus shown in FIG. 1 is also used in the pattern defect inspection of this embodiment.
  • the inspection sensitivity setting unit 12 sets a threshold value 5 nm smaller than this when the distance between the corners in the reference pattern does not exceed 50 nm! /, Sometimes the threshold! /, And the value 20 nm. Then, the set values are notified to the defect determination unit 13.
  • FIG. 6A shows a reference pattern 29 included in one inspection region
  • FIG. 6B shows a reticle pattern 30 corresponding to the reference pattern 29.
  • a reference pattern 29 drawn with a dotted line is drawn over the coordinates where the reticle pattern 30 is drawn (over the reticle pattern 30). If the distance between adjacent corners a and b in the reference pattern 29 is 30 nm, this does not exceed 50 nm, so 20 nm is set as the threshold value.
  • the comparison unit 8 compares the reference pattern 29 and the reticle pattern 30 and detects the mismatch width. As shown in Fig. 6 (b), the pattern mismatch width at corner a is 15nm.
  • the defect determination unit 13 determines that the corner a is not a defect because the pattern mismatch width at the corner a does not exceed 20 nm, and does not notify the defect storage unit 14 of the corner a.
  • the defect storage unit 14 may be notified of the information “No defect exists”.
  • FIGS. 7 (a) and 7 (b) correspond to reference pattern 31 different from FIG. 6 (a) and to this reference pattern 31.
  • the reticle pattern 32 is shown.
  • a reference pattern 31 drawn with a dotted line is drawn in an overlapping manner (on the reticle pattern 32) at the coordinates where the reticle pattern 32 in FIG. 7 (b) is drawn.
  • the pattern mismatch width detected at corner a is lOnm. In this example, if the distance between the adjacent corners a and b of the reference pattern 31 is 70 ⁇ m, this exceeds 50 nm! /, So the threshold! / And the value 5 nm are set. Accordingly, the mismatch width of the reticle pattern 32 exceeds the threshold value 5 nm, and the defect determination unit 13 determines that the corner a is a defect, and notifies the defect storage unit 14 of the position coordinates.
  • the pattern width in the reference pattern that is, the length in the direction perpendicular to the longitudinal direction of the pattern is used as an index indicating the complexity of the pattern, and this length exceeds a predetermined value.
  • Different threshold values are set according to whether or not the force is strong.
  • pattern defect inspection apparatus shown in FIG. 1 is also used in the pattern defect inspection of this embodiment.
  • FIG. 8A shows a reference pattern 45 included in one inspection region
  • FIG. 8B shows a reticle pattern 46 corresponding to the reference pattern 45.
  • a reference pattern 45 drawn with a dotted line is drawn on the coordinates where the reticle pattern 46 is drawn so as to overlap (on the reticle pattern 46).
  • the width of the reference pattern 45 is 30 nm.
  • FIG. 9A shows a reference pattern 47 included in one inspection region
  • FIG. 9B shows a reticle pattern 48 corresponding to the reference pattern 47.
  • a reference pattern 47 drawn with a dotted line is drawn over the coordinates where the reticle pattern 48 is drawn (over the reticle pattern 48).
  • the reference pattern The width at 47 is lOOnm.
  • the inspection sensitivity setting unit 12 sets a threshold of 20 nm when the width of the reference pattern does not exceed 50 nm, and sets a threshold of 5 nm when the width of the reference pattern exceeds 50 nm. To do. Then, these setting values are notified to the defect determination unit 13.
  • the force mismatch determination unit 13 has a pattern mismatch width of 15 nm at the corner a, and the pattern mismatch width at the corner a does not exceed 20 nm. Therefore, it is determined that the corner a is not a defect. Then, the information about the corner a is not notified to the defect storage unit 14.
  • the pattern mismatch width at corner a is lOnm.
  • defect determination unit 13 determines that the pattern mismatch width at corner a has a threshold value of 5 nm. Since it exceeds, corner a is determined to be a defect. Then, the defect storage unit 14 is notified of the mismatch information about the corner a.
  • the mutual interference of the patterns is increased as in the third embodiment, and the pattern mismatch width is increased.
  • the corners detected as pattern mismatches as described above are mostly pseudo defects (even if the mismatch width is large), and the probability that they are relatively defective. Becomes smaller. Therefore, by setting the inspection sensitivity low (that is, the inspection sensitivity is set low), it becomes possible to reduce the pseudo defects.
  • FIG. 1 the block diagram of the pattern defect apparatus shown in FIG. 1 is used for explanation.
  • FIG. 10 is a diagram showing an inspection flow according to the present embodiment.
  • FIG. 10 there are three main flows up to the “image data composition (step S 131)” described in the center of the figure, so these flows will be described first.
  • the flow on the left side of Fig. 10 shows the procedure for obtaining the inspection data.
  • the image data 105 of the inspection data is acquired by the processing of conversion (1) and data conversion (2).
  • the reference data generation unit 11 extracts only the part necessary for the inspection from the design data 101 and performs format conversion for the inspection apparatus to create the inspection design data 103. (Step S102). Then, the converted inspection design data 103 is sent to the image processing unit 9. Subsequently, the design data for inspection 103 is converted into the format of the image data 105 in the layer processing unit 9 (step S104). Then, the inspection data 105 in the converted image data format is sent to the comparison unit 8. An example of the inspection data 105 is shown in FIG.
  • the flow on the right side of FIG. 10 shows a procedure for acquiring image data of an actual pattern (reticle pattern) formed on the reticle.
  • reticle 1 is set on stage 2 of the inspection apparatus (step S121).
  • step S 12 the inspection conditions are set for the inspection sensitivity setting unit 12 and the like.
  • the stage 2 is moved so that a reticle pattern scanning operation (reticle scanning) is possible (step S124), and the shape of the reticle pattern is acquired. Load into part 7 (step S125).
  • the captured image signal of the reticle pattern shape is converted into a reticle pattern 126 which is image data for inspection by the image acquisition unit 7 and sent to the comparison unit 8.
  • An example of the reticle pattern 126 is shown in FIG.
  • the comparison unit 8 compares the image data 105 of the inspection data with the image data 126 of the reticle pattern.
  • the comparison unit 8 determines whether or not the reticle 1 is correctly set on the stage 2, and if it is set correctly, the image data 105 of the inspection data and the reticle pattern are set. The image data 126 is compared in detail.
  • Step S130 it is confirmed whether the image data 105 and the image data 126 have the same power. If they do not match, the process returns to step 124, and the reticle pattern scanning operation is performed again. At this time, the operation of setting stage 2 reticle 1 (step S121) may be repeated.
  • the image data 105 and the image data 126 are compared and sent to the force defect determination unit 13.
  • the result sent to the defect determination unit 13 is, for example, information (mismatch information) such as the coordinates and the width of the mismatch at a location where there is a pattern mismatch.
  • the defect determination unit 13 synthesizes the inspection data image data 105 and the reticle pattern image data 126 and compares them in detail (step S 131).
  • the central flow in FIG. 10 shows a procedure for acquiring inspection sensitivity data.
  • the inspection sensitivity setting unit 13 obtains the inspection design data 103 sent from the reference data generation unit 11. Then, the inspection sensitivity setting unit 13 extracts the specific area 210 based on the acquired inspection data 103 (step 112).
  • the process of extracting the information of the specific area 210 is performed by the following method, for example.
  • a specific area corresponding to the shape of the pattern is determined. In other words, it associates which range should be a specific area according to the characteristics of the noturn shape.
  • information on the associated specific area 210 is stored in advance in a storage unit (not shown) that can be stored.
  • the process of extracting the specific area 210 may be performed by an operator without using a storage unit provided in the system as described above.
  • the operator confirms the pattern shape of the design data 103 for inspection, and (the operator It is also possible to create information on the specific area 210 desired by the operator and input the information on the specific area 210 created by the operator into the inspection apparatus.
  • inspection sensitivity data 114 is created from the obtained information on the specific area 210 (step 113). Specifically, “threshold” that determines inspection sensitivity is set for specific areas and other areas. Then, inspection sensitivity data 114 in which different inspection sensitivities are set for each area is completed.
  • the processing for setting the inspection sensitivity 114 is performed by the following method, for example.
  • the information related to the “threshold value” is stored in a storable storage unit (not shown).
  • the inspection sensitivity data 114 is created, the pattern shape characteristics obtained from the inspection design data 103 are sent to the storage unit. Then, information on the “threshold value” corresponding to the feature of the pattern shape is obtained from the storage unit.
  • the processing for creating the inspection sensitivity data 114 may be performed by an operator without using a storage unit provided in the system as described above.
  • the operator confirms the pattern shape of the design data 103 for inspection, the operator creates the inspection sensitivity data 114 desired by the operator, and the information of the inspection sensitivity data 114 created by the operator (the operator). You can also input it to the inspection device!
  • the inspection sensitivity data 114 generated in this way by the inspection sensitivity setting unit 12 is sent to the defect determination unit 13.
  • the defect determination unit 13 combines the three types of image data created in the flows (1) to (3) to determine the defect (step S131).
  • FIG. 11 (d) only one defect 220 is detected as a defect.
  • a portion where a pattern deviation occurs in the specific area 210 indicated by a thick dotted line is not detected as a defect.
  • the frames 200 in FIGS. 11 (a) to 11 (d) represent the minimum area for the inspection and all have the same area. )
  • FIG. 12 shows a specific example in which the inspection sensitivity is set in a grid shape.
  • the circled areas (corner portions 1 to 14) indicate all corner portions of the inspection data 105.
  • the area defined by the thick dotted squares is the specific area 210.
  • a grit 250 indicated by a thin dotted line in the figure represents a minute inspection area when performing an inspection.
  • the inspection sensitivity is usually set for each of the small divided areas.
  • FIG. 13 shows a specific example of a method for detecting defects.
  • Fig. 13 (e) is a superposition of inspection data and reticle pattern, and there are 8 locations (271 to 278) force with thick dotted circles between inspection data 105 and reticle pattern 126. Thus, there is a pattern deviation.
  • FIG. 13 (f) shows inspection sensitivity data.
  • the thick dotted line frame is the specific area 220.
  • a threshold value is set so as to be lower than the inspection sensitivity than the area outside the specific area 220.
  • FIG. 13 (d) is a diagram in which the data in FIG. 13 (e) and FIG. 13 (f) are superimposed. As a result of such overlapping, only one location (272) is detected as a defect.
  • FIG. 14 is a diagram showing an example of inspection object setting in units of minute inspection areas.
  • FIG. 15 is a diagram showing an example of identifying a pseudo defect and a defect based on the number of corners.
  • this figure shows an example in which pseudo defects and defects exist side by side on the same pattern for convenience.
  • Shape A and shape B in the reticle pattern are formed in substantially the same pattern shape. However, when this embodiment is applied, shape B of the reticle pattern is recognized as a defect, and shape A is recognized as a pseudo defect. It becomes possible.
  • FIG. 16 is a diagram showing a specific example of the inspection sensitivity condition. As shown in the figure, for example, for inspection sensitivity conditions, a plurality of conditions 1 to 5 (or more) are set simultaneously. In this way, it is also possible to perform defect inspection by setting inspection sensitivity conditions in combination.
  • the defect determination unit 13 (in the inspection flow of FIG. 10), based on the comparison result from the comparison unit 8 and the inspection sensitivity data from the inspection sensitivity setting unit 12, It is determined whether or not there is a pattern defect (step S132).
  • step S133 information on the pattern defect is sent to the defect storage unit 14, and the information is stored in the defect storage unit 14 (step S133).
  • the information on the pattern defect includes coordinates on the reticle or semiconductor wafer.
  • step S134 it is determined whether or not the reticle inspection is continued. For example, if there is still an area that needs to be inspected, the process returns to the scanning operation (step S124) to continue the inspection for reticle pattern capture.
  • Step SI 35 If there is no area that needs to be inspected, the reticle defect inspection is terminated (see Step SI 35).
  • the confirmation process and the repair process described above can be performed using, for example, a focused ion beam (FIB) device.
  • the focused ion beam device is a device that irradiates the material after focusing the ion beam extracted from the gallium ion source to 5-: LOnm.
  • the pattern repairing process for example, the pattern of the defective part is repaired by irradiating the ion beam while spraying a gas as a raw material onto the pattern defective part of the reticle.
  • FIG. Fig. 17 shows the effect of setting the inspection sensitivity based on the inspection conditions.
  • the sensitivity is set low for the above seven areas (1 to 7).
  • the number that is recognized as a defect is zero. Therefore, in this case, the number of detected defects is equal to the actual number of defects.
  • the same defect inspection can be performed on the pattern formed on the force semiconductor wafer described by taking the reticle pattern as an example.
  • It can be used for defect inspection of a pattern formed on a semiconductor wafer or for pattern defect inspection of a reticle used for pattern formation of a semiconductor IC.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

(課題)レチクル或いは半導体ウェーハに形成された複雑な形状のパターンに対する欠陥検査に際して、従来のパターン欠陥検査では、欠陥と認識されたものの中に、(実際には欠陥でない)擬似欠陥が多く含まれていた。そこで、当該欠陥検査に際して、擬似欠陥の数を減少させ、欠陥検査に要する時間を大幅に短縮する。 (解決手段)被検査パターンの画像を基準パターンの画像と比較して、該被検査パターンの欠陥を検出するパターン欠陥検査方法において、前記基準パターンにおけるパターン形状に応じて検査感度を調整する。

Description

明 細 書
パターン欠陥検査方法及び半導体装置の製造方法
技術分野
[0001] 本発明はパターン欠陥検査方法及び当該パターン欠陥検査を含んだ半導体装置 の製造方法に関し、特に、レチクルあるいは半導体ゥエーハを対象としたパターン欠 陥検査方法及び当該パターン欠陥検査を含んだ半導体装置の製造方法に関するも のである。
背景技術
[0002] 半導体 ICの製造に際しては、レチクルあるいは半導体ゥヱーハ上に設計通り正しく パターンが形成されているか否かの検査が必要となる。通常、このようなパターン欠 陥検査には、レチクルパターンゃゥエーハパターン等の被検査パターンを設計デー タに基づいて描画した基準パターンと比較し、そのずれを検出する方法が用いられ る。
[0003] レチクルを例にとると、レチクルパターンは石英基板上にフォトリソグラフイエ程及び ドライエッチング工程を経て形成されたクロムパターン力 成っており、基準パターン 力ものずれは、フォトリソグラフイエ程やドライエッチンク工程で生じたクロムのピンホ ールゃクロムの付着物によるものが多い。
[0004] このようなパターン形状のずれは、半導体 ICの動作に影響を及ぼさない程度の小 さなものであれば、実質的には欠陥として作用しない。そこで、パターン欠陥検査に おいては、基準パターンからのずれの許容値をあら力じめ定めておき、検出したパタ ーンのずれ力 のしき 、値を超えたときに欠陥とみなすようにする。
[0005] ここで、しきい値とは、パターン欠陥検査における検査感度を決めるものである。検 查感度を高くするためにはしき 、値を小さな値に設定し、検査感度を低くするために はしきい値を大きな値に設定することになる。
[0006] 前記しき!、値は、通常、発生した欠陥が漏らさずに認識できるように、所定のマージ ンを加えた (より高い検査感度になる)値に設定される。そのため、本来欠陥ではない ものまで欠陥と見なして処理することになり、後工程で修正するのに多大な時間を要 する。なお、このように、欠陥として検出されるもののうち、実質的に欠陥として作用し ない欠陥のことを、「擬似欠陥」という。
[0007] 逆に、検査感度を低く設定しすぎると、真正な欠陥を見逃すことになり半導体 ICの 歩留まりを低下させる。従って、パターン欠陥検査に際しては、歩留まりや検査時間 等を考慮して、適正な検査感度を設定することが要求される。
[0008] 一般に、レチクル間あるいは同一レチクルであっても、パターン形成箇所によりパタ ーンのずれがデバイス特性に与える影響はそれぞれ異なり、従って設定すべき検査 感度の適正値も異なる。検査感度は、同一半導体 ICの製造に用いる全てのレチクル に対して同一の値に設定される場合が多いので、このような場合には、上述したよう に、最も高い検査感度が要求される箇所の検査感度に合わせる必要がある。そのた め、それ以外の個所では、不必要に検査感度が高く設定されることになるという問題 がある。
[0009] そこで、レチクルを複数の検査領域に分割し、検査領域ごとに異なる検査感度を設 定する方法が提案されている。このとき、各検査領域の検査感度をどのように設定す るかと!/、うことを、その検査領域に存在する配線パターンの機能によって決定する。 具体的には、例えば、幅の狭い信号線と幅の広い電源線に対しては、断線等の障害 を引き起こす可能性が大きく異なることを考慮し、それぞれについて、異なる検査感 度を割り当てることを行なう(特許文献 1)。
特許文献 1:特開 2004— 45066号公報
発明の開示
[0010] (発明が解決しょうとする課題)
信号線や電源線といった極く単純な形状のパターンに対しては、以上の例のように 検査感度の適切な設定が可能であるが、パターン形状がより複雑且つ微小になると
、以下述べるような問題が生じ、検査感度を適正化することが難しくなる。
[0011] 前述したクロムのピンホールあるいはクロムの付着物は、パターン形成工程中にレ チクル上に付着したゴミに起因するものが大部分である。
[0012] 一方、基準パターンからのずれが生じる原因としては、これらの要因以外に、フォト リソグラフイエ程における露光量の過不足あるいはドライエッチングの過不足等に起 因するものがある。これら過不足に起因する場合においても、同様に、基準パターン 力 のずれを生じさせる。たとえばクロム膜に対するエッチングが過剰になったときに は、パターン幅の狭小化が生じ、これが基準パターン力ものパターンずれとして検出 されること〖こなる。
[0013] ノターン形状が複雑且つ微小になるにつれて、露光時における近接効果等の干 渉が顕著になり、その結果、パターンずれが大きくなる傾向がある。
[0014] し力しながら、従来のパターン欠陥検査では、基準パターンからのずれを検出した ときにはパターンずれが生じる原因を考慮することなぐ設定されたしきい値を超える か否かを判定している。その結果、検出する必要のないもの (擬似欠陥)を、数多く欠 陥として検出してしまうという問題があった。その結果、このような擬似欠陥を後で取り 除くのに多くの手間や時間を要するという問題があった。
[0015] そこで、本発明は上記のような問題点に鑑みてなされたものであり、レチクル或いは 半導体ゥエーハに形成された複雑な形状のパターン (これらのパターンのことを、「実 パターン」ともいう。 )に対する欠陥検査に際して、擬似欠陥の数を減少させ、欠陥検 查に要する時間を大幅に短縮することを目的とする。
[0016] (課題を解決するための手段)
上記の課題について、本発明者は、実パターンと基準パターンとのずれに関して、 当該ずれの発生に規則性が存在し、尚且つ、その規則性が基準パターンの形状と 関連性があることを見出し、本発明をなすに至った。
[0017] 本発明では、レチクル或いは半導体ゥヱーハに形成されたパターンに対する欠陥 検査の際に、基準パターンの形状 (複雑度)に応じて検査感度を調整することにより、 検査感度を適正に設定し、パターン欠陥に含まれる擬似欠陥の数を大幅に減少させ る。
[0018] 本発明の一観点によれば、本発明のパターン欠陥検査方法は、被検査パターンの 画像を基準パターンの画像と比較して、前記被検査パターンの欠陥を検査するバタ ーン欠陥検査方法にぉ 、て、前記基準パターンにおけるパターン形状に応じて検査 感度を調整することを特徴とする。
[0019] また、本発明の他の観点によれば、本発明のパターン欠陥検査方法は、記憶部を 備えたパターン欠陥検査装置により、基準パターンの画像と被検査パターンの画像 とを比較して、前記被検査パターンの欠陥を検査するパターン欠陥検査方法にぉ ヽ て、前記基準パターンにおけるパターン形状に応じた検査感度の関連付け情報を、 予め、前記記憶部に記憶する工程と、前記記憶部から抽出した前記関連付け情報 に基づいて、前記パターン欠陥検査装置の検査感度を調整する工程とを備えること を特徴とする。
[0020] また、本発明の他の観点によれば、本発明のパターン欠陥検査方法は、パターン 欠陥検査装置により、レチクル或いは半導体ゥヱーハ上に形成された被検査パター ンについてのパターン欠陥を検出するパターン欠陥検査方法において、
設計データに基づいた基準パターンの画像と、前記被検査パターンの画像とを比較 して、ノターンずれが生じて 、る箇所における座標及びずれ量を含む不一致情報を 検出する第 1の工程と、前記不一致情報の中から、前記ずれ量が所定のしきい値より も小さい箇所の不一致情報を抽出する第 2の工程とを備え、前記基準パターンのパ ターン形状に応じて前記しきい値を調整して、前記抽出を行なうことを特徴とする。
[0021] また、本発明の他の観点によれば、本発明のパターン欠陥検査方法は、パターン 欠陥検査装置により、所定の検査領域ごとに、レチクル或いは半導体ゥ ーハ上に 形成された被検査パターンについてのパターン欠陥を検出するパターン欠陥検査方 法において、設計データに基づいた基準パターンの画像と、前記被検査パターンの 画像とを比較して、ノターンずれが生じて 、る箇所における座標及びずれ量を含む 不一致情報を検出する第 1の工程と、前記不一致情報の中から、前記ずれ量が所定 のしきい値よりも小さい箇所の不一致情報を抽出する第 2の工程とを備え、前記基準 パターンの有する角部のうち、隣り合う前記検査領域内で同じ座標に存在する角部 を除いたものを、検査対象の角部として認識した後、前記検査対象の角部の数が所 定の値以上のときのしきい値を、前記検査対象における角部の数が前記所定の値よ り小さいときのしきい値と比べて大きな値に設定して、前記抽出を行なうことを特徴と する。
[0022] また、本発明の他の観点によれば、本発明の半導体装置の製造方法は、パターン 欠陥検査を行なったレチクルを使用して、ゥエーハ上にパターンを形成する半導体 装置の製造方法において、前記レチクルのパターン欠陥検査は、被検査パターンの 画像を基準パターンの画像と比較して、前記被検査パターンの欠陥を検査する際に 、前記基準パターンにおけるパターン形状に応じて検査感度を調整することにより行 なうことを特徴とする。
[0023] また、本発明の他の観点によれば、本発明の半導体装置の製造方法は、パターン 欠陥検査を行なったレチクルを使用して、ゥエーハ上にパターンを形成する半導体 装置の製造方法において、前記レチクルのパターン欠陥検査は、記憶部を備えたパ ターン欠陥検査装置により、基準パターンの画像と被検査パターンの画像とを比較し て、前記被検査パターンの欠陥を検査する方法であって、前記基準パターンにおけ るパターン形状に応じた検査感度の関連付け情報を、予め、前記記憶部に記憶する 工程と、前記記憶部力 抽出した前記関連付け情報に基づいて、前記パターン欠陥 検査装置の検査感度を調整する工程とを備えることを特徴とする。
[0024] また、本発明の他の観点によれば、本発明の半導体装置の製造方法は、被検査パ ターンの画像を基準パターンの画像と比較して、前記被検査パターンの欠陥を検査 するパターン欠陥検査工程と、当該欠陥を修復する工程とを備え、前記パターン欠 陥検査工程では、前記基準パターンにおけるパターン形状に応じて検査感度を調整 することを特徴とする。
[0025] (発明の効果)
本発明によれば、本発明のパターン欠陥検査方法では、レチクルあるいは半導体 ゥエーハに形成された複雑且つ微小なパターンの欠陥検査に際し、パターンの複雑 度に応じて検査感度を変えるようにしているので、従来に比べて、検査感度のより適 切な設定が可能となる。そして、本発明のパターン欠陥検査方法は、擬似欠陥の数 を大幅に減少することを実現可能とし、検査精度の向上とともに検査時間の短縮を図 る上で有益である。
図面の簡単な説明
[0026] [図 1]は、本発明の実施例に係るパターン欠陥検査装置を示すブロック図である。
[図 2]は、本発明の実施例 1に係るレチクルパターンと基準パターンを示す図(その 1) である。 [図 3]は、本発明の実施例 1に係るレチクルパターンと基準パターンを示す図(その 2) である。
[図 4]は、本発明の実施例 2に係るレチクルパターンと基準パターンを示す図(その 3) である。
[図 5]は、本発明の実施例 2に係るレチクルパターンと基準パターンを示す図(その 4) である。
[図 6]は。本発明の実施例 3に係るレチクルパターンと基準パターンを示す図(その 5) である。
[図 7]は、本発明の実施例 3に係るレチクルパターンと基準パターンを示す図(その 6) である。
[図 8]は、本発明の実施例 4に係るレチクルパターンと基準パターンを示す図(その 7) である。
[図 9]は、本発明の実施例 4に係るレチクルパターンと基準パターンを示す図(その 8) である。
[図 10]は、本発明の実施例 5に係る検査フローである。
[図 11]は、本発明の実施例 5に係る画像データの合成例である。
[図 12]は、本発明の実施例 5に係る検査感度をグリッド状に設定する具体例である。
[図 13]は、本発明の実施例 5に係る欠陥を検出する方法の具体例である。
[図 14]は、本発明の実施例 5に係る微小検査エリア単位での検査対象設定例である
[図 15]は、本発明の実施例 5に係る各部数に基づいた擬似欠陥と欠陥の識別例であ る。
[図 16]は、本発明の実施例 5に係る検査感度条件の具体例である。
[図 17]は、検査条件に基づいて検査感度を設定したことによる効果について示した 図である。
発明の実施するための最良の形態
[0027] 以下に、本発明の実施形態に係る詳細を、図面を参照しながら説明する。
[0028] (実施例 1) 図 1は、本発明の実施に用いるパターン欠陥検査装置を示すブロック図である。
[0029] 図 1に示されるように、前記パターン欠陥装置は、例えば、レチクル 1、 XYステージ 2、照明用光源 3、対物レンズ 4、ハーフミラー 5、 CCDイメージセンサ 6、画像取得部 7、比較部 8、画像処理部 9、ステージ制御部 10、基準データ生成部 11、検査感度 設定部 12、欠陥判定部 13、欠陥記憶部 14等から構成される。
[0030] 同図に見られるように、検査対象となるレチクル 1は XYステージ 2に固定される。欠 陥検査に際して、レチクル 1の表面は複数の検査領域に分けられ、各検査領域ごと に検査される。 XYステージ 2は、ステージ制御部 10からの指示により移動し、レチク ル 1の表面を、検査領域ごとに、 X方向、 Y方向に走査する。
[0031] XYステージ 2の上方には、レチクル照明用光源 3、ハーフミラー 5、対物レンズ 4か らなる照明光学系及び CCDイメージセンサ 6が配置されており、レチクル照明用光源 3を出射した光はハーフミラー 5で反射され対物レンズ 4で絞られた後レチクル 1に入 射する。そして、その反射光が対物レンズ 4、ハーフミラー 5を通って CCDイメージセ ンサ 6に取り込まれ画像信号として画像取得部 7へ送られる。画像取得部 7は CCDィ メージセンサ 6から送られてきた画像信号を被検査パターンとなるレチクルパターン に変換し、当該変換されたレチクルパターンを比較部 8に入力する。
[0032] 一方、レチクルパターンの設計データのうちレチクル 1の各検査領域に対応する設 計データ力 XYステージ 2の走査範囲と同期して基準データ生成部 11に取り込まれ る。ステージ制御部 10は、 XYステージ 2を制御するとともに、前記 XYステージ 2の走 查範囲の情報を基準データ生成部 11に送出する。
[0033] 基準データ生成部 11に取り込まれた基準データは、画像処理部 9に送られて基準 パターンに変換される。この基準パターンは、先に画像取得部 7で生成されたレチク ルパターン (実パターン)に対応するものである。このようにして画像処理部 9で生成 された基準パターンは、比較部 8に入力される。
[0034] 比較部 8は、レチクルパターンを基準パターンの形状と比較する。そして、不一致個 所があればその位置座標とパターン不一致幅を検出し、これらの不一致情報を欠陥 判定部 13に送る。なお、ここで、不一致情報とは、前記不一致 (パターンずれ)が生 じて 、る箇所における座標と不一致の量 (ずれ量)を含む情報のことを 、う。 [0035] 欠陥判定部 13では、比較部 8から送られてきたパターン不一致幅が所定のしきい 値を超える力否かを判定する。そして、パターン不一致幅が所定のしきい値を超える ときには、前記不一致個所を欠陥と判断して、欠陥記憶部 14にその欠陥箇所の位 置座標を記憶させる。ここで、欠陥か否かを判定する基準として、所定のしきい値が 設定される。しきい値は、パターン欠陥検査における検査感度を決めるものであり、 検査感度設定部 12で、検査領域ごとに設定される。その後、この設定値 (検査領域 ごとに設定されたしきい値)が欠陥判定部 13へ通知される。
[0036] 本実施例では、パターン形状の複雑度に応じて検査感度を調整する。
[0037] 以下、図 2、 3を参照し、検査感度を調整した例を説明する。本例では、パターン形 状の複雑度を示す指標としてパターンの角部の数 (以下、「各部数」という。)を用い、 この角部数が所定数を超えるか否かに応じて、異なるしきい値を設定する。
[0038] 本実施例において、検査感度設定部 12は、基準パターンの角部数が 5個を越える パターンに対してはしき 、値 20nmを設定し、超えな!/、パターンにはこれより小さなし きい値 5nmを設定する。そしてし、これらの設定値を欠陥判定部 13へ通知する。
[0039] 図 2 (a)は一つの検査領域に含まれる基準パターン 21、図 2 (b)はこの基準パター ン 21に対応した実パターンであるレチクルパターン 22をそれぞれ示したものである。 基準パターン 21は、図中丸印で囲んだ記号 aから gの位置に、全部で 7個の角部を 有している。図 2 (b)に示したレチクルパターン 22が描かれている座標には、基準パ ターン 21とのパターン不一致箇所と不一致幅をわ力りやすく示すため、点線で描い た基準パターン 21を、(当該レチクルパターン 22に)重ねて描いている。
[0040] 比較部 8は、基準パターン 21とレチクルパターン 22を比較して、各角部ごとにパタ ーン不一致幅を検出する。たとえば、図 2 (b)に示すように、角部 aで検出されたバタ ーン不一致幅は 15nmとなる。
[0041] ここで、基準パターン 21の角部数は 7個となるのでしきい値として 20nmが設定され る。従って、欠陥判定部 13は、角部 aにおけるパターン不一致幅がしきい値 20nmを 越えないので、角部 aを欠陥ではないと判定し、この角部 aを欠陥記憶部 14には通知 しない。他の角部 bから gまでの箇所についても、同様な判定を行う。
[0042] 図 3 (a) (b)は、図 2で示した基準パターン 21とは別の基準パターン 23と、この基準 パターン 23に対応したレチクルパターン 24を示したものである。レチクルパターン 24 が描かれている座標には、図 2 (b)と同様に、基準パターン 23とのパターンずれをわ 力りやすく示すため、点線で描いた基準パターン 23を、(当該レチクルパターン 24に )重ねて描いており、この図力も角部 aで検出されたパターン不一致幅は lOnmであ ることがゎカゝる。
[0043] この例においては、基準パターン 23は角部数力 個となるので、しきい値として 5n mが設定される。従って、基準パターン 23とレチクルパターン 24の不一致幅はしきい 値 5nmを超えるため、(最大の不一致幅が lOnmであるにもかかわらず、)欠陥判定 部 13はこの角部 aを欠陥と判定し、その位置座標を欠陥記憶部 14に通知する。他の 角部 b、 c、 dについても同様の処理を行う。
[0044] 以上のように、本実施例によれば不一致幅 20nmのレチクルパターン 22が欠陥で はないと判定される一方、不一致幅 lOnmのレチクルパターン 24が欠陥であると判 定されることになる。これは本発明によりレチクルパターン 22、 24の形状の相違を考 慮して得られた結果であり、従来に比べてより適切な欠陥判定が可能となる。
[0045] 以下、上記の判定が、従来の検査方法と比較してメリットがある理由について説明 する。例えば、図 2におけるレチクルパターン 22のケースでは、基準パターンの角部 数が所定数を超えて 、ることから、パターン不一致 (パターンずれ)として検出された ものの中に、本来欠陥として扱う必要の無い擬似欠陥が存在する可能性が高い。そ こで、この場合には、検出感度が低くなるようにしきい値を下げることによって、パター ン不一致 (パターンずれ)として検出される可能性のあるものの中から、擬似欠陥であ る可能性の高いものを意図的に抽出しないようにする。その結果、欠陥である可能性 が高いものを、選択的に検出することが可能となる。
[0046] なお、本実施例においては特に説明していないが、上記のような検出感度の調整 は、通常、所定の特定されたエリア (或いは、特定されたパターン)について行なう。
[0047] なお、本実施例にお!、ては、擬似欠陥の数が減少すれば十分であるから、図 3 (b) の例のように、高い検出感度のしきい値に設定したエリアについては、欠陥であると 判定されたものの中に、擬似欠陥が混じって ヽても構わな 、。
[0048] また、一番低い検出感度のしきい値に設定したエリアについては、欠陥でないと判 定したものの中に、欠陥が 100%存在していない(すなわち、欠陥の抽出漏れが無 V、)状態になるような検出感度のしき!/、値を設定することが望ま 、。
[0049] (実施例 2)
次に、図 1に示したパターン欠陥検査装置を利用したパターン欠陥検査において、 パターン形状の複雑度を示す指標としてパターンの角部数に代えてパターン角部に おける角度を用いる。本実施例では、この角度が所定値を超える力否かに応じて異 なるしき!/、値を設定する例につ 、て述べる。
[0050] この例において、検査感度設定部 12は基準パターンにおける角部の角度が 90度 を越えないときにはしきい値 20nm、超えるときにはこれより小さなしきい値 5nmを設 定し、欠陥判定部 13に通知するものとする。
[0051] 図 4 (a)は一つの検査領域に含まれる基準パターン 25、図 4 (b)はこの基準パター ン 25に対応したレチクルパターン 26を示したものである。図 4 (b)では、図 2 (b)と同 様に、基準パターン 25とレチクルパターン 26のずれをわ力りやすくするため、レチク ルパターン 26に点線で基準パターン 25を重ねて描!、て!/、る。図中の基準パターン 2 5の角部 aにおける角度は 20度であり、角度が 90度を越えていないので、しきい値と して 20nmが設定される。
[0052] 比較部 8は基準パターン 25とレチクルパターン 26を比較してその不一致幅を検出 する。ここで、図 4 (b)に示したように角部 aにおけるパターン不一致幅は 15nmとなる 。欠陥判定部 13は、角部 aにおけるパターン不一致幅がしきい値 20nmを越えない ので、角部 aを欠陥ではないと判定し、この角部 aを欠陥記憶部 14には通知しない。
[0053] 図 5 (a)、 (b)は、図 4で示した基準パターン 25とは別の基準パターン 27とこの基準 パターン 27に対応したレチクルパターン 28を示したものである。レチクルパターン 28 が描かれている座標には、点線で描いた基準パターン 27を、(当該レチクルパターン 28に)重ねて描いている。同図から角部 aで検出されたパターン不一致幅は lOnmで あることがわ力る。
[0054] この例において、基準パターン 27の角部 aにおける角度は 130度となっているので 、しきい値 5nmが設定される。従って、レチクルパターン 28の不一致幅がしきい値 5n mを超えているので、欠陥判定部 13はこの角部 aを欠陥と判定し、その位置座標を 欠陥記憶部 14に通知する。
[0055] 図 4、 5に見られるように、一般に、パターン角部の角度が小さくなるほどパターンの 不一致幅は大きくなる。このような現象が発生する理由は、パターン角部の角度が小 さくなるほどパターン形状力 Sフォトリソグラフイエ程やエッチング工程の影響を受け易く なるためである。ここで、検出された不一致幅について、その全てが必ずしも欠陥とし て作用することを意味するものではなぐ従って、本実施例で示した検査感度設定に より擬似欠陥を低減することが可能となる。
[0056] (実施例 3)
次に、図 6、図 7を参照し、検査感度を調整した例を説明する。本実施例では、バタ ーン形状の複雑度を示す指標として、基準パターンにおける隣り合う角部間の距離 を用い、この距離が所定値を超える力否かに応じて、異なるしきい値を設定する。
[0057] なお、本実施例のパターン欠陥検査においても、図 1に示したパターン欠陥検査装 置を利用する。この例において、検査感度設定部 12は、基準パターンにおける角部 間の距離が 50nmを越えな!/、ときにはしき!/、値 20nm、超えるときにはこれより小さな しきい値 5nmを設定する。そして、これらの設定値を欠陥判定部 13へ通知する。
[0058] 図 6 (a)は一つの検査領域に含まれる基準パターン 29、図 6 (b)はこの基準パター ン 29に対応したレチクルパターン 30を示したものである。図 6 (b)では、レチクルパタ ーン 30が描かれている座標に、点線で描いた基準パターン 29を、(当該レチクルパ ターン 30に)重ねて描いている。基準パターン 29における隣り合う角部 aと bの間の 距離が 30nmとすれば、これは 50nmを越えていないので、しきい値として 20nmが 設定される。
[0059] 比較部 8は基準パターン 29とレチクルパターン 30を比較してその不一致幅を検出 する。図 6 (b)に示したように角部 aにおけるパターン不一致幅は 15nmとなっている。 欠陥判定部 13は、角部 aにおけるパターン不一致幅がしき 、値 20nmを越えな 、の で、角部 aを欠陥ではないと判定し、この角部 aを欠陥記憶部 14には通知しない。
[0060] なお、このとき、欠陥記憶部 14に対して、「欠陥が存在しない。」という情報を通知し ても良い。
[0061] 図 7 (a)、(b)は、図 6 (a)とは別の基準パターン 31と、この基準パターン 31に対応 したレチクルパターン 32とを示したものである。図 7 (b)のレチクルパターン 32が描か れている座標には、点線で描いた基準パターン 31を、(当該レチクルパターン 32に) 重ねて描いている。同図力も角部 aで検出されたパターン不一致幅は lOnmであるこ とがわかる。この例において基準パターン 31の隣り合う角部 aと bの間の距離が 70η mであるとすれば、これは 50nmを越えて!/、るのでしき!/、値として 5nmが設定される。 従って、レチクルパターン 32の不一致幅がしきい値 5nmを超えることになり、欠陥判 定部 13はこの角部 aを欠陥と判定し、その位置座標を欠陥記憶部 14に通知する。
[0062] 一般に隣り合う角部間の距離が小さくなると、パターンの相互干渉が大きくなつてパ ターンの不一致幅は大きくなる。しかしながら、このように検出された角部については 、不一致幅が大きい場合であっても、(擬似欠陥であるケースが殆どであることから)、 相対的に、欠陥である確率が小さくなる。従って、本実施例で示した検査感度設定に より擬似欠陥を低減することが可能となる。
[0063] (実施例 4)
次に、図 8、図 9を参照し、検査感度を調整した例を説明する。本実施例では、バタ ーン形状の複雑度を示す指標として、基準パターンにおけるパターンの幅、すなわ ち、パターンの長手方向に対する垂直の方向の長さを用い、この長さが所定値を超 える力否かに応じて、異なるしきい値を設定する。
[0064] なお、本実施例のパターン欠陥検査においても、図 1に示したパターン欠陥検査装 置を使用する。
[0065] 本実施例において、図 8 (a)は一つの検査領域に含まれる基準パターン 45、図 8 ( b)はこの基準パターン 45に対応したレチクルパターン 46を示したものである。図 8 (b )では、レチクルパターン 46が描かれている座標に、点線で描いた基準パターン 45 を、(当該レチクルパターン 46に)重ねて描いている。このとき、図に示すように、基準 パターン 45における幅が 30nmとする。
[0066] 同様に、図 9 (a)は一つの検査領域に含まれる基準パターン 47、図 9 (b)はこの基 準パターン 47に対応したレチクルパターン 48を示したものである。図 9 (b)では、レ チクルパターン 48が描かれている座標に、点線で描いた基準パターン 47を、(当該 レチクルパターン 48に)重ねて描いている。このとき、図に示すように、基準パターン 47における幅が lOOnmとする。
[0067] 本実施例において、検査感度設定部 12は、基準パターンにおける幅が 50nmを越 えないときにはしきい値 20nmを設定し、基準パターンにおける幅 50nmを超えるとき にはしきい値 5nmを設定する。そして、これらの設定値を欠陥判定部 13へ通知する
[0068] 図 8 (b)に示したように、角部 aにおけるパターン不一致幅は 15nmとなっている力 欠陥判定部 13は、角部 aにおけるパターン不一致幅がしき 、値 20nmを越えな 、の で、角部 aを欠陥ではないと判定する。そして、この角部 aについての情報を、欠陥記 憶部 14には通知しない。
[0069] 一方、図 9 (b)に示したように、角部 aにおけるパターン不一致幅は lOnmとなって いるが、欠陥判定部 13は、角部 aにおけるパターン不一致幅がしきい値 5nmを越え ているので、角部 aを欠陥であると判定する。そして、この角部 aについての不一致情 報を、欠陥記憶部 14に通知する。
[0070] パターンの幅が狭くなると、実施例 3と同様に、パターンの相互干渉が大きくなり、 パターンの不一致幅は大きくなる。そのため、上記のようにパターン不一致であると 検出された角部については、(不一致幅が大きい場合であっても、)擬似欠陥である ケースが殆どであり、相対的に、欠陥であるという確率が小さくなる。従って、検査感 度を低く(すなわち、検査感度をゆるめに)設定することにより、擬似欠陥を低減する ことが可能となる。
[0071] (実施例 5)
次に、図 10〜図 17を参照し、本実施形態による検査の流れを説明する。なお、本 実施例のパターン欠陥検査においても、説明の際に、図 1に示したパターン欠陥装 置のブロック図を使用する。
[0072] 図 10は、本実施形態に係る検査フローを示した図である。図 10では、図の中央に 記載した「画像データの合成 (ステップ S 131)」に至までに、大きく 3つのフローが存 在するため、最初にそれらのフローについて説明する。
[0073] フロー(1)
[0074] 図 10の左側のフローは、検査データを入手する手順を示したものであり、データ変 換(1)及びデータ変換(2)の処理により、検査データの画像データ 105を取得する。
[0075] 具体的には、先ず、基準データ生成部 11において、設計データ 101のうち、検査 に必要な部分のみを抽出するとともに、検査装置用に形式変換を行い、検査用設計 データ 103を作成する (ステップ S 102)。そして、変換された検査用設計データ 103 を、画像処理部 9に送出する。続いて、検査用設計データ 103は、画層処理部 9にお いて、画像データ 105の形式に変換される (ステップ S 104)。そして、変換された画 像データ形式の検査データ 105は比較部 8に送出される。なお、検査データ 105の 一例を、図 11 (a)に示す。
[0076] フロー(2)
[0077] 一方、図 10の右側のフローは、レチクル上に形成された実パターン(レチクルパタ ーン)の画像データを取得する手順を示したものである。
[0078] 具体的には、先ず、検査装置のステージ 2にレチクル 1をセットする(ステップ S121
)。続いて、検査感度設定部 12等に対して、検査条件の設定を行ない (ステップ S 12
2)、パターン欠陥検査をスタートする(ステップ S 123)。
[0079] 次に、ステージ制御部 10からの指令によって、レチクルパターンのスキャン動作(レ チクルスキャン)が可能になるようにステージ 2を移動させ (ステップ S 124)、レチクル パターンの形状を画層取得部 7に取り込む (ステップ S125)。なお、取り込まれたレ チクルパターン形状の画像信号は、画像取得部 7にお ヽて被検査用の画像データ であるレチクルパターン 126に変換されて、比較部 8に送出される。なお、前記レチク ルパターン 126の一例を、図 11 (c)に示す。
[0080] 次に、比較部 8において、検査データの画像データ 105と、レチクルパターンの画 像データ 126とを比較する。
[0081] 比較部 8においては、レチクル 1がステージ 2に正しくセットされているか否かの判定 を行なうととも〖こ、正しくセットされている場合には、検査データの画像データ 105とレ チクルパターンの画像データ 126とを詳細に比較する。
[0082] 具体的には、先ず、レチクル上に設けられた(図示しない)ァライメントパターン等を 使用して、画像データ 105と画像データ 126とが全体的に一致している力否かの確 認を行なう(ステップ S 130)。 [0083] 不一致の場合には、ステップ 124に戻って、レチクルパターン取り込みのスキャン動 作を再度行なう。なお、このとき、ステージ 2ヘレチクル 1をセットする動作 (ステップ S 121)力 やり直しても良い。
[0084] 一致した場合には、画像データ 105と画像データ 126とを比較した結果力 欠陥判 定部 13に送出される。なお、欠陥判定部 13に送出される結果とは、例えば、パター ンの不一致が存在する箇所につ!、ての座標及び不一致の幅等の情報 (不一致情報 )である。
[0085] そして、欠陥判定部 13では、検査データの画像データ 105とレチクルパターンの画 像データ 126とを合成して、詳細に比較する (ステップ S 131)。
[0086] フロー(3)
[0087] また、図 10の中央のフローは、検査感度データを取得する手順を示したものである
[0088] 具体的には、先ず、基準データ生成部 11から送出された検査用設計データ 103を 、検査感度設定部 13が入手する。そして、検査感度設定部 13において、その入手し た検査データ 103に基づいて、特定エリア 210の抽出を行なう(ステップ 112)。
[0089] この特定エリア 210の情報を抽出する処理については、例えば、次のような方法で 行なう。
[0090] 先ず、上記特定エリア 210の抽出を行なう前に、パターンの形状に応じた特定エリ ァを決定する。すなわち、ノターン形状の特徴によって、どの範囲を特定エリアにす るかについて、関連付けをしておく。
[0091] 次ぎに、その関連付けられた特定エリア 210の情報を、予め、記憶が可能な(図示 しな 、)記憶部に記憶させておく。
[0092] 最後に、上記特定エリア 210の抽出を行なう際に、前記検査用設計データ 103から 得たパターン形状の特徴を、前記記憶部に送出する。そして、前記記憶部から、バタ ーン形状の特徴に応じた特定エリア 210の情報を入手する。
[0093] なお、この特定エリア 210を抽出する処理については、上記のように、システム中に 設けられている記憶部を使用せずに、オペレータが、処理を行なっても良い。すなわ ち、オペレータが、検査用設計データ 103のパターン形状を確認し、(オペレータが、 )自分が所望する特定エリア 210の情報を作成し、(オペレータが、)作成した特定ェ リア 210の情報を検査装置に入力するようにしても良 、。
[0094] 次ぎに、入手した特定エリア 210の情報から、検査感度データ 114を作成する (ス テツプ 113)。具体的には、特定エリアとそれ以外のエリアについて、検査感度を決定 する「しきい値」を設定する。そして、エリア別に異なる検査感度が設定された検査感 度データ 114が完成する。
[0095] この検査感度 114を設定する処理については、例えば、次のような方法で行なう。
[0096] 例えば、検査感度データ 114を作成する前に、(基準パターンにおける角部の数、 各角部についての角度、隣り合う角部間の距離等の)条件ごとに、どのような「しきい 値」を設定するかを、予め決めておく。このとき、各条件について、前記特定エリアの 内外で、それぞれ、異なる「しきい値」が設定される。
[0097] 次ぎに、上記の「しきい値」に関する情報を、記憶が可能な(図示しない)記憶部に 記憶させておく。
[0098] 最後に、上記検査感度データ 114を作成する際に、前記検査用設計データ 103か ら得たパターン形状の特徴を、前記記憶部に送出する。そして、前記記憶部から、パ ターン形状の特徴に応じた「しきい値」に関する情報を入手する。
[0099] なお、この検査感度データ 114を作成する処理については、上記のように、システ ム中に設けられている記憶部を使用せずに、オペレータが、処理を行なっても良い。 すなわち、オペレータが、検査用設計データ 103のパターン形状を確認し、(ォペレ ータが、)自分が所望する検査感度データ 114を作成し、(オペレータが、)作成した 検査感度データ 114の情報を検査装置に入力するようにしても良!、。
[0100] そして、このようにして検査感度設定部 12にて作成された検査感度データ 114は、 欠陥判定部 13に送出される。
[0101] 次に、欠陥判定部 13において、フロー(1)〜(3)において作成した 3種類の画像デ ータを合成して、欠陥の判定を行なう(ステップ S131)。
[0102] 具体的には、図 11 (a)の検査データ 105、図 11 (b)のレチクルパターン 126及び 図 11 (c)の検査感度データ 114を、図 11 (d)に示すように、画像上で、重ね合わせ る。 [0103] 図 11 (d)の場合、欠陥として検出されるのは、欠陥 220の 1個のみである。ここで、 太い点線で示した特定エリア 210内でパターンずれが生じている箇所については、 欠陥として検出しない。なお、図 11 (a)〜(d)の枠 200は検査を行なう際の最小エリ ァを表したものであり、全て同面積である。 )
[0104] 図 12に、検査感度をグリッド状に設定する具体例を示す。
[0105] 図 12において、丸が付されたエリア(角部 1〜14)は、検査データ 105の全角部を 示したものである。また、図中、太い点線の四角で区画されたエリアが、特定エリア 21 0である。
[0106] 一方、図中、細い点線で示されたグリット 250は、検査を行なう際の微小検査エリア を表したものである。このように、検査感度は、通常、小さく分割された領域ごとに設 定される。
[0107] 次ぎに、欠陥を検出する方法の具体例を図 13に示す。
[0108] 図 13 (e)は、検査データとレチクルパターンとを重ね合わせたものであり、太い点線 の丸が付された 8箇所(271〜278)力 検査データ 105とレチクルパターン 126との 間で、パターンずれが生じている箇所である。
[0109] 図 13 (f)は、検査感度のデータを示す。図中、太い点線の枠が特定エリア 220であ る。特定エリア 220の内側のエリアには、その外側のエリアよりも検査感度よりも低くな るようなしき 、値が設定されて 、る。
[0110] 図 13 (d)は、図 13 (e)と図 13 (f)とのデータを重ね合わせた図である。このように重 ね合わせた結果、一箇所(272)のみが、欠陥として検出される。
[0111] 図 14は、微小検査エリア単位での検査対象設定例について示した図である。
[0112] 図 14に示すように、微小検査エリアを分割した場合には、検出した角部のうち、検 查条件の対象として認識すべきでないケースが発生する。
[0113] 具体的には、図 14 (b)の拡大図において、 8箇所の角部(角部 281〜288)が存在 する oし力しな力 Sら、そのうち、 5筒所の角咅 (角咅 281、 282、 285、 286及び 288) は、検査領域を微小検査エリアに分割したことにより角部として認識されてしまったも のである。すなわち、この 5箇所の角部は、実際にはパターンの角部ではないので、 検査条件の対象として認識すべきでな 、。 [0114] そこで、本当の角部力否かを判断するために、例えば、隣り合う微小検査エリアの データを照合する。具体的には、照合させた結果、その両方の微小検査エリアに同 座標の角部が存在する場合には、その角部を検査条件の対象カゝら外す。そして、そ の対象力も外された角部以外の角部のみを、検査条件の対象として認識すること〖こ より、本当の角部のみを抽出することが可能となる。
[0115] 本実施例では、実線の丸で囲まれた 3箇所の角部(角部 283、 284、 287)を検査 条件の対象として認識する。
[0116] 図 15は、角部数に基づいた擬似欠陥と欠陥の識別例について示した図である。本 図では、本実施例の理解し易くするために、便宜上、同一のパターン上に、擬似欠 陥と欠陥とが並んで存在する例を示して 、る。レチクルパターンにおける形状 Aと形 状 Bとは略同じパターン形状に形成されているが、本実施例を適用した場合、レチク ルパターンの形状 Bを欠陥と認識し、形状 Aを擬似欠陥と認識することが可能となる。
[0117] 図 16は、検査感度条件の具体例を示した図である。図に示すように、例えば、検査 感度条件について、条件 1〜条件 5 (或いはそれ以上)の複数の条件を同時に設定 する。このように、検査感度条件を複合的に設定して欠陥検査を行なうことも可能で ある。
[0118] 以上のような方法により、(図 10の検査フローにおいて、)欠陥判定部 13では、比 較部 8からの比較結果と、検査感度設定部 12からの検査感度データとに基づいて、 パターン欠陥が存在する力否かの判定をおこなう(ステップ S 132)。
[0119] パターン欠陥が見つ力つた場合には、そのパターン欠陥に関する情報が欠陥記憶 部 14に送出され、欠陥記憶部 14において、その情報が記憶される (ステップ S133) 。なお、上記のパターン欠陥に関する情報には、レチクル或いは半導体ゥヱーハ上 における座標等が含まれる。
[0120] パターン欠陥が 1つも見つからな力つた場合には、レチクル検査を続行する力否か を判断する (ステップ S134)。例えば、まだ検査が必要なエリアが残っている場合に は、レチクルパターン取り込みのためスキャン動作 (ステップ S 124)に戻って検査を 続行する。
[0121] 検査が必要なエリアが残っていない場合には、レチクルの欠陥検査を終了する (ス テツプ SI 35)。
[0122] このようにして、レチクルの欠陥検査を終了した後、パターン欠陥であると認識され たものについては、それが本当にパターン欠陥であるか否かを確認する。そして、本 当にパターン欠陥であるものについては、当該欠陥部分の修復を行なう。
[0123] 上記の確認工程及び修復工程にっ ヽては、例えば、集束イオンビーム装置 (FIB: Focused Ion Beam)を使用して行なうことが可能である。集束イオンビーム装置は、ガ リウムイオン源から取り出したイオンビームを、 5〜: LOnmに集束させた上で資料に照 射させる装置である。パターン修復工程については、例えば、レチクルのパターン欠 陥部分に、原料となるガスを吹付けながら上記イオンビームを照射することにより、当 該欠陥部分のパターンを修復させる。
[0124] 以上が、実施例 1〜5についての説明である。
[0125] 続いて、これら実施例 1〜5を実施した場合の効果について、図 17を使用して説明 する。図 17は、検査条件に基づいて検査感度を設定したことによる効果を示した図 である。
[0126] 図 17に示すように、検査データ 114の角部は全部で 12個存在する。このとき、この 検査データ 114に対応するレチクルパターン 126については、全ての角部について
Figure imgf000021_0001
、るが、欠陥の数はゼロである。
[0127] 図 17のケースにおいて、従来の検査感度を設定した場合には、図に示したように、 全 12個の角部のうちのいくつかは、欠陥として認識される。例えば、本ケースでは、 7 箇所(1〜7)が欠陥として認識されている。すなわち、本ケースでは、上記 1〜7のそ れぞれについて、 1個の角部が欠陥であると認識されている。なお、その欠陥である と認識した 7個の角部は、その全てが擬似欠陥である。
[0128] それに対して、本実施例に係る検査条件を付加して、検査感度の設定を調整した 場合には、上記の 7箇所(1〜7)のエリアについて、感度が低く設定されるため、欠陥 として認識される数はゼロとなる。従って、本ケースにおいては、検出した欠陥の数は 、実際の欠陥の数と等しくなる。
[0129] 以上の実施例では、パターン形状の複雑度を示す指標として、
(1)パターンの角部数を用い、パターンの角部数が所定数を超えるか否かに応じて 異なるしき!/ヽ値を設定した例、
(2)パターン角部における角度が所定値を超えるか否かに応じて異なるしきい値を 設定した例、
(3)基準パターンにおける隣り合う角部間の距離が所定値を超える力否かに応じて 異なるしき!/ヽ値を設定した例、
(4)基準パターンにおけるパターンの幅が所定値を超える力否かに応じて異なるしき い値を設定した例
について述べた力 これらの指標を組み合わせて用いることによって、より実際的な 検出感度の設定を行うことも可能である。
[0130] また、以上の実施例ではレチクルパターンを例にして述べた力 半導体ゥエーハ上 に形成されたパターンに対しても同様な欠陥検査が可能である。
産業上の利用可能性
[0131] 半導体ゥエーハ上に形成されたパターンの欠陥検査、あるいは半導体 ICのパター ン形成に用いられるレチクルのパターン欠陥検査に用いることができる。
符号の説明
1 レチクル
2 XYステージ
3 照明用光源
4 対物レンズ
5 ハーフミラー
6 CCDイメージセンサ
7 画像取得部
8 比較部
9 画像処理部
10 ステージ制御部
11 基準データ生成部
12 検査感度設定部
13 欠陥判定部 欠陥記憶部
、 23、 25、 27、 29、 31、 45、 47 基準ノ ターン 、 24、 26、 28、 30、 32、 46、 48 レチクルノ ター1 設計データ
3 検査用設計データ
5 検査データ
検査感度データ
6 レチクルパターン
0 枠
特定エリア
欠陥
グリッド

Claims

請求の範囲
[1] 被検査パターンの画像を基準パターンの画像と比較して、前記被検査パターンの 欠陥を検査するパターン欠陥検査方法にぉ 、て、
前記基準パターンにおけるパターン形状に応じて検査感度を調整する ことを特徴とするパターン欠陥検査方法。
[2] 記憶部を備えたパターン欠陥検査装置により、基準パターンの画像と被検査バタ ーンの画像とを比較して、前記被検査パターンの欠陥を検査するパターン欠陥検査 方法において、
前記基準パターンにおけるパターン形状に応じた検査感度の関連付け情報を、予 め、前記記憶部に記憶する工程と、
前記記憶部から抽出した前記関連付け情報に基づいて、前記パターン欠陥検査 装置の検査感度を調整する工程とを備える
ことを特徴とするパターン欠陥検査方法。
[3] 前記検査感度は、前記基準パターンの有する角部の数が所定の値以上のときに、 前記基準パターンの有する角部の数が前記所定の値よりも少ないときと比べて高く 設定される
ことを特徴とする請求項 1または 2に記載のパターン欠陥検査方法。
[4] 前記検査感度は、前記基準パターンにおける角部の角度が所定の角度よりも小さ いときに、前記基準パターンにおける角部の角度が前記所定の値以上のときと比べ て低く設定される
ことを特徴とする請求項 1または 2に記載のパターン欠陥検査方法。
[5] 前記検査感度は、前記基準パターンにおける隣り合う角部間の距離が所定の長さ よりも短いときに、前記基準パターンにおける隣り合う角部間の距離が前記所定の長 さ以上のときと比べて低く設定される
ことを特徴とする請求項 1または 2に記載のパターン欠陥検査方法。
[6] パターン欠陥検査装置により、レチクル或いは半導体ゥヱーハ上に形成された被検 查パターンにつ 、てのパターン欠陥を検出するパターン欠陥検査方法にぉ 、て、 設計データに基づいた基準パターンの画像と、前記被検査パターンの画像とを比 較して、ノターンずれが生じて 、る箇所における座標及びずれ量を含む不一致情報 を検出する第 1の工程と、
前記不一致情報の中から、前記ずれ量が所定のしき!/、値よりも小さ!/、箇所の不一 致情報を抽出する第 2の工程とを備え、
前記基準パターンのパターン形状に応じて前記しきい値を調整して、前記抽出を 行なう
ことを特徴とするパターン欠陥検査方法。
[7] 前記抽出を行なう際に、前記基準パターンにおけるパターン形状に応じた特定エリ ァを設け、前記特定エリア内の前記しきい値を、前記特定エリア外の前記しきい値よ りも大きく設定する
ことを特徴とする請求項 6に記載のパターン欠陥検査方法。
[8] 前記しき!、値の情報を、予め、前記記憶部に記憶させておき、
前記抽出を行なう際に、前記パターン形状に応じたしきい値を、前記記憶部から入 手する
ことを特徴とする請求項 6または 7に記載のパターン欠陥検査方法。
[9] 前記特定エリアの情報を、予め、前記記憶部に記憶させておき、
前記抽出を行なう際に、前記パターン形状に応じた特定エリアを、前記記憶部から 入手する
ことを特徴とする請求項 7に記載のパターン欠陥検査方法。
[10] 前記抽出を行なう際に、前記基準パターンにおける角部の数が所定の数よりも大き いときのしきい値を、前記基準パターンにおける角部の数が所定の数以下のときのし き 、値よりも大き 、値に設定する
ことを特徴とする請求項 6又は 7に記載のパターン欠陥検査方法。
[11] 前記抽出を行なう際に、前記基準パターンにおける角度の数が所定の角度よりも小 さいときのしきい値を、前記基準パターンにおける角部の角度が所定の数以上のとき のしき 、値よりも大き 、値に設定する
ことを特徴とする請求項 6又は 7に記載のパターン欠陥検査方法。
[12] 前記抽出を行なう際に、前記基準パターンにおける隣り合う角部間の距離が所定 の長さよりも小さいときのしきい値を、前記基準パターンにおける隣り合う角部間の距 離が所定の長さ以上のときのしき 、値よりも大き 、値に設定する
ことを特徴とする請求項 6又は 7に記載のパターン欠陥検査方法。
[13] 前記抽出を行なう際に、前記基準パターンにおける長手方向と垂直方向の幅が所 定の長さよりも小さ 、ときのしき 、値を、前記基準パターンにおける前記幅が所定の 長さ以上のときのしき!、値よりも大き!/、値に設定する
ことを特徴とする請求項 6又は 7に記載のパターン欠陥検査方法。
[14] パターン欠陥検査装置により、所定の検査領域ごとに、レチクル或いは半導体ゥェ ーハ上に形成された被検査パターンについてのパターン欠陥を検出するパターン欠 陥検査方法において、
設計データに基づいた基準パターンの画像と、前記被検査パターンの画像とを比 較して、ノターンずれが生じて 、る箇所における座標及びずれ量を含む不一致情報 を検出する第 1の工程と、
前記不一致情報の中から、前記ずれ量が所定のしき!、値よりも小さ!、箇所の不一 致情報を抽出する第 2の工程とを備え、
前記基準パターンの有する角部のうち、隣り合う前記検査領域内で同じ座標に存 在する角部を除いたものを、検査対象の角部として認識した後、
前記検査対象の角部の数が所定の値以上のときのしきい値を、前記検査対象にお ける角部の数が前記所定の値より小さいときのしきい値と比べて大きな値に設定して 、前記抽出を行なう
ことを特徴とするパターン欠陥検査方法。
[15] パターン欠陥検査を行なったレチクルを使用して、ゥエーハ上にパターンを形成す る半導体装置の製造方法において、
前記レチクルのパターン欠陥検査は、
被検査パターンの画像を基準パターンの画像と比較して、前記被検査パターンの 欠陥を検査する際に、前記基準パターンにおけるパターン形状に応じて検査感度を 調整することにより行なう
ことを特徴とする半導体装置の製造方法。
[16] パターン欠陥検査を行なったレチクルを使用して、ゥエーハ上にパターンを形成す る半導体装置の製造方法において、
前記レチクルのパターン欠陥検査は、
記憶部を備えたパターン欠陥検査装置により、基準パターンの画像と被検査バタ ーンの画像とを比較して、前記被検査パターンの欠陥を検査する方法であって、 前記基準パターンにおけるパターン形状に応じた検査感度の関連付け情報を、予 め、前記記憶部に記憶する工程と、
前記記憶部から抽出した前記関連付け情報に基づいて、前記パターン欠陥検査 装置の検査感度を調整する工程とを備える
ことを特徴とする半導体装置の製造方法。
[17] 被検査パターンの画像を基準パターンの画像と比較して、前記被検査パターンの 欠陥を検査するパターン欠陥検査工程と、
当該欠陥を修復する工程とを備え、
前記パターン欠陥検査工程では、前記基準パターンにおけるパターン形状に応じ て検査感度を調整する
ことを特徴とするパターン欠陥検査方法。
PCT/JP2006/300349 2005-01-14 2006-01-13 パターン欠陥検査方法及び半導体装置の製造方法 WO2006075687A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006552973A JP4644210B2 (ja) 2005-01-14 2006-01-13 パターン欠陥検査方法
US11/777,630 US7953269B2 (en) 2005-01-14 2007-07-13 Method for inspecting pattern defect occured on patterns formed on a substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-008158 2005-01-14
JP2005008158 2005-01-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/777,630 Continuation US7953269B2 (en) 2005-01-14 2007-07-13 Method for inspecting pattern defect occured on patterns formed on a substrate

Publications (1)

Publication Number Publication Date
WO2006075687A1 true WO2006075687A1 (ja) 2006-07-20

Family

ID=36677710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/300349 WO2006075687A1 (ja) 2005-01-14 2006-01-13 パターン欠陥検査方法及び半導体装置の製造方法

Country Status (3)

Country Link
US (1) US7953269B2 (ja)
JP (1) JP4644210B2 (ja)
WO (1) WO2006075687A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008047664A (ja) * 2006-08-14 2008-02-28 Hitachi High-Technologies Corp パターン検査装置及び半導体検査システム
JP2008268560A (ja) * 2007-04-20 2008-11-06 Hitachi High-Technologies Corp ホットスポット絞り込み装置、ホットスポット絞り込み方法、ホットスポット絞り込みプログラム、ホットスポット検査装置、および、ホットスポット検査方法
JP2013057661A (ja) * 2011-08-16 2013-03-28 Ricoh Co Ltd 画像検査装置、画像形成装置、画像検査方法及び画像形成システム
WO2015093228A1 (ja) * 2013-12-20 2015-06-25 Ntn株式会社 パターン加工方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4644210B2 (ja) * 2005-01-14 2011-03-02 富士通セミコンダクター株式会社 パターン欠陥検査方法
US20100124154A1 (en) * 2008-11-19 2010-05-20 Chih-Ching Yu Signal processing devices and signal processing methods
JP5198397B2 (ja) * 2009-09-09 2013-05-15 株式会社東芝 フォトマスクの特性検出装置およびフォトマスクの特性検出方法
JP5221584B2 (ja) * 2010-03-25 2013-06-26 株式会社日立ハイテクノロジーズ 画像処理装置、画像処理方法、画像処理プログラム
JP5688064B2 (ja) * 2012-11-02 2015-03-25 本田技研工業株式会社 半導体素子検査装置及び検査方法
US8994936B2 (en) * 2012-11-22 2015-03-31 Shenzhen China Star Optoelectronics Technology Co., Ltd Pattern matching method, apparatus and line width measuring machine
JP7443268B2 (ja) 2021-01-05 2024-03-05 株式会社ニューフレアテクノロジー 欠陥検査方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58147114A (ja) * 1982-02-26 1983-09-01 Nippon Jido Seigyo Kk パタ−ンの欠陥検査方法
JPS6186639A (ja) * 1984-10-05 1986-05-02 Hitachi Ltd パターン検査装置
JP2002244275A (ja) * 2001-02-15 2002-08-30 Toshiba Corp フォトマスクの欠陥検査方法、フォトマスクの欠陥検査装置及び記録媒体
JP2002532760A (ja) * 1998-12-17 2002-10-02 ケーエルエー−テンカー コーポレイション レチクルを製造および検査するためのメカニズム
JP2004045066A (ja) * 2002-07-09 2004-02-12 Fujitsu Ltd 検査装置及び検査方法
JP2004191297A (ja) * 2002-12-13 2004-07-08 Sony Corp マスク検査方法および検査装置
JP2005215400A (ja) * 2004-01-30 2005-08-11 Toppan Printing Co Ltd フォトマスクの外観検査方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4532650A (en) * 1983-05-12 1985-07-30 Kla Instruments Corporation Photomask inspection apparatus and method using corner comparator defect detection algorithm
US5046109A (en) * 1986-03-12 1991-09-03 Nikon Corporation Pattern inspection apparatus
US5539514A (en) * 1991-06-26 1996-07-23 Hitachi, Ltd. Foreign particle inspection apparatus and method with front and back illumination
JP3187107B2 (ja) * 1992-01-23 2001-07-11 株式会社東芝 パターン検査装置
US5475766A (en) * 1991-09-05 1995-12-12 Kabushiki Kaisha Toshiba Pattern inspection apparatus with corner rounding of reference pattern data
JP3122178B2 (ja) * 1991-09-05 2001-01-09 株式会社東芝 パターン検査装置
JPH0763691A (ja) * 1993-08-24 1995-03-10 Toshiba Corp パターン欠陥検査方法及びその装置
US5978503A (en) * 1996-05-30 1999-11-02 Daewoo Electronics Co., Ltd. Method for recognizing corners of an angular component
US6400838B2 (en) * 1997-07-29 2002-06-04 Kabushiki Kaisha Toshiba Pattern inspection equipment, pattern inspection method, and storage medium storing pattern inspection program
JP2000314710A (ja) * 1999-04-28 2000-11-14 Hitachi Ltd 回路パターンの検査方法及び検査装置
JP3485052B2 (ja) * 1999-12-16 2004-01-13 日本電気株式会社 参照画像作成方法、パターン検査装置及び参照画像作成プログラムを記録した記録媒体
JP3959223B2 (ja) * 2000-03-24 2007-08-15 株式会社東芝 パターン検査システムの検査条件補正方法、パターン検査システムおよび記録媒体
US7352901B2 (en) * 2000-10-23 2008-04-01 Omron Corporation Contour inspection method and apparatus
JP3788279B2 (ja) * 2001-07-09 2006-06-21 株式会社日立製作所 パターン検査方法及び装置
JP3706051B2 (ja) * 2001-08-13 2005-10-12 大日本スクリーン製造株式会社 パターン検査装置および方法
GB2389178B (en) * 2001-12-31 2004-10-27 Orbotech Ltd Method for inspecting patterns
JP3677254B2 (ja) * 2002-03-27 2005-07-27 株式会社東芝 欠陥検査装置
JP2003315284A (ja) * 2002-04-24 2003-11-06 Mitsubishi Electric Corp パターン検査装置の感度調整方法
US7221788B2 (en) * 2003-07-01 2007-05-22 Infineon Technologies Ag Method of inspecting a mask or reticle for detecting a defect, and mask or reticle inspection system
JP4644210B2 (ja) * 2005-01-14 2011-03-02 富士通セミコンダクター株式会社 パターン欠陥検査方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58147114A (ja) * 1982-02-26 1983-09-01 Nippon Jido Seigyo Kk パタ−ンの欠陥検査方法
JPS6186639A (ja) * 1984-10-05 1986-05-02 Hitachi Ltd パターン検査装置
JP2002532760A (ja) * 1998-12-17 2002-10-02 ケーエルエー−テンカー コーポレイション レチクルを製造および検査するためのメカニズム
JP2002244275A (ja) * 2001-02-15 2002-08-30 Toshiba Corp フォトマスクの欠陥検査方法、フォトマスクの欠陥検査装置及び記録媒体
JP2004045066A (ja) * 2002-07-09 2004-02-12 Fujitsu Ltd 検査装置及び検査方法
JP2004191297A (ja) * 2002-12-13 2004-07-08 Sony Corp マスク検査方法および検査装置
JP2005215400A (ja) * 2004-01-30 2005-08-11 Toppan Printing Co Ltd フォトマスクの外観検査方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008047664A (ja) * 2006-08-14 2008-02-28 Hitachi High-Technologies Corp パターン検査装置及び半導体検査システム
JP2008268560A (ja) * 2007-04-20 2008-11-06 Hitachi High-Technologies Corp ホットスポット絞り込み装置、ホットスポット絞り込み方法、ホットスポット絞り込みプログラム、ホットスポット検査装置、および、ホットスポット検査方法
JP2013057661A (ja) * 2011-08-16 2013-03-28 Ricoh Co Ltd 画像検査装置、画像形成装置、画像検査方法及び画像形成システム
WO2015093228A1 (ja) * 2013-12-20 2015-06-25 Ntn株式会社 パターン加工方法

Also Published As

Publication number Publication date
JP4644210B2 (ja) 2011-03-02
US20070258636A1 (en) 2007-11-08
US7953269B2 (en) 2011-05-31
JPWO2006075687A1 (ja) 2008-06-12

Similar Documents

Publication Publication Date Title
JP4644210B2 (ja) パターン欠陥検査方法
WO2011024362A1 (ja) 欠陥検査装置およびその方法
US6091845A (en) Inspection technique of photomask
US7788629B2 (en) Systems configured to perform a non-contact method for determining a property of a specimen
JP6609568B2 (ja) 差分ダイおよび差分データベースを利用した検査
CN109659245B (zh) 监测光掩模缺陷率的改变
US20100092876A1 (en) Method for repairing photo mask, system for repairing photo mask and program for repairing photo mask
JP3647416B2 (ja) パターン検査装置及びその方法
JP5192795B2 (ja) 電子ビーム測定装置
US20190005650A1 (en) Pattern edge detection method
JP2016145887A (ja) 検査装置および検査方法
JP2012248768A (ja) 反射型マスクの欠陥修正方法及び欠陥修正装置
WO2011040223A1 (ja) 表面欠陥検査装置
JP4860294B2 (ja) 電子顕微鏡
US20090226078A1 (en) Method and apparatus for aligning a substrate and for inspecting a pattern on a substrate
JP2010117132A (ja) ウェハのパターン検査方法及び装置
JP2008242112A (ja) マスクパターン評価装置及びフォトマスクの製造方法
WO2004088417A1 (ja) フォトマスクのパターン検査方法、フォトマスクのパターン検査装置、およびフォトマスクのパターン検査プログラム
US20080013824A1 (en) Defect inspection method, defect inspection apparatus, and semiconductor device manufacturing method
JP2007298856A (ja) 半導体マスク修正装置及び半導体マスク修正方法
JPH08272078A (ja) パターンの検査方法及び検査装置
JP2001176941A (ja) 自動欠陥検出装置のウェハ座標認識方法
US7160650B2 (en) Method of inspecting a mask
JP2002006479A (ja) マスク検査方法及びマスク検査装置
JP2000347384A (ja) 集束イオンビーム修正装置及び欠陥保証方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006552973

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11777630

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 11777630

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 06711634

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6711634

Country of ref document: EP