WO2006070781A1 - 塩基性薬物又はその塩を含有するマトリックス型徐放性製剤およびその製造方法 - Google Patents

塩基性薬物又はその塩を含有するマトリックス型徐放性製剤およびその製造方法 Download PDF

Info

Publication number
WO2006070781A1
WO2006070781A1 PCT/JP2005/023853 JP2005023853W WO2006070781A1 WO 2006070781 A1 WO2006070781 A1 WO 2006070781A1 JP 2005023853 W JP2005023853 W JP 2005023853W WO 2006070781 A1 WO2006070781 A1 WO 2006070781A1
Authority
WO
WIPO (PCT)
Prior art keywords
matrix
solubility
phosphate buffer
salt
release preparation
Prior art date
Application number
PCT/JP2005/023853
Other languages
English (en)
French (fr)
Inventor
Yosuke Ueki
Satoshi Fujioka
Original Assignee
Eisai R & D Management Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US11/794,212 priority Critical patent/US20090208579A1/en
Priority to JP2006550780A priority patent/JP4999466B2/ja
Priority to BRPI0519407-5A priority patent/BRPI0519407A2/pt
Priority to CA2592102A priority patent/CA2592102C/en
Priority to EP05822550A priority patent/EP1832298A4/en
Priority to AU2005320609A priority patent/AU2005320609B9/en
Application filed by Eisai R & D Management Co., Ltd. filed Critical Eisai R & D Management Co., Ltd.
Priority to NZ555901A priority patent/NZ555901A/en
Priority to MX2007007835A priority patent/MX2007007835A/es
Publication of WO2006070781A1 publication Critical patent/WO2006070781A1/ja
Priority to IL183871A priority patent/IL183871A0/en
Priority to NO20073461A priority patent/NO20073461L/no
Priority to US12/910,313 priority patent/US20110045074A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/445Non condensed piperidines, e.g. piperocaine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/13Amines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/32Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. carbomers, poly(meth)acrylates, or polyvinyl pyrrolidone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2013Organic compounds, e.g. phospholipids, fats
    • A61K9/2018Sugars, or sugar alcohols, e.g. lactose, mannitol; Derivatives thereof, e.g. polysorbates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/2027Organic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/205Polysaccharides, e.g. alginate, gums; Cyclodextrin
    • A61K9/2054Cellulose; Cellulose derivatives, e.g. hydroxypropyl methylcellulose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2095Tabletting processes; Dosage units made by direct compression of powders or specially processed granules, by eliminating solvents, by melt-extrusion, by injection molding, by 3D printing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • A61P25/16Anti-Parkinson drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia

Definitions

  • Matrix-type sustained-release preparation containing basic drug or salt thereof and method for producing the same
  • the present invention relates to a matrix-type sustained-release preparation containing a basic drug or a salt thereof, and suppresses an initial burst of drug (rapid drug release immediately after elution) in a dissolution test.
  • the present invention relates to a preparation that has a small pH dependence and can ensure elution at the beginning of elution.
  • the present invention provides a ratio between the dissolution rate of a basic drug or a salt thereof in an acidic test solution and the dissolution rate in a neutral test solution (dissolution rate in an acidic test solution Z dissolution in a neutral test solution).
  • the matrix-type sustained-release preparation is characterized in that as the dissolution test progresses over time, the dissolution rate decreases with time in the later stage of elution compared to the early stage of elution.
  • Sustained-release preparations of physiologically active drugs can maintain the drug blood concentration for a longer time than the effective therapeutic concentration, compared to normal rapid-release preparations. Therefore, by gradually releasing the drug, it is possible to obtain the same or better therapeutic effect even if the number of administrations of the drug is reduced, and an improvement in medication compliance is expected. In addition, since it is possible to avoid a rapid increase in blood concentration immediately after administration by slow release of the drug, side effects due to the drug and reduction of toxicity are expected.
  • sustained-release coating film type that controls release
  • matrix type in which the drug and sustained-release base are uniformly distributed in the drug product.
  • sustained-release coating film-type preparations the uniformity of the coating film affects the release behavior, so strict control of the coating conditions is essential, and often the coating time is long and the productivity tends to be low. It is.
  • the sustained release coating is generally performed after the drug is layered on core particles made of crystalline cellulose or sucrose. Therefore, apply a multilayer sustained-release coating.
  • the size of the preparation tends to be large, resulting in a decrease in oral dosage.
  • the matrix-type sustained-release preparation has a structure in which the drug and the sustained-release base are uniformly present in the preparation, and does not require strict production control compared to the sustained-release coating film type. And can be produced by the same manufacturing operation as that of a normal immediate-release preparation. Therefore, high productivity is expected.
  • the matrix-type sustained-release preparation can be said to be a highly useful preparation as compared with the sustained-release coating film-type preparation in view of high productivity and downsizing of the preparation.
  • the physiologically active drug is a basic drug or a salt thereof
  • a general matrix-type sustained-release preparation is prepared using a water-insoluble base
  • the first problem is that in a matrix-type sustained-release preparation of a basic drug or a salt thereof, the dissolution rate of the basic drug or a salt thereof over time in a dissolution test is usually determined in an acidic test solution. In comparison, it is significantly lower in the basic test solution. This is because the solubility of basic drugs or their salts in aqueous solvents is lower in the pH of the neutral / alkaline region than in the acidic region.
  • sustained-release preparations contain a higher drug content than immediate-release tablets, so if the gastric residence time of the sustained-release preparation is extended, the blood concentration of the basic drug or its salt is unexpected. There is a possibility that the risk of rising and associated side effects increases. The risk of developing this side effect is particularly problematic for basic drugs or salts thereof having strong side effects and basic drugs or salts thereof with a narrow safe range of drug blood concentration.
  • the second problem is that in the dissolution test, the release rate of the basic drug or its salt from the matrix-type sustained-release preparation is lower in the late dissolution period than in the early dissolution period.
  • the basic drug or its drug with the sustained-release formulation in acidic test solution When the gastric emptying time of a sustained-release preparation is short when the salt dissolution rate is suppressed, most of the drug remains in the preparation and is excreted, resulting in a decreased bioavailability and sufficient pharmacological effects. There is a risk that another problem will occur.
  • Examples of the prior art relating to a matrix-type sustained-release preparation containing a basic drug or a salt thereof include the following.
  • US Pat. No. 4,792,452 discloses a matrix formulation containing a basic drug or salt thereof and alginic acid or salt thereof and a pH independent water soluble gelling agent and binder.
  • US Pat. No. 4,968,508 discloses a matrix preparation containing cefaclor, an acrylic acid polymer that dissolves at pH 5.0 to 7.4, and a hydrophilic polymer.
  • JP-A-6-199657 compared to the Japanese Pharmacopoeia 1st liquid and the Japanese Pharmacopoeia 2nd liquid, the pH-dependent elution of a drug having a higher solubility in pH 4.0 acetate buffer is achieved. It is disclosed that it can be improved by preparing a matrix tablet containing the molecule and a “carboxyvinyl polymer or methyl vinyl ether maleic anhydride copolymer” and an enteric base.
  • U.S. Pat.No. 6,287,599 describes basic drugs or salts thereof having pH-dependent solubility, pH-independent sustained-release bases, and pH-dependent such as enteric bases and organic acids.
  • a matrix preparation containing an additive having a property of increasing the dissolution rate of a drug from a tablet at a pH of 5.5 or higher).
  • a sustained-release preparation of a basic drug taking into account the in-vivo pH environment, an unexpected increase in blood concentration due to rapid elution from the basic drug composition is prevented, and There was an urgent need for a preparation that has a low risk of a decrease in physical utilization due to release.
  • the initial burst of drug rapid drug release immediately after dissolution
  • the pH-dependent dissolution property at the initial stage of dissolution is ensured.
  • the dissolution test progresses over time, it is a matrix-type sustained-release preparation with a high dissolution rate in the neutral test solution in the late dissolution stage.
  • the ratio of the dissolution rate of the basic drug or its salt in the acidic test solution to the dissolution rate of the basic drug or its salt in the neutral test solution (dissolution rate in the acidic test solution Z neutral test)
  • This is a matrix-type sustained-release preparation whose elution rate in the liquid decreases with time in the late stage of elution compared to the early stage of elution.
  • a matrix-type sustained-release preparation that enables such elution control for basic drugs or salts thereof whose solubility decreases greatly with increasing pH at neutral to weakly alkaline pH. Being sung.
  • the present invention is (1) a solubility power in a 0.1N aqueous hydrochloric acid solution and a neutral aqueous solution of pH 6.0 that is higher than the solubility in a basic aqueous solution of pH 8.0.
  • a matrix-type sustained-release preparation of the above basic drug or a salt thereof comprising: a basic drug or a salt thereof; and (2) at least one enteric polymer.
  • the neutral aqueous solution is a 50 mM phosphate buffer
  • the basic aqueous solution is 50 mM. Preferred to be mM phosphate buffer.
  • the present invention relates to the dissolution rate of a basic drug or a salt thereof in a 50 mM phosphate buffer having a pH of 6.8 in a dissolution test using the paddle method of the dissolution test method of the Japanese Pharmacopoeia.
  • Specificity of elution rate of basic drug or its salt in aqueous hydrochloric acid solution Decreases with elution time until elution rate of 90% basic drug or its salt in 50 mM phosphate buffer at pH 6.8.
  • the matrix-type sustained-release preparation as described in (I) above.
  • a preferred embodiment of the present invention is that, in the dissolution test by the paddle method of the dissolution test method of the Japanese Pharmacopoeia, the dissolution rate power of the basic drug or its salt in 0.1N hydrochloric acid aqueous solution is 1 hour.
  • a more preferred embodiment of the present invention relates to the dissolution rate of a basic drug or a salt thereof in a 50 mM phosphate buffer having a pH of 6.8 in a dissolution test using the paddle method of the dissolution test method of the Japanese Pharmacopoeia.
  • the dissolution rate of the basic drug or its salt in a 1N hydrochloric acid aqueous solution is 1 hour.
  • the ratio of the dissolution rate of a basic drug or its salt in an aqueous 0.1N hydrochloric acid solution to the dissolution rate of a basic drug or its salt in a 50 mM phosphate buffer solution of less than 60% and ⁇ 6.8 is The matrix-type sustained-release preparation according to any one of (I) to (IV) above, which is 0.3 to 1.5 in 3 hours.
  • the dissolution rate of a basic drug or a salt thereof in a 0.1N aqueous hydrochloric acid solution is less than 50% in 1 hour of elution time, and the ratio of elution rates is 0.3 to 1.4.
  • the dissolution rate of the basic drug or a salt thereof in the 0.1N hydrochloric acid aqueous solution is less than 40%, and the ratio of the dissolution rates is 0.3 to 1.2.
  • the matrix-type sustained-release preparation according to the present invention may contain at least one water-insoluble polymer.
  • the present invention provides: (1) Solubility power in a 0.1N aqueous hydrochloric acid solution and a 50 mM phosphate buffer at pH 6.0: a basic drug or salt thereof having a higher solubility than in a 50 mM phosphate buffer at pH 8.0; 2) A matrix-type sustained-release preparation of the basic drug or a salt thereof, comprising at least one type of enteric polymer, and (3) at least one water-insoluble polymer.
  • the solubility power of the basic drug or a salt thereof in a neutral aqueous solution of pH 6.8 is at least twice the solubility in a basic aqueous solution of pH 8.0, and A basic drug or a salt thereof having a solubility in a neutral aqueous solution of pH 6.0 of 1Z2 or less, and (2) at least one enteric polymer, the basic drug or a salt thereof It is a matrix type sustained-release preparation.
  • (3) a matrix-type sustained-release preparation comprising at least one water-insoluble polymer.
  • the solubility power in a 50 mM phosphate buffer of ⁇ 6.8 is more than twice the solubility in a 50 mM phosphate buffer of 3 ⁇ 4H8.0, and a pH of 6.0 50 mM phosphate buffer.
  • a matrix-type sustained-release preparation comprising at least one water-insoluble polymer.
  • a particularly preferred embodiment of the present invention is that (1) the solubility in 0.1N aqueous hydrochloric acid solution and 50 mM phosphate buffer at pH 6.0 is 1 mgZmL or more, and in 50 mM phosphate buffer at pH 8.0.
  • Sarakuko A matrix-type sustained-release preparation comprising at least one water-insoluble polymer.
  • the solubility in (1) 0.1N aqueous hydrochloric acid solution and 50 mM phosphate buffer at pH 6.0 is 1 mgZmL or more, and in 50 mM phosphate buffer at pH 8.0. Solubility is not more than 0.2 mgZmL, and the solubility in 50 mM phosphate buffer at pH 6.8 is more than twice the solubility in 50 mM phosphate buffer at pH 8.0.
  • a matrix-type sustained-release preparation comprising at least one water-insoluble polymer
  • a particularly preferred embodiment of the present invention is that (1) the solubility in 0.1N aqueous hydrochloric acid solution and 50 mM phosphate buffer at pH 6.0 is 1 mgZmL or more, and in 50 mM phosphate buffer at pH 8.0.
  • Solubility is not more than 0.2 mgZmL, solubility in 50 mM phosphate buffer at pH 6.8 is more than 2 times solubility in 50 mM phosphate buffer at pH 8.0, and 50 mM phosphate at pH 6.0
  • a matrix type sustained-release preparation comprising at least one water-insoluble polymer.
  • a matrix-type sustained-release containing a basic drug or a salt thereof having a higher solubility in a 0.1N aqueous hydrochloric acid solution and a neutral aqueous solution at pH 6.0 than in a basic aqueous solution at pH 8.0.
  • the pH dependence of elution of a basic drug or its salt at the beginning of its elution is reduced, and the dissolution rate of the basic drug or its salt in an acidic test solution is compared with that in a neutral test solution.
  • Ratio of dissolution rate of basic drug or its salt decreases with time as dissolution test proceeds (dissolution of dissolution test)
  • a matrix-type sustained-release preparation can be prepared that decreases in the later stage of elution compared to the initial stage. These dissolution behaviors can reduce the risk of developing side effects in the early stages of dissolution associated with sustained release of the drug, and further reduce the risk of decreased bioavailability.
  • the composition according to the present invention can release 90% or more of a drug in a neutral test solution within 8 hours, which is estimated to be the upper limit of colon transit time in humans. It is considered to be a highly useful formulation with low risk of bioavailability reduction due to drought. The effect example is shown below.
  • the basic drug or the salt thereof according to the present invention is not particularly limited.
  • the basic drug salt according to the present invention is used in any form of an organic acid salt or an inorganic acid salt.
  • examples include, but are not limited to, hydrochloride, sulfate, acetate, phosphate, carbonate, mesylate, tartrate, citrate, tosylate, and the like.
  • Examples of basic drugs or salts thereof according to the present invention include donepezil hydrochloride, galantamine hydrobromide, rivastigmine tartrate, memantine hydrochloride, tacrine and other anti-dementia drugs, flurazepam hydrochloride, alprazolam, and quenoic acid.
  • Anti-anxiety drugs such as tandospirone and rilmazafone hydrochloride, antihistamines such as diphenyl-biviralin hydrochloride, chlorfelamine maleate, cimetidine, and isothipentyl hydrochloride, fe-lephrin hydrochloride, pro-powered inamide, quinidine sulfate, isosorbide nitrate, nicorandil, etc.
  • antihistamines such as diphenyl-biviralin hydrochloride, chlorfelamine maleate, cimetidine, and isothipentyl hydrochloride, fe-lephrin hydrochloride, pro-powered inamide, quinidine sulfate, isosorbide nitrate, nicorandil, etc.
  • Cardiovascular agents amlodipine besylate, difudipine, dicardipine hydrochloride, diludidipine, antihypertensive agents such as atenolol hydrochloride, tranquilizers such as belospirone hydrochloride, antibacterial agents such as levofloxacin, cephalexin, cefcapene pivoxil hydrochloride, ampicillin, etc.
  • Anti Raw materials others, sulfamethoxazole, tetracytalin, metri-dazole, indanamide, diazepam, papaverine hydrochloride, bromhexine hydrochloride, ticlovidin hydrochloride, carbetapentane citrate, phenylpropanolamine hydrochloride, Drugs such as cetirizine hydrochloride, erythromycin, dirithromycin, josamycin, midecamycin, kitasamycin, roxithromycin, rokitamicin, old leandomycin, myomycin, flurithromycin, rosaramycin And macrolides such as azithromycin and clarithromycin.
  • these basic drugs or salts thereof may be used alone or in combination of two or more.
  • an anti-dementia drug is preferable, and donepezil hydrochloride and Z or memantine hydrochloride are more preferable.
  • the matrix sustained-release preparation of the present invention is suitable for the feature that the safe range of the drug is narrow, or a basic drug or a salt thereof that exhibits side effects depending on the maximum blood drug concentration.
  • the anti-dementia drug is not particularly limited, From the viewpoint of controlled release, it is effective for basic drugs or salts thereof whose solubility with respect to pH of an aqueous solution, which is less soluble in an alkaline aqueous solution than in an acidic aqueous solution, changes near neutrality.
  • the solubility of the basic drug or salt thereof according to the present invention in the acidic aqueous solution, neutral aqueous solution or basic aqueous solution is not particularly limited, but the solubility in the acidic aqueous solution and the neutral aqueous solution is more than the solubility in the basic aqueous solution.
  • phosphate buffers eg, buffers prepared with 50 mM aqueous sodium phosphate and hydrochloric acid
  • a buffer solution such as a buffer solution of 0.1N, 0.1N hydrochloric acid aqueous solution, 0.1 mol of ImolZL aqueous solution of sodium hydroxide and sodium hydroxide can be used.
  • the solubility indicates a value when the temperature of the aqueous solution is 25 ° C.
  • the solubility in an acidic aqueous solution indicates the solubility of a basic drug or a salt thereof in an aqueous solution that shows acidity when the basic drug or a salt thereof is dissolved in a buffer solution or the like.
  • the solubility in a neutral (basic) aqueous solution is the solubility of the basic drug or its salt in an aqueous solution that shows neutrality (basic) when the basic drug or its salt is dissolved in a buffer solution or the like.
  • the basic drug according to the present invention or a salt thereof is higher in solubility in an acidic aqueous solution of PH3.0 and in a neutral aqueous solution of PH 6.0 than in a basic aqueous solution of pH 8.0.
  • the solubility of PH3.0 in an acidic aqueous solution means the solubility of the basic drug or its salt in an acidic aqueous solution showing pH 3.0 when the basic drug or its salt is dissolved in a buffer solution or the like. .
  • the solubility in a neutral aqueous solution of pH 6.0 means the solubility of a basic drug or a salt thereof in an aqueous solution exhibiting pH 6.0 when the basic drug or a salt thereof is dissolved in a buffer solution or the like.
  • the solubility of a basic aqueous solution of pH 8.0 means the solubility of a basic drug or a salt thereof in an aqueous solution having a pH of 8.0 when the basic drug is dissolved in a buffer solution or the like.
  • the basic drug or a salt thereof according to the present invention has a solubility in a 0.1N aqueous solution of hydrochloric acid and a neutral aqueous solution of pH 6.0 in a basic aqueous solution of pH 8.0.
  • the solubility in 0.1N aqueous hydrochloric acid means the solubility of the basic drug when the basic drug or a salt thereof is dissolved in the 0.1N hydrochloric acid aqueous solution.
  • the pH of donepezil hydrochloride and memantine hydrochloride dissolved in 0.1N hydrochloric acid aqueous solution is in the range of about 1-2.
  • the solubility power in a 0.1N aqueous hydrochloric acid solution and a neutral aqueous solution of pH 6.0 is higher than the solubility in a basic aqueous solution of pH 8.0
  • the solubility in a neutral aqueous solution of pH 6.8 is basic of pH 8.0.
  • It is a basic drug or a salt thereof that is at least twice the solubility in an aqueous solution and 1Z2 or less in the pH 6.0 neutral aqueous solution.
  • the solubility in a neutral aqueous solution of PH6.8 means the solubility of a basic drug in an aqueous solution exhibiting PH 6.8 when the basic drug is dissolved in a buffer solution or the like.
  • the solubility in a 0.1N aqueous hydrochloric acid solution and a neutral aqueous solution of pH 6.0 is 1 mgZmL or more
  • the solubility in a basic aqueous solution of pH 8.0 is 0.2 mg / mL or less
  • pH 6. 8 A basic drug or salt thereof having a solubility in a neutral aqueous solution of 8 that is at least twice that in a basic aqueous solution at pH 8.0 and 1Z2 or less in solubility in a neutral aqueous solution of pH 6.0. If there is, it will not be specifically limited.
  • the solubility in 0.1N hydrochloric acid aqueous solution and PH6.0 neutral aqueous solution is not particularly limited as long as it is 1 mgZmL or more, but is usually 1 to: LOOOmgZmL, preferably 5 to 200 mgZmL, more preferably 5 -100 mgZmL, particularly preferably 10-80 mgZmL.
  • the solubility in a basic aqueous solution of pH 8.0 is not particularly limited as long as it is 0.2 mgZmL or less, usually 0.0001 to 0.2 mg / mL, preferably 0.0005 to 0.1 mg / mL.
  • the solubility in a neutral aqueous solution at pH 6.8 is at least twice that in a basic aqueous solution at pH 8.0, and is 1Z2 or less than the solubility in a neutral aqueous solution at pH 6.0.
  • it is preferably at least 3 times the solubility in a basic aqueous solution at pH 8.0 and 1Z3 or less in a neutral aqueous solution at pH 6.0, more preferably at pH 8.0.
  • Dissolution in basic aqueous solution More than 5 times the solubility and 1Z5 or less of the solubility in a neutral aqueous solution of pH 6.0, particularly preferably more than 10 times the solubility in a basic aqueous solution of pH 8.0 and PH6
  • the solubility in a neutral aqueous solution of .0 is 1Z10 or less.
  • the basic drug or a salt thereof according to the present invention has a solubility power in a 0.1N hydrochloric acid aqueous solution and a pH 6.0 50 mM phosphate buffer, and a 50 mM phosphate buffer solution having a pH of 8.0.
  • the solubility in 50 mM phosphate buffer at pH 6.0 refers to basic drug or its drug in 50 mM phosphate buffer that shows pH 6.0 when basic drug or its salt is dissolved in 50 mM phosphate buffer. It means the solubility of salt.
  • the solubility in 50 mM phosphate buffer at pH 8.0 is the basic drug in 50 mM phosphate buffer showing pH 8.0 when the basic drug or a salt thereof is dissolved in 50 mM phosphate buffer. It means the solubility of the salt.
  • the solubility power in a 0.1N aqueous hydrochloric acid solution and a 50 mM phosphate buffer at pH 6.0 is higher than the solubility in the 50 mM phosphate buffer at pH 8.0 and a 50 mM phosphate buffer at pH 6.8.
  • solubility in a 0.1N hydrochloric acid aqueous solution and a pH 6.0 50 mM phosphate buffer is 1 mg / mL or more
  • the solubility in a pH 8.0 50 mM phosphate buffer is 0.2 mgZmL or less
  • pH 6 the solubility in 50 mM phosphate buffer at pH 8 is more than twice the solubility in 50 mM phosphate buffer at pH 8.0 and not more than 1Z2 of solubility in 50 mM phosphate buffer at pH 6.0. If it is a certain basic drug or its salt, it will not specifically limit.
  • the solubility in 0.1N hydrochloric acid aqueous solution and pH 6.0 50 mM phosphate buffer is not particularly limited as long as it is lm gZmL or more, but usually 1 to: LOOOmgZmL, preferably 5 to 200 mgZmL, more Preferably 5 to: LOOmgZmL, particularly preferably 10 to 80 mgZmL.
  • the solubility in 50 mM phosphate buffer at pH 8.0 is not particularly limited as long as it is 0.2 mgZmL or less, but it is usually 0.0001 to 0.2 mgZmL, preferably 0.005 to 0.001 mg / mL.
  • the solubility in the buffer solution is not particularly limited as long as it is at least twice the solubility in the pH 8.0 50 mM phosphate buffer and not more than 1Z2 in the pH 6.0 50 mM phosphate buffer. Is not less than 3 times the solubility in 50 mM phosphate buffer at pH 8.0 and not more than 1Z3 in solubility in 50 mM phosphate buffer at pH 6.0, more preferably 50 mM phosphate at pH 8.0.
  • donepezil hydrochloride has a solubility in an acidic aqueous solution of pH 3.0 and a solubility in a neutral aqueous solution of pH 6.0 of 1 mg to 16 mg ZmL, and a solubility in a basic aqueous solution of pH 8.0 is 0. lmgZmL or less.
  • donepezil hydrochloride has a solubility in a neutral aqueous solution of pH 6.8 that is at least twice that of a basic aqueous solution of pH 8.0, and has a solubility in the neutral aqueous solution of pH 6.0.
  • It is a weakly basic drug having one tertiary amino group or a salt thereof having a characteristic of 1Z2 or less, and is a drug widely used as an Arnno or Immer-type dementia drug.
  • donepezil hydrochloride has a solubility of 0.1 mg to 16 mg / mL in a 0.1 N aqueous hydrochloric acid solution and a 50 mM phosphate buffer solution at pH 6.0, and a 50 mM phosphate buffer solution at pH 8.0. Is less than 0.1 mgZmL, and the solubility in 50 mM phosphate buffer at pH 6.8 is at least twice the solubility in 50 mM phosphate buffer at pH 8.0, and 50 mM at pH 6.0. It is a weakly basic drug having one tertiary amino group or a salt thereof having the property of being 1Z2 or less in solubility in a phosphate buffer, and is a drug widely used as an Alzheimer-type dementia drug.
  • the dose of the basic drug or a salt thereof according to the present invention is not particularly limited because it depends on the type of the drug or the patient's condition of each disease.
  • acetyl as an Alzheimer-type dementia drug If it is a cholinesterase inhibitor, it is 0.01 to 50 mgZday.
  • donepezil or a pharmacologically acceptable salt thereof is 0.01 to 50 mgZday, preferably 0.1 to 40 mgZday, and more preferably 1 to 30 mg. / day, particularly preferably 5 to 25 mg / day.
  • Rivastigmine or its pharmacology The pharmaceutically acceptable salt is 0.01 to 50 mgZday, preferably 0.1 to 30 mgZday, more preferably 1 to 20 mgZday, and particularly preferably 1 to 15 mgZday.
  • Galantamine or a pharmacologically acceptable salt thereof is 0.01 to 50 mg / day, preferably 0.1 to 40 mgZday, more preferably 1 to 30 mgZday, and particularly preferably 2 to 25mgZday.
  • Memantine or a pharmacologically acceptable salt thereof as an N-methyl D-aspartate (NMDA) receptor antagonist is 0.5 to: LOOmgZday, preferably 1 to 100 mgZday. More preferably, it is 1-40 mgZday. Particularly preferred is 5 to 25 mg Zday.
  • the enteric polymer according to the present invention is not particularly limited, but does not dissolve in 0.1N hydrochloric acid aqueous solution, but dissolves in any buffered aqueous solution having a pH in the range of 5.0 to 8.0. It is desirable to have it. At least one type of enteric polymer is used, and two or more types of enteric polymer may be used in combination. Enteric polymers include, for example, methacrylic acid 'methyl methacrylate copolymer (Eudragit L100, Eudragit SI 00, etc .: Rohm GmbH & Co. KG, Darmstadt, Germany), methacrylic acid' ethyl acrylate copolymer (Eudragit L100-55).
  • Eudragit L30D-55 etc . Rohm GmbH & Co.KG, Darms tadt, Germany), hydroxypropyl methylcellulose phthalate (HP-55, HP-50 etc .: Shin-Etsu Chemical Co., Ltd.), hydroxypropyl methylcellulose acetate succinate (AQOAT) Etc .: Shin-Etsu Chemical Co., Ltd.), carboxymethylethyl cellulose (CME C: Freund Sangyo Co., Ltd.), cellulose acetate phthalate, etc., preferably methacrylic acid 'ethyl acrylate copolymer, methacrylic acid' methyl methacrylate Copolymers, hydroxypropylmethylcellulose phthalate and hydro Xylpropyl methylcellulose acetate succinate, particularly preferably an enteric polymer that can be dissolved in a buffered aqueous solution having a pH of 5.0 or more and less than 6.8, such as methacrylic acid / e
  • methacrylic acid 'ethyl acrylate copolymer is preferred by Eudragit L100-55 (Rohm GmbH & Co. KG, Darmstadt, Germany), which is a powder that can be dissolved in an aqueous buffer solution with a pH of 5.5 or higher. Gumo hydroxypropyl methylcellulose acetate succine AQOAT LF (soluble at pH 5.5 or higher, Shin-Etsu Chemical Co., Ltd.), AQOAT MF (soluble at pH 6.0 or higher, Shin-Etsu Chemical Co., Ltd.) Company) is preferred.
  • the average particle diameter of the enteric polymer used in the present invention is not particularly limited, but usually a smaller one is more suitable, preferably 0.05 to: LOO / zm, more preferably 0.05. ⁇ 70 / ⁇ ⁇ , particularly preferably 0.05-50 / ⁇ ⁇ .
  • the water-insoluble polymer according to the present invention means a sustained-release base that does not dissolve in any buffered aqueous solution of pH 1.0 to pH 8.0, and is not particularly limited.
  • Water-insoluble polymers include, for example, cellulose ethers (such as cetylcellulose, ethylmethylenosenorose, ethinorepropenoresenorerose, isopropinoresenorerose, butinoresenoreose).
  • cellulose ethers such as cetylcellulose, ethylmethylenosenorose, ethinorepropenoresenorerose, isopropinoresenorerose, butinoresenoreose.
  • Etherenoles senenorose alkyl ethers such as benzenoresenololose, cellulose cyanoalkyl ethers such as cyanoethylcellulose, etc.), cellulose esters (cellulose acetate butyrate, senorelose acetate, senorelose propio) Cellulose organic acid esters such as nate, senololose butyrate, senorelose acetate propionate), methacrylic acid 'acrylic acid copolymer (trade names: Eudragit RS, Eudragit RL, Eudragit NE, Rohm GmbH & Co.KG , Darmstadt, Germany) and the like, preferably ethyl cellulose, aminoalkyl methacrylate copolymer RS (Eudragit RL, Eudragit RS) and ethyl acrylate 'methacrylic acid methyl copolymer (Eudragit NE), more preferably Ethy
  • the average particle size of the water-insoluble polymer used in the present invention is not particularly limited, but usually a smaller one is more suitable, preferably 0.1 to LOO / zm, more preferably 1 to 50. / ⁇ ⁇ , particularly preferably 3 to 15 ⁇ m, particularly preferably 5 to 15 ⁇ m.
  • the amount of the enteric polymer in the matrix type sustained release preparation is not particularly limited, but is usually 5 to 90% by weight with respect to 100% by weight of the matrix type sustained release preparation.
  • the amount is preferably 8 to 70% by weight, more preferably 10 to 60% by weight, and particularly preferably 15 to 50% by weight.
  • water-insoluble polymers and enteric polymers in matrix-type sustained-release preparations Although the total blending amount is not particularly limited, it is usually 25 to 95% by weight, preferably 35 to 95% by weight, more preferably 35 to 95% by weight based on 100% by weight of the matrix-type sustained release preparation. 90% by weight, particularly preferably 35 to 75% by weight.
  • the water-insoluble polymer is ethyl cellulose
  • the enteric polymer strength S methacrylic acid / ethyl acrylate copolymer, methacrylic acid 'methacrylic acid At least one selected from methyl copolymer and hydroxypropyl methylcellulose acetate succinate, the most preferred water-insoluble polymer is ethyl cellulose, and enteric polymer strength S methacrylic acid / ethyl acrylate copolymer and Z or Hydroxypropyl methylcellulose acetate succinate
  • the amount of the water-insoluble polymer in the matrix-type sustained-release preparation is not particularly limited, but is usually 1 to 90% by weight with respect to 100% by weight of the matrix-type sustained-release preparation. better rather is a 3 to 70 weight 0/0, more preferably from 5 to 50 weight 0/0, and particularly preferably 5 to 35% by weight.
  • the matrix-type sustained-release preparation according to the present invention can ensure the dissolution of the above basic drug or its salt with a small pH dependence at the initial stage of dissolution in an dissolution test, and also has an acidic dissolution.
  • the elution rate of the basic drug or its salt in the test solution hereinafter referred to as “acidic test solution”
  • the neutral dissolution test solution hereinafter referred to as “neutral test solution”.
  • the ratio of dissolution rate of basic drugs or their salts decreases over time in the later elution phase compared to the early elution phase It has special characteristics.
  • the solubility power in the acidic aqueous solution and the neutral aqueous solution described above is obtained by blending an enteric polymer with a basic drug or a salt thereof higher than the solubility in a basic aqueous solution. Suppresses dissolution of the basic drug or its salt in dissolution test solutions showing acidic and neutral pH. In addition, when a water-insoluble polymer and an enteric polymer are blended, the base in the dissolution test solution showing acidic and neutral pH increases as the blending amount of the enteric polymer to be combined with the water-insoluble polymer increases.
  • dissolution rate decreases with time as the dissolution test progresses (decrease in the later stage of dissolution compared to the initial stage of dissolution test). It is extremely easy to prepare a matrix-type sustained-release preparation. Excellent characteristics.
  • the characteristics of the matrix-type sustained-release preparation according to the present invention are as follows.
  • a neutral dissolution test solution with a pH 6.8 50 mM phosphate buffer solution and an acidic dissolution test solution is used.
  • 0.1 N hydrochloric acid aqueous solution can be used.
  • the dissolution of a basic drug or a salt thereof having a matrix-type sustained-release preparation of the present invention is a 50 mM phosphate having a pH of 6.8 in the dissolution test using the paddle method of the dissolution test method of the Japanese Pharmacopoeia.
  • the dissolution rate of the basic drug or its salt in 0.1N hydrochloric acid aqueous solution in 1 hour is less than 60%, preferably less than 50%.
  • the basic drug in 0.1N hydrochloric acid aqueous solution with respect to the dissolution rate of the basic drug or its salt in 50 mM phosphate buffer at pH 6.8.
  • the specific power of the elution rate of the salt is 0.3 to 1.5 at 3 hours, preferably the elution rate is 0.3 to 1.4, more preferably 0.3 to 1. 3, most preferably from 0.3 to 1.2.
  • the paddle method of the dissolution test method of the Japanese Pharmacopoeia can be carried out by the method described in the Japanese Pharmacopoeia 14 stations, for example, it can be tested at a paddle rotation speed of 50 rpm.
  • the matrix-type sustained-release preparation according to the present invention preferably further contains a water-soluble saccharide and Z or a water-soluble sugar alcohol.
  • the water-soluble saccharide and Z or water-soluble sugar alcohol are not particularly limited.
  • Examples of water-soluble saccharides include lactose, sucrose, glucose, dextrin, pullulan and the like, and examples of water-soluble sugar alcohols include: Powers such as mannitol, erythritol, xylitol, sorbitol, etc. Preferred are lactose and mannitol.
  • the amount of water-soluble saccharide or water-soluble sugar alcohol in the matrix-type sustained-release preparation is not particularly limited, but is usually 3 to 70% by weight with respect to 100% by weight of the matrix-type sustained-release preparation. Yes, preferably 5 to 60% by weight, more preferably 10 to 60% by weight, and particularly preferably 12 to 60% by weight.
  • the matrix-type sustained-release preparation according to the present invention further comprises various pharmacologically acceptable carriers, such as excipients, lubricants, binders, disintegrants, etc., and if necessary, preservatives. Pharmaceutical additives such as agents, antioxidants, colorants, sweeteners, plasticizers, etc. may be added. If necessary, the prepared matrix-type sustained release preparation may be subjected to film coating or the like.
  • the excipient include starch, pregelatinized starch, crystalline cellulose, light anhydrous caustic acid, synthetic aluminum silicate, magnesium aluminate metasilicate, and the like.
  • Lubricants include magnesium stearate (Mallinckrodt Baker, Inc.
  • binding agent examples include hydroxypropenoresenorelose, methinoresenorelose, canoleboxymethinoresenololose sodium, hydroxypropylmethylcellulose, polybulurpyrrolidone and the like.
  • disintegrant examples include carboxymethyl cellulose, carboxymethyl cellulose calcium, croscarmellose sodium, sodium carboxymethyl starch, and low-substituted hydroxypropyl cellulose.
  • preservative include para-benzoic acid esters, chlorobutanol, benzyl alcohol, phenethyl alcohol, dehydrated acetic acid, sorbic acid and the like.
  • Antioxidants include sulfites and ascorbates.
  • Preferable examples of the colorant include water-insoluble lake dyes, natural dyes (eg, ⁇ -strength rotin, chlorophyll, bengara), yellow iron sesquioxide, red iron sesquioxide, and black iron oxide.
  • Preferable examples of the sweetening agent include saccharin sodium, dipotassium glycyrrhizinate, aspartame, stevia and the like.
  • the plasticizer include glycerin fatty acid ester (trade name: Mybasset), triethyl citrate (trade name: Citroflex 2), propylene glycol, polyethylene glycol and the like.
  • the film coating base examples include, but are not limited to, hydroxypropylmethylcellulose, hydroxypropylcellulose, and the like.
  • the amount of the carrier in the matrix-type sustained-release preparation according to the present invention is not particularly limited.
  • the lubricant is 0 fold relative to 100% by weight of the matrix-type sustained-release preparation.
  • % To 5% by weight preferably 0.01 to 4% by weight, more preferably 0.1 to 3% by weight, and still more preferably 0.3 to 1% by weight. It is.
  • the binder is 0% to 10% by weight, preferably 0.1% to 8% by weight, more preferably 0.5% by weight with respect to 100% by weight of the matrix-type sustained release preparation.
  • % To 6% by weight more preferably 1% to 3% by weight.
  • the matrix-type sustained-release preparation according to the present invention includes, for example, (a) a basic drug or a salt thereof, a matrix-type sustained-release preparation of 100% by weight, and (b) an enteric polymer 5- A matrix type preparation containing 90% by weight and (c) 3 to 70% by weight of a water-soluble sugar alcohol.
  • a basic drug or a salt thereof, and a matrix-type sustained-release preparation 100% by weight, (b) 8 to 70% by weight of an enteric polymer and (c) 5 to 5% of a water-soluble sugar alcohol It is a matrix type preparation containing 60% by weight, and (b) enteric polymer 10-60 with respect to 100% by weight of Sarakuko, (a) basic drug or salt thereof, matrix type sustained release preparation A matrix-type preparation containing 10% to 60% by weight of (c) a water-soluble sugar alcohol.
  • a basic drug or a salt thereof, and a matrix-type sustained-release preparation 100% by weight
  • a matrix-type sustained-release preparation 100% by weight
  • enteric polymer 15 to 50% by weight
  • a water-soluble sugar alcohol It is a matrix type preparation containing 12 to 60% by weight.
  • the matrix-type sustained-release preparation according to the present invention has, for example, (b) an enteric polymer 5% with respect to 100% by weight of a basic drug or a salt thereof or a matrix-type sustained-release preparation 5 It is a matrix type preparation containing -90% by weight, (c) 3-70% by weight of water-soluble sugar alcohol, and (d) 1-90% by weight of water-insoluble polymer.
  • (b) 8 to 70% by weight of an enteric polymer and (c) a water-soluble sugar alcohol are added to 100% by weight of (a) a basic drug or a salt thereof, or a matrix type sustained-release preparation.
  • a basic drug or a salt thereof wherein the solubility in a 0.1N aqueous hydrochloric acid solution and a neutral aqueous solution at pH 6.0 is higher than the solubility in a basic aqueous solution at pH 8.0.
  • a process for mixing at least one enteric polymer and a process for compression-molding the mixture obtained in the mixing process is higher than the solubility in a basic aqueous solution at pH 8.0.
  • the method for producing a matrix-type sustained-release preparation comprises: (1) the solubility in a 0.1N aqueous hydrochloric acid solution and a neutral aqueous solution of PH 6.0 is 1 mgZmL or more, and in a basic aqueous solution of pH 8.0.
  • Solubility is 0.2 mgZmL or less
  • the solubility in a neutral aqueous solution of pH 6.8 is at least twice the solubility in a basic aqueous solution of PH 8.0
  • 1Z2 of the solubility in a neutral aqueous solution of pH 6.0 A basic drug or a salt thereof
  • a water-insoluble polymer is mixed in the mixing step.
  • the solubility power in a 0.1N hydrochloric acid aqueous solution and a 50 mM phosphate buffer at pH 6.0 is a basic drug or higher in solubility in a 50 mM phosphate buffer at pH 8.0.
  • a method for producing a matrix-type sustained-release preparation comprising a step of mixing the salt and at least one type of enteric polymer, and a step of compression molding the mixture obtained in the mixing step.
  • the method for producing a matrix-type sustained-release preparation comprises: (1) a solubility in a 0.1N hydrochloric acid aqueous solution and a 50 mM phosphate buffer at pH 6.0 of 1 mgZmL or more, and a 50 mM phosphate at pH 8.0.
  • the solubility in an acid buffer is not more than 0.2 mg / mL
  • the solubility in a 50 mM phosphate buffer at pH 6.8 is at least twice that in a 50 mM phosphate buffer at pH 8.0, and obtained by mixing a basic drug having a solubility of 1Z2 or less in a pH 6.0 50 mM phosphate buffer or a salt thereof, and (2) at least one enteric base, and the mixing step. Compression molding the mixture.
  • the water-insoluble polymer is mixed in the mixing step.
  • the method for producing a matrix-type sustained-release preparation comprises: (A) a solubility power in an O.IN hydrochloric acid aqueous solution and a PH 6.0 50 mM phosphate buffer; a 50 mM phosphate buffer having a pH of 8.0; The solubility in a 50 mM phosphate buffer at pH 6.8, which is higher than the solubility in the solution, is at least twice the solubility in the 50 mM phosphate buffer at pH 8.0, and the 50 mM phosphate buffer at pH 6.0.
  • the method for producing a matrix-type sustained-release preparation according to the present invention comprises: (1) a solubility of 1 mg 0.1N aqueous hydrochloric acid solution and PH 6.0 in a 50 mM phosphate buffer of 1 mgZmL or more, and a pH 8.0 pH 50 mM phosphate.
  • Solubility in acid buffer is not more than 0.2 mgZmL
  • solubility in 50 mM phosphate buffer at pH 6.8 is more than twice that in 50 mM phosphate buffer at pH 8.0
  • pH 6 A step of mixing a basic drug or salt thereof having a solubility of 1Z2 or less in 0 50 mM phosphate buffer, (2) at least one enteric polymer, and (3) at least one water-insoluble polymer. And a step of compression molding the mixture obtained in the mixing step.
  • a preferred embodiment of the method for producing a matrix-type sustained-release preparation according to the present invention can include a step of granulating a mixture of sagoko and the mixing step before the compression molding step, or In the mixing step, a basic drug or a salt thereof, an enteric polymer and a water-insoluble polymer can be mixed. Of course, other pharmacologically acceptable additives can be mixed with them.
  • the granulation step is a wet granulation method, more preferably a wet granulation method using a water-soluble binder.
  • a water-soluble saccharide and / or a water-soluble sugar alcohol are mixed together, and if necessary, other pharmacology. Additives that are acceptable may be blended.
  • Mixing and compression molding are carried out in accordance with conventional methods commonly used in the field of pharmaceutical technology, and are not particularly limited.
  • a matrix-type sustained-release preparation can be produced by compression molding by direct compression using a tableting machine after mixing as described above, but further granulate the mixture after mixing and before compression molding. You For example, a granulation process such as wet granulation, dry granulation, fluidized bed granulation, extrusion granulation, spray drying granulation, or the like can be arbitrarily selected.
  • the matrix type sustained-release preparation is not particularly limited as long as it is an oral preparation.
  • a tablet, granule, fine granule, capsule or the like can be produced.
  • the capsule may be filled with one or a plurality of matrix-type sustained-release preparations that are tablets, granules, and fine granules.
  • a hard capsule may be filled with a plurality of matrix-type sustained-release preparation mini-tablets having a reduced diameter, or a matrix-type sustained-release preparation that is a granule or fine granule may be filled.
  • the matrix-type sustained-release preparation of tablets and the matrix-type sustained-release preparation of granules or fine granules may be filled in capsules.
  • a film coating or the like may be applied to the matrix-type sustained release preparation. The presence or absence of the water-soluble film coating on the matrix type sustained release preparation of the present invention has little effect on the dissolution profile of the basic drug or its salt from the matrix type sustained release preparation.
  • the present invention also relates to a basic drug or salt thereof having a solubility in a 0.1N aqueous hydrochloric acid solution and a neutral aqueous solution of pH 6.0 that is higher than that in a basic aqueous solution of pH 8.0, and at least one kind.
  • the method for producing a matrix-type sustained-release preparation according to the present invention may comprise a step of adding at least one water-insoluble polymer.
  • the present invention has a solubility power in a 0.1N aqueous hydrochloric acid solution and a neutral aqueous solution of pH 6.0, a basic drug or a salt thereof higher than the solubility in a basic aqueous solution of pH 8.0, at least one enteric polymer, And at least one kind of water-insoluble polymer, and compression molding, the basic drug or its salt at an elution time of 2 to 3 hours, which corresponds to the elimination time of gastric force, at the beginning of the elution test.
  • This is a method of reducing the pH dependence of the.
  • the present invention provides a basic drug or a salt thereof having a higher solubility in a 0.1 mM aqueous hydrochloric acid solution and a 50 mM phosphate buffer having a pH of 6.0 than in a 50 mM phosphate buffer having a pH of 8.0. And at least one enteric polymer is mixed and compression molded.
  • the method for producing a matrix-type sustained release preparation according to the present invention may include a step of adding at least one water-insoluble polymer. That is, the present invention relates to a solubility of a 0.1N aqueous hydrochloric acid solution and a 50 mM phosphate buffer having a pH of 6.0 and a basic drug or salt thereof having a higher solubility than that in a 50 mM phosphate buffer having a pH of 8.0.
  • the basicity at the elution time of 2 to 3 hours corresponding to the gastric emptying time at the beginning of the elution test is obtained. This is a method of reducing the pH dependency of a drug or a salt thereof.
  • the method for reducing the pH dependence of elution of the basic drug or a salt thereof is as follows: (1) Solubility in 0.1N hydrochloric acid aqueous solution and 50 mM phosphate buffer at pH 6.0. Is 1 mgZmL or more, the solubility in 50 mM phosphate buffer at pH 8.0 is 0.2 mgZmL or less, and the solubility in 50 mM phosphate buffer at pH 6.8 is twice the solubility in 50 mM phosphate buffer at pH 8.0.
  • the matrix-type sustained-release preparation according to the present invention can be produced, for example, by the following method.
  • Donepezil hydrochloride (Eisai Co., Ltd.) 130g, Etcel 10FP (Ethyl Cellulose, Dow Chemical Company) 624g, Eudragit L100-55 (Rohm GmbH & Co. KG) 780g and lactose 988g were mixed in a stirring granulator To do.
  • an aqueous solution obtained by dissolving 52 g of hydroxypropylcellulose in an appropriate amount of purified water is subjected to wet granulation, and the granulated granules are heated and dried using a shelf dryer and then sized.
  • magnesium stearate (Mallinckrodt Baker, In) lg per 99g of granule is added and mixed, and tableted using a rotary tableting machine to give 10mg of donepezil hydrochloride in 200mg. It is possible to obtain tablets containing 8 mm in diameter.
  • the tablet may be coated with a water-soluble film mainly composed of hydroxypropylmethylcellulose or the like using a coating apparatus.
  • the matrix-type sustained-release preparation of the present invention can be produced, for example, by the following method. You can also. 20 g of memantine hydrochloride (Lachema sro Czech Republic), 48 g of etosel 10FP (ethyl cellulose, Dow Chemical Company), 60 g of Eudragit L100-55 (Rohm GmbH & Co. KG) and 66 g of lactose are mixed in a stirring granulator. An aqueous solution in which 4 g of hydroxypropylcellulose is dissolved in an appropriate amount of purified water is added to the above mixture and wet granulated, and the granulated granules are heated and dried using a shelf dryer and then sized.
  • magnesium stearate (Mallinckrodt Baker, In) lg is added to 99g of the granule, mixed, and tableted using a rotary tableting machine. 200mg of memantine hydrochloride in 200mg Diameter It is possible to obtain 8 mm tablets. In addition, use a coating device to coat the tablet with a water-soluble film composed mainly of hydroxypropylmethylcellulose.
  • a matrix-type sustained-release preparation was prepared according to Comparative Example 1, Example 2 and Example 4 shown below using donepezil hydrochloride, and its dissolution test was performed.
  • a matrix-type sustained-release preparation was prepared using ethylcellulose as the water-insoluble polymer and Eudragit L100-55 as the enteric polymer.
  • the blending ratios of ethyl cellulose and Eudragit L100-55 in Comparative Example 1, Example 2, and Example 4 were 25 wt%: 0 wt%, 25 wt%: 25 wt%, 25 wt%: 50 wt%, respectively. %.
  • the dissolution test was conducted according to the dissolution test method of the 14th Japanese Pharmacopoeia, using test solution A as the acidic test solution shown below and test solution B as the neutral test solution at a paddle rotation speed of 50 rpm.
  • Test solution A 0. IN Hydrochloric acid aqueous solution
  • Test solution B 50 mM phosphate buffer at pH 6.8 (buffer solution adjusted to pH 6.75 to pH 6.84 with 50 mM sodium phosphate aqueous solution with hydrochloric acid)
  • the elution rate was calculated by measuring the concentration of donepezil hydrochloride in the sample solution collected over time by absorptiometry or HPLC analysis.
  • the absorptiometry was performed under the measurement conditions of a measurement wavelength of 315 nm and a reference wavelength of 650 nm.
  • the comparison results of the dissolution test are shown in FIGS. 1 and 2, and the results of Comparative Example 1, Example 2, and Example 4 are shown in Tables 1 and 2, respectively.
  • Test solution A Test solution A / Test solution A / Time Test solution A Test solution B
  • Test solution B Time Test solution A Test solution B
  • Test solution A Test solution A / Test solution A / Time Test solution A Test solution B
  • Test solution B Time Test solution A Test solution B
  • the matrix-type sustained-release preparation according to the present invention a combination formulation of an enteric polymer and a water-insoluble polymer is used! On the other hand, as the amount of the enteric polymer blended in the water-insoluble polymer is increased, the dissolution rate can be decreased, and a long-term sustained-release preparation can be prepared.
  • a matrix-type sustained-release preparation was prepared according to Comparative Example 1, Examples 1 to 11 and 14 to 17 shown below using donepezil hydrochloride, and the dissolution test was performed.
  • Formulations with different amounts of donevezil hydrochloride, enteric polymer and water-insoluble polymer Examples 1 to 6
  • formulations with different excipient types Examples 5 and 7
  • binders Formulations wet-granulated (Examples 8, 11, 14-17, 20), formulations with different types of ethyl cellulose (Examples 5, 9, 10), formulations prepared by scaling up (Examples 11 and 14 to 17), and evaluation was performed according to the dissolution test method described above.
  • Comparative Example 1 a preparation containing no enteric polymer and containing donevezil hydrochloride and a water-insoluble polymer as main components was used.
  • the results of Comparative Example 1 and Example 1, Examples 2 to 6, Examples 7 to 11, and Examples 14 to 17 and 20 are shown in Table 1, Table 2, Table 3, and Table 4, respectively.
  • the comparison results of the dissolution tests of Examples 14 to 17 are shown in FIGS.
  • Test solution B time Test solution A Test solution B Test solution A / Test solution B
  • Test solution B time Test solution B
  • Test solution B time Test solution A Test solution B Test solution A / Test solution B
  • Test solution A / hour Test solution A Test solution B
  • the elution rate ratio decreased, and with the progress of the elution test, it gradually decreased until the elution test was completed, or until the elution time at which the elution rate in the neutral test solution was 90% or more. At this time, the elution rate was 3 hours, and the ratio of the elution rates was 0.6 to 1.3. That is, in the preparation of the present invention, by incorporating an enteric polymer, the pH dependence of elution is reduced while suppressing the elution rate in the acidic test solution at the beginning of elution corresponding to the gastric residence time.
  • the formulation can be realized by increasing the elution rate in the neutral test solution to the elution rate in the acidic test solution in the late elution phase, which is assumed to be the small intestine residence time.
  • the effects of both the early and late elution were as follows. The formulations (Examples 1 to 6) and excipients with different amounts of donevezil hydrochloride, enteric polymer and water-insoluble polymer were used.
  • Formulations changed (Examples 5 and 7), formulations granulated with a binder (Examples 8, 11, 14-17, 20), formulations with different types of ethylcellulose (Examples 5 and 7) 9, 10) and any of the preparations prepared by changing the production scale (Examples 11, 14-17, 20).
  • the upper limit of colonic transition time in humans was estimated within 8 hours (Int. J. Pharm., Vol. 53, 1989, 107-117). Since more than 90% of the drug is released in 50 mM phosphate buffer, these are highly useful formulations with a low risk of bioavailability reduction due to sustained release. Conceivable.
  • enteric polymer and water-insoluble polymer were investigated.
  • a matrix-type sustained-release preparation was prepared according to Comparative Example 2 and Examples 12 and 13 shown below, and the dissolution test was performed.
  • Hydroxypropyl methylcellulose acetate succinate AQOAT LF or AQOA as enteric polymer
  • Matrix-type sustained-release preparation is a preparation containing 50% of the total weight of the matrix type sustained release preparation.
  • Comparative Example 2 a preparation that did not contain an enteric polymer and contained the same amount of donepezil hydrochloride and water-insoluble polymer as in Examples 12 and 13 was used. Comparative results of the dissolution test are shown in FIGS. 5 and 6, and the results of Comparative Example 2, Examples 12 and 13 are shown in Table 5.
  • the dissolution rate already reached 90% after 2 hours of dissolution in the acidic test solution, and in the acidic test solution.
  • the ratio of the dissolution rate in the neutral test solution to the dissolution rate in the neutral test solution is 1.3 at the beginning of dissolution (1 to 3 hours).
  • the formulation of Example was formulated with 50.0% of hydroxypropylmethylcellulose acetate succinate (AQOAT LF or AQOAT MF Shin-Etsu Chemical Co., Ltd.) as the enteric polymer.
  • Examples 12 and 13 showed smaller values (0.38 to 0.55) than Comparative Example 2.
  • the compounding of these enteric polymers suppresses the drug dissolution rate in the acidic test solution and neutral test solution in the early stage of dissolution, and remarkably suppresses the drug dissolution rate in the acidic test solution.
  • the elution rate in both solutions was brought close to each other, and the effect of reducing the pH dependence was shown.
  • the latter stage of elution it showed the effect of increasing the elution with the neutral test solution while suppressing the elution with the acidic test solution.
  • Example 21 which contains 25% ethylcellulose and 50% Eudragit L100, differs from Comparative Example 1 in which 25% ethylcellulose is blended, in the acidic test solution of a basic drug or its salt, with elution time.
  • the ratio of the dissolution rate in the neutral test solution to the dissolution rate in the neutral test solution was confirmed to decrease with time.
  • Example 21 Comparative Example 1 hour Test solution A Test solution B Test solution VB Test solution V Test solution B Time Test solution A Test solution
  • Example 23 released 90% or more of the drug in 50 mM phosphate buffer at pH 6.8 within 8 hours, which is estimated to be the upper limit of colon transit time in humans. It is disregarded that the product is expensive.
  • Test solution B time Test solution B
  • Dissolution tests were performed using the tablets obtained in Examples 27 to 31. The results are shown in Table 8 and Figs.
  • the matrix-type sustained-release preparation of the present invention it is possible to ensure dissolution with low pH dependence at the beginning of dissolution, and at the same time, dissolution rate and neutrality test of basic drugs or their salts in acidic test solutions. It is clear that the ratio of dissolution rate in solution (dissolution rate in acidic test solution Z dissolution rate in neutral test solution) decreases with the progress of dissolution test over time.
  • These tablets have a drug release of 90% or more in 50 mM phosphate buffer at pH 6.8 within 8 hours, which is estimated to be the upper limit of colon transit time in humans, and are very useful. Considered a formulation.
  • Test solution B time Test solution A Test solution B Test solution A / Test solution B
  • Test solution B time Test solution B
  • the dissolution test was performed.
  • the dissolution test was conducted according to the dissolution test method of the 14th Japanese Pharmacopoeia, using test solution A as the acidic test solution and test solution B as the neutral test solution shown below at a paddle speed of 50 rpm.
  • Test solution A 0. IN Hydrochloric acid aqueous solution
  • Test solution B 50 mM phosphate buffer at pH 6.8 (buffer solution adjusted to pH 6.75 to pH 6.84 with 50 mM sodium phosphate aqueous solution with hydrochloric acid)
  • the elution rate was obtained by calculating the concentration of memantine hydrochloride in the sample solution collected over time by HPLC analysis after labeling memantine hydrochloride with Fluorescamine.
  • the outline of the labeling conditions and the HPLC conditions are as follows. Mix 1mL of sample liquid collected over time and 9mL of pH9.0 borate buffer (USP), and then stir well with 5mL of Fluorescamine 1.2mg / mL acetone solution. Analyze the sample mixed with 10 mL of water with the above solution by HPLC.
  • Comparative Example 4 a system that does not contain an enteric polymer and contains ethyl cellulose
  • the elution rate of memantine hydrochloride can be suppressed to about 30% to 40% after 1 hour of elution.
  • the ratio of dissolution rate of basic drugs or their salts in acidic test solution to dissolution rate in neutral test solution is It was constant with no change due to elution time.
  • Examples 40 to 42 containing the enteric polymer can suppress the elution rate of memantine hydrochloride at the initial elution time to be lower than that of Comparative Example 4.
  • Test solution B time Test solution B
  • Test solution A Test solution Time Test solution A Test solution B Test solution B V Test solution B Time Test solution A
  • Test solution B time Test solution B
  • Donepezil hydrochloride (Eisai) 300 mg, Eudragit L100-55 (Rohm GmbH & Co. KG) 1500 mg, lactose 1170 mg, magnesium stearate (Mallinckrodt Baker, Inc.) 30 mg were mixed in a mortar. 200 mg of the above mixture was collected and tableted using an autograph AG5000A (Shimadzu Corporation) to obtain a tablet with a diameter of 8 mm containing 20 mg of donepezil hydrochloride. Table 1 shows the results of the dissolution test.
  • Donepezil hydrochloride (Eisai) 300mg, etosel 10FP (Ethylcellulose, Dow Chemic al Company) 750mg, Eudragit L100-55 (Rohm GmbH & Co. KG) 750mg, lactose 1170mg, magnesium stearate (Mallinckrodt Baker, Inc .) 30 mg was mixed in a mortar. 200 mg of the above mixture was collected and tableted using Autograph AG5000A (Shimadzu Corporation) to obtain a tablet with a diameter of 8 mm containing 20 mg of donepezil hydrochloride. Results of dissolution test
  • Donepezil hydrochloride (Eisai) 75mg, etosel 10FP (Etylcellulose, Dow Chemica 1 Company) 750mg, Eudragit LI 00-55 (Rohm GmbH & Co. KG) 750mg, lactose 1395mg, magnesium stearate (Mallinckrodt Baker, Inc.) 30 mg was mixed in a mortar. 200 mg of the above mixture was collected and tableted using Autograph AG5000A (Shimadzu Corporation) to obtain a tablet with a diameter of 8 mm containing 5 mg of donepezil hydrochloride. Results of dissolution test
  • Example 4 Donepezil hydrochloride (Eisai) 300 mg, etosel 10FP (Ethylcellulose, Dow Chemic al Company) 750 mg, Eudragit L100-55 (Rohm GmbH & Co. KG) 1500 mg, lactose 420 mg, magnesium stearate (Mallinckrodt Baker, Inc .) 30 mg was mixed in a mortar. 200 mg of the above mixture was collected and tableted using Autograph AG5000A (Shimadzu Corporation) to obtain a tablet with a diameter of 8 mm containing 20 mg of donepezil hydrochloride. Results of dissolution test
  • Donepezil hydrochloride (Eisai) 300 mg, etosel 10FP (Ethylcellulose, Dow Chemic al Company) 375 mg, Eudragit L100-55 (Rohm GmbH & Co. KG) 1500 mg, lactose 795 mg, magnesium stearate (Mallinckrodt Baker, Inc .) 30 mg was mixed in a mortar. 200 mg of the above mixture was collected and tableted using Autograph AG5000A (Shimadzu Corporation) to obtain a tablet with a diameter of 8 mm containing 20 mg of donepezil hydrochloride. Results of dissolution test
  • Donepezil hydrochloride (Eisai) 300 mg, etosel 10FP (Ethylcellulose, Dow Chemic al Company) 183 mg, Eudragit L100-55 (Rohm GmbH & Co. KG) 1500 mg, lactose 987 mg, magnesium stearate (Mallinckrodt Baker, Inc .) 30 mg was mixed in a mortar. 200 mg of the above mixture was collected and tableted using Autograph AG5000A (Shimadzu Corporation) to obtain a tablet with a diameter of 8 mm containing 20 mg of donepezil hydrochloride. Results of dissolution test
  • Donepezil hydrochloride (Eisai) 300mg, etosel 10FP (Ethylcellulose, Dow Chemic al Company) 375mg, Eudragit L100-55 (Rohm GmbH & Co. KG) 1500mg, D-mann-toll 795mg, magnesium stearate (Mallinckrodt Baker, Inc.) 30 mg was mixed in a mortar. 200 mg of the above mixture was collected and tableted using Autograph AG5000A (Shimadzu Corporation) to obtain a tablet with a diameter of 8 mm containing 20 mg of donepezil hydrochloride. The results of the dissolution test are shown in Table 3.
  • Example 8 Donepezil hydrochloride (Eisai) 300mg, Etosel 10FP (Ethylcellulose, Dow Chemic al Company) 375mg, Eudragit L100-55 (Rohm GmbH & Co. KG) 1500mg, Lactose 705mg, Hydroxypropylcellulose (HPC-L, Nippon Soda) After adding an appropriate amount of purified water to 90 mg, the mixture was mixed and then heat-dried in a thermostatic bath. 30 mg of magnesium stearate (Mallinckrodt Baker, In) was added to the dried granules and mixed.
  • Donepezil hydrochloride (Eisai) 300 mg, etosel 10STD (Ethylcellulose, Dow Chemical Company) 375 mg, Eudragit L100-55 (Rohm GmbH & Co. KG) 1500 mg, lactose 795 mg, magnesium stearate (Mallinckrodt Baker, Inc. ) 30 mg was mixed in a mortar. 200 mg of the above mixture was collected and tableted using an autograph AG5000A (Shimadzu Corporation) to obtain a tablet having a diameter of 8 mm containing 20 mg of donepezil hydrochloride. The results of the dissolution test are shown in Table 3.
  • Donepezil hydrochloride (Eisai) 300mg, Etosel 100FP (Ethylcellulose, Dow Chemi cal Company) 375mg, Eudragit L100-55 (Rohm GmbH & Co. KG) 1500mg Lactose 795mg, Magnesium stearate (Mallinckrodt Baker, Inc. ) 30 mg was mixed in a mortar. 200 mg of the above mixture was collected and tableted using an autograph AG5000A (Shimadzu Corporation) to obtain a tablet having a diameter of 8 mm containing 20 mg of donepezil hydrochloride. The results of the dissolution test are shown in Table 3.
  • HPC-L hydroxypropylcellulose
  • Magnesium stearate (Mallinckrodt Baker, Inc.) lg was added and mixed per 99 g of granules after sizing. Names above The post-granule was tableted using a rotary tableting machine to obtain a tablet with a diameter of 8 mm containing 10 mg of donepezil hydrochloride in 200 mg. The results of the dissolution test are shown in Table 3.
  • Donepezil hydrochloride (Eisai) 300 mg, etosel 10FP (Ethylcellulose, Dow Chemic al Company) 375 mg, AQOAT LF (hydroxypropylmethylcellulose acetate succinate, Shin-Etsu Chemical Co., Ltd.) 1500 mg, lactose 795 mg, magnesium stearate (Mallinckrodt Baker, In) 30 mg was mixed in a mortar. 200 mg of the above mixture was collected and tableted using Autograph AG5000A (Shimadzu Corporation) to obtain a tablet with a diameter of 8 mm containing 20 mg of donepezil hydrochloride. The results of the dissolution test are shown in Table 5.
  • Donepezil hydrochloride (Eisai) 300 mg, etosel 10FP (Ethylcellulose, Dow Chemic al Company) 375 mg, AQOAT MF (hydroxypropylmethylcellulose acetate succinate, Shin-Etsu Chemical Co., Ltd.) 1500 mg, lactose 795 mg, magnesium stearate (Mallinckrodt Baker, In) 30 mg was mixed in a mortar. 200 mg of the above mixture was collected and tableted using Autograph AG5000A (Shimadzu Corporation) to obtain a tablet with a diameter of 8 mm containing 20 mg of donepezil hydrochloride. The results of the dissolution test are shown in Table 5.
  • Donepezil hydrochloride (Eisai) 130 g, etcel 10FP (ethyl cellulose, Dow Chemical Company) 312 g, Eudragit L100-55 (Rohm GmbH & Co. KG) 624 g and lactose 1456 g were mixed in a stirring granulator.
  • an aqueous solution in which 52 g of hydroxypropylcellulose (HPC-L, Nippon Soda) was dissolved in an appropriate amount of purified water was added, wet granulated, and the granulated granules were heated and dried using a shelf dryer. Sized.
  • Example 15 Donepezil hydrochloride (Eisai Co., Ltd.) 130g, etosel 10FP (ethyl cellulose, Dow Chemical Company) 624g, Eudragit LI 00-55 (Rohm GmbH & Co. KG) 780g and lactose 988g in a stirring granulator Mixed.
  • etosel 10FP ethyl cellulose, Dow Chemical Company
  • Eudragit LI 00-55 Rostyl 00-55
  • lactose 988g in a stirring granulator Mixed.
  • an aqueous solution in which 52 g of hydroxypropyl cellulose (HPC-L, Nippon Soda) is dissolved in an appropriate amount of purified water is added, wet granulated, and the granulated granules are added using a shelf dryer. After warm drying, the particles were sized.
  • HPC-L hydroxypropyl cellulose
  • magnesium stearate (Mallinckrodt Baker, In) lg is added to 99 g of the granule, mixed, and tableted using a rotary type tableting machine. Tablets with a diameter of 8 mm containing 1 mg of pezyl were obtained. The obtained tablets were subjected to water-soluble film coating (coating amount: 8 mg / tablet) mainly composed of hydroxypropylmethylcellulose using Opdry Yellow (Nippon Colorcon) to obtain film tablets. The results of the dissolution test are shown in Table 4.
  • Donepezil hydrochloride (Eisai) 130 g, etcel 10FP (ethyl cellulose, Dow Chemical Company) 780 g, Eudragit L100-55 (Rohm GmbH & Co. KG) 858 g and lactose 754 g were mixed in a stirring granulator.
  • an aqueous solution in which 52 g of hydroxypropylcellulose (HPC-L, Nippon Soda) is dissolved in an appropriate amount of purified water is added, wet granulated, and the granulated granules are heated and dried using a shelf dryer. Sized.
  • magnesium stearate (Mallinckrodt Baker, Inc.) lg per 99g of granule is mixed and mixed, and tableted using a rotary tableting machine. A tablet with a diameter of 8 mm containing was obtained. The resulting tablets were coated with water-soluble film coating (mainly coating amount) using hydroxypropylmethylcellulose as the main component using Oppadro Yellow (Nihon Colorcon).
  • Donepezil hydrochloride (Eisai) 130 g, etcel 10FP (ethyl cellulose, Dow Chemical Company) 832 g, Eudragit L100-55 (Rohm GmbH & Co. KG) 962 g and lactose 598 g were mixed in a stirring granulator.
  • an aqueous solution in which 52 g of hydroxypropylcellulose (HPC-L, Nippon Soda) is dissolved in an appropriate amount of purified water is added and wet granulated, and the above granulated granules are heated using a shelf dryer. After drying, the size was adjusted.
  • HPC-L hydroxypropylcellulose
  • Memantine hydrochloride (Lachema sro Czech Republic) 12g, etosel 10FP (ethylcellulose, Dow Chemical Company) 28.8g, Eudragit L100-55 (Rohm GmbH & Co. KG) 36g and lactose 39.6g were mixed in a stirring granulator did.
  • an aqueous solution in which 2.4 g of hydroxypropylcellulose (HPC-L, Nippon Soda) is dissolved in an appropriate amount of purified water is added, wet granulated, and the granulated granules are added using a shelf dryer. After warm drying, the particles were sized.
  • HPC-L hydroxypropylcellulose
  • magnesium stearate (Mallinckrodt Baker, In) lg is added to 99g of granules, mixed, and tableted using a rotary tableting machine. 200mg of memantine hydrochloride 20mg in diameter is 8mm in diameter. Tablets were obtained.
  • Donepezil hydrochloride (Eisai Co., Ltd.) 6g, Memantine hydrochloride (Lachema sro) 12g, Etocel 10FP (Ethylcellulose, Dow Chemical Company) 28.8g, Eudragit L 100-55 (Rohm GmbH & Co. KG) 36g and 45.6 g of lactose was mixed in a stirring granulator.
  • an aqueous solution in which 2.4 g of hydroxypropylcellulose (HPC-L, Nippon Soda) is dissolved in an appropriate amount of purified water is added and wet granulated, and the granulated granules are heated and dried using a shelf dryer.
  • HPC-L hydroxypropylcellulose
  • magnesium stearate (Mallin ckrodt Baker, Inc.) lg per 109 g of the granulated product is added and mixed, and tableted using a rotary tableting machine.
  • the resulting compression-molded product is subjected to water-soluble film coating (coating amount: 8 mg / tablet) mainly composed of hydroxypropylmethylcellulose using Opdry Yellow (Nippon Power Lacon). Obtained.
  • Comparative Examples 1 and 2 are listed below in order to show the remarkable and excellent effects of the matrix-type sustained-release preparation according to the above Examples.
  • Donepezil hydrochloride (Eisai) 300 mg, etosel 10FP (ethyl cellulose, Dow Chemical Company) 375 mg, lactose 2295 mg, magnesium stearate (Mallinckrodt Baker, Inc.) 30 mg were mixed in a mortar. 200 mg of the above mixture was collected and tableted using Autograph AG5000A (Shimadzu Corporation) to obtain a tablet with a diameter of 8 mm containing 20 mg of donepezil hydrochloride. The results of the dissolution test are shown in Table 5.
  • Donepezil hydrochloride (Eisai Co., Ltd.) 7g, etosel 10FP (Ethylcellulose, Dow Chemical Company) 37.8g, Eudragit L100-55 (Rohm GmbH & Co. KG) 22.4g and lactose 68.18g Mix in a stirring granulator.
  • an aqueous solution in which 4.2 g of hydroxypropylcellulose (HPC-L, Nippon Soda) is dissolved in an appropriate amount of purified water is added, wet granulated, and the granulated granules are added using a shelf dryer. After warm drying, the particles were sized.
  • HPC-L hydroxypropylcellulose
  • Donepezil hydrochloride (Eisai Co., Ltd.) 3.5 g, etosel 10FP (Ethylcellulose, Dow Chemical Company) 37.8 g, Eudragit L100-55 (Rohm GmbH & Co. KG) 22.4 g and lactose (Pharmatose200M, DMV) 73.5 g was mixed in a stirring granulator.
  • aqueous solution in which 2.8 g of hydroxypropylcellulose (HPC-L, Nippon Soda) is dissolved in an appropriate amount of purified water is added and wet granulated, and the granulated granules are heated using a shelf dryer.
  • HPC-L hydroxypropylcellulose
  • the particles were sized using a power mill. After sizing, mix 50 mg of calcium stearate (Merck KGaA, Darmstadt, Germany) per 5,000 mg of the granulated product, and mix with Autograph 5000A (Shimadzu Corporation) at a tableting pressure of 1200 kgf. Thus, a compression molded product having a diameter of 8 mm containing 5 mg of donepezil hydrochloride in 202 mg was obtained.
  • Donepezil hydrochloride (Eisai) 700g, etosel 10FP (Etylcellulose, Dow Chemica 1 Company) 2700g, Eudragit L100-55 (Rohm GmbH & Co. KG) 2100g and lactose 4250g were mixed in a stirring granulator .
  • an aqueous solution in which 220 g of hydroxypropyl cellulose (HPC-L, Nippon Soda) is dissolved in an appropriate amount of purified water is added, wet granulated, and the granulated granules are added using a fluid bed dryer. After warm drying, the particles were sized.
  • HPC-L hydroxypropyl cellulose
  • magnesium stearate (Mallinckrodt Baker, Inc.) per 99.7g of granule is added and mixed, and tableted using a rotary tableting machine. An 8 mm diameter tablet containing 14 mg of jill was obtained. The obtained tablets were subjected to water-soluble film coating (coating amount: 8 mg / tablet) mainly composed of hydroxypropylmethylcellulose using Oppadry Purple (Nippon Colorcon) to obtain film tablets.
  • Donepezil hydrochloride (Eisai) 700g, etosel 10FP (Etylcellulose, Dow Chemica 1 Company) 2700g, Eudragit L100-55 (Rohm GmbH & Co. KG) 1900g and lactose 4450g were mixed in a stirring granulator .
  • an aqueous solution in which 220 g of hydroxypropyl cellulose (HPC-L, Nippon Soda) is dissolved in an appropriate amount of purified water is added, wet granulated, and the granulated granules are added using a fluid bed dryer. After warm drying, the particles were sized.
  • HPC-L hydroxypropyl cellulose
  • magnesium stearate (Mallinckrodt Baker, Inc.) per 99.7g of granule is added and mixed, and tableted using a rotary tableting machine. An 8 mm diameter tablet containing 14 mg of jill was obtained. The obtained tablets were subjected to water-soluble film coating (coating amount: 8 mg / tablet) mainly composed of hydroxypropylmethylcellulose using Oppadry Purple (Nippon Colorcon) to obtain film tablets.
  • Donepezil hydrochloride (Eisai) 700g, etosel 10FP (ethyl cellulose, Dow Chemica 1 Company) 2700 g, Eudragit LlOO-55 (Rohm GmbH & Co. KG) 1900 g and lactose 4420 g were mixed in a stirring granulator.
  • an aqueous solution in which 250 g of hydroxypropyl cellulose (HPC-L, Nippon Soda) is dissolved in an appropriate amount of purified water is added, wet granulated, and the granulated granules are added using a fluidized bed dryer. After warm drying, the particles were sized.
  • HPC-L hydroxypropyl cellulose
  • Donepezil hydrochloride (Eisai) 1050 g, etosel 10FP (ethyl cellulose, Dow Chemical Company) 3780 g, Eudragit L100-55 (Rohm GmbH & Co. KG) 2240 g and lactose 6538 g were mixed in a stirring granulator.
  • an aqueous solution in which 350 g of hydroxypropyl cellulose (HPC-L, Nippon Soda) is dissolved in an appropriate amount of purified water is added and subjected to wet granulation, and the granulated granules are heated and dried using a fluidized bed dryer. After that, it was sized.
  • HPC-L hydroxypropyl cellulose
  • Donepezil hydrochloride (Eisai) 1400 g, etosel 10FP (ethyl cellulose, Dow Chemical Company) 3500 g, Eudragit L100-55 (Rohm GmbH & Co. KG) 2520 g and lactose 6118 g were mixed in a stirring granulator.
  • an aqueous solution of 420 g of hydroxypropyl cellulose (HPC-L, Nippon Soda) dissolved in an appropriate amount of purified water is added, wet granulated, and the granulated granules are heated and dried using a fluidized bed dryer. After that, it was sized. After sizing, granule 99.
  • Donepezil hydrochloride (Eisai) 1150 g, etosel 10FP (Ethylcellulose, Dow Chemical Company) 2500 g, Eudragit L100-55 (Rohm GmbH & Co. KG) 1800 g and lactose 4220 g were mixed in a stirring granulator.
  • an aqueous solution in which 300 g of hydroxypropyl cellulose (HPC-L, Nippon Soda) is dissolved in an appropriate amount of purified water is added, wet granulated, and the granulated granules are heated and dried using a fluid bed dryer. After that, it was sized.
  • HPC-L hydroxypropyl cellulose
  • Donepezil hydrochloride (Eisai) 1150 g, etosel 10FP (Ethylcellulose, Dow Chemical Company) 2200 g, Eudragit L100-55 (Rohm GmbH & Co. KG) 2100 g and lactose 4220 g were mixed in a stirring granulator.
  • an aqueous solution of 300 g of hydroxypropyl cellulose (HPC-L, Nippon Soda) dissolved in an appropriate amount of purified water is added and wet granulated, and the granulated granules are heated and dried using a fluidized bed dryer. After that, it was sized.
  • HPC-L hydroxypropyl cellulose
  • Each component was mixed in a mortar according to the blending amount in Table 13. Take 200 mg of the above mixture Tablets were made using Autograph AG5000A (Shimadzu Corporation) to obtain tablets with a diameter of 8 mm (tablet weight 200 mg) each containing 20 mg of memantine hydrochloride.
  • a matrix-type sustained-release containing a basic drug or a salt thereof having a higher solubility in an aqueous solution of IN hydrochloric acid and a neutral aqueous solution of pH 6.0 than in a basic aqueous solution of pH 8.0.
  • the pH dependence of elution of a basic drug or its salt at the beginning of its elution is reduced, and the dissolution rate of the basic drug or its salt in an acidic test solution is compared with that in a neutral test solution.
  • Ratio of dissolution rate of basic drug or its salt decreases with time as dissolution test proceeds (dissolution of dissolution test)
  • a matrix-type sustained-release preparation can be prepared that decreases in the later stage of elution compared to the initial stage.
  • FIG. 1 is a graph showing the results of dissolution test of donepezil hydrochloride in a 0.1N hydrochloric acid aqueous solution of matrix-type sustained-release preparations of Example 2 and Example 4 according to the present invention (control experiment: Comparison Example 1).
  • FIG. 2 is a graph showing the results of a dissolution test of donepezil hydrochloride in a 50 mM phosphate buffer solution at pH 6.8 of the matrix-type sustained-release preparations of Examples 2 and 4 according to the present invention (control) Experiment: Comparative example 1).
  • FIG. 3 is a graph showing the results of a dissolution test of donepezil hydrochloride in a 0.1N aqueous hydrochloric acid solution of matrix type sustained-release preparations of Examples 14 to 17 according to the present invention.
  • FIG. 4 is a graph showing the results of a dissolution test of donepezil hydrochloride in a 5.6 mM phosphate buffer solution at pH 6.8 of the matrix-type sustained-release preparations of Examples 14 to 17 according to the present invention.
  • FIG. 5 is a view showing the results of dissolution test of donepezil hydrochloride in a 0.1N aqueous hydrochloric acid solution of matrix-type sustained-release preparations of Example 12 and Example 13 according to the present invention (control experiment: comparison) Example 2).
  • FIG. 6 is a graph showing the results of dissolution test of donepezil hydrochloride in a 50 mM phosphate buffer solution at pH 6.8 of the matrix-type sustained-release preparations of Examples 12 and 13 according to the present invention (reference).
  • Comparative example 2 Comparative example 2.
  • FIG. 7 is a graph showing the results of a dissolution test for donepezil hydrochloride in test solution A and test solution B of the matrix-type sustained-release preparation of Example 27 according to the present invention.
  • FIG. 8 Test solution A of matrix-type sustained release preparation of Example 28 and Example 29 according to the present invention
  • FIG. 4 shows the results of a dissolution test for donepezil hydrochloride in test solution B.
  • FIG. 9 is a graph showing the results of dissolution tests of donepezil hydrochloride in test solution A and test solution B of the matrix-type sustained-release preparations of Example 30 and Example 31 according to the present invention.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Biophysics (AREA)
  • Hospice & Palliative Care (AREA)
  • Psychiatry (AREA)
  • Psychology (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

 溶出試験において、溶出初期における塩基性薬物又はその塩のpH依存性の小さい溶出の確保が可能であり、且つ、溶出試験の経時的進行に伴い、酸性試験液中での塩基性薬物又はその塩の溶出率と中性試験液中での塩基性薬物又はその塩の溶出率の比(酸性試験液中での溶出率/中性試験液中での溶出率)が、溶出初期に比較して溶出後期に経時的に低減するマトリックス型徐放性製剤並びにその製造方法を提供する。本発明によれば、0.1N 塩酸水溶液及びpH6.0の中性水溶液における溶解度が、pH8.0の塩基性水溶液における溶解度よりも高い塩基性薬物又はその塩及び、少なくとも1種類の腸溶性高分子を含有してなる、前記塩基性薬物又はその塩のマトリックス型徐放性製剤である。    

Description

明 細 書
塩基性薬物又はその塩を含有するマトリックス型徐放性製剤およびその 製造方法
技術分野
[0001] 本発明は、塩基性薬物又はその塩を含有するマトリックス型徐放性製剤に関するも のであり、溶出試験における、薬物の初期バースト (溶出直後の急激な薬物放出)が 抑制されて 、るだけでなぐ溶出初期にお 、て pH依存性の小さ 、溶出の確保が可 能な製剤に関する。また、本発明は、塩基性薬物又はその塩の酸性試験液中での 溶出率と中性試験液中で溶出率の比(酸性試験液中での溶出率 Z中性試験液中で の溶出率)が、溶出試験の経時的進行に伴い、溶出初期に比較して溶出後期に経 時的に低減することを特徴とするマトリックス型徐放性製剤に関する。
背景技術
[0002] 生理活性を有する薬物の徐放性製剤は、通常の速放型製剤に比べて、薬物血中 濃度を有効治療濃度以上に長時間維持することが可能である。従って、薬物を徐放 化することにより薬物の投与回数を減らしても同等以上の治療効果を得ることが可能 であり、投薬コンプライアンスの向上が期待される。また、薬物を徐放ィ匕することにより 投与直後の急激な血中濃度の上昇を回避することも可能となるため、薬物由来の副 作用及び毒性の低減等も期待されるものである。
[0003] 一般に、生理活性を有する薬物の徐放性製剤の調製方法として、(1)生理活性薬 物を含有する核粒子或 ヽは核錠剤の表面に徐放性コ一ティングを施すことにより放 出制御を行う徐放性コーティング皮膜型と、(2)薬物と徐放性基剤が製剤中に一様に 分布しているマトリックス型と、の 2つに大別される。
[0004] 徐放性コーティング皮膜型製剤は、コーティング皮膜の均一性が放出挙動に影響 を与えるため、コーティング条件の厳格な管理が必須であり、しばしば、コーティング 時間が長くなり生産性が低くなりがちである。また、顆粒に対して徐放性コーティング を施す場合は、一般に結晶セルロースや白糖からなる核粒子上に薬物を層積した後 、徐放性コーティングを実施することになる。従って、多層の徐放性コーティングを施 す場合や薬物の高含量製剤を調製する場合は、製剤の大きさが大きくなりがちであ り、経口服用性の低下をきたすことになる。
[0005] 一方、マトリックス型徐放性製剤は、薬物と徐放性基剤が製剤中に均一に存在する 構造であり、徐放性コーティング皮膜型に比べて、厳格な生産管理を必要とせず、及 び通常の速放型製剤と同様の製造操作で生産が可能である。したがって、高い生産 性が期待される。また、薬物の高含量製剤を調製する場合であっても、製剤の調製 が容易であり、その大きさも大型化を避けられるという利点がある。従って、マトリック ス型の徐放性製剤は、高 、生産性及び製剤の小型化の観点力 徐放性コーティン グ皮膜型の製剤に比べ、有用性が高い製剤と言える。
[0006] し力しながら、生理活性を有する薬物が塩基性薬物又はその塩である場合、水不 溶性基剤を用いて一般的なマトリックス型徐放性製剤を調製した場合には、次のよう な問題点が発生する。
[0007] 第 1の問題点は、塩基性薬物又はその塩のマトリックス型徐放性製剤において、通 常、溶出試験における塩基性薬物又はその塩の経時的な溶出率は、酸性試験液中 に比べて、塩基性試験液中で顕著に低くなることである。これは、塩基性薬物又はそ の塩の水系溶媒に対する溶解度力 酸性領域に比べ中性 ·アルカリ性領域の pHで 低いことに起因する。一般に、徐放性製剤は速放型錠剤より高含量の薬物を含有し ているため、徐放性製剤の胃内滞留時間が延長した場合、塩基性薬物又はその塩 の血中濃度の予期しない上昇とそれに伴う副作用発現のリスクが大きくなるという可 能性がある。この副作用の発現リスクは、強い副作用を有する塩基性薬物又はその 塩及び薬物血中濃度の安全域が狭い塩基性薬物又はその塩では特に問題となる。
[0008] 第 2の問題点は、溶出試験において溶出初期と比較して溶出後期では、マトリック ス型徐放性製剤からの塩基性薬物又はその塩の放出速度が低下することである。前 述の第 1の問題点、すなわち、胃内滞留時間延長による急激な血中濃度の上昇を回 避することを目的として、酸性試験液中における当該徐放性製剤力もの塩基性薬物 又はその塩の溶出速度を抑制した際に、徐放性製剤の胃内排出時間が短い場合、 製剤中に大半の薬物が残存したまま排泄され生物学的利用率が低下し十分な薬理 効果が得られないという別の問題が発生する危険性がある。 [0009] これは、水不溶性マトリックスは溶出試験液中で溶解しないため、薬物が溶出する ために通過しなければならないマトリックス中の拡散距離が経時的に長くなる為であ る。このことは、溶出初期の塩基性薬物又はその塩の放出速度を抑制しすぎると、マ トリックス型徐放性製剤中に大半の薬物が残存したまま体外へ排出されてしまう可能 性が高まる上、マトリックス型徐放性製剤が胃力 小腸に移行することにより、製剤の 周囲の pHが中性又は弱アルカリ性になり薬物放出速度が低下するため、より多くの 薬物が製剤内に残存したまま体外に排泄されてしまうリスクが高くなる可能性がある。 このような状態は、薬物の生物学的利用率の低下及び薬理効果の不確実性をもたら すため好ましくない。
[0010] 塩基性薬物又はその塩を含有するマトリックス型徐放性製剤に関する先行技術とし ては以下のようなものが挙げられる。米国特許第 4,792,452号では、塩基性薬物又は その塩及びアルギン酸又はその塩及び pH非依存性の水溶性ゲル化剤及び結合剤 を含有するマトリックス製剤が開示されている。また、米国特許第 4,968,508号では、 セファクロルと pH5.0〜7.4で溶解するアクリル酸ポリマーと親水性ポリマーを含有する マトリックス製剤が開示されている。さらに、特開平 6-199657では、日本薬局方第 1液 及び日本薬局方第 2液に比べて、 pH4. 0 酢酸緩衝液中での溶解度が高い薬物の pH依存的な溶出を、水溶性高分子及び「カルボキシビ二ルポリマー又はメチルビ- ルエーテル無水マレイン酸コポリマー」及び腸溶性基剤を含有するマトリックス錠剤を 調製することにより改善できることが開示されている。くわえて、米国特許第 6,287,599 号では、 pH依存性の溶解度を有する塩基性薬物又はその塩、 pH非依存性の徐放 性基剤、及び、腸溶性基剤や有機酸等の pH依存性の添加剤 (pH5. 5以上の pH〖こ おいて、錠剤からの薬物の溶出速度を増カロさせる性質を有するもの)を含有してなる マトリックス製剤が開示されている。
[0011] しかし、これらの従来技術は、薬物の pH非依存性溶出のみを目的としたマトリックス 型徐放性製剤であり、必ずしも、前述した副作用発現のリスク (前述の第 1の問題点) 及び徐放ィ匕による生物学的利用率の低下のリスク (前述の第 2の問題点)を排除する 、もしくは抑制することまでについては十分に検討されているとは言えない。つまり、 生体内の環境に応じた塩基性薬物又はその塩の溶出挙動を制御して、薬物の初期 バースト (溶出直後の急激な薬物放出)が抑制されているだけでなぐ溶出試験にお ける溶出初期において、 pH依存性の小さい溶出の確保が可能であり、かつ酸性試 験液中での塩基性薬物又はその塩の溶出率と中性試験液中での塩基性薬物又は その塩の溶出率の比(酸性試験液中での溶出率 Z中性試験液中での溶出率)が、 溶出初期に比べ溶出後期で経時的に減少する製剤にっ 、ては開示されて 、な 、。 発明の開示
発明が解決しょうとする課題
[0012] 塩基性薬物の徐放性製剤に関して、生体内の pH環境を考慮し、塩基性薬物の組 成物からの急激な溶出に伴う血中濃度の予期しない上昇を防止し、かつ、徐放化に 伴う物学的利用率の低下のリスクが少ない製剤が切望されていた。すなわち、塩基 性薬物又はその塩について、溶出試験において、薬物の初期バースト (溶出直後の 急激な薬物放出)が抑制されているだけでなぐ溶出初期における pH依存性の小さ い溶出性を確保し、且つ、溶出試験の経時的に進行に伴い、溶出後期での中性試 験液中における溶出速度が大きいマトリックス型徐放性製剤である。従って、酸性試 験液中での塩基性薬物又はその塩の溶出率と中性試験液中での塩基性薬物又は その塩の溶出率の比(酸性試験液中での溶出率 Z中性試験液中での溶出率)が、 溶出初期に比べ溶出後期で経時的に減少するマトリックス型徐放性製剤である。特 に、中性付近から弱アルカリ性の pHにおいて、 pHの増大と共に溶解度が大きく低下 する塩基性薬物又はその塩にっ 、て、このような溶出制御を可能としたマトリックス型 徐放性製剤が要望されて ヽる。
課題を解決するための手段
[0013] 以上のような状況に鑑み、本発明者らは、鋭意検討を行った結果、以下に示す構 成により所期の目的を達成できることを見出し、本発明を完成した。
[0014] すなわち、本発明の一の態様では、(I)本発明は、(1) 0. 1N 塩酸水溶液及び pH 6.0の中性水溶液における溶解度力 pH8.0の塩基性水溶液における溶解度よりも 高!ヽ塩基性薬物又はその塩、及び (2)少なくとも 1種類の腸溶性高分子を含有して なる、前記塩基性薬物又はその塩のマトリックス型徐放性製剤を提供する。この態様 において、前記中性水溶液が 50mMリン酸緩衝液であり、前記塩基性水溶液が 50 mMリン酸緩衝液であることが好ま 、。
[0015] (II)本発明は、 日本薬局方の溶出試験法のパドル法による溶出試験において、 pH 6. 8の 50mMリン酸緩衝液における塩基性薬物又はその塩の溶出率に対する 0. 1 N 塩酸水溶液における塩基性薬物又はその塩の溶出率の比力 前記 pH6. 8の 50 mMリン酸緩衝液における塩基性薬物又はその塩の溶出率が 90%になる溶出時間 まで、溶出時間にとともに低下する、前記 (I)に記載のマトリックス型徐放性製剤であ る。
[0016] (III)本発明の好ましい態様は、 日本薬局方の溶出試験法のパドル法による溶出試 験において、 0. 1N 塩酸水溶液における塩基性薬物又はその塩の溶出率力 溶出 時間 1時間で 60%未満である、前記 (I)または (II)に記載のマトリックス型徐放性製剤 である。より好ましくは、 0. 1N 塩酸水溶液における塩基性薬物又はその塩の溶出 率力 溶出時間 1時間で 50%未満であり、最も好ましくは 40%未満である。
[0017] (IV)本発明のより好ましい態様は、 日本薬局方の溶出試験法のパドル法による溶 出試験において、 pH6. 8の 50mMリン酸緩衝液における塩基性薬物又はその塩の 溶出率に対する 0. 1N 塩酸水溶液における塩基性薬物又はその塩の溶出率の比 力 溶出時間 3時間で 0. 3〜1. 5である、前記 (I)〜前記 (III)に記載のマトリックス型 徐放性製剤である。より好ましくは、その溶出率の比が 0. 3〜1. 4であり、さらに好ま しく ίま 0. 3〜1. 3、最ち好ましく ίま 0. 3〜1. 2である。
[0018] (V)本発明のさらに好ましい態様は、 日本薬局方の溶出試験のパドル法による溶 出試験において、 0. 1N 塩酸水溶液における塩基性薬物又はその塩の溶出率力 溶出時間 1時間で 60%未満であり、かつ、 ρΗ6. 8の 50mMリン酸緩衝液における塩 基性薬物又はその塩の溶出率に対する 0. 1N 塩酸水溶液における塩基性薬物又 はその塩の溶出率の比が、溶出時間 3時間で 0. 3〜1. 5である、前記 (I)〜前記 (IV )に記載のマトリックス型徐放性製剤である。さらに好ましくは、 0. 1N 塩酸水溶液に おける塩基性薬物又はその塩の溶出率力 溶出時間 1時間で 50%未満であり、かつ その溶出率の比が 0. 3〜1. 4であり、最も好ましくは、 0. 1N 塩酸水溶液における 塩基性薬物又はその塩の溶出率が、 40%未満であり、かつその溶出率の比が 0. 3〜 1. 2である。 [0019] また、本発明に係るマトリックス型徐放性製剤は、少なくとも 1種類の水不溶性高分 子を含有してもよい。例えば、本発明は、(1) 0. 1N 塩酸水溶液及び pH6. 0の 50 mMリン酸緩衝液における溶解度力 pH8. 0の 50mMリン酸緩衝液における溶解度 よりも高い塩基性薬物又はその塩、(2)少なくとも 1種類の腸溶性高分子、及び (3) 少なくとも 1種類の水不溶性高分子を含有してなる、前記塩基性薬物又はその塩の マトリックス型徐放性製剤である。
[0020] 本発明のより好ましい態様は、(1)前記塩基性薬物又はその塩の pH6. 8の中性水 溶液における溶解度力 pH8.0の塩基性水溶液における溶解度の 2倍以上であり、 かつ、 pH6. 0の中性水溶液における溶解度の 1Z2以下である塩基性薬物又はそ の塩、及び (2)少なくとも 1種類の腸溶性高分子を含有してなる、前記塩基性薬物又 はその塩のマトリックス型徐放性製剤である。あるいは、さらに、(3)少なくとも 1種類 の水不溶性高分子を含有してなる、マトリックス型徐放性製剤である。特に好ましい 態様では、(1) ρΗ6. 8の 50mMリン酸緩衝液における溶解度力 ¾H8. 0の 50mMリ ン酸緩衝液における溶解度の 2倍以上であり、かつ、 pH6. 0の 50mMリン酸緩衝液 における溶解度の 1Z2以下である塩基性薬物又はその塩、及び(2)少なくとも 1種 類の腸溶性高分子を含有してなる、前記塩基性薬物又はその塩のマトリックス型徐 放性製剤である。あるいは、さらに、(3)少なくとも 1種類の水不溶性高分子を含有し てなる、マトリックス型徐放性製剤である。
[0021] また、本発明の特に好ましい態様は、(1) 0. 1N 塩酸水溶液及び pH6. 0の 50m Mリン酸緩衝液における溶解度が lmgZmL以上であり、 pH8. 0の 50mMリン酸緩 衝液における溶解度が 0. 2mgZmL以下である塩基性薬物又はその塩、及び(2) 少なくとも 1種類の腸溶性高分子を含有してなる、前記塩基性薬物又はその塩のマト リックス型徐放性製剤である。あるいは、さら〖こ、 (3)少なくとも 1種類の水不溶性高分 子を含有してなる、マトリックス型徐放性製剤である。
[0022] さらに、本発明の特に好ましい態様は、(1) 0. 1N 塩酸水溶液及び pH6. 0の 50 mMリン酸緩衝液における溶解度が lmgZmL以上であり、 pH8. 0の 50mMリン酸 緩衝液における溶解度が 0. 2mgZmL以下であり、 pH6. 8の 50mMリン酸緩衝液 における溶解度が前記 PH8. 0の 50mMリン酸緩衝液における溶解度の 2倍以上で あり、かつ、前記 pH6. 0の 50mMリン酸緩衝液における溶解度の 1Z2以下である塩 基性薬物又はその塩、及び (2)少なくとも 1種類の腸溶性高分子を含有してなる、前 記塩基性薬物又はその塩のマトリックス型徐放性製剤である。あるいは、さらに、(3) 少なくとも 1種類の水不溶性高分子を含有してなる、マトリックス型徐放性製剤である
[0023] さらに、本発明の特に好ましい態様は、(1) 0. 1N 塩酸水溶液及び pH6. 0の 50 mMリン酸緩衝液における溶解度が lmgZmL以上であり、 pH8. 0の 50mMリン酸 緩衝液における溶解度が 0. 2mgZmL以下であり、 pH6. 8の 50mMリン酸緩衝液 における溶解度が前記 PH8. 0の 50mMリン酸緩衝液における溶解度の 2倍以上で あり、かつ、前記 pH6. 0の 50mMリン酸緩衝液における溶解度の 1Z2以下である塩 基性薬物又はその塩、及び (2)少なくとも 1種類の腸溶性高分子を含有してなる、前 記塩基性薬物又はその塩のマトリックス型徐放性製剤である。あるいは、さらに、(3) 少なくとも 1種類の水不溶性高分子を含有してなるマトリックス型徐放性製剤である。 発明の効果
[0024] 本発明によると、 0. 1N 塩酸水溶液及び pH6. 0の中性水溶液における溶解度が 、 pH8. 0の塩基性水溶液における溶解度よりも高い塩基性薬物又はその塩を含有 するマトリックス型徐放性製剤において、その溶出初期における塩基性薬物又はそ の塩の溶出の pH依存性を小さくし、且つ、酸性試験液中での塩基性薬物又はその 塩の溶出率と中性試験液中での塩基性薬物又はその塩の溶出率の比 (酸性試験液 中での溶出率 Z中性試験液中での溶出率)が、溶出試験の進行に伴い、経時的に 低減する (溶出試験の溶出初期に比べ溶出後期で減少する)マトリックス型徐放性製 剤が調製可能である。これらの溶出挙動は、薬物の徐放ィ匕に伴う溶出初期での副作 用の発現のリスクを減少させ、さらに、生物学的利用率の低下のリスクを抑えることが できる。また、本願発明に係る組成物は、ヒトにおける大腸移行時間の上限値と推定 される 8時間以内に、中性試験液中において 90%以上の薬物放出をすることもでき るため、徐放ィ匕による生物学的利用率の低下のリスクが少なぐ非常に有用性が高い 製剤であると考えられる。その効果例を以下に示す。
発明を実施するための最良の形態 [0025] 以下に実施例および比較例を挙げて本発明を詳細に説明する力 本発明がこれら に限定されるわけではない。
[0026] 本発明に係る塩基性薬物又はその塩は、特に限定されるものではなぐ例えば、本 発明に係る塩基性薬物の塩は、有機酸塩、無機酸塩の何れの形で使用してもよぐ 例えば、塩酸塩、硫酸塩、酢酸塩、リン酸塩、炭酸塩、メシル酸塩、酒石酸塩、クェン 酸塩、トシル酸塩等が挙げられるが、これらに限定されるわけではない。本発明に係 る塩基性薬物又はその塩として、例えば、塩酸ドネぺジル、ガランタミン臭化水素酸 塩、リバスチグミン酒石酸塩、塩酸メマンチン、タクリン等の抗痴呆薬、塩酸フルラゼ パム、アルプラゾラム、クェン酸タンドスピロン、塩酸リルマザホン等の抗不安薬、塩酸 ジフエ-ルビラリン、マレイン酸クロルフエ-ラミン、シメチジン、塩酸イソチペンジル等 の抗ヒスタミン剤、塩酸フエ-レフリン、塩酸プロ力インアミド、硫酸キ-ジン、硝酸イソ ソルビド、ニコランジル等の循環器用剤、ベシル酸アムロジピン、二フヱジピン、塩酸 二カルジピン、二ルパジピン、塩酸ァテノロール等の高血圧用剤、塩酸べロスピロン 等の精神安定剤、レボフロキサシン等の抗菌剤、セファレキシン、塩酸セフカペンピ ボキシル、アンピシリン等の抗生物質、その他、スルファメトキサゾール、テトラサイタリ ン、メトリ-ダゾール、インダノ ミド、ジァゼパム、塩酸パパべリン、塩酸ブロムへキシン 、塩酸チクロビジン、クェン酸カルベタペンタン、塩酸フエ-ルプロパノールァミン、塩 酸セチリジン等の薬物、エリスロマイシン、ジリスロマイシン(dirithromycin)、ジョサ マイシン、ミデカマイシン、キタサマイシン、ロキシスロマイシン、ロキタマイシン、才レ アンドマイシン、ミオ力マイシン、フルリスロマイシン(flurithromycin)、ロサラマイシ ン(rosaramycin)、ァジスロマイシン(azithromycin)、クラリスロマイシン等のマクロ ライド類が挙げられる。本発明に係るマトリックス型徐放性製剤において、これらの塩 基性薬物又はその塩は、単独でも、 2種類以上を配合して使用してもよい。
[0027] これら塩基性薬物又はその塩の中で、好ましくは、抗痴呆薬であり、さらに好ましく は、塩酸ドネぺジル及び Zまたは塩酸メマンチンである。本発明のマトリックス徐放性 製剤においては、薬物の安全域が狭いという特徴、或いは、最高血中薬物濃度に依 存して副作用を発現する塩基性薬物又はその塩にも適している。また、本発明に係 るマトリックス型徐放性製剤において、抗痴呆薬は、特に限定されるものではないが、 放出制御の観点からは、酸性水溶液に比べてアルカリ性水溶液における溶解度が 小さぐ水溶液の pHに対する溶解度が中性付近で変化する塩基性薬物又はその塩 において有効である。例えば、 pKaが 7. 0〜12であり、好ましくは 7. 5〜11、更に好 ましくは 8. 0-10. 5であり、最も好ましくは 8. 5-10. 5の塩基性薬物又はその塩で ある。例えば、塩酸ドネぺジルは pKa=8. 90、塩酸メマンチンは pKa= 10. 27の塩基 性薬物である。
本発明に係る塩基性薬物又はその塩は、その酸性水溶液、中性水溶液または塩 基性水溶液に対する溶解性は、特に限定されないが、酸性水溶液及び中性水溶液 における溶解度が、塩基性水溶液における溶解度よりも高い塩基性薬物である。ここ で、これらの水溶液の調製のために、リン酸緩衝液 (例えば、 50mMリン酸ナトリウム 水溶液と塩酸により調製される緩衝液)、 G丄. Millerの緩衝液、 Atkins- Pantinの緩衝 液または Goodの緩衝液等の緩衝液、 0. 1N塩酸水溶液、 0. ImolZLの水酸ィ匕ナト リウム水溶液等を用いることができる。なお、ここでの溶解度は、水溶液の液温が 25 °Cのときの値を示す。
ここで、酸性水溶液における溶解度とは、塩基性薬物又はその塩を緩衝液等で溶 解したときに酸性を示す水溶液における塩基性薬物又はその塩の溶解度を示す。同 様に、中性 (塩基性)水溶液における溶解度とは、塩基性薬物又はその塩を緩衝液等 で溶解したときに中性 (塩基性)を示す水溶液における塩基性薬物又はその塩の溶 解度を示す。
例示すれば、本発明に係る塩基性薬物又はその塩は PH3.0の酸性水溶液におけ る溶解度及び PH6.0の中性水溶液における溶解度力 pH8.0の塩基性水溶液にお ける溶解度よりも高い塩基性薬物又はその塩である。ここで、 PH3.0の酸性水溶液に おける溶解度とは、塩基性薬物又はその塩を緩衝液等で溶解したときに pH3. 0を示 す酸性水溶液における塩基性薬物又はその塩の溶解度を意味する。 pH6. 0の中性 水溶液における溶解度とは、塩基性薬物又はその塩を緩衝液等で溶解したときに P H6. 0を示す水溶液における塩基性薬物又はその塩の溶解度を意味する。同様に、 PH8. 0の塩基性水溶液の溶解度とは、塩基性薬物を緩衝液等で溶解したときに pH 8. 0を示す水溶液における塩基性薬物又はその塩の溶解度を意味する。 [0029] 別の例示では、本発明に係る塩基性薬物又はその塩は、 0. 1N塩酸水溶液にお ける溶解度及び pH 6.0の中性水溶液における溶解度が、 pH8. 0の塩基性水溶液に おける溶解度よりも高い塩基性薬物又はその塩である。ここで、 0. 1N塩酸水溶液に おける溶解度とは、塩基性薬物又はその塩を 0. 1N塩酸水溶液で溶解したときの塩 基性薬物の溶解度を意味する。この場合、例えば、 0. 1N塩酸水溶液に溶解させた 塩酸ドネぺジルおよび塩酸メマンチンの pHは、約 1〜2の範囲である。
好ましくは、 0. 1N 塩酸水溶液及び pH6.0の中性水溶液における溶解度力 pH8 .0の塩基性水溶液における溶解度よりも高ぐ並びに pH6. 8の中性水溶液における 溶解度が前記 PH8.0の塩基性水溶液における溶解度の 2倍以上であって、かつ、前 記 PH6.0の中性水溶液における溶解度の 1Z2以下である塩基性薬物又はその塩で ある。ここで、 PH6.8の中性水溶液における溶解度とは、塩基性薬物を緩衝液等で 溶解したときに PH6. 8を示す水溶液における塩基性薬物の溶解度を意味する。
[0030] より具体的に例示すれば、 0. 1N 塩酸水溶液及び pH6.0の中性水溶液における 溶解度が lmgZmL以上、 pH8.0の塩基性水溶液における溶解度が 0. 2mg/mL 以下、及び pH6. 8の中性水溶液における溶解度が前記 pH8.0の塩基性水溶液に おける溶解度の 2倍以上であって、且つ前記 pH6.0の中性水溶液における溶解度の 1Z2以下である塩基性薬物又はその塩であれば、特に限定されない。即ち、 0. 1N 塩酸水溶液及び PH6.0の中性水溶液における溶解度は、 lmgZmL以上であれ ば特に限定されないが、通常 1〜: LOOOmgZmLであり、好ましくは 5〜200mgZm Lであり、より好ましくは 5〜100mgZmLであり、特に好ましくは 10〜80mgZmLで ある。また、 pH8.0の塩基性水溶液における溶解度は、 0. 2mgZmL以下であれば 特に限定されない力 S、通常 0. 0001〜0. 2mg/mLであり、好ましくは 0. 0005〜0 . lmg/mLであり、より好ましく ίま 0. 001〜0. 05mg/mL、特に好ましく ίま 0. 002 〜0. 03mgZmLである。更に、 pH6. 8の中性水溶液における溶解度は、前記 pH8. 0の塩基性水溶液における溶解度の 2倍以上であって、且つ前記 pH6.0の中性水溶 液における溶解度の 1Z2以下であれば特に限定されないが、好ましくは、 pH8.0の 塩基性水溶液における溶解度の 3倍以上であって、かつ、 pH6.0の中性水溶液にお ける溶解度の 1Z3以下であり、より好ましくは、 pH8.0の塩基性水溶液における溶解 度の 5倍以上であって、かつ、 pH6.0の中性水溶液における溶解度の 1Z5以下であ り、特に好ましくは、 pH8.0の塩基性水溶液における溶解度の 10倍以上であって且 つ PH6.0の中性水溶液における溶解度の 1Z10以下である。
[0031] さらに、別の例示では、本発明に係る塩基性薬物又はその塩は、 0. 1N 塩酸水溶 液及び PH6. 0の 50mMリン酸緩衝液における溶解度力 pH8. 0の 50mMリン酸緩 衝液における溶解度よりも高い塩基性薬物又はその塩である。ここで、 pH6.0の 50 mMリン酸緩衝液における溶解度とは、塩基性薬物又はその塩を 50mMリン酸緩衝 液で溶解したときに pH 6.0を示す 50mMリン酸緩衝液における塩基性薬物又はその 塩の溶解度を意味する。同様に、 pH8.0の 50mMリン酸緩衝液における溶解度とは 、塩基性薬物又はその塩を 50mMリン酸緩衝液で溶解したときに pH8.0を示す 50m Mリン酸緩衝液における塩基性薬物又はその塩の溶解度を意味する。
[0032] 好ましくは、 0. 1N 塩酸水溶液及び pH6. 0の 50mMリン酸緩衝液における溶解 度力 前記 pH8. 0の 50mMリン酸緩衝液における溶解度よりも高ぐ並びに pH6. 8 の 50mMリン酸緩衝液における溶解度が前記 pH8. 0の 50mMリン酸緩衝液におけ る溶解度の 2倍以上であって、かつ、前記 pH6. 0の 50mMリン酸緩衝液における溶 解度の 1Z2以下である塩基性薬物又はその塩である。より具体的に例示すれば、 0 . 1N 塩酸水溶液及び pH6. 0の 50mMリン酸緩衝液における溶解度が lmg/mL 以上、 pH8. 0の 50mMリン酸緩衝液における溶解度が 0. 2mgZmL以下、及び pH 6. 8の 50mMリン酸緩衝液における溶解度が前記 pH8. 0の 50mMリン酸緩衝液に おける溶解度の 2倍以上であって、且つ前記 pH6. 0の 50mMリン酸緩衝液における 溶解度の 1Z2以下である塩基性薬物又はその塩であれば、特に限定されない。即 ち、 0. 1N 塩酸水溶液及び pH6. 0の 50mMリン酸緩衝液における溶解度は、 lm gZmL以上であれば特に限定されないが、通常 1〜: LOOOmgZmLであり、好ましく は 5〜200mgZmLであり、より好ましくは 5〜: LOOmgZmLであり、特に好ましくは 1 0〜80mgZmLである。また、 pH8. 0の 50mMリン酸緩衝液における溶解度は、 0. 2mgZmL以下であれば特に限定されないが、通常 0. 0001〜0. 2mgZmLであり 、好ましく ίま 0. 0005〜0. lmg/mLであり、より好ましく ίま 0. 001〜0. 05mg/mL 、特に好ましくは 0. 002〜0. 03mg/mLである。更に、 pH6. 8の 50mMジン酸緩 衝液における溶解度は、前記 pH8. 0の 50mMリン酸緩衝液における溶解度の 2倍 以上であって、且つ前記 pH6. 0の 50mMリン酸緩衝液における溶解度の 1Z2以下 であれば特に限定されないが、好ましくは、 pH8. 0の 50mMリン酸緩衝液における 溶解度の 3倍以上であって、かつ、 pH6. 0の 50mMリン酸緩衝液における溶解度の 1Z3以下であり、より好ましくは、 pH8. 0の 50mMリン酸緩衝液における溶解度の 5 倍以上であって、かつ、 pH6. 0の 50mMリン酸緩衝液における溶解度の 1Z5以下 であり、特に好ましくは、 pH8. 0の 50mMリン酸緩衝液における溶解度の 10倍以上 であって且つ pH6. 0の 50mMリン酸緩衝液における溶解度の ΙΖΙΟ以下である。
[0033] 例えば、塩酸ドネぺジルは、 pH3. 0の酸性水溶液における溶解度及び pH6. 0の 中性水溶液における溶解度が l lmg〜16mgZmL、 pH8. 0の塩基性水溶液にお ける溶解度が 0. lmgZmL以下である。また、塩酸ドネぺジルは、 pH6. 8の中性水 溶液における溶解度が pH8. 0の塩基性水溶液における溶解度の 2倍以上であって 、かつ、前記 pH6. 0の中性水溶液における溶解度の 1Z2以下であるという特性を持 つ、 3級ァミノ基 1個を有する弱塩基性薬物又はその塩であり、アルッノ、イマー型痴 呆薬として汎用されて 、る薬物である。
[0034] あるいは、塩酸ドネぺジルは、 0. 1N 塩酸水溶液及び pH6. 0の 50mMリン酸緩 衝液における溶解度が l lmg〜16mg/mL、 pH8. 0の 50mMリン酸緩衝液におけ る溶解度が 0. lmgZmL以下であり、かつ、 pH6. 8の 50mMリン酸緩衝液における 溶解度が前記 PH8. 0の 50mMリン酸緩衝液における溶解度の 2倍以上であって、 かつ、前記 pH6. 0の 50mMリン酸緩衝液における溶解度の 1Z2以下であるという 特性を持つ、 3級ァミノ基 1個を有する弱塩基性薬物又はその塩であり、ァルツハイ マー型痴呆薬として汎用されて 、る薬物である。
[0035] 本発明に係る塩基性薬物又はその塩の用量は、それらの薬物の種類や各疾患の 患者の様態によるため、特に限定されるものではないが、例えば、アルツハイマー型 痴呆薬としてのアセチルコリンエステラーゼ阻害剤であれば、 0. 01〜50mgZdayで ある。具体的な例としては、ドネぺジル又はその薬理学的に許容される塩は、 0. 01 〜50mgZdayであり、好ましくは、 0. l〜40mgZdayであり、さらに好ましくは、 1〜30 mg/dayであり、特に好ましくは、 5〜25mg/dayである。リバスチグミン又はその薬理 学的に許容される塩は、 0. 01〜50mgZdayであり、好ましくは、 0. l〜30mgZday であり、さらに好ましくは、 l〜20mgZdayであり、特に好ましくは、 l〜15mgZdayで ある。ガランタミン又はその薬理学的に許容される塩は、 0. 01〜50mg/dayであり、 好ましくは、 0. l〜40mgZdayであり、さらに好ましくは、 l〜30mgZdayであり、特に 好ましくは、 2〜25mgZdayである。
[0036] N—メチル D ァスパラギン酸 (NMDA)受容体拮抗剤としてのメマンチン又は その薬理学的に許容される塩は、 0. 5〜: LOOmgZdayであり、好ましくは、 l〜100m gZdayであり、さらに好ましくは、 l〜40mgZdayである。特に好ましくは、 5〜25mg Zdayである。
[0037] 本発明に係る腸溶性高分子は、特に限定されないが、 0. 1N 塩酸水溶液には溶 解しないが、 pH5. 0〜8. 0の範囲のいずれかの緩衝水溶液に溶解する性質を持つ ことが望ましい。腸溶性高分子として少なくとも 1種類を使用するものであり、 2種類以 上の腸溶性高分子を配合して使用してもよい。腸溶性高分子は、例えば、メタクリル 酸'メタクリル酸メチルコポリマー(オイドラギット L100、オイドラギット SI 00等: Rohm G mbH & Co.KG, Darmstadt, Germany)、メタクリル酸'アクリル酸ェチルコポリマー (オイドラギット L100- 55、オイドラギット L30D- 55等: Rohm GmbH & Co.KG, Darms tadt, Germany)、ヒドロキシプロピルメチルセルロースフタレート(HP-55、 HP-50等: 信越化学工業株式会社)、ヒドロキシプロピルメチルセルロースアセテートサクシネー ト (AQOAT等:信越化学工業株式会社)、カルボキシメチルェチルセルロース(CME C :フロイント産業社製)、酢酸フタル酸セルロース等であり、好ましくはメタクリル酸'ァ クリル酸ェチルコポリマー、メタクリル酸'メタクリル酸メチルコポリマー、ヒドロキシプロ ピルメチルセルロースフタレート及びヒドロキシプロピルメチルセルロースアセテートサ クシネートであり、特に好ましくは、 pH が 5. 0以上 6. 8未満の緩衝水溶液で溶解す ることができる腸溶性高分子であり、例えば、メタクリル酸 ·アクリル酸ェチルコポリマ 一、ヒドロキシプロピルメチルセルロースアセテートサクシネートである。とりわけ、メタ クリル酸'アクリル酸ェチルコポリマーは、 pH 5. 5以上の緩衝水溶液で溶解すること が可能な粉末であるオイドラギット L100- 55 (Rohm GmbH & Co.KG, Darmstadt, Germany)が好ましぐまた、ヒドロキシプロピルメチルセルロースアセテートサクシネー トは、平均粒子径が約 の微粉タイプの AQOAT LF (pH 5. 5以上で溶解可能 、信越ィ匕学工業株式会社)、 AQOAT MF(pH 6. 0以上で溶解可能、信越化学ェ 業株式会社)が好ましい。なお、本発明で使用する腸溶性高分子の平均粒子径は、 特に限定されないが、通常、小さいものほど好適であり、好ましくは 0. 05〜: LOO /z m であり、より好ましくは 0. 05〜70 /ζ πι、特に好ましくは 0. 05〜50 /ζ πιである。
[0038] 本発明に係る水不溶性高分子は、 pHl. 0〜pH8. 0の何れの緩衝水溶液にも溶解 しない徐放性基剤を意味するものであり、特に限定されない。本発明に係るマトリック ス型徐放性製剤において、少なくとも 1種類の水不溶性高分子を含有することが望ま しく、 2種類以上の水不溶性高分子を配合して使用してもょ 、。
[0039] 水不溶性高分子は、例えば、セルロースエーテル類(ェチルセルロース、ェチルメ チノレセノレロース、ェチノレプロピノレセノレロース、イソプロピノレセノレロース、ブチノレセノレ口 ース等のセノレロースァノレキノレエーテノレ類、ベンジノレセノレロースなどのセノレロースァラ ルキルエーテル類、シァノエチルセルロースなどのセルロースシァノアルキルエーテ ノレ類等)、セルロースエステル類(セルロースアセテートブチレート、セノレロースァセテ ート、セノレロースプロピオネート、セノレロースブチレート、セノレロースアセテートプロピ ォネート等のセルロース有機酸エステル類)、メタクリル酸'アクリル酸コポリマー(商 品名:オイドラギット RS、オイドラギット RL、オイドラギット NE、 Rohm GmbH & Co.KG , Darmstadt, Germany)等であり、好ましくは、ェチルセルロース、アミノアルキルメタ クリレートコポリマー RS (オイドラギット RL、オイドラギット RS)及びアクリル酸ェチル 'メ タクリル酸メチルコポリマー(オイドラギット NE)であり、より好ましくは、ェチルセルロー ス(ETHOCEL, The Dow Chemical Company, U.S.など)である。本発明で使用 する水不溶性高分子の平均粒子径は、特に限定されないが、通常、小さいものほど 好適であり、好ましく ίま 0. 1〜: LOO /z mであり、より好ましく ίま 1〜50 /ζ πιであり、特に 好ましくは 3〜 15 μ mであり、特に好ましくは 5〜 15 μ mである。
[0040] マトリックス型徐放性製剤中の腸溶性高分子の配合量は、特に限定されないが、通 常、マトリックス型徐放性製剤の 100重量%に対して、 5〜90重量%であり、好ましく は 8〜70重量%であり、より好ましくは 10〜60重量%であり、特に好ましくは 15〜50 重量%である。また、マトリックス型徐放性製剤中の水不溶性高分子と腸溶性高分子 の合計配合量は、特に限定されないが、通常、マトリックス型徐放性製剤の 100重量 %に対して、 25〜95重量%であり、好ましくは 35〜95重量%であり、より好ましくは 35〜90重量%であり、特に好ましくは 35〜75重量%である。
[0041] 本発明に係るマトリックス型徐放性製剤は、好ましくは、水不溶性高分子がェチル セルロースであり、かつ腸溶性高分子力 Sメタクリル酸 ·アクリル酸ェチルコポリマー、メ タクリル酸'メタクリル酸メチルコポリマー、ヒドロキシプロピルメチルセルロースァセテ ートサクシネートから選ばれる少なくとも 1種類であり、最も好ましぐ水不溶性高分子 がェチルセルロースであり、かつ腸溶性高分子力 Sメタクリル酸 ·アクリル酸ェチルコポ リマー及び Zまたはヒドロキシプロピルメチルセルロースアセテートサクシネートである
[0042] マトリックス型徐放性製剤中の水不溶性高分子の配合量は、特に限定されないが、 通常、マトリックス型徐放性製剤の 100重量%に対して、 1〜90重量%であり、好まし くは 3〜70重量0 /0であり、より好ましくは 5〜50重量0 /0であり、特に好ましくは 5〜35 重量%である。
[0043] 本発明に係るマトリックス型徐放性製剤は、溶出試験において、溶出初期における 上記の塩基性薬物又はその塩の pH依存性の小さい溶出の確保をすることができると 共に、酸性の溶出試験液 (以下、「酸性試験液」という。 )中での上記塩基性薬物又 はその塩の溶出率と中性の溶出試験液 (以下、「中性試験液」という。)中での上記塩 基性薬物又はその塩の溶出率の比 (酸性試験液中での溶出率 Z中性試験液中で の溶出率)が、溶出初期に比較して溶出後期に経時的に低減する極めて優れた特 性を有するものである。本発明に係るマトリックス型徐放性製剤においては、上述の 酸性水溶液及び中性水溶液における溶解度力 塩基性水溶液における溶解度より も高い塩基性薬物又はその塩に、腸溶性高分子を配合することにより、酸性 pH及び 中性 pHを示す溶出試験液における当該塩基性薬物又はその塩の溶出を抑制する。 また、水不溶性高分子と腸溶性高分子を配合した場合には、水不溶性高分子に配 合する腸溶性高分子の配合量が多くなるほど、酸性及び中性 pHを示す溶出試験液 における当該塩基性薬物又はその塩の溶出速度の低下を起こさせることにより、溶 出初期における PH依存性の小さい溶出の確保をすることができると共に、酸性試験 液中での塩基性薬物又はその塩の溶出率と中性試験液中での塩基性薬物又はそ の塩の溶出率の比(酸性試験液中での溶出率 Z中性試験液中での溶出率)が、溶 出試験の進行に伴い、経時的に低減する (溶出試験の溶出初期に比べ溶出後期で 減少する)マトリックス型徐放性製剤を容易に調製することができると ヽぅ極めて優れ た特性を有する。
[0044] ここで、本発明に係るマトリックス型徐放性製剤の特性は、溶出試験にお!ヽて中性 の溶出試験液として pH6. 8の 50mMリン酸緩衝液を、酸性の溶出試験液として 0. 1 N 塩酸水溶液を用いることにより、具体的に示すことができる。すなわち、具体的に 示せば、本発明のマトリックス型徐放性製剤力 の塩基性薬物又はその塩の溶出は 、 日本薬局方の溶出試験法のパドル法による溶出試験において、 pH6. 8の 50mM リン酸緩衝液における塩基性薬物又はその塩の溶出率に対する 0. 1N 塩酸水溶 液における塩基性薬物又はその塩の溶出率の比力 前記 pH6. 8の 50mMリン酸緩 衝液における塩基性薬物又はその塩の溶出率が 90%になる溶出時間まで、溶出時 間とともに低下するものである。さらに、 日本薬局方の溶出試験法のパドル法による 溶出試験において、 0. 1N 塩酸水溶液における 1時間での塩基性薬物又はその塩 の溶出率が、 60%未満であり、好ましくは 50%未満であり、最も好ましくは 40%未満 であることを特徴とする前項記載のマトリックス型徐放性製剤である。さらに、溶出初 期においては、 日本薬局方溶出試験のパドル法による溶出試験において、 pH6. 8 の 50mMリン酸緩衝液における塩基性薬物又はその塩の溶出率に対する 0. 1N 塩酸水溶液における塩基性薬物又はその塩の溶出率の比力 溶出時間 3時間で 0. 3〜1. 5であり、好ましくは、その溶出率の比が 0. 3〜1. 4、更に好ましくは 0. 3〜1 . 3、最も好ましくは 0. 3〜1. 2である。なお、 日本薬局方の溶出試験法のパドル法 は、 日本薬局方 14局に記載された方法により実施することができ、例えば、パドル回 転数 50rpmで試験できる。
[0045] 本発明に係るマトリックス型徐放性製剤は、さらに水溶性の糖類及び Z又は水溶性 の糖アルコールを含有することが好まし ヽ。水溶性の糖類及び Z又は水溶性の糖ァ ルコールは、特に限定されない。水溶性の糖類としては、例えば、乳糖、白糖、ブドウ 糖、デキストリン、プルラン等が挙げられ、水溶性の糖アルコールとしては、例えば、 マン-トール、エリスリトール、キシリトール、ソルビトール等が挙げられる力 好ましく は、乳糖、マン-トールである。マトリックス型徐放性製剤中の水溶性の糖類又は水 溶性の糖アルコールの配合量は、特に限定されないが、通常、マトリックス型徐放性 製剤の 100重量%に対して、 3〜70重量%であり、好ましくは 5〜60重量%であり、 より好ましくは 10〜60重量%であり、特に好ましくは 12〜60重量%である。
本発明に係るマトリックス型徐放性製剤は、さらに薬理学的に許容される種々の担 体、例えば、賦形剤、滑沢剤、結合剤、崩壊剤等や、また必要に応じて、防腐剤、抗 酸化剤、着色剤、甘味剤、可塑剤などの製剤添加物を配合してもよい。必要に応じ て、調製したマトリックス型徐放性製剤に対し、フィルムコーティング等を施してもよい 。賦形剤としては、例えば、デンプン、 α化デンプン、結晶セルロース、軽質無水ケィ 酸、合成ケィ酸アルミニウム、メタケイ酸アルミン酸マグネシウムなどが挙げられる。滑 沢剤としては、ステアリン酸マグネシウム(Mallinckrodt Baker, Inc. USA)、ステアリ ン酸カルシウム、タルク、フマル酸ステアリルナトリウムなどが挙げられる。結合剤とし ては、ヒドロキシプロピノレセノレロース、メチノレセノレロース、カノレボキシメチノレセノレロース ナトリウム、ヒドロキシプロピルメチルセルロース、ポリビュルピロリドンなどが挙げられ る。崩壊剤としては、カルボキシメチルセルロース、カルボキシメチルセルロースカル シゥム、クロスカルメロースナトリウム、カルボキシメチルスターチナトリウム、低置換度 ヒドロキシプロピルセルロースなどが挙げられる。防腐剤としては、パラォキシ安息香 酸エステル類、クロロブタノール、ベンジルアルコール、フエネチルアルコール、デヒド 口酢酸、ソルビン酸などが挙げられる。抗酸化剤としては、亜硫酸塩、ァスコルビン酸 塩などが挙げられる。着色剤の好適な例としては、水不溶性レーキ色素、天然色素( 例、 β一力ロチン、クロロフィル、ベンガラ)、黄色三二酸化鉄、赤色三二酸化鉄、黒 色酸化鉄などが挙げられる。甘味剤の好適な例としては、サッカリンナトリウム、グリチ ルリチン酸二カリウム、アスパルテーム、ステビアなどが挙げられる。可塑剤としては、 グリセリン脂肪酸エステル (商品名:マイバセット)、クェン酸トリェチル (商品名:シトロ フレックス 2)、プロピレングリコール、ポリエチレングリコールなどが挙げられる。フィル ムコーティング基剤としては、例えば、ヒドロキシプロピルメチルセルロース、ヒドロキシ プロピルセルロース等が挙げられる力 これらに限定されるものではない。 [0047] 本発明に係るマトリックス型徐放性製剤における担体の量は、特に限定されるもの ではないが、例えば、滑沢剤は、マトリックス型徐放性製剤 100重量%に対して、 0重 量%〜5重量%であり、好ましくは 0. 01重量%〜4重量%であり、より好ましくは 0. 1 重量%〜3重量%であり、さらに好ましくは 0. 3重量%〜1重量%である。また、結合 剤は、マトリックス型徐放性製剤 100重量%に対して、 0重量%〜10重量%であり、 好ましくは 0. 1重量%〜8重量%であり、より好ましくは 0. 5重量%〜6重量%であり 、さらに好ましくは 1重量%〜3重量%である。
[0048] 本発明に係るマトリックス型徐放性製剤は、例えば、(a)塩基性薬物又はその塩、マ トリックス型徐放性製剤 100重量%に対して、(b)腸溶性高分子 5〜90重量%及び (c) 水溶性の糖アルコールを 3〜70重量%を含有するマトリックス型製剤である。好ましく は、(a)塩基性薬物又はその塩、マトリックス型徐放性製剤 100重量%に対して、(b)腸 溶性高分子 8〜70重量%及び (c)水溶性の糖アルコールを 5〜60重量%を含有する マトリックス型製剤であり、さら〖こ、(a)塩基性薬物又はその塩、マトリックス型徐放性製 剤 100重量%に対して、(b)腸溶性高分子 10〜60重量%、及び (c)水溶性の糖アル コールを 10〜60重量%を含有するマトリックス型製剤である。特に好ましくは、(a)塩 基性薬物又はその塩、マトリックス型徐放性製剤 100重量%に対して、(b)腸溶性高 分子 15〜50重量%及び (c)水溶性の糖アルコールを 12〜60重量%を含有するマト リックス型製剤である。
[0049] あるいは、本発明に係るマトリックス型徐放性製剤は、例えば、(a)塩基性薬物又は その塩、マトリックス型徐放性製剤 100重量%に対して、(b)腸溶性高分子 5〜90重 量%、(c)水溶性の糖アルコールを 3〜70重量%及び (d)水不溶性高分子を 1〜90重 量%を含有するマトリックス型製剤である。好ましくは、(a)塩基性薬物又はその塩、マ トリックス型徐放性製剤 100重量%に対して、(b)腸溶性高分子 8〜70重量%、(c)水 溶性の糖アルコールを 5〜60重量%及び (d)水不溶性高分子を 3〜70重量%を含 有するマトリックス型製剤である。さらに好ましくは、(a)塩基性薬物又はその塩、マトリ ックス型徐放性製剤 100重量%に対して、(b)腸溶性高分子 10〜60重量%、(c)水溶 性の糖アルコールを 10〜60重量%及び (d)水不溶性高分子を 5〜50重量%を含有 するマトリックス型製剤である。特に好ましくは、(a)塩基性薬物又はその塩、マトリック ス型徐放性製剤 100重量%に対して、(b)腸溶性高分子 15〜50重量%、(c)水溶性 の糖アルコールを 12〜60重量%及び (d)水不溶性高分子を 5〜35重量%を含有す るマトリックス型製剤である。
[0050] また、本発明の別の態様では、 0. 1N 塩酸水溶液及び pH6. 0の中性水溶液にお ける溶解度が、 pH8. 0の塩基性水溶液における溶解度よりも高い塩基性薬物又は その塩、及び少なくとも 1種類の腸溶性高分子を混合する工程と、前記混合工程で 得られた混合物を圧縮成型する工程と、を含むマトリックス型徐放性製剤の製造方法 を提供する。また、本発明に係るマトリックス型徐放性製剤の製造方法は、 (1) 0. 1N 塩酸水溶液及び PH6. 0の中性水溶液における溶解度が lmgZmL以上であり、 p H8. 0の塩基性水溶液における溶解度が 0. 2mgZmL以下であり、 pH6. 8の中性 水溶液における溶解度が前記 PH8. 0の塩基性水溶液における溶解度の 2倍以上で あり、かつ、前記 pH6. 0の中性水溶液における溶解度の 1Z2以下である塩基性薬 物又はその塩、及び (2)少なくとも 1種類の腸溶性基剤を混合する工程と、前記混合 工程で得られた混合物を圧縮成型する工程と、を含む。本発明に係るマトリックス型 徐放性製剤の上記製造方法の好ましい態様として、前記混合工程において、水不 溶性高分子を混合する。
[0051] また、本発明の別の態様では、 0. 1N 塩酸水溶液及び pH6. 0の 50mMリン酸緩 衝液における溶解度力 pH8. 0の 50mMリン酸緩衝液における溶解度がよりも高い 塩基性薬物又はその塩、及び少なくとも 1種類の腸溶性高分子を混合する工程と、 前記混合工程で得られた混合物を圧縮成型する工程と、を含むマトリックス型徐放性 製剤の製造方法を提供する。また、本発明に係るマトリックス型徐放性製剤の製造方 法は、(1) 0. 1N 塩酸水溶液及び pH6. 0の 50mMリン酸緩衝液における溶解度が lmgZmL以上であり、 pH8. 0の 50mMリン酸緩衝液における溶解度が 0. 2mg/ mL以下であり、 pH6. 8の 50mMリン酸緩衝液における溶解度が前記 pH8. 0の 50 mMリン酸緩衝液における溶解度の 2倍以上であり、かつ、前記 pH6. 0の 50mMリ ン酸緩衝液における溶解度の 1Z2以下である塩基性薬物又はその塩、及び(2)少 なくとも 1種類の腸溶性基剤を混合する工程と、前記混合工程で得られた混合物を 圧縮成型する工程と、を含む。本発明に係るマトリックス型徐放性製剤の上記製造方 法の好ましい態様として、前記混合工程において、水不溶性高分子を混合する。
[0052] さらに、本発明に係るマトリックス型徐放性製剤の製造方法は、 (A) O. IN 塩酸水 溶液及び PH6. 0の 50mMリン酸緩衝液における溶解度力 pH8. 0の 50mMリン酸 緩衝液における溶解度よりも高ぐ pH6. 8の 50mMリン酸緩衝液における溶解度が 前記 pH8. 0の 50mMリン酸緩衝液における溶解度の 2倍以上であり、かつ、前記 pH 6. 0の 50mMリン酸緩衝液における溶解度の 1Z2以下である塩基性薬物又はその 塩、(B)少なくとも 1種類の腸溶性高分子、及び (C)少なくとも 1種類の水不溶性高分 子を混合する工程と、前記混合工程で得られた混合物を圧縮成型する工程と、を含 む。さらにまた、本発明に係るマトリックス型徐放性製剤の製造方法は、 (1) 0. 1N 塩酸水溶液及び PH6. 0の 50mMリン酸緩衝液における溶解度が lmgZmL以上で あり、 pH8. 0の 50mMリン酸緩衝液における溶解度が 0. 2mgZmL以下であり、 pH 6. 8の 50mMリン酸緩衝液における溶解度が前記 pH8. 0の 50mMリン酸緩衝液に おける溶解度の 2倍以上であり、かつ、前記 pH6. 0の 50mMリン酸緩衝液における 溶解度の 1Z2以下である塩基性薬物又はその塩、(2)少なくとも 1種類の腸溶性高 分子、及び (3)少なくとも 1種類の水不溶性高分子を混合する工程と、前記混合工程 で得られた混合物を圧縮成型する工程とを含む。
[0053] 本発明に係るマトリックス型徐放性製剤の製造方法の好ま 、態様として、圧縮成 型工程前に、さら〖こ、混合工程の混合物を造粒する工程を含むことができ、あるいは 、混合工程において、塩基性薬物又はその塩、腸溶性高分子及び水不溶性高分子 を混合することができる。もちろん、その他の薬理学的に許容される添加物をそれらと ともに混合することができる。本発明のさらに好ましい態様として、造粒工程は湿式造 粒法であり、より好ましくは水溶性結合剤を用いた湿式造粒法である。
[0054] 本発明に係るマトリックス型徐放性製剤の製造方法では、必要に応じて、水溶性の 糖類及び/又は水溶性の糖アルコールを共に混合し、さらに必要に応じて、その他 の薬理学的に許容される添加物を配合してもよい。混合および圧縮成型は、製剤技 術分野における通常の慣用方法にしたがって行われるものであり、特に限定されな い。マトリックス型徐放性製剤は、上述の混合後に、打錠機を用いて直打法で圧縮成 型しても製造可能であるが、混合後であって圧縮成型前に、さらに混合物を造粒す る工程を含む製造方法とすることもでき、例えば、湿式造粒法、乾式造粒法、流動層 造粒、押し出し造粒、噴霧乾燥造粒等の造粒工程を任意に選択できる。
[0055] マトリックス型徐放性製剤は、経口製剤であれば特に限定されないが、例えば、錠 剤、顆粒剤、細粒剤又はカプセル剤等を製造することができる。カプセル内には、錠 剤、顆粒剤、細粒剤であるマトリックス型徐放性製剤の 1個又は複数個を充填しても よい。例えば、硬カプセルに複数個の径を小さくしたマトリックス型徐放性製剤のミニ 錠剤を充填してもよぐあるいは、前記顆粒剤又は細粒剤であるマトリックス型徐放性 製剤を充填してもよぐあるいは、錠剤のマトリックス型徐放性製剤と顆粒剤又は細粒 剤のマトリックス型徐放性製剤をカプセル内に充填してもよい。必要に応じマトリックス 型徐放性製剤に対し、フィルムコーティング等を施してもよい。尚、本発明に係るマト リックス型徐放性製剤に対する本水溶性フィルムコーティング有無は、マトリックス型 徐放性製剤からの当該塩基性薬物又はその塩の溶出プロファイルに殆ど影響を及 ぼさない。
[0056] また、本発明は、 0. 1N 塩酸水溶液及び pH6. 0の中性水溶液における溶解度が PH8. 0の塩基性水溶液における溶解度よりも高い塩基性薬物又はその塩、及び少 なくとも 1種類の腸溶性高分子を混合し、圧縮成型することにより、溶出試験の初期 において、胃力 の排出時間に相当する溶出時間 2〜3時間での前記塩基性薬物 又はその塩の溶出の pH依存性を小さくする方法を提供する。さらに、本発明に係る マトリックス型徐放性製剤の製造方法は、少なくとも 1種類の水不溶性高分子を添カロ する工程を含んでもよい。即ち、本発明は 0. 1N 塩酸水溶液及び pH6. 0の中性水 溶液における溶解度力 pH8. 0の塩基性水溶液における溶解度よりも高い塩基性 薬物又はその塩、少なくとも 1種類の腸溶性高分子、及び少なくとも 1種類の水不溶 性高分子を混合し、圧縮成型することにより、溶出試験の初期において、胃力 の排 出時間に相当する溶出時間 2〜3時間での前記塩基性薬物又はその塩の pH依存性 の小さくする方法である。
[0057] あるいは、本発明は、 0. 1N 塩酸水溶液及び pH6. 0の 50mMリン酸緩衝液にお ける溶解度が PH8. 0の 50mMリン酸緩衝液における溶解度よりも高い塩基性薬物 又はその塩、及び少なくとも 1種類の腸溶性高分子を混合し、圧縮成型することによ り、溶出試験の初期において、胃力 の排出時間に相当する溶出時間 2〜3時間で の前記塩基性薬物又はその塩の溶出の pH依存性を小さくする方法を提供する。さら に、本発明に係るマトリックス型徐放性製剤の製造方法は、少なくとも 1種類の水不溶 性高分子を添加する工程を含んでもよい。即ち、本発明は、 0. 1N 塩酸水溶液及 び pH6. 0の 50mMリン酸緩衝液における溶解度力 pH8. 0の 50mMリン酸緩衝液 における溶解度よりも高い塩基性薬物又はその塩、少なくとも 1種類の腸溶性高分子 、及び少なくとも 1種類の水不溶性高分子を混合し、圧縮成型することにより、溶出試 験の初期において、胃からの排出時間に相当する溶出時間 2〜3時間での前記塩基 性薬物又はその塩の pH依存性の小さくする方法である。
[0058] 本発明にお 、て、前記塩基性薬物又はその塩の溶出の pH依存性を小さくする方 法は、(1) 0. 1N 塩酸水溶液及び pH6. 0の 50mMリン酸緩衝液における溶解度が lmgZmL以上、 pH8. 0の 50mMリン酸緩衝液における溶解度が 0. 2mgZmL以 下、及び pH6. 8の 50mMリン酸緩衝液における溶解度が前記 pH8. 0の 50mMリン 酸緩衝液における溶解度の 2倍以上であって、且つ前記 pH6. 0の 50mMリン酸緩 衝液における溶解度の 1Z2以下である塩基性薬物又はその塩、(2)少なくとも 1種 類の腸溶性高分子、及び (3)少なくとも 1種類の水不溶性高分子を混合し、圧縮成 型することを含む。
[0059] 本発明に係るマトリックス型徐放性製剤は、例えば、以下の方法により、製造するこ とができる。塩酸ドネぺジル(エーザィ(株)製) 130g、エトセル 10FP (ェチルセルロー ス、 Dow Chemical Company) 624g、オイドラギット L100— 55 (Rohm GmbH & Co. KG) 780g及び乳糖 988gを攪拌造粒機中で混合する。上記混合物に対し、ヒドロキシ プロピルセルロース 52gを適量の精製水に溶解させた水溶液をカ卩ぇ湿式造粒し、造 粒顆粒を棚式乾燥機を用いて加温乾燥後、整粒する。整粒後、顆粒 99g当りステアリ ン酸マグネシウム(Mallinckrodt Baker, In ) lgを添カ卩し混合し、ロータリー式打錠 機を用いて製錠することにより、 200mg中に塩酸ドネぺジル 10mgを含有する直径 8mm の錠剤を得ることが可能である。また、コーティング装置を用いて、当該錠剤にヒドロ キシプロピルメチルセルロース等を主成分とする水溶性フィルムを被覆してもよい。
[0060] 本発明に係るマトリックス型徐放性製剤は、例えば、以下の方法により、製造するこ ともできる。塩酸メマンチン(Lachema s.r.o. Czech Republic) 20g、エトセル 10FP( ェチルセルロース、 Dow Chemical Company) 48g、オイドラギット L100- 55 (Rohm G mbH & Co. KG) 60g及び乳糖 66gを攪拌造粒機中で混合する。上記混合物に対し 、ヒドロキシプロピルセルロース 4gを適量の精製水に溶解させた水溶液を加え湿式造 粒し、造粒顆粒を、棚式乾燥機を用いて加温乾燥後、整粒する。整粒後、顆粒 99g当 りステアリン酸マグネシウム(Mallinckrodt Baker, In ) lgを添カ卩し混合し、ロータリ 一式打錠機を用いて製錠することにより、 200mg中に塩酸メマンチン 20mgを含有する 直径 8mmの錠剤を得ることが可能である。また、コーティング装置を用いて、当該錠 剤にヒドロキシプロピルメチルセルロース等を主成分とする水溶性フィルムを被覆して ちょい。
(実験例 1)
マトリックス型徐放性製剤において、溶出挙動に対する水不溶性高分子の存在下 における腸溶性高分子の効果についての評価を以下に示す。
塩酸ドネぺジルを用い、下記に示す比較例 1、実施例 2及び実施例 4に従い、マトリ ックス型徐放性製剤を調製し、その溶出試験を行った。尚、水不溶性高分子として、 ェチルセルロースを、腸溶性高分子としてオイドラギット L100- 55を用いてマトリックス 型徐放性製剤を調製した。比較例 1、実施例 2、実施例 4におけるェチルセルロース: オイドラギット L100-55の配合比率は、各々、 25重量%: 0重量%、 25重量%: 25重 量%、 25重量%: 50重量%とした。また、溶出試験は、第 14局 日本薬局方の溶出 試験法に従い、パドル回転数 50rpmにて、以下に示す酸性試験液として試験液 A、 中性試験液として試験液 Bを用いて実施した。
試験液 A: 0. IN 塩酸水溶液
試験液 B: pH6. 8の 50mMリン酸緩衝液( 50mMリン酸ナトリウム水溶液を塩酸で pH6.75〜pH6.84に調整した緩衝液)
尚、溶出率は経時的に採取したサンプル液中の塩酸ドネぺジルの濃度を吸光光度 法又は HPLC分析法により算出した。吸光光度法は、測定波長 315nm、参照波長 650 nmの測定条件で行った。一方、 HPLC分析は、測定カラム: Inertsil ODS-2(GLサイ エンス社製)、移動相:水/ァセトニトリル/ 70%過塩素酸水溶液 =650/350/1混液、検出 波長: 271nmの測定条件で行った。溶出試験の比較結果を図 1及び図 2に、また、比 較例 1、実施例 2、実施例 4の各々の結果を表 1、表 2に示した。
[0062] [表 1]
Figure imgf000026_0001
Figure imgf000026_0002
[0063] [表 2]
実施例 2 実施例 3
試験液 A/ 試験液 A/ 時間 試験液 A 試験液 B
試験液 B 時間 試験液 A 試験液 B
試験液 B
1h 18% 14% 1.28 1h 19% 13% 1.42
2h 27% 21% 1.29 2h 25% 19% 1.36
3h 33% 26% 1.27 3h 30% 23% 1.33
4h 37% 30% 1.26 4h 34% 26% 1.31
5h 41% 33% 1.25 5h 37% 29% 1.29
6h 44% 36% 1.24 6h 40% 31% 1.28
8h 50% 41% 1.23 8h 45% 36% 1.24 実施例 4 実施例 5
試験液 A/ 試験液 A/ 時間 試験液 A 試験液 B
試験液 B 時間 試験液 A 試験液 B
試験液 B
1h 8% 10% 0.75 1h 14% 13% 1.07
2h 11% 15% 0.69 2h 20% 20% 0.96
3h 12% 19% 0.64 3h 23% 25% 0.92
4h 14% 23% 0.61 4h 26% 29% 0.88
5h 15% 25% 0.59 5h 28% 34% 0.84
6h 16% 28% 0.57 6h 30% 41% 0.74
8h 17% 31% 0.54 8h 33% 56% 0.59 実施例 6
試験液 A/
時間 試験液 A 試験液 B 試験液 B
1h 17% 15% 1.15
2h 24% 29% 0.83
3h 29% 41% 0.70
4h 33% 51% 0.63
5h 35% 60% 0.59
6h 38% 67% 0.57
8h 42% 77% 0.55 比較例 1、実施例 2及び実施例 4は、処方中のェチルセルロース量を一定にして、 オイドラギット L100-55の量を変化させたものである(ェチルセルロース:オイドラギット L100-55の配合比率は、各々、 25重量%:0重量%、 25重量%:25重量%、 25重量 %:50重量%)。図 1及び図 2に示すように、同一条件下での同一試験液を用いた溶 出試験にぉ 、て、腸溶性高分子 (オイドラギット L100- 55)の含有量 (含有比率)を大 きくするほど、本発明に係るマトリックス型徐放性製剤からの塩酸ドネぺジルの溶出は 遅くなる現象が認められた。 [0065] 本発明に係るマトリックス型徐放性製剤において、腸溶性高分子と水不溶性高分 子の配合処方にお!ヽては、水不溶性高分子に配合する腸溶性高分子の配合量を増 カロさせるほど、溶出速度を遅くさせることができ、長時間型の徐放性製剤を調製する ことが可能である。
[0066] (実験例 2)
マトリックス型徐放性製剤における、溶出初期の pH依存性の小さい溶出の確保を 可能とし、同時に、塩基性薬物又はその塩の酸性試験液中での溶出率と中性試験 液中での溶出率の比(酸性試験液中での溶出率 Z中性試験液中での溶出率)を溶 出試験の経時的進行に伴 、低減させる効果にっ 、て以下に示す。
[0067] まず、腸溶性高分子としてオイドラギット L100-55を、水不溶性高分子として、ェチ ルセルロースを用いたマトリックス型徐放性製剤における実験例を示す。
塩酸ドネぺジルを用い、下記に示す比較例 1、実施例 1〜11、 14〜17に従い、マ トリックス型徐放性製剤を調製し、その溶出試験を行った。塩酸ドネべジル、腸溶性 高分子及び水不溶性高分子の量を変化させた製剤 (実施例 1〜6)、賦形剤の種類 を変化させた製剤 (実施例 5、 7)、結合剤を用いて湿式造粒した製剤 (実施例 8、 11 、 14〜17、 20)、ェチルセルロースの種類を変化させた製剤(実施例 5、 9、 10)、ス ケールアップして調製した製剤(実施例 11、 14〜17)であり、前述した溶出試験法に 従い、評価を行った。尚、比較例 1として、腸溶性高分子を含有せず、塩酸ドネベジ ル及び水不溶性高分子を主成分とする製剤を用いた。比較例 1及び実施例 1、実施 例 2〜6、実施例 7〜11、実施例 14〜17及び 20の各々の結果を表 1、表 2、表 3、及 び表 4に示した。また、実施例 14〜17の溶出試験の比較結果を図 3及び図 4に示し た。
[0068] [表 3] 実施例 7 実施例 8
時間 試験液 A 試験液 B 試験液 A/
試験液 B 時間 試験液 A 試験液 B 試験液 A/ 試験液 B
1h 15% 16% 0.98 1h 17% 13% 1.35
2h 22% 24% 0.92 2h 25% 26% 0.98
3h 26% 30% 0.86 3h 32% 39% 0.83
4h 29% 36% 0.81 4h 37% 51% 0.73
5h 31% 45% 0.68 5h 42% 62% 0.68
6h 33% 57% 0.59 6h 45% 71% 0.63
8h 36% 69% 0.53 8h 51% 87% 0.59 実施例 9 実施例 10
液 A/ 時間 試験液 A 試験液 B 試験液 A/ 試験液 A 試験液 B 試験
試験液 B 時間 試験液 B
1h 16% 15% 1.06 1h 16% 14% 1.11
2h 22% 28% 0.80 2h 22% 27% 0.82
3h 26% 39% 0.68 3h 26% 37% 0.70
4h 30% 49% 0.61 4h 30% 46% 0.64
5h 33% 57% 0.57 5h 33% 53% 0.61
6h 35% 64% 0.55 6h 35% 60% 0.58
8h 39% 76% 0.51 8h 39% 71% 0.55 実施例 11
時間 試験液 A 試験液 B 試験液 V
試験液 B
1h 25% 16% 1.56
2h 37% 33% 1.12
3h 46% 52% 0.88
4h 53% 69% 0.77
5h 59% 83% 0.71
6h 64% 92% 0.69
8h 70% 99% 0.71 4] 実施例 14 実施例 15
A/
時間 試験液 A 試験液 B 試験液
試験液 B 時間 試験液 A 試験液 B 試験液 A/ 試験液 B
1h 36% 32% 1.13 1h 21% 13% 1.60
2h 56% 65% 0.87 2h 31% 27% 1.16
3h 69% 87% 0.79 3h 40% 47% 0.85
4h 76% 99% 0.77 4h 46% 63% 0.73
5h 81% 101% 0.80 5h 52% 76% 0.68
6h 84% 101% 0.83 6h 57% 86% 0.66
8h 63% 95% 0.66
10h 68% 97% 0.71 実施例 17
試験液 A/ 時間 試験液 A 試験液 B
試験液 B
1h 14% 10% 1.37
2h 21% 16% 1.27
3h 26% 22% 1.18
4h 30% 28% 1.08
5h 34% 36% 0.94
6h 37% 47% 0.79
8h 43% 68% 0.63
10h - 82% -
12h - 92% -
14h - 98% -
Figure imgf000030_0001
腸溶性高分子を含有しな!、比較例 1のマトリックス型徐放性製剤にぉ ヽては、酸性 試験液中での溶出率と中性試験液中で溶出率の比(酸性試験液中での溶出率 Z中 性試験液中での溶出率)は、溶出時間 1時間から溶出初期 2〜3時間では、若干増 加し、それ以後、溶出後期まで、 1. 5付近でほとんど経時変化を示さな力つた。一方 、腸溶性高分子としてオイドラギット L100-55を配合した全ての実施例の製剤(実施例 1〜11、実施例 14〜17)においては、溶出時間 1時間から溶出時間 2〜3時間で、そ の溶出率の比は低下し、さらに、溶出試験の進行とともに、溶出試験終了まで、もしく は中性試験液での溶出率が 90%以上を示す溶出時間まで漸次低下した。このとき、 溶出時間 3時間で、その溶出率の比は、 0. 6〜1. 3であった。即ち、本発明の製剤 は、腸溶性高分子を配合することにより胃内滞留時期に相当する溶出初期において は、酸性試験液中での溶出率を抑制させながら溶出の pH依存性を小さくし、かつ、 小腸滞留時期と想定される溶出後期では、酸性試験液での溶出率に対する中性試 験液での溶出率を高めること実現できる製剤であることが確認された。この溶出初期 と溶出後期での両者の効果は、塩酸ドネべジル、腸溶性高分子及び水不溶性高分 子の量を変化させた製剤(実施例 1〜6)、賦形剤の種類を変化させた製剤(実施例 5 , 7)、結合剤を用いて湿式造粒した製剤(実施例 8、 11、 14〜17、 20)、ェチルセル ロースの種類を変化させた製剤 (実施例 5, 9, 10)、製造スケールを変化させて調製 した製剤(実施例 11、 14〜17、 20)のいずれにおいても認められた。特に、実施例 1 1、 14〜16においてはヒトにおける大腸移行時間の上限値と推定される 8時間以内( Int. J. Pharm., Vol.53, 1989, 107- 117)に pH6. 8の 50mMリン酸緩衝液中にお いて 90%以上の薬物放出をしているため、これらは徐放ィ匕による生物学的利用率の 低下のリスクが少なぐ非常に有用性が高い製剤であると考えられる。
(実験例 3)
腸溶性高分子と水不溶性高分子の種類について検討を行った。まず最初に、腸溶 性高分子としてヒドロキシプロピルメチルセルロースアセテートサクシネートを、水不溶 性高分子として、ェチルセルロースを用いたマトリックス型徐放性製剤の実験例につ いて以下に示す。塩酸ドネぺジルを用い、下記に示す比較例 2、実施例 12、 13に従 い、マトリックス型徐放性製剤を調製し、その溶出試験を行った。腸溶性高分子として ヒドロキシプロピルメチルセルロースアセテートサクシネート(AQOAT LF又は AQOA
T MF 信越ィ匕学工業株式会社)を、水不溶性高分子として、ェチルセルロースを用 いたマトリックス型徐放性製剤である。尚、腸溶性高分子としてヒドロキシプロピルメチ ルセルロースアセテートサクシネートは、マトリックス型徐放性製剤の全重量中、 50% 含有する製剤である。
[0072] 比較例 2として、腸溶性高分子を含有せず、且つ、実施例 12、 13と同量の塩酸ドネ ぺジル及び水不溶性高分子を含有する製剤を用いた。溶出試験の比較結果を図 5 及び図 6に、また、比較例 2、実施例 12、 13の各々の結果を表 5に示した。
[0073] [表 5]
Figure imgf000032_0002
Figure imgf000032_0001
[0074] 図 5及び図 6に示すように、腸溶性高分子 (AQOAT LF又は AQOAT MF 信越化 学工業株式会社)をマトリックス型徐放性製剤処方中に 50%添加することにより、酸 性溶液での塩酸ドネぺジルの溶出は著しく遅くなる現象が認められた。本発明に係 るマトリックス型徐放性製剤において、腸溶性高分子と水不溶性高分子の配合処方 においては、水不溶性高分子に配合する腸溶性高分子の配合量を増加させるほど 、溶出速度を遅くさせることができ、長時間型の徐放性製剤を調製することが可能で ある。 [0075] また、腸溶性高分子を含有しない比較例 2のマトリックス型徐放性製剤においては 、酸性試験液中では、溶出時間 2時間ですでに溶出率 90%に達し、また酸性試験 液中での溶出率と中性試験液中で溶出率の比(酸性試験液中での溶出率 Z中性試 験液中での溶出率)は、溶出初期(1〜3時間)において 1. 3とほぼ一定の値を示し たのに対し、腸溶性高分子としてヒドロキシプロピルメチルセルロースアセテートサク シネート (AQOAT LF又は AQOAT MF 信越化学工業株式会社)を製剤中に 50. 0%配合した実施例製剤(実施例 12、 13)においては、比較例 2と比較してより小さ い値 (0. 38〜0. 55)を示した。つまり、これらの腸溶性高分子の配合は、溶出初期 においては、酸性試験液及び中性試験液での薬物の溶出率を抑制し、特に酸性試 験液での薬物の溶出率を著しく抑制することにより、両溶液での溶出率を近づけて p H依存性を小さくさせる効果を示した。さらに、溶出後期では酸性試験液での溶出を 抑制しながら中性試験液での溶出を高める効果を示した。これらの挙動は、薬物の 徐放ィ匕に伴う溶出初期での副作用の発現のリスクを減少させ、さらに、生物学的利用 率の低下のリスクを抑えることができる製剤となることを示唆している。従って、ヒドロキ シプロピルメチルセルロースアセテートサクシネート(AQOAT LF又は AQOAT MF 信越ィ匕学工業株式会社)の添加量を 0〜50%の間の適切な値に設定することによ つて、例えば、一例をあげれば、溶出初期では酸性試験液中での溶出率と中性試験 液中で溶出率の比(酸性試験液中での溶出率 Z中性試験液中での溶出率)が 1に 近い溶出挙動を確保し、かつ、溶出後期では、中性試験液での溶出率が 90%以上 になるまで、この溶出率の比を経時的に低下させることができる製剤を設計できること が確認された。
[0076] 次に、製剤の溶出挙動に対するェチルセルロースとオイドラギット L100の組み合わ せた効果についての検討結果を表 6に示す。ェチルセルロースを 25%、オイドラギッ ト L100は 50%を配合する実施例 21は、ェチルセルロースを 25 %配合する比較例 1と 異なり、溶出時間とともに、塩基性薬物又はその塩の酸性試験液中での溶出率と中 性試験液中で溶出率の比(酸性試験液中での溶出率 Z中性試験液中での溶出率) 力 経時的に低下させることが確認された。
[0077] [表 6] 実施例 21 比較例 1 時間 試験液 A 試験液 B 試験液 V B 試験液 V 試験液 B 時間 試験液 A 試験液
試験液 B
1h 12% 8% 1.50 1h 27% 19% 1.41
2h 19% 13% 1.46 2h 41% 27% 1.50
3h 25% 19% 1.32 3h 50% 33% 1.52
4h 29% 23% 1.26 4h 57% 37% 1.54
5h 32% 26% 1.23 5h 63% 41% 1.54
6h 35% 29% 1.21 6h 67% 44% 1.54
8h 39% 34% 1.15 8h 73% 48% 1.53
10h 43% 38% 1.13
12h 46% 41% 1.12
14h 49% 44% 1.11
[0078] さらに、水不溶性高分子としてオイドラギット RSPOを用いた場合についても検討を 行った。表 7に結果を示す。腸溶性高分子を含まず、オイドラギット RSPOを含む比較 例 3では、いわゆるバースト状態となり、薬物が徐放化される効果は見られな力つた。 しかしながら、オイドラギット L100- 55(実施例 22)及び AQOAT LF (実施例 23)を配 合することにより、試験液 A及び試験液 Bの両者において溶出時間は長くなり、徐放 効果を有することが確認できた。また、どちらの実施例においても、塩基性薬物又は その塩の酸性試験液中での溶出率と中性試験液中で溶出率の比(酸性試験液中で の溶出率 Z中性試験液中での溶出率)は、溶出時間 3時間で、 0.34及び 0.7であ り、さらに 3時間以降も経時的に低下することが確認された。特に、実施例 23は、ヒト における大腸移行時間の上限値と推定される 8時間以内に、 pH6.8の 50mMリン酸 緩衝液中において 90%以上の薬物放出をしており、非常に有用性が高い製剤であ ると考免られる。
[0079] [表 7] 実施例 22 実施例 23
試験液 A 試験液 B 試験液 A/ 時間 試験液 A 試験液 B 試験液 A/
試験液 B 時間 試験液 B
1h 11% 12% 0.92 1h 10% 21% 0.48
2h 17% 22% 0.77 2h 16% 41% 0.39
3h 21% 30% 0.70 3h 19% 56% 0.34
4h 25% 38% 0.66 4h 21% 71% 0.30
5h 28% 46% 0.61 5h 23% 82% 0.28
6h 30% 52% 0.58 6h 26% 91% 0.29
8h 34% 64% 0.53 8h 29% 105% 0.28
10h 37% 74% 0.50 10h 32% 108% 0.30
12h 40% 82% 0.49 12h 35% 109% 0.32
14h 42% 88% 0.48 14h 38% 109% 0.35 比較例 3
時間 試験液 A 試験液 B 試験液 V
試験液 B
1h 68% 88% 0.77
2h 94% 98% 0.96
3h 97% 101% 0.96
4h 97% 101% 0.96
5h 97% 102% 0.95
6h 98% 102% 0.96
8h 97% 102% 0.95
10h 98% 102% 0.96
12h 98% 102% 0.96
14h 98% 103% 0.95
[0080] (実験例 4)
実施例 27〜実施例 31で得られた錠剤を用いて、溶出試験を行った。結果を表 8及 び図 7〜図 9に示す。本発明に係るマトリックス型徐放性製剤において、溶出初期の p H依存性の小さい溶出の確保を可能とし、同時に、塩基性薬物又はその塩の酸性試 験液中での溶出率と中性試験液中で溶出率の比(酸性試験液中での溶出率 Z中性 試験液中での溶出率)を溶出試験の経時的進行に伴 ヽ低減させる特性を有すること は明らかである。これらの錠剤は、ヒトにおける大腸移行時間の上限値と推定される 8 時間以内に、 pH6.8の 50mMリン酸緩衝液中において 90%以上の薬物放出をして おり、非常に有用性が高い製剤であると考えられる。
[0081] [表 8] 実施例 27 実施例 28
時間 試験液 A 試験液 B 試験液 A/
試験液 B 時間 試験液 A 試験液 B 試験液 A/ 試験液 B
1h 29% 22% 1.30 1h 29% 15% 1.87
2h 42% 35% 1.20 2h 41% 31% 1.32
3h 53% 52% 1.01 3h 50% 47% 1.06
4h 61% 71% 0.86 4h 56% 61% 0.93
5h 68% 87% 0.78 5h 61% 72% 0.85
6h 73% 97% 0.75 6h 66% 84% 0.78
8h 81% 103% 0.78 8h 74% 96% 0.77
10h 86% 104% 0.83 10h 79% 97% 0.81
12h 89% 104% 0.86 12h 82% 97% 0.84
14h 92% 104% 0.88 14h 84% 98% 0.86 実施例 29 実施例 30
試験佼 A/ 時間 試験液 A 試験液 B 試験液 V 試験液 A 試験液 B
試験液 B 時間 試験液 B
1h 31% 20% 1.51 1h 29% 20% 1.45
2h 44% 34% 1.29 2h 43% 33% 1.30
3h 53% 47% 1.14 3h 54% 47% 1.14
4h 60% 59% 1.02 4h 62% 61% 1.01
5h 66% 70% 0.94 5h 70% 77% 0.90
6h 72% 81% 0.89 6h 76% 92% 0.82
8h 80% 96% 0.83 8h 85% 99% 0.85
10h 85% 97% 0.87 10h 90% 99% 0.90
12h 89% 97% 0.91 12h 94% 100% 0.94
14h 91% 97% 0.94 14h 96% 100% 0.96 実施例 31
試験液 A/
時間 試験液 A 試験液 B
試験液 B
1h 29% 21% 1.39
2h 43% 36% 1.20
3h 52% 51% 1.03
4h 61% 66% 0.93
5h 69% 80% 0.86
6h 75% 91% 0.82
8h 83% 100% 0.83
10h 88% 100% 0.88
12h 91% 100% 0.91
14h 94% 100% 0.94 験例 5)
塩酸メマンチンを含有する医薬組成物の溶出挙動を評価するために、後述する実 施例または比較例で得られた製剤を用いて、その溶出試験を行った。溶出試験は、 第 14局 日本薬局方の溶出試験法に従い、パドル回転数 50rpmにて、以下に示す 酸性試験液として試験液 A、中性試験液として試験液 Bを用いて実施した。
試験液 A: 0. IN 塩酸水溶液
試験液 B :pH6. 8の 50mMリン酸緩衝液(50mMリン酸ナトリウム水溶液を塩酸 で pH6.75〜pH6.84に調整した緩衝液)
尚、溶出率は、経時的に採取したサンプル液中の塩酸メマンチンの濃度を、塩酸メ マンチンを Fluorescamineで蛍光ラベル化した後、 HPLC分析法により算出して求めた 。ラベルイ匕条件及び HPLC条件の概略は以下の通りである。経時的に採取したサン プル液体 lmLと pH9.0 ホウ酸緩衝液 (USP)9 mLを混合した後、 Fluorescamine 1.2m g/mLアセトン溶液 5mLをカ卩ぇ十分攪拌する。上記溶液に更に水 10mLカ卩ぇ混合した 検体を HPLCにて分析する。 HPLC分析は、測定カラム: CAPCELL PAK UG120 C 18(資生堂)又は同等品、カラム温度: 40°C、移動相: pH9.0 ホウ酸緩衝液 (USP)/ァ セトニトリル =60/40混液、検出条件:蛍光検出器 (励起波長/検出波長 = 391nm/474 應)を用いて実施した。
[0083] 水不溶性高分子であるェチルセルロースを配合した塩酸メマンチンを含む製剤に 関して、腸溶性高分子の効果について検討するために、実施例 40〜実施例 42及び 比較例 4で得られた錠剤にっ 、て、溶出試験を行った。
[0084] その結果、比較例 4 (腸溶性高分子を含有せずに、ェチルセルロースを含む系)で は、溶出時間 1時間で塩酸メマンチンの溶出率が 30%〜40%前後に抑えられたが 、塩基性薬物又はその塩の酸性試験液中での溶出率と中性試験液中で溶出率の比 (酸性試験液中での溶出率 Z中性試験液中での溶出率)は、溶出時間による変化を 示さず一定であった。一方、腸溶性高分子を配合した実施例 40〜42は、初期の溶 出時間における塩酸メマンチンの溶出率を比較例 4の溶出率よりもさらに低ぐ抑制 できることが確認された。また、溶出時間とともに、塩基性薬物又はその塩の酸性試 験液中での溶出率と中性試験液中で溶出率の比(酸性試験液中での溶出率 Z中性 試験液中での溶出率)が、経時的に低下させることが確認された。
[0085] [表 9] 実施例 40 実施例 41
試験液
試験液 試験液 A/ A 試 B 試験液 時間 験液 B V 試験液 A
試験液 B 時間 試験液 B
1h 10% 12% 0.91 1h 26% 20% 1.33
2h 14% 18% 0.81 2h 39% 30% 1.32
3h 18% 22% 0.80 3h 49% 39% 1.25
4h 19 27% 0.70 4h 57% 46% 1.23
6h 22% 34% 0.64 6h 67% 56% 1.20
8h 23% 41% 0.57 8h 77% 63% 1.22
12h 28% 49% 0.57 12h 87% 70% 1.24 実施例 42 比較例 4
試験液 A/ 試験液 時間 試験液 A 試験液 B 試験液 B V 試験液 B 時間 試験液 A
試験液 B
1h 10% 21% 0.49 1h 40% 37% 1.09
2h 14% 32% 0.44 2h 57% 51% 1.12
3h 18% 39% 0.46 3h 66% 60% 1.10
4h 20% 44% 0.46 4h 74% 69% 1.08
6h 25% 59% 0.42 6h 86% 80% 1.07
8h 29% 64% 0.46 8h 91% 84% 1.08
12h 35% 68% 0.51 12h 97% 94% 1.03
[0086] 次に、水不溶性高分子としてオイドラギッド RSPOを配合した塩酸メマンチンを含む 製剤に関して、腸溶性高分子について検討するために、実施例 43及び比較例 5で 得られた錠剤について、溶出試験を行った。
[0087] その結果、比較例 5 (腸溶性高分子物質を含有せずに、オイドラギッド RSPOを含む )では、溶出時間 2時間で塩酸メマンチンの溶出率は酸性試験液中及び中性試験液 中で 90%以上を示し、また、塩基性薬物又はその塩の酸性試験液中での溶出率と 中性試験液中で溶出率の比(酸性試験液中での溶出率 Z中性試験液中での溶出 率)は、溶出時間による変化を示さず一定であった。一方、腸溶性高分子を配合した 実施例 43は、初期の溶出時間における塩酸メマンチンの溶出率を比較例 5の溶出 率よりも十分に低ぐ抑制することが確認された。また、溶出時間とともに、塩基性薬 物又はその塩の酸性試験液中での溶出率と中性試験液中で溶出率の比(酸性試験 液中での溶出率 Z中性試験液中での溶出率)が、経時的に低下させることが確認さ れた。
[0088] [表 10] 実施例 43 比較例 5
試験液 A/ 試験液 A/ 時間 試験液 A 試験液 B A 試験液 B 試験液
試験液 B 時間 試験液 B
1h 31% 26% 1.16 1h 67% 87% 0.77
2h 46% 44% 1.04 2h 95% 90% 1.06
3h 57% 59% 0.96 3h 96% 94% 1.02
4h 64% 68% 0.94 4h 96% 95% 1.01
6h 74% 86% 0.86 6h 97% 94% 1.03
8h 83% 90% 0.92 8h 95% 93% 1.02
12h 91% 97% 0.94 12h 94% 93% 1.01
[0089] 実施例 1
塩酸ドネぺジル(エーザィ) 300mg、オイドラギット L100- 55(Rohm GmbH & Co. KG) 1500mg、乳糖 1170mg、ステアリン酸マグネシウム(Mallinckrodt Baker, Inc.) 30 mgを乳鉢中で混合した。上記混合物を 200mg採取し、オートグラフ AG5000A (島津製 作所)を用いて製錠し、塩酸ドネぺジル 20mgを含有する直径 8mmの錠剤を得た。溶 出試験の結果を表 1に示した。
[0090] 実施例 2
塩酸ドネぺジル(エーザィ) 300mg、エトセル 10FP (ェチルセルロース、 Dow Chemic al Company) 750mg、オイドラギット L100- 55 (Rohm GmbH & Co. KG)750mg、乳 糖 1170mg、ステアリン酸マグネシウム(Mallinckrodt Baker, Inc.)30mgを乳鉢中で混 合した。上記混合物を 200mg採取し、オートグラフ AG5000A (島津製作所)を用いて 製錠し、塩酸ドネぺジル 20mgを含有する直径 8mmの錠剤を得た。溶出試験の結果を
^: ^した ο
[0091] 実施例 3
塩酸ドネぺジル(エーザィ) 75mg、エトセル 10FP (ェチルセルロース、 Dow Chemica 1 Company) 750mg、オイドラギット LI 00- 55 (Rohm GmbH & Co. KG)750mg、乳 糖 1395mg、ステアリン酸マグネシウム(Mallinckrodt Baker, Inc.)30mgを乳鉢中で混 合した。上記混合物を 200mg採取し、オートグラフ AG5000A (島津製作所)を用いて 製錠し、塩酸ドネぺジル 5mgを含有する直径 8mmの錠剤を得た。溶出試験の結果を
^: ^した ο
[0092] 実施例 4 塩酸ドネぺジル(エーザィ) 300mg、エトセル 10FP (ェチルセルロース、 Dow Chemic al Company) 750mg、オイドラギット L100- 55 (Rohm GmbH & Co. KG) 1500mg、乳 糖 420mg、ステアリン酸マグネシウム(Mallinckrodt Baker, Inc.) 30mgを乳鉢中で混 合した。上記混合物を 200mg採取し、オートグラフ AG5000A (島津製作所)を用いて 製錠し、塩酸ドネぺジル 20mgを含有する直径 8mmの錠剤を得た。溶出試験の結果を
^: ^した ο
[0093] 実施例 5
塩酸ドネぺジル(エーザィ) 300mg、エトセル 10FP (ェチルセルロース、 Dow Chemic al Company) 375mg、オイドラギット L100- 55 (Rohm GmbH & Co. KG) 1500mg、乳 糖 795mg、ステアリン酸マグネシウム(Mallinckrodt Baker, Inc.) 30mgを乳鉢中で混 合した。上記混合物を 200mg採取し、オートグラフ AG5000A (島津製作所)を用いて 製錠し、塩酸ドネぺジル 20mgを含有する直径 8mmの錠剤を得た。溶出試験の結果を
[0094] 実施例 6
塩酸ドネぺジル(エーザィ) 300mg、エトセル 10FP (ェチルセルロース、 Dow Chemic al Company) 183mg、オイドラギット L100- 55 (Rohm GmbH & Co. KG) 1500mg、乳 糖 987mg、ステアリン酸マグネシウム(Mallinckrodt Baker, Inc.) 30mgを乳鉢中で混 合した。上記混合物を 200mg採取し、オートグラフ AG5000A (島津製作所)を用いて 製錠し、塩酸ドネぺジル 20mgを含有する直径 8mmの錠剤を得た。溶出試験の結果を
^: ^した ο
[0095] 実施例 7
塩酸ドネぺジル(エーザィ) 300mg、エトセル 10FP (ェチルセルロース、 Dow Chemic al Company) 375mg、オイドラギット L100- 55 (Rohm GmbH & Co. KG) 1500mg、D -マン-トール 795mg、ステアリン酸マグネシウム(Mallinckrodt Baker, Inc.) 30mgを 乳鉢中で混合した。上記混合物を 200mg採取し、オートグラフ AG5000A (島津製作所 )を用いて製錠し、塩酸ドネぺジル 20mgを含有する直径 8mmの錠剤を得た。溶出試 験の結果を表 3に示した。
[0096] 実施例 8 塩酸ドネぺジル(エーザィ) 300mg、エトセル 10FP (ェチルセルロース、 Dow Chemic al Company) 375mg、オイドラギット L100- 55 (Rohm GmbH & Co. KG) 1500mg、乳 糖 705mg、ヒドロキシプロピルセルロース(HPC-L、 日本曹達) 90mgに適量の精製水 を加えた後混合後、恒温槽を用いて加熱乾燥した。乾燥後の顆粒に対し、ステアリン 酸マグネシウム(Mallinckrodt Baker, In ) 30mgをカ卩え混合した。上記混合物を 200 mg採取し、オートグラフ AG5000A (島津製作所)を用いて製錠し、塩酸ドネぺジル 20 mgを含有する直径 8mmの錠剤を得た。溶出試験の結果を表 3に示した。
[0097] 実施例 9
塩酸ドネぺジル(エーザィ) 300mg、エトセル 10STD (ェチルセルロース、 Dow Chem ical Company) 375mg、オイドラギット L100- 55 (Rohm GmbH & Co. KG) 1500mg、 乳糖 795mg、ステアリン酸マグネシウム(Mallinckrodt Baker, Inc.) 30mgを乳鉢中で 混合した。上記混合物を 200mg採取し、オートグラフ AG5000A (島津製作所)を用い て製錠し、塩酸ドネぺジル 20mgを含有する直径 8mmの錠剤を得た。溶出試験の結果 を表 3に示した。
[0098] 実施例 10
塩酸ドネぺジル(エーザィ) 300mg、エトセル 100FP (ェチルセルロース、 Dow Chemi cal Company) 375mg、オイドラギット L100- 55 (Rohm GmbH & Co. KG) 1500mgゝ 乳糖 795mg、ステアリン酸マグネシウム(Mallinckrodt Baker, Inc.) 30mgを乳鉢中で 混合した。上記混合物を 200mg採取し、オートグラフ AG5000A (島津製作所)を用い て製錠し、塩酸ドネぺジル 20mgを含有する直径 8mmの錠剤を得た。溶出試験の結果 を表 3に示した。
[0099] 実施例 11
塩酸ドネぺジル(エーザィ) 70gゝエトセル 10FP (ェチルセルロース、 Dow Chemical Company) 336g、オイドラギット L100- 55 (Rohm GmbH & Co. KG) 364g、乳糖 588 gを混合した。上記混合物に対し、ヒドロキシプロピルセルロース (HPC-L、 日本曹達) 28gを適量の精製水に溶解させた水溶液を加え湿式造粒を実施した。上記造粒顆粒 を、棚式乾燥機を用いて加熱乾燥後、整粒操作を実施した。整粒後顆粒 99g当り、ス テアリン酸マグネシウム(Mallinckrodt Baker, Inc.) lgを添加し混合した。上記滑沢 後顆粒を、ロータリー式打錠機を用いて製錠し、 200mg中に塩酸ドネぺジル 10mgを 含有する直径 8mmの錠剤を得た。溶出試験の結果を表 3に示した。
[0100] 実施例 12
塩酸ドネぺジル(エーザィ) 300mg、エトセル 10FP (ェチルセルロース、 Dow Chemic al Company) 375mg、 AQOAT LF (ヒドロキシプロピルメチルセルロースアセテートサ クシネート、信越化学工業株式会社) 1500mg、乳糖 795mg、ステアリン酸マグネシウム (Mallinckrodt Baker, In ) 30mgを乳鉢中で混合した。上記混合物を 200mg採取し 、オートグラフ AG5000A (島津製作所)を用いて製錠し、塩酸ドネぺジル 20mgを含有 する直径 8mmの錠剤を得た。溶出試験の結果を表 5に示した。
[0101] 実施例 13
塩酸ドネぺジル(エーザィ) 300mg、エトセル 10FP (ェチルセルロース、 Dow Chemic al Company) 375mg、 AQOAT MF (ヒドロキシプロピルメチルセルロースアセテートサ クシネート、信越化学工業株式会社) 1500mg、乳糖 795mg、ステアリン酸マグネシウム (Mallinckrodt Baker, In ) 30mgを乳鉢中で混合した。上記混合物を 200mg採取し 、オートグラフ AG5000A (島津製作所)を用いて製錠し、塩酸ドネぺジル 20mgを含有 する直径 8mmの錠剤を得た。溶出試験の結果を表 5に示した。
[0102] 実施例 14
塩酸ドネぺジル(エーザィ) 130g、エトセル 10FP (ェチルセルロース、 Dow Chemical Company) 312g、オイドラギット L100- 55 (Rohm GmbH & Co. KG) 624g及び乳糖 1456gを攪拌造粒機中で混合した。この混合物に対し、ヒドロキシプロピルセルロース (HPC-L、 日本曹達) 52gを適量の精製水に溶解させた水溶液を加え湿式造粒し、造 粒顆粒を、棚式乾燥機を用いて加温乾燥後、整粒した。整粒後、顆粒 99gに対してス テアリン酸マグネシウム(Mallinckrodt Baker, In ) lgを添カ卩して混合し、ロータリー 式打錠機を用いて製錠することにより、 200mg中に塩酸ドネぺジル 10mgを含有する直 径 8mmの錠剤を得た。得られた錠剤に対し、ォパドライイェロー(日本カラコン)を用 Vヽてヒドロキシプロピルメチルセルロースを主成分とする水溶性フィルムコーティング( 皮膜量: 8mg/錠)を施し、フィルム錠を得た。溶出試験の結果を表 4に示した。
[0103] 実施例 15 塩酸ドネぺジル(エーザィ(株)) 130g、エトセル 10FP (ェチルセルロース、 Dow Che mical Company) 624g、オイドラギット LI 00- 55 (Rohm GmbH & Co. KG) 780g及び 乳糖 988gを攪拌造粒機中で混合した。上記混合物に対し、ヒドロキシプロピルセル口 ース (HPC-L、 日本曹達) 52gを適量の精製水に溶解させた水溶液を加え湿式造粒 し、造粒顆粒を、棚式乾燥機を用いて加温乾燥後、整粒した。整粒後、顆粒 99gに対 してステアリン酸マグネシウム(Mallinckrodt Baker, In ) lgを添カ卩し混合し、ロータ リ一式打錠機を用 、て製錠することにより、 200mg中に塩酸ドネぺジル 1 Omgを含有す る直径 8mmの錠剤を得た。得られた錠剤に対し、ォパドライイェロー(日本カラコン)を 用いてヒドロキシプロピルメチルセルロースを主成分とする水溶性フィルムコーティン グ (皮膜量: 8mg/錠)を施し、フィルム錠を得た。溶出試験の結果を表 4に示した。
[0104] 実施例 16
塩酸ドネぺジル(エーザィ) 130g、エトセル 10FP (ェチルセルロース、 Dow Chemical Company) 780g、オイドラギット L100- 55 (Rohm GmbH & Co. KG) 858g及び乳糖 754gを攪拌造粒機中で混合した。上記混合物に対し、ヒドロキシプロピルセルロース (HPC-L、 日本曹達) 52gを適量の精製水に溶解させた水溶液を加え湿式造粒し、造 粒顆粒を、棚式乾燥機を用いて加温乾燥後、整粒した。整粒後、顆粒 99g当りステア リン酸マグネシウム(Mallinckrodt Baker, Inc.) lgを添カ卩し混合し、ロータリー式打錠 機を用いて製錠することにより、 200mg中に塩酸ドネぺジル 10mgを含有する直径 8mm の錠剤を得た。得られた錠剤に対し、ォパドライイェロー(日本カラコン)を用いてヒド ロキシプロピルメチルセルロースを主成分とする水溶性フィルムコーティング(皮膜量
: 8mg/錠)を施し、フィルム錠を得た。溶出試験の結果を表 4に示した。
[0105] 実施例 17
塩酸ドネぺジル(エーザィ) 130g、エトセル 10FP (ェチルセルロース、 Dow Chemical Company) 832g、オイドラギット L100- 55 (Rohm GmbH & Co. KG) 962g及び乳糖 598gを攪拌造粒機中で混合した。上記混合物に対し、ヒドロキシプロピルセルロース (HPC-L、 日本曹達) 52gを適量の精製水に溶解させた水溶液を加え湿式造粒し、上 記造粒顆粒を、棚式乾燥機を用いて加温乾燥後、整粒した。整粒後、顆粒 99g当りス テアリン酸マグネシウム(Mallinckrodt Baker, In ) lgを添カ卩し混合し、ロータリー式 打錠機を用いて製錠することにより、 200mg中に塩酸ドネぺジル 10mgを含有する直径 8mmの錠剤を得た。得られた錠剤に対し、ォパドライイェロー(日本カラコン)を用い てヒドロキシプロピルメチルセルロースを主成分とする水溶性フィルムコーティング(皮 膜量: 8mg/錠)を施し、フィルム錠を得た。溶出試験の結果を表 4に示した。
[0106] 実施例 18
塩酸メマンチン(Lachema s.r.o. Czech Republic) 12g、エトセル 10FP (ェチルセル ロース、 Dow Chemical Company) 28. 8g、オイドラギット L100— 55 (Rohm GmbH & Co. KG) 36g及び乳糖 39. 6gを攪拌造粒機中で混合した。上記混合物に対し、ヒドロ キシプロピルセルロース(HPC-L、 日本曹達) 2.4gを適量の精製水に溶解させた水溶 液を加え湿式造粒し、造粒顆粒を、棚式乾燥機を用いて加温乾燥後、整粒した。整 粒後、顆粒 99g当りステアリン酸マグネシウム(Mallinckrodt Baker, In ) lgを添カロし 混合し、ロータリー式打錠機を用いて製錠することにより、 200mg中に塩酸メマンチン 20mgを含有する直径 8mmの錠剤を得た。
[0107] 実施例 19
塩酸ドネぺジル(エーザィ株式会社) 6g、塩酸メマンチン(Lachema s.r.o.) 12g、 エトセル 10FP (ェチルセルロース、 Dow Chemical Company) 28. 8g、オイドラギット L 100-55 (Rohm GmbH & Co. KG) 36g及び乳糖 45. 6gを攪拌造粒機中で混合した 。上記混合物に対し、ヒドロキシプロピルセルロース(HPC-L、 日本曹達) 2.4gを適量 の精製水に溶解させた水溶液を加え湿式造粒し、造粒顆粒を、棚式乾燥機を用い て加温乾燥後、整粒した。整粒後、造粒物 109g当りステアリン酸マグネシウム (Mallin ckrodt Baker, Inc.) lgを添カ卩し混合し、ロータリー式打錠機を用いて製錠することに より、 220mg中に、塩酸ドネぺジル 10mg及び塩酸メマンチン 20mgを含有する直径 8m mの圧縮成型物を得た。この得られた圧縮成型物に対し、ォパドライイェロー(日本力 ラコン)を用いてヒドロキシプロピルメチルセルロースを主成分とする水溶性フィルムコ 一ティング (皮膜量: 8mg/錠)を施し、フィルム錠を得た。
[0108] 上記実施例に係るマトリックス型徐放性製剤の顕著な優れた効果を示す為に、以 下に比較例 1および 2を挙げる。
[0109] 比較例 1 塩酸ドネぺジル(エーザィ) 300mg、エトセル 10FP (ェチルセルロース、 Dow Chemic al Company) 750mg、乳糖 1920mg、ステアリン酸マグネシウム(Mallinckrodt Baker, Inc.) 30mgを乳鉢中で混合した。上記混合物を 200mg採取し、オートグラフ AG5000A( 島津製作所)を用いて製錠し、塩酸ドネぺジル 20mgを含有する直径 8mmの錠剤を得 た。溶出試験の結果を表 1に示した。
[0110] 比較例 2
塩酸ドネぺジル(エーザィ) 300mg、エトセル 10FP (ェチルセルロース、 Dow Chemic al Company) 375mg、乳糖 2295mg、ステアリン酸マグネシウム(Mallinckrodt Baker, Inc.) 30mgを乳鉢中で混合した。上記混合物を 200mg採取し、オートグラフ AG5000A( 島津製作所)を用いて製錠し、塩酸ドネぺジル 20mgを含有する直径 8mmの錠剤を得 た。溶出試験の結果を表 5に示した。
[0111] 実施例 20
塩酸ドネぺジル(エーザィ株式会社) 7g、エトセル 10FP (ェチルセルロース、 Dow C hemical Company) 37. 8g、オイドラギット L100- 55 (Rohm GmbH & Co. KG) 22. 4 g及び乳糖 68. 18gを攪拌造粒機中で混合した。上記混合物に対し、ヒドロキシプロピ ルセルロース(HPC-L、 日本曹達) 4. 2gを適量の精製水に溶解させた水溶液を加え 湿式造粒し、造粒顆粒を、棚式乾燥機を用いて加温乾燥後、整粒した。整粒後、造 粒物 99. 7g当りステアリン酸マグネシウム(Mallinckrodt Baker, lnc.) 0. 3gを添加し 混合し、単発打錠機を用いて製錠することにより、 200mg中に、塩酸ドネぺジル 10mg を含有する直径 8mmの錠剤を得た。溶出試験の結果を表 4に示した。
[0112] 実施例 21— 23及び比較例 3
表 11の配合量に従って、各成分を乳鉢中で混合した。上記混合物を 200mg採取し 、オートグラフ AG5000A (島津製作所)を用いて製錠し、塩酸ドネぺジル 20mgを含有 する直径 8mmの錠剤(錠剤重量 200mg)を得た。また、溶出試験の結果を表 6及び表 7に示した。
[0113] [表 11]
Figure imgf000046_0001
実施例 24
塩酸ドネぺジル(エーザィ株式会社) 3.5g、エトセル 10FP (ェチルセルロース、 Dow Chemical Company) 37.8g、オイドラギット L100— 55 (Rohm GmbH & Co. KG) 22.4 g及び乳糖 (Pharmatose200M、 DMV社) 73.5gを攪拌造粒機中で混合した。上記混合 物に対し、ヒドロキシプロピルセルロース(HPC-L、 日本曹達) 2.8gを適量の精製水に 溶解させた水溶液を加え湿式造粒し、造粒顆粒を、棚式乾燥機を用いて加温乾燥 後、パワーミルを用いて整粒した。整粒後、造粒物 5000mg当りステアリン酸カルシゥ ム(Merck KGaA, Darmstadt, Germany) 50mgを添カ卩し混合し、オートグラフ 5000A ( 島津製作所)を用いて、打錠圧 1200kgfで製錠することにより、 202mg中に、塩酸ドネ ぺジル 5mgを含有する直径 8mmの圧縮成型物を得た。
[0115] 実施例 25
塩酸ドネぺジル(エーザィ) 700g、エトセル 10FP (ェチルセルロース、 Dow Chemica 1 Company) 2700g、オイドラギット L100- 55 (Rohm GmbH & Co. KG) 2100g及び乳 糖 4250gを攪拌造粒機中で混合した。上記混合物に対し、ヒドロキシプロピルセル口 ース (HPC- L、 日本曹達) 220gを適量の精製水に溶解させた水溶液を加え湿式造粒 し、造粒顆粒を、流動層乾燥機を用いて加温乾燥後、整粒した。整粒後、顆粒 99.7g 当りステアリン酸マグネシウム(Mallinckrodt Baker, Inc.) 0.3gを添カ卩し混合し、ロー タリー式打錠機を用いて製錠することにより、 200mg中に塩酸ドネぺジル 14mgを含有 する直径 8mmの錠剤を得た。得られた錠剤に対し、ォパドライパープル(日本カラコ ン)を用いてヒドロキシプロピルメチルセルロースを主成分とする水溶性フィルムコー ティング (皮膜量: 8mg/錠)を施し、フィルム錠を得た。
[0116] 実施例 26
塩酸ドネぺジル(エーザィ) 700g、エトセル 10FP (ェチルセルロース、 Dow Chemica 1 Company) 2700g、オイドラギット L100- 55 (Rohm GmbH & Co. KG) 1900g及び乳 糖 4450gを攪拌造粒機中で混合した。上記混合物に対し、ヒドロキシプロピルセル口 ース (HPC- L、 日本曹達) 220gを適量の精製水に溶解させた水溶液を加え湿式造粒 し、造粒顆粒を、流動層乾燥機を用いて加温乾燥後、整粒した。整粒後、顆粒 99.7g 当りステアリン酸マグネシウム(Mallinckrodt Baker, Inc.) 0.3gを添カ卩し混合し、ロー タリー式打錠機を用いて製錠することにより、 200mg中に塩酸ドネぺジル 14mgを含有 する直径 8mmの錠剤を得た。得られた錠剤に対し、ォパドライパープル(日本カラコ ン)を用いてヒドロキシプロピルメチルセルロースを主成分とする水溶性フィルムコー ティング (皮膜量: 8mg/錠)を施し、フィルム錠を得た。
[0117] 実施例 27
塩酸ドネぺジル(エーザィ) 700g、エトセル 10FP (ェチルセルロース、 Dow Chemica 1 Company) 2700g、オイドラギット LlOO- 55 (Rohm GmbH & Co. KG) 1900g及び乳 糖 4420gを攪拌造粒機中で混合した。上記混合物に対し、ヒドロキシプロピルセル口 ース (HPC- L、 日本曹達) 250gを適量の精製水に溶解させた水溶液を加え湿式造粒 し、造粒顆粒を、流動層乾燥機を用いて加温乾燥後、整粒した。整粒後、顆粒 99.7g 当りステアリン酸マグネシウム(Mallinckrodt Baker, Inc.) 0.3gを添カ卩し混合し、ロー タリー式打錠機を用いて製錠することにより、 200mg中に塩酸ドネぺジル 14mgを含有 する直径 8mmの錠剤を得た。得られた錠剤に対し、ォパドライパープル(日本カラコ ン)を用いてヒドロキシプロピルメチルセルロースを主成分とする水溶性フィルムコー ティング (皮膜量: 8mg/錠)を施し、フィルム錠を得た。溶出試験の結果を表 8及び図 7に示した。
[0118] 実施例 28
塩酸ドネぺジル(エーザィ) 1050g、エトセル 10FP (ェチルセルロース、 Dow Chemic al Company) 3780g、オイドラギット L100- 55 (Rohm GmbH & Co. KG) 2240g及び 乳糖 6538gを攪拌造粒機中で混合した。上記混合物に対し、ヒドロキシプロピルセル ロース (HPC-L、 日本曹達) 350gを適量の精製水に溶解させた水溶液を加え湿式造 粒し、造粒顆粒を、流動層乾燥機を用いて加温乾燥後、整粒した。整粒後、顆粒 99. 7g当りステアリン酸マグネシウム(Mallinckrodt Baker, In ) 0.3gを添カ卩し混合し、口 一タリー式打錠機を用いて製錠することにより、 200mg中に塩酸ドネぺジル 15mgを含 有する直径 8mmの錠剤を得た。得られた錠剤に対し、ォパドライパープル(日本カラ コン)を用いてヒドロキシプロピルメチルセルロースを主成分とする水溶性フィルムコ 一ティング (皮膜量: 8mg/錠)を施し、フィルム錠を得た。溶出試験の結果を表 8及び 図 8に示した。
[0119] 実施例 29
塩酸ドネぺジル(エーザィ) 1400g、エトセル 10FP (ェチルセルロース、 Dow Chemic al Company) 3500g、オイドラギット L100- 55 (Rohm GmbH & Co. KG) 2520g及び 乳糖 6118gを攪拌造粒機中で混合した。上記混合物に対し、ヒドロキシプロピルセル ロース (HPC-L、 日本曹達) 420gを適量の精製水に溶解させた水溶液を加え湿式造 粒し、造粒顆粒を、流動層乾燥機を用いて加温乾燥後、整粒した。整粒後、顆粒 99. 7g当りステアリン酸マグネシウム(Mallinckrodt Baker, In ) 0.3gを添カ卩し混合し、口 一タリー式打錠機を用 、て製錠することにより、 200mg中に塩酸ドネぺジル 20mgを含 有する直径 8mmの錠剤を得た。得られた錠剤に対し、ォパドライレッド(日本カラコン) を用いてヒドロキシプロピルメチルセルロースを主成分とする水溶性フィルムコーティ ング (皮膜量: 8mg/錠)を施し、フィルム錠を得た。溶出試験の結果を表 に 示した。
[0120] 実施例 30
塩酸ドネぺジル(エーザィ) 1150g、エトセル 10FP (ェチルセルロース、 Dow Chemic al Company) 2500g、オイドラギット L100- 55 (Rohm GmbH & Co. KG) 1800g及び 乳糖 4220gを攪拌造粒機中で混合した。上記混合物に対し、ヒドロキシプロピルセル ロース (HPC-L、 日本曹達) 300gを適量の精製水に溶解させた水溶液を加え湿式造 粒し、造粒顆粒を、流動層乾燥機を用いて加温乾燥後、整粒した。整粒後、顆粒 99. 7g当りステアリン酸マグネシウム(Mallinckrodt Baker, In ) 0.3gを添カ卩し混合し、口 一タリー式打錠機を用 、て製錠することにより、 200mg中に塩酸ドネぺジル 23mgを含 有する直径 8mmの錠剤を得た。得られた錠剤に対し、ォパドライレッド(日本カラコン) を用いてヒドロキシプロピルメチルセルロースを主成分とする水溶性フィルムコーティ ング (皮膜量: 8mg/錠)を施し、フィルム錠を得た。溶出試験の結果を表 8及び図 9に 示した。
[0121] 実施例 31
塩酸ドネぺジル(エーザィ) 1150g、エトセル 10FP (ェチルセルロース、 Dow Chemic al Company) 2200g、オイドラギット L100- 55 (Rohm GmbH & Co. KG) 2100g及び 乳糖 4220gを攪拌造粒機中で混合した。上記混合物に対し、ヒドロキシプロピルセル ロース (HPC-L、 日本曹達) 300gを適量の精製水に溶解させた水溶液を加え湿式造 粒し、造粒顆粒を、流動層乾燥機を用いて加温乾燥後、整粒した。整粒後、顆粒 99. 7g当りステアリン酸マグネシウム(Mallinckrodt Baker, In ) 0.3gを添カ卩し混合し、口 一タリー式打錠機を用 、て製錠することにより、 200mg中に塩酸ドネぺジル 23mgを含 有する直径 8mmの錠剤を得た。得られた錠剤に対し、ォパドライレッド(日本カラコン) を用いてヒドロキシプロピルメチルセルロースを主成分とする水溶性フィルムコーティ ング (皮膜量: 8mg/錠)を施し、フィルム錠を得た。溶出試験の結果を表 8及び図 9に 示した。
[0122] 実施例 32— 38
上記に記載した製造方法に従って、表 12に示したフィルム錠を得ることもできる。表
12は、フィルム錠 1錠あたりの配合量 (mg)を示して 、る。
[0123] [表 12]
Figure imgf000051_0001
施例 39— 44及び比較例 4 5
表 13の配合量に従って、各成分を乳鉢中で混合した。上記混合物を 200mg採取し 、オートグラフ AG5000A (島津製作所)を用いて製錠し、それぞれ塩酸メマンチン 20m gを含有する直径 8mmの錠剤(錠剤重量 200mg)を得た。
[表 13]
Figure imgf000053_0001
Figure imgf000053_0002
[0126] 本発明によると、 0. IN 塩酸水溶液及び pH6. 0の中性水溶液における溶解度が 、 pH8. 0の塩基性水溶液における溶解度よりも高い塩基性薬物又はその塩を含有 するマトリックス型徐放性製剤において、その溶出初期における塩基性薬物又はそ の塩の溶出の pH依存性を小さくし、且つ、酸性試験液中での塩基性薬物又はその 塩の溶出率と中性試験液中での塩基性薬物又はその塩の溶出率の比 (酸性試験液 中での溶出率 Z中性試験液中での溶出率)が、溶出試験の進行に伴い、経時的に 低減する (溶出試験の溶出初期に比べ溶出後期で減少する)マトリックス型徐放性製 剤が調製可能である。
図面の簡単な説明
[0127] [図 1]本発明による実施例 2及び実施例 4のマトリックス型徐放性製剤の 0. 1N 塩酸 水溶液における塩酸ドネぺジルの溶出試験の結果を示す図である(対照実験:比較 例 1)。
[図 2]本発明による実施例 2及び実施例 4のマトリックス型徐放性製剤の pH6. 8の 50 mMリン酸緩衝液における塩酸ドネぺジルの溶出試験の結果を示す図である(対照 実験:比較例 1)。
[図 3]本発明による実施例 14〜 17のマトリックス型徐放性製剤の 0. 1N 塩酸水溶液 における塩酸ドネぺジルの溶出試験の結果を示す図である。
[図 4]本発明による実施例 14〜17のマトリックス型徐放性製剤の pH6. 8の 550mMリ ン酸緩衝液における塩酸ドネぺジルの溶出試験の結果を示す図である。
[図 5]本発明による実施例 12及び実施例 13のマトリックス型徐放性製剤の 0. 1N 塩 酸水溶液における塩酸ドネぺジルの溶出試験の結果を示す図である(対照実験:比 較例 2)。
[図 6]本発明による実施例 12及び実施例 13のマトリックス型徐放性製剤の pH6. 8の 50mMリン酸緩衝液における塩酸ドネぺジルの溶出試験の結果を示す図である(対 照実験:比較例 2)。
[図 7]本発明による実施例 27のマトリックス型徐放性製剤の試験液 A及び試験液 Bに おける塩酸ドネぺジルの溶出試験の結果を示す図である。
[図 8]本発明による実施例 28及び実施例 29のマトリックス型徐放性製剤の試験液 A 及び試験液 Bにおける塩酸ドネぺジルの溶出試験の結果を示す図である。
[図 9]本発明による実施例 30及び実施例 31のマトリックス型徐放性製剤の試験液 A 及び試験液 Bにおける塩酸ドネぺジルの溶出試験の結果を示す図である。

Claims

請求の範囲
[1] (1) 0. IN 塩酸水溶液及び pH6.0の中性水溶液における溶解度が、 pH8.0の塩 基性水溶液における溶解度よりも高!ヽ塩基性薬物又はその塩、及び (2)少なくとも 1 種類の腸溶性高分子を含有してなる、前記塩基性薬物又はその塩のマトリックス型 徐放性製剤。
[2] 前記中性水溶液が、 50mMリン酸緩衝液であり、前記塩基性水溶液が、 50mMリ ン酸緩衝液である、請求項 1に記載のマトリックス型徐放性製剤。
[3] 日本薬局方の溶出試験のパドル法による溶出試験において、 pH6. 8の 50mMリン 酸緩衝液における塩基性薬物又はその塩の溶出率に対する 0. 1N 塩酸水溶液に おける塩基性薬物又はその塩の溶出率の比力 前記 pH6. 8の 50mMリン酸緩衝液 における塩基性薬物又はその塩の溶出率が 90%になる溶出時間まで、溶出時間と ともに低下する、請求項 1または 2に記載のマトリックス型徐放性製剤。
[4] 日本薬局方の溶出試験法のパドル法による溶出試験において、 0. 1N 塩酸水溶 液における塩基性薬物又はその塩の溶出率が、溶出時間 1時間で 60%未満である、 請求項 1ないし 3のうち何れか一項に記載のマトリックス型徐放性製剤。
[5] 日本薬局方の溶出試験法のパドル法による溶出試験において、 pH6. 8の 50mM リン酸緩衝液における塩基性薬物又はその塩の溶出率に対する 0. 1N 塩酸水溶 液における塩基性薬物又はその塩の溶出率の比力 溶出時間 3時間で 0. 3〜1. 5 である、請求項 1な 、し 4のうち何れか一項に記載のマトリックス型徐放性製剤。
[6] 日本薬局方の溶出試験のパドル法による溶出試験において、 0. 1N 塩酸水溶液 における塩基性薬物又はその塩の溶出率力 溶出時間 1時間で 60%未満であり、か つ、 pH6. 8の 50mMリン酸緩衝液における塩基性薬物又はその塩の溶出率に対す る 0. 1N 塩酸水溶液における塩基性薬物又はその塩の溶出率の比力 溶出時間 3 時間で 0. 3〜1. 5である、請求項 1ないし 5のうち何れか一項に記載のマトリックス型 徐放性製剤。
[7] マトリックス型徐放性製剤が、水不溶性高分子を含有してなる、請求項 1な!ヽし 6の うち何れか一項に記載のマトリックス型徐放性製剤。
[8] マトリックス型徐放性製剤が、水溶性の糖類及び Z又は水溶性の糖アルコールを 含有してなる、請求項 1な 、し 7のうち何れか一項に記載のマトリックス型徐放性製剤
[9] 前記腸溶性高分子が、メタクリル酸'アクリル酸ェチルコポリマー、メタクリル酸'メタ クリル酸メチルコポリマー、ヒドロキシプロピルメチルセルロースフタレート及びヒドロキ シプロピルメチルセルロースアセテートサクシネートから選ばれる少なくとも 1種類であ る、請求項 1ないし 8のうち何れか一項に記載のマトリックス型徐放性製剤。
[10] 前記水不溶性高分子が、ェチルセルロース、アミノアルキルメタクリレートコポリマー RS及びアクリル酸ェチル 'メタクリル酸メチルコポリマーカゝら選ばれる少なくとも 1種類 である、請求項 7な 、し 9のうち何れか一項に記載のマトリックス型徐放性製剤。
[11] 前記腸溶性高分子カ^タクリル酸'アクリル酸ェチルコポリマーであり、前記水不溶 性高分子がェチルセルロースである、請求項 1ないし 10のうち何れか一項に記載の マトリックス型徐放性製剤。
[12] マトリックス型徐放性製剤中の前記腸溶性高分子の配合量が、マトリックス型徐放 性製剤 100重量%に対して、 5〜90重量%である、請求項 1ないし 11のうち何れか 一項に記載のマトリックス型徐放性製剤。
[13] マトリックス型徐放性製剤中の前記水不溶性高分子と腸溶性高分子の合計配合量 力 マトリックス型徐放性製剤 100重量%に対して、 25〜95重量%である、請求項 7 ないし 12のうち何れか一項に記載のマトリックス型徐放性製剤。
[14] マトリックス型徐放性製剤中の前記水溶性の糖類及び Z又は水溶性の糖アルコー ルの配合量力 マトリックス型徐放性製剤 100重量%に対して、 3〜70重量%である 、請求項 8ないし 13のうち何れか一項に記載のマトリックス型徐放性製剤。
[15] 前記塩基性薬物又はその塩が、抗痴呆薬である、請求項 1ないし 14のうち何れか 一項に記載のマトリックス型徐放性製剤。
[16] 前記塩基性薬物又はその塩が、塩酸ドネぺジル及び Zまたは塩酸メマンチンであ る、請求項 1ないし 15のうち何れか一項に記載のマトリックス型徐放性製剤。
[17] 前記塩基性薬物又はその塩の pH6. 8の中性水溶液における溶解度が、 pH8.0の 塩基性水溶液における溶解度の 2倍以上であり、かつ、 pH6. 0の中性水溶液におけ る溶解度の 1Z2以下である、請求項 1ないし 16のうち何れか一項に記載のマトリック ス型徐放性製剤。
[18] 前記塩基性薬物又はその塩の pH6. 8の 50mMリン酸緩衝液における溶解度力 p H8. 0の 50mMリン酸緩衝液における溶解度の 2倍以上であり、かつ、 pH6. 0の 50 mMリン酸緩衝液における溶解度の 1Z2以下である、請求項 1ないし 17のうち何れ か一項に記載のマトリックス型徐放性製剤。
[19] 塩基性薬物又はその塩の 0. 1N 塩酸水溶液及び pH6. 0の 50mMリン酸緩衝液 における溶解度が lmg/mL以上であり、かつ、 pH8. 0の 50mMリン酸緩衝液にお ける溶解度が 0. 2mgZmL以下である、請求項 1ないし 17のうち何れか一項に記載 のマトリックス型徐放性製剤。
[20] 塩基性薬物又はその塩の 0. 1N 塩酸水溶液及び pH6. 0の 50mMリン酸緩衝液 における溶解度が lmgZmL以上であり、 pH8. 0の 50mMリン酸緩衝液における溶 解度が 0. 2mgZmL以下であり、 pH6. 8の 50mMリン酸緩衝液における溶解度が 前記 pH8. 0の 50mMリン酸緩衝液における溶解度の 2倍以上であり、かつ、前記 pH 6. 0の 50mMリン酸緩衝液における溶解度の 1Z2以下である、請求項 1ないし 17 のうち何れか一項に記載のマトリックス型徐放性製剤。
[21] (1) 0. 1N 塩酸水溶液及び pH6. 0の 50mMリン酸緩衝液における溶解度が lm gZmL以上であり、 pH8. 0の 50mMリン酸緩衝液における溶解度が 0. 2mg/mL 以下であり、 pH6. 8の 50mMリン酸緩衝液における溶解度が前記 pH8. 0の 50mM リン酸緩衝液における溶解度の 2倍以上であり、かつ、前記 pH6. 0の 50mMリン酸 緩衝液における溶解度の 1Z2以下である塩基性薬物又はその塩、(2)少なくとも 1 種類の腸溶性高分子、及び (3)少なくとも 1種類の水不溶性高分子を含有してなる、 請求項 1ないし 17のうち何れか一項に記載のマトリックス型徐放性製剤。
[22] マトリックス型徐放性製剤が、錠剤、顆粒剤、細粒剤又はカプセル剤である、請求 項 1ないし 21のうち何れか一項に記載のマトリックス型徐放性製剤。
[23] 0. 1N 塩酸水溶液及び pH6. 0の中性水溶液における溶解度が、 pH8. 0の塩基 性水溶液における溶解度よりも高い塩基性薬物又はその塩、及び少なくとも 1種類の 腸溶性高分子を混合する工程と、前記混合工程で得られた混合物を圧縮成型する 工程と、を含むマトリックス型徐放性製剤の製造方法。
[24] 前記中性水溶液が、 50mMリン酸緩衝液であり、前記塩基性水溶液が、 50mMリ ン酸緩衝液である、請求項 23に記載のマトリックス型徐放性製剤の製造方法。
[25] (1) 0. 1N 塩酸水溶液及び pH6. 0の 50mMリン酸緩衝液における溶解度が lm gZmL以上であり、 pH8. 0の 50mMリン酸緩衝液における溶解度が 0. 2mg/mL 以下であり、 pH6. 8の 50mMリン酸緩衝液における溶解度が前記 pH8. 0の 50mM リン酸緩衝液における溶解度の 2倍以上であり、かつ、前記 pH6. 0の 50mMリン酸 緩衝液における溶解度の 1Z2以下である塩基性薬物又はその塩、及び(2)少なくと も 1種類の腸溶性基剤を混合する工程と、前記混合工程で得られた混合物を圧縮成 型する工程と、を含むマトリックス型徐放性製剤の製造方法。
[26] 混合工程において、水不溶性高分子を混合する、請求項 23ないし 25のうち何れか 一項に記載のマトリックス型徐放性製剤の製造方法。
[27] (1) 0. 1N 塩酸水溶液及び pH6. 0の 50mMリン酸緩衝液における溶解度が lm gZmL以上であり、 pH8. 0の 50mMリン酸緩衝液における溶解度が 0. 2mg/mL 以下であり、 pH6. 8の 50mMリン酸緩衝液における溶解度が前記 pH8. 0の 50mM リン酸緩衝液における溶解度の 2倍以上であり、かつ、前記 pH6. 0の 50mMリン酸 緩衝液における溶解度の 1Z2以下である塩基性薬物又はその塩、(2)少なくとも 1 種類の腸溶性高分子、及び (3)少なくとも 1種類の水不溶性高分子を混合する工程 と、前記混合工程で得られた混合物を圧縮成型する工程と、を含むマトリックス型徐 放性製剤の製造方法。
[28] (A) 0. IN 塩酸水溶液及び pH6. 0の 50mMリン酸緩衝液における溶解度力 p H8. 0の 50mMリン酸緩衝液における溶解度よりも高ぐ pH6. 8の 50mMリン酸緩 衝液における溶解度が前記 PH8. 0の 50mMリン酸緩衝液における溶解度の 2倍以 上であり、かつ、前記 pH6. 0の 50mMリン酸緩衝液における溶解度の 1Z2以下で ある塩基性薬物又はその塩、(B)少なくとも 1種類の腸溶性高分子、及び (C)少なく とも 1種類の水不溶性高分子を混合する工程と、前記混合工程で得られた混合物を 圧縮成型する工程と、を含むマトリックス型徐放性製剤の製造方法。
[29] 圧縮成型工程前に、さら〖こ、混合工程の混合物を造粒する工程を含む、請求項 23 ないし 28に記載のマトリックス型徐放性製剤の製造方法。
[30] 塩基性薬物又はその塩が、抗痴呆薬である、請求項 23ないし 29のうち何れか一項 に記載のマトリックス型徐放性製剤の製造方法。
[31] 塩基性薬物又はその塩が、塩酸ドネぺジル及び Zまたは塩酸メマンチンである、請 求項 23ないし 30のうち何れか一項に記載のマトリックス型徐放性製剤の製造方法。
[32] (1) 0. 1N 塩酸水溶液及び pH6. 0の 50mMリン酸緩衝液における溶解度が lm gZmL以上であり、 pH8. 0の 50mMリン酸緩衝液における溶解度が 0. 2mg/mL 以下であり、 pH6. 8の 50mMリン酸緩衝液における溶解度が前記 pH8. 0の 50mM リン酸緩衝液における溶解度の 2倍以上であり、かつ、前記 pH6. 0の 50mMリン酸 緩衝液における溶解度の 1Z2以下である塩基性薬物又はその塩、(2)少なくとも 1 種類の腸溶性高分子、及び (3)少なくとも 1種類の水不溶性高分子を混合し、圧縮 成型することにより、前記塩基性薬物又はその塩の pH依存性の小さい溶出を制御す る方法。
PCT/JP2005/023853 2004-12-27 2005-12-27 塩基性薬物又はその塩を含有するマトリックス型徐放性製剤およびその製造方法 WO2006070781A1 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
US11/794,212 US20090208579A1 (en) 2004-12-27 2005-12-12 Matrix Type Sustained-Release Preparation Containing Basic Drug or Salt Thereof, and Method for Manufacturing the Same
BRPI0519407-5A BRPI0519407A2 (pt) 2004-12-27 2005-12-27 preparaÇço de liberaÇço sustentada do tipo matriz contendo droga bÁsica ou seu sal e mÉtodo para a fabricaÇço da mesma
CA2592102A CA2592102C (en) 2004-12-27 2005-12-27 Matrix type sustained-release preparation containing basic drug or salt thereof, and method for manufacturing the same
EP05822550A EP1832298A4 (en) 2004-12-27 2005-12-27 MATRIX-TYPE-CONTROLLED RELEASE PREPARATION COMPRISING A BASIC SUBSTANCE OR SALT THEREOF AND PROCESS FOR PRODUCTION THEREOF
AU2005320609A AU2005320609B9 (en) 2004-12-27 2005-12-27 Matrix type sustained-release preparation containing basic drug or salt thereof, and method for manufacturing the same
JP2006550780A JP4999466B2 (ja) 2004-12-27 2005-12-27 塩基性薬物又はその塩を含有するマトリックス型徐放性製剤およびその製造方法
NZ555901A NZ555901A (en) 2004-12-27 2005-12-27 Matrix type sustained-release preparation containing donepezil hydrochloride and / or memantine hydrochloride
MX2007007835A MX2007007835A (es) 2004-12-27 2005-12-27 Preparacion de liberacion sostenida de tipo matriz que contiene farmaco basico o su sal, y metodo para manufacturar la misma.
IL183871A IL183871A0 (en) 2004-12-27 2007-06-12 Matrix type sustained-release preparation containing basic drug or salt thereof, and method for manufacturing the same
NO20073461A NO20073461L (no) 2004-12-27 2007-07-04 Matrikstypepreparater for vedvarende frigjoring som inneholder basiske medikamenter eller salter derav, samt fremgangsmate for fremstilling derav
US12/910,313 US20110045074A1 (en) 2004-12-27 2010-10-22 Matrix type sustained-release preparation containing basic drug or salt thereof and, method for manufacturing the same

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2004376770 2004-12-27
JP2004-376770 2004-12-27
JP2005-110404 2005-04-06
JP2005110404 2005-04-06
US67548205P 2005-04-28 2005-04-28
JP2005-132338 2005-04-28
US60/675482 2005-04-28
JP2005132338 2005-04-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/910,313 Division US20110045074A1 (en) 2004-12-27 2010-10-22 Matrix type sustained-release preparation containing basic drug or salt thereof and, method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2006070781A1 true WO2006070781A1 (ja) 2006-07-06

Family

ID=36614895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/023853 WO2006070781A1 (ja) 2004-12-27 2005-12-27 塩基性薬物又はその塩を含有するマトリックス型徐放性製剤およびその製造方法

Country Status (13)

Country Link
US (2) US20090208579A1 (ja)
EP (1) EP1832298A4 (ja)
JP (1) JP4999466B2 (ja)
KR (1) KR100904602B1 (ja)
CN (1) CN103550190A (ja)
AU (1) AU2005320609B9 (ja)
BR (1) BRPI0519407A2 (ja)
CA (1) CA2592102C (ja)
IL (1) IL183871A0 (ja)
MX (1) MX2007007835A (ja)
NO (1) NO20073461L (ja)
NZ (1) NZ555901A (ja)
WO (1) WO2006070781A1 (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010512317A (ja) * 2006-12-07 2010-04-22 シェーリング コーポレイション pH感受性マトリクス処方物
JP2010519236A (ja) * 2007-02-22 2010-06-03 エボニック レーム ゲゼルシャフト ミット ベシュレンクテル ハフツング 胃液抵抗性の作用物質−マトリックスを有しているペレット
WO2010110436A1 (ja) 2009-03-27 2010-09-30 杏林製薬株式会社 塩基性添加剤を含有するマトリックス型徐放性製剤
JP2011037787A (ja) * 2009-08-13 2011-02-24 Kyorin Pharmaceutical Co Ltd 塩基性薬物のpHに依存しない安定放出組成物
WO2011102505A1 (ja) * 2010-02-22 2011-08-25 第一三共株式会社 経口用徐放性固形製剤
WO2011102504A1 (ja) * 2010-02-22 2011-08-25 第一三共株式会社 経口用徐放性固形製剤
US8058291B2 (en) 2005-04-06 2011-11-15 Adamas Pharmaceuticals, Inc. Methods and compositions for the treatment of CNS-related conditions
US8168209B2 (en) 2004-11-23 2012-05-01 Adamas Pharmaceuticals, Inc. Method and composition for administering an NMDA receptor antagonist to a subject
WO2013033432A1 (en) * 2011-09-03 2013-03-07 Adipocyte Therapeutics Inc Methods and compositions for treating type 2 diabetes and related conditions
JP2013523758A (ja) * 2010-03-31 2013-06-17 スパーナス ファーマシューティカルズ インコーポレイテッド Cns化合物の安定化製剤
US8741343B2 (en) 2009-12-02 2014-06-03 Adamas Pharmaceuticals, Inc. Method of administering amantadine prior to a sleep period
JP2015107977A (ja) * 2010-08-11 2015-06-11 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft 代謝型グルタミン酸5受容体(mGlu5)アンタゴニストの医薬組成物
JP2016510021A (ja) * 2013-02-28 2016-04-04 ルピン・リミテッドLupin Limited 特異的なインビトロ溶出プロファイルまたは薬物動態パラメーターを有するドネペジル医薬組成物
JP2016513133A (ja) * 2013-02-28 2016-05-12 ルピン・リミテッドLupin Limited 特異的なインビトロ溶出プロファイルまたは薬物動態パラメーターを有するドネペジル医薬組成物
US9757338B2 (en) 2010-03-01 2017-09-12 Dexcel Pharma Technologies Ltd. Sustained-release donepezil formulation
US9801887B2 (en) 2008-12-19 2017-10-31 Supernus Pharmaceuticals, Inc. Method of treatment of aggression
US9827199B2 (en) 2012-09-03 2017-11-28 Daiichi Sankyo Company, Limited Hydromorphone hydrochloride-containing oral sustained-release pharmaceutical composition
US10154971B2 (en) 2013-06-17 2018-12-18 Adamas Pharma, Llc Methods of administering amantadine
JP2018199674A (ja) * 2017-05-29 2018-12-20 第一三共株式会社 認知症治療薬を含有する口腔内崩壊性錠剤

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2005320547B2 (en) 2004-12-27 2009-02-05 Eisai R & D Management Co., Ltd. Method for stabilizing anti-dementia drug
AU2006241771B2 (en) * 2005-04-28 2010-09-09 Eisai R & D Management Co., Ltd. Composition containing anti-dementia drug
CA2654523A1 (en) * 2006-07-05 2008-01-10 Teva Pharmaceutical Industries Ltd. Pharmaceutical compositions of memantine
TWI433674B (zh) 2006-12-28 2014-04-11 Infinity Discovery Inc 環杷明(cyclopamine)類似物類
WO2008109829A1 (en) 2007-03-07 2008-09-12 Infinity Pharmaceuticals, Inc. Cyclopamine lactam analogs and methods of use thereof
JP2010520295A (ja) 2007-03-07 2010-06-10 インフィニティ・ディスカバリー・インコーポレイテッド へテロ環状シクロパミン類似体及びその使用方法
CN101917853B (zh) 2007-12-27 2014-03-19 无限药品股份有限公司 立体选择性还原的方法
JP6141015B2 (ja) 2009-08-05 2017-06-07 インフィニティ ファーマスーティカルズ、インク. シクロパミン類似体の酵素によるアミノ基転移
JP2013510180A (ja) * 2009-11-06 2013-03-21 インフィニティ ファーマスーティカルズ、インク. ヘッジホッグ経路阻害剤の経口製剤
BRPI1005440A2 (pt) * 2010-01-26 2016-03-08 Hyundai Pharm Co Ltd composição farmacêutica de matriz
US20110218216A1 (en) * 2010-01-29 2011-09-08 Kumaravel Vivek Extended release pharmaceutical composition of donepezil
JP5563841B2 (ja) * 2010-02-05 2014-07-30 沢井製薬株式会社 薬物の不快な味をマスキングした経口医薬組成物
US20110251239A1 (en) * 2010-04-07 2011-10-13 Eisai Inc. Combination therapy for the treatment of dementia
US9394313B2 (en) 2010-09-14 2016-07-19 Infinity Pharmaceuticals, Inc. Transfer hydrogenation of cyclopamine analogs
BR112013008985A2 (pt) 2010-10-12 2016-07-05 Cerecor Inc composições antitussígenas compreendendo memantina
WO2012053016A1 (en) 2010-10-22 2012-04-26 Cadila Healthcare Limited Sustained release pharmaceutical compositions of donepezil
WO2016196928A1 (en) 2015-06-04 2016-12-08 PellePharm, Inc. Topical formulations for delivery of hedgehog inhibitor compounds and use thereof
US20170056342A1 (en) * 2015-08-31 2017-03-02 Apotex Technologies Inc. Extended Release Dosage Form Comprising Cyclobenzaprine Hydrochloride
KR101938872B1 (ko) * 2016-09-30 2019-01-16 주식회사 바이오파마티스 도네페질 또는 그의 약학적으로 허용 가능한 염 및 메만틴 또는 그의 약학적으로 허용 가능한 염을 함유하는 치매 및 인지기능 장애 예방 또는 치료용 약학 조성물 및 이의 제조방법
JP6578459B1 (ja) * 2019-02-28 2019-09-18 アピ株式会社 ハードカプセル及びその製造方法
KR20210072569A (ko) * 2019-12-09 2021-06-17 주식회사 종근당 도네페질 및 메만틴을 포함하는 복합 제제
CN115876900A (zh) * 2021-09-28 2023-03-31 江苏正大清江制药有限公司 一种测定克洛己新干混悬剂中盐酸溴己新溶出量的方法
WO2023095183A1 (en) * 2021-11-24 2023-06-01 Jordan University Of Science And Technology A pharmaceutical composition and a solid dosage form thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62252732A (ja) * 1986-01-30 1987-11-04 シンテツクス(ユ−・エス・エイ)インコ−ポレイテツド 長時間作用製剤
JPH02223533A (ja) * 1988-11-08 1990-09-05 Takeda Chem Ind Ltd 放出制御性マトリックス剤
WO2002066004A1 (fr) * 2001-02-23 2002-08-29 Mitsubishi Pharma Corporation Compositions a liberation controlee de medicament
WO2003039530A1 (en) * 2001-11-07 2003-05-15 Synthon B.V. Tamsulosin tablets
JP2004518676A (ja) * 2000-12-20 2004-06-24 シャイア ラボラトリーズ,インコーポレイテッド 最小化pH依存性溶解プロフィールを有する徐放性薬学的剤形

Family Cites Families (116)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HU187215B (en) * 1983-01-26 1985-11-28 Egyt Gyogyszervegyeszeti Gyar Method for producing pharmaceutical product of high actor content and prolonged effect
IL72381A (en) * 1983-07-20 1988-03-31 Sanofi Sa Pharmaceutical composition based on valproic acid
US4772475A (en) * 1985-03-08 1988-09-20 Yamanouchi Pharmaceutical Co., Ltd. Controlled-release multiple units pharmaceutical formulation
US4892742A (en) * 1985-11-18 1990-01-09 Hoffmann-La Roche Inc. Controlled release compositions with zero order release
US4940556A (en) * 1986-01-30 1990-07-10 Syntex (U.S.A.) Inc. Method of preparing long acting formulation
US4832957A (en) * 1987-12-11 1989-05-23 Merck & Co., Inc. Controlled release combination of carbidopa/levodopa
NL8701335A (nl) * 1986-06-21 1988-01-18 Sandoz Ag Orale farmaceutische preparaten.
CA1308357C (en) * 1987-01-28 1992-10-06 Tohru Chiba Method for the preparation of a coated solid medicament
US4851232A (en) * 1987-02-13 1989-07-25 Alza Corporation Drug delivery system with means for obtaining desirable in vivo release rate pattern
US4968508A (en) * 1987-02-27 1990-11-06 Eli Lilly And Company Sustained release matrix
US4894239A (en) * 1987-06-02 1990-01-16 Takeda Chemical Industries, Ltd. Sustained-release preparation and production thereof
US4891223A (en) * 1987-09-03 1990-01-02 Air Products And Chemicals, Inc. Controlled release delivery coating formulation for bioactive substances
JP2643222B2 (ja) * 1988-02-03 1997-08-20 エーザイ株式会社 多重層顆粒
DE3827214A1 (de) * 1988-08-11 1990-02-15 Roehm Gmbh Retardierte arzneiform und verfahren zu ihrer herstellung
JP2514078B2 (ja) * 1988-08-22 1996-07-10 エスエス製薬株式会社 圧縮成型製剤
US5202128A (en) * 1989-01-06 1993-04-13 F. H. Faulding & Co. Limited Sustained release pharmaceutical composition
ES2077023T3 (es) * 1989-03-10 1995-11-16 Yamanouchi Pharma Co Ltd Material de recubrimiento que controla la liberacion de un medicamento para formulaciones de actividad prolongada.
NZ233403A (en) * 1989-04-28 1992-09-25 Mcneil Ppc Inc Simulated capsule-like medicament
US5102668A (en) * 1990-10-05 1992-04-07 Kingaform Technology, Inc. Sustained release pharmaceutical preparation using diffusion barriers whose permeabilities change in response to changing pH
US5266331A (en) * 1991-11-27 1993-11-30 Euroceltique, S.A. Controlled release oxycodone compositions
US5681585A (en) * 1991-12-24 1997-10-28 Euro-Celtique, S.A. Stabilized controlled release substrate having a coating derived from an aqueous dispersion of hydrophobic polymer
DE4225730C2 (de) * 1992-08-04 2003-04-30 Merz Pharma Gmbh & Co Kgaa Verfahren zur Herstellung von festen Arzneiformkörpern mit protrahierter 2-Stufen-Freisetzung
JPH06199657A (ja) * 1992-12-10 1994-07-19 Sumitomo Pharmaceut Co Ltd 徐放性製剤
KR950007873A (ko) * 1993-09-20 1995-04-15 후꾸하라 요시하루 생리 활성 물질 지속 방출형의 의약 제제
US5500227A (en) * 1993-11-23 1996-03-19 Euro-Celtique, S.A. Immediate release tablet cores of insoluble drugs having sustained-release coating
US5698224A (en) * 1994-06-27 1997-12-16 Alza Corporation Tacrine therapy
US20020006438A1 (en) * 1998-09-25 2002-01-17 Benjamin Oshlack Sustained release hydromorphone formulations exhibiting bimodal characteristics
US5871776A (en) * 1995-01-31 1999-02-16 Mehta; Atul M. Controlled-release nifedipine
US6083532A (en) * 1995-03-01 2000-07-04 Duramed Pharmaceuticals, Inc. Sustained release formulation containing three different types of polymers and tablet formed therefrom
JPH0920663A (ja) * 1995-07-07 1997-01-21 Teikoku Seiyaku Co Ltd イブジラストを含有する徐放性細粒剤およびその製法
AUPN605795A0 (en) * 1995-10-19 1995-11-09 F.H. Faulding & Co. Limited Analgesic pharmaceutical composition
IT1282650B1 (it) * 1996-02-19 1998-03-31 Jagotec Ag Compressa farmaceutica,caratterizzata da elevato aumento di volume a contatto con liquidi biologici
US5773031A (en) * 1996-02-27 1998-06-30 L. Perrigo Company Acetaminophen sustained-release formulation
US6245351B1 (en) * 1996-03-07 2001-06-12 Takeda Chemical Industries, Ltd. Controlled-release composition
DK0914102T3 (da) * 1996-05-24 2006-01-09 Angiotech Pharm Inc Præparater og fremgangsmåder til behandling eller forebyggelse af syddomme i legemskanaler
IT1289160B1 (it) * 1997-01-08 1998-09-29 Jagotec Ag Compressa farmaceutica completamente rivestita per il rilascio controllato di principi attivi che presentano problemi di
DE19707655A1 (de) * 1997-02-26 1998-08-27 Hoechst Ag Kombinationspräparat zur Anwendung bei Demenz
CA2216215A1 (en) * 1997-04-05 1998-10-05 Isa Odidi Controlled release formulations using intelligent polymers having opposing wettability characteristics of hydrophobicity and hydrophilicity
US6210710B1 (en) * 1997-04-28 2001-04-03 Hercules Incorporated Sustained release polymer blend for pharmaceutical applications
WO1998055454A2 (en) * 1997-06-05 1998-12-10 Takeda Chemical Industries, Ltd. Benzofurans and benzothophenes as suppressors of neurodegeneration
FR2766708B1 (fr) * 1997-07-30 2000-05-05 Galenix Dev Composition contenant de l'hydroxypropylcellulose, de l'hydroxypropylmethylcellulose et/ou de l'ethylcellullose a titre d'agents desintegrants, et procede d'obtention
JP3797764B2 (ja) * 1997-10-01 2006-07-19 エーザイ株式会社 光安定化組成物
US20030092737A1 (en) * 1997-11-14 2003-05-15 Pierre Maffrand Jean Combination of active ingredients for the treatment of senile dementia of the Alzheimer type
US20040028735A1 (en) * 1997-11-14 2004-02-12 Unchalee Kositprapa Pharmaceutical formulation
FR2772615B1 (fr) * 1997-12-23 2002-06-14 Lipha Comprime multicouche pour la liberation instantanee puis prolongee de substances actives
US6251430B1 (en) * 1998-02-04 2001-06-26 Guohua Zhang Water insoluble polymer based sustained release formulation
US6372254B1 (en) * 1998-04-02 2002-04-16 Impax Pharmaceuticals Inc. Press coated, pulsatile drug delivery system suitable for oral administration
CA2327685C (en) * 1998-04-03 2008-11-18 Bm Research A/S Controlled release composition
US6262081B1 (en) * 1998-07-10 2001-07-17 Dupont Pharmaceuticals Company Composition for and method of treating neurological disorders
UA73092C2 (uk) * 1998-07-17 2005-06-15 Брістол-Майерс Сквібб Компані Таблетка з ентеросолюбільним покриттям і спосіб її приготування
KR100801236B1 (ko) * 1998-08-28 2008-02-11 에자이 알앤드디 매니지먼트 가부시키가이샤 고미 등을 경감한 의약조성물
US6531152B1 (en) * 1998-09-30 2003-03-11 Dexcel Pharma Technologies Ltd. Immediate release gastrointestinal drug delivery system
WO2000024423A1 (fr) * 1998-10-26 2000-05-04 Tanabe Seiyaku Co., Ltd. Particules a liberation prolongee
US6797283B1 (en) * 1998-12-23 2004-09-28 Alza Corporation Gastric retention dosage form having multiple layers
WO2000038686A1 (en) * 1998-12-24 2000-07-06 Janssen Pharmaceutica N.V. Controlled release galantamine composition
EP1027887B1 (en) * 1999-02-10 2008-08-13 Pfizer Products Inc. Matrix controlled release device
US6706283B1 (en) * 1999-02-10 2004-03-16 Pfizer Inc Controlled release by extrusion of solid amorphous dispersions of drugs
US6248363B1 (en) * 1999-11-23 2001-06-19 Lipocine, Inc. Solid carriers for improved delivery of active ingredients in pharmaceutical compositions
CA2371940C (en) * 1999-03-31 2008-07-15 Janssen Pharmaceutica N.V. Pregelatinized starch in a controlled release formulation
DK1086706T3 (da) * 1999-03-31 2004-03-08 Eisai Co Ltd Stabiliserede sammensætninger indeholdende nootropiske lægemidler
US7919119B2 (en) * 1999-05-27 2011-04-05 Acusphere, Inc. Porous drug matrices and methods of manufacture thereof
US20030124176A1 (en) * 1999-12-16 2003-07-03 Tsung-Min Hsu Transdermal and topical administration of drugs using basic permeation enhancers
BR0007360A (pt) * 1999-12-23 2001-08-14 Johnson & Johnson Composição de liberação controlada
US6627223B2 (en) * 2000-02-11 2003-09-30 Eurand Pharmaceuticals Ltd. Timed pulsatile drug delivery systems
WO2001066096A2 (en) * 2000-03-06 2001-09-13 Immune Network Ltd. Compositions for prevention and treatment of dementia
DE10029201A1 (de) * 2000-06-19 2001-12-20 Basf Ag Verfahren zur Herstellung fester oraler Darreichungsformen mit retardierender Wirkstoffreisetzung
GB0025208D0 (en) * 2000-10-13 2000-11-29 Euro Celtique Sa Delayed release pharmaceutical formulations
CA2359812C (en) * 2000-11-20 2004-02-10 The Procter & Gamble Company Pharmaceutical dosage form with multiple coatings for reduced impact of coating fractures
SE0004671D0 (sv) * 2000-12-15 2000-12-15 Amarin Dev Ab Pharmaceutical formulation
CA2350195C (en) * 2000-12-20 2003-06-10 Duchesnay Inc. Rapid onset formulation of pyridoxine hydrochloride and doxylamine succinate
US6667070B1 (en) * 2001-02-02 2003-12-23 Advanced Micro Devices, Inc. Method of in situ monitoring of thickness and composition of deposited films using raman spectroscopy
US20040022853A1 (en) * 2001-04-26 2004-02-05 Control Delivery Systems, Inc. Polymer-based, sustained release drug delivery system
BR0210518A (pt) * 2001-06-22 2004-06-22 Pfizer Prod Inc Composições farmacêuticas de dispersões de drogas e polìmeros neutros
WO2003017981A1 (en) * 2001-08-29 2003-03-06 Ranbaxy Laboratories Limited Controlled release formulation of clarithromycin or tinidazol
BR0212259A (pt) * 2001-08-29 2004-10-19 Ranbaxy Lab Ltd Formulação de liberação controlada de claritromicina ou tinidazol
AU2002341959A1 (en) * 2001-10-04 2003-04-14 Case Western Reserve University Drug delivery devices and methods
US6592901B2 (en) * 2001-10-15 2003-07-15 Hercules Incorporated Highly compressible ethylcellulose for tableting
AUPR839001A0 (en) * 2001-10-19 2001-11-15 Eli Lilly And Company Dosage form, device and methods of treatment
US20030133982A1 (en) * 2001-12-20 2003-07-17 Heimlich John M. Zero-order sustained release dosage forms and method of making same
CN100340293C (zh) * 2002-02-07 2007-10-03 卫材R&D管理有限公司 毛发生长促进剂、适于经皮给药的制剂
HRP20020124A2 (en) * 2002-02-11 2003-10-31 Pliva D D Sustained/controlled release solid formulation as a novel drug delivery system with reduced risk of dose dumping
MXPA04008137A (es) * 2002-02-21 2004-11-26 Otsuka Pharma Co Ltd Preparaciones de liberacion sostenida y procedimiento para producir las mismas.
GB0204772D0 (en) * 2002-02-28 2002-04-17 Phoqus Ltd Pharmaceutical dosage forms
AU2003225102A1 (en) * 2002-04-23 2003-11-10 Bristol-Myers Squibb Company Modified-release vasopeptidase inhibitor formulation, combinations and method
FR2838647B1 (fr) * 2002-04-23 2006-02-17 Particules enrobees a liberation prolongee, leur procede de preparation et comprimes les contenant
WO2003103634A1 (en) * 2002-06-07 2003-12-18 Ranbaxy Laboratories Limited Sustained release oral dosage forms of gabapentin
IL150509A (en) * 2002-07-01 2007-07-04 Joseph Kaspi Pharmaceutical preparations containing donafazil hydrochloride
US20050048119A1 (en) * 2002-09-20 2005-03-03 Avinash Nangia Controlled release composition with semi-permeable membrane and poloxamer flux enhancer
EP1556019A2 (en) * 2002-10-24 2005-07-27 Merz Pharma GmbH & Co. KGaA Combination therapy using 1-aminocyclohexane derivatives and acetylcholinesterase inhibitors
AU2002350719A1 (en) * 2002-11-29 2004-06-23 Janssen Pharmaceutica N.V. Pharmaceutical compositions comprising a basic respectively acidic drug compound, a surfactant and a physiologically tolerable water-soluble acid respectively base
IL154370A0 (en) * 2003-02-10 2003-09-17 Chemagis Ltd Solid amorphous mixtures, processes for the preparation thereof and pharmaceutical compositions containing the same
US7439365B2 (en) * 2003-11-17 2008-10-21 Usv, Ltd. Pharmaceutical salt of (1-benzyl-4-[(5,6-dimethoxy-1-indanone)-2-yl] methyl piperidine (Donepezil)
AR043467A1 (es) * 2003-03-05 2005-07-27 Osmotica Argentina S A Combinacion de drogas para la disfuncion motora en la enfermedad de parkinson
US8980322B2 (en) * 2003-03-17 2015-03-17 Takeda Pharmaceutical Company Limited Controlled release composition
WO2004108067A2 (en) * 2003-04-03 2004-12-16 Sun Pharmaceutical Industries Limited Programmed drug delivery system
PL1638529T3 (pl) * 2003-06-16 2017-03-31 Andrx Pharmaceuticals, Llc. Kompozycja doustna o przedłużonym uwalnianiu
RU2375048C2 (ru) * 2003-07-17 2009-12-10 Д-Р Редди'С Лабораторис Инк. Фармацевтическая композиция с набухающим покрытием
US20050013863A1 (en) * 2003-07-18 2005-01-20 Depomed, Inc., A Corporation Of The State Of California Dual drug dosage forms with improved separation of drugs
US20050025829A1 (en) * 2003-07-29 2005-02-03 Kim Cherng-Ju Controlled drug release tablets
EP1653922A2 (en) * 2003-08-06 2006-05-10 Alza Corporation Uniform delivery of topiramate over prolonged period of time with enhanced dispersion formulation
AU2004268549A1 (en) * 2003-08-22 2005-03-10 Alza Corporation Stepwise delivery of topiramate over prolonged period of time
AP2006003585A0 (en) * 2003-09-19 2006-04-30 Penwest Pharmaceuticals Co Delayed release dosage forms.
ATE504288T1 (de) * 2003-09-26 2011-04-15 Alza Corp Oros-push-stick für die kontrollierte abgabe von wirkstoffen
EP1523979A1 (en) * 2003-10-13 2005-04-20 Wyeth Extended release pharmaceutical dosage form
US20050084531A1 (en) * 2003-10-16 2005-04-21 Jatin Desai Tablet with aqueous-based sustained release coating
US20050129751A1 (en) * 2003-12-16 2005-06-16 Rothenberg Barry E. Drug delivery compositions and methods
US20050129759A1 (en) * 2003-12-16 2005-06-16 Milan Sojka Sustained release compositions and controlled delivery method
US20050163843A1 (en) * 2003-12-31 2005-07-28 Garth Boehm Alprazolam formulations
RU2337687C2 (ru) * 2004-03-26 2008-11-10 Эйсай Ар Энд Ди Менеджмент Ко., Лтд. Фармацевтическая композиция с контролируемым высвобождением и способ ее получения
CN1608623A (zh) * 2004-11-05 2005-04-27 贵州圣济堂制药有限公司 盐酸多奈哌齐肠溶片及其制备方法
US7619007B2 (en) * 2004-11-23 2009-11-17 Adamas Pharmaceuticals, Inc. Method and composition for administering an NMDA receptor antagonist to a subject
US20060159753A1 (en) * 2004-12-27 2006-07-20 Eisai Co. Ltd. Matrix type sustained-release preparation containing basic drug or salt thereof
AU2005320547B2 (en) * 2004-12-27 2009-02-05 Eisai R & D Management Co., Ltd. Method for stabilizing anti-dementia drug
US20060280789A1 (en) * 2004-12-27 2006-12-14 Eisai Research Institute Sustained release formulations
AU2006241771B2 (en) * 2005-04-28 2010-09-09 Eisai R & D Management Co., Ltd. Composition containing anti-dementia drug
CN1709229A (zh) * 2005-06-10 2005-12-21 北京阜康仁生物制药科技有限公司 盐酸美金刚口腔崩解片及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62252732A (ja) * 1986-01-30 1987-11-04 シンテツクス(ユ−・エス・エイ)インコ−ポレイテツド 長時間作用製剤
JPH02223533A (ja) * 1988-11-08 1990-09-05 Takeda Chem Ind Ltd 放出制御性マトリックス剤
JP2004518676A (ja) * 2000-12-20 2004-06-24 シャイア ラボラトリーズ,インコーポレイテッド 最小化pH依存性溶解プロフィールを有する徐放性薬学的剤形
WO2002066004A1 (fr) * 2001-02-23 2002-08-29 Mitsubishi Pharma Corporation Compositions a liberation controlee de medicament
WO2003039530A1 (en) * 2001-11-07 2003-05-15 Synthon B.V. Tamsulosin tablets

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1832298A4 *

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8329752B2 (en) 2004-11-23 2012-12-11 Adamas Pharmaceuticals, Inc. Composition for administering an NMDA receptor antagonist to a subject
US8338486B2 (en) 2004-11-23 2012-12-25 Adamas Pharmaceuticals, Inc. Methods for the treatment of CNS-related conditions
US8598233B2 (en) 2004-11-23 2013-12-03 Adamas Pharmacueticals, Inc. Method for administering an NMDA receptor antagonist to a subject
US8580858B2 (en) 2004-11-23 2013-11-12 Adamas Pharmaceuticals, Inc. Compositions for the treatment of CNS-related conditions
US8338485B2 (en) 2004-11-23 2012-12-25 Adamas Pharmaceuticals, Inc. Compositions for the treatment of CNS-related conditions
US8426472B2 (en) 2004-11-23 2013-04-23 Adamas Pharmaceuticals, Inc. Method and composition for administering an NMDA receptor antagonist to a subject
US8362085B2 (en) 2004-11-23 2013-01-29 Adamas Pharmaceuticals, Inc. Method for administering an NMDA receptor antagonist to a subject
US8168209B2 (en) 2004-11-23 2012-05-01 Adamas Pharmaceuticals, Inc. Method and composition for administering an NMDA receptor antagonist to a subject
US8173708B2 (en) 2004-11-23 2012-05-08 Adamas Pharmaceuticals, Inc. Method and composition for administering an NMDA receptor antagonist to a subject
US8058291B2 (en) 2005-04-06 2011-11-15 Adamas Pharmaceuticals, Inc. Methods and compositions for the treatment of CNS-related conditions
US8293794B2 (en) 2005-04-06 2012-10-23 Adamas Pharmaceuticals, Inc. Methods and compositions for the treatment of CNS-related conditions
US8283379B2 (en) 2005-04-06 2012-10-09 Adamas Pharmaceuticals, Inc. Methods and compositions for the treatment of CNS-related conditions
JP2010512317A (ja) * 2006-12-07 2010-04-22 シェーリング コーポレイション pH感受性マトリクス処方物
JP2010519236A (ja) * 2007-02-22 2010-06-03 エボニック レーム ゲゼルシャフト ミット ベシュレンクテル ハフツング 胃液抵抗性の作用物質−マトリックスを有しているペレット
US10201547B2 (en) 2008-12-19 2019-02-12 Supernus Pharmaceuticals, Inc. Method of treatment of aggression
US10058556B2 (en) 2008-12-19 2018-08-28 Supernus Pharmaceuticals, Inc. Method of treatment of aggression
US9801887B2 (en) 2008-12-19 2017-10-31 Supernus Pharmaceuticals, Inc. Method of treatment of aggression
US11638708B2 (en) 2008-12-19 2023-05-02 Supernus Pharmaceuticals, Inc. Method of treatment of aggression
WO2010110436A1 (ja) 2009-03-27 2010-09-30 杏林製薬株式会社 塩基性添加剤を含有するマトリックス型徐放性製剤
JP2011037787A (ja) * 2009-08-13 2011-02-24 Kyorin Pharmaceutical Co Ltd 塩基性薬物のpHに依存しない安定放出組成物
US9867792B2 (en) 2009-12-02 2018-01-16 Adamas Pharma, Llc Method of administering amantadine prior to a sleep period
US8741343B2 (en) 2009-12-02 2014-06-03 Adamas Pharmaceuticals, Inc. Method of administering amantadine prior to a sleep period
US11197835B2 (en) 2009-12-02 2021-12-14 Adamas Pharma, Llc Method of administering amantadine prior to a sleep period
US9877933B2 (en) 2009-12-02 2018-01-30 Adamas Pharma, Llc Method of administering amantadine prior to a sleep period
US9867791B2 (en) 2009-12-02 2018-01-16 Adamas Pharma, Llc Method of administering amantadine prior to a sleep period
US9867793B2 (en) 2009-12-02 2018-01-16 Adamas Pharma, Llc Method of administering amantadine prior to a sleep period
WO2011102504A1 (ja) * 2010-02-22 2011-08-25 第一三共株式会社 経口用徐放性固形製剤
WO2011102505A1 (ja) * 2010-02-22 2011-08-25 第一三共株式会社 経口用徐放性固形製剤
JP5749247B2 (ja) * 2010-02-22 2015-07-15 第一三共株式会社 経口用徐放性固形製剤
JP5870023B2 (ja) * 2010-02-22 2016-02-24 第一三共株式会社 経口用徐放性固形製剤
US9629808B2 (en) 2010-02-22 2017-04-25 Daiichi Sankyo Company, Limited Sustained-release solid preparation for oral use
US9757338B2 (en) 2010-03-01 2017-09-12 Dexcel Pharma Technologies Ltd. Sustained-release donepezil formulation
US11077114B2 (en) 2010-03-31 2021-08-03 Supernus Pharmaceuticals, Inc. Stabilized formulations of CNS compounds
JP2016041722A (ja) * 2010-03-31 2016-03-31 スパーナス ファーマシューティカルズ インコーポレイテッド Cns化合物の安定化製剤
JP2013523758A (ja) * 2010-03-31 2013-06-17 スパーナス ファーマシューティカルズ インコーポレイテッド Cns化合物の安定化製剤
US10149853B2 (en) 2010-03-31 2018-12-11 Supernus Pharmaceuticals, Inc. Stabilized formulations of CNS compounds
JP2015107977A (ja) * 2010-08-11 2015-06-11 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft 代謝型グルタミン酸5受容体(mGlu5)アンタゴニストの医薬組成物
WO2013033432A1 (en) * 2011-09-03 2013-03-07 Adipocyte Therapeutics Inc Methods and compositions for treating type 2 diabetes and related conditions
US9827199B2 (en) 2012-09-03 2017-11-28 Daiichi Sankyo Company, Limited Hydromorphone hydrochloride-containing oral sustained-release pharmaceutical composition
JP2016510021A (ja) * 2013-02-28 2016-04-04 ルピン・リミテッドLupin Limited 特異的なインビトロ溶出プロファイルまたは薬物動態パラメーターを有するドネペジル医薬組成物
JP2016513133A (ja) * 2013-02-28 2016-05-12 ルピン・リミテッドLupin Limited 特異的なインビトロ溶出プロファイルまたは薬物動態パラメーターを有するドネペジル医薬組成物
US10154971B2 (en) 2013-06-17 2018-12-18 Adamas Pharma, Llc Methods of administering amantadine
US10646456B2 (en) 2013-06-17 2020-05-12 Adamas Pharma, Llc Methods of administering amantadine
US11903908B2 (en) 2013-06-17 2024-02-20 Adamas Pharma, Llc Methods of administering amantadine
JP2018199674A (ja) * 2017-05-29 2018-12-20 第一三共株式会社 認知症治療薬を含有する口腔内崩壊性錠剤
JP7023186B2 (ja) 2017-05-29 2022-02-21 第一三共株式会社 認知症治療薬を含有する口腔内崩壊性錠剤

Also Published As

Publication number Publication date
JP4999466B2 (ja) 2012-08-15
AU2005320609A1 (en) 2006-07-06
CA2592102C (en) 2012-01-24
CA2592102A1 (en) 2006-07-06
KR100904602B1 (ko) 2009-06-25
US20090208579A1 (en) 2009-08-20
IL183871A0 (en) 2007-10-31
CN103550190A (zh) 2014-02-05
KR20070089207A (ko) 2007-08-30
JPWO2006070781A1 (ja) 2008-06-12
BRPI0519407A2 (pt) 2009-01-20
MX2007007835A (es) 2007-08-20
EP1832298A4 (en) 2012-12-12
NZ555901A (en) 2010-10-29
NO20073461L (no) 2007-09-27
AU2005320609B9 (en) 2010-03-18
US20110045074A1 (en) 2011-02-24
AU2005320609B2 (en) 2009-07-02
EP1832298A1 (en) 2007-09-12

Similar Documents

Publication Publication Date Title
WO2006070781A1 (ja) 塩基性薬物又はその塩を含有するマトリックス型徐放性製剤およびその製造方法
US9629915B2 (en) Sustained release dosage form
JP6588915B2 (ja) Azd9291を含む医薬組成物
US20060159753A1 (en) Matrix type sustained-release preparation containing basic drug or salt thereof
TWI352603B (en) Pharmaceutical composition and method for manufact
JPH11505542A (ja) 毎日一回投与するための、非晶質活性成分の一定のかつ制御された放出を行う三相型医薬製剤
KR100678421B1 (ko) 염산 탐스로신 함유 방출조절 제제
JPH07145052A (ja) 良好な溶解特性を有する医薬組成物
AU2013240846A1 (en) Pharmaceutical composition comprising olmesartan medoxomil and rosuvastatin or its salt
CN101090738A (zh) 含有碱性药物或其盐的基质型缓释制剂及其制备方法
US20200078463A1 (en) Composition having improved water solubility and bioavailability
KR101925590B1 (ko) 개선된 생체이용률을 갖는 페노피브릭산 제제
EP3796908B1 (en) Controlled release propiverine formulations
WO2017026950A1 (en) Controlled release propiverine formulations
KR102389339B1 (ko) 방출 제어되는 고함량 탐스로신 정제 조성물 및 이의 제조방법
WO2018122262A1 (en) Bilayer tablet formulations of dabigatran etexilate
RU2390354C2 (ru) Препарат матричного типа с замедленным высвобождением, содержащий основное лекарственное средство или его соль, и способ его получения
EP3764983B1 (en) A sustained release formulation comprising acemetacin with bimodal in vitro release
CN108096251B (zh) 一种吉非替尼药物组合物及其制备方法
JP2021518422A (ja) レナリドミドを含む医薬組成物
WO2023044024A1 (en) Novel ph dependent coating drug delivery system
CA3231490A1 (en) Multiparticulate dosage forms comprising deutetrabenazine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 12007501200

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 183871

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 2005320609

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 555901

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 2007/05119

Country of ref document: ZA

Ref document number: 2006550780

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 4715/DELNP/2007

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2592102

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2005822550

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005822550

Country of ref document: EP

Ref document number: MX/a/2007/007835

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 200580044969.8

Country of ref document: CN

Ref document number: 1020077014510

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2005320609

Country of ref document: AU

Date of ref document: 20051227

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005320609

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1200701507

Country of ref document: VN

WWE Wipo information: entry into national phase

Ref document number: 2007128768

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2005822550

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 183871

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 11794212

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0519407

Country of ref document: BR