WO2006070457A1 - 高熱伝導性回路モジュールの製造方法及び高熱伝導性回路モジュール - Google Patents

高熱伝導性回路モジュールの製造方法及び高熱伝導性回路モジュール Download PDF

Info

Publication number
WO2006070457A1
WO2006070457A1 PCT/JP2004/019610 JP2004019610W WO2006070457A1 WO 2006070457 A1 WO2006070457 A1 WO 2006070457A1 JP 2004019610 W JP2004019610 W JP 2004019610W WO 2006070457 A1 WO2006070457 A1 WO 2006070457A1
Authority
WO
WIPO (PCT)
Prior art keywords
package
circuit module
metal
thermal conductivity
high thermal
Prior art date
Application number
PCT/JP2004/019610
Other languages
English (en)
French (fr)
Inventor
Daizo Baba
Takayoshi Ozeki
Takefumi Mizushima
Yasutaka Nishide
Original Assignee
Matsushita Electric Works, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works, Ltd. filed Critical Matsushita Electric Works, Ltd.
Priority to PCT/JP2004/019610 priority Critical patent/WO2006070457A1/ja
Priority to JP2006550525A priority patent/JP4925296B2/ja
Publication of WO2006070457A1 publication Critical patent/WO2006070457A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/647Heat extraction or cooling elements the elements conducting electric current to or from the semiconductor body

Definitions

  • the present invention relates to a high thermal conductivity circuit module used for holding electronic components such as power chips and LEDs used in the power electronics field and LED field and mounting them on a circuit board at a high density. And a high thermal conductivity circuit module obtained by this method.
  • a package disclosed in Japanese Patent Laid-Open No. 2003-163378 is known.
  • two metal bases that are electrically isolated from each other are formed by interposing an insulating spacer formed of an insulating resin in a part of a metal body formed by injection molding.
  • electrical connection between the electronic components and the circuit board can be made using each metal base as an electrode, and heat released from the electronic components can be released through the metal base.
  • the mounting surface of many microelectronic components is flat, it is desirable that the surface of the metal base on which it is mounted be as flat as possible. Therefore, it is insulated from the metal base molded by injection molding. In the conventional method of filling the resin, it is expected that there will be a problem that a complicated process is required to flatten the surface on which the electronic component is mounted.
  • the present invention provides a method for producing a circuit module having a high heat dissipation property for heat generated in an electronic component efficiently, at low cost and with high precision, and a high thermal conductivity produced by this method.
  • a functional circuit module
  • the method of the present invention is a method of manufacturing a circuit module used for holding an electronic component that generates heat and mounting the electronic component on a circuit board, and is at least a conductive material having high thermal conductivity.
  • Two metal layers are laminated with an insulating resin layer interposed therebetween to form a laminated body in which the metal layers are joined together by the insulating resin layer, and then the laminated body is sliced to obtain a laminated body.
  • 3 ⁇ 4 / Cage is cut out to obtain a package in which the cut surface by slicing becomes the mounting surface.
  • This package has a structure in which two metal bases are joined by an insulating spacer that electrically isolates them and mechanically couples them together, and the metal base is a part of the metal layer.
  • the insulating spacer is formed by a part of the insulating resin layer. After that, at least one electronic component with at least two terminals is placed on the mounting surface of the package, and at least two terminals are electrically connected to different metal bases separated by the insulating spacer. To do.
  • the package of the package including the insulating spacer and the metal bases on both sides thereof is formed.
  • the mounting surface can be finished flat from the beginning.
  • the insulation spacer is defined by the insulating resin layer that forms the laminate, the thickness of the insulation spacer (between the metal bases) (Insulation distance) can be thin and dimensionally finished with high precision, and even with minute electronic parts, electrical connection of electronic parts to different metal bases with insulation spacers separated can be ensured. I'll do it.
  • the package is cut at a part in the longitudinal direction in which a plurality of electronic components are arranged to obtain a plurality of circuit modules each mounted with at least one electronic component, the electronic components are arranged.
  • One row of knocking force Multiple circuit modules can be easily manufactured.
  • a plurality of circuit modules each mounted with at least one electronic component can be easily obtained by cutting the knockout after mounting a plurality of electronic components on the knockout.
  • At least one electronic component is mounted by cutting the package into a size including a plurality of insulating spacers and a metal base positioned outside these insulating spacers.
  • a plurality of circuit modules can be obtained.
  • the spacer is 20-500 ⁇ m thick. This thickness is easily set by selecting the thickness of the insulating resin layer to be used.
  • the metal layer is selected from the group consisting of copper, aluminum, nickel, iron, an alloy containing at least one, and a copper-invar copper composite material in order to exhibit high heat dissipation and high conductivity. Is done.
  • the insulating resin layer is preferably a resin having ultraviolet resistance.
  • a resin having ultraviolet resistance In particular, when using electronic components that generate ultraviolet rays, such as LEDs, it is required to prevent the insulation performance of the spacer from deteriorating due to ultraviolet irradiation. Insulating grease with excellent UV resistance such as oil is used
  • a high thermal conductivity circuit module includes a knockout formed by slicing a laminate in which at least two metal layers and an insulating resin layer, which are high thermal conductivity and conductive materials, are integrated. And an electronic component mounted on the mounting surface of the package.
  • the package mounting surface is defined by a cut surface that slices the laminate.
  • the package is composed of at least two metal bases formed of a part of the metal layer and a spacer formed of a part of the insulating resin layer. Isolated. At least two terminals of the electronic component are electrically connected to different metal bases separated by the insulating spacer.
  • the surface defined by the cut surface of the laminate is used as the package mounting surface, so that the mounting surface is smooth and the mounting accuracy of the electronic components is increased.
  • the thickness of the insulating spacer that appears on the mounting surface that is, the insulating distance between the metal bases
  • the thickness (insulation distance) can be made uniform throughout the package, and electrical connection with electronic components can be made accurately.
  • a circuit module as a linear light source in which LEDs are arranged in a row can be realized by mounting a plurality of LEDs in the above-mentioned package in parallel with each other.
  • FIG. 1 is an explanatory diagram showing steps (A) to (E) in a method for manufacturing a high thermal conductivity circuit module according to an embodiment of the present invention.
  • FIG. 2 is a perspective view of a circuit module obtained by the above manufacturing method.
  • FIG. 3 is a side view of the circuit module same as above.
  • FIG. 4 is a sectional view showing a circuit board on which the circuit module is mounted.
  • FIG. 5 is an explanatory diagram showing steps (A) to (F) in the method for manufacturing a high thermal conductivity circuit module according to another embodiment of the present invention.
  • FIG. 6 is a perspective view of a circuit module obtained by the above manufacturing method.
  • FIG. 7 is a side view of the circuit module.
  • FIG. 8 is a perspective view of another circuit module obtained by the above manufacturing method.
  • FIG. 9 is a top view showing a method for manufacturing a high thermal conductivity circuit module according to another embodiment of the present invention.
  • FIG. 10 is a perspective view of a circuit module obtained by the above manufacturing method.
  • FIG. 11 Front view of the circuit module.
  • FIG. 12 is a top view showing a method for manufacturing a high thermal conductivity circuit module according to still another embodiment of the present invention.
  • FIG. 13 is a perspective view of another circuit module obtained by the above manufacturing method.
  • FIG. 1 and FIG. 4 show a method for manufacturing a high thermal conductivity circuit module according to an embodiment of the present invention.
  • the circuit module M in the present invention holds the electronic component 40 that generates a large amount of heat, such as a power transistor LED, in a high heat dissipation package 30, and as shown in FIG. Used to mount part 40.
  • the package 30 is mostly made of metal and has a function of dissipating heat generated by the electronic component 40 due to the high thermal conductivity of the metal.
  • the package 30 is given a function as an electrode for electrically connecting the terminals of the electronic component 40 to the circuit pattern 60 formed on the circuit board P. That is, as shown in FIGS.
  • the knocker 30 has a structure in which two metal bases 11 and 12 electrically isolated by the insulating spacer 22 are integrally formed together with the insulating spacer 22. .
  • the electronic component 40 is placed on the package 30 so as to straddle the spacer 22 and the two terminals formed on the lower surface of the electronic component 40, i.e., the bump 44, are separated from each other by the insulating spacer 22. It is mounted on the package 30 by connecting to the bases 11 and 12.
  • the circuit board P has a fine circuit pattern 60 formed on the insulating substrate 50.
  • the circuit module M is disposed on a part of the circuit 60, the metal bases 11 and 12 are joined to a part of the circuit pattern 60 by the solder 62, and the circuit module M is mounted on the circuit board P.
  • the lower surface of the insulating substrate 50 is covered with a metal plate 70, and part of the heat generated in the electronic component 40 is released through the circuit pattern 60, the insulating substrate 50, and the metal plate 70.
  • the circuit module shown in the present embodiment is used as a line-shaped light source in which a plurality of LEDs are connected in parallel as the electronic component 40, and the LEDs are arranged in a row on a horizontally long package 30.
  • Each package 30 is also cut out of the laminate L force formed as shown in FIG.
  • this laminate L two metal layers 10 are laminated with an insulating resin layer 20 sandwiched between them (FIG. 1 (A)), and heated and pressed to firmly bond the metal layers 10 together with the insulating resin layer 20. (Fig. 1 (B)).
  • the laminate L is sliced to obtain a plurality of packages 30 whose cut surfaces are the mounting surfaces of the electronic components (FIG. 1 (C)).
  • two metal bases 11 and 12 formed by different metal layers 10 are formed by an insulating spacer 22 formed by a part of the insulating resin layer 20. It becomes the structure combined with.
  • the thickness (t) of the knock 30 is set sufficiently larger than the thickness of the circuit pattern 60 on the circuit board P in order to obtain high heat dissipation. Since the circuit pattern 60 is 35 m or less in order to make a fine circuit by etching, the thickness of the package 30 is set to 0.5 to 3 mm. Since the package 30 is formed from the laminate L by slicing, the thickness (t) can be easily set.
  • a force showing an example in which a plurality of circuit modules M are created by subdividing the package 30 from which the laminated body L force has also been cut is shown.
  • the present invention is not limited to this. It is also possible to construct a laminated body L according to the length of one circuit module M, and to produce a single circuit module M with a package 30 obtained by slicing this!
  • a laminated body L of two metal layers 10 and one insulating resin layer 20 is prepared as one unit, a plurality of these are stacked, and a structure in which the units are held by an appropriate method is provided. It is also possible to create a plurality of anodes / cages 30 simultaneously by slicing them after forming.
  • the laminate L it is preferable to roughen the surface of the metal layer 10 in order to obtain adhesion between the metal layer 10 and the resin insulating layer 20.
  • an oxide film can be formed on the surface of the metal layer 10 and chemically roughened, or the surface of the metal layer 10 can be physically roughened with sand plast.
  • the metal layer 10 is not particularly limited, but copper, aluminum, nickel, iron, and an alloy containing at least one of these, and copper It is preferable to use a material selected from Invar 'copper multilayer material (a clad material obtained by superposing copper, various invar alloys and copper in this order). Further, different metal layers 10 may be arranged on both sides of the insulating resin layer 20.
  • the thickness of the metal layer 10 is not particularly limited, but is preferably in the range of 0.5 to 20 mm, for example.
  • thermosetting resin composition or a thermoplastic resin composition
  • a composition containing an inorganic filler in order to adjust the fluidity or further increase the thermal conductivity.
  • Such a composition can be prepared by adding a known inorganic filler, curing agent, curing accelerator, solvent, surface treatment agent, pigment, or the like to the thermosetting or thermoplastic resin.
  • the form of the insulating resin layer 20 is not particularly limited, but is preferably a sheet.
  • the insulating resin layer 20 can also be formed by a paste applied to the metal layer 10. This The paste is obtained by adding a known inorganic filler, curing agent, hardening accelerator, solvent, surface treatment agent, pigment, etc. to the thermosetting resin (or thermoplastic resin) ( Alternatively, it can be obtained by slurrying a composition prepared from a thermoplastic resin composition.
  • the thickness of the insulating resin layer 20, that is, the insulating spacer 22, is preferably 20 to 500 m. If the thickness of the insulating resin layer 20 is less than 20 m, there is a high possibility of insulation failure due to bubbles mixed in the insulating resin layer 20 and fine protrusions on the surface of the metal layer 10, and sufficient insulation is ensured. There is a risk that it will not be possible. On the contrary, if the thickness of the insulating resin layer 20 exceeds 500 m, the distance between the terminals of the target electronic component 40 becomes larger, and electrical connection with the electronic component may not be performed. ⁇ ⁇ The thickness of the insulating resin layer 20 can be changed according to the specifications of the electronic component 40 to be used. For example, the distance between terminals is relatively long: 25 to 300 m, and the distance between terminals is relatively short. For connected ones, it is set to 30-150 m.
  • thermosetting resin composition when a thermosetting resin composition is used as the insulating resin, examples of the thermosetting resin that is the main component include epoxy resins, phenol resins, polyimide resins, Silicone resin, cyanate resin, etc. can be used, and brominated resin or phosphorus-modified resin can also be used to impart flame retardancy.
  • the thermosetting resin composition used as the insulating resin preferably has a highly filled inorganic filler.
  • the thermal conductivity of the spacer 22 can be further increased, heat generated from the electronic component 40 can be dissipated more efficiently, and the spacer can be dissipated.
  • the thermal expansion coefficient of 22 approaches the thermal expansion coefficient of the metal bases 21 and 22, and the thermal reliability of the high thermal conductivity circuit module can be improved.
  • the filling amount of the inorganic filler as necessary, the flow characteristics of the thermosetting resin composition at the time of producing the laminate L can be adjusted.
  • the inorganic filler is not particularly limited, but Al O, MgO, BN,
  • A1N, SiO, TiO, CaCO, etc. can be used, Al O, MgO, B
  • N and A1N are preferable because they have better thermal conductivity than other inorganic fillers.
  • coupling agents and dispersion It is preferable to use an agent or the like in combination.
  • the insulating spacer 22 is required to have sufficient UV resistance. In such a case, it is possible to prevent insulation deterioration of the insulating spacer 22 by forming the insulating resin layer 20 using an insulating resin containing a material having UV resistance.
  • the insulating resin containing the above UV-resistant material include a fluorine-based resin composition (for example, a Teflon (registered trademark) as a main component) and a silicone-based resin composition (for example, It is preferable to use one or both of the main components of silicone resin.
  • An adhesive sheet for forming the insulating resin layer 20 was prepared as follows.
  • an aluminum plate having a thickness of 5 mm was used as the metal layer 10 and laminated with the upper adhesive sheet. Under a reduced pressure of 6.67 hPa (5 torr) or less, the actual pressure was 0.39 MPa (3 kgf / cm 2 ), 130 ° CX for 10 minutes + 175 ° CX for 60 minutes.
  • each electronic component 4 such as wire bonding and solder reflow
  • the optimal mounting method can be selected according to the situation.
  • the contact area between the lower surface of the electronic component and the metal bases 11 and 12 should be increased by making electrical connection by wire bonding. It is possible to improve heat dissipation.
  • the electronic component 40 is disposed here as a flat surface on the top surface of the knocker 30 is shown.
  • a recess is formed on the top surface of the package 30, and the electron is in the recess.
  • a process of forming a recess having a desired shape in the package 30 can be performed before and after the surface treatment shown in FIG.
  • the surface of the package 30 is required to be polished or mirror-finished, the insulating resin layer 20 is concealed by a mask over the entire package 30, and a metal layer or an aluminum layer is deposited on the surface of the metal layer 10. Can be formed.
  • FIG. 5 to FIG. 7 show another embodiment of the present invention, in which a plurality of metal layers 10 are alternately laminated with a plurality of insulating resin layers 20 (FIG. 5A).
  • the laminated body L is formed by heating and pressing (Fig. 5 (B))
  • it is sliced into a sheet-like package 30 (Fig. 5 (C)), and metal is applied to the cut surface that is the mounting surface of the component.
  • a package 30 is obtained in which the layers 10 and the insulating resin layer 20 are alternately shown along the stacking direction (Fig. 5 (D)).
  • a large number of electronic components 40 are arranged vertically and horizontally on the package 30 so as to straddle the resin layer 20, and the terminals on the lower surface of each electronic component 40 are joined to the metal layer 10 by soldering (FIG. 5 (E)). After that, the package 30 is cut into vertical and horizontal directions to divide the package 30 into individual package pieces 32. (Fig. 5 (F)) In this way, a plurality of circuit modules M are simultaneously taken out from a single package 30 from which the laminated body L force has also been cut out.
  • the metal bases 11 and 12 formed by a part of the insulating resin layer 20 are integrally joined by an insulating spacer 22 formed by a part of the insulating resin layer 20.
  • a circuit module M in which each package piece 32 in which a package 30 in which a plurality of electronic components 40 are mounted is divided vertically and horizontally is mounted with one electronic component is manufactured.
  • the present invention is not necessarily limited to this form, and the package 30 is cut at an arbitrary position so that each of the plurality of circuit modules M mounts a plurality of electronic components. May be.
  • a single circuit module may be configured by one package 30 from which the laminate L force is also cut out. In any case, by cutting the package 30 from the stack L, the thickness (insulation distance) of the spacer 22 can be adjusted to a small value with high accuracy, and the cutting surface can be made flat.
  • the electronic component By using one surface of the package as an electronic component mounting surface, electronic components can be mounted with high accuracy. This enables high-density mounting on a circuit board while improving the heat dissipation of fine electronic components. In this sense, the electronic component may be mounted on the individual package pieces that are subdivided after the knockout is subdivided.
  • FIG. 5E When an LED is used as an electronic component, as shown in FIG. 5E, a structure in which the electronic components are arranged vertically and horizontally on one package 30 is used, as shown in FIG. A circuit module as a line-shaped light source in which LEDs are arranged in a horizontal row, or a dot display circuit module in which LEDs are arranged in a vertical row can be obtained. That is, by cutting the package 30 in FIG. 5E in the lateral direction, a circuit module of a line light source can be obtained. A circuit module for dot display is obtained by cutting this package in the vertical direction, and multiple metal bases and insulating spacers are arranged alternately in the vertical direction, and each of the multiple LEDs arranged in the vertical direction.
  • the two terminals are electrically connected to adjacent metal bases separated by a spacer. Therefore, by applying a voltage between any pair of metal bases, the corresponding LED can be made to emit light selectively. For this reason, a dot display device that displays characters and images can be realized by combining a suitable number of circuit modules with LEDs arranged in a single vertical row.
  • FIG. 8 shows a modification of the present embodiment.
  • the knock piece 32 obtained by subdividing the knock 30 is a rectangular parallelepiped shape, two adjacent surfaces are shown. Shows that it is possible to mount different electronic components 40.
  • each electronic component 40 is electrically connected to the metal bases 11 and 12 separated by the insulating spacers 22 in an appropriate manner, and is electrically connected in parallel.
  • the thickness of cage 30 is the electronic component used. It can be set arbitrarily according to the dimensions.
  • FIG. 9 and FIG. 11 show still another embodiment of the present invention, in which three metals electrically isolated by two insulating spacers 22 as shown in FIG. 10 and FIG.
  • a circuit module M is produced in which the electronic component 40 is mounted on the package piece 32 having the bases 11, 12, and 13.
  • This package piece 30 is designed to mount a power transistor with three terminals, for example as an electronic component, and use the metal base 11, 12, 13 as an electrode to connect to the power transistor emitter, collector and base, respectively.
  • the terminals 41, 42 and 43 on the upper surface of the electronic component 40 are connected to each metal base by wire bonding, and the heat dissipation is improved by bringing the lower surface of the electronic component 40 into close contact with the metal base. . If the power transistor used has bumps on the lower surface, the electronic parts are joined to the metal base by the bumps.
  • the circuit module M using the package piece 30 including the three metal bases 11, 12, and 13 can also be created from the laminate L created in the same manner as in the above-described embodiment. That is, as shown in FIG. 5, after mounting a plurality of electronic components 40 vertically and horizontally on a package 30 cut out from the laminate L so that each electronic component 40 straddles two insulating resin layers 20 By dividing the package 30 into package pieces 32 along the cutting line indicated by the broken line in the figure, a large number of circuit modules M can be created simultaneously.
  • the present invention is not limited to the number of metal bases that are electrically isolated from each other in a single substrate / cage piece 32, but a package or circuit including any number of metal bases. Modules can be created, and the number of metal layers 10 and insulating resin layers 20 in the laminated body L and the width of the laminated body L are adjusted according to the number of circuit modules taken out from one package. Various requirements can be satisfied by selecting. That is, since the package L is formed by cutting out the laminated body L in which the metal layers 10 and the insulating resin layers 20 are alternately arranged, the package 30 having the number of metal bases corresponding to the number of terminals of the electronic component, and the circuit module Many M can be manufactured at once.
  • the number of electronic components 40 mounted on one circuit module M is not limited to one. As shown in FIGS. 12 and 13, two electronic components 40A and 40B are combined. Can be mounted on two individual package pieces 30. In this case, each individual package piece 32 has three The metal base 11, 12, 13 is provided, the central metal base 12 is used as a common electrode, and each electronic component 40A, 40B is arranged on the metal base so as to straddle the insulating spacer 22, and the metal base 11, Electrically connected to 12 and 13 by bump connection, wire bonding, or soldering.
  • the number of metal bases that is, the number of metal layers depends on the number of components.
  • the number of circuit modules M equipped with multiple electronic components as shown in Fig. 13 is cut at once by mounting the multiple electronic components on the package that has been selected by the number of layers and cutting the knockout 30. Can be manufactured. Also, as shown in the figure, even when electronic parts 40A and 40B with different shapes are used, it is easy to regularly arrange them on the package. Can be manufactured. It is also possible to arrange two or more electronic parts in parallel on the package piece 32 and electrically connect them in parallel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Insulated Metal Substrates For Printed Circuits (AREA)

Abstract

電子部品で発生する熱の放熱性が高い回路モジュールを効率よく低コストで製造する方法及び高精度に電子部品を実装できる回路モジュールを提供する。 高熱伝導性を有する金属層と絶縁性樹脂層とを積層して、金属層が絶縁性樹脂によって接着されて一体化された積層体を形成し、一体化された積層体から複数のパッケージを切り出す、各パッケージは金属ベースとこれらを電気的に隔離すると共に両者を機械的に結合する絶縁スペーサで構成され、上記金属ベースは上記の金属層の一部で形成され、上記絶縁スペーサは上記の絶縁性樹脂層の一部で形成され、少なくとも2つの端子を備えた電子部品を上記パッケージ上に配置し、各端子をそれぞれ絶縁スペーサで隔てられた金属ベースへ電気接続する。                                                                       

Description

明 細 書
高熱伝導性回路モジュールの製造方法及び高熱伝導性回路モジュール 技術分野
[0001] 本発明は、パワーエレクトロニクス分野や LED分野で用いられるパワーチップや LE D等の電子部品を保持し、これを高密度で回路基板に実装するために使用される高 熱伝導性回路モジュールの製造方法及びこの方法にて得られる高熱伝導性回路モ ジユーノレに関するものである。
背景技術
[0002] 近年、電子機器の高機能化、小型薄型化に伴い、回路基板上に電子部品を高密 度に実装することが要求されて 、る。特にパワーエレクトロニクスの分野にぉ 、ては、 電子部品として発熱しやすい電子部品(例えば、 LED)が高密度に実装されることと なるため、回路基板に対しては、微細パターン (ファインパターン)による高密度配線 の設計に加えて、電子部品で発生する熱の放熱性が高いことが要求されている。し 力しながら、回路基板自体に高い放熱性を期待するには限界があるため、放熱性の 高いパッケージに電子部品を実装した回路モジュールを用意し、この回路モジユー ルを回路基板に実装することが望まれる。
[0003] このようなパッケージとしては、特開 2003— 163378号で開示されたものが知られて V、る。このパッケージは射出成形で形成された金属体の一部に絶縁樹脂で形成する 絶縁スぺーサを介在させて、互 、に電気的に隔離した 2つの金属ベースが形成され 、各金属ベースに電子部品の端子を結合することで、電子部品と回路基板との間の 電気接続が各金属ベースを電極として利用して行えると共に、電子部品から放出さ れる熱が金属ベースを通して放出することができる。
[0004] し力しながら、このようなパッケージは、一つ一つが射出成形により形成されるため、 回路モジュールを製造する効率ィ匕低ぐ製造コストが高くなるという問題がある。
[0005] 更に、高密度実装の回路基板に使用される電子部品小型化に伴って、微少電子 部品における端子間距離が非常に短くなつているため、金属ベース間を電気的に隔 離する絶縁スぺーサの厚さ (絶縁距離)に関しても、端子間距離に併せて薄くするこ とが要求されている。しかしながら、絶^ぺーサの厚さ(絶縁距離)を例えば、 20— 500 m程度の極薄寸法に高精度で均一に仕上げることは、上の先行技術で実現 することが難 、と 、う問題があった。
[0006] また、多くの微少電子部品は実装面が平坦であるため、これを実装する金属ベース 表面は、可能な限り平坦であることが望まれるため、射出成形により成型された金属 ベースに絶縁榭脂を充填するような従来の方法では、電子部品を実装する面を平坦 化するために、煩雑な処理が必要になるという問題が生じると予想される。
発明の開示
発明が解決しょうとする課題
[0007] 本発明は上記の問題に鑑みて、電子部品で発生する熱の放熱性が高い回路モ ジュールを効率よく低コストでし力も高精度で製造する方法及びこの方法で制作され る高熱伝導性回路モジュールを提供することである。
課題を解決するための手段
[0008] 本発明の方法は、熱を発生する電子部品を保持してこれを回路基板に実装するた めに使用する回路モジュールを製造する方法であって、高熱伝導性で導電材料で ある少なくとも 2枚の金属層を間に絶縁性榭脂層を介して積層して、金属層が絶縁榭 脂層によって結合されて一体化された積層体を形成した後、この積層体をスライスし てノ¾ /ケージを切り出し、スライスによる切断面が実装面となったパッケージを得る。こ のパッケージは、 2つの金属ベースがこれらを電気的に隔離すると共に両者を機械 的に結合する絶縁スぺーサで結合された構造を有し、上記金属ベースは上記の金 属層の一部で形成され、上記絶縁スぺーサは上記の絶縁性榭脂層の一部で形成さ れる。その後、少なくとも 2つの端子を備えた少なくとも一つの電子部品を上記パッケ ージの実装面に配置し、上記絶縁スぺーサにて隔てられた異なる金属ベースへ少な くとも 2つの各端子を電気接続する。
[0009] このように、一つの積層体をスライスしてその切断面で電子部品を実装する面とした ノ ッケージを形成するため、絶縁スぺーサ及びその両側の金属ベースを含むパッケ ージの実装面が最初から平坦面に仕上げることができ。更に、絶^ぺーサは積層 体を構成する絶縁榭脂層にて規定されるため、絶^ぺーサの厚さ (金属ベース間 の絶縁距離)を薄 、寸法に高精度で仕上げることができ、微少な電子部品であっても 、絶縁スぺーサを隔てた異なる金属ベースへの電子部品の電気接続を確実に行うこ とがでさる。
[0010] また、複数の電子部品を並列させてパッケージ上に配置して、絶縁スぺーサにて隔 てられた異なる金属ベースへ複数の電子部品を互いに並列に電気接続するようにす れば、互いに並列電気接続が必要とされる複数の電子部品を備えた回路モジュール を少な 、工程で簡単に製造できる。
[0011] この場合、上記パッケージを複数の電子部品が並ぶ長手方向の一部で切断して、 それぞれが少なくとも一つの電子部品を搭載した複数の回路モジュールを得るように すれば、電子部品が並ぶ一列のノ ッケージ力 複数の回路モジュールを容易に製 造することができる。
[0012] 更に、複数の金属層を複数の絶縁性榭脂層と交互に積層して、金属層が絶縁榭 脂層によって結合されて一体化された積層体を形成した後、この積層体を積層方向 に沿ってスライスしてパッケージを切り出すようにすれば、ノ ッケージの実装面にぉ ヽ て多数の金属ベースと絶^ぺーサとが交互に配置されるため、多くの電子部品を 実装面上で縦横に並ぶ形に容易に実装することができる。
[0013] この場合、ノ ッケージ上に複数の電子部品を実装した後に、ノ ッケージを切り出す ことで、それぞれが少なくとも一つの電子部品を実装した複数の回路モジュールを容 易に得ることができる。
[0014] また、複数の上記絶縁スぺーサに跨る形で、電子部品を上記パッケ一ッジの実装 面に配置するようにことも可能である。これは 3つ以上の端子を備えた電子部品の実 装に適したものであり、各端子をそれぞれ互 ヽに電気的に隔離された金属ベースに 電気接続することができる。
[0015] この場合も、複数の絶縁スぺーサとこれらの絶縁スぺーサの外側に位置する金属 ベースを含む大きさに上記パッケージを切断することで、それぞれが少なくとも一つ の電子部品を実装した複数の回路モジュールを得ることができる。
[0016] 絶^ぺーサは 20— 500 μ mの厚さとされることが望ましく。この厚さは、使用する 絶縁榭脂層の厚みを選択することで容易に設定される。 [0017] また、金属層としては高い放熱性と高導電性を発揮するため、銅、アルミニウム、二 ッケル、鉄、及び少なくとも一つを含む合金、銅一インバー銅複合材からなる群から選 択される。
[0018] 更に、上記絶縁榭脂層は、耐紫外線を有する榭脂であることが望ましい。特に、紫 外線を発生する電子部品、例えば、 LEDを使用する場合は、紫外線の照射によって 絶^ぺーサの絶縁性能が劣化するのを防止することが要求されるため、フッ素榭 脂とシリコーン榭脂のような耐紫外線に優れた絶縁性榭脂が使用される
本発明に係る高熱伝導性回路モジュールは、高熱伝導性で導電材料である少なく とも 2枚の金属層と絶縁性榭脂層とが一体化された積層体をスライスして形成された ノ ッケージと、上記パッケージの実装面に実装された電子部品とで構成される。この パッケージの実装面は上記積層体をスライスする切断面で規定される。上記パッケ ージは上記金属層の一部で形成される少なくとも 2つの金属ベースと上記絶縁榭脂 層の一部で形成される絶 ぺーサとで構成され、金属ベースが絶 ぺーサで電 気的に隔離される。電子部品が備える少なくとも 2つの端子が上記絶縁スぺーサにて 隔てられた異なる金属ベースへ電気接続される。この回路モジュールでは、積層体 の切断面で規定される面をパッケージの実装面としているため、実装面が平滑となり 電子部品の実装精度が高くなる。また、実装面に表れる絶縁スぺーサの厚さ、即ち、 金属ベース間の絶縁距離は積層体に使用する絶縁性榭脂層の厚みによって一様に 決定されるため、絶&^ぺーサの厚さ(絶縁距離)をパッケージ全体に亘つて均一な 厚さとすることができ、電子部品との電気接続が正確に行える。
[0019] 電子部品として LEDを使用する場合は、複数の LEDが互いに並列関係で上記パ ッケージに実装されることで、 LEDがー列に並ぶライン状光源としての回路モジユー ルが実現できる。
図面の簡単な説明
[0020] [図 1]本発明の一実施形態に係る高熱伝導性回路モジュールの製造方法での各過 程 (A)— (E)を示す説明図。
[図 2]同上の製造方法で得られる回路モジュールの斜視図。
[図 3]同上の回路モジュールの側面図。 [図 4]同上の回路モジュールが実装された回路基板を示す断面図。
[図 5]本発明の他の実施形態に係る高熱伝導性回路モジュールの製造方法での各 過程 (A)— (F)を示す説明図。
[図 6]同上の製造方法で得られる回路モジュールの斜視図。
[図 7]同上の回路モジュールの側面図。
[図 8]同上の製造方法で得られる他の回路モジュールの斜視図。
[図 9]本発明の他の実施形態に係る高熱伝導性回路モジュールの製造方法を示す 上面図。
[図 10]同上の製造方法で得られる回路モジュールの斜視図。
[図 11]同上の回路モジユーノレの正面図。
[図 12]本発明の更に他の実施形態に係る高熱伝導性回路モジュールの製造方法を 示す上面図。
[図 13]同上の製造方法で得られる他の回路モジュールの斜視図。
発明を実施するための最良の形態
[0021] 図 1一図 4は本発明の一実施形態に係る高熱伝導性回路モジュールの製造方法 を示す。本発明における回路モジュール Mは高放熱性のパッケージ 30にパワートラ ンジスタゃ LEDのような多量の熱を発生する電子部品 40を保持し、図 4に示すように 、回路基板 P上へ高密度に電子部品 40を実装するために使用される。このパッケ一 ジ 30は大部分が金属で形成され、金属が有する高い熱伝導性によって、電子部品 4 0で発生する熱を放熱する機能が与えられている。また、このパッケージ 30は回路基 板 Pに形成された回路パターン 60に電子部品 40の端子を電気接続するための電極 として機能が与えられている。即ち、図 2や図 3に示すように、ノ ッケージ 30は絶^ ぺーサ 22によって電気的に隔離された 2つの金属ベース 11、 12が絶縁スぺーサ 22 と共に一体ィ匕された構造である。電子部品 40は絶^ぺーサ 22を跨る形でパッケ ージ 30へ配置され、電子部品 40の下面に形成した 2つの端子、即ちバンプ 44を絶 縁スぺーサ 22で隔てられた 2つの金属ベース 11、 12に結合することでパッケージ 30 へ実装される。
[0022] 回路基板 Pは絶縁基板 50上に微細な回路パターン 60を形成しており、回路パター ン 60の一部の上に回路モジュール Mを配置し、金属ベース 11、 12が回路パターン 60の一部へ半田 62により結合されて、回路モジュール Mが回路基板 Pへ実装される 。絶縁基板 50の下面は金属板 70で被覆され、電子部品 40で発生する熱の一部は 回路パターン 60、絶縁基板 50、金属板 70を介して放出される。
[0023] 本実施形態で示す回路モジュールは、電子部品 40として複数の LEDを並列接続 したライン状光源として使用されるものであり、横長のパッケージ 30上に LEDを一列 に配置している。
[0024] 各パッケージ 30は、図 1に示すようにして形成される積層体 L力も切り出される。こ の積層体 Lは、 2枚の金属層 10を絶縁榭脂層 20を挟んで積層し(図 1 (A) )、加熱加 圧して絶縁榭脂層 20によって金属層 10同士を強固に結合させることで得られる(図 1 (B) )。次いで、この積層体 Lをスライスして、切断面が電子部品の実装面となる複 数枚のパッケージ 30を得る(図 1 (C) )。このようにして得られたパッケージ 30では、 絶縁榭脂層 20の一部で形成される絶縁スぺーサ 22によって、異なる金属層 10によ つて形成される 2つの金属ベース 11、 12がー体に結合された構造となる。
[0025] このノ ケージを表面処理して汚れを取り除いた後、各電子部品 40が絶縁榭脂層 20を跨ぐようにして、多数の電子部品 40をパッケージの実装面へ並列に配置し、半 田によって各電子部品 40下面の端子を金属層 10へ接合させる(図 1 (D) )。その後、 ノ ッケージ 30を図の破線で示す面で、切断して、所定個数の電子部品 40をそれぞ れ保持した複数の回路モジュール Mを得る(図 1 (E) )。このようにして、分割されたパ ッケージ個片 32上に電子部品 40が搭載された複数の回路モジュール Mが同時に 取り出される。
[0026] ノ ッケージ 30の厚み (t)は、高い放熱性を得るために、回路基板 P上の回路パター ン 60の厚みよりも十分大きく設定される。回路パターン 60はエッチングにより微細回 路とするために 35 m以下なつているため、パッケージ 30の厚みは 0. 5— 3mmとさ れる。このパッケージ 30は積層体 Lからスライスにて作成されるため、その厚み (t)は 容易に設定することができる。
[0027] 尚、図では、積層体 L力も切り出されたパッケージ 30を細分ィ匕して複数の回路モジ ユール Mを作成する例を示した力 本発明はこれのみに限定されるものではなぐ予 め一つの回路モジュール Mの長さに合わせて積層体 Lを構成し、これをスライスした パッケージ 30で単一の回路モジュール Mを製作するようにしても良!、。
[0028] また、 2つの金属層 10と一つの絶縁榭脂層 20との積層体 Lを一つのユニットとして 用意し、これらを複数体重ね合わせ、ユニット同士を適宜の方法で保持した構造体を 形成した後に、これをスライスして複数のノ¾ /ケージ 30を同時に作り出すことも可能 である。
[0029] 積層体 Lを作成するに際しては、金属層 10と榭脂絶縁層 20との密着性を得るため 、金属層 10の表面をあら力じめ粗面化処理しておくのが好ましい。例えば、金属層 1 0の表面に酸ィ匕被膜を形成して化学的に粗面化処理したり、金属層 10の表面をサン ドプラストにより物理的に粗面化処理したりすることができる。
[0030] 金属層 10を形成するものとしては、特に限定されるものではないが、銅、アルミ-ゥ ム、ニッケル、鉄、及び少なくともこれらのうち 1種以上のものを含む合金、並びに銅 · インバー'銅の複層材 (銅と各種インバー合金と銅とをこの順に重ね合わせて得られ るクラッド材)から選ばれるものを用いるのが好ましい。また、異なる金属層 10を絶縁 榭脂層 20の両側に配置するようにしても良い。金属層 10の厚みは、特に限定される ものではないが、例えば、 0. 5— 20mmの範囲が好ましい。
[0031] 絶縁榭脂 20を形成する絶縁性榭脂としては、熱硬化性榭脂組成物や熱可塑性榭 脂組成物を用いることができる。これらの組成物としては、流動性を調整したり熱伝導 性をさらに高めたりするために無機フィラー入りのものを用いるのが好ましい。このよう な組成物は、熱硬化性榭脂又は熱可塑性榭脂に公知の無機フィラー、硬化剤、硬 化促進剤、溶剤、表面処理剤、顔料などを添加することによって、調製することができ る。絶縁性榭脂層 20の形態は、特に限定されるものではないが、シート状であること が好ましい。具体的には、絶縁性榭脂を PETフィルム等に塗布乾燥して得られる ス テージの接着フィルムや、絶縁性榭脂をガラス布などの基材に含浸乾燥して得られ る Bステージのプリプレダであることが好まし!/、。上記の接着フィルムやプリプレダのよ うな接着シートを用いると、薄くて均一な厚みの絶縁榭脂 20を容易に形成することが できる。
[0032] また。絶縁榭脂層 20は金属層 10に塗布するペーストで形成することもできる。この ペーストは、熱硬化性榭脂 (又は熱可塑性榭脂)に公知の無機フィラー、硬化剤、硬 化促進剤、溶剤、表面処理剤、顔料などを添加することによって熱硬化性榭脂組成 物 (又は熱可塑性榭脂組成物)を調製した組成物をスラリー化することによって得ら れる。
[0033] 絶縁榭脂層 20、即ち絶縁スぺーサ 22の厚みは具体的には 20— 500 mであるこ とが好ましい。絶縁榭脂層 20の厚みが 20 m未満であると、絶縁榭脂層 20に混入 した気泡や金属層 10表面の微細な突起による絶縁不良の可能性が高くなり、絶縁 性を十分に確保することができなくなるおそれがある。逆に絶縁榭脂層 20の厚みが 5 00 mを超えると、対象となる電子部品 40の端子間距離より広くなり、電子部品との 電気接続が行えない場合がある。榭絶縁榭脂層 20の厚みは、使用する電子部品 40 の仕様に応じて変更でき、例えば、端子間距離が比較的長いものでは 25— 300 m、端子間距離が比較的短くてバンプにより電気接続されるものでは 30— 150 m と設定される。
[0034] 絶縁性榭脂として熱硬化性榭脂組成物を用いる場合にぉ 、て、主成分となる熱硬 化性榭脂としては、例えば、エポキシ榭脂、フエノール榭脂、ポリイミド榭脂、シリコー ン榭脂、シァネート榭脂等を用いることができ、また、難燃性を付与するため臭素化さ れた榭脂やリン変性された榭脂を用いることもできる。
[0035] 絶縁性榭脂として用いる熱硬化性榭脂組成物としては、無機フィラーを高充填した ものが好ましい。このように無機フィラーを高充填することによって、絶^ぺーサ 22 の熱伝導性をさらに高めることができ、電子部品 40からの発熱をより効率よく放散さ せることができると共に、絶^ぺーサ 22の熱膨張係数が金属ベース 21、 22の熱膨 張係数に近付き、高熱伝導性回路モジュールの熱的な信頼性を向上させることがで きる。必要に応じて無機フィラーの充填量を調整することにより、積層体 Lの作成時に おける熱硬化性榭脂組成物の流動特性を調整することもできる。
[0036] 上記の無機フイラ一としては、特に限定されるものではないが、 Al O、 MgO、 BN、
2 3
A1N、 SiO、 TiO、 CaCO等から選ばれるものを用いることができ、 Al O、 MgO、 B
2 2 3 2 3
N、 A1Nは、その他の無機フィラーよりも熱伝導性に優れているので好ましい。なお、 無機フィラーの熱硬化性榭脂への分散性を向上させるため、カップリング剤や分散 剤等を併用するのが好ましい。
[0037] 尚、電子部品 40として例えば UV光 (紫外線)を発する LED等を用いる場合におい ては、絶縁スぺーサ 22に十分な耐 UV性能が要求される。このような場合には、耐 U V性を有する材料を含有する絶縁性榭脂を用いて絶縁榭脂層 20を形成して、絶縁 スぺーサ 22の絶縁劣化等を防止することができる。上記の耐 UV性を有する材料を 含有する絶縁性榭脂としては、フッ素系榭脂組成物 (例えば、テフロン (登録商標)を 主成分とするもの)と、シリコーン系榭脂組成物(例えば、シリコーン榭脂を主成分と するもの)の 、ずれか一方又は両方を用いるのが好まし 、。
[0038] 以下に、本実施形態の実施例を説明する。
[0039] (実施例 1)
絶縁榭脂層 20を形成する接着シートを次のようにして作成した。
エポキシ榭脂 100重量部、ジシアンジアミド (硬化剤) 5重量部、 2-ェチル -4-メチル イミダゾール (硬化促進剤) 0. 1重量部、エポキシシランカップリング剤 10重量部、メ チルェチルケトン及びジメチルフオルムアミドからなる溶剤 (MEK: DMF = 1: 2 (重 量比)) 70重量部をあらかじめ混合して溶解させた溶液を準備した。
[0040] 次に、この溶液にさらに平均粒径 5 μ mのァノレミナフイラ一(無機フィラー) 700重量 部を混合し、これをデイスパーで撹拌することにより、固形分 93wt%、粘度 3000cps のスラリーとした。そしてこのスラリーを PETフィルムの上に塗布し、これを 150°Cで 1 0分間乾燥することによって、厚み 50 mの接着性を有する Bステージ状態の接着シ ート (無機フィラー 85wt%含有)を作成した。
[0041] 次に、金属層 10として 5mm厚のアルミニウム板を用い、上の接着シートと積層して 、 6. 67hPa (5トール)以下の減圧下の条件で、実圧 0. 29MPa (3kgf/cm2) , 130 °C X 10分 + 175°C X 60分の加熱'加圧処理して積層体 Lを作り出した。
その後、積層体 Lをスライスして厚さ(t= 5mm)のパッケージ 30を得て、金属層 10の 表面に金メッキを施し、電子部品 40として LEDを複数個パッケージの実装面へ配置 し、バンプ 44により電子部品 40を金属ベースに接合した。
最後に、パッケージ 30を細分ィ匕して複数の電子部品 40が搭載された個別の回路モ ジュール Mを得た。 [0042] 図 3で示す実施形態では、電子部品 40を下面に形成したバンプ 44により金属べ一 ス 11、 12へ接合した例を示した力 ワイヤーボンディング、半田リフローなど、各電子 部品 4の構造に応じて最適な実装方法を選択することができる。特に、電子部品の上 面や側面に端子を設けたものにあっては、ワイヤーボンディングでの電気接続とする ことで、電子部品の下面と金属ベース 11、 12との接触面積とを大きくすることができ て、放熱性を向上させることができる。
[0043] また、上述の実施形態では、ノ ッケージ 30上面の平坦面として、ここに電子部品 4 0を配置した例を示したが、パッケージ 30上面に凹所を形成して、凹所内に電子部 品 40を収容することが要求される場合は、図 1 (C)に示す表面処理の前後で、パッケ ージ 30に所望形状の凹所を形成する処理を行うことができる。更に、パッケージ 30 の表面にメツキ処理や鏡面仕上げが要求される場合は、パッケージ 30の全体に亘っ て、マスクにより絶縁榭脂層 20を隠して、金属層 10表面にメツキ層やアルミニウム層 を蒸着で形成することができる。
[0044] 図 5—図 7は本発明の他の実施形態を示すもので、複数枚の金属層 10を複数枚の 絶縁榭脂層 20と交互に積層し (図 5 (A)、これを加熱加圧して一体化した積層体 Lを 形成した後(図 5 (B) )、これをシート状のパッケージ 30にスライスし(図 5 (C) )、部品 の実装面となる切断面に金属層 10と絶縁榭脂層 20とが積層方向に沿って交互に表 れるパッケージ 30を得る(図 5 (D) )。 ノ¾ /ケージ 30を表面処理して汚れを取り除き、 各電子部品が絶縁榭脂層 20を跨ぐようにして、多数の電子部品 40をパッケージ 30 上へ縦横に並べて配置し、半田によって各電子部品 40下面の端子を金属層 10へ 接合させる(図 5 (E) )。その後、ノ ッケージ 30を縦横方向に切断して個別のパッケ一 ジ個片 32に分割し、電子部品 40をそれぞれ実装した複数の回路モジュール Mを得 る(図 5 (F) )。このようにして、積層体 L力も切り出された一枚のパッケージ 30から複 数の回路モジュール Mが同時に取り出される。従って、各回路モジュール Mでは異 なる金属層 10の一部で形成される金属ベース 11、 12が絶縁榭脂層 20の一部で形 成される絶縁スぺーサ 22にて一体に結合された構造となる。
[0045] 本実施形態では、複数の電子部品 40を実装したパッケージ 30を縦横に分割した 各パッケージ個片 32がーつの電子部品を搭載した回路モジュール Mを製作する例 を示しているが、本発明は必ずしもこの形態に限定されるものではなぐ複数の回路 モジュール Mのそれぞれが複数の電子部品を搭載するように、任意の箇所でパッケ ージ 30を切断するようにしても良い。更には、積層体 L力も切り出された一枚のパッ ケージ 30で単一の回路モジュールを構成するようにしても良い。いずれにしても、積 層体 Lからパッケージ 30が切り出されることで、絶&^ぺーサ 22の厚さ(絶縁距離)を 小さい値へ高精度に整えることができると共に、切断面により平坦ィ匕されたパッケ一 ジの一面を電子部品の実装面とすることにより、電子部品の実装を精度良く行うこと ができるものである。このことが、微細な電子部品の放熱性を向上させながら、回路 基板へ高密度に実装すること可能としたものである。この意味において、電子部品は ノ ッケージを細分ィ匕した後に、細分化された個別のパッケージ個片へ実装するように しても良い。
[0046] また、電子部品として LEDを使用する場合は、図 5 (E)に示すように、一つのパッケ ージ 30上に電子部品を縦横に配列させた構造体から、図 2に示すような LEDが横一 列に並ぶライン状光源としての回路モジュールや、或いは、各 LEDが縦一列に並ぶ ドット表示用回路モジュールを得ることができる。即ち、図 5 (E)のパッケージ 30を横 方向に切断することで、ライン状光源の回路モジュールが得られる。ドット表示用回路 モジュールはこのパッケージを縦方向に切断することで得られ、複数の金属ベースと 絶縁スぺーサとが縦方向に交互に並び、縦方向に配置された複数の LEDのそれぞ れの 2つの端子が絶^ぺーサで隔てられた隣り合う金属ベースに電気接続される。 従って、任意の組の金属ベース間へ電圧を印加することで、これに対応する LEDを 選択的に発光させることができる。このため、 LEDが縦一列に配置された回路モジュ ールを適宜の数を横に並べて組み合わせることで、文字や画像を表示するドット表 示装置が実現できる。
[0047] 図 8は本実施形態の一変形例を示すもので、ノ ッケージ 30を細分ィ匕して得られる ノ ッケージ個片 32が直方体形状であることを利用して、隣り合う 2つの面に異なる電 子部品 40を実装することを可能としたことを示す。この場合は、各電子部品 40はそ れぞれ絶縁スぺーサ 22にて隔てられた金属ベース 11、 12へ適宜の方式で電気接 続され、電気的に並列接続される。また、ノ^ケージ 30の厚みは使用する電子部品 の寸法に併せて、任意に設定できる。
図 9一図 11は本発明の更に他の実施形態を示すもので、ここでは、図 10及び図 1 1に示すように、 2つの絶縁スぺーサ 22によって電気的に隔離された 3つの金属べ一 ス 11、 12、 13を備えたパッケージ個片 32に電子部品 40を実装した回路モジュール Mが製造される。このパッケージ個片 30は、 3つの端子を備える例えばパワートランジ スタを電子部品として実装するために設計され、金属ベース 11、 12、 13をそれぞれ パワートランジスタのェミッタ、コレクタ、ベースへ接続する電極として使用する。図示 の形態では、電子部品 40の上面の端子 41、 42、 43をワイヤーボンディングにて各 金属ベースへ接続し、電子部品 40の下面を金属ベース上に密接させることで放熱 性を向上させている。使用するパワートランジスタが下面にバンプを備えたものでは、 バンプにより金属ベースへ電子部品を接合する。
[0048] このような、 3つの金属ベース 11、 12、 13を備えるパッケージ個片 30を用いた回路 モジュール Mも、前述の実施形態と同様に作成した積層体 Lから作成できる。即ち、 図 5に示すように、積層体 Lから切り出したパッケージ 30上に、各電子部品 40が 2つ の絶縁榭脂層 20に跨るように、複数の電子部品 40を縦横に並べて実装した後、図 の破線で示す切断線に沿ってパッケージ 30をパッケージ個片 32に分断することで、 多数の回路モジュール Mを同時に作成することができる。
[0049] 本発明は一つのノ¾ /ケージ個片 32に含まれる互いに電気的に隔離された金属べ ースの数に限定されるものではなぐ任意の数の金属ベースを含むパッケージ、即ち 回路モジュールを作成することができるものであり、一つのパッケージから取り出す回 路モジュールの数に合わせて、積層体 Lでの金属層 10、絶縁榭脂層 20の数や、積 層体 Lの幅を選択することで、各種の要求を満足できる。即ち、金属層 10と絶縁榭脂 層 20が交互に並ぶ積層体 Lを切り出してパッケージ 30を形成しているため、電子部 品の端子数に応じた数の金属ベースを備えるパッケージ 30、回路モジュール Mを多 数個一度に製造することができる。
[0050] 更に、一つの回路モジュール Mに搭載する電子部品 40の数も一つに限定されるも のではなぐ図 12や図 13〖こ示すよう〖こ、 2つの電子部品 40A、 40Bを一つの個別パ ッケージ個片 30へ実装することができる。この場合、個別パッケージ個片 32は 3つの 金属ベース 11、 12、 13を備え、中央の金属ベース 12が共通電極として使用され、 各電子部品 40A、 40Bが絶縁スぺーサ 22を跨ぐ形で金属ベース上に配置され、金 属ベース 11、 12、 13へバンプ接続、ワイヤーボンディング、或いは半田により電気 接続される。このように、一つの個別のパッケージに複数の電子部品を搭載すること が要求される場合であっても、図 12に示すように、部品点数に応じて金属ベースの 数、即ち、金属層の数を自由に選択し、積層体力 切り出されたパッケージ上へ複数 の電子部品を実装した後に、ノ ッケージ 30を切断することで図 13示すような複数の 電子部品を備える回路モジュール Mを一度に多数製造することができる。また、図示 のように、形状の異なる電子部品 40A、 40Bが使用される場合でも、これらをパッケ ージ上に規則的に配列させることは容易であることから、多数の回路モジュール Mを 効率よく製造することができる。また、 2つ以上の電子部品を並列させてパッケージ個 片 32上に配置して、互いに電気的に並列接続することも可能である。

Claims

請求の範囲
[1] 回路基板へ実装される高熱伝導性回路モジュールの製造方法であって、以下の過 程よりなる:
高熱伝導性で導電材料である少なくとも 2枚の金属層を間に絶縁性榭脂層を介して 積層して、金属層が絶縁榭脂層によって結合されて一体化された積層体を形成し、 上記の一体ィ匕された積層体をスライスしてパッケージを切り出し、 2つの金属ベース 力 Sこれらを電気的に隔離すると共に両者を機械的に結合する絶^ぺーサで結合さ れたパッケージを得る、上記金属ベースは上記の金属層の一部で形成され、上記絶 ぺーサは上記の絶縁性榭脂層の一部で形成され、
少なくとも 2つの端子を備えた少なくとも一つの電子部品を上記パッケージの実装面 に配置する、この実装面は上記積層体をスライスする切断面で規定される、 上記絶縁スぺーサにて隔てられた異なる金属ベースへ少なくとも 2つの各端子を電 気接続する。
[2] 請求項 1に記載の高熱伝導性回路モジュールの製造方法にぉ 、て、
複数の電子部品を並列させて上記パッケージの上記実装面に配置して、上記絶縁 スぺーサにて隔てられた異なる金属ベースへ複数の電子部品を互いに並列に電気 接続する。
[3] 請求項 2に記載の高熱伝導性回路モジュールの製造方法において、
上記パッケージを複数の電子部品が並ぶ長手方向の一部で切断して、それぞれが 少なくとも一つの電子部品を搭載した複数の回路モジュールを得る。
[4] 請求項 1に記載の高熱伝導性回路モジュールの製造方法にぉ 、て、
複数の金属層を複数の絶縁性榭脂層と交互に積層して、金属層が絶縁榭脂層によ つて結合されて一体化された積層体を形成し、
上記の一体ィ匕された積層体を積層方向に沿ってスライスしてパッケージを切り出す
、このパッケージでは複数の上記の金属ベースが複数の上記絶^ぺーサと交互に 積層方向に沿って並び、
複数の上記電子部品がそれぞれ上記パッケージの実装面に配置されて、上記絶 縁スぺーサを隔てた異なる上記金属ベースに電気接続された。
[5] 請求項 4に記載の高熱伝導性回路モジュールの製造方法において、 上記のノ ッケージの実装面に複数の電子部品を実装した後に、上記パッケージを切 り出してそれぞれが少なくとも一つの電子部品を実装した複数の回路モジュールを 得る。
[6] 請求項 4に記載の高熱伝導性回路モジュールの製造方法にぉ 、て、
複数の上記絶縁スぺーサに跨る形で、上記の電子部品を上記パッケージの実装面 に配置する。
[7] 請求項 6に記載の高熱伝導性回路モジュールの製造方法において、
複数の絶縁スぺーサとこれらの絶縁スぺーサの外側に位置する金属ベースを含む 大きさに上記パッケージを切断して、それぞれが少なくとも一つの電子部品を実装し た複数の回路モジュールを得る。
[8] 請求項 1に記載の高熱伝導性回路モジュールの製造方法にぉ 、て、
上記絶^ぺーサは 20— 500 μ mの厚さを有し、
上記金属層は、銅、アルミニウム、ニッケル、鉄、及び少なくとも一つを含む合金、銅
-インバー銅複合材カゝらなる群カゝら選択される。
[9] 請求項 1に記載の高熱伝導性回路モジュールの製造方法にぉ 、て、
上記絶縁榭脂層は、耐紫外線を有する榭脂である。
[10] 請求項 9に記載の高熱伝導性回路モジュールの製造方法において、
上記耐紫外線を有する榭脂は、フッ素榭脂とシリコーン榭脂からなる群カゝら選択され る。
[11] 回路基板へ実装される高熱伝導性回路モジュールであって、
高熱伝導性で導電材料である少なくとも 2枚の金属層と絶縁性榭脂層とが一体化さ れた積層体をスライスして形成されたパッケージと、
上記パッケージの実装面に実装された電子部品とで構成され、
上記パッケージの実装面は上記積層体をスライスする切断面で規定され、 上記パッケージは上記金属層の一部で形成される少なくとも 2つの金属ベースと上 記絶縁榭脂層の一部で形成される絶縁スぺーサとで構成され、金属ベースが絶縁ス ぺーサで電気的に隔離され、
上記電子部品が備える少なくとも 2つの端子が上記絶^ぺーサにて隔てられた異 なる金属ベースへ電気接続された。
[12] 請求項 11に記載の高熱伝導性回路モジュールにお 、て、
上記電子部品は 2つの端子を有する LEDであり、複数の LEDが互 、に並列関係で 上記パッケージに実装された。
[13] 請求項 11に記載の高熱伝導性回路モジュールにお 、て、
上記絶^ぺーサの厚さが 20— 500 μ mである。
PCT/JP2004/019610 2004-12-28 2004-12-28 高熱伝導性回路モジュールの製造方法及び高熱伝導性回路モジュール WO2006070457A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2004/019610 WO2006070457A1 (ja) 2004-12-28 2004-12-28 高熱伝導性回路モジュールの製造方法及び高熱伝導性回路モジュール
JP2006550525A JP4925296B2 (ja) 2004-12-28 2004-12-28 高熱伝導性回路モジュールの製造方法及び高熱伝導性回路モジュール

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/019610 WO2006070457A1 (ja) 2004-12-28 2004-12-28 高熱伝導性回路モジュールの製造方法及び高熱伝導性回路モジュール

Publications (1)

Publication Number Publication Date
WO2006070457A1 true WO2006070457A1 (ja) 2006-07-06

Family

ID=36614584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/019610 WO2006070457A1 (ja) 2004-12-28 2004-12-28 高熱伝導性回路モジュールの製造方法及び高熱伝導性回路モジュール

Country Status (2)

Country Link
JP (1) JP4925296B2 (ja)
WO (1) WO2006070457A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010504645A (ja) * 2006-09-21 2010-02-12 スリーエム イノベイティブ プロパティズ カンパニー 熱伝導性led組立体
JP2010135503A (ja) * 2008-12-03 2010-06-17 Panasonic Electric Works Co Ltd Ledユニットの製造方法
JP2013069837A (ja) * 2011-09-22 2013-04-18 Citizen Electronics Co Ltd 発光モジュール
JP2013084704A (ja) * 2011-10-07 2013-05-09 Citizen Electronics Co Ltd 発光モジュール
JP2013093130A (ja) * 2011-10-24 2013-05-16 Citizen Electronics Co Ltd Ledランプ
JP2013098060A (ja) * 2011-11-02 2013-05-20 Citizen Electronics Co Ltd Ledランプ
JP2013105819A (ja) * 2011-11-11 2013-05-30 Citizen Electronics Co Ltd 発光モジュール及び発光モジュール連結体
JP2013120913A (ja) * 2011-12-09 2013-06-17 Citizen Electronics Co Ltd 発光モジュール及び発光モジュール連結体
US20150226382A1 (en) * 2014-02-11 2015-08-13 Unistars Corporation Electroluminescent device and apparatus applying the same
US9306142B2 (en) 2011-06-27 2016-04-05 Point Engineering Co., Ltd. High heat-radiant optical device substrate and manufacturing method thereof
US9360167B2 (en) 2011-09-20 2016-06-07 Citizen Holdings Co., Ltd. LED module and LED lamp employing same
US9559268B2 (en) 2012-05-11 2017-01-31 Point Engineering Co., Ltd. Method for manufacturing optical element for backlight unit and optical element and optical element array manufactured by method
JP2017188672A (ja) * 2016-04-01 2017-10-12 日亜化学工業株式会社 発光素子載置用基体の製造方法及びそれを用いた発光装置の製造方法並びに発光素子載置用基体及びそれを用いた発光装置
DE102018201872B4 (de) 2017-05-25 2023-12-28 Mitsubishi Electric Corporation Leistungsmodul

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5606849B2 (ja) * 2010-09-24 2014-10-15 富士フイルム株式会社 太陽電池用バックシート用ポリマーシート及び太陽電池モジュール
JP2012084786A (ja) * 2010-10-14 2012-04-26 Showa Denko Kk Ledパッケージ

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0955535A (ja) * 1995-08-11 1997-02-25 Stanley Electric Co Ltd 面実装型led素子及びその製造方法
JP2003309292A (ja) * 2002-04-15 2003-10-31 Citizen Electronics Co Ltd 表面実装型発光ダイオードのメタルコア基板及びその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05315652A (ja) * 1992-04-02 1993-11-26 Nec Corp 光半導体装置
JPH118414A (ja) * 1997-06-18 1999-01-12 Sony Corp 半導体装置および半導体発光装置
JP2000173947A (ja) * 1998-12-07 2000-06-23 Tokai Rika Co Ltd プラスティックパッケージ
JP2000349348A (ja) * 1999-03-31 2000-12-15 Toyoda Gosei Co Ltd 短波長ledランプユニット
JP3989794B2 (ja) * 2001-08-09 2007-10-10 松下電器産業株式会社 Led照明装置およびled照明光源
JP4139634B2 (ja) * 2002-06-28 2008-08-27 松下電器産業株式会社 Led照明装置およびその製造方法
JP2004134699A (ja) * 2002-10-15 2004-04-30 Toyoda Gosei Co Ltd 発光装置
JP2004253364A (ja) * 2003-01-27 2004-09-09 Matsushita Electric Ind Co Ltd 照明装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0955535A (ja) * 1995-08-11 1997-02-25 Stanley Electric Co Ltd 面実装型led素子及びその製造方法
JP2003309292A (ja) * 2002-04-15 2003-10-31 Citizen Electronics Co Ltd 表面実装型発光ダイオードのメタルコア基板及びその製造方法

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010504645A (ja) * 2006-09-21 2010-02-12 スリーエム イノベイティブ プロパティズ カンパニー 熱伝導性led組立体
JP2010135503A (ja) * 2008-12-03 2010-06-17 Panasonic Electric Works Co Ltd Ledユニットの製造方法
US9537074B2 (en) 2011-06-27 2017-01-03 Point Engineering Co., Ltd. High heat-radiant optical device substrate
US9306142B2 (en) 2011-06-27 2016-04-05 Point Engineering Co., Ltd. High heat-radiant optical device substrate and manufacturing method thereof
EP2760058B1 (en) * 2011-09-20 2018-01-03 Citizen Watch Co., Ltd. Led module and led lamp employing same
US9360167B2 (en) 2011-09-20 2016-06-07 Citizen Holdings Co., Ltd. LED module and LED lamp employing same
JP2013069837A (ja) * 2011-09-22 2013-04-18 Citizen Electronics Co Ltd 発光モジュール
JP2013084704A (ja) * 2011-10-07 2013-05-09 Citizen Electronics Co Ltd 発光モジュール
JP2013093130A (ja) * 2011-10-24 2013-05-16 Citizen Electronics Co Ltd Ledランプ
JP2013098060A (ja) * 2011-11-02 2013-05-20 Citizen Electronics Co Ltd Ledランプ
US9599289B2 (en) 2011-11-02 2017-03-21 Citizen Electronics Co., Ltd. Light source and lighting device including the same
JP2013105819A (ja) * 2011-11-11 2013-05-30 Citizen Electronics Co Ltd 発光モジュール及び発光モジュール連結体
JP2013120913A (ja) * 2011-12-09 2013-06-17 Citizen Electronics Co Ltd 発光モジュール及び発光モジュール連結体
US9559268B2 (en) 2012-05-11 2017-01-31 Point Engineering Co., Ltd. Method for manufacturing optical element for backlight unit and optical element and optical element array manufactured by method
US10008638B2 (en) 2012-05-11 2018-06-26 Point Engineering Co., Ltd. Method for manufacturing optical element for backlight unit and optical element and optical element array manufactured by method
US20150226382A1 (en) * 2014-02-11 2015-08-13 Unistars Corporation Electroluminescent device and apparatus applying the same
JP2017188672A (ja) * 2016-04-01 2017-10-12 日亜化学工業株式会社 発光素子載置用基体の製造方法及びそれを用いた発光装置の製造方法並びに発光素子載置用基体及びそれを用いた発光装置
JP7011147B2 (ja) 2016-04-01 2022-01-26 日亜化学工業株式会社 発光素子載置用基体の製造方法及びそれを用いた発光装置の製造方法並びに発光素子載置用基体及びそれを用いた発光装置
DE102018201872B4 (de) 2017-05-25 2023-12-28 Mitsubishi Electric Corporation Leistungsmodul

Also Published As

Publication number Publication date
JPWO2006070457A1 (ja) 2008-06-12
JP4925296B2 (ja) 2012-04-25

Similar Documents

Publication Publication Date Title
US7394663B2 (en) Electronic component built-in module and method of manufacturing the same
CN104900606B (zh) 超薄嵌入半导体装置封装及其制造方法
US8007897B2 (en) Insulating sheet and method for producing it, and power module comprising the insulating sheet
TWI569387B (zh) 具有隔離件之散熱增益型線路板製作方法
JP3312723B2 (ja) 熱伝導シート状物とその製造方法及びそれを用いた熱伝導基板とその製造方法
WO2006070457A1 (ja) 高熱伝導性回路モジュールの製造方法及び高熱伝導性回路モジュール
KR100935837B1 (ko) 다층 배선 기판과 그 기판을 사용한 반도체 장치 탑재기판 및 다층 배선 기판의 제조 방법
US8008756B2 (en) Heat dissipating wiring board and method for manufacturing same
US20060087020A1 (en) Semiconductor device and method for producing the same
US20070262470A1 (en) Module With Built-In Semiconductor And Method For Manufacturing The Module
JP2003303938A (ja) 半導体装置内蔵多層配線基板及びその製造方法
US9807874B2 (en) Wiring substrate, component embedded substrate, and package structure
JP2009246258A (ja) 半導体装置および製造方法
JPH07297560A (ja) 多層プリント配線基板およびその実装構造体
EP0981268A1 (en) Circuit board with an electronic component mounted thereon and multi-layer board
WO2002007485A1 (en) Circuit board and method for manufacturing the same, and electronic apparatus comprising it
JP2001177006A (ja) 熱伝導基板とその製造方法
JP5664475B2 (ja) 半導体装置
JP2007214246A (ja) 放熱配線基板とその製造方法
JP2008103640A (ja) 多層配線基板
JP5003202B2 (ja) 熱伝導基板とその製造方法及び回路モジュール
JPH088354A (ja) 半導体装置およびその製法
JP2005072382A (ja) 放熱用リードフレーム基板及びその製造方法並びに半導体装置
JP5010669B2 (ja) 配線基板及びその製造方法
CN1242602A (zh) 晶片规模封装结构及其内使用的电路板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006550525

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 04807965

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 4807965

Country of ref document: EP