WO2006068231A1 - 金属超微粉の製造方法 - Google Patents

金属超微粉の製造方法 Download PDF

Info

Publication number
WO2006068231A1
WO2006068231A1 PCT/JP2005/023618 JP2005023618W WO2006068231A1 WO 2006068231 A1 WO2006068231 A1 WO 2006068231A1 JP 2005023618 W JP2005023618 W JP 2005023618W WO 2006068231 A1 WO2006068231 A1 WO 2006068231A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen
raw material
powder
fuel
metal powder
Prior art date
Application number
PCT/JP2005/023618
Other languages
English (en)
French (fr)
Inventor
Hiroshi Igarashi
Takayuki Matsumura
Shinichi Miyake
Original Assignee
Taiyo Nippon Sanso Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corporation filed Critical Taiyo Nippon Sanso Corporation
Priority to CN2005800438903A priority Critical patent/CN101084080B/zh
Priority to EP05819525.6A priority patent/EP1839783B1/en
Priority to KR1020077013842A priority patent/KR100888381B1/ko
Priority to US11/793,424 priority patent/US8062406B2/en
Priority to JP2006549060A priority patent/JP4304212B2/ja
Publication of WO2006068231A1 publication Critical patent/WO2006068231A1/ja
Priority to US13/067,780 priority patent/US20110256250A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/20Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
    • B22F9/22Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds using gaseous reductors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • B22F9/26Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions using gaseous reductors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/28Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from gaseous metal compounds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/20Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone
    • F23D14/22Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone with separate air and gas feed ducts, e.g. with ducts running parallel or crossing each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/32Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid using a mixture of gaseous fuel and pure oxygen or oxygen-enriched air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/72Safety devices, e.g. operative in case of failure of gas supply
    • F23D14/78Cooling burner parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • the present invention relates to a method for producing ultrafine metal powder that obtains ultrafine metal particles having a controlled particle size from a metal compound in a high-temperature reducing atmosphere using a panner, a pan for producing ultrafine metal powders, and ultrafine metal powder production Relates to the device.
  • Nikkenore ultrafine powder that is used in multilayer ceramic capacitors.
  • a chloride raw material with a high vapor pressure is heated and vaporized in a CVD apparatus, and hydrogen is introduced into the apparatus as a reducing agent and reduced.
  • hydrogen is introduced into the apparatus as a reducing agent and reduced.
  • ultrafine nickel powder There is a method for producing ultrafine nickel powder.
  • Such a production method is said to be suitable for the production of fine powder because the raw material is vaporized at a relatively low temperature of about 1000 ° C (below the melting point of Eckel) to cause reduction reaction and precipitation.
  • a method is a high-cost manufacturing method because it uses a CVD apparatus, so that expensive electric energy is used for heating the raw material, and because expensive hydrogen is used as a reducing gas.
  • it is a reduction reaction of salt and chloride with hydrogen, toxic chlorine gas and hydrogen chloride are generated in the furnace, so that there is a problem that it becomes an expensive facility with sufficient consideration for corrosion and leakage of the manufacturing equipment.
  • Patent Document 1 JP-A-4-365806
  • Patent Document 2 JP-A-56-149330
  • chlorides having a high vapor pressure have to be used particularly for the production of fine metal powder, and the form of the raw material is limited.
  • the present invention uses a wide range of raw materials, freely controls the particle size of the metal powder to be generated, and in the case of a powder raw material, the particle size is 1/10 or less of the raw material particle size. It is an object of the present invention to provide a method for producing ultrafine metal powder that can be produced at low cost and has excellent safety. Means for solving the problem
  • the first aspect of the present invention is a method for obtaining a metal from a metal compound by forming a high-temperature reducing atmosphere in a furnace using a panner, and in a high-temperature reducing gas stream generated by the panner, a powdered metal compound
  • This is a method for producing ultrafine metal powder, characterized in that the metal compound is heated and reduced to produce spherical ultrafine metal particles having a controlled particle size.
  • the particle size of the spherical metal powder may be controlled by adjusting the oxygen ratio of the PANA.
  • the metal ultrafine powder can be made smaller than the particle size of the raw material.
  • the ultrafine metal powder can be 1/10 or less of the particle size of the raw material.
  • the high-temperature reducing atmosphere may be generated using a gaseous or liquid hydrocarbon fuel and oxygen or oxygen-enriched air.
  • the metal compound is a substance other than salt.
  • the particle size of the ultrafine metal powder can be controlled by the furnace temperature.
  • a solution of a compound containing a metal element as a raw material is sprayed into a furnace in a high-temperature reducing atmosphere formed by partial combustion of fuel supplied from a burner, and the metal in the solution
  • a method for producing ultrafine metal powder characterized in that a spherical ultrafine metal powder having a controlled particle size is produced by heating, decomposing, and reducing a compound.
  • the solution may be sprayed from a panner into the furnace.
  • the solution is an organic solvent, and the solution can be sprayed as a fuel for a burner and partially combusted to form a high-temperature reducing atmosphere to produce spherical metallic ultrafine powder.
  • a third aspect of the present invention is a metal ultrafine powder produced by any one of the production methods described above.
  • a metal compound as a raw material is provided on a circumference centering on the raw material jet hole, and a raw material jet hole for jetting a fuel fluid as a carrier gas in one direction, A plurality of primary oxygen jet holes for jetting oxygen or oxygen-enriched air in parallel with the jet direction of the raw material, and a circumference centered on the raw material jet hole, provided outside the primary oxygen jet hole, A plurality of secondary oxygen ejection holes for ejecting oxygen or oxygen-enriched air in a direction toward one point on an extension line of the raw material ejection holes, the fuel fluid and the oxygen Alternatively, it is a partner that generates a high-temperature reducing air flow with oxygen-enriched air, reduces the metal compound, and produces ultrafine metal powder having a particle size smaller than that of the raw material.
  • the raw material ejection hole, the primary oxygen ejection hole, and the secondary oxygen ejection hole have different fluid supply channels, and the ejection amount of each fluid can be controlled independently.
  • the carrier gas may be air, oxygen, oxygen-enriched air, or an inert gas such as nitrogen.
  • a fuel injection hole for supplying a fuel fluid is provided separately.
  • a fifth aspect of the present invention is provided with a raw material spray hole for spraying a liquid raw material in which a metal compound is dissolved in an organic solvent, and a circumference around the raw material spray hole.
  • a plurality of primary oxygen injection holes for injecting oxygen or oxygen-enriched air in parallel with the center line of the holes; and on the circumference centering on the raw material spray holes, provided outside the primary oxygen injection holes,
  • a plurality of secondary oxygen ejection holes for ejecting oxygen or oxygen-enriched air in a direction toward one point on the extension line of the center line of the spray hole, the organic solvent and the oxygen or oxygen
  • the raw material when the liquid raw material does not contain an organic solvent, the raw material is provided between the raw material spray hole and the primary oxygen ejection hole on a circumference centered on the raw material spray hole.
  • a plurality of fuel ejection holes for ejecting fuel in parallel with the center line of the spray holes may be further provided.
  • a sixth aspect of the present invention provides a furnace section that heat-treats the raw material in an oxidation-reduction atmosphere, and is disposed in the furnace section, and jets fuel and the raw material toward the furnace section.
  • the aspect or the fifth aspect of the present invention a fuel supply system for supplying fuel to the burner, a raw material supply system for supplying raw material to the burner, and a cooling gas supply for supplying cooling gas to the furnace section And an ultrafine metal powder production apparatus equipped with a system.
  • the cooling gas supply system may further include a temperature control gas supply apparatus.
  • the present invention is composed of a panner and a furnace capable of generating a high-temperature reducing atmosphere, and an apparatus (for example, a bag filter) that separates the gas and powder generated from the furnace and collects the powder.
  • the PANA is directly connected to the furnace body, and a high temperature reducing atmosphere (flame) is formed in the furnace by the amount of fuel-supporting gas smaller than the amount that completely burns the fuel.
  • the PANA has a function of blowing a powdery metal compound as a raw material into a high-temperature reducing flame.
  • the raw material powder is efficiently heated in the air stream of the high-temperature reducing flame, and is reduced at a high speed to become ultrafine metal powder.
  • the particle size of the ultrafine metal powder is controlled by controlling the oxygen ratio (the ratio of the amount of combustion-supporting gas supplied to the burner to the amount of combustion-supporting gas required for complete combustion of the fuel). be able to.
  • the particle size of the generated metal powder is smaller than the raw material particle size, and by decreasing the oxygen ratio, the particle size of the generated metal powder is larger than the raw material particle size.
  • a gaseous or liquid fuel containing hydrocarbon is used as a fuel for a PANA for generating a high-temperature reducing atmosphere, and an oxygen concentration of 50% or more is used as a combustion-supporting gas. It is characterized by using oxygen-enriched air or pure oxygen. By partially oxidizing hydrocarbon-based fuel, hydrogen and carbon monoxide are generated, and by using a combustion-supporting gas, heating and reduction reaction can be performed at high speed in a high-temperature strong reducing atmosphere. .
  • the raw material is characterized by using a metal compound other than a salty product. As a result, it becomes possible to produce fine metal powder without generating chlorine-containing substances in the combustion exhaust gas, and the safety of the apparatus can be improved.
  • the present invention is a method in which treatment is performed in a high-temperature reducing atmosphere generated by a pruner without using electric energy, energy cost can be reduced, and electric heating and external heating type conventional method using CVD or the like Compared to the above, it is easy to increase the size of the equipment and it is a highly productive method.
  • metal fine powder can be produced in response to more various raw material types with high productivity and low energy cost.
  • the present invention is a method with excellent safety without generating harmful chlorine gas.
  • the present invention can be applied to other metals such as copper and cobalt in addition to nickel.
  • FIG. 1 is a schematic diagram showing the configuration of a production apparatus for ultrafine metal powder according to the present invention.
  • FIG. 2A is a front view of the tip of the panner.
  • FIG. 2B is a cross-sectional view showing the structure of the tip of the panner.
  • Figure 3 is a SIM image of ultrafine nickel powder obtained at an oxygen ratio of 0.6.
  • Fig. 4 is a SIM image of ultrafine nickel powder obtained at an oxygen ratio of 0.8.
  • Fig. 5 is a SIM image (inclination of 60 °) of the cross section of the product (Nickenore ultrafine powder) under the condition of oxygen ratio 0 ⁇ 8.
  • Figure 6 shows the measurement results of the particle size distribution of nickel oxide and Nikkenore ultrafine powder.
  • Fig. 7A is an SEM image of the raw material nickel oxide.
  • Fig. 7B is an SEM image of the generated spherical fine powder.
  • Fig. 8A is an SEM image of spherical fine powder obtained when nitrogen gas was not flowed into the furnace.
  • Fig. 8B was an SEM image of spherical fine powder obtained when nitrogen gas was flowed into the furnace.
  • Fig. 9 is a graph showing the relationship between the oxygen ratio of the PANA and the metallization rate.
  • FIG. 10A is a front view of the tip end of the panner when the aqueous solution raw material is used.
  • FIG. 10B is a cross-sectional view showing the structure of the tip of the panner when the aqueous solution raw material is used.
  • FIG. 11A is a front view of the front end of a panner when an organic solvent raw material is used.
  • FIG. 11B is a cross-sectional view showing the structure of the tip of the panner when using an organic solvent raw material.
  • Fig. 12 is an SEM image of ultrafine metal powder obtained using liquid raw materials.
  • FIG. 1 shows a schematic diagram depicting the configuration of a metal ultrafine powder production apparatus according to the present embodiment.
  • the apparatus 100 for producing ultrafine metal powder used in this example includes a feeder 1 for conveying raw materials, a panner 2 and a furnace 3 for forming a high-temperature reducing atmosphere, and a bag filter for separating powder from combustion exhaust gas. 4 Consists of a blower 5 for sucking gas.
  • Furnace 3 is composed of refractory in the vicinity of burner 2, and from the middle part of furnace 3 has a water-cooled furnace wall structure.
  • a thermocouple was installed on the refractory wall of furnace 3 so that the furnace wall temperature could be measured.
  • a cooling gas supply pipe 6 is mounted on the inner wall surface of the furnace 3, and cooling gas, for example, An inert gas such as nitrogen gas can be supplied in the tangential direction of the inner wall surface of the furnace 3.
  • the cooling gas supply pipe 6 is provided with a cooling gas supply device 7.
  • the cooling gas supply pipe 6 and the cooling gas supply device 7 can be omitted.
  • the metal powder as the raw material is quantitatively sent out by the feeder 1, carried by the carrier gas, and supplied to the Parner 2.
  • a fuel gas burned by the Parner 2 was used as the carrier gas.
  • FIGS. 2A and 2B show the structure of the tip 20 of the PANA 2 used in this example.
  • FIG. 2A is a front view of the tip end portion 20 of the pruner
  • FIG. 2B is a cross-sectional view showing the structure of the tip end portion 20 of the pruner.
  • FIGS. 2A and 2B there are a raw material powder channel 11 at the center, a primary oxygen channel 21 at the outer periphery, and a secondary oxygen channel 31 at the outer periphery.
  • a fuel fluid was allowed to flow as a carrier gas in the raw material powder channel 11. Therefore, the fuel fluid and the raw material powder are ejected from the raw material powder channel 11 as a powder flow.
  • the front end of the primary oxygen channel 21 is a multi-hole 22 and is blown out so that the oxygen gas wraps the powder flow and the oxygen gas turns into a swirl flow.
  • the tip of the secondary oxygen channel 31 is also a multi-hole 32 to eject secondary oxygen.
  • the powder when a flow path and a jet hole dedicated to a force fuel gas using fuel gas as a powder carrier gas are provided, the powder may be conveyed by another gas such as air.
  • another gas such as air.
  • primary and secondary oxygen were ejected by multi-holes.
  • a slit shape or the like may be used as long as it can be ejected so as to enclose the flow of the central fuel gas and raw material powder. good.
  • the raw material powder channel 11 is constituted by one hole, but it is also effective to eject from a plurality of holes (multi-holes).
  • primary oxygen is ejected in a swirl flow and secondary oxygen is ejected in an oblique flow (obliquely straight flow).
  • the flame length formed immediately after the burner is controlled.
  • the raw material is heat-treated by jetting the raw material into the flame, and is pulverized by being cooled in the furnace.
  • Each flow rate of fuel, primary oxygen, secondary oxygen, raw material ejection speed Furthermore, by adjusting each flow rate, such as the flow rate of the cooling gas flowing into the furnace, the flame length and the time for the raw material to touch the flame change, and the particle size of the fine powder finally obtained changes.
  • the flow path of the combustion-supporting gas is provided with the two systems of the primary oxygen flow path 21 and the secondary oxygen flow path 31.
  • providing a plurality of flow paths can be achieved by changing the ratio.
  • the flame length can be changed, which is an effective means for controlling the above-mentioned particle size.
  • Table 1 shows fuel fluid (LPG) flow rate, oxygen flow rate, flow rate ratio of primary and secondary oxygen, oxygen ratio,
  • the raw material powder pure nickel oxide having a particle size of about 1 ⁇ m (Nikkenore purity 78.6%) was used, and the temperature in the vicinity of Panna 2 was 1500 to 1600 ° C (metallic nickel) The melting point was higher than the melting point).
  • FIG. 3 shows a SIM (Scanning Ion Microscope) image of the appearance of the product (nickel ultrafine powder) under the condition of an oxygen ratio of 0.6. In this case, many spherical particles with a particle size of about 4 ⁇ m were observed.
  • FIG. 4 shows a SIM image of the product under the condition of an oxygen ratio of 0.8. At an oxygen ratio of 0.8, many spherical particles having a particle size of about 0.2 zm were observed.
  • FIG. 5 shows a SIM image (60. Inclination) of the cross section of the product (nickel ultrafine powder) under the condition of an oxygen ratio of 0.8. Spherical ultrafine powders of 0.2 x m or less were physically separated and very few were fused, so that they could be used as ultrafine powders. As a result of chemical analysis of the ultrafine powder obtained at an oxygen ratio of 0.6 and an oxygen ratio of 0.8, both of the Nikkenore reduction rates were 99% or more.
  • the particle size distribution of the raw material powder has a peak at about 1 ⁇ m, whereas when the oxygen ratio is 0.6, the product particle size distribution has a peak at about 4 / m. It is larger than the particle size of the raw material powder. On the other hand, when the oxygen ratio was 0.8, the distribution had a peak at about 0.15 zm, and it was found that the particle size could be controlled by the oxygen ratio.
  • this embodiment can also be applied to other metal compounds such as force nickel hydroxide using nickel oxide as a raw material.
  • Nickel hydroxide (5, 10 m)
  • Oxygen ratio The ratio of the amount of oxygen in the supplied combustion-supporting gas to the amount of oxygen required for complete combustion of the fuel.
  • FIG. 7A is an SEM image of the raw material nickel hydroxide
  • FIG. 7B is an SEM image of the produced spherical fine powder.
  • Example 3 The influence which the temperature in a furnace has on the particle size of spherical fine powder is shown.
  • nitrogen was used as the furnace temperature control gas, and the furnace temperature was controlled to 200 to 1600 ° C. by changing the flow rate.
  • Fig. 8A shows an SEM image of the spherical fine powder obtained when nitrogen gas was not passed, and Fig. 8B when nitrogen was passed.
  • a hydrocarbon-based fuel is used as the fuel.
  • soot remains in the generated fine powder, it can be easily solved by using hydrogen as the fuel.
  • FIGS. 10A, 10B, 11A, and 11B Examples of the structure of the tip of the panner used when using liquid raw materials are shown in FIGS. 10A, 10B, 11A, and 11B.
  • FIG. 10A is a front view of the tip end portion 210 of the panner 2 when the aqueous solution raw material is used
  • FIG. 10B is a cross-sectional view showing the structure of the panner tip end portion 210.
  • FIG. 11A is a front view of the tip portion 220 of the PANA 2 when an organic solvent raw material is used
  • FIG. 11B is a cross-sectional view showing the structure of the PANA tip portion 220.
  • the fuel flow path 213 gas fuel in the present embodiment
  • primary oxygen is caused to flow at the outer periphery thereof.
  • a secondary oxygen channel 217 which is a channel for flowing secondary oxygen, is provided.
  • a spray hole 212 is provided at the tip of the raw material flow path 211, from which the aqueous solution raw material is ejected in the form of a mist.
  • a fuel ejection hole 214 is provided at the front end of the fuel flow path 213, and a primary oxygen ejection hole 216 is provided at the front end of the primary oxygen flow path 215. As shown in FIG.
  • the raw material flow path 211, the fuel flow path 213, and the primary oxygen flow path 215 are provided along substantially the same direction as the center line of the burner tip 210 (the one-dot chain line in the raw material supply direction in the figure).
  • the aqueous solution raw material, fuel, and primary oxygen are ejected in the direction of the center line of the Pana tip 210.
  • the secondary oxygen ejection hole 218 provided at the tip of the secondary oxygen channel 217 is provided obliquely with respect to the center line of the PANA tip 210, and a plurality of secondary oxygen jet holes 218 are directed in a direction toward one point on the extension line of the center line.
  • the secondary oxygen ejection hole 218 is inclined.
  • 11A and 11B are provided with a raw material flow path 221 at the center without a fuel flow path, and a primary oxygen flow path 225 that is a flow path for flowing primary oxygen on the outer periphery thereof.
  • a secondary oxygen channel 227 that is a channel through which secondary oxygen flows is provided on the outer periphery of the primary oxygen channel 225. This is because the organic solvent itself can be used as an alternative fuel in the case of organic solvent raw materials.
  • the raw material flow path 221 and the primary oxygen flow path 225 are provided along substantially the same direction as the center line (the one-dot chain line in the raw material supply direction in the figure) of the PANA tip 220.
  • the organic solvent raw material and primary oxygen are ejected in the direction of the center line of the tip end portion 220 of the burner.
  • the secondary oxygen ejection hole 228 provided at the tip of the secondary oxygen channel 227 is provided obliquely with respect to the center line of the PANA tip 220, and a plurality of secondary oxygen jet holes 228 are provided in a direction toward one point on the extension line of the center line.
  • the secondary oxygen ejection hole 228 is inclined.
  • the liquid raw material is sprayed in the form of a mist by pressure spraying.
  • the spraying method may be a two-fluid spraying using compressed air or steam, or an ultrasonic nebulizer in addition to the pressure spraying.
  • the sprayed raw material is quickly processed by a flame formed on the outer periphery thereof, and in the case of an organic solvent raw material, a flame of the raw material fluid itself is quickly processed.
  • the method of ejecting the combustion-supporting gas (here, oxygen) and fuel is almost the same as that of the powder raw material described above, but various ejection forms can be taken to form a flame so as to enclose the raw material. it can.
  • Ni concentration The concentration of nickel element contained in each solution.
  • Oxygen ratio The amount of oxygen required for complete combustion of the fuel Ratio of oxygen content.
  • FIG. 12 shows an SEM image of the generated ultrafine metal powder.
  • the resulting particle size was much smaller than that of solid raw material, and many nanoscale spherical particles could be obtained.
  • the metallization rate of these ultrafine metal powders was about 97%.
  • the particle size can be freely controlled by controlling the furnace temperature. Furthermore, the concentration of nickel element in the liquid and the atomized particle size are also particle size control factors.
  • Solutes are not limited to nitrates, but can be dissolved in water or organic solvents and contain substances of the desired metal element.
  • An organometallic compound containing the target metal element can also be used.
  • the target metal element is not limited to nickel, but can be all applicable metals such as copper and cobalt.
  • the present invention can be applied to the production of ultrafine metal powders that are low in cost and excellent in safety by using a wide range of raw materials and freely controlling the particle size of the metal powders to be produced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

幅広い原料を用い、生成する金属粉の粒径を自在にコントロールできる低コストで安全性に優れた金属超微粉の製造方法が提供される。その金属超微粉の製造方法では、高温還元雰囲気を生成できるバーナと炉、炉から発生するガスと粉体とを分離して粉体を回収する装置から構成され、バーナは、原料となる粉状の金属化合物を高温還元火炎中に吹き込む機能を有する。原料粉体は高温還元火炎の気流中で効率的に加熱されることになり、高速で還元され金属超微粉となる。この際、酸素比(燃料を完全燃焼させるために必要な支燃性ガス量に対するバーナに供給する支燃性ガス量の比率)を制御することで、金属超微粉の粒径をコントロールする。

Description

明 細 書
金属超微粉の製造方法
技術分野
[0001] 本発明は、パーナを用いた高温還元雰囲気中において、金属化合物から粒径を 制御した金属超微粉を得る金属超微粉の製造方法、金属超微粉を製造するパーナ 、および金属超微粉製造装置に関する。
本願 ίま、 2004年 12月 22曰 ίこ曰本 (こ出願された特願 2004— 370893号 (こ基づさ 優先権を主張し、その内容をここに援用する。
背景技術
[0002] 近年、携帯端末等に利用される電子部品の小型化の進行に伴い、これらの部品に 利用される金属粉末の小径化のニーズが高まっている。代表的なものとして積層セラ ミックコンデンサーに利用されるニッケノレ超微粉がある。これらのニッケノレ超微粉の製 造方法として、蒸気圧の高い塩化物原料を CVD装置内で加熱気化させ、さらに水 素を還元剤として装置内に導入し還元することで、 1 β m以下の金属ニッケル超微粉 を製造する方法がある。
[0003] このような製造方法は、原料を 1000°C程度の比較的低い温度 (エッケルの融点以 下)で気化させて還元反応および析出させるために、微粉の製造に適しているとされ ている。しかし、このような方法は、 CVD装置を用いるため、原料の加熱に高価な電 気エネルギーを使用すること、さらに還元ガスとして高価な水素を用いるために、高コ ストな製造方法である。さらに塩ィ匕物の水素による還元反応であるため、炉内に有毒 な塩素ガスや塩化水素が発生するため、製造装置の腐食やリーク等に十分配慮した 高価な設備になるという問題がある。
特許文献 1 :特開平 4— 365806号
[0004] 一方、水素含有燃料と酸素含有気体をパーナにより燃焼させ、この気流中に気化 させた塩化鉄を導入して高温加水分解を生じさせ鉄微粉を製造する方法がある。こ の方法では、還元反応場の雰囲気制御に電気エネルギーを用いず、さらに水素ガス を用いる必要が無いため、比較的安価な製造方法である。しかし、原料として塩ィ匕物 を用いるため、上述の方法と同様に、発生する塩素ガスや塩化水素等の対策が必要 であった。さらに生成した金属粉は、粒径が 40〜80 /i mと幅広ぐ粒径の制御性に 問題があった。また、現在のニーズに合った、 1. 0 μ ΐη以下の超微粉の製造には適 していないという問題がある。
特許文献 2:特開昭 56-149330号
[0005] 上記従来技術のいずれの方法も、特に微粉の金属粉製造のために蒸気圧の高い 塩化物を使用しなくてはならず、原料の形態に制約があった。
発明の開示
発明が解決しょうとする課題
[0006] 本発明は、上記事情に鑑み、幅広い原料を用い、生成する金属粉の粒径を自在に コントロールし、粉体の原料の場合、原料粒径の 1/10以下の粒径とすることができ る低コストで安全性に優れた金属超微粉の製造方法を提供することを目的とする。 課題を解決するための手段
[0007] 本発明の第一の態様は、パーナを用いて炉内に高温還元雰囲気を形成し金属化合 物から金属を得る方法において、パーナにより生成した高温還元気流中に粉体状の 金属化合物を噴出させることで、該金属化合物を加熱'還元し、粒径を制御した球状 の金属超微粉を生成させることを特徴とする金属超微粉の製造方法である。
[0008] 前記球状の金属粉の粒径をパーナの酸素比の調整によって制御してもよレ、。
前記金属超微粉は、原料の粒径よりも小さくすることができる。
前記金属超微粉は、原料の粒径の 1/10以下とすることができる。
前記高温還元雰囲気は、ガス状もしくは液体状の炭化水素系燃料と、酸素もしく は酸素富化空気とを用いて生成してもよレ、。
前記金属化合物は塩ィ匕物以外の物質であることが好ましい。
前記金属超微粉の粒径は、炉内温度で制御することもできる。
[0009] 本発明の第二の態様は、パーナから供給される燃料の部分燃焼により形成した高 温還元雰囲気の炉内に、原料の金属元素を含む化合物の溶液を噴霧し、溶液中の 金属化合物を加熱 ·分解 ·還元することにより、粒径を制御した球状の金属超微粉を 生成させることを特徴とする金属超微粉の製造方法である。 前記溶液はパーナから炉内に噴霧してもよい。
前記方法において、前記溶液が有機溶媒であり、前記溶液をパーナの燃料として 噴霧し、部分燃焼させることにより高温還元雰囲気を形成し、球状の金属超微粉を生 成させることもできる。
[0010] 本発明の第三の態様は、上記いずれかの製造方法により製造された金属超微粉 である。
[0011] 本発明の第四の態様は、原料となる金属化合物を、燃料流体をキャリアガスとして 一方向に噴出する原料噴出孔と、前記原料噴出孔を中心とする円周上に設けられ、 前記原料の噴出方向と平行に酸素もしくは酸素富化空気を噴出する複数の一次酸 素噴出孔と、前記原料噴出孔を中心とする円周上に、前記一次酸素噴出孔の外側 に設けられ、前記原料噴出孔の噴出方向延長線上の一点に向かう方向に、酸素もし くは酸素富化空気を噴出する複数の二次酸素噴出孔と、を備えたパーナであって、 前記燃料流体と前記酸素もしくは酸素富化空気によって高温還元気流を生成させ、 前記金属化合物を還元し、原料より粒径の小さい金属超微粉を製造するパーナであ る。
前記原料噴出孔、前記一次酸素噴出孔及び前記二次酸素噴出孔は、異なる流体 供給流路を有し、各流体の噴出量は、独立に制御することができる。
前記金属超微粉製造パーナにおいて、前記キャリアガスを空気、酸素、酸素富化 空気、もしくは窒素等の不活性ガスとしてもよい。その場合には、別途、燃料流体を 供給する燃料噴出孔を設ける。
[0012] 本発明の第五の態様は、有機溶媒に金属化合物を溶解させた液状原料を噴霧す る原料噴霧孔と、前記原料噴霧孔を中心とする円周上に設けられ、前記原料噴霧孔 の中心線と平行に酸素もしくは酸素富化空気を噴出する複数の一次酸素噴出孔と、 前記原料噴霧孔を中心とする円周上に、前記一次酸素噴出孔の外側に設けられ、 前記原料噴霧孔の中心線の延長線上の一点に向かう方向に、酸素もしく酸素富化 空気を噴出する複数の二次酸素噴出孔と、を備えたパーナであって、前記有機溶媒 と前記酸素もしくは酸素富化空気によって高温還元気流を生成させ、前記金属化合 物を還元し、金属超微粉を製造するパーナである。 前記金属超微粉製造パーナにおいて、液状原料が有機溶媒を含まない場合、前記 原料噴霧孔と前記一次酸素噴出孔との間に、前記原料噴霧孔を中心とする円周上 に設けられ、前記原料噴霧孔の中心線と平行に燃料を噴出する複数の燃料噴出孔 を更に備えていてもよい。
[0013] 本発明の第六の態様は、原料を酸化還元雰囲気下で熱処理する炉部と、前記炉 部に配置され、燃料と原料とを前記炉部に向けて噴出する、上記第四の態様または 第五の態様に係るパーナと、前記パーナに燃料を供給する燃料供給系と、前記バー ナに原料を供給する原料供給系と、前記炉部に冷却用ガスを供給する冷却ガス供 給系とを備えた金属超微粉製造装置である。
前記金属超微粉製造装置において、前記冷却ガス供給系が、温度制御用のガス 供給装置を更に含んでレ、てもよレ、。
[0014] 本発明は、高温還元雰囲気を生成できるパーナと炉、炉から発生するガスと粉体と を分離して粉体を回収する装置 (例えば、バグフィルター)から構成される。パーナは 、炉体に直結され、燃料と燃料を完全燃焼させる量よりも少ない量の支燃性ガスによ り炉内に高温還元雰囲気 (火炎)を形成する。
[0015] さらに、パーナは、原料となる粉状の金属化合物を高温還元火炎中に吹き込む機 能を有する。これにより、原料粉体は高温還元火炎の気流中で効率的に加熱される ことになり、高速で還元され金属超微粉となる。この際、酸素比 (燃料を完全燃焼させ るために必要な支燃性ガス量に対するパーナに供給する支燃性ガス量の比率)を制 御することで、金属超微粉の粒径をコントロールすることができる。
[0016] 酸素比を高めることで、生成した金属粉の粒径は、原料粒径よりも小さくなり、酸素 比を低くすることで、生成した金属粉の粒径は、原料粒径よりも大きくすることができる
[0017] さらに、本発明では、高温還元雰囲気を生成するためのパーナの燃料として、炭化 水素を含んだガス状もしくは液体状の燃料を用レ、、支燃性ガスとして酸素濃度 50% 以上の酸素富化空気もしくは純酸素を用いることを特徴としている。炭化水素系の燃 料を部分酸化することで、水素と一酸化炭素を生成させ、かつ、支燃性ガスを用いる ことで、高温強還元雰囲気により、高速で加熱 ·還元反応を行うことができる。 [0018] また、原料は、塩ィ匕物以外の金属化合物を用いることを特徴としている。これにより 、燃焼排ガス中に塩素を含んだ物質が発生することなく金属微粉を製造することが可 能となり、装置の安全性を高めることができる。
[0019] 本発明は、電気エネルギーを用いずにパーナにより生成させた高温還元雰囲気に より処理を行う方法であり、エネルギーコストの低減ができ、さらに CVD等による電気 加熱かつ外熱式の従来方法に比べ、装置の大型化が容易であり、生産性の高い方 法である。
発明の効果
[0020] 本発明によれば、生産性が高ぐエネルギーコストが低ぐさらに多様な原料種に対 応して金属微粉製造ができる。また、本発明は、有害な塩素ガスを発生させること無 ぐ安全性に優れた方法である。更に、本発明は、ニッケル以外に、銅、コバルトのよ うな他の金属に関しても適用できる。
図面の簡単な説明
[0021] 図 1は本発明の金属超微粉の製造装置の構成を示す模式図である。
図 2Aはパーナ先端部の正面図である。
図 2Bはパーナ先端部の構造を示す断面図である。
図 3は酸素比 0. 6で得られたニッケル超微粉の SIM画像である。
図 4は酸素比 0. 8で得られたニッケル超微粉の SIM画像である。
図 5は酸素比 0· 8の条件における生成物(二ッケノレ超微粉)の断面の SIM画像 (60 ° 傾斜)である。
図 6は酸化ニッケルとニッケノレ超微粉の粒径分布の測定結果である。
図 7Aは、原料の酸化ニッケルの SEM画像である。
図 7Bは、生成した球状微粉の SEM画像である。
図 8Aは炉内に窒素ガスを流さなかった場合に得られた球状微粉の SEM画像である 図 8Bは炉内に窒素ガスを流した場合に得られた球状微粉の SEM画像である。 図 9はパーナの酸素比と金属化率の関係を示すグラフである。
図 10Aは水溶液原料を用いる場合のパーナ先端部の正面図である。 図 10Bは水溶液原料を用いる場合のパーナ先端部の構造を示す断面図である。 図 11Aは有機溶媒原料を用いる場合のパーナ先端部の正面図である。
図 11Bは有機溶媒原料を用いる場合のパーナ先端部の構造を示す断面図である。 図 12は液体原料を用いた場合に得られた金属超微粉の SEM画像である。
符号の説明
100 ···金属超微粉製造装置
1··'フィーダ
2··'パーナ
3··'炉
4··.バグフィルタ
5··'ブロワ
11· ··原料粉体流路
20· ··パーナ先端部
21· ··一次酸素流路
31· ··二次酸素流路
22· ··一次酸素噴出孔(マルチホ -ル)
32· • ·二次酸素噴出孔(マルチホ —ル)
発明を実施するための最良の形態
[0023] 本発明の実施例として、酸化ニッケノレ粉からニッケノレ超微粉を生成する方法を、以 下に詳細に説明する。
実施例
[0024] 図 1に本実施例に係る金属超微粉の製造装置の構成を描いた模式図を示す。
本実施例で用いた金属超微粉製造装置 100は、原料を搬送するためのフィーダ 1 、高温還元雰囲気を形成するためのパーナ 2及び炉 3、粉体と燃焼排ガスとを分離 するためのバグフィルタ 4、ガスを吸引するためのブロワ 5から構成される。炉 3は、バ ーナ 2近傍が耐火物で構成され、炉 3の中間部から以降は、水冷の炉壁構造とした。 また、炉 3の耐火物壁に熱電対を設置して、炉内壁温度を計測できるようにした。
[0025] また、炉 3の内壁面には冷却ガス供給配管 6が坦設されており、冷却ガス、例えば 窒素ガスなどの不活性ガスを炉 3の内壁面の接線方向に供給できるようになつている 。また、この冷却ガス供給配管 6には冷却ガス供給装置 7が配設されており、冷却ガ ス供給配管 6に供給する冷却ガスの流量を調節することにより、炉 3の壁面付近の温 度を測定し、炉内温度を制御できるようになつている。なお、これら冷却ガス供給配管 6および冷却ガス供給装置 7は省略することもできる。
[0026] 原料である金属の粉体は、フィーダ 1で定量的に送り出され、キャリアガスにより搬 送されてパーナ 2に供給される。本実施例では、キャリアガスとしてパーナ 2で燃焼さ せる燃料ガスを用いた。
[0027] 本実施例で用いたパーナ 2の先端部 20の構造を図 2Aおよび図 2Bに示す。図 2A はパーナ先端部 20の正面図であり、図 2Bはパーナ先端部 20の構造を示す断面図 である。図 2Aおよび図 2Bに示すように、中心に原料粉体流路 11、その外周に一次 酸素流路 21、さらにその外周に二次酸素流路 31がある。原料粉体流路 11には、燃 料流体をキャリアガスとして流すようにした。したがって、燃料流体と原料粉体は、粉 体流として原料粉体流路 11から噴出する。一次酸素流路 21の先端はマルチホール 22とし、酸素ガスが粉体流を包み込むように、かつ、酸素ガスが旋回流となるように 噴出させる。二次酸素流路 31の先端もマルチホール 32とし、二次酸素を噴出させる
[0028] 本実施例では、粉体のキャリアガスとして燃料ガスを用いた力 燃料ガス専用の流 路および噴出孔を設ける場合は、空気等の別のガスによって粉体を搬送しても良い 。また、本実施例では、一次および二次酸素はマルチホールにより噴出させたが、中 心の燃料ガスおよび原料粉体の流れを包み込むように噴出できれば良ぐスリット形 状等のものを用いても良い。
[0029] さらに、本実施例では、原料粉体流路 11は一つの孔で構成したが、複数孔(マル チホール)から噴出させることも有効である。また、本実施例では、一次酸素を旋回流 、二次酸素を斜向流 (斜め直進流)で噴出させる。燃料、一次酸素、および二次酸素 の各流量を適宜調節することにより、パーナ直後に形成される火炎長が制御される。 この火炎の中に原料を噴出することにより原料が熱処理され、これが炉内で冷却され ることにより微粉化される。燃料、一次酸素、二次酸素の各流量、原料の噴出速度、 さらに炉内に流す冷却ガスの流量等、各流量を調節することにより、火炎長、火炎に 原料が触れる時間が変化し、最終的に得られる微粉の粒径が変化する。
[0030] なお、上記噴出方法に特に制約は無ぐ粉体および燃料ガスを噴出させる方法に よって、適正な流れを選定して組み合わせることができる。
本実施例では、支燃性ガスの流路は、一次酸素流路 21と二次酸素流路 31の二系 統を設けたが、複数の流路を設けることは、その比率を変えることで火炎長を変える ことができ、前述した粒径を制御する方法として、有効な手段となる。
[0031] 表 1に燃料流体 (LPG)流量、酸素流量、一次酸素と二次酸素の流量比、酸素比、
LPG原料粉体供給量などの実験条件を示す。
[表 1]
Figure imgf000010_0001
[0032] なお、原料粉体として、粒径が約 1 β mの純酸化ニッケル (二ッケノレ純度 78. 6%)を 用レ、、 パーナ 2近傍の温度が 1500〜: 1600°C (金属ニッケルの融点以上)となる条件 で実施した。
[0033] 図 3に酸素比 0. 6の条件における、生成物(ニッケル超微粉)の粉体外観の SIM(S canning Ion Microscope)画像を示す。この場合、粒径 4 μ m程度の球开粒子が多く 観察された。
[0034] 図 4に酸素比 0. 8の条件における、生成物の SIM画像を示す。酸素比 0. 8では、 粒径 0. 2 z m程度の球形粒子が多く観察された。
[0035] 図 5に酸素比 0. 8の条件における生成物(ニッケル超微粉)の断面の SIM画像 (60 。 傾斜)を示す。 0. 2 x m以下の球形の超微粉は、それぞれが物理的に分離してお り、融着しているものが極めて少ないので、超微粉として利用できるものであった。な お、酸素比 0. 6および酸素比 0. 8で得られた超微粉を化学分析した結果、ニッケノレ の還元率は、両方とも 99%以上であった。
[0036] 原料粉体と生成物について粒度分布測定 (マイクロトラック:レーザー回折 ·散乱法) を行った。結果を図 6に示す。
[0037] 原料粉体の粒径分布は、約 1 μ mにピークを有しているのに対し、酸素比 0. 6の場 合、生成物の粒径分布は約 4 / mにピークを有しており、原料粉体の粒径よりも大き レ、。一方、酸素比 0. 8の場合、約 0. 15 z mにピークを有する分布となり、酸素比に より粒径を制御できることが判明した。
[0038] なお、本実施例では、原料として酸化ニッケルを用いた力 水酸化ニッケル等の他 の金属化合物にも応用することができる。
[0039] (実施例 2)
原料として、粉体状の酸化ニッケル、水酸化ニッケルを用レ、、燃料、支燃性ガスの 種類、供給量等を変え、図 1に示す金属超微粉製造装置 100において、図 2Aおよ び図 2Bに示す形状のパーナ先端部 20を用い、金属ニッケルの球状微粉の生成実 験を行なった。表 2に実験条件を示す。
[0040] 表 2の実験条件の範囲内で、金属ニッケルの球状微粉が生成できることが確認され た。また、パーナにおける酸素比、一次/二次酸素比率、支燃性ガス中の酸素濃度 、原料に対する燃料の比率、原料'燃料混合気の噴出速度、酸素噴出速度、一次酸 素の旋回強度、炉内雰囲気温度等によって、粒径を制御できることが判明した。
[0041] [表 2]
原料 種類 (平均粒径) 酸化ニッゲル (0.66
U m)
水酸化 ニ ッ ケ ル (5, 10 m)
供給量(k g / h) 3〜20
燃料 種類 L P G L N G
供給量(Nm3/h) 1〜20 2.3〜45.9 支燃性 ガ 種類 純酸素、 酸素富化空気 ス 供給量※(Nm3Zh) 2.0-95.0(L P G)
1.8-87.2(L N G) 一次/二次酸素比率 10〜90
(%)
酸素比※ 2 (― ) 0.4〜0.95
炉内温度 種類 窒素
制御用ガ 供給量(Nm3Zh) 0-500 ス
※ 支燃性ガス供給量:純酸素流量をベース。
※2 酸素比:燃料の完全燃焼に必要な酸素量に対する供給した支燃性ガス中の酸 素量の比。
[0042] 平均粒径 10 μ mの水酸化ニッケルを原料として得た球状微粉の走査電子顕微鏡 写真(SEM (Scanning Electron Microscope)画像)の一例を示す。図 7Aは、原料の 水酸化ニッケルの SEM画像であり、図 7Bは、生成した球状微粉の SEM画像である 。また、マイクロトラックで平均粒径を分析した結果、平均粒径 0.4 μΐηの球状微粉が 得られたことが判明した。
[0043] (実施例 3) 炉内温度が球状微粉の粒径に与える影響を示す。図 1の金属超微粉製造装置 10 0において、炉内温度制御用ガスとして窒素を用い、その流量を変化させることにより 、炉内温度を 200〜1600°Cとなるように制御した。
窒素ガスを流さなかった場合、炉内温度は 1600°C近傍になり、平均粒径 0. 4 z m の球状微粉が得られた。窒素ガスを 288Nm3Zhで流したところ、炉内温度は 500°C 程度まで下がり、平均粒径 0. 2 z mの球状微粉が得られた。図 8Aに窒素ガスを流さ なかった場合、図 8Bに窒素を流した場合に得られた球状微粉の SEM画像を示す。
[0044] (実施例 4)
酸化ニッケル及び水酸化ニッケルを原料とし、パーナの酸素比 (燃料を完全燃焼さ せるに相当する酸素量に対する供給した酸素量の比率)と金属化率の関係を調べた 。図 9にパーナの酸素比と金属化率の関係を示す。金属化率は、酸素比 0. 9以下で あれば 98%以上の高い金属化率が得られることがわかった。
また、本実施例では、燃料として炭化水素系燃料を用いたが、生成する微粉中に 煤が残存することが問題になる場合には、燃料として水素を用いることにより容易に 解決できる。
[0045] (実施例 5)
硝酸ニッケルを水に溶力した水溶液原料や、硝酸ニッケルをメタノール等の有機溶 媒に溶力した有機溶媒原料を用い、金属ニッケルの超微粒子を得る実験を行なった 水溶液原料や有機溶媒原料等の液体原料を用いる場合に使用するパーナ先端部 の構造の例を図 10A、図 10B図、図 11Aおよび図 11Bに示す。図 10Aは水溶液原 料を用いる場合のパーナ 2の先端部 210の正面図であり、図 10Bは同パーナ先端部 210の構造を示す断面図である。図 11Aは有機溶媒原料を用いる場合のパーナ 2 の先端部 220の正面図であり、図 11Bは同パーナ先端部 220の構造を示す断面図 である。
[0046] 図 10Aおよび図 10Bに示したパーナ先端部 210では、中心に原料流路 211、その 外周に燃料流路 213 (本実施例では、ガス燃料)、さらにその外周に一次酸素を流す ための流路である一次酸素流路 215が設けられ、さらに一次酸素流路 215の外周に 二次酸素を流す流路である二次酸素流路 217が設けられている。原料流路 211の 先端には噴霧孔 212が設けられ、ここから水溶液原料が霧状に噴出される。燃料流 路 213の先端には燃料噴出孔 214が設けられ、一次酸素流路 215の先端には一次 酸素噴出孔 216が設けられている。図 10Bに示すように、原料流路 211、燃料流路 2 13、一次酸素流路 215はパーナ先端部 210の中心線(図中原料供給方向の一点鎖 線)と略同方向に沿って設けられており、水溶液原料、燃料、一次酸素はパーナ先 端部 210の中心線方向に噴出される。一方、二次酸素流路 217の先端に設けられた 二次酸素噴出孔 218は、パーナ先端部 210の中心線に対して斜めに設けられ、中 心線の延長線上の一点を向く方向に複数の二次酸素噴出孔 218が傾斜して設けら れている。
[0047] 図 11Aおよび図 11Bに示したパーナでは、燃料流路は無ぐ中心に原料流路 221 、その外周に一次酸素を流すための流路である一次酸素流路 225が設けられ、さら に一次酸素流路 225の外周に二次酸素を流す流路である二次酸素流路 227が設け られている。有機溶媒原料の場合、有機溶媒自体が燃料として代替利用できるため である。
[0048] 図 11Bに示すように、原料流路 221、一次酸素流路 225はパーナ先端部 220の中 心線(図中原料供給方向の一点鎖線)と略同方向に沿って設けられており、有機溶 媒原料、および一次酸素はパーナ先端部 220の中心線方向に噴出される。一方、 二次酸素流路 227の先端に設けられた二次酸素噴出孔 228は、パーナ先端部 220 の中心線に対して斜めに設けられ、中心線の延長線上の一点を向く方向に複数の 二次酸素噴出孔 228が傾斜して設けられている。
[0049] 上記液体原料は、圧力噴霧により霧状に噴霧されるが、噴霧方法は、圧力噴霧の 他に圧縮空気あるいはスチームを使った二流体噴霧、あるいは超音波ネブライザ一 でも可能である。
水溶液原料の場合は、その外周に形成する火炎により、有機溶媒原料の場合は、 原料流体そのものの火炎により、噴霧された原料が迅速に処理される。支燃性ガス( ここでは酸素)および燃料の噴出方法は、前述した粉体原料の場合とほぼ同じ形態 であるが、原料を包み込むように火炎を形成するために様々な噴出形態をとることが できる。
[0050] 図 1の装置に、図 10Aと図 10B、および、図 11Aと図 11Bに示した形状のバーナ先 端部 210, 220をそれぞれ備えた二種類のパーナを用いて実験を行なった。表 3に 本実施例の実験条件を示す。
[0051] [表 3]
Figure imgf000015_0001
※ェ 硝酸ニッケル: 6水和物
※? Ni濃度:各溶液中に含まれるニッケル元素濃度。
※3 支燃性ガス供給量:酸素流量ベース。
※ 酸素比:燃料の完全燃焼に必要な酸素量に対する供給した支燃性ガス中の 酸素量の比率。
[0052] 図 12に生成した金属超微粉の SEM画像を示す。液体原料を用いた場合、得られ る粒子径は固体原料に比べて極めて小さぐナノスケールの球状粒子を多く得ること ができた。また、これら金属超微粉の金属化率は、約 97%であった。
液体原料を使用する場合にも、実施例 3で述べたように、炉内温度を制御すること で、粒径を自在にコントロールできる。さらに、液体中のニッケル元素濃度や霧化粒 子径も、粒径制御因子となる。
また、水溶液原料や有機溶媒原料を加熱することで、溶液中のニッケノレ濃度をより 高めることもでき、生産性を高くすることも可能である。また、溶質としては、硝酸塩に 限られるわけではなぐ水または有機溶媒に溶解することができ、 目的とする金属元 素を含む物質であればょレ、。
また、 目的とする金属元素を含む有機金属化合物を使用することもできる。さらに目 的とする金属元素はニッケルに限られるわけではなぐ銅、コバルト等、適用可能な 金属全てを対象とすることができる。
産業上の利用可能性
[0053] 本発明は、幅広い原料を用い、生成する金属粉の粒径を自在にコントロールでき、 低コストで安全性に優れた金属超微粉の製造に適用できる。

Claims

請求の範囲
[I] パーナを用いて炉内に高温還元雰囲気を形成し金属化合物から金属を得る方法 において、パーナにより生成した高温還元気流中に粉体状の金属化合物を噴出さ せることで、該金属化合物を加熱 '還元し、粒径を制御した球状の金属超微粉を生 成させることを特徴とする金属超微粉の製造方法。
[2] 前記金属超微粉の粒径を、前記金属化合物の粒径より小さくすることを特徴とする 請求項 1記載の金属超微粉の製造方法。
[3] 前記金属超微粉の粒径を、前記金属化合物の粒径の 1/10以下にすることを特徴 とする請求項 1記載の金属超微粉の製造方法。
[4] 前記球状の金属粉の粒径をパーナの酸素比の調整によって制御することを特徴と する請求項 1記載の金属超微粉の製造方法。
[5] 前記高温還元雰囲気は、ガス状もしくは液体状の炭化水素系燃料と、酸素もしくは 酸素富化空気とを用いて生成することを特徴とする請求項 1記載の金属超微粉の製 造方法。
[6] 前記金属化合物は塩ィヒ物以外の物質であることを特徴とする請求項 1〜5のいず れか一項に記載の金属超微粉の製造方法。
[7] 前記金属超微粉の粒径を、炉内温度で制御する請求項 1〜5のいずれか一項に記 載の金属超微粉の製造方法。
[8] パーナから供給される燃料の部分燃焼により形成した高温還元雰囲気の炉内に、 原料の金属元素を含む化合物の溶液を噴霧し、溶液中の金属化合物を加熱 ·分解 · 還元することにより、粒径を制御した球状の金属超微粉を生成させることを特徴とす る金属超微粉の製造方法。
[9] 前記溶液はパーナから炉内に噴霧されることを特徴とする請求項 8記載の金属超 微粉の製造方法。
[10] 前記溶液が有機溶媒であり、前記溶液をパーナの燃料として噴霧し、部分燃焼さ せることにより高温還元雰囲気を形成し、球状の金属超微粉を生成させることを特徴 とする請求項 6記載の金属超微粉の製造方法。
[II] 請求項 1〜5および請求項 8〜: 10のいずれか一項に記載の製造方法により製造さ れた金属超微粉。
[12] 原料となる金属化合物を燃料流体をキャリアガスとして一方向に噴出する原料噴出 孔と、
前記原料噴出孔を中心とする円周上に設けられ、前記原料の噴出方向と平行に酸 素もしくは酸素富化空気を噴出する複数の一次酸素噴出孔と、
前記原料噴出孔を中心とする円周上に、前記一次酸素噴出孔の外側に設けられ、 前記原料噴出孔の噴出方向延長線上の一点に向力、う方向に、酸素もしくは酸素富 化空気を噴出する複数の二次酸素噴出孔と、
を備えたパーナであって、前記燃料流体と前記酸素もしくは酸素富化空気によって 高温還元気流を生成させ、前記金属化合物を還元することで、前記原料より小さな 粒径の金属超微粉を製造するパーナ。
[13] 前記金属化合物を搬送するキャリアガスが、空気、酸素、酸素富化空気、もしくは不 活性ガスである場合、別途、燃料供給を行なう燃焼噴出孔を設けた請求項 12に記載 の金属超微粉を製造するパーナ。
[14] 有機溶媒に金属化合物を溶解させた液状原料を噴霧する原料噴霧孔と、前記原 料噴霧孔を中心とする円周上に設けられ、前記原料噴霧孔の中心線と平行に酸素 もしくは酸素富化空気を噴出する複数の一次酸素噴出孔と、
前記原料噴霧孔を中心とする円周上に、前記一次酸素噴出孔の外側に設けられ、 前記原料噴霧孔の中心線の延長線上の一点に向力う方向に酸素もしくは酸素富化 空気を噴出する複数の二次酸素噴出孔と、
を備えたパーナであって、前記有機溶媒と前記酸素もしくは酸素負荷空気によって 高温還元気流を生成させ、前記金属化合物を還元し、金属超微粉を製造するバー ナ。
[15] 金属化合物を含む液状原料を噴霧する原料噴霧孔と、
前記原料噴霧孔を中心とする円周上に設けられ、前記原料噴霧孔の中心線と平行 に燃料を噴出する複数の燃料噴出孔と、
前記原料噴霧孔を中心とする円周上に、前記燃料噴出孔の外側に設けられ、前記 原料噴霧孔の中心線と平行に酸素もしくは酸素富化空気を噴出する複数の一次酸 素噴出孔と、
前記原料噴出孔を中心とする円周上に、前記一次酸素噴出孔の外側に設けられ、 前記原料噴出孔の中心線の延長線上の一点に向力う酸素もしくは酸素富化空気を 噴出する複数の二次酸素噴出孔と、
を更に備えたパーナであって、前記燃料と前記酸素もしくは酸素富化空気によって 高温還元気流を生成させ、前記金属化合物を還元し、金属超微粉を生成するバー ナ。
[16] 原料を酸化還元雰囲気下で熱処理する炉部と、
前記炉部に配置され、燃料、酸素もしくは酸素富化空気と原料とを前記炉部に向け て噴出する、請求項 12〜: 15のいずれか一項に記載されたパーナと、
前記パーナに燃料を供給する燃料供給系と、
前記パーナに原料を供給する原料供給系と、
前記炉部に冷却用ガスを供給する冷却ガス供給系と、
を備えた金属超微粉製造装置。
[17] 前記冷却ガス供給系が、温度制御用のガス供給装置を更に含む請求項 16に記載 の金属超微粉製造装置。
PCT/JP2005/023618 2004-12-22 2005-12-22 金属超微粉の製造方法 WO2006068231A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN2005800438903A CN101084080B (zh) 2004-12-22 2005-12-22 金属超微粉的制造方法
EP05819525.6A EP1839783B1 (en) 2004-12-22 2005-12-22 Method for producing superfine metal powder
KR1020077013842A KR100888381B1 (ko) 2004-12-22 2005-12-22 금속초미분의 제조방법
US11/793,424 US8062406B2 (en) 2004-12-22 2005-12-22 Process for producing metallic ultrafine powder
JP2006549060A JP4304212B2 (ja) 2004-12-22 2005-12-22 金属超微粉の製造方法
US13/067,780 US20110256250A1 (en) 2004-12-22 2011-06-27 Process for producing metallic ultrafine powder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004370893 2004-12-22
JP2004-370893 2004-12-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/067,780 Division US20110256250A1 (en) 2004-12-22 2011-06-27 Process for producing metallic ultrafine powder

Publications (1)

Publication Number Publication Date
WO2006068231A1 true WO2006068231A1 (ja) 2006-06-29

Family

ID=36601828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/023618 WO2006068231A1 (ja) 2004-12-22 2005-12-22 金属超微粉の製造方法

Country Status (7)

Country Link
US (2) US8062406B2 (ja)
EP (1) EP1839783B1 (ja)
JP (2) JP4304212B2 (ja)
KR (1) KR100888381B1 (ja)
CN (1) CN101084080B (ja)
TW (1) TWI381897B (ja)
WO (1) WO2006068231A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009013997A1 (ja) * 2007-07-23 2009-01-29 Taiyo Nippon Sanso Corporation 金属超微粉の製造方法
JP2010196117A (ja) * 2009-02-25 2010-09-09 Taiyo Nippon Sanso Corp 金属粒子の製造装置および製造方法
JP2011006718A (ja) * 2009-06-23 2011-01-13 Taiyo Nippon Sanso Corp 金属超微粉の製造方法および製造装置
JP2011208187A (ja) * 2010-03-29 2011-10-20 Taiyo Nippon Sanso Corp 金属超微粉の製造方法
JP2012237023A (ja) * 2011-05-10 2012-12-06 Taiyo Nippon Sanso Corp 金属微粒子の製造方法
JP2015086413A (ja) * 2013-10-29 2015-05-07 大陽日酸株式会社 複合超微粒子の製造方法
JP2016125066A (ja) * 2014-12-26 2016-07-11 大陽日酸株式会社 金属微粒子の製造方法
JP6242522B1 (ja) * 2017-03-24 2017-12-06 新日鉄住金エンジニアリング株式会社 バーナ及びその製造方法
WO2018173753A1 (ja) * 2017-03-24 2018-09-27 大陽日酸株式会社 銅微粒子、銅微粒子の製造方法、及び焼結体の製造方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100867743B1 (ko) * 2008-07-04 2008-11-10 박정재 산소와 연료의 믹싱효율을 향상시키기 위한 산소노즐이구비된 산소버너
DE102009024120A1 (de) * 2009-06-06 2010-12-09 Arno Friedrichs Verfahren zur Verarbeitung von Metallpulver
AT509017B1 (de) * 2009-11-02 2012-05-15 Ctp-Dumag Gmbh Brennerdüse
WO2011075874A1 (zh) * 2009-12-24 2011-06-30 北京航天万源煤化工工程技术有限公司 一种燃料分配装置和燃烧器
KR100983947B1 (ko) * 2010-05-26 2010-09-27 연규엽 구형미세마그네슘분말 제조장치
CN103537704A (zh) * 2013-03-15 2014-01-29 袁志刚 高纯微细球形金属镁粉的气动雾化生产方法
CN104121581B (zh) * 2014-07-23 2016-06-29 华东理工大学 一种高效低NOx管式加热炉低浓度富氧燃烧系统及燃烧器
CA2994119A1 (en) * 2015-07-31 2017-02-09 Nuvera Fuel Cells, LLC Burner assembly with low nox emissions
WO2018081000A1 (en) * 2016-10-25 2018-05-03 University Of Richmond Gold nanoparticle in ceramic glaze
CN106825598A (zh) * 2016-12-27 2017-06-13 有研粉末新材料(北京)有限公司 一种叠加式多层料舟结构的金属粉末还原方法
JP6130616B1 (ja) 2017-02-07 2017-05-17 大陽日酸株式会社 銅微粒子及びその製造方法、並びに焼結体
US20190217393A1 (en) * 2018-01-12 2019-07-18 Hammond Group, Inc. Methods for processing metal-containing materials
KR102086039B1 (ko) * 2018-11-19 2020-04-20 고등기술연구원연구조합 냉각 및 증기 발생 기능을 가진 플레이트를 구비한 연소버너
JP7139258B2 (ja) 2019-01-22 2022-09-20 大陽日酸株式会社 銅微粒子、導電性材料、銅微粒子の製造方法
CN112902159A (zh) * 2021-01-22 2021-06-04 成都光华科技发展有限公司 一种三通道多氧燃烧器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0254705A (ja) * 1988-08-16 1990-02-23 Tokai Carbon Co Ltd 金属微粉の製造法
JP2001124307A (ja) * 1999-08-17 2001-05-11 Nippon Furnace Kogyo Kaisha Ltd 無酸化還元燃焼方法並びにバーナ
JP2002356708A (ja) * 2001-05-30 2002-12-13 Tdk Corp 磁性金属粉末の製造方法および磁性金属粉末
JP2004044907A (ja) * 2002-07-11 2004-02-12 Kubota Corp 溶融処理設備

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3701517A (en) * 1966-12-16 1972-10-31 Airco Inc Oxy-fuel burners in furnace tuyeres
US3876190A (en) * 1969-06-25 1975-04-08 Commw Ind Gases Method and apparatus for feeding particulate materials to furnaces and the like
JPS5951497B2 (ja) 1980-04-21 1984-12-14 三菱マテリアル株式会社 酸化鉄超微粉末の製造方法
FR2608257B1 (fr) * 1986-12-12 1989-05-19 Inst Francais Du Petrole Procede pour bruler du gaz et bruleur a gaz a jet axial et jet divergent
FI84841C (sv) * 1988-03-30 1992-01-27 Ahlstroem Oy Förfarande och anordning för reduktion av metalloxidhaltigt material
JP2554213B2 (ja) 1991-06-11 1996-11-13 川崎製鉄株式会社 球状ニッケル超微粉の製造方法
DE19545455C1 (de) * 1995-12-06 1997-01-23 Degussa Verfahren zur Herstellung von Edelmetallpulvern
US6171544B1 (en) * 1999-04-02 2001-01-09 Praxair Technology, Inc. Multiple coherent jet lance
WO2001013041A1 (fr) 1999-08-17 2001-02-22 Nippon Furnace Kogyo Kabushiki Kaisha Technique de combustion et brûleur a cet effet
SG94805A1 (en) * 2000-05-02 2003-03-18 Shoei Chemical Ind Co Method for preparing metal powder
US6524096B2 (en) * 2001-01-05 2003-02-25 Vincent R. Pribish Burner for high-temperature combustion
US6679938B1 (en) * 2001-01-26 2004-01-20 University Of Maryland Method of producing metal particles by spray pyrolysis using a co-solvent and apparatus therefor
TW558471B (en) * 2001-03-28 2003-10-21 Phild Co Ltd Method and device for manufacturing metallic particulates and manufactured metallic particulates
US20020184969A1 (en) * 2001-03-29 2002-12-12 Kodas Toivo T. Combinatorial synthesis of particulate materials
JP3492672B1 (ja) * 2002-05-29 2004-02-03 東邦チタニウム株式会社 金属粉末の製造方法及び製造装置
US20040050207A1 (en) * 2002-07-17 2004-03-18 Wooldridge Margaret S. Gas phase synthesis of nanoparticles in a multi-element diffusion flame burner
WO2004030853A1 (ja) * 2002-09-30 2004-04-15 Toho Titanium Co., Ltd. 金属粉末の製造方法および製造装置
KR100503132B1 (ko) * 2002-11-08 2005-07-22 한국화학연구원 구형 니켈 금속 미세분말의 제조방법
UA77355C2 (en) * 2002-12-23 2006-11-15 Method and apparatus for manufacturing molten iron
JP4288503B2 (ja) * 2004-11-25 2009-07-01 大同特殊鋼株式会社 粉体溶融バーナー
EP1760043A1 (en) * 2005-09-06 2007-03-07 ETH Zürich, ETH Transfer Reducing flame spray pyrolysis method for the production of metal, non-oxidic, ceramic and reduced metal oxide powders and nano-powders

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0254705A (ja) * 1988-08-16 1990-02-23 Tokai Carbon Co Ltd 金属微粉の製造法
JP2001124307A (ja) * 1999-08-17 2001-05-11 Nippon Furnace Kogyo Kaisha Ltd 無酸化還元燃焼方法並びにバーナ
JP2002356708A (ja) * 2001-05-30 2002-12-13 Tdk Corp 磁性金属粉末の製造方法および磁性金属粉末
JP2004044907A (ja) * 2002-07-11 2004-02-12 Kubota Corp 溶融処理設備

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1839783A4 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101795796B (zh) * 2007-07-23 2013-07-03 大阳日酸株式会社 金属超微粉的制造方法
EP2174735A1 (en) * 2007-07-23 2010-04-14 Taiyo Nippon Sanso Corporation Process for producing ultrafine metal powder
WO2009013997A1 (ja) * 2007-07-23 2009-01-29 Taiyo Nippon Sanso Corporation 金属超微粉の製造方法
KR101167668B1 (ko) * 2007-07-23 2012-07-23 타이요 닛폰 산소 가부시키가이샤 금속의 초미세분말 제조방법
EP2174735A4 (en) * 2007-07-23 2012-08-22 Taiyo Nippon Sanso Corp METHOD FOR PRODUCING AN ULTRA-FINE METAL POWDER
US8882878B2 (en) 2007-07-23 2014-11-11 Taiyo Nippon Sanso Corporation Method of producing ultra-fine metal particles
JP2010196117A (ja) * 2009-02-25 2010-09-09 Taiyo Nippon Sanso Corp 金属粒子の製造装置および製造方法
JP2011006718A (ja) * 2009-06-23 2011-01-13 Taiyo Nippon Sanso Corp 金属超微粉の製造方法および製造装置
JP2011208187A (ja) * 2010-03-29 2011-10-20 Taiyo Nippon Sanso Corp 金属超微粉の製造方法
JP2012237023A (ja) * 2011-05-10 2012-12-06 Taiyo Nippon Sanso Corp 金属微粒子の製造方法
JP2015086413A (ja) * 2013-10-29 2015-05-07 大陽日酸株式会社 複合超微粒子の製造方法
JP2016125066A (ja) * 2014-12-26 2016-07-11 大陽日酸株式会社 金属微粒子の製造方法
JP6242522B1 (ja) * 2017-03-24 2017-12-06 新日鉄住金エンジニアリング株式会社 バーナ及びその製造方法
WO2018173753A1 (ja) * 2017-03-24 2018-09-27 大陽日酸株式会社 銅微粒子、銅微粒子の製造方法、及び焼結体の製造方法
JP2018162903A (ja) * 2017-03-24 2018-10-18 新日鉄住金エンジニアリング株式会社 バーナ及びその製造方法
JP2018162474A (ja) * 2017-03-24 2018-10-18 大陽日酸株式会社 銅微粒子、銅微粒子の製造方法、及び焼結体の製造方法
US11701706B2 (en) 2017-03-24 2023-07-18 Taiyo Nippon Sanso Corporation Fine copper particles, method for producing fine copper particles and method for producing sintered body

Also Published As

Publication number Publication date
JP4966288B2 (ja) 2012-07-04
TW200631702A (en) 2006-09-16
JP4304212B2 (ja) 2009-07-29
US8062406B2 (en) 2011-11-22
US20080145657A1 (en) 2008-06-19
JP2009108414A (ja) 2009-05-21
TWI381897B (zh) 2013-01-11
CN101084080B (zh) 2010-05-12
EP1839783A4 (en) 2009-09-16
EP1839783B1 (en) 2013-08-21
CN101084080A (zh) 2007-12-05
JPWO2006068231A1 (ja) 2008-06-12
EP1839783A1 (en) 2007-10-03
KR100888381B1 (ko) 2009-03-13
US20110256250A1 (en) 2011-10-20
KR20070086406A (ko) 2007-08-27

Similar Documents

Publication Publication Date Title
JP4966288B2 (ja) 金属超微粉の製造方法及びバーナ、並びに金属超微粉製造装置
TWI402117B (zh) 超微粒子的製造方法
JP4304221B2 (ja) 金属超微粉の製造方法
JP5318463B2 (ja) 微粒子の製造方法およびそれに用いる製造装置
TW200829351A (en) Ultrafine alloy particles, and process for producing the same
TWI806855B (zh) 銅微粒子、銅微粒子之製造方法,以及燒結體之製造方法
JP6130616B1 (ja) 銅微粒子及びその製造方法、並びに焼結体
JPWO2015156080A1 (ja) ニッケル粉末
JP2016160525A (ja) 微粒子製造方法、及び微粒子製造装置
KR20030060856A (ko) 다층세라믹 전자부품
JPH11217203A (ja) 金属酸化物粉末の製造方法
TW200405837A (en) Process for production of metallic powder and producing device thereof
JP2013053328A (ja) 金属粉末の製造方法、それにより製造された金属粉末、導体ペースト、セラミック積層電子部品
JP2007291515A (ja) 微粒子、その製造方法及び製造装置
JP6744730B2 (ja) 金属微粒子の製造方法
JPS63307201A (ja) 細分された鉄基粉末を製造するための湿式冶金方法
JP7488832B2 (ja) 微粒子および微粒子の製造方法
JP2002220601A (ja) Dc熱プラズマ処理による低酸素球状金属粉末の製造方法
JP2010196117A (ja) 金属粒子の製造装置および製造方法
JP2019151889A (ja) 金属超微粉の製造方法
JP5826204B2 (ja) 金属微粒子の製造方法
JP6195075B2 (ja) 金属微粒子の製造方法
JPS63307203A (ja) 細分された球状金属粉末を製造するための湿式冶金方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006549060

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020077013842

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580043890.3

Country of ref document: CN

Ref document number: 11793424

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005819525

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005819525

Country of ref document: EP