WO2006054612A1 - 変性ポリテトラフルオロエチレンファインパウダー及び変性ポリテトラフルオロエチレン成形体 - Google Patents

変性ポリテトラフルオロエチレンファインパウダー及び変性ポリテトラフルオロエチレン成形体 Download PDF

Info

Publication number
WO2006054612A1
WO2006054612A1 PCT/JP2005/021058 JP2005021058W WO2006054612A1 WO 2006054612 A1 WO2006054612 A1 WO 2006054612A1 JP 2005021058 W JP2005021058 W JP 2005021058W WO 2006054612 A1 WO2006054612 A1 WO 2006054612A1
Authority
WO
WIPO (PCT)
Prior art keywords
fine powder
modified
modified ptfe
modified polytetrafluoroethylene
fluorine atom
Prior art date
Application number
PCT/JP2005/021058
Other languages
English (en)
French (fr)
Inventor
Takahiro Taira
Hiroyuki Yoshimoto
Taketo Kato
Yasuhiko Sawada
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=36407151&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2006054612(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to CN2005800388834A priority Critical patent/CN101056906B/zh
Priority to JP2006545105A priority patent/JP4710832B2/ja
Priority to AT05806697T priority patent/ATE540061T1/de
Priority to EP05806697.8A priority patent/EP1816148B2/en
Priority to US11/667,443 priority patent/US9346903B2/en
Publication of WO2006054612A1 publication Critical patent/WO2006054612A1/ja
Priority to US14/306,327 priority patent/US8928156B2/en
Priority to US15/136,494 priority patent/US9663601B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • C08F214/262Tetrafluoroethene with fluorinated vinyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F259/00Macromolecular compounds obtained by polymerising monomers on to polymers of halogen containing monomers as defined in group C08F14/00
    • C08F259/08Macromolecular compounds obtained by polymerising monomers on to polymers of halogen containing monomers as defined in group C08F14/00 on to polymers containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/003Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]

Definitions

  • the present invention relates to a modified polytetrafluoroethylene fine powder and a modified polytetrafluoroethylene molded product.
  • Polytetrafluoroethylene [PTFE] has excellent chemical resistance, weather resistance, mechanical strength, and the like, and is therefore used as a molded product in various fields.
  • Examples of the PTFE molding method include extrusion molding such as a method of paste extrusion molding of PTFE fine powder.
  • the PTFE fine powder used for paste extrusion is industrially excellent in paste extrudability, for example, the ratio of the cross-sectional area of the cylinder in the extruder to the cross-sectional area of the die outlet when reducing paste (reduction) Those having a high ratio [RR]) and those having a low extrusion pressure are preferred.
  • PTFE fine powder with improved paste extrudability for example, has a particle shell formed by copolymerizing a specific modifier, and is a particulate TFE resin that can be extruded with RR1600 (for example, patents) Reference 1), modified tetrafluoroethylene polymer having a particle shell and an outermost particle shell modified to different proportions by black mouth trifluoroethylene [CTFE] (for example, see Patent Document 2) ) Etc. have been proposed.
  • CTFE black mouth trifluoroethylene
  • the particulate TFE resin has the problem that the extrusion pressure is still high and the heat resistance is insufficient, and the modified tetrafluoroethylene polymer has the problem that the extrusion pressure is still high.
  • the PTFE fine powder with improved paste extrudability also has a modified PTFE-powered particle core modified with a fluoroalkyl butyl ether compound, and a modified PTFE-modified particle shell with modified PTFE.
  • Extrusion with RR2000 is possible (see, for example, Patent Document 3), but less than 0.5% by weight of the whole particle is contained in the particle core.
  • modified PTFE copolymerized with alkylethylene and capable of being extruded by RR2000 for example, see Patent Document 4 and Patent Document 5.
  • these PTFE fine powders have a problem that heat resistance and extrusion pressure are insufficient.
  • PTFE fine powder may be preferred to be cast into a highly transparent tube depending on the application.
  • a conventional document that mentions the transparency of a molded body that can also obtain PTFE fine powder strength (see, for example, Patent Document 3), there is no one that specifies specific data.
  • Patent Document 1 Japanese Patent Publication No. 37-4464
  • Patent Document 2 JP-A-51-36291
  • Patent Document 3 Japanese Patent Application Laid-Open No. 63-56532
  • Patent Document 4 JP-A-60-42446
  • Patent Document 5 JP-A-5-186532
  • Patent Document 6 International Application OOZ02935 Pamphlet
  • the object of the present invention is high in heat resistance, chemical resistance, and transparency.
  • the modified polytetrafluoroe can be formed into a molded product and can reduce the extrusion pressure.
  • the aim is to provide loche fine powder.
  • the present invention is a modified polytetrafluoroethylene fine powder characterized in that a cylindrical extrusion pressure at a reduction ratio of 1600 is 50 MPa or less, and a haze value is 60 or less for the molded article for measurement (this specification) In the following, “modified PTFE In powder (A) ”. ).
  • the present invention is a modified polytetrafluoroethylene fine powder comprising a particle core part and a particle shell part, wherein the particle core part has the following general formula (I)
  • X 4 , X 5 and X 6 represent a hydrogen atom or a fluorine atom, at least one represents a fluorine atom.
  • N2 represents an integer of 1 to 5). It is made of modified polytetrafluoroethylene (i) obtained by copolymerizing at least one selected from the group consisting of olefins, and the particle shell is made of modified polytetrafluoroethylene (ii).
  • the modified polytetrafluoroethylene fine powder is a modified polytetrafluoroethylene fine powder characterized in that the cylindrical extrusion pressure at a reduction ratio of 1600 is 50 MPa or less (for the purposes of this specification, Hereinafter, it may be referred to as “modified PTFE fine powder (B).” O
  • the present invention is a modified polytetrafluoroethylene molded product obtained by molding using a modified polytetrafluoroethylene fine powder, wherein the modified polytetrafluoroethylene is a molded product.
  • the fine powder is the above modified PTFE fine powder (A) or the above modified PTFE fine powder (B). It is a titanium molded body.
  • modified PTFE fine powder without (A) and (B) are referred to as the modified PTFE fine powder (A) and the modified PTFE fine powder (B). Represents a concept that can include both without distinction.
  • the modified PTFE fine powder of the present invention is a fine powder made of modified PTFE.
  • the modified PTFE fine powder can be obtained by emulsion polymerization described later.
  • the modified PTFE fine powder (A) of the present invention has a cylinder extrusion pressure of 50 MPa or less at a reduction ratio [RR] 1600.
  • the cylinder extrusion pressure in the RR1600 is preferably 45 MPa or less, and more preferably 40 MPa or less, and within the above range, there is no industrial problem even if it is 25 MPa or more.
  • cylindrical extrusion pressure refers to 17 parts by mass of hydrocarbon oil (trade name: Isopar G, manufactured by Exxon Chemical Co., Ltd.) as an extrusion aid for 100 parts by mass of the modified polytetrafluoroethylene powder. It is a value at a reduction ratio of 1600 when part is added and extruded at room temperature (25 ⁇ 2 ° C. The same applies hereinafter).
  • the cylindrical extrusion pressure in the RR1600 is within the above range, it can be suitably molded even under the condition that the RR is 3000 or more, and it can be molded into small diameter electric wires, tubes, etc. This is also advantageous.
  • modified PTFE fine powder (A) Since the modified PTFE fine powder (A) has a cylindrical extrusion pressure within the above range in RR1600, it has excellent moldability, and this excellent moldability is particularly satisfactory for extrusion molding. Demonstrated.
  • the modified PTFE fine powder (A) of the present invention has a cylindrical extrusion pressure within the above range, and the measurement molded article a has a haze value of 60 or less.
  • the haze value is preferably 55 or less, more preferably 53 or less, and may be 40 or more within the above range.
  • the above-mentioned measurement molded product a is compression-molded with a modified PTFE fine powder (A) at a pressure of 20MPa, holding time of 5 minutes, and room temperature at a room temperature of 380 ° CX for 1 hour. Created by cutting a 0.5 mm thick sheet from a cylindrical shaped product obtained by heating and baking, heating and baking at 380 ° C for 5 minutes in a hot air circulating electric furnace, and rapidly cooling to room temperature Is.
  • A modified PTFE fine powder
  • the haze value is a value measured by using a direct reading haze meter (manufactured by Toyo Seiki Seisakusho) according to ASTM D 1003. Since the modified PTFE fine powder (A) has a haze value within the above range for the measurement molded product a, it is excellent in transparency and should be suitably used for forming a molded product that requires transparency in use. Can do.
  • the modified PTFE fine powder (A) of the present invention has a cylindrical extrusion pressure and a haze value within the above ranges, and the tensile strength (hereinafter referred to as "green strength") of the measurement molded body b. Is preferably 1.8 MPa or more.
  • a more preferable lower limit of the tensile strength is 2 MPa. For example, even if it is 5 MPa or less, there is no problem for industrial use.
  • the above-mentioned measurement molded product b is obtained by mixing a mixture of modified PTFE fine powder (A) 50.OOg and extrusion aid (hydrocarbon oil, trade name: Xiapar G, manufactured by Exxon Chemical Co., Ltd.) 10.25 g at room temperature. It was obtained by filling the extruder cylinder and holding it for 1 minute, and immediately cutting out the molded product obtained by extruding from the orifice at a ram speed of 20 mmZ with a load of 5.7 MPa applied to the cylinder at room temperature. A cylindrical shaped body with a diameter of 0.63 mm is cut to a length of 80 mm.
  • extrusion aid hydrocarbon oil, trade name: Xiapar G, manufactured by Exxon Chemical Co., Ltd.
  • the above-mentioned tensile strength is obtained by measuring the maximum point strength of the measurement molded body b by using an autograph (manufactured by Shimadzu Corporation) at a tensile speed of 200 mmZ.
  • the modified PTFE fine powder (A) of the present invention has a tensile strength within the above range with respect to the measurement molded body b, it can be easily extruded even in the case of a long-axis molded body, and also in paste extrusion. Excellent crack resistance.
  • the modified PTFE fine powder (A) of the present invention has a cylindrical extrusion pressure and a haze value within the above ranges, and a thermal instability index [ ⁇ ] determined by ASTM D 4895 of 6 or less. preferable.
  • the more preferable upper limit of the above-mentioned bag is 3, and the more preferable upper limit is 1.
  • the modified PTFE fine powder (A) of the present invention has extremely excellent heat resistance when having a TII within the above range.
  • ESG is the specific gravity of PTFE specific shape molded product 12g conforming to ASTM D 4895 treated at 380 ° C for 6 hours.
  • SSG is the above PTFE specific shape molded product 12g 38g.
  • modified PTFE fine powder (A) of the present invention has the configuration of the modified PTFE fine powder (B) of the present invention described later, the above-mentioned characteristics can be easily exhibited.
  • the modified PTFE fine powder (A) of the present invention can be produced, for example, by a method for producing a modified PTFE fine powder described later.
  • the modified PTFE fine powder (B) of the present invention comprises a particle core and a particle shell.
  • the modified PTFE constituting the modified PTFE fine powder (B) constitutes primary particles in a polymerization reaction medium for obtaining the modified PTFE.
  • the primary particles can be said to be polymer particles that are polymerized, and are aggregated in a subsequent process such as coagulation to form secondary particles.
  • the modified PTFE fine powder (B) of the present invention is substantially an aggregate of secondary particles.
  • the aggregate of secondary particles composing the modified PTFE fine powder (B) may be a powder obtained by praying the polymerization reaction medium after the completion of the polymerization reaction and drying it! It may be a pulverized product crushed for.
  • the “particle core” and “particle shell” refer to the structure of the primary particles constituting the secondary particles or pulverized product.
  • the primary particles constituting the modified PTFE fine powder (B) of the present invention are considered to have a layer structure consisting of a particle core and a particle shell, and the particle core and the particle shell are between the two. It is not always necessary to have a clear boundary.
  • the modified PTFE (i) described below, which forms the particle core near the boundary between the particle core and the particle shell, and the modified PTFE, which forms the particle shell, are described below. (ii) may be mixed with! /.
  • the modified PTFE fine powder (B) of the present invention preferably has a particle core part of 85 to 95% by mass of the total of the particle core part and the particle shell part in terms of reduction in extrusion pressure. A more preferred lower limit is 87% by mass, and a more preferred upper limit is 93% by mass.
  • the total of the particle core part and each part of the particle is not necessarily clear, but includes the boundary between the two parts and the vicinity of the boundary.
  • FC CFO (CF) X 1 (I)
  • a modified polytetrafluoroethylene [modified PTF E] (i) which is obtained by copolymerizing at least one selected from the group consisting of loephin is preferable.
  • modified polytetrafluoroethylene [modified PTFE] without (i) and (ii) is referred to as the above-mentioned modified PTFE (i) and the below-mentioned This represents a concept that can include modified PTFE (ii) without any particular distinction.
  • nl is 1 to 4 are preferred. Those having nl of 3 or less are more preferred.
  • fluoro alkyl butyl ether
  • perfluoro alkyl butyl ether in which X 1 is a fluorine atom is preferable.
  • perfluoro alkyl butyl ether
  • X 2 and X 3 are preferably fluorine atoms, and R 1 and R 2 are fluoroalkyl groups having 1 to 6 carbon atoms. Some are preferred.
  • the vinyl heterocycle represented by the above general formula ( ⁇ ) includes perfluoro-2,2-dimethyl-1,3-di wherein X 2 and X 3 are fluorine atoms and R 1 and R 2 are perfluoromethyl groups.
  • OXOL [PDD] is preferred!
  • HFP is preferred as the fluororefin represented by the above general formula ( ⁇ )! /.
  • a monomer other than tetrafluoroethylene [TFE] constituting the modified PTFE is sometimes referred to as a “modifier”.
  • X 1 in the general formula (I) contains a fluorine atom.
  • Perfluoro (propyl butyl ether) [PPVE] is more preferable, in which n2 represents an integer of 1 to 3.
  • the modified PTFE (i) is a TFE ternary copolymer obtained by copolymerizing the fluoro (alkyl vinyl ether) represented by the above general formula (I) and the fluororefin represented by the above general formula ( ⁇ ⁇ ). It may be obtained by using two kinds of modifiers such as a polymer. Examples of the modified PTFE (i) obtained by using two kinds of modifiers include a TFE terpolymer obtained by copolymerizing PPVE and HFP.
  • the modifier unit derived from the modifying agent in the particle core is the strength of the modifier depending on the type of modifying agent used.
  • the primary particle constituting the modified PTFE fine powder (B) is 0%.
  • a lower limit of 0.01 to 0.5% by mass is preferable, and 0.02% by mass is more preferable.
  • a preferred lower limit is 0.08% by mass, and a more preferred upper limit is 0.2% by mass.
  • the modifier unit derived from the modifier in the particle core is 0. of the entire primary particles constituting the modified PTFE fine powder (B).
  • a more preferable lower limit of 0.01 to 0.5% by mass is 0.02% by mass, and a more preferable upper limit is 0.2% by mass.
  • the “modifier unit” means a part of the molecular structure of the modified PTFE and a repeating unit derived from the comonomer used as the modifier.
  • the above modifier unit is represented by, for example, [CF -CF (-OC F)]-when PPVE is used as the modifier, and [CF -CF (-CF;) when HFP is used. ] —Represented by
  • the above modifier unit represents the total of each modifier unit when the modified PTFE (i) has two or more modifier units.
  • the particle shell in the modified PTFE fine powder (B) of the present invention also has a modified polytetrafluoroethylene [modified PTFE] (ii) force.
  • Modified PTFE (ii) is a modified tetrafluoroethylene polymer that does not impair the properties of the tetrafluoroethylene homopolymer.
  • the modification in the modified PTFE (ii) may be by copolymerizing a modifier that is a monomer copolymerizable with TFE, or a chain transfer agent is added during polymerization. It may be due to the fact that both of these are performed.
  • X 4 , X 5 and X 6 represent a hydrogen atom or a fluorine atom, at least one represents a fluorine atom.
  • N2 represents an integer of 1 to 5). What is carried out by copolymerizing lorefhin is preferred.
  • the chain transfer agent used for modification in the particle shell is not particularly limited as long as it reduces the molecular weight of the modified PTFE (ii) constituting the particle shell, and examples thereof include water-soluble alcohols, Non-peroxide organic compounds such as hydrocarbons and fluorinated hydrocarbons, water-soluble organic peroxides such as disuccinic acid peroxide [DSP], and Z or ammonium persulfate [APS], persulfate Examples thereof include persulfate-strength compounds such as potassium [KPS].
  • the chain transfer agent only needs to have at least one of a non-peroxide organic compound, a water-soluble organic peroxide, and a persulfate.
  • one or more of the non-peroxide organic compound, the water-soluble organic peroxide and the persulfate can be used.
  • the chain transfer agent is a water-soluble alcohol having 1 to 4 carbon atoms, a hydrocarbon having 1 to 4 carbon atoms, and 1 to 4 carbon atoms in terms of good dispersibility and uniformity in the reaction system. It is preferable to have at least one force selected from the group power consisting of fluorinated hydrocarbons of methane, ethane, n-butane, isobutane, methanol, HFC-134a, HFC-32, DSP, More preferably, the group force consisting of APS and KPS is also composed of at least one selected from methanol and Z, or isobutane force.
  • fluororefin represented by the above general formula ( ⁇ ) is preferred! /.
  • fluoroolefin examples include perfluoroolefin having 2 to 4 carbon atoms and hydrogen-containing fluoroolefin having 2 to 4 carbon atoms.
  • hexafluoropropylene [HFP] is preferable even though perfluororefin is preferable.
  • the modifier unit derived from the modifier used as a comonomer in the particle shell is the primary constituent of the modified PTFE fine powder (B) in terms of improving the strength of strength depending on the type of modifier used. More preferably, the lower limit is preferably 0.005 to 0.5% by mass, more preferably the upper limit is 0.2% by mass, and still more preferably the upper limit is 0.10% by mass. It is. When HFP is used as a comonomer in the particle shell, the lower limit is more preferably 0.001 to 0.3% by mass of the total primary particles constituting the modified PTFE fine powder (B).
  • the modification in the modified PTFE (ii) is sufficient by using a chain transfer agent or copolymerizing the modifier in terms of lowering the extrusion pressure described later. From the viewpoint of improving the tensile strength measured with respect to the molded article for measurement b, which will be described later, it is preferable to perform both copolymerization of the modifier and use of the chain transfer agent.
  • the modification in the modified PTFE (ii) is a chain when the fluoro (alkyl butyl ether) represented by the above general formula (I) is used as the modifying agent in the modified PTFE (i) constituting the particle core, particularly PPVE.
  • Methanol, isobutane, DSP and Z or APS are used as the transfer agent, and those obtained by copolymerizing HFP and Z or PPVE as the modifier are more preferably those using methanol and HFP.
  • the modified PTFE fine powder (B) of the present invention is composed of primary particles having a particle core portion and a particle shell portion having the above-described structure, and is subjected to cylindrical extrusion at a reduction ratio [RR] 1600.
  • the pressure is 50MPa or less.
  • the cylindrical extrusion pressure is as described above for the modified PTFE fine powder (A) of the present invention, and the preferable upper limit is 45 MPa, the more preferable upper limit is 40 MPa, and it may be 25 MPa or more! / ⁇ .
  • the modified PTFE fine powder (B) of the present invention can be easily obtained assuming that the above-described molded article for measurement a has a haze value of 60 or less.
  • the modified PTFE fine powder (B) has a crystallinity that deteriorates and causes light scattering because at least in the particle core, atoms other than side chains and fluorine are bonded to the main chain. Processing into a molded body with high transparency with a small amount of crystals can be ignored.
  • the haze value has a preferred upper limit of 55, a more preferred upper limit of 53, and a preferred lower limit of 35, and may be 40 or more.
  • the modified PTFE fine powder (B) of the present invention can also be easily obtained assuming that the above-mentioned measurement molded article b has a tensile strength of 1.8 MPa or more.
  • the tensile strength may be, for example, 4 MPa or less or 3 MPa or less as long as it is within the above range.
  • the modified PTFE fine powder (B) of the present invention can also be easily obtained with a thermal instability index [ ⁇ ] determined by ASTM D 4895 of 6 or less.
  • a preferable upper limit of 3 is 3, a more preferable upper limit is 1, a preferable lower limit is 4, and a more preferable lower limit is 0 (zero).
  • the modified PTFE fine powder ( ⁇ ) of the present invention has a cylindrical extrusion pressure within the above range, and has a core wire adhesion strength measured in accordance with MIL-C 17 for the coated electric wire a for measurement. Can be over 1.5kgf.
  • the above-mentioned insulated wire for measurement a is as follows: (1) 2 mass of modified PTFE fine powder is mixed with 16% by weight (381g) of extrusion aid (Giaspar G) and aged for 12 hours at room temperature, then 10 mesh SUS Preliminary molding is performed with a preforming machine (made by Tabata Machinery Co., Ltd.) through a wire mesh. (2) After extruding the obtained preform with a ⁇ 50 mm wire molding machine (made by Tabata Machinery Co., Ltd.), (3) A covered electric wire with a coating layer thickness of 0.58 mm, obtained by drying and (4) firing and cooling.
  • modified PTFE fine powder (B) has a core wire adhesion strength within the above range with respect to the measurement-coated coated wire a, it can be suitably used as a material for various coated wires.
  • the modified PTFE fine powder (B) of the present invention can provide a molded article having excellent crack resistance even at high temperatures.
  • the above-described measurement covered electric wire a is bent into a U-shape, and one is converted into the other.
  • a self-winding heat-resistant test body that is wound 10 times can be formed into a molded body that does not crack when placed at 335 ° C for 2 hours, then taken out to room temperature and allowed to cool.
  • the self-winding heat-resistant test specimen is prepared by the method described in the examples described later.
  • the modified PTFE fine powder (B) of the present invention has a TFE terpolymer power obtained by copolymerizing two kinds of modifiers in the particle core, and in particular, has a dielectric loss tangent of 2 at 12 GHz. . 0 X 10- 4 or less, preferably 1 can be made at 72 X 10- 4 or less.
  • the above “dielectric loss tangent” is a value obtained by measuring a change in resonance frequency and electric field strength at a temperature of 20 to 25 ° C. using a cavity resonator for a film sample. is there. When measured using a cavity resonator, the resonance frequency drops compared to 12 GHz.
  • modified PTFE fine powder is compression-molded into a cylindrical shape with a diameter of 50 mm, and the film from which this cylindrical force is cut is baked at 380 ° C for 5 minutes, and gradually cooled to 250 ° C at a cooling rate of 60 ° CZ. It is obtained by cooling, holding at 250 ° C for 5 minutes, and allowing to cool to room temperature.
  • the dielectric loss tangent at 12 GHz is within the above range, good transmission characteristics can be achieved as dielectric materials for transmission products such as coaxial cables in the microwave band (3 to 30 GHz) or UHF ultra-high frequency (less than 3 GHz). .
  • the modified PTFE fine powder (B) can easily exhibit a dielectric loss tangent within the above range when the modified PTFE (i) in the particle core has a modifier unit amount within the above preferred range.
  • the modified PTFE fine powder (B) of the present invention has the above-described configuration, the extrusion pressure is low, and it is preferably excellent in transparency, green strength, heat resistance represented by wrinkles, etc. A molded product can be obtained.
  • the particle core is composed of modified PTFE (i) modified with the specific modifying agent, and the particles Since the shell is made of primary particles having the modified PTFE (ii), the core / shell structure to be reduced reduces the extrusion pressure, and the structure of the particle core mainly has transparency. It is considered that the particle shell structure mainly contributes to a sufficient decrease in extrusion pressure and an improvement in green strength.
  • the primary particles constituting the modified PTFE fine powder (B) have a core Z shell structure, the particle core has the above-mentioned specific modified PTFE force, and the particle shell It seems that the above-mentioned excellent effect can be achieved synergistically by having the above-mentioned specific modified PTFE power.
  • the modified PTFE fine powder of the present invention can be produced, for example, by pouring and then drying a modified PTFE aqueous dispersion obtained by carrying out a polymerization reaction for obtaining modified PTFE.
  • the method for producing the modified PTFE constituting the modified PTFE fine powder is a method for producing a tetrafluoroethylene polymer,
  • the thing containing is preferable.
  • the conversion rate of TFE used in the entire production process of the tetrafluoroethylene polymer including the step (1) and the step (2) is 85 to 95%. It is preferable to carry out the polymerization reaction until.
  • the above-mentioned “conversion ratio” is the amount of TFE corresponding to the amount of target TFE units, the power at the time of initiation of polymerization, and the amount of TFE consumed for polymerization up to a certain point during the polymerization. It is the proportion of the quantity.
  • the method for producing the tetrafluoroethylene polymer depends on the type of the modifier used, the composition and yield of the target modified PTFE, etc.
  • the reaction conditions can be set appropriately.
  • the method for producing the tetrafluoroethylene polymer can be carried out in an aqueous medium in the presence of a water-soluble dispersant as an emulsifier.
  • a water-soluble dispersant as an emulsifier.
  • emulsifier halogen-containing emulsifiers, hydrocarbon-based emulsifiers, and the like can be used.
  • the aqueous medium is a hydraulic medium.
  • the aqueous medium may contain a polar organic solvent in addition to water.
  • organic solvent having polarity examples include nitrogen-containing solvents such as N-methylpyrrolidone [NMP]; ketones such as acetone; esters such as ethyl acetate; polar ethers such as diglyme and tetrahydrofuran [THF]. Examples thereof include carbonic acid esters such as diethylene carbonate, and one or two or more of them can be used in combination.
  • NMP N-methylpyrrolidone
  • ketones such as acetone
  • esters such as ethyl acetate
  • polar ethers such as diglyme and tetrahydrofuran [THF].
  • carbonic acid esters such as diethylene carbonate, and one or two or more of them can be used in combination.
  • any of a nonionic surfactant, an anionic surfactant, a force thionic surfactant, and an amphoteric surfactant can be used.
  • An ionic surfactant or a nonionic surfactant is preferred.
  • the water-soluble dispersant may be 0.02-0.3% by mass of the aqueous medium.
  • the method for producing the tetrafluoroethylene polymer is, for example, ammonium persulfate [8? It can be carried out using a polymerization initiator such as a persulfate such as S] and a water-soluble organic peroxide such as disuccinic acid peroxide [DSP], and these polymerization initiators can be used alone or in combination. The above can be used in combination. Of these, APS, DSP, etc. are preferred because they also have the above-mentioned action as chain transfer agents!
  • the method for producing the tetrafluoroethylene polymer is preferably carried out in an amount such that the polymerization initiator is 0.0001-0.02 parts by mass per 100 parts by mass of the aqueous medium.
  • the method for producing the tetrafluoroethylene polymer can be carried out at a polymerization temperature of 10 to 95 ° C.
  • a persulfate or a water-soluble organic peroxide is used as a polymerization initiator, 60-90. Power to do in C
  • the tetrafluoroethylene polymer can be produced usually at 0.5 to 3.9 MPa, preferably at 0.6 to 3 MPa.
  • the above-mentioned tetrafluoroethylene polymer production method is also carried out at the initial stage of polymerization, particularly at a pressure of 0.5 MPa or less until the conversion rate of TFE is 15% or less of the whole, and thereafter 0. It can also be performed by maintaining the pressure above 5 MPa, and the reaction pressure can be reduced to, for example, 0. IMPa or less during the formation of the core, and TFE is supplied again to react at a predetermined pressure. You can do it.
  • the modified PTFE aqueous dispersion obtained from the above TFE polymerization reaction is a dispersion in which primary particles of the modified PTFE cartridge are dispersed in the above aqueous medium.
  • the primary particle is a polymerized dispersoid that has not undergone a subsequent process such as coagulation.
  • the modified PTFE aqueous dispersion usually has a solid content of 20 to 40% by mass.
  • the coagulation can be performed by a conventionally known method, and may be appropriately performed by adding a water-soluble organic compound or an inorganic salt having basic compound strength as a coagulation accelerator.
  • a pigment may be added during the coagulation before coagulation for the purpose of imparting coloring,
  • a filler may be added.
  • the drying step can usually be performed at a temperature of 100 to 250 ° C.
  • the drying is preferably performed for 5 to 24 hours.
  • the drying temperature is high, the ability to improve the fluidity of the powder can be obtained.
  • the paste extrusion pressure of the resulting modified PTFE fine powder may increase, so special care must be taken when setting the temperature. .
  • the modified PTFE molded product of the present invention is a modified PTFE molded product obtained by molding using a modified PTFE fine powder, and the modified PTFE fine powder is the modified PTFE of the present invention described above. PTFE fine powder.
  • the molding process is not particularly limited, but is usually performed by paste extrusion.
  • the paste extrusion can be performed by appropriately setting conditions according to the desired shape and use of the molded article.
  • the paste is mixed for aging for about 1 to 24 hours, and the pressure is 0.5 to 2.
  • extrusion is performed at an extrusion pressure of 2 to 100 MPa, and firing is performed at 360 to 450 ° C.
  • the modified PTFE molded product of the present invention is suitably used as, for example, a printed board, a wire coating, a tube, or the like that requires heat resistance and chemical resistance in an aircraft, an automobile, a medical device, a precision machine, and the like. Among them, it is preferable to use it as a wire covering material and a medical tube that require core wire adhesion strength and the like.
  • the wire covering material for example, it is suitable as a covering material for covering a core wire such as a copper wire.
  • a heat resistant electric wire, a heat resistant electric wire, a coaxial cable and the like are more preferable.
  • the modified PTFE fine powder of the present invention has the above-mentioned configuration, it can be processed into a molded article having excellent paste extrusion performance, such as transparency, heat resistance, and chemical resistance. .
  • the modified PTFE molded product of the present invention has the above-mentioned constitutional power, it is excellent in transparency, heat resistance, chemical resistance and the like.
  • the correlation with the primary particle diameter was summarized in a calibration curve, and the calibration curve was determined from the transmittance measured for each sample.
  • the sample was taken out immediately before the addition of the modifier, and the nuclear magnetic resonance spectrum was measured. Next, the total amount of modification was measured for the finally obtained tetrafluoroethylene polymer, and the amount of shell modification was measured in relation to the amount of modification of the core.
  • the molded article for measurement b was pulled at room temperature at a tensile speed of 200 mmZ, and the maximum point strength was measured.
  • the molded product for measurement b was prepared by mixing 50.00 g of modified PTFE powder and an extrusion aid (trade name: Xiapar G, manufactured by Exxon Chemical Co., Ltd.) 10.
  • extrusion pressure at a reduction ratio of 1600 was measured.
  • 50.OOg of modified PTFE powder and 10.25g of hydrocarbon oil as extrusion aid (trade name: Xiapar G, manufactured by Eksony Chemical Co., Ltd.) are mixed in a glass bottle, and the room temperature (25 degrees 2 ° C) Aged for 1 hour.
  • the cylinder of the extruder is filled with the above mixture and held at room temperature for 1 minute. Immediately after that, a 5.7 MPa load is applied to the piston inserted in the cylinder, and immediately at room temperature, the ram speed is 20 mmZ min. Extruded from the orifice cover. Extrusion pressure (MPa) was obtained by dividing the load (N) when the pressure reached equilibrium by the extrusion operation by the cylinder cross-sectional area.
  • sample a was measured using a direct reading haze meter (manufactured by Toyo Seiki Seisakusho Co., Ltd.).
  • Sample a for measurement a was cut from a cylindrical molded body obtained by compression molding at a pressure of 20 MPa, holding time of 5 minutes, and room temperature, followed by heating and baking at 380 ° C for 1 hour in a mold with an inner diameter of 50 mm ⁇ .
  • the obtained sheet having a thickness of 0.5 mm was prepared by heating and firing at 380 ° C. for 5 minutes in a hot air circulating electric furnace and rapidly cooling to room temperature.
  • the measured coated wire a was measured in accordance with MIL-C17.
  • the above-mentioned insulated wire for measurement a is (i) mixed with 16 kg (381 g) of extrusion aid (Isopar G) in 2 kg of modified PTFE fine powder, aged for 12 hours at room temperature, then 10 mesh SUS Preliminary molding was performed with a preforming machine (Tabata Machinery Co., Ltd.) through a wire mesh! ⁇ , (ii) The resulting preform was extruded with a ⁇ 50mm wire molding machine (Tabata Machinery Co., Ltd.). That is, it is a coated electric wire having a coating layer thickness of 0.58 mm, obtained by (iii) drying and (iv) firing and cooling.
  • the preforming of (i) was performed for 10 minutes under a room temperature environment under a pressure of 3 MPa with a ram speed of lOO mmZ.
  • the preform was extruded using a nickel-plated copper wire with an outer diameter of AWG24 and an outer diameter of 0.511 mm as the core wire, with a ram speed of 13 mmZ and a core speed of 10 mZ.
  • drying is performed by stepwise setting 200 ° C, 250 ° C, and 280 ° C after passing the extrudate that can obtain the process power of (ii) through a capstan set to 160 ° C.
  • the calcination was carried out by passing it through a calcination furnace set at 280 ° C and 400 ° C in steps of 10 mZ.
  • the self-winding heat-resistant test specimen is used for measuring the above-mentioned measurement covered electric wire a in a U-shape at an arbitrary location pi in the core wire direction, and measuring one end of the measurement covered electric wire a with the location pi as a boundary.
  • the measurement covered electric wire al contacts the measurement covered electric wire a2 with the location p2 having a length of 50 mm from the location pi.
  • the above-described measurement covered electric wire al is wrapped around the measurement covered electric wire a2 10 times, and the measurement covered electric wire al is tied to the measurement covered electric wire a2 and fixed when the 10th turn is wound. As shown in the photograph of FIG. 1, the winding was performed by bringing the n-th winding into contact with the measurement covered electric wire al wound around the (n-1) th winding.
  • the resulting modified PTFE aqueous dispersion had a solid content of 29.5 mass% and an average primary particle size of 0.22 ⁇ m.
  • modified PTFE aqueous dispersion is diluted with deionized water to a solids concentration of about 15% by mass, vigorously stirred until solidified, and then prayed. After drying for a while, modified PTFE powder was obtained.
  • the PPVE and HFP contents in the modified PTFE were measured and found to be 0.165% by mass and 0.05% by mass, respectively. Further, the standard specific gravity of the modified PTFE [SSG 3 ⁇ 42.168.
  • the thermal instability index, the extrusion pressure and the green strength were measured, a molded product was further prepared, and the haze value was measured.
  • Stainless steel (SUS316) anchor type stirrer and temperature control jacket A stainless steel (SUS316) autoclave (content 6L) was charged with 3580 g of deionized water, 94. lg of paraffin wax and 0.772 g of ammonium perfluorooctanoate as a dispersant. Next, while the autoclave was heated to 70 ° C., the inside of the system was replaced with nitrogen gas three times and with TFE gas twice to remove oxygen. After that, TFE gas was used to maintain the internal pressure at 0.7 3 MPa [strain, 280 rpm, and the internal temperature was maintained at 70 ° C.
  • the obtained modified PTFE aqueous dispersion had a solid content of 31.5% by mass and an average primary particle size of 0.24 ⁇ m.
  • modified PTFE aqueous dispersion is diluted with deionized water to a solids concentration of about 15% by mass, vigorously stirred until solidified, and then prayed. After drying for a while, modified PTFE powder was obtained.
  • the PPVE and HFP contents in the obtained modified PTFE were measured and found to be 0.13% by mass and 0.03% by mass, respectively. Further, the standard specific gravity of the modified PTFE [SSG 3 ⁇ 42.173. The modified PTFE powder was measured for thermal instability index, extrusion pressure, green strength, and haze value.
  • PTFE powder was manufactured and various measurements were performed.
  • a modified PTFE powder was produced in the same manner as in Example 4 except that initiator APS (Example 5) or DSP (Example 6) was added instead of the chain transfer agent, and various measurements were performed.
  • a modified PTFE powder was produced in the same manner as in Example 4 except that the type and amount of the additional modifier were changed as shown in Table 1, and various measurements were performed.
  • Table 1 shows the measurement results for each example.
  • the addition amount of the chain transfer agent described in Example 5 and Example 6 is a ratio with respect to 3580 g of deionized water.
  • the power of each example The modified PTFE powder obtained had a low extrusion pressure at the time of molding where the green strength was high.
  • HFP is added as an additional modifier
  • the modified PTFE powder of Example 4 to which methanol was added as a chain transfer agent had a low extrusion pressure.
  • the haze value measured about each modified PTFE powder also showed a low value.
  • the modified PTFE powders of Example 4 and Example 5 to which HFP was added as an additional modifier had a low haze value.
  • the solid content of the obtained modified PTFE aqueous dispersion was 31.5% by mass, and the average primary particle size was 0.24 ⁇ m.
  • modified PTFE aqueous dispersion is diluted with deionized water to a solids concentration of about 15% by mass, vigorously stirred until solidified, and then prayed. time It dried and obtained modified PTFE fine powder.
  • the thermal instability index, extrusion pressure, green strength, and haze value were measured, and the coated electric wire a for measurement was further prepared, and the core wire adhesion strength and self-winding heat resistance were measured.
  • the solid content of the obtained modified PTFE aqueous dispersion was 31.2% by mass, and the average primary particle size was 0.23 ⁇ m.
  • modified PTFE aqueous dispersion is diluted with deionized water to a solids concentration of about 15% by mass, vigorously stirred until solidified, and then prayed. After drying for a while, modified PTFE powder was obtained.
  • the thermal instability index, extrusion pressure, green strength, and haze value were measured, and the coated electric wire a for measurement was further prepared, and the core wire adhesion strength and self-winding heat resistance were measured.
  • a modified PTFE fine powder was produced in the same manner as in Example 8 except that the type and addition amount of the additional modifier were changed as shown in Table 2, and various measurements were performed.
  • Example 8 ⁇ Table 2 shows the measurement results of LO.
  • the modified PTFE fine powders of Examples 8 to 10 were preferable values for the thermal instability index, extrusion pressure, green strength, and haze value. In Examples 8 to 10, both the core wire adhesion strength and the self-winding heat resistance were excellent.
  • a TFE polymer powder consisting of a TFE polymer having PPVE units was prepared.
  • the PPVE content in the TFE polymer was measured.
  • Example 7 a TFE polymer powder comprising a TFE polymer having a two-layer structure having CTFE units in both the core and the shell was prepared. Using the obtained TFE polymer powder, the CTFE content in the TFE polymer was measured. It was 0.770% by mass.
  • Example 4 (applied to Comparative Example 3) and Example 8 (applied to Comparative Example 4), the core has PPVE units and the shell has CTFE.
  • a TFE polymer powder having a TFE polymer strength having a two-layer structure having units was prepared.
  • TFE polymer strength of a two-layer structure having perfluoro (butyl vinyl ether) [PBVE] units in the core and HFP units in the shell A TFE polymer powder was prepared.
  • Table 3 shows the results of each comparative example.
  • the green bodies obtained by molding the TFE polymer powders obtained from the comparative examples may have high green strength due to high extrusion pressure.
  • the molded product obtained from the TFE polymer of each comparative example is the modified PTF of this application example. It turned out that it is inferior to transparency compared with the molded object obtained from E powder.
  • the modified PTFE fine powder of the present invention has the above-described configuration, it can be processed into a molded article excellent in transparency, heat resistance, chemical resistance, etc., with good paste extrusion performance. .
  • the modified PTFE molded article of the present invention has the above-mentioned constitutional power, it is excellent in transparency, heat resistance, chemical resistance, etc., and is used for, for example, an aircraft, automobile, medical device, precision machine, etc. It can be suitably used as a tube or the like.
  • FIG. 1 is a photograph showing a self-winding heat-resistant test body formed using a measurement-use coated electric wire a.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Graft Or Block Polymers (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

本発明は、押出圧力を低下することができる変性ポリテトラフルオロエチレンファインパウダーを提供する。 本発明は、リダクションレシオ1600における円柱押出し圧力が50MPa以下であり、測定用成形体aについてヘイズ値が60以下であることを特徴とする変性ポリテトラフルオロエチレンファインパウダーである。

Description

明 細 書
変性ポリテトラフルォロエチレンファインパウダー及び変性ポリテトラフル ォロエチレン成形体
技術分野
[0001] 本発明は、変性ポリテトラフルォロエチレンファインパウダー及び変性ポリテトラフル ォロエチレン成形体に関する。 背景技術
[0002] ポリテトラフルォロエチレン〔PTFE〕は、優れた耐薬品性、耐侯性、機械的強度等を 有することから、種々の分野にぉ 、て成形体として利用されて 、る。
PTFEの成形法としては、例えば、 PTFEファインパウダーをペースト押出成形する 方法等の押出成形が挙げられる。
[0003] ペースト押出に使用する PTFEファインパウダーは、工業上、ペースト押出性に優れ たもの、例えば、ペースト押出する際、押出機におけるシリンダーの断面積とダイ出 口の断面積との比率 (リダクションレシオ〔RR〕 )が高 、もの、押出圧力が低!、もの等 が好ましい。
[0004] ペースト押出性を改善した PTFEファインパウダーとしては、例えば、特定の変性剤 を共重合してなる粒子殻部を有し、 RR1600での押出しが可能な粒子状 TFE榭脂( 例えば、特許文献 1参照)、クロ口トリフルォロエチレン [CTFE]によりて相異なる割合 に変性させた粒子殻部と粒子最外殻部とを有する変性テトラフルォロエチレン重合 体 (例えば、特許文献 2参照)等が提案されている。
しかしながら、粒子状 TFE榭脂には、押出圧力が依然として高ぐ耐熱性も不充分と いう問題があり、変性テトラフルォロエチレン重合体には、押出圧力が依然として高 いという問題があった。
[0005] ペースト押出性を改善した PTFEファインパウダーとしては、また、フルォロアルキル ビュルエーテルィ匕合物により変性した変性 PTFE力 なる粒子芯部と、 CTFEにより 変性した変性 PTFE力もなる粒子殻部とを有し、 RR2000での押出が可能であるも の(例えば、特許文献 3参照。)、粒子芯部に粒子全体の 0. 5重量%未満のフルォロ アルキルエチレンが共重合してなる変性 PTFEを有し、 RR2000での押出が可能で あるもの(例えば、特許文献 4及び特許文献 5参照。)等が提案されている。しかしな がら、これらの PTFEファインパウダーは、耐熱性及び押出圧力ともに不充分という問 題があった。
[0006] ペースト押出性を改善した PTFEファインパウダーとしては、更に、特定の構造を有 するパーフルォロアルキルビュルエーテルと TFEとを共重合させ、重合すべき TFE の少なくとも 80%が消費された後に連鎖移動剤を反応系に導入して得られるものが 提案されている(例えば、特許文献 6参照。 )0しカゝしながら、これらの PTFEファイン パウダーは、押出圧力が不充分という問題があった。
また、 PTFEファインパウダーは、用途に応じ、透明性に優れたチューブにカ卩ェする ことが好ま 、ことがある。 PTFEファインパウダー力も得られる成形体の透明性につ いて、言及している従来文献もあるが(例えば、特許文献 3参照)、具体的なデータを 明記しているものはない。
特許文献 1:特公昭 37—4643号公報
特許文献 2 :特開昭 51— 36291号公報
特許文献 3:特開昭 63 - 56532号公報
特許文献 4:特開昭 60—42446号公報
特許文献 5 :特開平 5— 186532号公報
特許文献 6:国際出願 OOZ02935号パンフレット
発明の開示
発明が解決しょうとする課題
[0007] 本発明の目的は、上記現状に鑑み、耐熱性、耐薬品性、透明性が高!ヽ成形体にカロ ェすることができ且つ押出圧力を低下することができる変性ポリテトラフルォロェチレ ンファインパウダーを提供することにある。
課題を解決するための手段
[0008] 本発明は、リダクションレシオ 1600における円柱押出し圧力が 50MPa以下であり、 測定用成形体 aについてヘイズ値が 60以下であることを特徴とする変性ポリテトラフ ルォロエチレンファインパウダーである(本明細書において、以下、「変性 PTFEファ インパウダー (A)」と ヽぅことがある。 )。
[0009] 本発明は、粒子芯部と粒子殻部とからなる変性ポリテトラフルォロエチレンファインパ ウダ一であって、上記粒子芯部は、下記一般式 (I)
F C = CFO (CF ) X
(式中、 X1は、水素原子又はフッ素原子を表し、 nlは、 1〜6の整数を表す。)で表さ れるフルォロ(アルキルビュルエーテル)、下記一般式(II)
[0010] [化 1]
Figure imgf000005_0001
(式中、 X2及び X3は、同一若しくは異なって、水素原子又はフッ素原子を表し、 Yは、 — CR1!^—を表し、 R1及び R2は、同一若しくは異なって、フッ素原子、炭素数 1〜6 のアルキル基又は炭素数 1〜6のフルォロアルキル基を表す。)で表されるビュルへ テロ環状体、及び、下記一般式 (III)
CX4X5 = CX° (CF ) F
(式中、 X4、 X5及び X6は、水素原子又はフッ素原子を表し、少なくとも 1つはフッ素原 子を表す。 n2は、 1〜5の整数を表す。)で表されるフルォロォレフインよりなる群から 選択される少なくとも 1種を共重合してなる変性ポリテトラフルォロエチレン (i)からなり 、上記粒子殻部は、変性ポリテトラフルォロエチレン (ii)からなり、上記変性ポリテトラ フルォロエチレンファインパウダーは、リダクションレシオ 1600における円柱押出し圧 力が 50MPa以下であることを特徴とする変性ポリテトラフルォロエチレンファインパゥ ダーである(本明細書にぉ 、て、以下、「変性 PTFEファインパウダー(B)」と 、うこと がある。 ) o
[0012] 本発明は、変性ポリテトラフルォロエチレンファインパウダーを用いて成形カ卩ェするこ とにより得られた変性ポリテトラフルォロエチレン成形体であって、上記変性ポリテトラ フルォロエチレンファインパウダーは、上記変性 PTFEファインパウダー(A)又は上 記変性 PTFEファインパウダー(B)であることを特徴とする変性ポリテトラフルォロェ チレン成形体である。
本発明を以下に詳細に説明する。
[0013] 本明細書にぉ 、て、(A)及び (B)を付さな 、「変性 PTFEファインパウダー」なる用語 は、上記変性 PTFEファインパウダー(A)と上記変性 PTFEファインパウダー(B)とを 特に区別することなく両者を含み得る概念を表す。
[0014] 本発明の変性 PTFEファインパウダーは、変性 PTFEからなるファインパウダーであ る。上記変性 PTFEファインパウダーは、後述する乳化重合により得ることができる。
[0015] 本発明の変性 PTFEファインパウダー(A)は、リダクションレシオ〔RR〕 1600におけ る円柱押出し圧力が 50MPa以下であるものである。
上記 RR1600における円柱押出し圧力は、 45MPa以下であることが好ましぐ 40M Pa以下であることがより好ましぐ上記範囲内であれば、 25MPa以上であっても工業 上支障はない。
本明細書において、上記「円柱押出し圧力」は、変性ポリテトラフルォロエチレンパゥ ダー 100質量部に対して押出助剤として炭化水素油(商品名:ァイソパー G、ェクソン 化学社製)を 17質量部添加し、室温(25 ± 2°C。本明細書において、以下同じ。 )に て押し出す際のリダクションレシオ 1600における値である。
RR1600における円柱押出し圧力が上記範囲内であると、 RRが 3000以上という条 件下であっても好適に成形が可能であり、細径の電線、チューブ等に成形することが でき、生産性の点でも有利なものである。
上記変性 PTFEファインパウダー(A)は、 RR1600において上記範囲内の円柱押出 し圧力を有するものであるので、成形性に優れ、この優れた成形性は、特に押出成 形にお 1、て充分に発揮される。
[0016] 本発明の変性 PTFEファインパウダー (A)は、上記範囲内の円柱押出し圧力を有す るとともに、測定用成形体 aのヘイズ値が 60以下であるものである。
上記ヘイズ値は、 55以下であるものがより好ましぐ 53以下であるものが更に好ましく 、上記範囲内であれば、 40以上であってもよい。
上記測定用成形体 aは、変性 PTFEファインパウダー (A)を、内径 50mm φの金型 にて、圧力 20MPa、保持時間 5分、室温にて、圧縮成形したのち、 380°C X 1時間 加熱焼成することにより得られた円柱状成形体から、厚さ 0. 5mmのシートを切り出し 、熱風循環式電気炉にて 380°Cにて 5分間加熱焼成し、室温まで急冷することにより 作成したものである。
本明細書において、上記ヘイズ値は、 ASTM D 1003に従い、測定用成形体 aに つ!ヽて直読ヘイズメーター (東洋精機製作所社製)を用いて測定した値である。 上記変性 PTFEファインパウダー (A)は、測定用成形体 aについて上記範囲内のへ ィズ値を有するので、透明性に優れ、用途上、透明性が必要な成形体の形成に好適 に用いることができる。
[0017] 本発明の変性 PTFEファインパウダー (A)は、上記範囲内の円柱押出し圧力及びへ ィズ値を有するとともに、測定用成形体 bについて引張強度 (以下、「生強度」というこ とがある。)が 1. 8MPa以上であるものであることが好ましい。
上記引張強度のより好ましい下限は 2MPaであり、例えば 5MPa以下であっても工業 的使用に支障はない。
上記測定用成形体 bは、変性 PTFEファインパウダー (A) 50. OOgと押出助剤 (炭化 水素油、商品名:ァイソパー G、ェクソンィ匕学社製) 10. 25gとの混合物を、室温にお いて押出機のシリンダーに充填し 1分間保持したのち、直ぐに室温においてシリンダ 一に 5. 7MPaの負荷をカ卩えてラム速度 20mmZ分でオリフィスから押出して得られ る成形体を切り出すことにより得られた直径 0. 63mmの円柱状成形体を、 80mmの 長さに切り出したものである。
上記引張強度は、オートグラフ(島津製作所製)を用い、引張速度 200mmZ分にて 測定用成形体 bを引張り、その最大点強度を測定したものである。
本発明の変性 PTFEファインパウダー (A)は、測定用成形体 bについて上記範囲内 の引張強度を有する場合、長軸の成形体であっても押出成形が容易であり、また、 ペースト押出においても耐クラック性に優れる。
[0018] 本発明の変性 PTFEファインパウダー (A)は、上述の範囲内の円柱押出し圧力及び ヘイズ値を有するとともに、 ASTM D 4895により求めた熱不安定指数〔ΤΠ〕が 6 以下であるものが好ましい。
上記 ΤΠのより好ましい上限は 3、更に好ましい上限は 1である。 本発明の変性 PTFEファインパウダー (A)は、上記範囲内の TIIを有する場合、極め て優れた耐熱性を有する。
上記 ΤΠは、以下の式から求めることができる。
TII= (ESG-SSG) X 1000
(式中、 ESGは、 ASTM D 4895に準拠した PTFE特定形状成形品 12gを 380°C で 6時間処理したものの比重であり、 SSGは、上記 PTFE特定形状成形品 12gを 38
0°Cで 0. 5時間処理したものの標準比重である)
[0019] 本発明の変性 PTFEファインパウダー(A)は、後述の本発明の変性 PTFEファイン パウダー (B)の構成を有する場合、上述の各特性を容易に示すことができる。
本発明の変性 PTFEファインパウダー (A)は、例えば、後述の変性 PTFEファインパ ウダ一の製造方法により製造することができる。
[0020] 本発明の変性 PTFEファインパウダー(B)は、粒子芯部と粒子殻部とからなるもので ある。
上記変性 PTFEファインパウダー(B)を構成する変性 PTFEは、該変性 PTFEを得 るための重合反応媒体において、一次粒子を構成する。上記一次粒子は、重合上が りのポリマー粒子ともいえ、凝析等の後工程において凝集して二次粒子を構成する。 本発明の変性 PTFEファインパウダー(B)は、実質的に二次粒子の集合体である。 上記変性 PTFEファインパウダー (B)を構成する二次粒子の集合体は、重合反応媒 体を重合反応終了後に凝祈し乾燥した粉末であってもよ!ゝし、該粉末を粒径調整等 のために粉砕した粉砕品であってもよ 、。
本発明の変性 PTFEファインパウダー(B)について、上記「粒子芯部」及び「粒子殻 部」は、上記二次粒子又は粉砕品を構成する一次粒子における構造についていうも のである。
[0021] 本発明の変性 PTFEファインパウダー(B)を構成する一次粒子は、粒子芯部と粒子 殻部とからなる層構造を有すると考えられるが、粒子芯部と粒子殻部とは両者間に必 ずしも明確な境界がある必要はなぐ粒子芯部と粒子殻部との境界付近において粒 子芯部を構成する後述の変性 PTFE (i)と粒子殻部を構成する後述の変性 PTFE (ii )とが入り混じったものであってもよ!/、。 [0022] 本発明の変性 PTFEファインパウダー(B)は、押出圧力の低下の点で、粒子芯部が 、該粒子芯部と粒子殻部との合計の 85〜95質量%であるものが好ましぐより好まし い下限は 87質量%、より好ましい上限は 93質量%である。上記粒子芯部と粒子各 部との合計は、必ずしも明確である必要はな 、上述の該両部の境界と該境界付近を も含む。
[0023] 本発明の変性 PTFEファインパウダー(B)における粒子芯部としては、下記一般式 (I )
F C = CFO (CF ) X1 (I)
2 2 nl
(式中、 X1は、水素原子又はフッ素原子を表し、 nlは、 1〜6の整数を表す。)で表さ れるフルォロ(アルキルビュルエーテル)、下記一般式(II)
[0024] [化 2]
Figure imgf000009_0001
(式中、 X2及び X3は、同一若しくは異なって、水素原子又はフッ素原子を表し、 Yは、 — CR1!^—を表し、 R1及び R2は、同一若しくは異なって、フッ素原子、炭素数 1〜6 のアルキル基又は炭素数 1〜6のフルォロアルキル基を表す。)で表されるビュルへ テロ環状体、及び、下記一般式 (III)
CX4X5=CX° (CF ) F
(式中、 X4、 X5及び X6は、水素原子又はフッ素原子を表し、少なくとも 1つはフッ素原 子を表す。 n2は、 1〜5の整数を表す。)で表されるフルォロォレフインよりなる群から 選択される少なくとも 1種を共重合してなる変性ポリテトラフルォロエチレン〔変性 PTF E] (i)力 なるものが好ましい。
[0026] 本明細書にぉ 、て、(i)及び (ii)を付さな ヽ「変性ポリテトラフルォロエチレン〔変性 P TFE]」なる用語は、上記変性 PTFE (i)と後述の変性 PTFE (ii)とを特に区別するこ となく両者を含み得る概念を表す。
[0027] 上記一般式 (I)で表されるフルォロ(アルキルビュルエーテル)としては、 nlが 1〜4 であるものが好ましぐ nlが 3以下であるものがより好ましい。
上記一般式 (I)で表されるフルォロ(アルキルビュルエーテル)としては、また、 X1が フッ素原子であるパーフルォロ(アルキルビュルエーテル)が好ましい。
上記パーフルォロ(アルキルビュルエーテル)としては、例えば、パーフルォロ(メチ ルビ-ルエーテル)〔PMVE〕、パーフルォロ(ェチルビ-ルエーテル)〔PEVE〕、ノ 一フルォロ(プロピルビュルエーテル) [PPVE]、パーフルォロ(ブチルビ-ルエーテ ル)〔PBVE〕等が挙げられる。
上記一般式 (Π)で表されるビニルヘテロ環状体としては、例えば、 X2及び X3がフッ素 原子であるものが好ましぐまた、 R1及び R2が炭素数 1〜6のフルォロアルキル基で あるものが好ましい。
上記一般式 (Π)で表されるビニルヘテロ環状体としては、 X2及び X3がフッ素原子、 R 1及び R2がパーフルォロメチル基であるパーフルオロー 2, 2—ジメチルー 1, 3—ジォ キソール〔PDD〕が好まし!/、。
上記一般式 (ΠΙ)で表されるフルォロォレフインとしては、 HFPが好まし!/、。
本明細書にぉ 、て、変性 PTFEを構成することとなるテトラフルォロエチレン〔TFE〕 以外の単量体を「変性剤」ということがある。
[0028] 上記粒子芯部における変性剤としては、上記一般式 (I)で表されるフルォロ(アルキ ルビ-ルエーテル)が好ましぐなかでも、上記一般式 (I)における X1がフッ素原子を 表し且つ n2が 1〜3の整数を表すものがより好ましぐパーフルォロ(プロピルビュル エーテル) [PPVE]が更に好ましい。
上記変性 PTFE (i)は、上記一般式 (I)で表されるフルォロ(アルキルビニルエーテル )と上記一般式 (ΠΙ)で表されるフルォロォレフインとを共重合して得られる TFE3元 共重合体等、変性剤を 2種使用して得られるものであってもよい。変性剤を 2種使用 して得られる変性 PTFE (i)としては、例えば、 PPVEと HFPとを共重合して得られる TFE3元共重合体等が挙げられる。
[0029] 上記粒子芯部における変性剤に由来する変性剤単位は、用いる変性剤の種類によ る力 透明性向上の点で、変性 PTFEファインパウダー(B)を構成する一次粒子全 体の 0. 01〜0. 5質量%であることが好ましぐより好ましい下限が 0. 02質量%、更 に好ましい下限が 0. 08質量%、より好ましい上限が 0. 2質量%である。 上記粒子芯部にお!ヽて共単量体として PPVEを用いる場合、上記粒子芯部における 変性剤に由来する変性剤単位は、変性 PTFEファインパウダー(B)を構成する一次 粒子全体の 0. 01〜0. 5質量%であることが好ましぐより好ましい下限が 0. 02質量 %、より好ましい上限が 0. 2質量%である。
[0030] 本明細書において、「変性剤単位」は、変性 PTFEの分子構造上の一部分であって 、変性剤として用いた共単量体に由来する繰り返し単位を意味する。上記変性剤単 位は、例えば、変性剤として PPVEを用いた場合、— [CF -CF (-OC F ) ]—で 表され、 HFPを用いた場合、— [CF -CF (-CF;) ]—で表される。
上記変性剤単位は、変性 PTFE (i)が 2種以上の変性剤単位を有するものである場 合、各変性剤単位の合計を表す。
[0031] 本発明の変性 PTFEファインパウダー(B)における粒子殻部は、変性ポリテトラフル ォロエチレン〔変性 PTFE〕 (ii)力もなるものである。
変性 PTFE (ii)は、テトラフルォロエチレン単独重合体の特性を損なうことなぐ変性 したテトラフルォロエチレン重合体である。
本明細書において、上記変性 PTFE (ii)における変性は、 TFEと共重合可能な単量 体である変性剤を共重合させることによるものであってもよいし、重合時に連鎖移動 剤を添加することによるものであってもよいし、これら両者を何れも行うこと〖こよるもの であってもよい。
[0032] 本発明の変性 PTFEファインパウダー(B)の粒子殻部にお!、て、変性 PTFE (ii)に おける変性は、連鎖移動剤を用いることにより行うもの、及び Z又は、下記一般式 (I) F C = CFO (CF ) X1 (I)
(式中、 X1は、水素原子又はフッ素原子を表し、 nlは、 1〜6の整数を表す。)で表さ れるフルォロ(アルキルビュルエーテル)若しくは下記一般式 (III)
CX4X5=CX6 (CF ) F (III)
(式中、 X4、 X5及び X6は、水素原子又はフッ素原子を表し、少なくとも 1つはフッ素原 子を表す。 n2は、 1〜5の整数を表す。)で表されるフルォロォレフインを共重合させ ることにより行うものが好ましい。 [0033] 上記粒子殻部における変性に用いる連鎖移動剤としては、粒子殻部を構成する変 性 PTFE (ii)の分子量を低減するものであれば特に限定されず、例えば、水溶性ァ ルコール、炭化水素及びフッ化炭化水素等の非過酸化有機化合物、ジコハク酸パ 一オキサイド〔DSP〕等の水溶性有機過酸ィ匕物、並びに Z又は、過硫酸アンモ-ゥム [APS]、過硫酸カリウム〔KPS〕等の過硫酸塩力 なるもの等が挙げられる。
上記連鎖移動剤は、非過酸化有機化合物、水溶性有機過酸化物及び過硫酸塩の 何れかを少なくとも 1種有するものであればよい。
上記連鎖移動剤において、非過酸化有機化合物、水溶性有機過酸化物及び過硫 酸塩は、それぞれ 1種又は 2種以上を用いることができる。
[0034] 上記連鎖移動剤としては、反応系内で分散性及び均一性が良好である点で、炭素 数 1〜4の水溶性アルコール、炭素数 1〜4の炭化水素及び炭素数 1〜4のフッ化炭 化水素等よりなる群力 選択される少なくとも 1つ力もなるものであることが好ましぐメ タン、ェタン、 n—ブタン、イソブタン、メタノール、 HFC— 134a、 HFC— 32、 DSP、 APS及び KPSよりなる群力も選択される少なくとも 1つからなるものであることがより好 ましぐメタノール及び Z又はイソブタン力もなるものであることが更に好ましい。
[0035] 上記粒子殻部における変性のために共単量体として用いる変性剤としては、上記一 般式 (ΠΙ)で表されるフルォロォレフインが好まし!/、。
上記フルォロォレフインとしては、炭素数 2〜4のパーフルォロォレフイン、炭素数 2〜 4の水素含有フルォロォレフインが挙げられる。
上記フルォロォレフインとしては、パーフルォロォレフインが好ましぐなかでも、へキ サフルォロプロピレン〔HFP〕が好まし!/、。
[0036] 上記粒子殻部において共単量体として用いる変性剤に由来する変性剤単位は、用 いる変性剤の種類による力 生強度向上の点で、変性 PTFEファインパウダー(B)を 構成する一次粒子全体の 0. 001-0. 5質量%であることが好ましぐより好ましい下 限は 0. 005質量%、より好ましい上限は 0. 2質量%、更に好ましい上限は 0. 10質 量%である。上記粒子殻部において共単量体として HFPを用いる場合、変性 PTFE ファインパウダー(B)を構成する一次粒子全体の 0. 001-0. 3質量%であることが 好ましぐより好ましい下限は 0. 005質量%、より好ましい上限は 0. 15質量%である [0037] 上記変性 PTFE (ii)における変性は、後述の押出圧力の低下の点で、連鎖移動剤 の使用か又は変性剤の共重合カ 可れかを行うことによつても充分であるが、後述の 測定用成形体 bについて測定した引張強度を向上させる点で、変性剤の共重合と、 連鎖移動剤の使用との両方を行うことによるものが好ましい。
上記変性 PTFE (ii)における変性は、粒子芯部を構成する変性 PTFE (i)における 変性剤として上記一般式 (I)で表されるフルォロ(アルキルビュルエーテル)、特に P PVEを用いる場合、連鎖移動剤としてメタノール、イソブタン、 DSP及び Z又は APS を用いるとともに、変性剤として HFP及び Z又は PPVEを共重合することによるもの が好ましぐメタノール及び HFPを用いることによるものがより好ましい。
[0038] 本発明の変性 PTFEファインパウダー (B)は、上記構造を有する粒子芯部と粒子殻 部とを有する一次粒子からなるものであり、且つ、リダクションレシオ〔RR〕 1600にお ける円柱押出し圧力が 50MPa以下であるものである。
上記円柱押出し圧力は、本発明の変性 PTFEファインパウダー (A)について上述し たとおりであり、好ましい上限は 45MPa、より好ましい上限は 40MPaであり、また 25 MPa以上であってもよ!/ヽ。
[0039] 本発明の変性 PTFEファインパウダー(B)は、上述の測定用成形体 aについてヘイ ズ値が 60以下であるものとして容易に得ることができる。
上記変性 PTFEファインパウダー(B)は、 TFEホモポリマーと異なり、少なくとも粒子 芯部において、主鎖に側鎖やフッ素以外の原子が結合しているので、結晶性が低下 し、光散乱を生じる微結晶が少なぐ高い透明性を有する成形体に加工することがで さるちのと考免られる。
上記ヘイズ値は、好ましい上限が 55、より好ましい上限が 53、好ましい下限が 35で あり、また 40以上であってもよい。
[0040] 本発明の変性 PTFEファインパウダー(B)は、また、上述の測定用成形体 bにつ ヽて 引張強度が 1. 8MPa以上であるものとして容易に得ることができる。上記引張強度と しては、上記範囲内にあれば、例えば、 4MPa以下であってもよぐ 3MPa以下であ つてもよい。 [0041] 本発明の変性 PTFEファインパウダー(B)は、また、 ASTM D 4895により求めた 熱不安定指数〔ΤΠ〕が 6以下であるものとして容易に得ることができる。上記 ΤΠの好 ましい上限は 3、より好ましい上限は 1であり、好ましい下限は 4、より好ましい下限 は 0 (ゼロ)である。
[0042] 本発明の変性 PTFEファインパウダー(Β)は、上記範囲内の円柱押出し圧力を有す るとともに、測定用被覆電線 aにつ 、て MIL— C 17に準拠して測定した芯線密着 強度が 1. 5kgf以上とすることができる。
上記測定用被覆電線 aは、 (1)変性 PTFEファインパウダー 2kgに対して押出助剤( ァイソパー G)を 16質量%(381g)を混合し、 12時間常温で熟成したのち、 10メッシ ュの SUS金網を通して予備成形機(田端機械工業社製)にて予備成形を行い、 (2) 得られた予備成形体を φ 50mmの電線成形機 (田端機械工業社製社製)にて押出 したのち、(3)乾燥及び (4)焼成を行い冷却して得られる、被覆層厚み 0. 58mmの 被覆電線である。
上記(1)〜 (4)における各種条件は、後述の実施例記載と同様である。
上記変性 PTFEファインパウダー(B)は、上記測定用被覆電線 aについて上記範囲 内の芯線密着強度を有するので、各種被覆電線の材料として好適に用いることがで きる。
[0043] 本発明の変性 PTFEファインパウダー(B)は、高温下でも耐クラック性に優れた成形 体を得ることができ、例えば、上記測定用被覆電線 aを U字型に曲げ一方を他方に 1 0回巻き付けてなる自己巻き耐熱試験体を 335°Cに 2時間置いたのち常温に取り出 して放置冷却したときにクラックを生じない成形体とすることもできる。
本明細書において、上記自己巻き耐熱試験体は、後述の実施例記載の方法にて作 成したものである。
[0044] 本発明の変性 PTFEファインパウダー(B)は、その粒子芯部が変性剤を 2種共重合 してなる TFE3元共重合体力 なるものである場合、特に、 12GHzにおける誘電正 接が 2. 0 X 10—4以下、好ましくは 1. 72 X 10—4以下であるものとすることができる。 本明細書において、上記「誘電正接」は、フィルム状試料について、空洞共振器を用 いて共振周波数及び電界強度の変化を 20〜25°Cの温度下で測定し得られる値で ある。空洞共振器を用いて測定した場合、共振周波数は 12GHzに比べて低下する 力 本明細書において、得られた誘電正接の値は、無負荷の周波数における値で表 現する。上記フィルム状試料は、変性 PTFEファインパウダーを直径 50mmの円柱状 に圧縮成形し、この円柱力も切り出したフィルムを 380°Cで 5分間焼成し、 60°CZ分 の冷却速度で 250°Cまで徐冷し、 250°Cにて 5分間保持したのち、常温まで放冷す ることにより得られるものである。
12GHzにおける誘電正接が上記範囲内であると、マイクロ波帯域(3〜30GHz)又 は UHF極超短波(3GHz未満)において同軸ケーブル等の伝送製品誘電材料とし て良好な伝送特性を達成することができる。
上記変性 PTFEファインパウダー(B)は、その粒子芯部における変性 PTFE (i)が上 述の好ましい範囲内の変性剤単位量を有するとき、容易に上記範囲内の誘電正接 を示すことができる。
[0045] 本発明の変性 PTFEファインパウダー(B)は、上述の構成からなるものであるので、 押出圧力が低ぐ好ましくは、透明性、生強度、 ΤΠにより表される耐熱性等にも優れ た成形体を得ることができる。
上記変性 PTFEファインパウダー(B)がこのような優れた効果を奏する機構としては 明確ではないが、上述のとおり、粒子芯部が上記特定の変性剤により変性した変性 PTFE (i)からなり、粒子殻部が上記変性 PTFE (ii)を有する一次粒子カゝらなるもの であるので、カゝかるコア/シェル構造が押出圧力を低下させるとともに、主として該粒 子芯部の構造が透明性と ΤΠにより表される耐熱性とに寄与し、主として該粒子殻部 の構造が押出圧力の充分な低下と、生強度の向上とに寄与するものと考えられる。も つとも、上記変性 PTFEファインパウダー(B)を構成する一次粒子がコア Zシェル構 造を有すること、粒子芯部が上述の特定の変性 PTFE力 なるものであること、及び、 粒子殻部が上述の特定の変性 PTFE力 なるものであることにより相乗的に上記優 れた効果を奏することができるものと思われる。
[0046] 本発明の変性 PTFEファインパウダーは、例えば、変性 PTFEを得るための重合反 応を行って得られる変性 PTFE水性分散液を凝祈したのち乾燥することにより製造 することができる。 上記変性 PTFEファインパウダーを構成する変性 PTFEの製造方法としては、テトラ フルォロエチレン重合体の製造方法であって、
重合反応初期に上述の一般式 (I)で表されるフルォロ(アルキルビュルエーテル)、 一般式 (Π)で表されるビニルヘテロ環状体、及び、上述の一般式 (ΠΙ)で表されるフ ルォ口才レフインよりなる群力 選択される少なくとも 1種を反応系に仕込み重合反応 を行う工程(1)、並びに、
上記工程(1)の後に、連鎖移動剤、及び Z又は、上述の一般式 (I)で表されるフル ォロ(アルキルビュルエーテル)若しくは上記一般式 (ΠΙ)で表されるフルォロォレフィ ンを反応系に導入する工程 (2)
を含むものが好ましい。
[0047] 上記工程(1)は、該工程(1)と工程(2)とを含むテトラフルォロエチレン重合体の製 造工程全体で用いる TFEの転ィ匕率が 85〜95%となるまで重合反応を行うことが好 ましい。
本明細書において、上記「転ィ匕率」は、 目的とする TFE単位の量に相当する TFEの 量のうち、重合開始時力 重合途中のある時点までの間に重合に消費された TFEの 量が占める割合である。
[0048] 上記工程(1)及び上記工程(2)において、テトラフルォロエチレン重合体の製造方 法は、使用する変性剤の種類、 目的とする変性 PTFEの組成及び収量等に応じて、 反応条件を適宜設定して行うことができる。
[0049] 上記テトラフルォロエチレン重合体の製造方法は、乳化剤として水溶性の分散剤を 存在させて、水性媒体中において行うことができる。上記乳化剤としては、含ハロゲン 系乳化剤、炭化水素系乳化剤等を用いることができる。
上記水性媒体は、水力 なる媒体である。上記水性媒体は、水のほか、極性を有す る有機溶剤を含んで 、てもよ 、。
上記極性を有する有機溶剤としては、例えば、 N—メチルピロリドン〔NMP〕等の含窒 素溶剤;アセトン等のケトン類;酢酸ェチル等のエステル類;ジグライム、テトラヒドロフ ラン〔THF〕等の極性エーテル類;ジエチレンカーボネート等の炭酸エステル類等が 挙げられ、これらのな力から 1種又は 2種以上を混合して用いることができる。 [0050] 上記水溶性の分散剤としては、非イオン性界面活性剤、ァニオン性界面活性剤、力 チオン性界面活性剤、両性界面活性剤の何れを用いることもできるが、なかでも、ァ ユオン性界面活性剤又は非イオン性界面活性剤が好ましい。
上記水溶性の分散剤は、上記水性媒体の 0. 02-0. 3質量%とすることができる。 上記テトラフルォロエチレン重合体の製造方法は、例えば、過硫酸アンモ-ゥム〔八? S]等の過硫酸塩、ジコハク酸パーオキサイド〔DSP〕等の水溶性有機過酸化物等の 重合開始剤を使用して行うことができ、また、これらの重合開始剤は 1種又は 2種以 上を組み合わせて用いることができる。中でも、 APS、 DSP等は、上述した連鎖移動 剤としての作用をも有するので好まし!/、。
上記テトラフルォロエチレン重合体の製造方法は、重合開始剤が水性媒体 100質量 部あたり 0. 0001-0. 02質量部となる量にて行うことが好ましい。
[0051] 上記テトラフルォロエチレン重合体の製造方法は、重合温度 10〜95°Cにて行うこと ができるが、重合開始剤として過硫酸塩又は水溶性有機過酸化物を使用する場合、 60〜90。Cにて行うこと力 子ましい。
上記テトラフルォロエチレン重合体の製造方法は、通常、 0. 5〜3. 9MPa、好ましく は、 0. 6〜3MPaにて行うことができる。
上記テトラフルォロエチレン重合体の製造方法は、また、重合初期、特に TFEの転 化率が全体の 15%以下の範囲まで 0. 5MPa以下の圧力にて反応を行い、それ以 後 0. 5MPaを超える圧力に保つことによつても行うことができるし、芯部の形成途中 で反応圧力を、例えば 0. IMPa以下に低下させ、再度 TFEを供給し所定の圧力に て反応させること〖こよっても行うことができる。
[0052] 上記 TFEの重合反応カゝら得られる変性 PTFE水性分散液は、変性 PTFEカゝらなる 一次粒子が上記水性媒体中に分散している分散体である。上記一次粒子は、凝析 等の後工程を経ていない重合上がりの分散質である。
変性 PTFE水性分散液は、固形分の量が、通常 20〜40質量%である。
上記凝析は、従来公知の方法により行うことができ、適宜、凝析促進剤として水溶性 有機化合物、塩基性ィ匕合物力もなる無機塩等を添加して行ってもよい。また、上記凝 析は、凝析前ゃ凝析中に、着色付与を目的として顔料を添加してもよいし、導電性付 与、機械的性質の改善を目的として充填剤を添加して行うこともできる。
[0053] 上記乾燥工程は、通常、 100〜250°Cの温度下にて行うことができる。上記乾燥は、 5〜24時間の間行うことが好ましい。
上記乾燥工程は、乾燥温度が高いと、粉体の流動性については向上する力 得られ る変性 PTFEファインパウダーのペースト押出圧力が高くなる場合があるので、温度 設定には特に注意する必要がある。
[0054] 本発明の変性 PTFE成形体は、変性 PTFEファインパウダーを用いて成形カ卩ェする ことにより得られた変性 PTFE成形体であって、上記変性 PTFEファインパウダーは、 上述の本発明の変性 PTFEファインパウダーであるものである。
[0055] 上記成形加工は、特に限定されないが、通常、ペースト押出にて行う。
上記ペースト押出は、所望する成形体の形状、用途等に応じて適宜条件を設定して 行うことができ、例えば、押出助剤を混合して約 1〜24時間熟成し、圧力 0. 5〜2. 0 MPaにて予備成形を行った後、押出圧力 2〜100MPaにて押出を行い、 360〜45 0°Cにて焼成することにより行うことができる。
[0056] 本発明の変性 PTFE成形体は、例えば、航空機、自動車、医療機器、精密機械等に おいて、耐熱性ゃ耐薬品性が要求されるプリント基板、電線被覆、チューブ等として 好適に使用することができ、なかでも、芯線密着強度等が要求される電線被覆材、医 薬用チューブとして使用することが好まし 、。
上記電線被覆材としては、例えば、銅線等の芯線を被覆する被覆材として好適であ る。芯線及び上記電線被覆材を有する被覆電線としては、耐熱電線、同軸ケーブル 等が好ましぐ耐熱電線がより好ましい。
発明の効果
[0057] 本発明の変性 PTFEファインパウダーは、上述の構成からなるものであるので、ぺー スト押出性能がよぐ透明性、耐熱性、耐薬品性等に優れた成形体に加工することが できる。
本発明の変性 PTFE成形体は、上述の構成力もなるものであるので、透明性、耐熱 性、耐薬品性等に優れている。
発明を実施するための最良の形態 [0058] 本発明を実施例及び比較例により更に詳細に説明するが、本発明はこれらの実施例 及び比較例により限定されるものではない。
[0059] 本実施例及び比較例において、以下の方法にて測定を行った。
(1)重合体濃度
シャーレに 10gの変性ポリテトラフルォロエチレン [変性 PTFE]水性分散液を採取し 、 150°Cにて約 3時間加熱した後に秤量した固形分の質量から、上記変性 PTFE水 性分散液の質量と固形分の質量との割合として算出した。
(2)平均粒子径
変性 PTFE水性分散液を固形分 0. 15質量%に調整してセルに入れ、 550nmの光 を入射したときの透過率と、透過型電子顕微鏡写真により定方向径を測定して算出 した数平均一次粒子径との相関を検量線にまとめ、得られた検量線と各試料につい て測定した上記透過率とから決定した。
(3)芯部割合
重合開始後、変性剤の追加前に消費したモノマー量と、重合反応全体において消 費したモノマー量との質量比として算出した。
(4)芯部 '殻部変性量
重合開始後、変性剤を追加する直前に試料を取り出し、核磁気共鳴スペクトル測定 を行うことにより求めた。次いで、最終的に得られたテトラフルォロエチレン重合体に っ 、て全体の変性量を測定して、芯部変性量との関係から殻部変性量を測定した。
(5)標準比重 [SSG]
ASTM D 4895— 89に準拠して、水中置換法に基づき測定した。
(6)熱不安定指数 [ΤΠ]
ASTM D 4895— 89に準拠して測定した。
(7)焼成前の弓 I張強度 (生強度)
オートグラフ(島津製作所製)を用い、室温において引張速度 200mmZ分にて測定 用成形体 bを引張り、その最大点強度を測定した。なお、測定用成形体 bは、変性 P TFEパウダー 50. 00gと押出助剤(商品名:ァイソパー G、ェクソンィ匕学社製) 10. 2 5gとをガラスビン中で混合し、室温(25 ± 2°C)で 1時間熟成して得られた混合物を、 圧力 2MPa、室温において押出機のシリンダーに充填し 1分間保持したのち、直ぐに シリンダーに挿入したピストンに 5. 7MPaの負荷をカ卩えてラム速度 20mmZ分でオリ フィスから押出して成形することにより得られた、直径 0. 63mm X長さ 80mmの円柱 状成形体である。
(8)押出圧力
ASTM D 4895に準拠した押出機を用い、リダクションレシオ 1600における押出 し圧力を測定した。まず、変性 PTFEパウダー 50. OOgと押出助剤である炭化水素 油(商品名:ァイソパー G、ェクソンィ匕学社製) 10. 25gとをガラスビン中で混合し、室 温(25士 2°C)で 1時間熟成した。
次に、押出機のシリンダーに上記混合物を充填し、室温において 1分間保持したの ち、直ぐにシリンダーに挿入したピストンに 5. 7MPaの負荷をカ卩えて、直ちに室温に おいてラム速度 20mmZ分でオリフィスカゝら押出した。押出操作で圧力が平衡状態 になる時点の荷重 (N)をシリンダー断面積で除した値を押出し圧力(MPa)とした。
(9)ヘイズ値
ASTM D 1003に従い、測定用サンプル aを直読ヘイズメーター (東洋精機製作 所社製)を用いて測定した。測定用サンプル aは、内径 50mm φの金型にて、圧力 2 0MPa、保持時間 5分、室温にて圧縮成形したのち 380°C X 1時間加熱焼成して得 られる円柱状成形体から切り出すことにより得られた厚さ 0. 5mmのシートを熱風循 環式電気炉にて 380°C、 5分間にて加熱焼成し、室温まで急冷することにより作成し たものである。
(9)芯線密着強度
測定用被覆電線 aにつ 、て MIL— C 17に準拠して測定した。
上記測定用被覆電線 aは、 (i)変性 PTFEファインパウダー 2kgに対して押出助剤 (ァ イソパー G)を 16質量%(381g)を混合し、 12時間常温で熟成したのち、 10メッシュ の SUS金網を通して予備成形機 (田端機械工業社製)にて予備成形を行!ヽ、 (ii)得 られた予備成形体を φ 50mmの電線成形機 (田端機械工業社社製)にて押出したの ち、(iii)乾燥及び (iv)焼成を行い冷却して得られる、被覆層厚み 0. 58mmの被覆 電線である。 なお、(i)の予備成形は、ラム速度を lOOmmZ分として、 3MPaの圧力下、常温環 境下にて 10分間行った。(ii)予備成形体の押出は、芯線として、 AWG24、外径 0. 511mmのニッケルメツキ銅線を用い、ラム速度 13mmZ分、芯線速度 10mZ分に て押し出した。また、(iii)乾燥は、(ii)の工程力も得られる押出物を 160°Cに設定し たキヤブスタンへ通した後、 200°C、 250°C、 280°Cと段階的に設定した乾燥炉へ通 して行い、(iv)焼成は、 280°C力も 400°Cに段階的に設定した焼成炉に 10mZ分に て通過させて行った。
[0061] (10)自己巻き耐熱性
自己巻き耐熱試験体を 335°Cに 2時間置いたのち常温に取り出して放置冷却したと きに、巻き付け部分 (下記測定用被覆電線 alの該当部分)に生じたクラックの個数を 目視観察にて数えた。
上記自己巻き耐熱試験体は、上記測定用被覆電線 aを芯線方向において任意の箇 所 piにて U字型に曲げ、上記測定用被覆電線 aを上記箇所 piを境にして一方を測 定用被覆電線 al、他方を測定用被覆電線 a2に分けて示した際に、上記測定用被覆 電線 alにおいて上記箇所 piから長さ 50mmの箇所 p2を上記測定用被覆電線 a2に 接触させ上記接触箇所カゝら上記測定用被覆電線 alを上記測定用被覆電線 a2に 10 回巻き付け上記 10回目を巻き付けたところで上記測定用被覆電線 alを上記測定用 被覆電線 a2に結びつけて固定したものである。上記巻き付けは、図 1の写真に示す ように、 n回目の巻き付けを (n— 1)回目に巻き付けた測定用被覆電線 al部分に接 触させて行った。
[0062] 実施例 1
ステンレススチール (SUS316)製アンカー型撹拌機及び温度調節用ジャケット付き のステンレススチール(SUS316)製のオートクレーブ(内容量 6L)に、脱イオン水 35 80g、パラフィンワックス 94. lg及び分散剤としてパーフルォロオクタン酸アンモ-ゥ ム 3. 58gを仕込んだ。次いでオートクレーブを 70°Cまで加熱しながら、窒素ガスで 3 回、テトラフルォロエチレン〔TFE〕ガスで 2回系内を置換して酸素を除いた。その後、 TFEガスで内圧を 0. 73MPa〖こし、 280rpmで撹拌を行い、内温を 70°Cに保った。 次に初期導入変性剤としてパーフルォロプロピルビュルエーテル〔PPVE〕を 2. 9g、 続ヽて脱イオン水 20gに溶解した過酸化コハク酸〔DSP〕 322mgと脱イオン水 20gに 溶解した過硫酸アンモ-ゥム〔八 3〕 13. 4mgとを注入し、オートクレーブの内圧を 0 . 78MPaにした。
反応で消費された TFEが 1490g (転化率 90%)に達した時点で追加変性剤としてへ キサフルォロプロピレン〔HFP〕14. 2gを仕込み、引き続き反応を行った。
反応の全過程において、反応が進行するに従ってオートクレープの内圧が低下した ので、常〖こ 0. 78MPaに保つように TFEを連続的に供給した。撹拌速度は 280rpm 、反応温度は 70°Cに一定に保つようにした。
反応で消費された TFEが 1735gに達した時点で TFEの供給を止め、撹拌を停止し た。オートクレープ内のガスを常圧まで放出した後で内容物を取り出し反応を終了し た。
[0063] 得られた変性 PTFE水性分散液の固形分は、 29. 5質量%であり、平均一次粒子径 は 0. 22 μ mであった。
得られた変性 PTFE水性分散液を脱イオン水で固形分濃度が約 15質量%となるよう に希釈し、凝固するまで激しく撹拌して凝祈し、得られた凝集物を 145°Cで 18時間 乾燥し、変性 PTFE粉末を得た。
得られた変性 PTFE粉末を用いて、変性 PTFE中の PPVE及び HFP含有量を測定 したところ、それぞれ 0. 165質量%、 0. 05質量%であった。また、上記変性 PTFE の標準比重〔SSG ¾2. 168であった。
更に、上記変性 PTFE粉末について、熱不安定指数、押出圧力及び生強度を測定 し、更に成形体を作成し、ヘイズ値を測定した。
[0064] 実施例 2
初期導入変性剤をパーフルオロー 2, 2—ジメチルー 1, 3—ジォキソール〔PDD〕に 変え、初期導入変性剤及び追加変性剤の添加量を変更し、追加変性剤の添加と同 時に連鎖移動剤としてイソブタンを 7. 4cc仕込む以外は、実施例 1と同様にして変性 PTFE粉末の製造を行い、各種測定を行った。
[0065] 実施例 3
ステンレススチール (SUS316)製アンカー型撹拌機及び温度調節用ジャケットを有 するステンレススチール(SUS316)製のオートクレーブ(内容量 6L)に、脱イオン水 3580g、パラフィンワックス 94. lg及び分散剤としてパーフルォロオクタン酸アンモ- ゥム 0. 72gを仕込んだ。次いでオートクレーブを 70°Cまで加熱しながら、窒素ガスで 3回、 TFEガスで 2回系内を置換して酸素を除いた。その後、 TFEガスで内圧を 0. 7 3MPa【こし、 280rpmで携枠を行!ヽ、内温を 70°C【こ保った。
次に初期導入変性剤として PPVEを 2. 2g、続いて脱イオン水 20gに溶解した DSP3 22mgと脱イオン水 20g〖こ溶解した APS13. 4mgとを注入し、オートクレーブの内圧 を 0. 78MPaにした。
重合開始剤を添加してカゝら反応で消費された TFEが 230g (転化率 20%)に達した 時点でパーフルォロオクタン酸アンモ-ゥム 4. 54gを仕込んだ後、内圧が 0. 78MP aになるまで TFEを供給し、 280rpmで再び撹拌を開始し、引き続き反応を行った。 反応で消費された TFEが 1490g (転化率 90%)に達した時点で、追加変性剤として HFPを 7. lg、連鎖移動剤としてイソブタンを 7. 4mlをそれぞれ仕込み、引き続き反 応を行った。
反応の全過程において、反応が進行するに従って TFEの内圧が低下したので、常 に 0. 78MPaに保つように TFEを連続的に供給した。撹拌速度は 280rpm、反応温 度は 70°Cに一定に保つようにした。
反応で消費された TFEが 1735gに達した時点で TFEの供給を止め、撹拌を停止し た。オートクレープ内のガスを常圧まで放出した後で内容物を取り出し反応を終了し た。
得られた変性 PTFE水性分散液の固形分は、 31. 5質量%であり、平均一次粒子径 は 0. 24 μ mであった。
得られた変性 PTFE水性分散液を脱イオン水で固形分濃度が約 15質量%となるよう に希釈し、凝固するまで激しく撹拌して凝祈し、得られた凝集物を 145°Cで 18時間 乾燥し、変性 PTFE粉末を得た。
得られた変性 PTFE中の PPVE及び HFP含有量を測定したところ、それぞれ 0. 10 3質量%、 0. 03質量%であった。また、上記変性 PTFEの標準比重〔SSG ¾2. 17 3であった。 また、上記変性 PTFE粉末について、熱不安定指数、押出圧力、生強度及びヘイズ 値を測定した。
[0067] 実施例 4
追加変性剤の種類と量とを表 1に示すように変えた以外は実施例 3と同様にして変性
PTFE粉末の製造を行い、各種測定を行った。
[0068] 実施例 5〜6
連鎖移動剤の代わりに開始剤 APS (実施例 5)又は DSP (実施例 6)を添加した以外 は実施例 4と同様にして変性 PTFE粉末の製造を行 ヽ、各種測定を行った。
[0069] 実施例 7
追加変性剤の種類と量とを表 1に示すように変えた以外は実施例 4と同様にして変性 PTFE粉末の製造を行い、各種測定を行った。
各実施例の測定結果を表 1に示す。
[0070] [表 1]
Figure imgf000025_0001
表 1中、実施例 5及び実施例 6に記載の連鎖移動剤の添加量は、脱イオン水 3580g に対する割合である。各実施例力 得られた変性 PTFE粉末は、何れも、生強度が 高ぐ成形時における押出圧力が低力つた。特に、追加変性剤として HFPを添加し、 連鎖移動剤としてメタノールを添加した実施例 4の変性 PTFE粉末は、押出圧力が 低かった。また、各変性 PTFE粉末について測定したヘイズ値も、低い値を示した。 追加変性剤として HFPを添加した実施例 4及び実施例 5の各変性 PTFE粉末は、へ ィズ値が低かった。
[0072] 実施例 8
ステンレススチール (SUS316)製アンカー型撹拌機及び温度調節用ジャケット付き のステンレススチール(SUS316)製のオートクレーブ(内容量 6L)に、脱イオン水 35 80g、パラフィンワックス 94. lg及び分散剤としてパーフルォロオクタン酸アンモ-ゥ ム 3. 58gを仕込んだ。次いでオートクレーブを 70°Cまで加熱しながら、窒素ガスで 3 回、テトラフルォロエチレン〔TFE〕ガスで 2回系内を置換して酸素を除いた。その後、 TFEガスで内圧を 0. 73MPa〖こし、 280rpmで撹拌を行い、内温を 70°Cに保った。 次に初期導入変性剤としてパーフルォロプロピルビュルエーテル〔PPVE〕 0. 85g及 びへキサフルォロプロピレン〔HFP〕0. 34g、続いて脱イオン水 20gに溶解した過酸 化コハク酸〔DSP〕 322mgと脱イオン水 20gに溶解した過硫酸アンモ-ゥム〔八?3〕 1 3. 4mgとを注入し、オートクレーブの内圧を 0. 78MPaにした。
反応で消費された TFEが 1490g (転化率 90%)に達した時点で追加変性剤としてへ キサフルォロプロピレン〔HFP〕3. 5gを、連鎖移動剤としてメタノール 0. 4gを仕込み 、引き続き反応を行った。
反応の全過程において、反応が進行するに従ってオートクレープの内圧が低下した ので、常〖こ 0. 78MPaに保つように TFEを連続的に供給した。撹拌速度は 280rpm 、反応温度は 70°Cに一定に保つようにした。
反応で消費された TFEが 1735gに達した時点で TFEの供給を止め、撹拌を停止し た。オートクレープ内のガスを常圧まで放出した後で内容物を取り出し反応を終了し た。
[0073] 得られた変性 PTFE水性分散液の固形分は、 31. 5質量%であり、平均一次粒子径 は 0. 24 μ mであった。
得られた変性 PTFE水性分散液を脱イオン水で固形分濃度が約 15質量%となるよう に希釈し、凝固するまで激しく撹拌して凝祈し、得られた凝集物を 145°Cで 18時間 乾燥し、変性 PTFEファインパウダーを得た。
粒子芯部の PPVE及び HFP含有量を測定したところ、それぞれ、表 2に示す値とな つた。また、上記変性 PTFEの標準比重〔SSG ¾2. 180であった。
更に、上記変性 PTFEファインパウダーについて、熱不安定指数、押出圧力、生強 度及びヘイズ値を測定し、更に測定用被覆電線 aを作成し、芯線密着強度及び自己 巻き耐熱性を測定した。
実施例 9
ステンレススチール (SUS316)製アンカー型撹拌機及び温度調節用ジャケット付き のステンレススチール(SUS316)製のオートクレーブ(内容量 6L)に、脱イオン水 35 80g、パラフィンワックス 94. lg及び分散剤としてパーフルォロオクタン酸アンモ-ゥ ム 0. 72gを仕込んだ。次いでオートクレーブを 70°Cまで加熱しながら、窒素ガスで 3 回、テトラフルォロエチレン〔TFE〕ガスで 2回系内を置換して酸素を除いた。その後、 TFEガスで内圧を 0. 73MPa〖こし、 280rpmで撹拌を行い、内温を 70°Cに保った。 次に初期導入変性剤としてパーフルォロプロピルビュルエーテル〔PPVE〕 1. Og及 びへキサフルォロプロピレン〔HFP〕0. 34g、続いて脱イオン水 20gに溶解した過酸 化コハク酸〔DSP〕 220mgと脱イオン水 20gに溶解した過硫酸アンモ-ゥム〔八?3〕 1 3. 4mgとを注入し、オートクレーブの内圧を 0. 78MPaにした。
重合開始剤を添加してカゝら反応で消費された TFEが 230g (転化率 20%)に達した 時点でパーフルォロオクタン酸アンモ-ゥム 4. 54gを仕込んだ後、内圧が 0. 78MP aになるまで TFEを供給し、 280rpmで再び撹拌を開始し、引き続き反応を行った。 反応で消費された TFEが 1490g (転化率 90%)に達した時点で追加変性剤としてへ キサフルォロプロピレン〔HFP〕3. 5gを、連鎖移動剤としてメタノール 0. 3gを仕込み 、引き続き反応を行った。
反応の全過程において、反応が進行するに従ってオートクレープの内圧が低下した ので、常〖こ 0. 78MPaに保つように TFEを連続的に供給した。撹拌速度は 280rpm 、反応温度は 70°Cに一定に保つようにした。
反応で消費された TFEが 1735gに達した時点で TFEの供給を止め、撹拌を停止し た。オートクレープ内のガスを常圧まで放出した後で内容物を取り出し反応を終了し た。
[0075] 得られた変性 PTFE水性分散液の固形分は、 31. 2質量%であり、平均一次粒子径 は 0. 23 μ mであった。
得られた変性 PTFE水性分散液を脱イオン水で固形分濃度が約 15質量%となるよう に希釈し、凝固するまで激しく撹拌して凝祈し、得られた凝集物を 145°Cで 18時間 乾燥し、変性 PTFE粉末を得た。
粒子芯部の PPVE及び HFP含有量を測定したところ、それぞれ表 2に示す値となつ た。また、上記変性 PTFEの標準比重〔SSG ¾2. 175であった。
更に、上記変性 PTFEファインパウダーについて、熱不安定指数、押出圧力、生強 度及びヘイズ値を測定し、更に測定用被覆電線 aを作成し、芯線密着強度及び自己 巻き耐熱性を測定した。
[0076] 実施例 10
追加変性剤の種類及び添加量を表 2に示すように変更した以外は、実施例 8と同様 にして変性 PTFEファインパウダーの製造を行 ヽ、各種測定を行った。
[0077] 実施例 8〜: LOの各測定結果を、表 2に示す。
[0078] [表 2]
実施例 8 実施例 9 実施例 10
(芯部)変性剤 1 PPVE(0.85g) PPVE(1.0g) PPVE(0.85g) 変性剤 (添加量 g) (芯部)変性剤 2 HFP(0.34g) HFP(0.34g) HFP(0.34g) 殻部 HFP(3.5g) HFP(3.5g) PPVE(0.5g)
(芯部)変性剤 1 0.037 0.032 0.035 変性量 (質量 %) (芯部)変性剤 2 0.01 0.01 0.01
0.03 0.03 0.05 連鎖移動剤(添加量) メタノール〔0.½)メタノール (0.3g) メタノール (0.4g) 平均粒子径(jU m) 0.24 0.23 0.23 橒準比重 2.180 2.175 2.170 熱不安定指数 3 2 2 押出圧力 (MPa) 34.3 32.5 38.7 生強度 (MPa) 2.0 1.9 2.5 ヘイズ値 57 58 50 芯線密着強度 (kgf) 1.7 1.6 1.6 自己巻き耐熱性 0 0 0
[0079] 実施例 8〜10の変性 PTFEファインパウダーは、熱不安定指数、押出圧力、生強度 及びヘイズ値のいずれについても、好ましい値となった。また、実施例 8〜10におい て、芯線密着強度及び自己巻き耐熱性ともに優れていた。
[0080] 比較例 1
WOOOZ02935号公報、実施例 2に記載の方法に従い、乳化重合を行うことにより、
PPVE単位を有する TFE重合体カゝらなる TFE重合体粉末を調製した。
得られた TFE重合体粉末を用いて、 TFE重合体中の PPVE含有量を測定したところ
、 0. 106質量%であった。また、上記 TFE重合体粉末の標準比重〔SSG ¾2. 177 であった。
更に、上記 TFE重合体粉末について、熱不安定指数、押出圧力及びヘイズ値を測 し 7こ。
[0081] 比較例 2
特公昭 56— 26242号公報、実施例 7に記載の方法に従い、 CTFE単位を芯部及び 殻部の両方に有する二層構造の TFE重合体からなる TFE重合体粉末を調製した。 得られた TFE重合体粉末を用いて、 TFE重合体中の CTFE含有量を測定したとこ ろ、 0. 770質量%であった。
更に、上記 TFE重合体粉末について、押出圧力及びヘイズ値を測定した。
[0082] 比較例 3〜4
特開昭 63— 56532号公報、実施例 4 (比較例 3に適用)及び実施例 8 (比較例 4に適 用)に記載の方法に従い、芯部に PPVE単位を有し、殻部に CTFE単位を有する二 層構造の TFE重合体力 なる TFE重合体粉末を調製した。
上記 TFE重合体粉末を用いて、 PPVE単位及び CTFE単位を測定した。
更に、上記 TFE重合体粉末ついて、押出圧力及びヘイズ値を測定した。
[0083] 比較例 5
特開平 8— 26102号公報、実施例 2に記載の方法に従い、芯部にパーフルォロ(ブ チルビ-ルエーテル) [PBVE]単位を有し、殻部に HFP単位を有する二層構造の T FE重合体力 なる TFE重合体粉末を調製した。
得られた TFE重合体粉末を用いて、 PBVE単位及び HFP単位を測定した。
更に、上記 TFE重合体粉末について、押出圧力及びヘイズ値を測定した。
各比較例の結果を、表 3に示す。
[0084] [表 3]
Figure imgf000030_0001
(注)変性量を明記していないものは、測定しなかった。
各比較例から得られた TFE重合体粉末を成形した成形体の生強度は、押出圧力が 高いため、高いものもあると思われる。また、各比較例において測定したヘイズ値は 高いので、各比較例の TFE重合体から得られた成形体は、本願実施例の変性 PTF E粉末から得られた成形体と比べて透明性に劣ることが分かった。
産業上の利用可能性
[0086] 本発明の変性 PTFEファインパウダーは、上述の構成からなるものであるので、ぺー スト押出性能がよぐ透明性、耐熱性、耐薬品性等に優れた成形体に加工することが できる。
本発明の変性 PTFE成形体は、上述の構成力もなるものであるので、透明性、耐熱 性、耐薬品性等に優れ、例えば、航空機、自動車、医療機器、精密機械等に使用す る電線被覆、チューブ等として好適に使用することができる。
図面の簡単な説明
[0087] [図 1]測定用被覆電線 aを用いて形成した自己巻き耐熱試験体を示した写真である。

Claims

請求の範囲
[1] リダクションレシオ 1600における円柱押出し圧力が 50MPa以下であり、測定用成形 体 aにつ!/、てヘイズ値が 60以下である
ことを特徴とする変性ポリテトラフルォロエチレンファインパウダー。
[2] 測定用成形体 bについて引張強度が 1. 8MPa以上である請求項 1記載の変性ポリ
[3] ASTM D 4895により求めた熱不安定指数〔ΤΠ〕が 6以下である請求項 1又は 2記 載の変性ポリテトラフルォロエチレンファインパウダー。
[4] 粒子芯部と粒子殻部とからなる変性ポリテトラフルォロエチレンファインパウダーであ つて、
前記粒子芯部は、下記一般式 (I)
F C = CFO (CF ) X1 (I)
2 2 nl
(式中、 X1は、水素原子又はフッ素原子を表し、 nlは、 1〜6の整数を表す。)で表さ れるフルォロ(アルキルビュルエーテル)、下記一般式(II)
[化 1]
Figure imgf000032_0001
(式中、 X2及び X3は、同一若しくは異なって、水素原子又はフッ素原子を表し、 Yは、 — CR1!^—を表し、 R1及び R2は、同一若しくは異なって、フッ素原子、炭素数 1〜6 のアルキル基又は炭素数 1〜6のフルォロアルキル基を表す。)で表されるビュルへ テロ環状体、及び、下記一般式 (III)
CX4X5=CX6 (CF ) F (III)
2 n2
(式中、 X4、 X5及び X6は、水素原子又はフッ素原子を表し、少なくとも 1つはフッ素原 子を表す。 n2は、 1〜5の整数を表す。)で表されるフルォロォレフインよりなる群から 選択される少なくとも 1種を共重合してなる変性ポリテトラフルォロエチレン (i)からなり 前記粒子殻部は、変性ポリテトラフルォロエチレン (ii)からなり、
前記変性ポリテトラフルォロエチレンファインパウダーは、リダクションレシオ 1600に おける円柱押出し圧力が 50MPa以下である
ことを特徴とする変性ポリテトラフルォロエチレンファインパウダー。
[5] 変性ポリテトラフルォロエチレン (ii)における変性は、連鎖移動剤を用いることにより 行うもの、及び Z又は、下記一般式 (I)
F C = CFO (CF ) X1 (I)
2 2 nl
(式中、 X1は、水素原子又はフッ素原子を表し、 nlは、 1〜6の整数を表す。)で表さ れるフルォロ(アルキルビュルエーテル)若しくは下記一般式 (III)
CX4X5=CX6 (CF ) F (III)
2 n2
(式中、 X4、 X5及び X6は、水素原子又はフッ素原子を表し、少なくとも 1つはフッ素原 子を表す。 n2は、 1〜5の整数を表す。)で表されるフルォロォレフインを共重合させ ることにより行うものである請求項 4記載の変性ポリテトラフルォロエチレンファインパ ウダ一。
[6] 測定用成形体 aにつ 、てヘイズ値が 60以下である請求項 4又は 5記載の変性ポリテ
[7] 変性ポリテトラフルォロエチレンファインパウダーを用いて成形加工することにより得ら れた変性ポリテトラフルォロエチレン成形体であって、
前記変性ポリテトラフルォロエチレンファインパウダーは、請求項 1、 2、 3、 4、 5又は 6 記載の変性ポリテトラフルォロエチレンファインパウダーである
ことを特徴とする変性ポリテトラフルォロエチレン成形体。
[8] チューブである請求項 7記載の変性ポリテトラフルォロエチレン成形体。
PCT/JP2005/021058 2004-11-16 2005-11-16 変性ポリテトラフルオロエチレンファインパウダー及び変性ポリテトラフルオロエチレン成形体 WO2006054612A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN2005800388834A CN101056906B (zh) 2004-11-16 2005-11-16 改性聚四氟乙烯细粉和改性聚四氟乙烯成型体
JP2006545105A JP4710832B2 (ja) 2004-11-16 2005-11-16 変性ポリテトラフルオロエチレンファインパウダー及び変性ポリテトラフルオロエチレン成形体
AT05806697T ATE540061T1 (de) 2004-11-16 2005-11-16 Feines pulver aus modifiziertem polytetrafluorethylen und formkörper aus modifiziertem polytetrafluorethylen
EP05806697.8A EP1816148B2 (en) 2004-11-16 2005-11-16 Modified polytetrafluoroethylen fine powder and modified polytetrafluoroethylene molded product
US11/667,443 US9346903B2 (en) 2004-11-16 2005-11-16 Modified polytetrafluoroethylene fine powder and modified polytetrafluoroethylene molded product
US14/306,327 US8928156B2 (en) 2004-11-16 2014-06-17 Semiconductor device and method for manufacturing semiconductor device
US15/136,494 US9663601B2 (en) 2004-11-16 2016-04-22 Modified polytetrafluoroethylene fine powder and modified polytetrafluoroethylene molded product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004331587 2004-11-16
JP2004-331587 2004-11-16

Related Child Applications (4)

Application Number Title Priority Date Filing Date
US11/667,849 A-371-Of-International US7714448B2 (en) 2004-11-16 2005-11-16 Semiconductor device and method for manufacturing semiconductor device
US11/667,443 A-371-Of-International US9346903B2 (en) 2004-11-16 2005-11-16 Modified polytetrafluoroethylene fine powder and modified polytetrafluoroethylene molded product
US12/659,968 Continuation US8575764B2 (en) 2004-11-16 2010-03-26 Semiconductor device and method for manufacturing semiconductor device
US15/136,494 Continuation US9663601B2 (en) 2004-11-16 2016-04-22 Modified polytetrafluoroethylene fine powder and modified polytetrafluoroethylene molded product

Publications (1)

Publication Number Publication Date
WO2006054612A1 true WO2006054612A1 (ja) 2006-05-26

Family

ID=36407151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/021058 WO2006054612A1 (ja) 2004-11-16 2005-11-16 変性ポリテトラフルオロエチレンファインパウダー及び変性ポリテトラフルオロエチレン成形体

Country Status (6)

Country Link
US (2) US9346903B2 (ja)
EP (1) EP1816148B2 (ja)
JP (3) JP4710832B2 (ja)
CN (2) CN101056906B (ja)
AT (1) ATE540061T1 (ja)
WO (1) WO2006054612A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008004614A1 (fr) * 2006-07-06 2008-01-10 Daikin Industries, Ltd. Dispersion aqueuse d'un polymère contenant du fluor
JP2011213857A (ja) * 2010-03-31 2011-10-27 Daikin Industries Ltd 含フッ素重合体のオルガノゾル組成物
WO2011158717A1 (ja) 2010-06-17 2011-12-22 ダイキン工業株式会社 多孔膜を備える濾材、その製造方法、フィルタパック、ならびにフィルタユニット
WO2012043754A1 (ja) * 2010-09-30 2012-04-05 ダイキン工業株式会社 ドリップ防止剤、並びに、樹脂組成物
WO2012086710A1 (ja) 2010-12-21 2012-06-28 ダイキン工業株式会社 ポリテトラフルオロエチレン混合物
WO2012086717A1 (ja) 2010-12-21 2012-06-28 ダイキン工業株式会社 ポリテトラフルオロエチレン混合物
US9006333B2 (en) 2010-09-30 2015-04-14 Daikin Industries, Ltd. Method for manufacturing fine polytetrafluoroethylene powder
US9309335B2 (en) 2010-09-30 2016-04-12 Daikin Industries, Ltd. Process for producing polytetrafluoroethylene fine powder
WO2016159270A1 (ja) * 2015-03-31 2016-10-06 ダイキン工業株式会社 組成物、電線及びその製造方法
WO2016170918A1 (ja) * 2015-04-22 2016-10-27 旭硝子株式会社 変性ポリテトラフルオロエチレンファインパウダーおよびその製造方法、ならびにこれを用いた電線およびチューブ
WO2018181898A1 (ja) 2017-03-31 2018-10-04 ダイキン工業株式会社 フルオロポリマーの製造方法、重合用界面活性剤及び界面活性剤の使用
WO2018181904A1 (ja) 2017-03-31 2018-10-04 ダイキン工業株式会社 フルオロポリマーの製造方法、重合用界面活性剤及び界面活性剤の使用
WO2019172382A1 (ja) 2018-03-07 2019-09-12 ダイキン工業株式会社 フルオロポリマーの製造方法
WO2020213691A1 (ja) 2019-04-16 2020-10-22 ダイキン工業株式会社 フルオロポリマー粉末の製造方法
WO2021015291A1 (ja) 2019-07-23 2021-01-28 ダイキン工業株式会社 フルオロポリマーの製造方法、ポリテトラフルオロエチレン組成物及びポリテトラフルオロエチレン粉末
WO2021066189A1 (ja) * 2019-10-03 2021-04-08 ダイキン工業株式会社 ポリテトラフルオロエチレンおよびその製造方法
US11518826B2 (en) 2017-12-25 2022-12-06 Daikin Industries, Ltd. Method for producing polytetrafluoroethylene powder
WO2023054723A1 (ja) 2021-09-30 2023-04-06 ダイキン工業株式会社 ポリテトラフルオロエチレンファインパウダー

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8969432B2 (en) * 2011-01-17 2015-03-03 Daikin Industries, Ltd. Modified polytetrafluoroethylene particles, method for producing the same, and modified polytetrafluoroethylene molded product
CN102127181B (zh) * 2011-01-31 2012-11-21 中昊晨光化工研究院 一种制备聚四氟乙烯分散树脂的方法
US11189399B2 (en) * 2014-02-27 2021-11-30 Daikin Industries, Ltd. Paste containing polytetrafluoroethylene and method for producing same
EP3103836A1 (en) 2015-06-12 2016-12-14 3M Innovative Properties Company Fluoropolymer with improved transparency
JP6244490B1 (ja) * 2016-03-20 2017-12-06 株式会社潤工社 ポリテトラフルオロエチレンチューブ
WO2017163912A1 (ja) 2016-03-20 2017-09-28 株式会社 潤工社 ポリテトラフルオロエチレンチューブ
US20170324281A1 (en) * 2016-05-06 2017-11-09 Ningbo Weie Electronics Technology Ltd. Wireless power trnsfer device
WO2018221518A1 (ja) * 2017-06-02 2018-12-06 Agc株式会社 変性ポリテトラフルオロエチレンおよびその製造方法
WO2018229659A1 (en) 2017-06-13 2018-12-20 3M Innovative Properties Company Modified polytetrafluoroethylene and aqueous dispersion containing the same
DE202017003084U1 (de) 2017-06-13 2017-09-19 3M Innovative Properties Company Fluorpolymerdispersion
CN112771087B (zh) * 2018-10-03 2023-01-20 大金工业株式会社 聚四氟乙烯的制造方法
CA3180181A1 (en) * 2020-05-27 2021-12-02 Robert L. Ballard Ptfe liners with reduced coefficient of friction

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5084650A (ja) * 1973-11-19 1975-07-08
JPS5136291A (ja) * 1974-09-09 1976-03-27 Daikin Ind Ltd Henseitetorafuruoroechirenjugotai no seizohoho
JPS59232109A (ja) * 1983-05-20 1984-12-26 イ−・アイ・デユポン・デ・ニモアス・アンド・カンパニ− コア−/シエルフルオロポリマ−組成物
JPS6042446A (ja) * 1983-04-28 1985-03-06 イ−・アイ・デユポン・デ・ニモアス・アンド・カンパニ− 分散液で製造された変性ポリテトラフルオルエチレン組成物
JPS6356532A (ja) * 1986-08-27 1988-03-11 Daikin Ind Ltd 変性ポリテトラフルオロエチレンファインパウダ−及びその製造方法
JPH02158651A (ja) * 1988-12-12 1990-06-19 Daikin Ind Ltd 含フッ素重合体水性分散体および含フッ素重合体オルガノゾル組成物
WO2000002935A1 (fr) * 1998-07-13 2000-01-20 Daikin Industries, Ltd. Fine poudre de polytetrafluoroethylene modifie et procede de fabrication

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS374643B1 (ja) 1960-08-06 1962-06-15
US4134995A (en) 1976-05-03 1979-01-16 Daikin Kogyo Kabushiki Kaisha Modified tetrafluoroethylene polymer and process for producing same
DE2949907A1 (de) 1979-12-12 1981-06-19 Hoechst Ag, 6230 Frankfurt Fluorpolymere mit schalenmodifizierten teilchen und verfahren zu deren herstellung
US4837267A (en) 1988-03-21 1989-06-06 E. I. Du Pont De Nemours And Company Tetrafluoroethylene copolymers
US4908410A (en) * 1989-01-27 1990-03-13 E. I. Du Pont De Nemours And Company Modified polytetrafluoroethylene fine powder and preparation thereof
EP0835272B1 (en) * 1995-06-30 2000-08-30 E.I. Du Pont De Nemours And Company Modified polytetrafluoroethylene fine powder
JP3616784B2 (ja) * 1995-09-22 2005-02-02 三井・デュポンフロロケミカル株式会社 変性ポリテトラフルオロエチレンファインパウダーの製造方法
JP2001288227A (ja) 2000-02-04 2001-10-16 Daikin Ind Ltd 高周波電気特性に優れたテトラフルオロエチレン系樹脂成形用材料
IT1318633B1 (it) * 2000-07-20 2003-08-27 Ausimont Spa Polveri fini di politetrafluoroetilene.
JP2002047315A (ja) * 2000-08-03 2002-02-12 Daikin Ind Ltd 高周波電気特性に優れたテトラフルオロエチレン系樹脂成形用材料
CN1160381C (zh) * 2001-09-27 2004-08-04 中国石油化工股份有限公司 含双席夫碱配体的烯烃聚合催化剂及制备方法与应用
US20030109646A1 (en) 2001-11-21 2003-06-12 Daikin Institute Of Advanced Chemistry And Technology Resin composition and method of producing shaped articles
US20040102572A1 (en) 2002-11-21 2004-05-27 Katsuyoshi Kubo Resin composition and process for producing molding
JP4466002B2 (ja) 2002-12-06 2010-05-26 旭硝子株式会社 テトラフルオロエチレン共重合体、その製造方法およびペースト押し出し成形物
AU2003289359A1 (en) 2002-12-19 2004-07-14 Asahi Glass Company, Limited Tetrafluoroethylene copolymer
JP4774675B2 (ja) * 2004-04-07 2011-09-14 ダイキン工業株式会社 変性ポリテトラフルオロエチレン粉末及びテトラフルオロエチレン重合体の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5084650A (ja) * 1973-11-19 1975-07-08
JPS5136291A (ja) * 1974-09-09 1976-03-27 Daikin Ind Ltd Henseitetorafuruoroechirenjugotai no seizohoho
JPS6042446A (ja) * 1983-04-28 1985-03-06 イ−・アイ・デユポン・デ・ニモアス・アンド・カンパニ− 分散液で製造された変性ポリテトラフルオルエチレン組成物
JPS59232109A (ja) * 1983-05-20 1984-12-26 イ−・アイ・デユポン・デ・ニモアス・アンド・カンパニ− コア−/シエルフルオロポリマ−組成物
JPS6356532A (ja) * 1986-08-27 1988-03-11 Daikin Ind Ltd 変性ポリテトラフルオロエチレンファインパウダ−及びその製造方法
JPH02158651A (ja) * 1988-12-12 1990-06-19 Daikin Ind Ltd 含フッ素重合体水性分散体および含フッ素重合体オルガノゾル組成物
WO2000002935A1 (fr) * 1998-07-13 2000-01-20 Daikin Industries, Ltd. Fine poudre de polytetrafluoroethylene modifie et procede de fabrication

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8362168B2 (en) 2006-07-06 2013-01-29 Daikin Industries, Ltd. Aqueous fluorine-containing polymer dispersion
EP2039709A4 (en) * 2006-07-06 2010-08-18 Daikin Ind Ltd AQUEOUS FLUOROUS POLYMER DISPERSION
WO2008004614A1 (fr) * 2006-07-06 2008-01-10 Daikin Industries, Ltd. Dispersion aqueuse d'un polymère contenant du fluor
JP5212105B2 (ja) * 2006-07-06 2013-06-19 ダイキン工業株式会社 含フッ素ポリマー水性分散液
US8202955B2 (en) 2006-07-06 2012-06-19 Daikin Industries, Ltd. Aqueous fluorine-containing polymer dispersion
JP2011213857A (ja) * 2010-03-31 2011-10-27 Daikin Industries Ltd 含フッ素重合体のオルガノゾル組成物
WO2011158717A1 (ja) 2010-06-17 2011-12-22 ダイキン工業株式会社 多孔膜を備える濾材、その製造方法、フィルタパック、ならびにフィルタユニット
US9309335B2 (en) 2010-09-30 2016-04-12 Daikin Industries, Ltd. Process for producing polytetrafluoroethylene fine powder
JP2012092322A (ja) * 2010-09-30 2012-05-17 Daikin Industries Ltd ドリップ防止剤、並びに、樹脂組成物
US9006333B2 (en) 2010-09-30 2015-04-14 Daikin Industries, Ltd. Method for manufacturing fine polytetrafluoroethylene powder
US9458316B2 (en) 2010-09-30 2016-10-04 Daikin Industries, Ltd. Dripping inhibitor and resin compound
US9475935B2 (en) 2010-09-30 2016-10-25 Daikin Industries, Ltd. Dripping inhibitor and resin compound
WO2012043754A1 (ja) * 2010-09-30 2012-04-05 ダイキン工業株式会社 ドリップ防止剤、並びに、樹脂組成物
WO2012086717A1 (ja) 2010-12-21 2012-06-28 ダイキン工業株式会社 ポリテトラフルオロエチレン混合物
WO2012086710A1 (ja) 2010-12-21 2012-06-28 ダイキン工業株式会社 ポリテトラフルオロエチレン混合物
JP2016194070A (ja) * 2015-03-31 2016-11-17 ダイキン工業株式会社 組成物、電線及びその製造方法
WO2016159270A1 (ja) * 2015-03-31 2016-10-06 ダイキン工業株式会社 組成物、電線及びその製造方法
WO2016170918A1 (ja) * 2015-04-22 2016-10-27 旭硝子株式会社 変性ポリテトラフルオロエチレンファインパウダーおよびその製造方法、ならびにこれを用いた電線およびチューブ
US10975187B2 (en) 2015-04-22 2021-04-13 AGC Inc. Modified polytetrafluoroethylene fine powder and its manufacturing method, and electric wire and tube using it
JPWO2016170918A1 (ja) * 2015-04-22 2018-02-22 旭硝子株式会社 変性ポリテトラフルオロエチレンファインパウダーおよびその製造方法、ならびにこれを用いた電線およびチューブ
WO2018181898A1 (ja) 2017-03-31 2018-10-04 ダイキン工業株式会社 フルオロポリマーの製造方法、重合用界面活性剤及び界面活性剤の使用
WO2018181904A1 (ja) 2017-03-31 2018-10-04 ダイキン工業株式会社 フルオロポリマーの製造方法、重合用界面活性剤及び界面活性剤の使用
EP4257638A2 (en) 2017-03-31 2023-10-11 Daikin Industries, Ltd. Production method for fluoropolymer, surfactant for polymerization, and use of surfactant
EP3858871A1 (en) 2017-03-31 2021-08-04 Daikin Industries, Ltd. Composition comprising a fluoropolymer
US11518826B2 (en) 2017-12-25 2022-12-06 Daikin Industries, Ltd. Method for producing polytetrafluoroethylene powder
WO2019172382A1 (ja) 2018-03-07 2019-09-12 ダイキン工業株式会社 フルオロポリマーの製造方法
WO2020213691A1 (ja) 2019-04-16 2020-10-22 ダイキン工業株式会社 フルオロポリマー粉末の製造方法
WO2021015291A1 (ja) 2019-07-23 2021-01-28 ダイキン工業株式会社 フルオロポリマーの製造方法、ポリテトラフルオロエチレン組成物及びポリテトラフルオロエチレン粉末
JPWO2021066189A1 (ja) * 2019-10-03 2021-04-08
WO2021066189A1 (ja) * 2019-10-03 2021-04-08 ダイキン工業株式会社 ポリテトラフルオロエチレンおよびその製造方法
JP7265205B2 (ja) 2019-10-03 2023-04-26 ダイキン工業株式会社 ポリテトラフルオロエチレンおよびその製造方法
EP4039716A4 (en) * 2019-10-03 2023-10-25 Daikin Industries, Ltd. POLYTETRAFLUOROETHYLENE AND PRODUCTION METHOD THEREFOR
WO2023054723A1 (ja) 2021-09-30 2023-04-06 ダイキン工業株式会社 ポリテトラフルオロエチレンファインパウダー

Also Published As

Publication number Publication date
EP1816148B2 (en) 2016-12-28
CN101056906A (zh) 2007-10-17
EP1816148B1 (en) 2012-01-04
ATE540061T1 (de) 2012-01-15
US9346903B2 (en) 2016-05-24
EP1816148A1 (en) 2007-08-08
CN101891932B (zh) 2012-10-10
JP2014169458A (ja) 2014-09-18
US20080020159A1 (en) 2008-01-24
US20160237189A1 (en) 2016-08-18
JPWO2006054612A1 (ja) 2008-05-29
CN101891932A (zh) 2010-11-24
JP5625672B2 (ja) 2014-11-19
JP4710832B2 (ja) 2011-06-29
JP6157417B2 (ja) 2017-07-05
US9663601B2 (en) 2017-05-30
EP1816148A4 (en) 2009-08-05
JP2010280915A (ja) 2010-12-16
CN101056906B (zh) 2010-08-18

Similar Documents

Publication Publication Date Title
WO2006054612A1 (ja) 変性ポリテトラフルオロエチレンファインパウダー及び変性ポリテトラフルオロエチレン成形体
JP5828283B2 (ja) 変性ポリテトラフルオロエチレン粒子、その製造方法、及び、変性ポリテトラフルオロエチレン成形体
JP5232653B2 (ja) コア/シェルポリマー
EP1948734B1 (en) Fluoropolymer composition
WO2007061915A2 (en) Fluoropolymer blending process
JP6299448B2 (ja) ペースト押出成形用テトラフルオロエチレン共重合体、該共重合体の製造方法および成形物
JP3616784B2 (ja) 変性ポリテトラフルオロエチレンファインパウダーの製造方法
JP4774675B2 (ja) 変性ポリテトラフルオロエチレン粉末及びテトラフルオロエチレン重合体の製造方法
US20200362192A1 (en) Electric wire with a core and a coating
JP4466002B2 (ja) テトラフルオロエチレン共重合体、その製造方法およびペースト押し出し成形物
WO2000002935A1 (fr) Fine poudre de polytetrafluoroethylene modifie et procede de fabrication
US11421058B2 (en) Modified polytetrafluoroethylene and method for producing same
JP6214708B2 (ja) 電線の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006545105

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11667443

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580038883.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005806697

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005806697

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11667443

Country of ref document: US