WO2006051745A1 - 小流量液体の温調方法及びそのシステム - Google Patents

小流量液体の温調方法及びそのシステム Download PDF

Info

Publication number
WO2006051745A1
WO2006051745A1 PCT/JP2005/020339 JP2005020339W WO2006051745A1 WO 2006051745 A1 WO2006051745 A1 WO 2006051745A1 JP 2005020339 W JP2005020339 W JP 2005020339W WO 2006051745 A1 WO2006051745 A1 WO 2006051745A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
temperature
flow rate
path
circulation path
Prior art date
Application number
PCT/JP2005/020339
Other languages
English (en)
French (fr)
Inventor
Hiroyasu Goto
Masahiro Fukuda
Taro Yamamoto
Original Assignee
Smc Corporation
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Smc Corporation, Tokyo Electron Limited filed Critical Smc Corporation
Priority to EP05805550.0A priority Critical patent/EP1814145A4/en
Priority to US11/719,347 priority patent/US7896254B2/en
Publication of WO2006051745A1 publication Critical patent/WO2006051745A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1919Control of temperature characterised by the use of electric means characterised by the type of controller
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/73Heating or cooling of the mould
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D1/00Pipe-line systems
    • F17D1/08Pipe-line systems for liquids or viscous products
    • F17D1/14Conveying liquids or viscous products by pumping
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/6416With heating or cooling of the system

Definitions

  • the present invention relates to a temperature control method and system for a small flow rate liquid suitable for use in semiconductor manufacturing related devices and the like, and in particular, a liquid temperature controlled with high accuracy as a micro flow or intermittent flow.
  • the present invention relates to a temperature control method and a system for a small flow rate liquid when supplying.
  • the liquid is The body must be supplied in the optical path as a micro flow or intermittent flow, and the force must be supplied in a state of high temperature control (eg, iZioo ° c) with high accuracy in order to suppress fluctuations in the refractive index. Therefore, it is difficult to apply the temperature control technique based on the above-described large flow rate to such a minute flow or intermittent flow high-precision temperature control.
  • a state of high temperature control eg, iZioo ° c
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2003-86486
  • the technical problem of the present invention is that a small stream suitable for use in a semiconductor manufacturing related apparatus or the like.
  • An object of the present invention is to provide a temperature control method and system for temperature-controlling a quantity liquid with high accuracy.
  • a more specific technical problem of the present invention is a temperature control method and system capable of producing a temperature-controlled liquid with high accuracy while maintaining a flow rate condition for supplying a small flow rate liquid as a micro flow or an intermittent flow. Is to provide.
  • an object of the present invention is to provide a method and a system for controlling the temperature of a small flow rate liquid capable of eliminating the mixed impurities.
  • the temperature control method for a small flow rate liquid basically pressurizes the liquid supplied through the supply path and introduces it into the circulation path. While circulating the circulation path by a pump, the temperature of the liquid is controlled by a temperature controller interposed in the circulation path, and the temperature-controlled liquid is discharged through the discharge path branched from the circulation path force. Then, it is characterized in that it is supplied to the external device through a discharge valve provided in the discharge path as a minute continuous flow or a minute intermittent flow having a flow rate smaller than at least 1Z2 of the flow rate in the circulation path.
  • pure water containing ultrapure water or a high refractive index liquid is used as the liquid supplied through the supply path.
  • the circulating fluid flow rate in the above-mentioned circulation path is preferably 2 to 20 times the discharge fluid flow rate in the discharge path, in order to stabilize the liquid temperature.
  • the impurities in the liquid circulated by the impurity removing means provided in the circulation path Removed are present in the liquid supplied through the supply path, or there is a possibility that impurities are included in the circulation path.
  • a temperature control system for a low flow rate liquid for solving the above-described problems includes a supply including a regulator connected to a liquid supply source and pressurizing the liquid supplied from the supply source.
  • a circulation path that is connected to the supply path and that circulates the liquid pressurized by the regulator using a pump in the pressurized state, and circulates in the circulation path interposed in the circulation path
  • a temperature controller that controls the temperature of the liquid
  • a discharge path including a discharge valve for supplying the temperature-controlled liquid in the circulation path to the external device as a micro continuous flow or a micro intermittent flow having a flow rate smaller than 1Z2 of the flow rate in the circulation path.
  • pure water containing ultrapure water or high refractive index liquid is used as the liquid supplied through the supply path. It is desirable to set the flow rate of the discharge path so that the circulating fluid flow rate in the above-mentioned circulation path is 2 to 20 times the discharge liquid flow rate of the discharge path.
  • a filter for removing particles in the circulating liquid a vacuum deaeration device for removing gas in the liquid, an ultraviolet oxidation device having an organic oxidation function, and an ionized product It is possible to interpose any one of the ion exchangers for removing the quality, or any of them.
  • the above temperature controller in the forward flow path directed from the connection point with the supply path in the circulation path to the branch point with the discharge path, can be interposed, and a tank for reducing fluctuations in liquid volume and temperature fluctuation can be interposed upstream from the temperature controller in the forward flow path.
  • a heat exchanger whose temperature is controlled by a Peltier element controlled based on the output of a temperature detector provided downstream of the temperature controller is used.
  • the discharge path is formed by double pipe heat exchange.
  • a temperature control water circulation device for a double-pipe heat exchanger that controls the temperature of the circulating temperature adjusted water to the same temperature as that of the temperature controller is connected to the outer pipe, or the liquid flowing through the circulation path is connected to the outer pipe. Piping for flowing all or part of it can be connected.
  • the liquid pressurized by the regulator is introduced into the circulation path through the supply path, and the pump is maintained while maintaining the pressurized state.
  • the liquid that is circulated through the circulation path by the temperature is controlled in the temperature controller interposed in the circulation path, and the discharge valve of the discharge path branched from the circulation path.
  • the flow rate is adjusted to be smaller than the flow rate in the circulation path! /, A minute continuous flow or a minute intermittent flow, and supplied to the external device.
  • the liquid that has been pressurized and controlled in the above circulation path is constantly circulated in a stable and large amount, so that the liquid temperature is accurately maintained, and the liquid is kept in a micro continuous flow or micro intermittent state. Since the liquid is supplied to the external device in a flow, the liquid kept at the most accurate temperature can be supplied to the external device.
  • the accurately temperature-controlled liquid is pressurized in the circulation path interposed between the supply path and the discharge path.
  • the liquid whose temperature has been circulated is supplied to the external device by the discharge valve of the discharge path as a flow rate smaller than the flow rate in the circulation path! /, A minute continuous flow or a minute intermittent flow.
  • FIG. 1 is a block configuration diagram showing a first embodiment of a temperature control system for a small flow rate liquid according to the present invention.
  • FIG. 2 is a block diagram showing a modification of the first embodiment.
  • FIG. 3 is a block configuration diagram showing a second embodiment in which the discharge passage in the first embodiment is formed by a double pipe heat exchanger.
  • FIG. 4 is a block configuration diagram showing a third embodiment of a heat retention system different from the second embodiment, in which the discharge passage in the first embodiment is formed by a double tube heat exchanger.
  • FIG. 5 is a block diagram showing a configuration example of a temperature controller used in the above embodiments.
  • FIG. 1 shows a first embodiment having a basic form of a temperature control system according to the present invention. Below, the temperature adjustment method of the micro-volume liquid based on this invention is demonstrated with the structure.
  • a regulator 2 for pressurizing the liquid supplied from the supply source 1 is provided in the supply path 3 connected to the supply source 1 of the liquid to be temperature controlled.
  • the downstream end of the circuit is connected to a circulation path 5 for circulating the liquid pressurized by the regulator 2 by the pump 6 in the pressurized state.
  • a tank 4 in the circulation path 5 is connected. Yes.
  • the tank 4 is used to alleviate various disturbances described later that act on the circulation path 5.
  • the directing force flows from the tank 4 which is a connection point of the supply path 3 and the circulation path 5 to a branch point of the discharge path 9 described later.
  • a pump 6 for forming a circulation flow a temperature controller 7 for keeping the temperature of the circulating liquid constant, and a filter 8 for mainly removing impurities generated in the circulation path 5 are interposed.
  • a discharge path 9 branched from the circulation path 5 is provided on the downstream side of the filter 8 in the circulation path 5, and the temperature-controlled liquid is supplied to the discharge path 9 as a minute continuous flow or a minute intermittent flow.
  • Outlet 11 Force A discharge valve 10 is provided to supply external equipment.
  • the forward flow path branched from the discharge path 9 is connected to the tank 4 by a subsequent reflux path, and the circulation path 5 is formed by the forward flow path and the reflux path.
  • the regulator 2 pressurizes the liquid supplied through the supply path 3 and supplies the pressurized liquid to the circulation path 5 in a constant pressurized state. Maintains a pressurized state, prevents foaming of dissolved gas in the liquid, and maintains a constant discharge pressure when supplying to an external device, providing a stable flow rate even when intermittently discharged. So that you can maintain.
  • the tank 4 is positioned upstream of the temperature controller 7 in the forward flow path, and the thermal capacity due to the liquid that fills the tank 4 is reduced to reduce thermal fluctuations due to liquid volume fluctuations and temperature fluctuations.
  • the time constant of the filter for the thermal disturbance is determined in relation to the circulation flow rate in the circulation path 5.
  • the pump 6 circulates the liquid and secures a discharge pressure to the outside for stable discharge.
  • the impeller is magnetically levitated to prevent impurities from being released into the circulated liquid. It is desirable to use a special pump that does not generate dust that rotates in contact.
  • the temperature controller 7 having a configuration as schematically shown in FIG.
  • This temperature controller 7 uses a Peltier element to adjust the temperature, and there are a plurality of heat exchangers on the heat exchange surface 30 in the heat exchanger 30 provided with a temperature adjusting liquid inlet 7a and a temperature adjusting liquid outlet 7b communicating with the circulation path 5.
  • the other surface of the Peltier element 31 is joined, and the other surface of the Peltier element 31 is joined to the heat dissipation heat exchanger 32 through which the facility water flows from the facility water inlet 32a toward the outlet 32b.
  • a temperature detector 36 for detecting the temperature of the temperature adjusting liquid is provided at the temperature adjusting liquid outlet 7b, and the output of the detector 36 is guided to the temperature controller 37.
  • the temperature controller 37 determines the temperature based on the output of the temperature detector 36.
  • the energization controller 35 is made to output a signal for controlling energization.
  • the inner surface of the heat exchanger 30 can be entirely covered with fluorine resin if necessary.
  • the temperature controller 7 adjusts the temperature of the circulating liquid detected by the temperature detector 36 so as to approach the set temperature set in the temperature controller 37 as much as possible.
  • the filter 8 constituting the impurity removing means filters and removes impurities such as particles in the circulating liquid that obstructs light transmission.
  • impurities such as particles in the circulating liquid that obstructs light transmission.
  • an ultrafiltration membrane filter it is desirable to use an ultrafiltration membrane filter.
  • the liquid such as ultrapure water supplied through the supply path 3 usually does not contain the impurity, but the liquid contains particles or circulates in the circulation path 5. This filter 8 is effective for removing impurities that contain secondary particles or the like during the ring.
  • the discharge valve 10 provided in the discharge path 9 is a force for supplying the temperature-controlled liquid from the liquid outlet 11 to the external device as a minute continuous flow or a minute short flow.
  • the amount of the temperature control liquid to be applied is set to be at least smaller than the flow rate 1Z2 in the circulation path 5. More specifically, when the flow rate to be discharged from the discharge valve 10 required in the external device is determined, the circulating fluid flow rate in the circulation path 5 is 2 to 20 of the discharge liquid flow rate discharged from the discharge path 9. Double, preferably 4 to: LO is set.
  • the circulating fluid flow rate in the circulation path 5 should be 2 to 20 times the discharge fluid flow rate discharged from the discharge path 9 as described above. It is confirmed by experiments of the present inventors that this numerical range is appropriate.
  • the force obtained under the condition of 1 to 0.5 ° C The ⁇ s is a value required by the specifications of the external device, and the ⁇ m is a value determined by the performance of the temperature controller 7. . Therefore, if those values are determined, the ratio GrZGs of the circulating fluid flow rate to the discharge fluid flow rate can be obtained based on the above equation.
  • the discharge path 9 is branched from the circulation path 5, and is a flow path for discharging a necessary amount of ultrapure water according to the specifications of the external device.
  • the discharge path 9 has a minimum length necessary for supplying the liquid to the external device, and it is necessary to suppress a temperature change while the liquid flows in the discharge path 9. Furthermore, the discharge valve 10 is installed as close as possible to the circulation path 5 so that a large amount of circulating fluid comes to the inlet of the discharge valve 10 to eliminate the influence of outside air temperature, etc. It is desirable to stabilize.
  • liquid to be temperature-controlled in the above temperature control system here, pure water containing ultrapure water or a high refractive index liquid such as fluorine oil excellent in light transmittance is used. However, it is not limited to those liquids.
  • the liquid temperature of the circulating flow is detected by a temperature detector 36 provided on the downstream side of the temperature controller 7, and the current controller 35 is controlled by the temperature controller 37 based on the output of the temperature detector 36.
  • the temperature is adjusted to the set temperature by energization.
  • the circulating liquid discharged from the circulation path 5 by supplying a liquid such as ultrapure water to the external device is supplemented by supplying the liquid from the supply source 1 to the tank 4.
  • the tank 4 has a large heat capacity corresponding to the amount of liquid contained in the circulation path 5, and due to the effect of this heat capacity, the flow rate fluctuation and temperature fluctuation of the discharged liquid are alleviated in a short time, It can demonstrate an excellent temperature control function. However, even if a slight temperature fluctuation occurs in the circulating fluid, the temperature can be adjusted in a very short time by appropriately setting the capacity of the temperature controller 7 located downstream of the tank 4.
  • FIG. 2 shows a modified example in which an ultraviolet oxidation device 15, an ion exchange device 16, and a vacuum deaeration device 17 constituting impurity removal means are attached to the reflux path in the temperature control system of the first embodiment.
  • the components common to the first embodiment in this modification are denoted by the same reference numerals as those in the first embodiment, and the description thereof is omitted.
  • the ultraviolet oxidation device 15 provided in the circulation path 5 irradiates the circulation liquid with ultraviolet rays, mixes in the liquid supplied through the supply path 3, or is generated in the circulation path 5. It is used to decompose organic matter (microorganisms, etc.) in the soil. Depending on the type of organic substance, for example, a lens in an external device is soiled, and a device for processing a transistor deteriorates the characteristics of the transistor, so that the cause is eliminated.
  • the ion exchange device 16 is removed by adsorbing or capturing an ionic substance that is included in the circulating fluid supplied to the external device, which adversely affects the operation of the external device.
  • the vacuum degassing device 17 removes the gas dissolved or mixed in the circulating fluid by introducing it into the vacuum region and degassing it. Depending on the operation of the external device, bubbles may be removed. In order to adversely affect, it is provided to eliminate the cause.
  • the ultraviolet oxidation device 15, the ion exchange device 16, and the vacuum degassing device 17 can be provided alone in the circulation path 5, or a plurality of them can be appropriately selected and provided together. Further, the filter 8 in this temperature control system, and the impurity removing means such as the ultraviolet ray oxidizer 15, the ion exchanger 16, and the vacuum deaerator 17 provided in addition thereto are: It can be installed at any position in the circulation path 5 in any order.
  • the discharge path in the first embodiment is formed by a double-pipe heat exchanger, and the configuration common to the first embodiment is the same as that in the first embodiment. The description is omitted.
  • the temperature control system of the second embodiment is used when the external device to which the temperature-controlled circulating fluid is supplied is away from the circulation path 5 and it is difficult to maintain the liquid temperature in the discharge path 9.
  • the discharge path 9 is formed by a double-pipe heat exchanger 20 and the inside of the inner pipe is used as the discharge path 9, and both ends of the outer pipe 20a concentrically surrounding the inner pipe are heated. It is connected to a temperature-controlled water circulation device 21 for supplying conditioned heated water via a heated water circulation path 22.
  • the temperature control water circulation device 21 adjusts the temperature of the above-mentioned warm water so that it becomes the same temperature as the circulating fluid temperature-controlled by the temperature controller 7, and doubles it through the warm water circulation path 22 using a pump (not shown). It is circulated in the outer tube 20a of the tubular heat exchanger 20, and if necessary, it is possible to use one having substantially the same configuration as the temperature controller 7 described above with reference to FIG.
  • the external device that is the supply destination of the temperature-controlled circulating fluid is separated from the circulation path 5 and the liquid in the discharge path 9 Suitable for cases where it is difficult to maintain temperature.
  • the discharge path in the first embodiment is formed by a double pipe heat exchanger.
  • the temperature control of the circulation path 5 is performed.
  • the temperature regulator 7 in the circuit 5 is connected to the double-pipe heat exchanger. It is also used for exchanger 20.
  • the circulating fluid in the circulation path 5 is supplied to the double-pipe heat exchanger 20, so that the reflux path in the circulation path 5 is also branched.
  • a branch pipe 25 is connected to one end of the outer pipe 20a of the double-pipe heat exchanger 20, and the other end of the outer pipe 20a is connected to the circulation path 5 by a reflux pipe 26.
  • the branch pipe 25 is connected downstream from the branch point.
  • a first valve 27 is provided in the middle of the branch pipe 25, and a second valve 28 is provided between the branch point of the branch pipe 25 and the connection point of the return pipe 26 in the circulation path 5. Yes.
  • the temperature-controlled circulating liquid is supplied into the outer tube 20a of the double-pipe heat exchanger 20, the inner surface of the flow path is covered with fluorine resin. It is desirable.

Abstract

【課題】 高精度に温調された液体を微少流または間欠流として供給するための小流量液体の温調方法及びそのシステムを提供する。 【解決手段】 供給路3から供給された液体を加圧して循環路5に導入し、その加圧状態でポンプ6により循環路5を循環させながら、循環路5中の温調器7で温調し、その液体を、循環路5から分岐させた吐出路9を通じて、吐出路9に設けた吐出弁10の調整により、少なくとも循環路5中の流量の1/2よりも小流量の微少連続流または微少間欠流として外部装置に供給する。

Description

明 細 書
小流量液体の温調方法及びそのシステム
技術分野
[0001] 本発明は、半導体製造関連装置等において用いるのに適した小流量液体の温調 方法及びそのシステムに関するものであり、特に、高精度に温調された液体を微少 流または間欠流として供給する場合の小流量液体の温調方法及びそのシステム〖こ 関するものである。
背景技術
[0002] 従来から、半導体製造関連装置ば力りでなぐ各種の技術分野において、高精度 に温調された液体を供給する温調技術が開発されて!ヽる (例えば、特許文献 1参照) これらの技術は、定常的に温調された液体をほぼ一定の流量で定常的に供給する ことを前提とし、その流量も比較的大きいものである。
[0003] し力しながら、例えば、光学系の光路中に屈折率調整用の液体を介在させて屈折 率を調整し、その状態で光路を対象物に対して移動させる場合などにおいては、液 体を微少流または間欠流としてその光路中に供給し、し力も、その屈折率の変動を 抑制するために高精度に温度制御(例えば、士 iZioo°c)された状態で供給する 必要があり、このような微少流または間欠流の高精度の温度制御には、通常、上述し た大きい流量を前提とする温調技術を適用することは困難である。
また、上記温調の対象となる液体は通常高価なものであるため、多量に排出して不 要分を廃棄または汚染状態にすることもできず、その液体がたとえ水であったとしても
、膜分離技術によって分離した純水あるいは超純水が用いられるので、比較的高価 なものとなっていて、それを排出してしまうとコスト高になる。
[0004] 特許文献 1 :特開 2003— 86486号公報
発明の開示
発明が解決しょうとする課題
[0005] 本発明の技術的課題は、半導体製造関連装置等において用いるのに適した小流 量液体を高精度で温調する温調方法及びそのシステムを提供することにある。 本発明の更に具体的な技術的課題は、小流量液体を微少流または間欠流として 供給する流量条件でありながら、高精度に温調された液体とすることができる温調方 法及びそのシステムを提供することにある。
本発明の他の具体的な技術的課題は、液体の高精度な温調を行い、しかもその温 調を行う間に液体中のパーティクル、溶存する気体、有機物、あるいは金属イオン等 を除去できるようにして、混入した不純物を排除できるようにした小流量液体の温調 方法及びそのシステムを提供することにある。
課題を解決するための手段
[0006] 上記課題を解決するための本発明の小流量液体の温調方法は、基本的には、供 給路を通じて供給された液体を加圧して循環路に導入し、その加圧状態でポンプに より該循環路を循環させながら、該液体を該循環路中に介在させた温調器にぉ ヽて 温調し、温調された液体を、上記循環路力 分岐させた吐出路を通じて、該吐出路 に設けた吐出弁を通して、少なくとも上記循環路における流量の 1Z2よりも流量が小 さい微少連続流または微少間欠流として外部装置に供給することを特徴とするもの である。
[0007] 上記小流量液体の温調方法の好ましい実施形態においては、上記供給路を通し て供給される液体として、超純水を含む純水または高屈折率液体が用いられる。上 記循環路における循環液流量は、吐出路カ の吐出液流量の 2〜20倍にするのが 、液体温度の安定ィ匕のために望ましい。また、供給路を通して供給される液体中に 不純物が存在し、あるいは、循環路において不純物を含む可能性がある場合には、 上記循環路中に設けた不純物除去手段により循環する液体中の不純物が除去され る。
[0008] 一方、上記課題を解決するための本発明の小流量液体の温調システムは、液体の 供給源に接続されて ヽて、該供給源から供給された液体を加圧するレギユレータを 含む供給路と、該供給路に接続されていて、上記レギユレータで加圧された液体を その加圧状態においてポンプにより循環させる循環路と、上記循環路中に介在して いて、該循環路を循環する液体の温調を行う温調器と、上記循環路から分岐されて いて、該循環路において温調された液体を少なくとも該循環路における流量の 1Z2 よりも流量が小さい微少連続流または微少間欠流として外部装置に供給する吐出弁 を含む吐出路とを備えたことを特徴とするものである。
[0009] 上記小流量液体の温調システムの好ましい実施形態においては、上記供給路を通 して供給される液体として、超純水を含む純水または高屈折率液体が用いられる。上 記循環路における循環液流量は、吐出路カ の吐出液流量の 2〜20倍になるように 吐出路の流量を設定しておくのが望ましい。また、上記循環路中に、不純物除去手 段として、循環する液体中のパーティクルを除去するフィルタ、液体中の気体を除去 する真空脱気装置、有機物の酸化機能を有する紫外線酸化装置、及びイオン化物 質を除去するイオン交換装置のいずれか、またはそれらのうちの任意の複数を介在 させることがでさる。
[0010] 更に、本発明に係る温調システムの好ましい実施形態においては、上記循環路に おける上記供給路との接続点から上記吐出路との分岐点へと向力う往流路中に、上 記温調器を介在させ、また、上記往流路中における上記温調器から上流側に、液量 変動、温度変動の外乱を緩和するタンクを介在させることができ、さらに、温調器とし て、該温調器の下流に設けた温度検出器の出力に基づ!/、て制御されるペルチヱ素 子により温度制御される熱交^^が用いられる。
なお、上記吐出路が比較的長ぐ温調液体がその供給点にまで達する間に外気温 の影響を受ける可能性がある場合には、該吐出路を二重管式熱交 によって形 成し、その外管に循環温調水を上記温調器と同温に温調する二重管式熱交換器用 の温調水循環装置を接続し、あるいは、その外管に前記循環路を流れる液体の全部 または一部を流すための配管を接続することができる。
[0011] 上述した本発明の小流量液体の温調方法及びそのシステムによれば、レギユレ一 タで加圧された液体を供給路を通じて循環路に導入し、その加圧状態を保ってボン プにより該循環路を循環させて!/、る液体が、循環状態にお!、てその循環路中に介在 させた温調器において温調され、上記循環路から分岐させた吐出路の吐出弁により 、上記循環路における流量よりも流量が小さ!/、微少連続流または微少間欠流に調整 されて外部装置に供給される。 したがって、上記循環路にお!/、て加圧されて温調された液体が絶えず安定して大 量に循環することで、液温が正確に保たれ、その液体を微少連続流または微少間欠 流にして外部装置に供給するので、可及的に正確な温度に保たれた液体を外部装 置に供給することができる。
発明の効果
[0012] 上述した本発明の小流量液体の温調方法及びそのシステムによれば、供給路と吐 出路との間に介在させた循環路に、正確に温調された液体を加圧状態で循環させ、 その温調された液体を、上記吐出路の吐出弁により、上記循環路における流量よりも 流量が小さ!/、微少連続流または微少間欠流として外部装置に供給するようにしたた め、循環により高精度に温調された液体を、上記吐出路から半導体製造関連装置等 の外部装置に対して供給することが可能となる。
図面の簡単な説明
[0013] [図 1]本発明に係る小流量液体の温調システムの第 1実施例を示すブロック構成図 である。
[図 2]上記第 1実施例の変形例を示すブロック構成図である。
[図 3]上記第 1実施例における吐出路を二重管式熱交換器によって形成した第 2実 施例を示すブロック構成図である。
[図 4]上記第 1実施例における吐出路を二重管式熱交換器によって形成した、上記 第 2実施例とは異なる保温方式の第 3実施例を示すブロック構成図である。
[図 5]上記各実施例にぉ ヽて用いられる温調器の構成例を示すブロック構成図であ る。
符号の説明
[0014] 1 供給源
2 レギユレータ
3 供給路 8 フイノレタ
9 吐出路
10 吐出弁
20 二重管式熱交換器
20a 外管
21 温調水循環装置
30 熱交換器
31 ぺノレチ 素子
36 温度検出器
発明を実施するための最良の形態
[0015] 図 1に、本発明に係る温調システムの基本形態を有する第 1実施例を示す。以下に 、その構成と共に、本発明に係る微少量液体の温調方法について説明する。
この温調システムにお ヽては、温調すべき液体の供給源 1に接続された供給路 3に 、該供給源 1から供給された液体を加圧するレギユレータ 2が設けられ、この供給路 3 の下流端には、上記レギユレータ 2で加圧された液体をその加圧状態においてボン プ 6により循環させる循環路 5が接続され、具体的には循環路 5中のタンク 4が接続さ れている。このタンク 4は、循環路 5に作用する後述の種々の外乱を緩和するもので ある。
[0016] 上記タンク 4を含む液体の循環路 5においては、上記供給路 3と上記循環路 5との 接続点であるタンク 4から後述の吐出路 9との分岐点に向力 往流路中に、循環流を 形成させるためのポンプ 6と、循環する液体の温度を一定に保っための温調器 7と、 主として循環路 5内で発生した不純物を除去するフィルタ 8とを介在させている。そし て、この循環路 5のフィルタ 8の下流側には、循環路 5から分岐する吐出路 9を設け、 この吐出路 9には、温調された液体を微少連続流または微少間欠流として液出口 11 力 外部装置に供給する吐出弁 10を設けている。
そして、上記吐出路 9を分岐させた往流路は、それに続く還流路によって上記タン ク 4に接続され、この往流路及び還流路によって上記循環路 5が形成されて 、る。 [0017] 上記レギユレータ 2は、供給路 3を通して供給される液体を加圧し、一定の加圧状 態で循環路 5に供給するもので、循環路 5内は閉空間としてそこに充満する液体が加 圧状態に保持され、その加圧により液体中の溶存ガスの発泡を防止すると共に、外 部装置への供給時の吐出圧力を一定に保持し、間欠的に吐出する場合においても 安定した流量を維持できるようにして 、る。
また、上記タンク 4は、往流路中における上記温調器 7よりも上流側に位置させ、そ こに充満する液体の熱容量により液量変動、温度変動に伴う熱的外乱を緩和するた めのもので、循環路 5における循環流量との関係で熱的外乱へのフィルタの時定数 が決定される。 上記ポンプ 6は、液体を循環させると共に、外部への吐出圧力を確 保して安定した吐出を行うためのもので、循環させる液体中に不純物を放出させない ために、インペラが磁気浮上して無接触回転する発塵の無い特殊ポンプが用いるの が望ましい。
[0018] 上記温調器 7は、図 5に基本構成を模式的に示すような構成のものを用いるのが望 ましい。この温調器 7は、ペルチェ素子を用いて温度調節を行うもので、循環路 5に 連通する温調液入口 7aと温調液出口 7bとを備えた熱交 30における熱交換面 に、複数のペルチェ素子 31の一面を接合すると共に、該ペルチェ素子 31の他面を、 放熱水入口 32aから同出口 32bに向けて放熱水が流される放熱用熱交換器 32に接 合し、また、上記温調液出口 7bに温調液体の温度を検出する温度検出器 36を設け て、該検出器 36の出力を温度コントローラ 37に導き、温度コントローラ 37において、 上記温度検出器 36の出力に基づいて通電制御装置 35に通電を制御するための信 号を出力させるようにしている。循環液体の汚染防止のために、熱交^^ 30の内面 は、必要に応じて、全てフッ素榭脂で被覆することができる。
そして、この温調器 7により、温度検出器 36において検出される循環液体の温度が 、温度コントローラ 37に設定されている設定温度に限りなく近づくように調節される。
[0019] 不純物除去手段を構成する上記フィルタ 8は、光透過の障害となる循環液体中の パーティクル等の不純物をろ過して取り除くもので、ここでは限外濾過膜式フィルタを 用いるのが望ましい。供給路 3を通して供給される超純水等の液体は、通常、上記不 純物を含んでいないが、その液体中にパーティクルが含まれていたり、循環路 5を循 環する間に二次的にパーティクル等が発生したりする場合に、それらを含む不純物 を取り除くためにこのフィルタ 8は有効なものである。
[0020] 上記吐出路 9に設けた吐出弁 10は、温調された液体を微少連続流または微少間 欠流として液出口 11から外部装置に供給するものである力 この吐出路 9から吐出さ せる温調液体の量は、少なくとも循環路 5における流量の 1Z2よりも流量が小さく設 定される。更に具体的には、外部装置において要求される上記吐出弁 10から吐出さ せるべき流量が決まったとき、上記循環路 5の循環液流量は、吐出路 9から吐出する 吐出液流量の 2〜20倍、好ましくは 4〜: LO倍に設定される。
[0021] いま、図 1と実質的に同じ純水温調システムのモデルとして、タンク 4に流量 Gs、温 度 Θ sの純水が流入し、吐出路 9から流量 Gs、温度 Θ d (—定)で流出し、循環路 5を 純水が流量 Grで循環する場合にっ ヽて考察するに、温調器 7を通過した後の温度 Θ dはタンク出口温度 Θ mより変化が少なくなるので、循環系の評価としては、温度 Θ sが変化したときのタンク出口温度 Θ mの挙動に注目すればよい。
上記モデルにおいて、タンク 4に流入する純水の温度変化に対するタンク 4で混合 された純水の温度変化の比は、次式で表される。
I Θ m/ Θ s I =Gs/ (Gr+Gs)
ここで、 0 s 2°C、 0 m=O. 1〜0. 5°Cと設定し、上式から循環流量と吐出流量の 比 GrZGsを求めると、
GrZGs = 2〜20
となる。
つまり、上記設定例 (好ましい設定例)では、前述したように、循環路 5の循環液流 量を吐出路 9から吐出する吐出液流量の 2〜20倍にすればよいことがわかる。なお、 この数値範囲が適切であることは、本発明者の実験によっても確かめている。
[0022] 上述した循環液流量が吐出液流量の 2〜20倍という数値は、 0 s^ 2°C、 0 m=O.
1〜0. 5°Cという条件で求められたものである力 上記 Θ sは外部装置の仕様により 要求される値であり、また、上記 Θ mは温調器 7の性能によって決まる値である。従つ て、それらの値が決まれば、上式に基づいて循環液流量と吐出液流量の比 GrZGs を求めることができる。 [0023] 上記吐出路 9は、循環路 5から分岐して設けられ、外部装置の仕様に応じて必要量 の超純水を吐出するための流路で、そこに設けた吐出弁 10は、上記吐出液流量を 決定するものとなる。そのため、この吐出弁 10は、少なくとも必要な範囲内で流量調 整可能な調整弁とし、あるいは、間欠吐出も可能なものとして構成することもできるが 、外部装置の仕様に応じて、循環液流量と吐出液流量の比が、例えば 2〜20倍の範 囲内になるものとして構成することができる。
また、この吐出路 9は、外部装置に液体を供給するために必要な最小限の長さとし 、吐出路 9内を液体が流れる間に温度変化が生じるのを抑制する必要がある。更に、 上記吐出弁 10は、循環路 5にできるだけ近い位置に設置し、吐出弁 10の入口まで 大流量の循環液が来るようにして、外気温等の影響を排除し、吐出液の温度を安定 化するのが望ましい。
[0024] 上記温調システムにお ヽて温調する液体としては、ここでは、超純水を含む純水や 、光透過性にぉ 、てすぐれたフッ素油等の高屈折率液体を用いることを前提にして いるが、それらの液体に限るものではない。
[0025] 上記構成を有する第 1実施例の温調システムにお ヽては、液体の供給源 1に接続 された供給路 3に、金属イオン、パーティクルや有機物の除去、及び脱気が行われた 超純水等の液体が供給され、それがレギユレータ 2により加圧されてタンク 4に加圧液 体として供給されて循環路 5に導入され、温調に際しては温調器 7を備えた循環路 5 においてポンプ 6により循環流が形成される。
上記循環流の液温は、温調器 7の下流側に設けた温度検出器 36において検出し 、その出力に基づいて温度コントローラ 37により通電制御装置 35が制御され、ペル チェ素子 31への適切な通電により設定温度に調整される。
[0026] この状態において、吐出弁 10を規定の微少流量の液体が吐出するように調整して 開放すると、循環液体は温調器 7により正確に温度調整され、しかも、上記循環路 5 には、吐出液流量に較べて 2〜20倍、好ましくは 4〜10倍という大量の液体が循環 しているので、一定温度に調整された微少量の液体が循環路 5から吐出路 9を通して 外部装置に供給される。また、このように循環液流量を吐出液量に較べて大量にす ることにより、熱交換率が向上し、温調器 7の応答性が良好となり、温調器 7の小型化 が図られる。
外部装置に超純水等の液体を供給することにより循環路 5から排出された循環液 体は、供給源 1からタンク 4への液体の供給により補われる。
[0027] また、上記タンク 4は、循環路 5内を含む液体の保有量に応じた大きな熱容量を持 ち、この熱容量の効果で吐出液体の流量変動、温度の変動を短時間に緩和し、すぐ れた温調機能を発揮させることができるものである。し力も、循環液体にわずかに温 度変動が生じたとしても、タンク 4の下流に位置する温調器 7の能力を適切に設定す ることにより、極めて短時間に温度調整することができる。
[0028] 図 2は、上記第 1実施例の温調システムにおける還流路に不純物除去手段を構成 する紫外線酸化装置 15、イオン交換装置 16、真空脱気装置 17を付設した変形例を 示している。この変形例における第 1実施例と共通する構成については、第 1実施例 と共通する符号を付してその説明を省略する。
[0029] 上記循環路 5に設けた紫外線酸化装置 15は、循環液体に紫外線を照射して、供 給路 3を通して供給される液体に混入しあるいは循環路 5中にお 、て発生した循環 液体中の有機物 (微生物等)を酸ィ匕分解させるためのものである。これは、有機物の 種類によっては、例えば、外部装置におけるレンズを汚し、トランジスタを加工する装 置ではトランジスタの特性を劣化させるため、その原因を排除するために設けるもの である。
上記イオン交換装置 16は、外部装置に供給される循環液中に含まれて 、ると外部 装置での作業に悪影響を及ぼすイオンィ匕物質を吸着ないしは捕捉することにより、 除去するものである。
また、真空脱気装置 17は、循環液中に溶存ないしは混入している気体を真空域に 導いて脱気することにより除去するもので、外部装置での作業によっては、気泡がそ の作業に悪影響を及ぼすため、その原因を排除するために設けるものである。
[0030] なお、上記紫外線酸化装置 15、イオン交換装置 16及び真空脱気装置 17は、循環 路 5中にそれらを単独で、あるいは、それらの複数を適宜選択して併設することがで き、また、この温調システムにおける上記フィルタ 8、それに加えて設けられる上記紫 外線酸化装置 15、イオン交換装置 16、真空脱気装置 17等の不純物除去手段は、 循環路 5における任意位置に、任意順序で設置することができる。
[0031] つぎに、図 3に示す本発明の第 2実施例について説明する。この第 2実施例は、上 記第 1実施例における吐出路を二重管式熱交換器によって形成したものであり、第 1 実施例と共通する構成については、第 1実施例と共通する符号を付して、その説明 を省略する。
[0032] この第 2実施例の温調システムは、温調された循環液の供給先である外部装置が 循環路 5から離れていて、吐出路 9での液温の維持が困難な場合に適するもので、 上記吐出路 9を二重管式熱交換器 20によって形成し、その内管内を吐出路 9にする と共に、内管の周囲を同心状に囲む外管 20aの両端部を、温調された保温水を供給 するための温調水循環装置 21に保温水循環路 22を介して接続して ヽる。
温調水循環装置 21は、上記保温水を前記温調器 7により温調される循環液と同温 度になるように温調し、それをポンプ(図示省略)により保温水循環路 22を通して二 重管式熱交換器 20の外管 20a内に循環させるもので、必要に応じて、図 5により先 に説明した温調器 7と実質的に同じ構成のものを用いることができる。
[0033] 図 4に示す第 3実施例は、上記第 2実施例と同様に、温調された循環液の供給先で ある外部装置が循環路 5から離れていて、吐出路 9での液温の維持が困難な場合に 適するものである。この第 3実施例では、第 2実施例と同様に、第 1実施例における吐 出路を二重管式熱交換器によって形成しているが、上記第 2実施例では、循環路 5 の温調器 7とは別に二重管式熱交換器 20のための温調水循環装置 21を備えている のに対し、この第 3実施例では、循環路 5の温調器 7を二重管式熱交換器 20にも利 用するようにしている。
なお、この第 3実施例における第 1実施例及び第 2実施例と共通する構成について は、それらの実施例と共通する符号を付して、その説明を省略する。
[0034] この第 3実施例の温調システムは、上述したように、二重管式熱交換器 20に上記循 環路 5の循環液を供給するため、循環路 5における還流路カも分岐する分岐配管 25 を設けて、それを二重管式熱交換器 20の外管 20aの一端部に連通させ、また、その 外管 20aの他端部を、還流配管 26により、循環路 5における上記分岐配管 25の分 岐点よりも下流側に連通させて 、る。 そして、上記分岐配管 25の途中に第 1のバルブ 27を設け、また、上記循環路 5に おける分岐配管 25の分岐点と還流配管 26の接続点との間に第 2のバルブ 28を設け ている。
この温調システムでは、吐出路 9を保温するための二重管式熱交換器 20の外管 20 aに、循環路 5で温調された循環液体を供給するので、二重管式熱交換器 20に供給 する液体の温度調整が正確になる。
なお、この第 3実施例の場合、温調された循環液体が二重管式熱交換器 20の外管 20a内に供給されるので、その流路の内面はフッ素榭脂で被覆しておくことが望まし い。
この温調システムにおいては、上記第 1のバルブ 27を開放すると同時に第 2のバル ブ 28を閉じることにより、循環路 5の液体が全て二重管式熱交 の外管 20aに 流入し、逆に、上記第 1のバルブ 27を閉じると同時に第 2のバルブ 28を開放すること により、循環路 5の液体が二重管式熱交換器 20に流れなくなり、また、両バルブ 27, 28を開放するかそれらの流量を調整することにより、二重管式熱交 に流れる 循環液の量を調整することができる。

Claims

請求の範囲
[1] 供給路を通じて供給された液体を加圧して循環路に導入し、
その加圧状態でポンプにより該循環路を循環させながら、該液体を該循環路中に 介在させた温調器にお!ヽて温調し、
温調された液体を、上記循環路から分岐させた吐出路を通じて、該吐出路に設け た吐出弁を通して、少なくとも上記循環路における流量の 1Z2よりも流量が小さい微 少連続流または微少間欠流として外部装置に供給する、
ことを特徴とする小流量液体の温調方法。
[2] 上記供給路を通して供給される液体が超純水を含む純水または高屈折率液体で ある、
ことを特徴とする請求項 1に記載の小流量液体の温調方法。
[3] 上記循環路における循環液流量が、吐出路からの吐出液流量の 2〜20倍である、 ことを特徴とする請求項 1または 2に記載の小流量液体の温調方法。
[4] 上記循環路中に設けた不純物除去手段により循環する液体中の不純物を除去す る、
ことを特徴とする請求項 1な 、し 3の 、ずれかに記載の小流量液体の温調方法。
[5] 液体の供給源に接続されて!ヽて、該供給源から供給された液体を加圧するレギュ レータを含む供給路と、
該供給路に接続されて!ヽて、上記レギユレータで加圧された液体をその加圧状態 にお 1、てポンプにより循環させる循環路と、
上記循環路中に介在していて、該循環路を循環する液体の温調を行う温調器と、 上記循環路から分岐されて!ヽて、該循環路にお!ヽて温調された液体を少なくとも該 循環路における流量の 1Z2よりも流量が小さい微少連続流または微少間欠流として 外部装置に供給する吐出弁が設けられた吐出路と、
を備えたことを特徴とする小流量液体の温調システム。
[6] 上記供給路を通して供給される液体が超純水を含む純水または高屈折率液体で ある、
ことを特徴とする請求項 5に記載の小流量液体の温調システム。
[7] 上記循環路における循環液流量が、吐出液流量の 2〜20倍になるように吐出路の 流量が設定されている、
ことを特徴とする請求項 5または 6に記載の小流量液体の温調システム。
[8] 上記循環路中に、不純物除去手段として、循環する液体中のパーティクルを除去 するフィルタ、液体中の気体を除去する真空脱気装置、有機物の酸化機能を有する 紫外線酸化装置、及びイオン化物質を除去するイオン交換装置のいずれか、または それらのうちの任意の複数を介在させた、
ことを特徴とする請求項 5〜7に記載の小流量液体の温調システム。
[9] 上記循環路における上記供給路との接続点力 上記吐出路との分岐点へと向かう 往流路中に、上記温調器を介在させた、
ことを特徴とする請求項 5〜8に記載の小流量液体の温調システム。
[10] 上記往流路中における上記温調器から上流側に、液量変動、温度変動の外乱を 緩和するタンクを介在させた、
ことを特徴とする請求項 9に記載の小流量液体の温調システム。
[11] 温調器が、該温調器よりも下流側に設けた温度検出器の出力に基づいて制御され るペルチェ素子により温度制御される熱交^^を備えている、
ことを特徴とする請求項 5〜10に記載の小流量液体の温調システム。
[12] 上記吐出路を二重管式熱交換器によって形成し、その外管に循環温調水を上記 温調器と同温に温調する二重管式熱交換器用の温調水循環装置を接続した、 ことを特徴とする請求項 5〜11に記載の小流量液体の温調システム。
[13] 上記吐出路を二重管式熱交換器によって形成し、その外管に前記循環路を流れる 液体の全部または一部を流すための配管を接続した、
ことを特徴とする請求項 5〜11に記載の小流量液体の温調システム。
PCT/JP2005/020339 2004-11-15 2005-11-07 小流量液体の温調方法及びそのシステム WO2006051745A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP05805550.0A EP1814145A4 (en) 2004-11-15 2005-11-07 TEMPERATURE CONTROL METHOD AND SYSTEM FOR A LIQUID FLOW FLOW RATE
US11/719,347 US7896254B2 (en) 2004-11-15 2005-11-07 Temperature regulation method and system for low flow rate liquid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-330796 2004-11-15
JP2004330796A JP4326461B2 (ja) 2004-11-15 2004-11-15 小流量液体の温調システム

Publications (1)

Publication Number Publication Date
WO2006051745A1 true WO2006051745A1 (ja) 2006-05-18

Family

ID=36336425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/020339 WO2006051745A1 (ja) 2004-11-15 2005-11-07 小流量液体の温調方法及びそのシステム

Country Status (7)

Country Link
US (1) US7896254B2 (ja)
EP (1) EP1814145A4 (ja)
JP (1) JP4326461B2 (ja)
KR (1) KR100884292B1 (ja)
CN (1) CN100552880C (ja)
TW (1) TWI267717B (ja)
WO (1) WO2006051745A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006222165A (ja) * 2005-02-08 2006-08-24 Canon Inc 露光装置
US8018573B2 (en) * 2005-02-22 2011-09-13 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP4661322B2 (ja) * 2005-04-22 2011-03-30 株式会社ニコン 露光装置、デバイスの製造方法及び液体供給方法
JP2009152497A (ja) * 2007-12-21 2009-07-09 Nikon Corp 液浸システム、露光装置、露光方法及びデバイス製造方法
JP5496771B2 (ja) * 2010-05-13 2014-05-21 株式会社Kelk 温度制御装置を用いた温度制御方法
DE102010025211A1 (de) * 2010-06-23 2011-12-29 Pure Engineering Gmbh & Co. Kg Kontrollsystem mit wenigstens einer Temperaturmesseinrichtung
JP5791069B2 (ja) * 2011-03-02 2015-10-07 国立大学法人三重大学 流量計測システム
US20130255784A1 (en) * 2012-03-30 2013-10-03 Applied Materials, Inc. Gas delivery systems and methods of use thereof
CN103792790B (zh) * 2012-10-30 2016-09-14 沈阳芯源微电子设备有限公司 光刻胶与显影液的恒温控制系统
CN103176369B (zh) * 2013-03-13 2016-03-02 华中科技大学 用于浸没式光刻的浸液温控装置
JP6020416B2 (ja) * 2013-11-01 2016-11-02 東京エレクトロン株式会社 処理液供給装置及び処理液供給方法
CN108074837B (zh) * 2016-11-15 2019-11-12 沈阳芯源微电子设备股份有限公司 一种半导体工艺水保温系统
KR102554066B1 (ko) * 2019-01-10 2023-07-11 가부시키가이샤 케르쿠 온도 제어 시스템 및 온도 제어 방법
JP7166972B2 (ja) * 2019-03-26 2022-11-08 Ckd株式会社 温度調整用流量制御ユニット
WO2021205199A1 (en) * 2020-04-06 2021-10-14 Edwards Korea Limited Pipe arrangement

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5228338A (en) * 1975-08-29 1977-03-03 Hitachi Ltd High output light beam focusing lens system
JPS5332047A (en) * 1976-09-06 1978-03-25 Shigeru Kobiyama Device for utilizing solar energy
JPS6194342U (ja) * 1984-11-27 1986-06-18
US4824073A (en) * 1986-09-24 1989-04-25 Stanford University Integrated, microminiature electric to fluidic valve
JPH06194505A (ja) * 1992-12-22 1994-07-15 Enplas Corp レンズ
JPH0949904A (ja) * 1995-08-07 1997-02-18 Toshiba Corp レーザ装置用光学レンズ及びレーザ装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6194342A (ja) 1984-10-16 1986-05-13 Oki Electric Ind Co Ltd 半導体素子の製造方法
US4607261A (en) * 1985-04-12 1986-08-19 Eastman Kodak Company Ink supply cartridge and cooperative ink circulation system of continuous ink jet printer
US5526026A (en) * 1994-03-17 1996-06-11 Scitex Digital Printing, Inc. Concentration control for a continuous ink jet printer utilizing resistivity
KR100265286B1 (ko) * 1998-04-20 2000-10-02 윤종용 반도체장치 제조용 케미컬 순환공급장치 및 이의 구동방법
TW522214B (en) * 1999-12-08 2003-03-01 Usui International Industry Temperature adjusting device for thermal fluid medium
JP2002036488A (ja) 2000-07-25 2002-02-05 Fuji Photo Film Co Ltd インクジェット式製版方法及び製版装置
JP2002306488A (ja) * 2001-04-11 2002-10-22 Ge Medical Systems Global Technology Co Llc プッシュ式リベットおよび超音波探触子
JP2003086486A (ja) 2001-09-11 2003-03-20 Canon Inc 露光装置
EP1276016B1 (en) * 2001-07-09 2009-06-10 Canon Kabushiki Kaisha Exposure apparatus
JP2003215002A (ja) * 2002-01-17 2003-07-30 Dainippon Screen Mfg Co Ltd 基板処理装置および基板処理方法
JP4166037B2 (ja) * 2002-05-24 2008-10-15 三洋電機株式会社 吸収冷温水機
CN100359274C (zh) * 2003-01-06 2008-01-02 Smc株式会社 恒温液循环装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5228338A (en) * 1975-08-29 1977-03-03 Hitachi Ltd High output light beam focusing lens system
JPS5332047A (en) * 1976-09-06 1978-03-25 Shigeru Kobiyama Device for utilizing solar energy
JPS6194342U (ja) * 1984-11-27 1986-06-18
US4824073A (en) * 1986-09-24 1989-04-25 Stanford University Integrated, microminiature electric to fluidic valve
JPH06194505A (ja) * 1992-12-22 1994-07-15 Enplas Corp レンズ
JPH0949904A (ja) * 1995-08-07 1997-02-18 Toshiba Corp レーザ装置用光学レンズ及びレーザ装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1814145A4 *

Also Published As

Publication number Publication date
US7896254B2 (en) 2011-03-01
US20090145489A1 (en) 2009-06-11
CN101076876A (zh) 2007-11-21
EP1814145A4 (en) 2013-11-06
EP1814145A1 (en) 2007-08-01
JP2006140410A (ja) 2006-06-01
CN100552880C (zh) 2009-10-21
JP4326461B2 (ja) 2009-09-09
TW200619890A (en) 2006-06-16
KR20070090925A (ko) 2007-09-06
TWI267717B (en) 2006-12-01
KR100884292B1 (ko) 2009-02-18

Similar Documents

Publication Publication Date Title
WO2006051745A1 (ja) 小流量液体の温調方法及びそのシステム
JP4533614B2 (ja) 真空制御システム
US6293849B1 (en) Polishing solution supply system
CN111867985A (zh) 水处理管理装置和水质监测方法
CN103969965A (zh) 精确控制浸没式光刻机浸液温度的装置及其温控方法
WO2019239853A1 (ja) 超純水製造装置及び超純水製造方法
JP7032381B2 (ja) 超純水を処理するための方法及びシステム
CN207552093U (zh) 在线提供纯化热水的装置
JPS60129103A (ja) 超純水製造装置
JP2005144301A (ja) 脱塩処理装置および脱塩処理方法
JP2009164642A (ja) 液浸露光のための屈折率調整用小流量液体の温調方法
JP2008209396A (ja) 分析装置用連続濃縮装置
JP7011958B2 (ja) 液体供給装置および圧力制御方法
JP2004167308A (ja) 超純水製造装置
JP4968432B2 (ja) 電気脱イオン装置の流量調整方法
JP2010087191A (ja) 露光装置およびデバイス製造方法
CN111491712A (zh) 热水车调节系统和方法
CN112650030B (zh) 一种浸没流场初始建立方法
JP2008311372A (ja) 超純水中の溶存窒素の測定方法及び溶存窒素測定装置
JP2023041226A (ja) 水処理システム
JPS6342787A (ja) 超純水給水系路の自動熱殺菌装置
JP2022187148A (ja) 水処理装置の立上げ方法および洗浄方法
JP2020124687A (ja) 濃縮器、濃度計測装置及び超純水製造装置
JP2004139235A (ja) 流体プロセス開始時の安定運転方法
JPH03242550A (ja) 金属成分分折装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005805550

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200580038946.6

Country of ref document: CN

Ref document number: 11719347

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077013536

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005805550

Country of ref document: EP