WO2006040842A1 - 排気ガス触媒およびそれを用いた排気ガス処理装置 - Google Patents

排気ガス触媒およびそれを用いた排気ガス処理装置 Download PDF

Info

Publication number
WO2006040842A1
WO2006040842A1 PCT/JP2004/016230 JP2004016230W WO2006040842A1 WO 2006040842 A1 WO2006040842 A1 WO 2006040842A1 JP 2004016230 W JP2004016230 W JP 2004016230W WO 2006040842 A1 WO2006040842 A1 WO 2006040842A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
catalyst
layers
layer
engine
Prior art date
Application number
PCT/JP2004/016230
Other languages
English (en)
French (fr)
Inventor
Kenji Tanikawa
Jin Cho
Original Assignee
Johnson Matthey Japan Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johnson Matthey Japan Incorporated filed Critical Johnson Matthey Japan Incorporated
Priority to US11/665,475 priority Critical patent/US8153549B2/en
Priority to BRPI0419114-5A priority patent/BRPI0419114A/pt
Priority to EP04799436A priority patent/EP1832344A4/en
Publication of WO2006040842A1 publication Critical patent/WO2006040842A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/945Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • B01J35/60
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0219Coating the coating containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0234Impregnation and coating simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/464Rhodium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an exhaust gas catalyst in which a plurality of layers are formed on a carrier.
  • exhaust gas catalysts for internal combustion engines include the following.
  • Oxidation catalyst that treats hydrocarbon (HC) and carbon monoxide (CO) in exhaust gas simultaneously
  • three-way catalyst that treats hydrocarbon, carbon monoxide, and nitrogen oxide (NOx) in exhaust gas simultaneously
  • NOx storage reduction catalyst that stores NOx in the exhaust gas in the air-fuel ratio cannula state and reduces NOx by switching the air-fuel ratio to the stoichiometric air-fuel ratio or rich state before this NOx becomes saturated
  • NOx selective reduction type catalyst that reduces NOx in exhaust gas with a reducing agent.
  • Oxidation catalysts, three-way catalysts, NOx occlusion reduction catalysts and NOx selective reduction catalysts are prepared by immersing these catalyst components in a slurry and immersing them in a ceramic, two-cam shaped carrier. Manufactured.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2002-191988 (Patent Document 1) and Japanese Unexamined Patent Publication No. 2002-253968 (Patent Document 2)
  • a porous structure provided with pores having a specific pore diameter is disclosed.
  • NOx occlusion reduction type catalyst in which a precious metal and a NOx occlusion agent are supported on a powerful coating layer, thereby improving the gas diffusibility of exhaust gas and improving the purification efficiency of NOx.
  • the exhaust gas catalyst is still required to improve the exhaust gas processing efficiency by increasing the gas diffusibility of the exhaust gas in the catalyst component layer.
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-191988
  • Patent Document 2 Japanese Patent Laid-Open No. 2002-253968
  • an object of the present invention is to provide an exhaust gas catalyst that can improve the exhaust gas treatment by improving the gas diffusibility of the exhaust gas.
  • the exhaust gas catalyst according to the present invention is an exhaust gas catalyst comprising at least a carrier and a plurality of layers formed on the carrier,
  • At least one of the plurality of layers has a void in the layer, and at least one of the plurality of layers comprises a catalyst component.
  • FIG. 1 (A) — (E) shows a schematic diagram of an exhaust gas catalyst according to the present invention.
  • FIG. 2 is a schematic view of an apparatus for treating exhaust gas according to the present invention.
  • the exhaust gas catalyst according to the present invention is configured such that at least one of a plurality of layers has voids in the layers.
  • at least one of the plurality of layers comprises a catalyst component.
  • the “void” in the layer means that there is a space in the layer, and specifically includes pores, pores, tunnel-like (cylinder, prism) elongated pores, and the like.
  • the exhaust gas catalyst according to the present invention is preferably such that at least one of the plurality of layers containing the catalyst component has voids in the layer. Good. According to a further preferred aspect of the present invention, the exhaust gas catalyst according to the present invention preferably has an average diameter of the voids of 0.2 m or more and 500 m or less.
  • FIGS. 1A to 1E are cross-sectional views showing one embodiment of the exhaust gas catalyst according to the present invention.
  • FIG. 1 (A) shows an exhaust gas in which a first layer 2 is formed on a carrier 1 and a second layer 3 having pores 31 is formed thereon. The catalyst is shown.
  • FIG. (B) shows an exhaust gas catalyst in which a first layer 2 having a through-passage 22 is formed on a support 1 in a concavo-convex shape, and a second layer 3 having pores 31 is formed thereon. Is.
  • Figure (C) shows an exhaust gas catalyst in which a first layer 2 having a through passage 22 is formed on a carrier 1 in the shape of a sea island, and a second layer 3 having pores 31 is formed thereon. It is a thing.
  • Figure (D) shows a first layer 2 having pores 21 and through-passages 22 formed on a carrier 1 in the form of irregularities and sea islands, and a second layer having pores 31 and through-passages 32 thereon.
  • 3 shows an exhaust gas catalyst formed.
  • FIG. (E) shows an exhaust gas catalyst in which a first layer 2 having pores 21 is formed in an uneven shape on a carrier 1 and a second layer 3 having pores 31 is formed thereon. Is. This exhaust gas catalyst has a portion in which the first layer 2 is not partially covered by the second layer 3 as indicated by reference numeral 4 in FIG. 1 (E).
  • the first layer 2 and the second layer 3 are adjacent to each other, and voids (21 Or 31) or through passage (22 or 32).
  • the first layer 2 and the second layer 3 may have the same or different average porosity.
  • Such an exhaust gas catalyst improves the gas diffusibility of the exhaust gas, and increases the contact area of the exhaust gas, so that the exhaust gas can be treated effectively.
  • first layer 2 and the second layer 3 contain a catalyst component.
  • the holes or through paths in the first layer 2 and the second layer 3 are examples of voids in the respective layers, but the present invention is not limited to these shapes.
  • the average diameter of the voids in at least one layer of the plurality of layers is 0.2 ⁇ m or more and 500 ⁇ m or less, preferably the lower limit is 0.5 ⁇ m or more and the upper limit is 3 00 m or less.
  • the “average diameter” means a value obtained by dividing four times the sectional area by the total perimeter of the cross section with respect to the maximum cross sectional area of the void.
  • the average void ratio of the voids is 5% or more and 80% or less, preferably the upper limit is 60% or less, preferably the lower limit Is over 10%.
  • the shape of the formed plurality of layers may be any shape, but is preferably formed in an uneven shape. Also another preference of the present invention According to another embodiment, it is preferable that at least one of the plurality of layers is formed in a sea island shape on the carrier. These shapes may be physically formed when a plurality of layers are formed on the carrier, and are preferably formed by appropriately adjusting the shape and amount of the molding agent.
  • each layer in the plurality of layers is 1 ⁇ m or more and 300 ⁇ m or less, preferably the upper limit is 280 ⁇ m or less, preferably 250 ⁇ m or less, and the lower limit is 2 ⁇ m or more. It is preferably 5 m or more.
  • Specific examples of the means for forming a plurality of layers on the carrier include the following.
  • a slurry is prepared by adding a porous structure powder, a catalyst component (when forming a catalyst layer) and a forming agent, if necessary, to a solvent (for example, water) and stirring.
  • This slurry is attached to a carrier and fired to form a single layer on the carrier.
  • it adheres to one layer in which another slurry is formed and is fired, and another layer is formed on this one layer by the above procedure.
  • the exhaust gas catalyst according to the present invention is prepared.
  • the molding agent is preferably one that burns during firing or drying and does not leave its chemical properties in the exhaust gas catalyst.
  • the molding agent preferably has a form such as a thermally decomposable or combustible sphere or cylinder.
  • foaming agents include foaming agents, surfactants, foaming synthetic resin, activated carbon, graphite powder, norp powder, organic fiber, plastic fiber and the like.
  • foaming agents include La (CO 2), Al (CO), Ce (CO)
  • the surfactant include ionic surfactants such as sulfonic acid type and carboxylic acid type, cationic surfactants such as amine type, and zwitterionic surfactants such as fatty acid ester type. It is done.
  • the foamable synthetic resin include polyurethane, polystyrene, polyethylene, polyester, and acrylic synthetic resins.
  • the void may be formed by a device that can generate bubbles of uniform size (for example, microbubbles) rather than only those formed by the foaming agent.
  • the addition amount of the molding agent is 5% by weight or more and 80% by weight or less, and preferably the upper limit is 70% by weight or less, preferably 60% by weight or less, with respect to the total amount of the components of each layer.
  • the lower limit is 5% by weight or more, preferably 8% by weight or more.
  • the porous structure powder include aluminum oxide, cerium oxide, and titanium oxide. , Zirconium oxide, crystalline zeolite and the like.
  • the catalyst component can be appropriately selected according to the component in the exhaust gas.
  • the three-way catalyst, the oxidation It is preferable to comprise a catalyst component of a catalyst, a NOx occlusion reduction type catalyst, or a NOx selective reduction type catalyst.
  • Each catalyst layer of the plurality of layers may comprise the same or different catalyst components.
  • the carrier include a pellet type shape (granular shape) having alumina force, or a monolith type shape (Hercam type) having metal force such as cordierite ceramics or stainless steel.
  • a monolithic shape having excellent heat resistance, thermal shock resistance, and mechanical strength is preferable.
  • the exhaust gas catalyst according to the present invention may be configured as follows in accordance with the exhaust gas treatment application.
  • a three-way catalyst is provided.
  • at least one of the plurality of layers comprises an active metal as a three-way catalyst component and, if necessary, a catalyst auxiliary.
  • the active metal examples include noble metals, and specific examples thereof include platinum, palladium, and rhodium, preferably those selected from the group consisting of platinum, palladium, rhodium, and a mixture thereof.
  • the addition amount of the active metal is 0.001% by weight or more and 20% by weight or less with respect to the total amount of the three-way catalyst component, the upper limit is preferably 5% by weight or less, and the lower limit is 0.002% by weight or more. Preferably, it is 0.005% by weight or more.
  • the catalyst auxiliary include acid aluminum, acid cerium, acid zirconium, scandium oxide, yttrium oxide, acid lanthanum, acid nickel neodymium, acid nickel prasedium, zeolite and these. These are selected from the group forces that also have complex acidity.
  • an oxidation catalyst in which at least one of the layers comprises an active metal as an oxidation catalyst component and optionally a catalyst aid.
  • the active metal examples include noble metals.
  • specific examples of the noble metal include platinum, palladium, and rhodium.
  • platinum, palladium, rhodium, and a mixture of these are selected.
  • the addition amount of the active metal is 0.001% by weight or more and 30% by weight or less with respect to the total amount of the oxidation catalyst component, preferably the upper limit is 25% by weight or less, and preferably the lower limit is 0.002% by weight. % Or more.
  • catalyst assistant examples include acid aluminum, acid cerium, acid zirconium, zeolite and the like.
  • a NOx occlusion type catalyst is provided.
  • at least one of the plurality of layers as a NOx occlusion type catalyst component includes a NOx occlusion agent, an active metal, and
  • it comprises a catalyst auxiliary.
  • NOx occluding agent examples include those selected from the group power consisting of alkali metals, alkaline earth metals, rare earth elements, and mixtures thereof.
  • alkali metal examples include lithium, sodium, potassium, rubidium, cesium, francium, and those in which a group force that also includes a mixture force is selected.
  • alkaline earth metal examples include beryllium, magnesium, calcium, strontium, barium, and those in which a group force including a mixture force thereof is also selected.
  • rare earth elements include scandium, yttrium, lanthanum, cerium, praseodymium, neodymium, and mixtures thereof.
  • the NOx storage agent can contain a base metal as required, and specific examples thereof include nickel, copper, manganese, iron, cobalt, zinc and the like.
  • the addition amount of the NOx storage agent is 1% by weight or more and 80% by weight or less with respect to the total amount of the NOx storage reduction catalyst component, preferably the upper limit is 75% by weight or less, preferably 70% by weight.
  • the lower limit is 2% by weight or more, preferably 5% by weight or more.
  • the active metal include noble metals and base metals.
  • the noble metal include platinum, palladium, rhodium, ruthenium, iridium, osmium, gold, silver, and those in which a group force including a mixture of these is selected, preferably platinum, palladium, rhodium, and these. A mixture is mentioned.
  • base metals include nickel, copper, manganese, iron, cobalt, tungsten, molybdenum, zinc, and mixtures thereof.
  • the addition amount of the active metal is 0% by weight and 50% by weight or less with respect to the total amount of the NOx storage reduction catalyst component, preferably the upper limit is 45% by weight or less, preferably 40% by weight or less. .
  • the catalyst aid include those selected from the group consisting of acid-aluminum, acid-cerium, acid-zirconium, titanium oxide, silica, and complex oxides thereof.
  • the addition amount of the catalyst auxiliary is more than 5% by weight and not more than 95% by weight, preferably not more than 90% by weight, preferably not more than 60% by weight, based on the total amount of the NOx storage reduction catalyst component. is there.
  • a NOx selective reduction catalyst in which at least one of the layers includes an active metal and a catalyst auxiliary as a NOx selective reduction catalyst. Become.
  • the active metal are selected from the group consisting of noble metals, transition metals, rare earth metals, mixtures thereof and oxides thereof, preferably platinum, gold, copper, vanadium, tungsten, titanium, and the like.
  • group power that can be selected from acidity and physical strength.
  • the addition amount of the active metal is 0.001% by weight or more and 20% by weight or less, preferably 15% by weight or less, preferably 10% by weight or less, based on the total amount of the NOx storage reduction catalyst component.
  • the lower limit is 0.002% by weight or more, preferably 0.005% by weight or more.
  • the catalyst auxiliary examples include those in which group power consisting of acid aluminum, cerium oxide, acid zirconium, titanium oxide, silica, zeolite, and complex oxides thereof is also selected.
  • the addition amount of the catalyst auxiliary is more than 1% by weight and 50% by weight or less with respect to the total amount of the NOx selective reduction catalyst component, preferably the upper limit is 45% by weight or less, preferably 40% by weight. It is as follows.
  • NOx selective reduction type catalysts use a reducing agent when treating nitrogen oxides in exhaust gas.
  • the reducing agent include ammonia or amine, urea or a derivative thereof, hydrazine or a derivative thereof, triazine or a derivative thereof, a hydrocarbon, or an organic compound containing an oxygen atom.
  • amines include those having 1 to 15 carbon atoms, preferably methylamine.
  • urea derivatives include guadin and biuret.
  • hydrazine derivative include cyanuric acid.
  • hydrocarbons include plasma oil, kerosene, or CC paraffin. Acid
  • organic compound containing an elementary atom examples include alcohols (preferably alcohols having 1 to 15 carbon atoms, more preferably methanol and ethanol), ketones, ethers, organic carboxylic acids, fatty acids. And esters.
  • an exhaust gas treatment device including the exhaust gas catalyst according to the present invention.
  • the contents of the exhaust gas treatment apparatus according to the present invention will be described with reference to FIG.
  • FIG. 2 shows a schematic view of an exhaust gas treatment apparatus equipped with an exhaust gas catalyst according to the present invention.
  • An exhaust gas treatment device 50 according to the present invention is configured such that an exhaust gas catalyst 51 according to the present invention is provided in a device body provided with an exhaust gas inlet 52 and an exhaust gas outlet 53.
  • the Exhaust gas flows into the inflow port 52, and in the exhaust gas catalyst 51 according to the present invention, at least one of hydrocarbon, carbon monoxide, and nitrogen oxide in the exhaust gas is treated. It is discharged through.
  • the exhaust gas catalyst 51 when the exhaust gas catalyst 51 is a three-way catalyst according to the present invention, hydrocarbons, carbon monoxide, and nitrogen oxides in the exhaust gas are present. It is treated with this exhaust gas catalyst (three-way catalyst) to form water, carbon dioxide, and nitrogen gas. Further, according to another preferred embodiment of the present invention, in FIG. 2, when the exhaust gas catalyst 51 is an oxidation catalyst according to the present invention, hydrocarbons and carbon monoxide in the exhaust gas are separated from the exhaust gas catalyst (oxidation). Catalyst) to produce water and carbon dioxide. According to another preferred embodiment of the present invention, in FIG.
  • the exhaust gas catalyst 51 when the exhaust gas catalyst 51 is a NOx storage reduction catalyst according to the present invention, nitrogen oxide in the exhaust gas is converted into the exhaust gas catalyst (NOx storage reduction catalyst). ) To form water and nitrogen gas.
  • the exhaust gas catalyst 51 when the exhaust gas catalyst 51 is a NOx selective reduction catalyst according to the present invention, nitrogen oxides in the exhaust gas are treated with this exhaust gas catalyst (NOx selective reduction catalyst) together with a reducing agent, Water and nitrogen gas.
  • the reducing agent is introduced from the reducing agent introduction part located in front of the exhaust gas catalyst 51.
  • the exhaust gas catalyst according to the present invention is used for purification of exhaust gas.
  • the exhaust gas catalyst and the apparatus using the exhaust gas catalyst according to the present invention are used for an exhaust system of an internal combustion engine, in particular, a spark ignition type engine (for example, a gasoline engine) or a compression ignition type engine (for example, a diesel engine).
  • These engines may be engines that adjust the air-fuel ratio and burn fuel, and preferred examples thereof include lean burn engines, direct-injection engines, and preferably engines that combine these (that is, direct engines).
  • Injection type lean burn engine A direct-injection engine uses a fuel supply system that can achieve a high compression ratio, improved combustion efficiency, and reduced exhaust gas. For this reason, when combined with a lean burn engine, it is possible to further improve combustion efficiency and reduce exhaust gas.
  • An exhaust gas catalyst according to the present invention is used in an exhaust system of an internal combustion engine mounted on a transporter, a machine, or the like. Used.
  • transporters and machines include transporters and machines such as automobiles, buses, trucks, dump trucks, airway cars, motorcycles, motorbikes, ships, tankers, motorboats, airplanes, etc.
  • Agricultural and forestry machinery such as tillage machines, tractors, combines, chain saws, timber transporters, etc .; fisheries and fishery machinery such as fishing boats; Can be mentioned.
  • the exhaust gas catalyst according to the present invention can be installed as a start guitarist, an under floor, or a hold converter.
  • Kuryl-based rosin (with an average diameter of about 30 ⁇ m to 150 ⁇ m (average of about 60 ⁇ m)) was further mixed so that the total amount was 10% by weight. Then, the mixture was stirred for 30 minutes in an air atmosphere with a high-speed stirrer (manufactured by Silverson) to obtain a slurry in which the forming agent was uniformly dispersed. Next, cordierite no-cam base material (capacity 1000cc, 600 cells Zin 2: manufactured by NGK Co., Ltd.) was prepared, immersed in the above slurry, pulled up and blown off the excess slurry. The first layer was laminated by firing at 500 ° C. for 1 hour in the air.
  • This exhaust gas catalyst had a supported amount of Pt (platinum) of 0.54 g and a supported amount of Rh (rhodium) of 0.07 g per liter of the hard cam base material.
  • An exhaust gas catalyst was obtained in the same manner as in Example 1 except that the second layer was formed without adding the molding agent.
  • An exhaust gas catalyst was obtained in the same manner as in Example 1 except that the first layer was formed without adding the molding agent.
  • An exhaust gas catalyst was obtained in the same manner as in Example 1 except that the first layer and the second layer were formed without adding the molding agent.
  • This exhaust gas catalyst had a supported amount of Pt (platinum) of 0.75 g and a supported amount of Rh (rhodium) of 0.075 g per liter of the hard cam base material.
  • Exhaust gas was the same as in Example 4 except that the first layer and the second layer were formed without adding the molding agent. A catalyst was obtained.
  • each catalyst is housed in a cylinder with a diameter of 15 cm and a length of 40 cm, installed in a gasoline engine vehicle with a displacement of 220 OCC, burned with regular gasoline fuel, and in FTP mode (transient mode exhaust gas test). evaluated.
  • the evaluation apparatus used was a trade name “MEXA9000” (manufactured by Horiba Ltd.). The evaluation results are as shown in Table 4 below. The smaller the value, the higher the exhaust gas purification performance.
  • This exhaust gas catalyst had a supported amount of Pd (palladium) of 0.53 g and a supported amount of Rh (rhodium) of 0.1 llg per liter of the hard cam base material.
  • An exhaust gas catalyst was obtained in the same manner as in Example 5 except that the first layer and the second layer were formed without adding the molding agent.
  • each catalyst was stored in the storage canister, installed in the exhaust system of a 2000CC gasoline engine, burned with regular gasoline fuel, and evaluated in I IP mode (actual vehicle exhaust gas mode).
  • the evaluation apparatus used was a trade name “MEXA9000” (manufactured by Horiba, Ltd.). The evaluation results are as shown in Table 5 below. The smaller the value, the higher the exhaust gas purification performance.

Description

明 細 書
排気ガス触媒およびそれを用いた排気ガス処理装置
技術分野
[0001] 本発明は、担体に複数層を形成させた排気ガス触媒に関する。
背景技術
[0002] 内燃機関、とりわけ自動車エンジン用の排気ガス触媒の具体例としては以下のもの が挙げられる。排気ガス中の炭化水素 (HC)と一酸化炭素 (CO)とを同時に処理す る酸化触媒、排気ガス中の炭化水素と一酸化炭素と窒素酸化物 (NOx)とを同時に 処理する三元触媒、排気ガス中の NOxを空燃比カ^ーン状態において吸蔵し、この NOxが飽和状態になる前に空燃比を理論空燃比またはリッチ状態に切り替えること により NOxを還元処理する NOx吸蔵還元型触媒、および排気ガス中の NOxを還元 剤により還元処理する NOx選択的還元型触媒等が挙げられる。
[0003] 酸化触媒、三元触媒、 NOx吸蔵還元型触媒および NOx選択的還元型触媒は、こ れらの触媒成分をスラリーとしたものをセラミック製ノ、二カム形状等の担体に浸漬し焼 成して製造される。
[0004] しかし、従来の排気ガス触媒は触媒成分が担体に均一に形成されたものが殆どで あることから、排気ガスが排気ガス触媒に流入した場合、排気ガスのガス拡散速度が 遅ぐその結果排気ガスの処理が十分に行われないことがしばしば見受けられた。
[0005] これに対して、特開平 2002— 191988号公報(特許文献 1)および特開平 2002— 2 53968号公報 (特許文献 2)では、特定の孔径を有する細孔を設けた多孔質構造体 力 なるコート層に貴金属と NOx吸蔵剤とを担持させることにより、排気ガスのガス拡 散性を高めて、 NOxの浄ィ匕効率を向上させた NOx吸蔵還元型触媒が提案されて 、 る。し力しながら、今なお、排気ガス触媒にあっては、触媒成分の層中における排気 ガスのガス拡散性を高めて排気ガスの処理効率を向上させることが要求されている。
[0006] 特許文献 1:特開平 2002-191988号公報
特許文献 2:特開平 2002 - 253968号公報
発明の概要 [0007] 本発明者等は、本発明時に、排気ガスの処理を向上させる排気ガス触媒の構成を 見出した。とりわけ、複数層から形成される触媒にあって、複数層の少なくとも一層が 特定の短径と直径とを示す空隙を有するものであり、かつ、触媒成分を含んでなるこ とにより、排気ガスの処理を向上させることができるとの知見を得た。従って、本発明 は力かる知見に基づくものである。よって、本発明は、排気ガスのガス拡散性を高め て排気ガスの処理を向上させることができる、排気ガス触媒の提供を目的とする。
[0008] 従って、本発明による排気ガス触媒は、担体と、該担体上に形成された複数層とを 少なくとも備えてなる排気ガス触媒であって、
前記複数層の少なくとも一つの層が該層中に空隙を有するものであり、 前記複数層の少なくとも一つの層が触媒成分を含んでなるものである。 図面の簡単な説明
[0009] [図 1]図 1 (A)— (E)は、本願発明による排気ガス触媒の概略図を示す。
[図 2]図 2は、本願発明による排気ガスを処理する装置の概略図を示す。
発明の具体的説明
[0010] 排気ガス触媒
本発明による排気ガス触媒は、複数層の少なくとも一つの層が該層中に空隙を有 するものとして構成されてなる。本発明にあっては、複数層の少なくとも一つの層が触 媒成分を含んでなる。ここで、層中の「空隙」とは、層中に空間が存在することを意味 し、具体的には、空孔、細孔、トンネル状(円柱、角柱)の細長い細孔等が挙げられる
[0011] 本発明の好ましい態様によれば、本発明による排気ガス触媒は、前記触媒成分を 含んでなる前記複数層の少なくとも一つの層が、該層中に空隙を有してなるものが好 ましい。また、本発明のさらに好ましい態様によれば、本発明による排気ガス触媒は、 前記空隙の平均径が、 0. 2 m以上であり 500 m以下のものが好ましい。
[0012] 1.餱様
本発明による排気ガス触媒の態様を図 1を用いて説明する。図 1 (A)— (E)は本発 明による排気ガス触媒の一態様の断面図を示すものである。図 1 (A)は担体 1の上に 第一層 2が形成され、その上に空孔 31を有する第二層 3が形成されてなる排気ガス 触媒を示したものである。図(B)は担体 1の上に通貫路 22を有する第一層 2が凹凸 状に形成され、その上に空孔 31を有する第二層 3が形成されてなる排気ガス触媒を 示したものである。図(C)は担体 1の上に通貫路 22を有する第一層 2が海島状に形 成され、その上に空孔 31を有する第二層 3が形成されてなる排気ガス触媒を示した ものである。図(D)は担体 1の上に空孔 21および通貫路 22を有する第一層 2が凹凸 状および海島状に形成され、その上に空孔 31および通貫路 32を有する第二層 3が 形成されてなる排気ガス触媒を示したものである。図(E)は担体 1の上に空孔 21を有 する第一層 2が凹凸状に形成され、その上に空孔 31を有する第二層 3が形成されて なる排気ガス触媒を示したものである。この排気ガス触媒は、図 1 (E)の符号 4に示す 通り、第一層 2が第二層 3により一部覆わな 、部分が存在して 、るものである。
図 1 (A)— (E)で示される通り、排気ガス触媒は、第一層 2と第二層 3とが相互に隣 り合うものであり、これらの層中に空隙として空孔(21または 31)または通貫路(22ま たは 32)を有する。そして、第一層 2と第二層 3とは同一または異なる平均空隙率を 有するものであってよい。この様な排気ガス触媒は、排気ガスのガス拡散性が向上し 、また排気ガスの接触面積が拡大するため、排気ガスを有効に処理することが可能と なる。
上記において、第一層 2と第二層 3とは少なくとも一方または両方が触媒成分を含 んでなるものである。また、第一層 2と第二層 3における空孔または貫通路は、各々の 層における空隙の一例であるが、本発明はこれらの形状に限定されるものではない。
[0013] 2.空隙の平均径
本発明の好ましい態様によれば、複数層の少なくとも一つの層中の空隙の平均径 が 0. 2 μ m以上 500 μ m以下であり、好ましくは下限が 0. 5 μ m以上であり上限が 3 00 m以下である。本発明において、「平均径」とは空隙の最大断面積に対して、断 面積の 4倍を断面の全周長で割ったものをいう。本発明にあっては、複数層における 少なくとも一つの層に空隙が存在する場合、その空隙の平均空隙率は 5%以上 80% 以下であり、好ましくは上限が 60%以下であり、好ましくは下限が 10%以上である。
[0014] 本発明の好ましい態様によれば、形成される複数層の形状はいずれのものであつ てよいが、好ましくは凹凸状に形成されることが好ましい。また、本発明の別の好まし い態様によれば、複数層の少なくとも一つの層が担体に海島状に形成されてなること が好ましい。これらの形状は担体に複数層を形成させる際に物理的に形成されてよく 、成形剤の形状、量を適宜調整することにより形成されることが好ましい。
[0015] 複数層における各層の厚さは、 1 μ m以上、 300 μ m以下であり、好ましくは上限が 280 μ m以下であり、好ましくは 250 μ m以下であり、下限が 2 μ m以上であり、好ま しくは 5 m以上である。
[0016] 複数層を担体上に形成させる手段の具体例としては以下のようなものが挙げられる 。溶媒 (例えば水)に、多孔質構造体粉末と、必要に応じて触媒成分 (触媒層を形成 する場合)と、成形剤とを添加し撹拌しスラリーを調製する。このスラリーを担体に付 着し焼成し、担体に一の層を形成させる。次に、他のスラリーを形成させた一つの層 に付着し焼成し、この一の層に上記手順により別の層を形成させる。これを繰り返す ことにより、本発明による排気ガス触媒が調製される。
[0017] 成形剤は焼成時または乾燥時に燃焼しその化学的特性を排気ガス触媒に残存さ せないものが好ましい。成形剤は熱分解性または可燃性の球体、円柱体等の形態を 有するものが好ましい。このような具体例としては、発泡剤、界面活性剤、発泡性合 成榭脂、活性炭、グラフアイト粉末、ノルプ粉末、有機物繊維、プラスチックファイバ 一等が挙げられる。発泡剤の具体例としては、 La (CO ) 、 Al (CO) 、 Ce (CO)
2 3 3 2 3 2 3 等が挙げられ、触媒成分と同様な元素を含んでなるものが好ましい。界面活性剤の 具体例としては、スルホン酸型、カルボン酸型等のァ-オン性界面活性剤、アミン型 等のカチオン性界面活性剤、脂肪酸エステル型等の両性イオン性界面活性剤等が 挙げられる。発泡性合成樹脂の具体例としては、ポリウレタン系、ポリスチレン系、ポリ エチレン系、ポリエステル系、アクリル系等の合成樹脂が挙げられる。また、空隙は発 泡剤のみによって形成されるものではなぐ均一な大きさの気泡(例えば、マイクロバ ブル)を発生できる装置によって形成されてもょ 、。
[0018] 成形剤の添加量は、複数層の各層の成分全量に対して、 5重量%以上、 80重量 %以下であり、好ましくは上限が 70重量%以下であり、好ましくは 60重量%以下であ り、下限が 5重量%以上であり、好ましくは 8重量%以上である。
[0019] 多孔質構造体粉末の具体例としては、酸化アルミニウム、酸化セリウム、酸化チタン 、酸ィ匕ジルコニウム、結晶性ゼオライト等が挙げられる。複数層の少なくとも一の層が 触媒成分を含んでなる場合、触媒成分は排気ガス中の成分に応じて適宜選択するこ とができるが、本発明の好ましい態様によれば、三元触媒、酸化触媒、 NOx吸蔵還 元型触媒、または NOx選択的還元型触媒の触媒成分を含んでなることが好ま Uヽ。 複数層の各触媒層は、同一または異なる触媒成分を含んでなるものであってもよい。
[0020] 担体の具体例としては、アルミナ力 なるペレット型形状 (粒状形)、またはコージェ ライトセラミックスもしくはステンレス等の金属力もなるモノリス型形状 (ハ-カム形)のも のが挙げられる。特に、耐熱性、耐熱衝撃性、および機械的強度に優れたモノリス型 形状のものが好ましい。
[0021] 徘気ガス触 の 用
本発明による排気ガス触媒は、排気ガス処理用途に合致させて下記のように構成 されてよい。
丫ニ 碰
本発明の別の態様によれば、三元触媒が提供され、この場合、複数層の少なくとも 一つの層が三元触媒成分として活性金属と、必要に応じて触媒助剤とを含んでなる 活件余通
活性金属としては貴金属が挙げられ、その具体例としては、白金、パラジウム、ロジ ゥムが挙げられ、好ましくは白金、パラジウム、ロジウムおよびこれらの混合物力 なる 群から選択されるものが挙げられる。活性金属の添加量は、三元触媒成分の全量に 対して、 0. 001重量%以上、 20重量%以下であり、上限が好ましくは 5重量%以下 であり、下限が 0. 002重量%以上であり、好ましくは 0. 005重量%以上である。
[0022] 蝕馳剤
触媒助剤の具体例としては、酸ィ匕アルミニウム、酸ィ匕セリウム、酸ィ匕ジルコニウム、 酸化スカンジウム、酸化イットリウム、酸ィ匕ランタン、酸ィ匕ネオジゥム、酸ィ匕プラセォジ ゥム、ゼォライトおよびこれらの複合酸ィ匕物力もなる群力 選択されるものが挙げられ る。
[0023] (2)酸化触媒 本発明の別の態様によれば、酸化触媒が提供され、この場合、複数層の少なくとも 一つの層が酸化触媒成分として活性金属と、必要に応じて触媒助剤とを含んでなる
活件余属
活性金属としては貴金属が挙げられる。貴金属の具体例としては、白金、パラジゥ ム、ロジウムが挙げられ、好ましくは白金、パラジウム、ロジウムおよびこれらの混合物 力 なる群力 選択されるものが挙げられる。
活性金属の添加量は、酸化触媒成分の全量に対して、 0. 001重量%以上、 30重 量%以下であり、好ましくは上限が 25重量%以下であり、好ましくは下限が 0. 002 重量%以上である。
[0024] 触馳剤
触媒助剤の具体例としては、酸ィ匕アルミニウム、酸ィ匕セリウム、酸ィ匕ジルコニウム、 ゼォライト等が挙げられる。
Figure imgf000008_0001
本発明の別の態様によれば、 NOx吸蔵型触媒が提供され、この場合、複数層のう ちの少なくとも一つの層が NOx吸蔵型触媒成分として、 NOx吸蔵剤と、活性金属と
、必要に応じて触媒助剤とを含んでなる。
[0026] NOx吸蔵剤
NOx吸蔵剤の具体例としては、アルカリ金属、アルカリ土類金属、希土類元素、お よびこれらの混合物からなる群力 選択されるものが挙げられる。
アルカリ金属の具体例としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウム 、フランシウム、およびこれらの混合物力もなる群力も選択されるものが挙げられる。 アルカリ土類金属の具体例としては、ベリリウム、マグネシウム、カルシウム、ストロン チウム、バリウム、およびこれらの混合物力もなる群力も選択されるものが挙げられる。 希土類元素の具体例としては、スカンジウム、イットリウム、ランタン、セリウム、プラセ オジム、ネオジム、およびこれらの混合物力 選択されるものが挙げられる。
また、 NOx吸蔵剤は、必要に応じて卑金属を含んでなることができ、その具体例と しては、ニッケル、銅、マンガン、鉄、コバルト、亜鉛等が挙げられる。 NOx吸蔵剤の添加量は、 NOx吸蔵還元型触媒成分の全量に対して、 1重量%以 上、 80重量%以下であり、好ましくは上限が 75重量%以下であり、好ましくは 70重 量%以下であり、下限が 2重量%以上であり、好ましくは 5重量%以上である。
[0027] 活性金属
活性金属の具体例としては、貴金属、卑金属が挙げられる。貴金属の具体例として は、白金、パラジウム、ロジウム、ルテニウム、イリジウム、オスミウム、金、銀およびこれ らの混合物力もなる群力も選択されるものが挙げられ、好ましくは、白金、パラジウム、 ロジウムおよびこれらの混合物が挙げられる。
卑金属の具体例としては、ニッケル、銅、マンガン、鉄、コバルト、タングステン、モリ ブデン、亜鉛およびこれらの混合物が挙げられる。
活性金属の添加量は、 NOx吸蔵還元型触媒成分の全量に対して、 0重量%超過 、 50重量%以下であり、好ましくは上限が 45重量%以下であり、好ましくは 40重量 %以下である。
[0028] 触馳剤
触媒助剤の具体例としては、酸ィ匕アルミニウム、酸ィ匕セリウム、酸ィ匕ジルコニウム、 酸化チタン、シリカおよびこれらの複合酸化物からなる群から選択されるものが挙げら れる。触媒助剤の添加量は、 NOx吸蔵還元型触媒成分の全量に対して、 5重量% 超過 95重量%以下であり、好ましくは上限が 90重量%以下であり、好ましくは 60重 量%以下である。
[0029] (4) NOx選択的還元触媒
本発明の別の態様によれば、 NOx選択的還元型触媒が提供され、この場合、複数 層の少なくとも一つの層が NOx選択的還元型触媒として、活性金属と、触媒助剤と を含んでなる。
活件余属
活性金属の具体例としては、貴金属、遷移金属、希土類金属、これらの混合物およ びこれらの酸化物からなる群から選択され、好ましくは、白金、金、銅、バナジウム、タ ングステン、チタン、およびこれらの酸ィ匕物力もなる群力も選択されるものが挙げられ る。 活性金属の添加量は、 NOx吸蔵還元型触媒成分の全量に対して、 0. 001重量% 以上、 20重量%以下であり、好ましくは上限が 15重量%以下であり、好ましくは 10 重量%以下であり、下限が 0. 002重量%以上であり、好ましくは 0. 005重量%以上 である。
[0030] 蝕馳剤
触媒助剤としては、酸ィ匕アルミニウム、酸化セリウム、酸ィ匕ジルコニウム、酸化チタン 、シリカ、ゼォライトおよびこれらの複合酸ィ匕物からなる群力も選択されるものが挙げ られる。触媒助剤の添加量は、 NOx選択的還元型触媒成分の全量に対して、 1重量 %超過、 50重量%以下であり、好ましくは上限が 45重量%以下であり、好ましくは 4 0重量%以下である。
[0031] 還 剤
NOx選択的還元型触媒は排気ガス中の窒素酸化物を処理する際に還元剤を利 用する。還元剤の具体例としては、アンモニアまたはァミン、尿素またはその誘導体、 ヒドラジンまたはその誘導体、トリァジンまたはその誘導体、炭化水素、または酸素原 子を含む有機化合物が挙げられる。
ァミンの具体例としては、炭素数 1一 5のァミン、好ましくはメチルァミンが挙げられる 。尿素の誘導体の具体例としては、グァ-ジン、ビウレットが好ましくは挙げられる。ヒ ドラジンの誘導体の具体例としては、シァヌル酸が好ましくは挙げられる。炭化水素 の具体例としては、形質油、ケロセン、または C Cのパラフィン等が挙げられる。酸
3 8
素原子を含む有機化合物の具体例としては、アルコール類 (好ましくは、炭素数 1一 5のアルコールであり、より好ましくはメタノール、エタノールである)、ケトン類、エーテ ル類、有機カルボン酸類、脂肪酸類、エステル類が挙げられる。
[0032] 排気ガス処理装置
本発明による別の態様によれば、本発明による排気ガス触媒を備えた排気ガス処 理装置が提供される。本発明による排気ガス処理装置の内容を図 2を用いて説明す る。図 2は本発明による排気ガス触媒を備えた排気ガス処理装置の概略図を示す。 本発明による排気ガス処理装置 50は、排気ガス流入口 52と、排気ガス流出口 53と が設けられた装置本体に、本発明による排気ガス触媒 51が設けられてなるものであ る。排気ガスが流入口 52に流入し、本発明による排気ガス触媒 51において、排気ガ ス中の炭化水素、一酸化炭素、窒素酸化物の少なくとも一つが処理され、処理され た排気ガスは流出口 53を経て排出される。
[0033] 本発明の好ましい態様によれば、図 2において、排気ガス触媒 51が本発明による 三元触媒の場合、排気ガス中の炭化水素と、一酸化炭素と、窒素酸ィ匕物とがこの排 気ガス触媒 (三元触媒)により処理され、水と、二酸化炭素と、窒素気体とされる。また 、本発明の別の好ましい態様によれば、図 2において、排気ガス触媒 51が本発明に よる酸化触媒の場合、排気ガス中の炭化水素と、一酸化炭素とがこの排気ガス触媒( 酸化触媒)により処理され、水と、二酸化炭素とされる。本発明の別の好ましい態様に よれば、図 2において、排気ガス触媒 51が本発明による NOx吸蔵還元型触媒の場 合、排気ガス中の窒素酸化物がこの排気ガス触媒 (NOx吸蔵還元型触媒)により処 理され、水および窒素気体とされる。図 2において、排気ガス触媒 51が本発明による NOx選択的還元型触媒の場合、排気ガス中の窒素酸化物が還元剤と伴にこの排気 ガス触媒 (NOx選択的還元型触媒)により処理され、水および窒素気体とされる。こ の場合、還元剤は排気ガス触媒 51の前方に位置する還元剤導入部から導入される
[0034] 排気ガス触越の用徐
本発明による排気ガス触媒は、排気ガスの浄ィ匕に用いられる。本発明による排気ガ ス触媒およびそれを用いた装置は、内燃機関、特に、火花点火型エンジン (例えば、 ガソリンエンジン)、圧縮着火型エンジン (例えば、ディーゼルエンジン)の排気系に 用いられる。また、これらのエンジンは、空燃比を調製して燃料を燃焼するエンジンで あってよく、その好ましい具体例として、リーンバーンエンジン、直噴型エンジン、好ま しくはこれらを組み合わせたエンジン (即ち、直噴型リーンバーンエンジン)が挙げら れる。直噴型エンジンは、高圧縮比化、燃焼効率の向上、さらには排気ガスの低減 化を図ることができる燃料供給システムを採用したエンジンである。このため、リーン バーンエンジンと組み合わせることによって、さらに燃焼効率の向上と排気ガスの低 減ィ匕を図ることが可能となる。
[0035] 本発明による排気ガス触媒は、運搬機、機械等に搭載された内燃機関の排気系に 利用される。運搬機、機械の具体例としては、運搬機、機械の具体例としては、例え ば、 自動車、バス、トラック、ダンプカー、気道車、オートバイ、原動機付き自転車、船 舶、タンカー、モーターボート、航空機などの運送機;耕耘機、トラクター、コンバイン 、チヱンソ一、木材運搬機などの農林産業機械;漁船等の水産漁業機械;タンクロー リー、クレーン、圧搾機、掘削機等の土木作業機械;発電機;等が挙げられる。本発 明による排気ガス触媒は、例えば、車両の排気系の場合、スタートキヤタリスト、アン ダーフロアー、マ-ホールドコンバータとして設置することができる。
実施例
[0036] 本発明の内容を実施例によってより詳細に説明する。し力しながら、本発明の内容 は実施例によって限定して解釈されるものではない。
[0037] 排ガス触^:の調製
l
γ - Al Ο粉末 25重量部、水 60重量部、硝酸白金溶液を混合し、成形剤としてァ
2 3
クリル系榭脂〔平均径が 30 μ m程度から 150 μ m程度(平均的には 60 μ m程度)の 榭脂を使用した〕を全体の 10重量%になるようにさらに混合した。そして、高速撹拌 器 (シルバーソン社製)により、大気雰囲気中で 30分撹拌し、成形剤が均一に分散し たスラリーを得た。次に、コージエライト製ノヽ-カム基材 (容量 1000cc、 600セル Zin 2:日本ガイシ (株)社製)を用意し、上記スラリー中に浸漬し、引き上げて余分なスラリ 一を吹き払った後、大気中にて 500°Cで 1時間焼成して第一層を積層させた。
γ— Al Ο粉末 5重量部、水 20重量部、硝酸ロジウム溶液を混合し、成形剤として
2 3
アクリル系榭脂〔平均径が 0. 5 μ m程度から 100 μ m程度(平均的には 20 μ m程度) の榭脂を使用した〕を全体の 20重量%になるように混合して、上記高速撹拌器により 、大気雰囲気中で 30分撹拌し、成形剤が均一に分散したスラリーを得た。次に、第 一層が形成されたハ-カム基材を、このスラリー中に浸漬し、引き上げて余分なスラリ 一を吹き払った後、大気中にて 500°Cで 1時間焼成して第二層を積層させて、排気 ガス触媒 (三元触媒)を得た。
この排気ガス触媒は、ハ-カム基材 1Lあたり、 Pt (白金)の担持量が 0. 54gであり 、Rh (ロジウム)の担持量が 0. 07gであった。 m
成形剤を添加せずに第二層を形成した以外は、例 1と同様にして排気ガス触媒を 得た。
m
成形剤を添加せずに第一層を形成した以外は、例 1と同様にして排気ガス触媒を 得た。
[0038] 比較例 1
成形剤を添加せずに第一層と第二層とを形成した以外は、例 1と同様にして排気ガ ス触媒を得た。
[0039] 評価試,験 1
排ガス入出口を有する試験装置 (堀場製作所)内に、例 1一 3および比較例 1の触 媒から、直径 25.4mm,長さ 30mmを切り出したものをそれぞれ配置した。ガス温度 900。Cで 3分毎に交互に、表 1に示すリッチ組成ガスとリーン組成ガスとをこの装置の 入口部力 流入させて 20時間熱処理を行った。この後、表 2に示すリッチ組成ガスと リーン組成ガスとをこの装置の入口部から 1 Hzでそれぞれ流入させた後、 NOxの浄 化率を測定した。測定は、ガス温度 280°Cと 300°Cで行った。各温度で 5分間の平均 浄ィ匕率(%)を表 3に示した。表 1および 2中の(%)は体積%を意味する。
[表 1] 表 1
Figure imgf000013_0001
[表 2]
表 2
し H 02 NO CO H2 C02 H20 N2
(pps (%) (ppm) (%) (%) (%) (%)
リツチ 400 0.50 500 2.11 0.70 14.0 10.0 残部 リーン 400 1.54 500 0.50 0.17 14.0 10.0 残部 [表 3]
表 3
Figure imgf000014_0001
Μ4
y -A\ O粉末 10重量部、酸ィ匕セリウムと酸ィ匕ジルコニウムの複合酸ィ匕物 15重量
2 3
部、水 77重量部、硝酸白金溶液を混合し、成形剤としてアクリル系榭脂〔平均径が 3 0 μ m程度から 150 μ m程度(平均的には 60 μ m程度)の榭脂を使用した〕を全体の 14重量%になるようにさらに混合した。そして、高速撹拌器 (シルバーソン社製)によ り、大気雰囲気中で 30分撹拌し、成形剤が均一に分散したスラリーを得た。次に、コ ージエライト製ノヽ-カム基材 (容量 1000cc、 600セル Zin2:日本ガイシ (株)社製)を 用意し、上記スラリー中に浸漬し、引き上げて余分なスラリーを吹き払った後、大気中 にて 500°Cで 1時間焼成して第一層を積層させた。
γ - Al Ο粉末 5重量部、酸化セリウムと酸化ジルコニウムの複合酸化物 5重量部、
2 3
水 76重量部、硝酸ロジウム溶液を混合し、成形剤としてアクリル系榭脂〔平均径が 4 μ m程度から 7 μ m程度(平均的には 5 μ m程度)の榭脂を使用した〕を全体の 8重量 %になるように混合して、上記高速撹拌器により、大気雰囲気中で 30分撹拌し、成 形剤が均一に分散したスラリーを得た。次に、第一層が形成されたノヽ-カム基材を、 このスラリー中に浸漬し、引き上げて余分なスラリーを吹き払った後、大気中にて 500 °Cで 1時間焼成して第二層を積層させて、排気ガス触媒 (三元触媒)を得た。
この排気ガス触媒は、ハ-カム基材 1Lあたり、 Pt (白金)の担持量が 0. 75gであり 、 Rh (ロジウム)の担持量が 0. 075gであった。
2
成形剤を添加せずに第一層と第二層とを形成した以外は、例 4と同様にして排気ガ ス触媒を得た。
[0041] 評価試験 2
例 4および比較例 2で得た排気ガス浄ィ匕用触媒それぞれを触媒収納缶に収納し、 排気量 4000CCのガソリンエンジンの排気系に設置し、レギュラーガソリン燃料を A ZF変動 = 14. 5 (定常)の条件下で燃焼させ、かつ、触媒床内温度 900°Cで、 50時 間放置した。
その後、それぞれの触媒を直径 15cm、長さ 40cmの円筒体に収納し、排気量 220 OCCのガソリンエンジンの車両に設置し、レギュラーガソリン燃料を燃焼させ、 FTPモ ード (過渡モード排ガス試験)で評価した。評価装置は、商品名「MEXA9000」(堀 場製作所社製)を用いた。その評価結果は下記表 4に記載した通りであり、数値が小 さ 、ほど排気ガス浄ィ匕能が高 、ことを示す。
表 4
1/龍麵 2
THC CO NOx
例 4 0. 058 0. 28 0. 106
比較例 2 0. 058 0. 26 0. 120
[0042] 5
γ— Al Ο粉末 16重量部、酸ィ匕セリウムと酸ィ匕ジルコニウムの複合酸ィ匕物 8重量部
2 3
、水 65重量部、硝酸パラジウム溶液を混合し、成形剤としてアクリル系榭脂〔平均径 力 μ m程度から 7 μ m程度(平均には 5 μ m程度)の榭脂を使用した〕を全体の 8重 量%になるようにさらに混合した。そして、高速撹拌器 (シルバーソン社製)により、大 気雰囲気中で 30分撹拌し、成形剤が均一に分散したスラリーを得た。次に、コージ ライト製ノヽ-カム基材 (容量 635cc、 600セル/ in2:日本ガイシ (株)社製)を用意し、 上記スラリー中に浸漬し、引き上げて余分なスラリーを吹き払った後、大気中にて 50 0°Cで 1時間焼成して第一層を積層させた。
γ - Al Ο粉末 6重量部、酸化セリウムと酸化ジルコニウムの複合酸化物 6重量部、
2 3
水 80重量部、硝酸ロジウム溶液を混合し、成形剤としてアクリル系榭脂〔平均径が 4 μ m程度から 7 μ m程度(平均的には 5 μ m程度)の榭脂を使用した〕を全体の 6重量 %になるように混合して、上記高速撹拌器により、大気雰囲気中で 30分撹拌し、成 形剤が均一に分散したスラリーを得た。次に、第一層が形成されたノヽ-カム基材を、 このスラリー中に浸漬し、引き上げて余分なスラリーを吹き払った後、大気中にて 500 °Cで 1時間焼成して第二層を積層させて、排気ガス触媒 (三元触媒)を得た。
この排気ガス触媒は、ハ-カム基材 1Lあたり、 Pd (パラジウム)の担持量が 0. 53g であり、 Rh (ロジウム)の担持量が 0. l lgであった。
[0043] 比較例 3
成形剤を添加せずに第一層と第二層とを形成した以外は、例 5と同様にして排気ガ ス触媒を得た。
[0044] 評価試,験 3
例 5および比較例 3で得た排気ガス浄ィ匕用触媒をそれぞれ触媒収納缶に収納し、 排気量 4000CCのガソリンエンジンの排気系に設置し、レギュラーガソリン燃料を A ZF変動を周期 6分 Z回 (AZF= 14. 5を 5. 5分、 AZF= 17を 0. 5分)の条件下 で燃焼させ、かつ、触媒床内温度 830°Cで、 8時間放置した。
その後、それぞれの触媒を収納缶に収納し直して、排気量 2000CCのガソリンェン ジンの排気系に設置し、レギュラーガソリン燃料を燃焼させ、かつ、 I IPモード (実車 排ガスモード)で評価した。評価装置は、商品名「MEXA9000」(堀場製作所社製) を用いた。その評価結果は下記表 5に記載した通りであり、数値が小さいほど排気ガ ス浄ィ匕性能が高いことを示す。
THC CO NOx
例 4 1. 0 4. 94 0. 311
比較例 2 1. 0 5. 06 0. 377

Claims

請求の範囲
[I] 担体と、該担体上に形成された複数層とを少なくとも備えてなる排気ガス触媒であ つて、
前記複数層の少なくとも一つの層が該層中に空隙を有するものであり、 前記複数層の少なくとも一つの層が触媒成分を含んでなる、排気ガス触媒。
[2] 前記触媒成分を含んでなる前記複数層の少なくとも一つの層が、該層中に空隙を 有してなる、請求項 1に記載の排気ガス触媒。
[3] 前記空隙の平均径が、 0. 2 μ m以上であり 500 μ m以下である、請求項 1または 2 に記載の排気ガス触媒。
[4] 前記複数層の少なくとも一つの層が該層中に空隙を有する場合、前記層の平均空 隙率が 5%以上 80%以下である、請求項 1一 3のいずれか一項に記載の排気ガス触 媒。
[5] 前記複数層における相互に隣り合う層が、同一または異なる平均空隙率を有するも のである、請求項 1一 4の ヽずれか一項に記載の排気ガス触媒。
[6] 前記複数層における最下層が、前記担体の上に凹凸状または海島状に形成され てなる、請求項 1一 5の ヽずれか一項に記載の排気ガス触媒。
[7] 前記複数層の少なくとも一つの層に含まれる触媒成分が、三元触媒、酸化触媒、 N
Ox吸蔵還元型触媒および NOx選択的還元型触媒からなる群より選択されるもので ある、請求項 1一 6のいずれか一項に記載の排気ガス触媒。
[8] 前記三元触媒が、貴金属を含んでなるものである、請求項 7に記載の排気ガス触 媒。
[9] 前記酸化触媒が、貴金属を含んでなるものである、請求項 7に記載の排気ガス触 媒。
[10] 前記 NOx吸蔵還元型触媒が、アルカリ金属、アルカリ土類金属、希土類元素およ びこれらの混合物力もなる群より選択されるものを含んでなるものである、請求項 7に 記載の排気ガス触媒。
[I I] 前記 NOx吸蔵還元型触媒が、貴金属または卑金属を含んでなるものである、請求 項 7に記載の排気ガス触媒。
[12] 前記 NOx選択的還元型触媒が、白金属金属、銅、バナジウム、チタン、タンダステ ン、およびこれらの酸ィ匕物ならびにこれらの混合物からなる群より選択されるものを含 んでなる、請求項 7に記載の排気ガス触媒。
[13] 火花点火型エンジンまたは圧縮着火型エンジンに用いられる、請求項 1一 12のい ずれか一項に記載の排気ガス触媒。
[14] 前記エンジン力 リーンバーンエンジン、直噴型エンジンまたはこれらを組み合わ せたエンジンである、請求項 13に記載の排気ガス触媒。
[15] 排気ガス中の炭化水素、一酸ィ匕炭素または窒素酸ィ匕物を処理する装置であって、 請求項 1一 14のいずれか一項に記載の排気ガス触媒を備えてなり、
前記排気ガス触媒において、前記排気ガス中の炭化水素、一酸化炭素または窒素 酸化物を酸化または還元し、二酸化炭素、水、または窒素気体として処理するもので ある、装置。
[16] 排気ガス中の炭化水素、一酸化炭素および窒素酸化物を処理する装置であって、 請求項 7または 8に記載の三元触媒を備えてなり、
前記三元触媒において、前記排気ガス中の炭化水素、一酸化炭素および窒素酸 化物を酸化または還元し、水、二酸化炭素および窒素気体として処理する、装置。
[17] 排気ガス中の炭化水素および一酸ィヒ炭素を処理する装置であって、
請求項 7または 8に記載の酸ィ匕触媒を備えてなり、
前記酸化触媒おいて、前記排気ガス中の炭化水素および一酸化炭素を酸化し、水 および二酸化炭素として処理する、装置。
[18] 排気ガス中の窒素酸ィ匕物を処理する装置であって、
請求項 7、 10および 11のいずれか一項に記載の NOx吸蔵還元型触媒を備えてな り、
前記 NOx吸蔵還元型触媒において、燃料の空燃比力 Sリーンの場合に排気ガス中 の窒素酸化物を吸蔵し、燃料の空燃比が理論空燃比またはリッチの場合に前記吸 蔵した窒素酸化物を還元し窒素気体として処理する、装置。
[19] 排気ガス中の窒素酸ィ匕物を処理する装置であって、
還元剤を導入する導入部と、その後方に設けられた請求項 7または 12に記載の N Ox選択的還元型触媒とを備えてなり、
前記 NOx選択的還元型触媒において、前記排気ガス中の窒素酸化物を前記導入 部から導入された還元剤により還元し水および窒素気体として処理する、装置。
[20] 前記還元剤が、アンモニアもしくはァミン、尿素もしくはその誘導体、ヒドラジンもしく はその誘導体、トリアジンもしくはその誘導体、炭化水素、または酸素原子を含む有 機化合物である、請求項 19に記載の装置。
[21] 前記排気ガスを排気ガス触媒に流入する入口部と、前記排気ガス触媒で処理した 前記排気ガスを排出する出口部とをさらに備えてなる、請求項 15— 20のいずれか一 項に記載の装置。
[22] 火花点火型エンジンまたは圧縮着火型エンジンに用いられる、請求項 21に記載の 装置。
[23] 前記エンジン力 リーンバーンエンジン、直噴型エンジン、またはこれらを組み合わ せたエンジンである、請求項 22に記載の装置。
PCT/JP2004/016230 2004-10-15 2004-11-01 排気ガス触媒およびそれを用いた排気ガス処理装置 WO2006040842A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/665,475 US8153549B2 (en) 2004-10-15 2004-11-01 Catalyst for treating exhaust gas and device for treating exhaust gas using the same
BRPI0419114-5A BRPI0419114A (pt) 2004-10-15 2004-11-01 catalisador de gás de escapamento, e, aparelho para tratar o hidrocarboneto, monóxido de carbono ou óxidos de nitrogênio no gás de escapamento
EP04799436A EP1832344A4 (en) 2004-10-15 2004-11-01 EXHAUST GAS TREATMENT CATALYST AND EXHAUST GAS TREATMENT DEVICE USING THE SAME

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-301597 2004-10-15
JP2004301597A JP2006110485A (ja) 2004-10-15 2004-10-15 排気ガス触媒およびそれを用いた排気ガス処理装置

Publications (1)

Publication Number Publication Date
WO2006040842A1 true WO2006040842A1 (ja) 2006-04-20

Family

ID=36148144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/016230 WO2006040842A1 (ja) 2004-10-15 2004-11-01 排気ガス触媒およびそれを用いた排気ガス処理装置

Country Status (7)

Country Link
US (1) US8153549B2 (ja)
EP (1) EP1832344A4 (ja)
JP (1) JP2006110485A (ja)
CN (1) CN101043944A (ja)
BR (1) BRPI0419114A (ja)
RU (1) RU2007117927A (ja)
WO (1) WO2006040842A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008077588A1 (de) * 2006-12-23 2008-07-03 Alzchem Trostberg Gmbh Verfahren zur selektiven katalytischen reduktion von stikoxiden in abgasen von fahrzeugen
WO2010097638A1 (en) 2009-02-26 2010-09-02 Johnson Matthey Public Limited Company Filter for filtering particulate matter from exhaust gas emitted from a compression ignition engine
WO2011077168A1 (en) 2009-12-24 2011-06-30 Johnson Matthey Plc Exhaust system for a vehicular positive ignition internal combustion engine
WO2013030584A1 (en) 2011-08-31 2013-03-07 Johnson Matthey Public Limited Company Method and system using a filter for treating exhaust gas having particulate matter
US8999252B2 (en) 2006-04-03 2015-04-07 Johnson Matthey Japan Incorporated Exhaust gas catalyst and exhaust gas processing apparatus using same
DE102014117672A1 (de) 2013-12-02 2015-06-03 Johnson Matthey Public Limited Company Wandstromfilter, das einen katalytischen washcoat umfasst

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006110485A (ja) 2004-10-15 2006-04-27 Johnson Matthey Japan Inc 排気ガス触媒およびそれを用いた排気ガス処理装置
JP5373255B2 (ja) * 2006-05-29 2013-12-18 株式会社キャタラー NOx還元触媒、NOx還元触媒システム、及びNOx還元方法
DE102007048313B4 (de) * 2007-10-09 2011-07-28 Süd-Chemie AG, 80333 Beschichtung von Substraten unter Gewährleistung einer hohen Porosität bei gleichzeitig hoher Abriebbeständigkeit der Beschichtung
JP5140536B2 (ja) * 2008-09-29 2013-02-06 ヤンマー株式会社 コンバイン
EP2364200A1 (en) * 2008-11-26 2011-09-14 Corning Incorporated Coated particulate filter and method
WO2010129490A2 (en) * 2009-05-04 2010-11-11 Basf Corporation Improved lean hc conversion of twc for lean burn gasoline engines
PL2518018T3 (pl) * 2009-12-25 2021-07-19 Solvay Special Chem Japan, Ltd. Tlenek złożony, sposób jego wytwarzania, oraz katalizator do oczyszczania spalin
US8784759B2 (en) * 2010-06-10 2014-07-22 Basf Se NOx storage catalyst with reduced Rh loading
JP5859517B2 (ja) * 2011-03-31 2016-02-10 エヌ・イーケムキャット株式会社 アンモニア酸化触媒、およびそれを用いた排気ガス浄化装置並びに排気ガス浄化方法
JP2013043138A (ja) * 2011-08-25 2013-03-04 Denso Corp 触媒担持体及びその製造方法
JP5873731B2 (ja) 2012-02-07 2016-03-01 本田技研工業株式会社 排気ガス処理用触媒構造体
CN102921430B (zh) * 2012-12-04 2014-07-23 南京大学 脱硝催化剂的制备方法
US9561495B2 (en) * 2013-03-06 2017-02-07 Basf Corporation Porous catalyst washcoats
CN105050712B (zh) 2013-03-29 2017-12-19 三井金属矿业株式会社 废气处理用催化结构体
JP5931214B2 (ja) 2013-09-11 2016-06-08 三井金属鉱業株式会社 排ガス浄化触媒
US9387438B2 (en) 2014-02-14 2016-07-12 Tenneco Automotive Operating Company Inc. Modular system for reduction of sulphur oxides in exhaust
CN107405614B (zh) * 2015-02-27 2020-03-03 株式会社丰田中央研究所 废气净化用催化剂、其制造方法、和使用其净化废气的方法
JP6219872B2 (ja) * 2015-03-27 2017-10-25 トヨタ自動車株式会社 排ガス浄化用触媒
JP6130424B2 (ja) * 2015-03-27 2017-05-17 トヨタ自動車株式会社 排ガス浄化用触媒
JP6130423B2 (ja) * 2015-03-27 2017-05-17 トヨタ自動車株式会社 排ガス浄化用触媒
JP6219871B2 (ja) * 2015-03-27 2017-10-25 トヨタ自動車株式会社 排ガス浄化用触媒
US20200030745A1 (en) 2016-02-22 2020-01-30 Umicore Ag & Co. Kg Catalyst for reduction of nitrogen oxides
JP6869976B2 (ja) * 2016-05-25 2021-05-12 エヌ・イーケムキャット株式会社 ガソリンエンジン排気ガスの浄化用三元触媒
JP6693406B2 (ja) * 2016-12-20 2020-05-13 三菱自動車工業株式会社 排気ガス浄化装置
JP6565997B2 (ja) * 2017-10-10 2019-08-28 マツダ株式会社 排気ガス浄化方法
CN109248713A (zh) * 2018-09-06 2019-01-22 南京蔚岚环境技术研究院有限公司 一种挥发性有机物处理用的催化剂载体及其制造方法
US11193420B2 (en) * 2018-11-16 2021-12-07 United Technologies Corporation System and method for monitoring fuel additives
EP3903932A4 (en) * 2018-12-28 2022-02-16 Umicore Shokubai Japan Co., Ltd. CATALYST FOR EXHAUST GAS OXIDATION, METHOD OF MANUFACTURE THEREOF AND METHOD OF EXHAUST GAS OXIDATION THEREWITH
JP7466535B2 (ja) * 2019-05-31 2024-04-12 三井金属鉱業株式会社 排ガス浄化用触媒及び該排ガス浄化用触媒を用いた排ガス浄化システム
US20220410129A1 (en) * 2019-12-19 2022-12-29 Basf Corporation A catalyst article for capturing particulate matter
CN111173593B (zh) * 2020-01-07 2022-02-01 王雅薇 一种汽车尾气防积碳装置
JP7328192B2 (ja) * 2020-10-06 2023-08-16 トヨタ自動車株式会社 排ガス浄化装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5768143A (en) * 1980-10-11 1982-04-26 Mazda Motor Corp Carrier made of metal for monolithic catalyst
JPH08168675A (ja) * 1994-12-16 1996-07-02 Toyota Motor Corp 排ガス浄化用触媒
JPH09215922A (ja) * 1996-02-09 1997-08-19 Toyota Motor Corp 排ガス浄化用触媒
JP2004330025A (ja) * 2003-05-02 2004-11-25 Johnson Matthey Japan Inc 排気ガス触媒およびそれを用いた排気ガス処理装置

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3939104A (en) * 1972-10-04 1976-02-17 Imperial Chemical Industries Limited Catalytic process
US4027476A (en) * 1973-10-15 1977-06-07 Rocket Research Corporation Composite catalyst bed and method for making the same
US4793980A (en) * 1978-09-21 1988-12-27 Torobin Leonard B Hollow porous microspheres as substrates and containers for catalyst
US4426320A (en) * 1981-01-27 1984-01-17 W. R. Grace & Co. Catalyst composition for exhaust gas treatment
JPS6271539A (ja) * 1985-09-24 1987-04-02 Mazda Motor Corp エンジンの排気ガス浄化用触媒
JPS6271540A (ja) * 1985-09-24 1987-04-02 Mazda Motor Corp エンジンの排気ガス浄化用触媒
US5175136A (en) * 1990-05-31 1992-12-29 Monsanto Company Monolithic catalysts for conversion of sulfur dioxide to sulfur trioxide
DE4206699C2 (de) * 1992-03-04 1996-02-01 Degussa NO¶x¶-Verminderung im mageren Abgas von Kraftfahrzeugmotoren
JP3750178B2 (ja) * 1995-04-05 2006-03-01 株式会社デンソー 排ガス浄化用フィルタ及びその製造方法
JP3988202B2 (ja) 1997-04-11 2007-10-10 日産自動車株式会社 排気ガス浄化用触媒
EP1094879B1 (en) * 1998-07-07 2003-04-09 Corning Incorporated Diesel exhaust gas filter
JP2000042368A (ja) 1998-07-27 2000-02-15 Nissan Motor Co Ltd 排気ガス浄化方法
JP2002530175A (ja) * 1998-11-20 2002-09-17 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ コードレス走査ヘッドの充電器を備える超音波診断イメージングシステム
JP3265534B2 (ja) 1999-01-18 2002-03-11 株式会社豊田中央研究所 排ガス浄化用触媒
JP4443685B2 (ja) * 1999-09-10 2010-03-31 三井金属鉱業株式会社 排気ガス浄化用助触媒の製造方法
US6346140B2 (en) * 2000-03-31 2002-02-12 Kabushiki Kaisha Toyota Chuo Kenkyusho Porous solid for gas adsorption separation and gas adsorption separation process employing it
DE10022842A1 (de) * 2000-05-10 2001-11-22 Dmc2 Degussa Metals Catalysts Strukturierter Katalysator für die selektive Reduktion von Stickoxiden mittels Ammoniak unter Verwendung einer zu Ammoniak hydrolysierbaren Verbindung
JP4889873B2 (ja) * 2000-09-08 2012-03-07 日産自動車株式会社 排気ガス浄化システム、これに用いる排気ガス浄化触媒及び排気浄化方法
US6864214B2 (en) * 2000-09-26 2005-03-08 Daihatsu Motor Co., Ltd. Exhaust gas purifying catalyst
JP4450984B2 (ja) * 2000-12-25 2010-04-14 株式会社豊田中央研究所 排ガス浄化用触媒
JP2002253968A (ja) * 2001-03-02 2002-09-10 Toyota Central Res & Dev Lab Inc 排ガス浄化用触媒
JP2002355561A (ja) * 2001-03-26 2002-12-10 Mazda Motor Corp 排気ガス浄化用触媒、及び排気ガス浄化方法
JP3727550B2 (ja) * 2001-05-30 2005-12-14 株式会社デンソー 排ガス浄化フィルタ及びその製造方法
JP3997825B2 (ja) * 2001-06-28 2007-10-24 株式会社デンソー セラミックフィルタおよび触媒付セラミックフィルタ
JP2003200062A (ja) * 2001-10-26 2003-07-15 Denso Corp 車両用触媒
DE20117659U1 (de) * 2001-10-29 2002-01-10 Emitec Emissionstechnologie Offener Partikelfilter mit Heizelement
EP1340541A1 (en) * 2002-02-28 2003-09-03 Corning Incorporated Structured catalysts incorporating thick washcoats and method of preparation thereof
JP2003326170A (ja) * 2002-03-06 2003-11-18 Nissan Motor Co Ltd 排気ガス浄化触媒、その製造方法及び排気ガス浄化方法
US7214643B2 (en) * 2002-03-22 2007-05-08 Kabushiki Kaisha Toyota Chuo Kenkyusho Metal oxide and method for producing the same, and catalyst
AU2003220810A1 (en) * 2002-03-28 2003-10-13 Ngk Insulators, Ltd. Cell structural body, method of manufacturing cell structural body, and catalyst structural body
JP3758601B2 (ja) * 2002-05-15 2006-03-22 トヨタ自動車株式会社 吸蔵還元型NOx浄化用触媒
JP2004033933A (ja) * 2002-07-04 2004-02-05 Nissan Motor Co Ltd 排気ガス浄化用触媒及びその製造方法
EP1382408B1 (en) * 2002-07-15 2010-06-23 Hitachi Metals, Ltd. Method for producing porous sintered metals for filters
JP3874270B2 (ja) * 2002-09-13 2007-01-31 トヨタ自動車株式会社 排ガス浄化フィルタ触媒及びその製造方法
US6946013B2 (en) * 2002-10-28 2005-09-20 Geo2 Technologies, Inc. Ceramic exhaust filter
US7572311B2 (en) * 2002-10-28 2009-08-11 Geo2 Technologies, Inc. Highly porous mullite particulate filter substrate
US6936561B2 (en) * 2002-12-02 2005-08-30 Corning Incorporated Monolithic zeolite coated structures and a method of manufacture
JP4284588B2 (ja) * 2003-01-10 2009-06-24 トヨタ自動車株式会社 排ガス浄化フィルタ触媒
JP4329432B2 (ja) * 2003-07-15 2009-09-09 トヨタ自動車株式会社 排ガス浄化用触媒
JP2006110485A (ja) 2004-10-15 2006-04-27 Johnson Matthey Japan Inc 排気ガス触媒およびそれを用いた排気ガス処理装置
US8016125B2 (en) * 2005-05-20 2011-09-13 Lutek, Llc Materials, filters, and systems for immobilizing combustion by-products and controlling lubricant viscosity
JP2007275704A (ja) 2006-04-03 2007-10-25 Johnson Matthey Japan Inc 排気ガス触媒およびそれを用いた排気ガス処理装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5768143A (en) * 1980-10-11 1982-04-26 Mazda Motor Corp Carrier made of metal for monolithic catalyst
JPH08168675A (ja) * 1994-12-16 1996-07-02 Toyota Motor Corp 排ガス浄化用触媒
JPH09215922A (ja) * 1996-02-09 1997-08-19 Toyota Motor Corp 排ガス浄化用触媒
JP2004330025A (ja) * 2003-05-02 2004-11-25 Johnson Matthey Japan Inc 排気ガス触媒およびそれを用いた排気ガス処理装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1832344A4 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8999252B2 (en) 2006-04-03 2015-04-07 Johnson Matthey Japan Incorporated Exhaust gas catalyst and exhaust gas processing apparatus using same
WO2008077588A1 (de) * 2006-12-23 2008-07-03 Alzchem Trostberg Gmbh Verfahren zur selektiven katalytischen reduktion von stikoxiden in abgasen von fahrzeugen
US8012439B2 (en) 2009-02-26 2011-09-06 Johnson Matthey Public Limited Company Filter
DE102010002425A1 (de) 2009-02-26 2010-09-23 Johnson Matthey Public Limited Company Filter
WO2010097634A1 (en) 2009-02-26 2010-09-02 Johnson Matthey Public Limited Company Filter for filtering particulate matter from exhaust gas emitted from a positive ignition engine
EP3777998A1 (en) 2009-02-26 2021-02-17 Johnson Matthey Public Limited Company Filter
WO2010097638A1 (en) 2009-02-26 2010-09-02 Johnson Matthey Public Limited Company Filter for filtering particulate matter from exhaust gas emitted from a compression ignition engine
US8211393B2 (en) 2009-02-26 2012-07-03 Johnson Matthey Public Limited Company Exhaust system for a vehicular positive ignition internal combustion engine
DE102010002425B4 (de) * 2009-02-26 2016-03-31 Johnson Matthey Public Limited Company Filter
US8512657B2 (en) 2009-02-26 2013-08-20 Johnson Matthey Public Limited Company Method and system using a filter for treating exhaust gas having particulate matter
US8608820B2 (en) 2009-02-26 2013-12-17 Johnson Matthey Public Limited Company Filter for filtering particulate matter from exhaust gas emitted from a compression ignition engine
DE202010018079U1 (de) 2009-02-26 2014-02-04 Johnson Matthey Public Limited Company Motor mit Funkenzündung, der ein Abgassystem mit einem Filter hierfür umfasst
DE202010018081U1 (de) 2009-02-26 2014-02-17 Johnson Matthey Public Limited Company Filter
WO2011077168A1 (en) 2009-12-24 2011-06-30 Johnson Matthey Plc Exhaust system for a vehicular positive ignition internal combustion engine
DE102010056223A1 (de) 2009-12-24 2011-07-28 Johnson Matthey Public Limited Company Abgassystem für einen Fahrzeugverbrennungsmotor mit Fremdzündung
WO2013030584A1 (en) 2011-08-31 2013-03-07 Johnson Matthey Public Limited Company Method and system using a filter for treating exhaust gas having particulate matter
DE102014117672A1 (de) 2013-12-02 2015-06-03 Johnson Matthey Public Limited Company Wandstromfilter, das einen katalytischen washcoat umfasst

Also Published As

Publication number Publication date
EP1832344A4 (en) 2010-09-22
BRPI0419114A (pt) 2007-12-11
CN101043944A (zh) 2007-09-26
EP1832344A1 (en) 2007-09-12
US8153549B2 (en) 2012-04-10
JP2006110485A (ja) 2006-04-27
US20090044521A1 (en) 2009-02-19
RU2007117927A (ru) 2008-11-20

Similar Documents

Publication Publication Date Title
WO2006040842A1 (ja) 排気ガス触媒およびそれを用いた排気ガス処理装置
RU2440187C2 (ru) Катализатор выхлопных газов и устройство для обработки выхлопных газов, в котором используется этот катализатор
CN100998941B (zh) 一种前置催化剂及其制备方法
CN104353457B (zh) 废气净化用催化剂及其制造方法
JP6246192B2 (ja) 三元触媒系
SE462143C (sv) Katalysator för bilavgasrening, förfarande för framställning därav samt användning därav
JP2006263582A (ja) 排気ガス浄化用触媒
JP2004330025A (ja) 排気ガス触媒およびそれを用いた排気ガス処理装置
JP2005021818A (ja) 排気ガス中の微粒子状物質を処理するための排気ガス触媒
US8940659B2 (en) Gas purifying catalyst for internal combustion engine
JP2010149015A (ja) 排気浄化触媒及び排気浄化装置
JP2003135970A (ja) 排気ガス浄化用触媒
JP2010216385A (ja) 内燃機関の排気ガス浄化装置
JP2001314763A (ja) NOx吸蔵還元型触媒用支持材とそれを用いたNOx吸蔵還元型触媒
JP2003200061A (ja) 排ガス浄化触媒及び排ガス浄化装置
JP3447513B2 (ja) 排気ガス浄化用触媒および排気ガス浄化方法
JP5558013B2 (ja) 排気浄化触媒およびそれを用いた排気処理装置
EP0868940A1 (en) Catalyst for purifying exhaust gas, process for manufacturing the catalyst and process for making use of the catalyst
JP2009285606A (ja) 排ガス浄化用触媒
JP2009007942A (ja) 排気ガス浄化触媒装置
JP2004033933A (ja) 排気ガス浄化用触媒及びその製造方法
JP5138132B2 (ja) NOx吸蔵還元型触媒
JP2004122122A (ja) 排気ガス浄化用触媒及び排気ガス浄化装置
JP2004105841A (ja) 排気ガス浄化用触媒
JP2005138100A (ja) 排気ガス浄化触媒システム及び排気ガス浄化システム

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2004799436

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200480044214.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1537/CHENP/2007

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007117927

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2004799436

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0419114

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 11665475

Country of ref document: US