WO2006038587A1 - 二核金属錯体、金属錯体色素、光電変換素子、及び光化学電池 - Google Patents

二核金属錯体、金属錯体色素、光電変換素子、及び光化学電池 Download PDF

Info

Publication number
WO2006038587A1
WO2006038587A1 PCT/JP2005/018289 JP2005018289W WO2006038587A1 WO 2006038587 A1 WO2006038587 A1 WO 2006038587A1 JP 2005018289 W JP2005018289 W JP 2005018289W WO 2006038587 A1 WO2006038587 A1 WO 2006038587A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal complex
substituted
binuclear metal
unsubstituted
chemical
Prior art date
Application number
PCT/JP2005/018289
Other languages
English (en)
French (fr)
Inventor
Yoshihisa Kakuta
Takafumi Iwasa
Original Assignee
Ube Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries, Ltd. filed Critical Ube Industries, Ltd.
Priority to AT05787497T priority Critical patent/ATE525753T1/de
Priority to CN2005800407089A priority patent/CN101065359B/zh
Priority to JP2006539282A priority patent/JP5003871B2/ja
Priority to EP05787497A priority patent/EP1798222B1/en
Priority to US11/575,745 priority patent/US7825250B2/en
Publication of WO2006038587A1 publication Critical patent/WO2006038587A1/ja

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/344Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising ruthenium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D231/00Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
    • C07D231/02Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings
    • C07D231/10Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D231/14Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D231/18One oxygen or sulfur atom
    • C07D231/20One oxygen atom attached in position 3 or 5
    • C07D231/22One oxygen atom attached in position 3 or 5 with aryl radicals attached to ring nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0046Ruthenium compounds
    • C07F15/0053Ruthenium compounds without a metal-carbon linkage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • H01M14/005Photoelectrochemical storage cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/361Polynuclear complexes, i.e. complexes comprising two or more metal centers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • H10K30/15Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
    • H10K30/151Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2 the wide bandgap semiconductor comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/348Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising osmium

Definitions

  • Binuclear metal complexes, metal complex dyes, photoelectric conversion elements, and photochemical batteries Binuclear metal complexes, metal complex dyes, photoelectric conversion elements, and photochemical batteries
  • the present invention relates to a novel binuclear metal complex.
  • the present invention relates to a metal complex dye having a high extinction coefficient and excellent in electron transfer, a photoelectric conversion element using an oxide semiconductor photosensitized by the metal complex dye, and the like.
  • the present invention relates to a photochemical battery using
  • Solar cells are highly expected as clean renewable energy sources, and they also have compound power such as single crystal silicon, polycrystalline silicon, and amorphous silicon solar cells, cadmium telluride, and indium copper selenide.
  • Research aimed at the practical application of solar cells is being conducted.
  • many of the batteries must be overcome, such as high manufacturing costs, difficulty in securing raw materials, recycling problems, and difficulty in large-area power generation.
  • Have problems. Therefore, solar cells using organic materials have been proposed with the aim of increasing the area and lowering the price.
  • the V deviation has a conversion efficiency of about 1%, which is far from practical use.
  • JP 2003-261536 Patent Document 2 by the present applicant discloses a dipyridyl ligand-containing metal mononuclear complex which is a metal complex dye useful as a photoelectric conversion element.
  • non-patent document 2 discloses polynuclear ⁇ -diketonate complex dyes.
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2004-359677 published on December 24, 2004 has an excellent photoelectric conversion function for extracting electrons by receiving the energy of actinic rays such as light.
  • BL bridged ligand
  • Shin V a binuclear complex having a coordination structure is disclosed!
  • Patent Document 1 Japanese Patent Laid-Open No. 1-220380
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-261536
  • Patent Document 3 Japanese Patent Laid-Open No. 2004-359677
  • Non-Patent Literature l Nature, 353, 737, 1991
  • Non-patent document 2 Latest technology of dye-sensitized solar cells (CMC Co., Ltd., May 25, 2001, page 117)
  • An object of the present invention is to provide a binuclear metal complex that is useful and novel as a metal complex dye.
  • Another object of the present invention is to achieve smooth electron transfer by adjusting the direction of electron transition to the electrolyte side force porous semiconductor with the aim of improving the extinction coefficient by the multinuclear structure of the metal complex dye. And obtaining a dye capable of efficiently photosensitizing the semiconductor fine particles. Furthermore, it is to provide a photoelectric conversion element having a high photoelectric conversion efficiency and a photochemical battery having the power of this photoelectric conversion element by using such a dye.
  • the present invention relates to an asymmetric binuclear metal complex represented by the general formula: (L 1 ) M ⁇ BD M ⁇ L 2 ) (X)
  • M 1 and M 2 a transition metal
  • L 1 and L 2 are a capable of multidentate coordination chelate ligand
  • L 1 and L 2 is different
  • two L 1 may be different
  • two L 2 may be different
  • BL is a bridged structure having at least two cyclic structures containing heteroatoms.
  • the coordination atom coordinated to M 2 is a heteroatom contained in this cyclic structure.
  • X is a counter ion.
  • n represents the number of counter ions necessary to neutralize the charge of the complex.
  • the present invention also relates to the above binuclear metal complex, wherein L 1 and L 2 are chelate type ligands capable of bidentate, tridentate or tetradentate coordination.
  • the present invention provides the binuclear metal complex described above, wherein L 1 and L 2 are bidentate ligands that are derivatives of bibilidyl, pyridylquinoline, biquinoline, or phenantorin. About.
  • the present invention also relates to the above binuclear metal complex, wherein L 1 is a ligand substituted with at least one carboxyl group (one COOH) or COO—.
  • the present invention also relates to the above binuclear metal complex, wherein BL is a tetradentate ligand.
  • the present invention also relates to the above binuclear metal complex, wherein M 1 and M 2 are Group VIII to Group XI transition metals.
  • M 1 and M 2 are ruthenium (Ru), osmium (Os), connort (Co), nickel (Ni), copper (Cu), or iron (Fe). And the above binuclear metal complex.
  • the present invention provides an asymmetric binuclear compound represented by the general formula: (L 1 ) M ⁇ BD M ⁇ L 2 ) (X)
  • Metal complex (wherein M 1 and M 2 are transition metals and may be the same or different L 1 and L 2 are chelate ligands capable of multidentate coordination, and L 1 And L 2 are different, two L 1 may be different or two L 2 may be different X is a counterion, and n is the charge of the complex This represents the number of counter ions necessary for the summation.
  • BL is a bridging ligand having at least two cyclic structures containing heteroatoms, and the coordinating atoms coordinated to M 1 and M 2 are the cyclic ligands. It is a heteroatom contained in the structure, and L 1 It has a substituent that can be fixed and has a structure in which LUMO is distributed mainly in (L 1 ) M 1 . )
  • the present invention also relates to a photoelectric conversion element comprising semiconductor fine particles sensitized with the metal complex dye.
  • the present invention also relates to a photoelectric conversion element characterized in that the semiconductor fine particles are titanium oxide, zinc oxide, or acid tin tin.
  • the present invention also relates to a photochemical battery using the above-described photoelectric conversion element.
  • the metal complex dye of the present invention has a higher extinction coefficient than the current dye exhibiting high photoelectric conversion efficiency used as a comparative dye, and the short-circuit current per lmol (l molecule) of the complex. Increased density.
  • a high photoelectric conversion efficiency was obtained by using a dye having an appropriate molecular orbital distribution.
  • Photochemical cell which is a powerful photoelectric conversion element, is extremely effective as a solar cell.
  • the metal complex dye of the present invention does not have an NCS group that easily decomposes in the molecule, unlike the dye that exhibits high photoelectric conversion efficiency at present, and is excellent in heat resistance.
  • FIG. 1 is a 1 H-NMR ⁇ vector in dimethyl sulfoxide 1 d6 of the binuclear metal complex (D-1) obtained in Example 1 of the present invention.
  • FIG. 2 is a 1 H-NMR ⁇ vector in dimethyl sulfoxide 1 d6 of the binuclear metal complex (D-2) obtained in Example 2 of the present invention.
  • FIG. 3 is a 1 H-NMR vector in dimethyl sulfoxide 1d6 of the binuclear metal complex (D-3) obtained in Example 3 of the present invention.
  • FIG. 4 is a 1 H-NMR vector in dimethylsulfoxide 1 d6 of the binuclear metal complex (D-4) obtained in Example 4 of the present invention.
  • FIG. 5 is a 1 H-NMR vector in dimethylsulfoxide 1 d6 of the binuclear metal complex (D-5) obtained in Example 5 of the present invention.
  • FIG. 6 shows dimethylsulfoxide of the binuclear metal complex (D-6) obtained in Example 5 of the present invention. 1 H-NMR ⁇ vector in sid d6.
  • FIG. 7 is a 1 H-NMR ⁇ vector in dimethylsulfoxide 1 d6 of the binuclear metal complex (D-7) obtained in Example 5 of the present invention.
  • FIG. 8 is a 1 H-NMR ⁇ vector in dimethylsulfoxide 1 d6 of the binuclear metal complex (D-8) obtained in Example 5 of the present invention.
  • FIG. 9 is a 1 H-NMR ⁇ vector in dimethylsulfoxide 1 d6 of the binuclear metal complex (D-9) obtained in Example 5 of the present invention.
  • FIG. 10 is a 1 H-NMR spectrum of dinuclear metal complex (D-10) obtained in Example 5 of the present invention in dimethyl sulfoxide d6.
  • FIG. 11 is a 1 H-NMR spectrum in dimethyl sulfoxide d6 of the binuclear metal complex (D-11) obtained in Example 6 of the present invention.
  • FIG. 12 is a 1 H-NMR spectrum in dimethyl sulfoxide d6 of the binuclear metal complex (D-12) obtained in Example 7 of the present invention.
  • FIG. 13 is a 1 H-NMR spectrum in dimethyl sulfoxide d6 of the binuclear metal complex (D-13) obtained in Example 8 of the present invention.
  • FIG. 14 is a 1 H-NMR spectrum of dinuclear metal complex (D-14) obtained in Example 9 of the present invention in dimethyl sulfoxide d6.
  • FIG. 15 is a 1 H-NMR spectrum of dinuclear metal complex (D-15) obtained in Example 10 of the present invention in dimethyl sulfoxide d6.
  • FIG. 16 is a comparison of the UV-visible absorption spectrum of the binuclear metal complex dye (D-4) obtained in Example 4 and the comparative dye A.
  • FIG. 17 is a comparison of the UV-visible absorption spectrum of the binuclear metal complex dye (D-11) obtained in Example 6 and the comparative dye A.
  • FIG. 18 is a comparison of the UV-visible absorption spectra of the binuclear metal complex dye (D-12) obtained in Example 7 and the comparative dye A.
  • FIG. 19 is a comparison of the UV-visible absorption spectrum of the binuclear metal complex dye (D-13) obtained in Example 8 and the comparative dye A.
  • FIG. 20 is a cross-sectional view showing the structure of the photochemical battery produced in the present invention. (Signed (1) Glass (2) Transparent conductive layer (3) Platinum layer (4) Electrolyte (5) Dye-adsorbing porous oxide semiconductor film
  • FIG. 21 is a 1 H-NMR ⁇ vector in dimethyl sulfoxide — d6 of the binuclear metal complex (D-16) obtained in Example 18.
  • FIG. 22 shows HO of the structure shown in the binuclear metal complex dye (D-4) obtained in Example 4.
  • FIG. 23 shows LU of the structure shown in the binuclear metal complex dye (D-4) obtained in Example 4.
  • FIG. 24 shows the structure of the binuclear metal complex dye (D-16) obtained in Example 18.
  • FIG. 25 shows L of the structure shown in the binuclear metal complex dye (D-16) obtained in Example 18.
  • FIG. 26 is a diagram conceptually showing the direction of HOMO-LUMO electron transition and the flow of electrons inside the photochemical battery circuit of the preferred binuclear metal complex dye of the present invention.
  • FIG. 27 shows a photochemical cell produced using the binuclear metal complex dye (D-4) obtained in Example 4 and the binuclear metal complex dye (D-16) obtained in Example 18. It is a figure showing a current-voltage characteristic curve.
  • FIG. 28 shows a photochemical battery produced using the binuclear metal complex dye (D-4) obtained in Example 4 and the binuclear metal complex dye (D-16) obtained in Example 18. It is a figure showing a current-voltage characteristic curve.
  • Asymmetric binuclear metal complex represented by the general formula: (L 1 ) M ⁇ BD M ⁇ L 2 ) (X)
  • M 1 and M 2 are transition metals, preferably Group VIII to XI transition metals, specifically, ruthenium (Ru), osmium (Os), cobalt (Co), Nickel (Ni), copper (Cu) or iron (Fe) is preferred. Of these, ruthenium (Ru) and osmium (Os) are preferred, and ruthenium (Ru) is particularly preferred.
  • M 1 and M 2 may be the same metal or different metals.
  • L 1 and L 2 are chelate ligands capable of multidentate coordination, preferably bidentate or tridentate.
  • a chelate ligand capable of bidentate or tetradentate coordination more preferably a chelate ligand capable of bidentate coordination.
  • Specific examples include derivatives such as 2,2, -biviridine, 1,10-phenantorin, 2- (2-pyridyl) quinoline, or 2,2'-biquinoline.
  • L 1 and L 2 are different. Also, the two L 1 may be different or the two L 2 may be different.
  • L 1 has at least one substituent that can be fixed to the semiconductor fine particles.
  • Substituents that can be fixed to the semiconductor fine particles of L 1 are carboxyl group (one COOH), amino group (one NH), hydroxyl group (one OH), sulfate group (one SO H), phosphoric acid group (one PO H), nitro
  • the hydrogen of the ruboxyl group may be exchanged with a cation such as a quaternary ammonium such as tetraptyl ammonium or an alkali metal ion such as sodium ion. Moreover, hydrogen may be eliminated.
  • a cation such as a quaternary ammonium such as tetraptyl ammonium or an alkali metal ion such as sodium ion.
  • L 1 may or may not have a substituent other than the substituent that can be fixed to the semiconductor fine particles.
  • substituents include an alkyl group (methyl group, ethyl group, etc.), an alkoxy group (methoxy group, ethoxy group, etc.) and the like.
  • L 1 is a ligand in which LUMO is distributed mainly in the (L 1 ) M 1 portion. It is preferable.
  • a photochemical battery When a photochemical battery is manufactured using a photoelectric conversion element that contains semiconductor fine particles sensitized by this binuclear metal complex due to the structure having LUMO that excites electrons, the photoelectric conversion element (negative electrode) It is possible to make a smooth electron transfer to the cell, and it is efficient! A photochemical battery can be constructed.
  • the software used was Cerius 2 or Material Studio.
  • the structure of the metal complex was optimized by DFT (density functional method) using the DMol 3 module.
  • the exchange correlation function at that time is not particularly limited, but the VWN method or the BLYP method is preferably used.
  • Basis functions are not particularly limited. It is done.
  • the energy state calculation uses the obtained structure, and the exchange correlation function is not particularly limited, but BLYP and PBE are used, and the basis function system is not particularly limited, but DNP is preferably used.
  • L 1 examples include a ligand represented by the following formula (L 1 A).
  • R ⁇ R 2 , R 3 , RR 5 and R6 are hydrogen atoms, alkoxy groups, or forces representing substituted or unsubstituted hydrocarbon groups Or two or more of these together form a substituted or unsubstituted aromatic hydrocarbon ring or a substituted or unsubstituted aliphatic hydrocarbon ring with the carbon atom to which they are attached.
  • the alkyl group those having 6 or less carbon atoms are preferable, and a methyl group and an ethyl group are more preferable.
  • the alkoxy group those having 6 or less carbon atoms are preferable, and a methoxy group and an ethoxy group are more preferable.
  • R 2 and R 3 , R 4 and R 5 , R 1 and R 6 together and the carbon atom to which they are bonded together with a 6-membered aromatic hydrocarbon ring (having a substituent, But I also prefer to form).
  • substituent of the aromatic hydrocarbon ring include an alkyl group (such as a methyl group and an ethyl group) and an alkoxy group (such as a methoxy group and an ethoxy group).
  • L 1 examples include ligands represented by the following formulas (L 11 ) to (L 14 ), but the present invention is not limited to these. [0038] [Chemical 2]
  • the heterocyclic ring and the benzene ring in formulas (L 11 ) to (4) may have a substituent, and H in COOH may be eliminated.
  • the substituent include an alkyl group having 6 or less carbon atoms such as a methyl group and an ethyl group, and an alkoxy group having 6 or less carbon atoms such as a methoxy group and an ethoxy group.
  • L 2 is a chelate-type ligand capable of multidentate coordination, preferably a bidentate, tridentate or tetradentate chelate-type ligand, more preferably bidentate. It is a chelate-type ligand that can be coordinated. Specific examples include derivatives such as 2,2, -biviridine, 1,10-phenantorporin, 2- (2-pyridyl) quinoline, or 2,2'-biquinoline.
  • L 2 may or may not have a substituent.
  • L 2 substituents include alkyl groups (such as methyl and ethyl groups), aryl groups (such as full and tolyl groups), alkoxy groups (such as methoxy and ethoxy groups), and hydroxyl groups (such as —OH). ) And the like. In particular, a group exhibiting electron donating properties is preferred.
  • L 2 examples include a ligand represented by the following formula (L 2 -A).
  • shaku 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 and R 18 are forces representing a hydrogen atom, an alkoxy group, a hydroxyl group or a substituted or unsubstituted hydrocarbon group, or Two or more of these together form a substituted or unsubstituted aromatic hydrocarbon ring or a substituted or unsubstituted aliphatic hydrocarbon ring with the carbon atom to which they are attached.
  • R U to R 18 are preferably a hydrogen atom, an alkyl group, or an alkoxy group, and more preferably a hydrogen atom or an alkyl group.
  • the alkyl group those having 6 or less carbon atoms are preferable, and a methyl group and an ethyl group are more preferable.
  • the alkoxy group those having 6 or less carbon atoms are preferable, and a methoxy group and an ethoxy group are more preferable.
  • R U to R 18 two adjacent R U to R 18 , or R 11 and R 18 are joined together and the carbon atom to which they are bonded together with a 6-membered aromatic hydrocarbon ring (with substituents! It is also preferable to form /!
  • substituents! include an alkyl group (such as a methyl group and an ethyl group) and an alkoxy group (such as a methoxy group and an ethoxy group).
  • R U to R 18 are particularly preferably a hydrogen atom or a methyl group.
  • R 11 and R 18 together form a 6-membered aromatic hydrocarbon ring (which may have a substituent such as a methyl group) together with the carbon atom to which they are bonded, and R 12 to R 17 it is also particularly preferred a hydrogen atom or methylol group, more preferably a hydrogen atom.
  • L 2 include ligands represented by the following formulas (L 2 — 1) to (L 2 — 4), but the present invention is not limited thereto.
  • the heterocyclic ring and the benzene ring in the formulas (L 2 — 1) to (L 2 — 4) may have a substituent.
  • the substituent include a substituent such as an alkyl group having 6 or less carbon atoms, an alkoxy group having 6 or less carbon atoms, and a methyl group, and a phenyl group and a hydroxyl group may be used.
  • BL is a bridging ligand and has a cyclic structure containing a heteroatom. And the hetero atom contained in this cyclic structure (heteroconjugate ring) is a coordinating atom that coordinates to M 1 and M 2 . Heteroatoms include nitrogen, oxygen, sulfur, phosphorus and the like. [0055] BL is preferably a tetradentate ligand, more preferably anionic. Also,
  • BL may or may not have a substituent on the cyclic structure (heteroconjugated ring).
  • Examples of BL include those represented by the following formula (BL-A).
  • R 31 , R 32 and R 33 represent a hydrogen atom or a force representing a substituted or unsubstituted hydrocarbon group, or two or more of these together and the carbon atom to which they are bonded.
  • a substituted or unsubstituted aromatic hydrocarbon ring or a substituted or unsubstituted aliphatic hydrocarbon ring is formed, and R 34 , R 35 and R 36 represent a hydrogen atom or a substituted or unsubstituted hydrocarbon group. Or two or more of these together can form a substituted or unsubstituted aromatic hydrocarbon ring or a substituted or unsubstituted aliphatic hydrocarbon ring with the carbon atom to which they are attached. .
  • R 31 to R 36 are preferably a hydrogen atom, an alkyl group, or an alkoxy group, and more preferably a hydrogen atom or an alkyl group.
  • the alkyl group those having 6 or less carbon atoms are preferable, and a methyl group and an ethyl group are more preferable.
  • the alkoxy group those having 6 or less carbon atoms are preferable, and a methoxy group and an ethoxy group are more preferable.
  • two adjacent R 31 to R 36 are joined together to form a 6-membered aromatic hydrocarbon ring (which may be substituted) together with the carbon atom to which they are bonded.
  • a 6-membered aromatic hydrocarbon ring which may be substituted
  • substituent of the aromatic hydrocarbon ring include an alkyl group (such as a methyl group and an ethyl group) and an alkoxy group (such as a methoxy group and an ethoxy group).
  • R 31 to R 36 are particularly preferably a hydrogen atom or a methyl group, and R 31 to R 36 are more preferably a hydrogen atom.
  • Examples of BL include those represented by the following formula (BL-B). [0062] [Chemical 12]
  • R 41 and R 42 represent a hydrogen atom or a substituted or unsubstituted hydrocarbon group, or a substituted or unsubstituted aromatic group together with a carbon atom to which they are bonded together.
  • R 41 ⁇ R 44 is preferably a hydrogen atom, an alkyl group, an alkoxy group, a hydrogen atom, and more preferably Al kill group.
  • the alkyl group those having 6 or less carbon atoms are preferable, and a methyl group and an ethyl group are more preferable.
  • the alkoxy group those having 6 or less carbon atoms are preferable, and a methoxy group and an ethoxy group are more preferable.
  • R 41 and R 42 , R 43 and R 44 are joined together to form a 6-membered aromatic hydrocarbon ring (which may be substituted) as well as the carbon atom to which they are bonded. I also like it to form.
  • substituent of the aromatic hydrocarbon ring include an alkyl group (such as a methyl group and an ethyl group) and an alkoxy group (such as a methoxy group and an ethoxy group).
  • R 41 to R 44 are particularly preferably a hydrogen atom or a methyl group, and R 41 to R 44 are more preferably a hydrogen atom.
  • R 41 and R 42 , R 43 and R 44 together and the carbon atom to which they are bonded together with a 6-membered aromatic hydrocarbon ring (having a substituent such as a methyl group! /, Yo, is also especially preferred to form).
  • R 51 , R 5 R M and 4 each represents a hydrogen atom or a substituted or unsubstituted hydrocarbon group, or two or more of these together are carbons to which they are bonded. It forms a substituted or unsubstituted aromatic hydrocarbon ring or a substituted or unsubstituted aliphatic hydrocarbon ring together with atoms, and R 55 , R 56 , R 57 and R 58 are hydrogen atoms or substituted or unsubstituted Or a substituted or unsubstituted aromatic hydrocarbon ring or a substituted or unsubstituted aliphatic hydrocarbon ring together with the carbon atom to which they are bonded together. To form.
  • R 51 to R 58 are preferably a hydrogen atom, an alkyl group, or an alkoxy group, and more preferably a hydrogen atom or an alkyl group.
  • the alkyl group those having 6 or less carbon atoms are preferable, and a methyl group and an ethyl group are more preferable.
  • the alkoxy group those having 6 or less carbon atoms are preferable, and a methoxy group and an ethoxy group are more preferable.
  • two adjacent R 51 to R 58 are joined together to form a 6-membered aromatic hydrocarbon ring (which may be substituted) together with the carbon atom to which they are bonded.
  • a 6-membered aromatic hydrocarbon ring which may be substituted
  • substituent of the aromatic hydrocarbon ring include an alkyl group (such as a methyl group and an ethyl group) and an alkoxy group (such as a methoxy group and an ethoxy group).
  • R 51 ⁇ R 58 is particularly preferred instrument
  • R 51 to R 58 be a hydrogen atom or a methyl group is more preferably a hydrogen atom.
  • BL include those represented by the following formulas (BL-1) to (BL-4), but the present invention is not limited to these.
  • the heterocyclic ring and the benzene ring in the formulas (BL-1) to (BL-4) may have a substituent.
  • the substituent include an alkyl group having 6 or less carbon atoms and an alkoxy group having 6 or less carbon atoms, and two adjacent carbon atoms on the benzene ring in the formula (BL-4) are joined together.
  • BL is preferably a ligand represented by the above formula (BL-3) or (B L-4)! /.
  • (L 1 ) M ⁇ BD M 'CL 2 ) (X) contains water or an organic solvent as a crystal solvent.
  • organic solvents include DMSO, acetonitrile, DMF, DMAC, and methanol.
  • the number of crystal solvents is not particularly specified.
  • X is a counter ion, and if the complex [(L 1 ) M 1 (BL) M 2 (L 2 )] is a cation, the counter ion is
  • n the number of counter ions necessary to neutralize the charge of the complex.
  • X examples include hexafluorophosphate ion, perchlorate ion, tetraphenylborate ion, tetrafluoroborate ion, trifluoromethanesulfonate ion, thiocyanic acid when the counter ion is cation.
  • Ions, sulfate ions, nitrate ions, and halide ions such as chloride ions and iodide ions.
  • X when the counter ion is a cation, ammonium metal ions, tetrabutyl ammonium ions, alkali metal ions such as sodium ions, protons, and the like can be given.
  • L 1 is a ligand represented by the above formula (L 1 1) (one from which H of COOH is eliminated, heterocycle and benzene ring are further substituted. the have, shall be including),
  • L 2 is the above formula (L 2 - 1) or (L 2 - 2) ligand represented by (heterocyclic and base benzene ring have a substituent And a ligand represented by the above formula (BL-3) or (BL-4) (the heterocyclic ring and the benzene ring have a substituent! /) U), wherein M 1 and M 2 are ruthenium (Ru), osmium (Os), cobalt (Co), nickel (Ni), copper (Cu) or iron (Fe).
  • Ru ruthenium
  • Os osmium
  • Co nickel
  • Cu copper
  • Fe iron
  • Examples of the force include those represented by the following formulas (D-1) to (D-16). It is not limited to.
  • the metal complex of the present invention is described in Inorganic Chemistry, No. 17, No. 9, No. 2,660-266, 6, 1978, Journal of the American Chemical Society, No. 115, No. 6382-6390, 1993, etc. It can be produced by referring to the method cited in the above.
  • the metal complex (L 1 ) M ⁇ BD M ⁇ L 2 ) (X) of the present invention is, for example,
  • a mononuclear metal complex (L 1 ) M l and (BL) M 2 (L 2 ) are synthesized and reacted.
  • the mononuclear metal complex (BL) M 2 (L 2 ) can be synthesized according to the following synthesis scheme.
  • BL is the above equation (BL- 1) ⁇ (BL- 4 ) with those represented (including also those having a substituent)
  • L 2 is the above formula (L 2 - 1) ⁇ (L 2 - 4) represented by those with (a substituent, including shall) are all, it can be synthesized according to the synthetic scheme.
  • BL is represented by the above formula (BL-1) (including those having a substituent)
  • the subsequent reaction step with NaOMe is unnecessary, and M 2 (L 2 ) C1 And BL react to give (BL) M 2 (L 2 ).
  • the above metal complex can be used as a metal complex dye, and a photochemical battery can be produced using semiconductor fine particles sensitized with the metal complex dye.
  • the photoelectric conversion element of the present invention includes semiconductor fine particles sensitized by the metal complex dye. More specifically, the semiconductor fine particles sensitized with the metal complex dye are fixed on the electrode.
  • the conductive electrode is preferably a transparent electrode formed on a transparent substrate.
  • conductive agents include metals such as gold, silver, copper, platinum, and palladium, indium oxide compounds typified by tin-doped indium oxide (ITO), and fluorine-doped oxide-tin (FTO). And acid-zinc-based compounds, acid-zinc-based compounds, and the like.
  • ITO tin-doped indium oxide
  • FTO fluorine-doped oxide-tin
  • the semiconductor fine particles include titanium oxide, zinc oxide, and tin oxide.
  • indium oxide, niobium oxide, tungsten oxide, vanadium oxide, composite oxide semiconductors such as strontium titanate, calcium titanate, barium titanate, potassium niobate, cadmium or bismuth sulfate, cadmium selenium And gallium phosphide or arsenide.
  • semiconductor fine particles titanium oxide, zinc oxide, or tin oxide, which is preferable for oxides, and a mixture containing one or more of these are particularly preferable.
  • the primary particle size of the semiconductor fine particles is not particularly limited, but is usually 1 to 5000 nm, preferably 2 to 500 nm, particularly preferably 5 to 300 nm.
  • the photochemical battery of the present invention uses the above-described photoelectric conversion element. More specifically, the electrode has the above-described photoelectric conversion element of the present invention and a counter electrode, and an electrolyte layer therebetween. At least one of the electrode and the counter electrode used in the photoelectric conversion element of the present invention is a transparent electrode.
  • the counter electrode functions as a positive electrode when combined with a photoelectric conversion element to form a photochemical battery.
  • a substrate having a conductive layer can be used as in the case of the conductive electrode.
  • the conductive agent used for the counter electrode include metals such as platinum and carbon, and conductive metal oxides such as acid and tin doped with fluorine.
  • the electrolyte (redox couple) is not particularly limited, and any known electrolyte can be used.
  • iodine and iodide for example, metal iodides such as lithium iodide and potassium iodide, tetrabutylammonium iodide, tetrapropylammonium iodide, pyridinium iodide, iodide
  • Combinations of iodides of quaternary ammonium compounds such as imidazolium), combinations of bromine and bromide, combinations of chlorine and chloride, combinations of alkyl viologen and its reduced form, quinone Z hydroquinone, iron ( ⁇ ) ion Z Iron ( ⁇ ) ion, Copper (I) ion Z Copper ( ⁇ ) ion, Manganese ( ⁇ ) ion Z Manganese (in) ion, Cobalt ion ( ⁇ ) z Cobalt ion (in) transition
  • a preferable electrolyte is an electrolyte in which iodine is combined with lithium iodide or iodide of a quaternary ammonium compound.
  • the electrolyte may be a liquid dissolved in an organic solvent, a molten salt, a so-called gel electrolyte immersed in a polymer matrix, or a solid electrolyte.
  • the photochemical cell of the present invention can be produced by a method that has been conventionally applied.
  • a semiconductor fine particle paste such as an oxide is applied on a transparent electrode, and is heated and fired to produce a semiconductor fine particle thin film.
  • the thin film of semiconductor fine particles is a titer
  • the firing is performed at a temperature of 450 ° C. and a reaction time of 30 minutes.
  • the transparent electrode with the thin film is immersed in a dye solution, and the dye is supported to produce a photoelectric conversion element.
  • the photochemical cell of the present invention can be produced by combining this photoelectric conversion element with a transparent electrode on which gold or carbon is deposited as a counter electrode, and putting an electrolyte solution between them.
  • the binuclear metal complex of the present invention is also used as a material for an electron transport layer of an organic EL.
  • RuCl 3 500 0 (2.53g, 9.68mm in a 500ml three-necked flask under nitrogen atmosphere
  • Ru (bpy) CI (0.501 g, 0.996 mmol) synthesized by the method described in Inorg.Synth., VolXXIV, 291 (1986), J. Chem. Soc.
  • the precipitated complex was collected by filtration, and washed with a pH 2.5 aqueous hexafluorophosphoric acid solution, acetone Z jetyl ether (4: 1), and jetyl ether. After vacuum drying, 49.3 mg of D 2 was obtained (yield 41%).
  • the elemental analysis values were in good agreement with the tetrahydrate.
  • the complex was precipitated as a salt of anion PF—.
  • the precipitate is collected by filtration and washed with water.
  • D-4 in Example 4 D was prepared in the same manner except that 0.5 mol Zl hexafluorophosphoric acid aqueous solution and pH 2.5 hexafluorophosphoric acid aqueous solution were used instead of the acid corresponding to anti-one. — 5, D-7, D-8, D-9 and D-10 were synthesized. Since there is no corresponding acid for D-6, 0.5 molZl hydrochloric acid aqueous solution and PH2.5 hydrochloric acid aqueous solution were used. Was synthesized. D- 5, D- 6, D- 7, D-8, the structure of D-9 Contact and D-10 was confirmed in the same manner by elemental analysis and 1 H- NMR spectrum.
  • Elemental analysis values of D-10 showed good agreement as the dihydrate. [0151] Elemental analysis Observation C: 49. 70, H: 3. 23, N: l l. 89,
  • the Nord power also recrystallized.
  • the precipitated crystals were separated by filtration and washed with cold methanol and jetyl ether. After vacuum drying, 0.545 g of [(BiBzImH) Ru (phen)] (PF) was obtained (
  • the obtained suspension was filtered, and 0.5 mol Zl hexafluoradium phosphate aqueous solution was added dropwise to the filtrate until the pH became 2.5.
  • the precipitated complex was collected by filtration and washed with a pH 2.5 aqueous hexafluorophosphoric acid solution, acetone Z jetyl ether (4: 1), and jetyl ether. After vacuum drying, 0.173 g of D-11 was obtained (76% yield). Elemental analysis showed good agreement with tetrahydrate.
  • the precipitated complex was collected by filtration and washed with a pH 2.5 aqueous hexafluorophosphoric acid solution, acetone Z jetyl ether (4: 1), and jetyl ether. After vacuum drying, 0.366 g of D-13 was obtained (yield 87%). The elemental analysis values were in good agreement with the anhydrous product.
  • Comparative dye A As is clear from FIGS. 16, 17, 18, and 19, all of the binuclear metal complex dyes of the present invention have the same absorption wavelength region as that of comparative dye A, which currently exhibits high photoelectric conversion efficiency. However, it had an even higher extinction coefficient. Therefore, when the binuclear metal complex dye of the present invention is used in a photochemical battery, it is very preferable because it can absorb more light and convert it into a photocurrent.
  • paste B This titer paste is called paste B.
  • paste A was applied onto a transparent conductive glass electrode manufactured by Asahi Glass Co., Ltd. with a part of the electrode masked and applied with a 100 m doctor blade.
  • paste B was applied to form two layers using the same method as the paste A coating method except that a 70 m doctor blade was used. After drying, this membrane was baked at 450 ° C. for 30 minutes to produce a 1 cm 2 porous titer electrode (T-1).
  • the obtained film was aged at 25 ° C. and 60% atmosphere for 10 minutes, and the aged film was baked at 450 ° C. for 30 minutes. The same operation was repeated for the cooled membrane, and two layers were formed to produce a 1 cm 2 porous titer electrode (T-3).
  • a porous titer electrode adsorbing the comparative dye A was obtained in the same manner except that 3 x 10 _4 molZl of t-butanol Z-acetonitrile (1: 1) was used.
  • Porous titania electrodes in each of D 4, D 5, D 6, D 7, D 8, D 9 and D 10 t-butanol Z-acetonitrile (1: 1) saturated dye solution (less than 3 X 10 _4 molZl) (T-3) was immersed at 30 ° C for 20 hours. Next, after washing with acetonitrile and drying, a dye-adsorbed porous titania electrode was obtained.
  • the dye-adsorbed porous titer electrode obtained as described above and a platinum plate (counter electrode) were superposed.
  • the electrolyte solution lithium iodide, iodine, 4 t-butylpyridine, and 1,2 dimethyl-3-propylimidazolium iodide were added to 3-methoxypropio-tolyl as 0.1, 0.05, 0.5, respectively.
  • a photochemical battery was prepared by using a solution that was dissolved and adjusted to 0.6 molZl and infiltrated the gap between the two electrodes using capillary action.
  • FIG. 20 shows the structure of the photochemical battery produced in this example.
  • the photoelectric conversion efficiency of the resulting photochemical cell using EKO Instruments Solar Simulated ter Co., Ltd. was measured by irradiating artificial sunlight of lOOmWZcm 2.
  • Tables 1 and 2 summarize the photoelectric conversion efficiency of each dye.
  • Table 3 also shows D-4 and Comparative Dye A. The short circuit current density per mole and the photoelectric conversion efficiency are shown.
  • the metal complex dyes D-4 and D-11 of the present invention obtained higher photoelectric conversion efficiency than the comparative dye A. Further, from Table 2, the metal complex dye D-4 of the present invention High photoelectric conversion efficiencies were also obtained for the complexes with different on-states (D-5, D-6, D-7, D-8, D-9 and D-10). In addition, Table 3 shows that the metal complex dye of the present invention has a short-circuit current density per molecule and a discharge conversion efficiency higher than those of Comparative Dye A, and is superior in photoelectric conversion ability.
  • TG was measured using Rigaku Corporation's Thermo plus TG8120 under the conditions of a heating rate of 10 ° C, min and a simulated air flow rate of lOOmlZmin, and introduced into the MS apparatus at a transfer line temperature of 200 ° C.
  • the MS uses a mass analyzer QP-5000 combined system manufactured by Shimadzu Corporation. Measured under conditions.
  • Table 4 shows the start temperature of generation of the gas component derived from the ligand generated when each dye is thermally decomposed.
  • the CO generation start temperature is 30 ° C. or more higher than that of comparative dye A.
  • the binuclear metal complex of the present invention is very preferable because it has few decomposition sites and is also excellent in thermal stability.
  • a porous titania electrode adsorbing the binuclear metal complex dye (D-4) of the present invention obtained in Example 4 was prepared. The procedure is shown below.
  • Paste A was applied onto a transparent conductive glass electrode using a 50 ⁇ m spacer using a doctor blade to produce a film. This film was dried at room temperature, paste B was applied in the same manner, and after drying, this film was baked at 450 ° C. for 30 minutes to produce 1 cm 2 and 5 cm 2 porous titer electrodes.
  • an ethanol saturated solution (3 X 10 _4 molZl or less) of the binuclear metal complex dye (D-4) of the present invention obtained in Example 4 was prepared, and the solution was 50 ° C. Soaked for 15 hours. After immersion, the substrate was washed with ethanol and dried under a nitrogen stream to obtain 1 cm 2 and 5 cm 2 dye-adsorbing porous titania electrodes.
  • Example 14 The amount of dye adsorbed on each of the 5 cm 2 dye-adsorbed porous titer electrodes obtained in Example 14 and Comparative Example 1 was measured.
  • the procedure is as follows.
  • the dye was desorbed by immersing the dye-adsorbed porous titer electrode in a solution of 0. OlmolZl sodium hydroxide in ethanol Z water (1: 1). By measuring the absorption spectrum of this desorption solution (V-570 manufactured by JASCO Corporation), the amount of dye adsorbed per 1 cm 2 was calculated. It was. Table 5 summarizes the results of the adsorption amounts of the binuclear metal complex dye (D-4) and the comparative dye A obtained in Example 4.
  • Example 16 Evaluation Measurement of photochemical batteries using EKO Instruments Co. solar Bow aerator, the photochemical cell fabricated in Example 16 was irradiated with artificial sunlight of lOOmWZcm 2.
  • Table 6 summarizes the characteristic values of the binuclear metal complex dye (D-4) of the present invention obtained in Example 4 and the comparative dye A. Jsc and Voc in Table 6 indicate the short circuit current density and the open circuit voltage per mole of the metal complex dye, respectively. The short-circuit current density per mole of dye was calculated based on the results in Table 5.
  • MC-1 (0. 102 g, 0.15 mmol) in a 100 ml three-necked flask under a nitrogen atmosphere, and 40 ml of ethanol Z water (1: 1) was added, and 0.6 ml of ImolZl sodium hydroxide solution was added dropwise to dissolve.
  • M 2 C-8 (0.135 g, 0.15 mmol) was added to this solution, and the mixture was refluxed for 10 minutes under 2.45 GHz microwave irradiation.
  • the reaction mixture was allowed to cool and then filtered, and the ethanol in the filtrate was dried under reduced pressure.
  • the resulting suspension was filtered, and a 0.5 mol Zl hexafluorophosphoric acid aqueous solution was added dropwise to the filtrate until the pH reached 2.5.
  • the precipitated complex was collected by filtration and washed with a pH 2.5 aqueous hexafluorophosphate solution, acetone Z jetyl ether (4: 1), and jetyl ether. After vacuum drying, 0.18 g of D-16 was obtained (42% yield). The elemental analysis values were in good agreement with the tetrahydrate.
  • the structure of the binuclear metal complex model was optimized by quantum chemical calculations.
  • Material Studio 2.0 was used as the software.
  • the density functional method (DFT) was used as the calculation method
  • VWN was used as the exchange correlation function
  • DNP was used as the basis set.
  • the effective inner core potential approximation was used.
  • the energy state was calculated by quantum chemistry calculation for the complex model obtained in (1).
  • the density functional method was used as a calculation method.
  • BLYP was used as a specific exchange correlation function.
  • DNP was used as the basis set.
  • the effective inner core potential approximation was used.
  • the convergence condition is 10 _6 au or less for energy, and the number of occupied electrons in each state is an integer from 0 to 2
  • FIG. 22 which visualizes the shape of the HOMO (including the next HOMO) orbit of the structure shown in the binuclear metal complex dye (D-4) of the present invention obtained in Example 4 with respect to the above results.
  • the visualization of the shape of the LUMO (including the next LUMO) orbit is shown in FIG. 23, and the structure of the binuclear metal complex dye (D-16) obtained in Example 18 is shown as HOMO (next H).
  • the visualization of the shape of the orbit (including OMO) is shown in Fig. 24, and the visualization of the shape of the LUMO (including next LUMO) orbit is shown in Fig. 25.
  • Figure 26 conceptually shows the direction of HOMO-LUMO electronic transition and the flow of electrons inside the photochemical battery circuit of the asymmetric binuclear metal complex shown in Fig. 26).
  • X is omitted.
  • the binuclear metal complex dye (D-4) of the present invention has the same two directions, and the binuclear metal complex dye (D-16) obtained in Example 18 from FIG. 24 and FIG. ) Does not match the above two directions. Therefore, the binuclear metal complex dye (D-4) of the present invention can cause smoother electron transfer and can constitute an efficient photochemical battery.
  • the photoelectric conversion efficiency of the binuclear metal complex dye (D-16) obtained in Example 18 is the same as that in Example 12 for producing a porous titer electrode adsorbing D-1 and D-2 and comparative dye A.
  • a photochemical cell was prepared and measured in the same manner except that an ethanol saturated dye solution was used instead of the ethanol Z dimethyl sulfoxide (95: 5) saturated dye solution.
  • Table 7 shows the results of photoelectric conversion efficiency
  • Fig. 27 shows the current-voltage characteristic curve.
  • the photoelectric conversion efficiency and current-voltage characteristic curves of D-4 obtained in Example 12 are shown in Table 7 and FIG. 27, respectively.
  • Example 18 The evaluation and measurement of the photochemical cell of the binuclear metal complex dye (D-16) obtained in Example 18 was carried out in the same manner as in Example 14 except that the lcm 2 dye-adsorbed porous titer electrode was the same as in Example 16. Then, a photochemical battery was prepared, and the photochemical battery was evaluated and measured in the same manner as in Example 17. Table 8 shows the results of photoelectric conversion efficiency (7?), And Fig. 28 shows the current-voltage characteristic curve. In addition, the photoelectric conversion efficiency (7?) Result and current-voltage characteristic curve of the binuclear metal complex dye (D-4) of the present invention obtained in Example 17 are shown in Table 8 and FIG. 28, respectively.
  • the binuclear metal complex dye (D-4) of the present invention obtained in Example 4 having an appropriate HOMO-LUMO orbital arrangement was found to be HOMO-LUMO. It can be seen that the photochemical cell characteristics are clearly superior to the binuclear metal complex dye (D-16) obtained in Example 18 in which the orbital arrangement is appropriate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)
  • Quinoline Compounds (AREA)
  • Pyridine Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

 本発明の新規な二核金属錯体は、一般式:(L1)2M1(BL)M2(L2)2(X)n(但し、M1及びM2は、遷移金属であって、同一でも異なっていてもよく、L1及びL2は、多座配位可能なキレート型配位子であって、L1とL2は異なるものであり、二つのL1は異なるものであってもよく、二つのL2も異なるものであってもよく、BLはヘテロ原子を含む環状構造を少なくとも二つ有する架橋配位子であって、M1及びM2に配位する配位原子がこの環状構造に含まれるヘテロ原子である。Xは対イオンである。nは錯体の電荷を中和するのに必要な対イオンの数を表す。)で示される非対称な二核金属錯体であり、金属錯体色素として有用である。

Description

二核金属錯体、金属錯体色素、光電変換素子、及び光化学電池 技術分野
[0001] 本発明は、新規な二核金属錯体に関する。
[0002] さらに、本発明は、高い吸光係数を有する、電子移動に優れた金属錯体色素、また この金属錯体色素によって光増感された酸ィ匕物半導体を用いた光電変換素子、なら びにそれを用いた光化学電池に関する。
背景技術
[0003] 太陽電池はクリーンな再生型エネルギー源として大きく期待されており、単結晶シリ コン系、多結晶シリコン系、アモルファスシリコン系の太陽電池やテルル化カドミウム、 セレン化インジウム銅などの化合物力もなる太陽電池の実用化をめざした研究がなさ れている。しかし、家庭用電源として普及させるためには、いずれの電池も製造コスト が高いことや原材料の確保が困難なことやリサイクルの問題、また大面積ィ匕が困難で あるなど克服しなければならない多くの問題を抱えている。そこで、大面積化や低価 格ィ匕を目指し有機材料を用いた太陽電池が提案されてきたが、 Vヽずれも変換効率が 1%程度と実用化にはほど遠いものであった。
[0004] こうした状況の中、 1991年にグレッツエルらにより Natureに色素によって増感され た半導体微粒子を用いた光電変換素子および太陽電池、ならびにこの太陽電池の 作製に必要な材料および製造技術が開示された。(例えば、 Nature,第 353卷、 73 7頁、 1991年 (非特許文献 1)、特開平 1— 220380号公報 (特許文献 1)など)。この 電池はルテニウム色素によって増感された多孔質チタ-ァ薄膜を作用電極とする湿 式太陽電池である。この太陽電池の利点は、安価な材料を高純度に精製する必要 がなく用いられるため、安価な光電変換素子として提供できること、さらに用いられる 色素の吸収がブロードであり、広い可視光の波長域にわたって太陽光を電気に変換 できることである。し力しながら実用化のためにはさらなる変換効率の向上が必要で あり、より高い吸光係数を有し、より高波長域まで光を吸収する色素の開発が望まれ ている。 [0005] 本出願人による特開 2003— 261536号公報 (特許文献 2)には、光電変換素子と して有用な金属錯体色素であるジピリジル配位子含有金属単核錯体が開示されて いる。
[0006] また、色素増感太陽電池の最新技術 (株式会社シーエムシー、 2001年 5月 25日 発行、 117頁)(非特許文献 2)には、多核 β—ジケトナート錯体色素が開示されてい る。
[0007] また、 2004年 12月 24日に公開された特開 2004— 359677号公報(特許文献 3) には、光などの活性光線のエネルギーを受けて電子を取り出す光電変換機能の優 れた新規な複核錯体として、複数の金属と複数の配位子を有し、その複数の金属に 配位する橋かけ配位子 (BL)が複素共役環を有する配位構造と複素共役環を有しな V、配位構造を有する複核錯体が開示されて!、る。
[0008] 光電変換素子として、有用かつ新規な金属錯体色素が望まれている。
特許文献 1:特開平 1― 220380号公報
特許文献 2:特開 2003— 261536号公報
特許文献 3:特開 2004— 359677号公報
非特許文献 l :Nature、第 353卷、 737頁、 1991年
非特許文献 2:色素増感太陽電池の最新技術 (株式会社シーエムシー、 2001年 5月 25曰発行、 117頁)
発明の開示
発明が解決しょうとする課題
[0009] 本発明の目的は、金属錯体色素として有用かつ新規な二核金属錯体を提供するこ とである。
[0010] 本発明の他の目的は、金属錯体色素の多核ィ匕により吸光係数の向上を目指し、電 子遷移の方向を電解液側力 多孔質半導体へ調整することでスムーズな電子移動 を実現させ、効率良く半導体微粒子を光増感し得る色素を得ることである。さらに、か 力る色素を用いることにより高い光電変換効率を有する光電変換素子ならびこの光 電変換素子力 なる光化学電池を提供することである。
課題を解決するための手段 [0011] 本発明は、一般式:(L1) M^BD M^L2) (X) で示される非対称な二核金属錯
2 2 n
体に関する。(但し、 M1及び M2は、遷移金属であって、同一でも異なっていてもよく 、 L1及び L2は、多座配位可能なキレート型配位子であって、 L1と L2は異なるものであ り、二つの L1は異なるものであってもよぐ二つの L2も異なるものであってもよぐ BL はへテロ原子を含む環状構造を少なくとも二つ有する架橋配位子であって、 M1及び
M2に配位する配位原子がこの環状構造に含まれるヘテロ原子である。 Xは対イオン である。 nは錯体の電荷を中和するのに必要な対イオンの数を表す。 )
また、本発明は、 L1及び L2が二座もしくは三座もしくは四座配位可能なキレート型 配位子であることを特徴とする上記の二核金属錯体に関する。
[0012] また、本発明は、 L1及び L2が、ビビリジル、ピリジルキノリン、ビキノリン、またはフエ ナント口リンの誘導体である二座配位子であることを特徴とする上記の二核金属錯体 に関する。
[0013] また、本発明は、 L1が、カルボキシル基(一COOH)または COO—で少なくとも一 つ置換された配位子であることを特徴とする上記の二核金属錯体に関する。
[0014] また、本発明は、 BLが、四座配位子であることを特徴とする上記の二核金属錯体 に関する。
[0015] また、本発明は、 M1及び M2が、第 VIII族〜第 XI族の遷移金属であることを特徴と する上記の二核金属錯体に関する。
[0016] また、本発明は、 M1及び M2が、ルテニウム (Ru)、オスミウム(Os)、コノルト(Co)、 ニッケル (Ni)、銅 (Cu)または鉄 (Fe)であることを特徴とする上記の二核金属錯体に 関する。
[0017] さらに、本発明は、一般式:(L1) M^BD M^L2) (X)で示される非対称な二核
2 2 n
金属錯体 (但し、 M1及び M2は、遷移金属であって、同一でも異なっていてもよぐ L1 及び L2は、多座配位可能なキレート型配位子であって、 L1と L2は異なるものであり、 二つの L1は異なるものであってもよぐ二つの L2も異なるものであってもよぐ Xは対ィ オンであり、 nは錯体の電荷を中和するのに必要な対イオンの数を表し、 BLはへテロ 原子を含む環状構造を少なくとも二つ有する架橋配位子であって、 M1及び M2に配 位する配位原子がこの環状構造に含まれるヘテロ原子であり、 L1が半導体微粒子に 固定され得る置換基を有し、かつ主に (L1) M1に LUMOが分布する構造である。 )
2
力 なることを特徴とする金属錯体色素に関する。
[0018] また、本発明は、上記の金属錯体色素により増感された半導体微粒子を含むことを 特徴とする光電変換素子に関する。
[0019] また、本発明は、上記の半導体微粒子が、酸化チタン、酸化亜鉛、または酸ィ匕錫で あることを特徴とする光電変換素子に関する。
[0020] また、本発明は、上記の光電変換素子を用いることを特徴とする光化学電池に関 する。
発明の効果
[0021] 本発明の金属錯体色素は、比較色素として用いた現行で高い光電変換効率を示 す色素に比べ、より高い吸光係数を有しており、錯体 lmol(l分子)あたりの短絡電 流密度が向上した。また、適切な分子軌道分布をもつ色素を用いることにより高い光 電変換効率が得られた。力かる光電変換素子力 なる光化学電池は太陽電池として 極めて有効である。し力も、本発明の金属錯体色素は、現行で高い光電変換効率を 示す色素とは違い、分子内に分解しやすい NCS基を有しておらず、耐熱性にも優 れている。
図面の簡単な説明
[0022] [図 1]図 1は本発明の実施例 1で得られた二核金属錯体 (D— 1)のジメチルスルホキ シド一 d6中での1 H— NMR ^ベクトルである。
[図 2]図 2は本発明の実施例 2で得られた二核金属錯体 (D- 2)のジメチルスルホキ シド一 d6中での1 H— NMR ^ベクトルである。
[図 3]図 3は本発明の実施例 3で得られた二核金属錯体 (D- 3)のジメチルスルホキ シド一 d6中での1 H— NMR ^ベクトルである。
[図 4]図 4は本発明の実施例 4で得られた二核金属錯体 (D-4)のジメチルスルホキ シド一 d6中での1 H— NMR ^ベクトルである。
[図 5]図 5は本発明の実施例 5で得られた二核金属錯体 (D- 5)のジメチルスルホキ シド一 d6中での1 H— NMR ^ベクトルである。
[図 6]図 6は本発明の実施例 5で得られた二核金属錯体 (D— 6)のジメチルスルホキ シド一 d6中での1 H— NMR ^ベクトルである。
[図 7]図 7は本発明の実施例 5で得られた二核金属錯体 (D- 7)のジメチルスルホキ シド一 d6中での1 H— NMR ^ベクトルである。
[図 8]図 8は本発明の実施例 5で得られた二核金属錯体 (D— 8)のジメチルスルホキ シド一 d6中での1 H— NMR ^ベクトルである。
[図 9]図 9は本発明の実施例 5で得られた二核金属錯体 (D- 9)のジメチルスルホキ シド一 d6中での1 H— NMR ^ベクトルである。
[図 10]図 10は本発明の実施例 5で得られた二核金属錯体 (D— 10)のジメチルスル ホキシドー d6中での1 H— NMRスペクトルである。
[図 11]図 11は本発明の実施例 6で得られた二核金属錯体 (D— 11)のジメチルスル ホキシドー d6中での1 H— NMRスペクトルである。
[図 12]図 12は本発明の実施例 7で得られた二核金属錯体 (D— 12)のジメチルスル ホキシドー d6中での1 H— NMRスペクトルである。
[図 13]図 13は本発明の実施例 8で得られた二核金属錯体 (D— 13)のジメチルスル ホキシドー d6中での1 H— NMRスペクトルである。
[図 14]図 14は本発明の実施例 9で得られた二核金属錯体 (D— 14)のジメチルスル ホキシドー d6中での1 H— NMRスペクトルである。
[図 15]図 15は本発明の実施例 10で得られた二核金属錯体 (D— 15)のジメチルス ルホキシド d6中での1 H— NMRスペクトルである。
圆 16]図 16は実施例 4で得られた二核金属錯体色素 (D— 4)と比較色素 Aの紫外 可視吸収スペクトルの比較である。
圆 17]図 17は実施例 6で得られた二核金属錯体色素 (D— 11)と比較色素 Aの紫外 可視吸収スペクトルの比較である。
圆 18]図 18は実施例 7で得られた二核金属錯体色素 (D— 12)と比較色素 Aの紫外 可視吸収スペクトルの比較である。
圆 19]図 19は実施例 8で得られた二核金属錯体色素 (D— 13)と比較色素 Aの紫外 可視吸収スペクトルの比較である。
圆 20]図 20は本発明で作製した光化学電池の構成を示す断面図である。(符号の 説明) (1)ガラス (2)透明導電層 (3)白金層 (4)電解液 (5) 色素吸着多孔質酸化物半導体膜
[図 21]図 21は実施例 18で得られた二核金属錯体 (D— 16)のジメチルスルホキシド — d6中での1 H— NMR ^ベクトルである。
[図 22]図 22は実施例 4で得られた二核金属錯体色素 (D— 4)に示される構造の HO
MO (ネクスト HOMOを含む)軌道の形を視覚化した図である。
[図 23]図 23は実施例 4で得られた二核金属錯体色素 (D— 4)に示される構造の LU
MO (ネクスト LUMOを含む)軌道の形を視覚化した図である。
[図 24]図 24は実施例 18で得られた二核金属錯体色素 (D— 16)に示される構造の
HOMO (ネクスト HOMOを含む)軌道の形を視覚化した図である。
[図 25]図 25は実施例 18で得られた二核金属錯体色素(D— 16)に示される構造の L
UMO (ネクスト LUMOを含む)軌道の形を視覚化した図である。
[図 26]図 26は本発明の好ましい二核金属錯体色素の HOMO— LUMOの電子遷 移の方向と光化学電池回路内部の電子の流れを概念的に示した図である。
[図 27]図 27は実施例 4で得られた二核金属錯体色素 (D— 4)および実施例 18で得 られた二核金属錯体色素 (D— 16)を用いて作製した光化学電池の電流電圧特性 曲線を示した図である。
[図 28]図 28は実施例 4で得られた二核金属錯体色素 (D— 4)および実施例 18で得 られた二核金属錯体色素 (D— 16)を用いて作製した光化学電池の電流電圧特性 曲線を示した図である。
発明を実施するための最良の形態
[0023] 本発明の一般式:(L1) M^BD M^L2) (X)で示される非対称な二核金属錯体
2 2 n
において、 M1及び M2は、遷移金属であり、好ましくは第 VIII族〜第 XI族の遷移金 属であり、具体的には、ルテニウム (Ru)、オスミウム(Os)、コバルト(Co)、ニッケル( Ni)、銅(Cu)または鉄 (Fe)が好まし 、。中でも、ルテニウム (Ru)、オスミウム(Os)が 好ましぐルテニウム (Ru)が特に好まし 、。
[0024] M1及び M2は、同一金属でも異なった金属であってもよい。
[0025] L1及び L2は、多座配位可能なキレート型配位子であり、好ましくは二座もしくは三 座もしくは四座配位可能なキレート型配位子、さらに好ましくは二座配位可能なキレ 一ト型配位子である。具体的には、 2, 2,—ビビリジン、 1, 10—フエナント口リン、 2- (2—ピリジ-ル)キノリンまたは 2, 2'ービキノリンなどの誘導体などが挙げられる。 L1 と L2は、異なるものである。また、二つの L1は異なるものであってもよぐ二つの L2も 異なるものであってもよい。
[0026] 本発明の二核金属錯体が光電変換素子に用いる金属錯体色素である場合、 L1は 、半導体微粒子に固定され得る置換基を少なくとも一つ有している。
[0027] L1の半導体微粒子に固定され得る置換基としては、カルボキシル基(一COOH)、 アミノ基(一 NH )、水酸基(一 OH)、硫酸基(一 SO H)、燐酸基(一 PO H )、ニトロ
2 3 3 2 基(一NO )などが挙げられる。中でも、カルボキシル基(一COOH)が好ましい。力
2
ルボキシル基の水素は、テトラプチルアンモ -ゥムなどの 4級アンモ-ゥム、ナトリウム イオンなどのアルカリ金属イオンなどのカチオンで交換されていてもよい。また、水素 は脱離していてもよい。
[0028] さらに、 L1は、半導体微粒子に固定され得る置換基以外の置換基を有しても、有し てなくてもよい。このような置換基としては、アルキル基 (メチル基、ェチル基など)、ァ ルコキシ基 (メトキシ基、エトキシ基など)などが挙げられる。
[0029] また、本発明の二核金属錯体が光電変換素子に用いる金属錯体色素である場合、 L1は、主に (L1) M1部分に LUMOが分布するような配位子であることが好ましい。「
2
主に (L1) M1部分に LUMOが分布する」とは、(L2) M2部分よりも(L1) M1部分に L
2 2 2
UMOが多く分布していることを意味する。主に (L1) M1が太陽光などの光照射によ
2
り電子が励起する LUMOを有する構造であることによって、この二核金属錯体により 増感された半導体微粒子を含む光電変換素子を用いて光化学電池を製造したとき に、電解質から光電変換素子 (負極)へのスムーズな電子移動を起こすことができ、 効率のよ!、光化学電池を構成することができる。
[0030] LUMOの算出は、ソフトウェアは Cerius2あるいは Material Studioを用いた。そ の方法は、 DMol3モジュールを用いて DFT (密度汎関数法)によって金属錯体の構 造最適化を行った。そのときの交換相関関数は特に限定はしな ヽが VWN法または BLYP法が好適に用いられる。基底関数は特に限定はしな ヽが DNPが好適に用い られる。
[0031] エネルギー状態計算は得られた構造を用い、交換相関関数としては特に限定はし ないが BLYP, PBEが用いられ、基底関数系としては特に限定はしないが DNPが好 適に用いられる。
[0032] L1としては、下式 (L1 A)で表される配位子が挙げられる。
[0033] [化 1]
Figure imgf000010_0001
( L 1 一 A) 式中、 COOHの Hは脱離していてもよぐ R\ R2、 R3、 R R5及び R6は水素原子 、アルコキシ基または置換もしくは無置換の炭化水素基を表す力、または、これらの 二つ以上が一緒になつてそれらが結合する炭素原子と共に置換もしくは無置換の芳 香族炭化水素環または置換もしくは無置換の脂肪族炭化水素環を形成している。
[0034] !^〜 は好ましくは水素原子、アルキル基、アルコキシ基であり、水素原子、アル キル基であることがより好ましい。アルキル基としては、炭素数 6以下のものが好ましく 、メチル基、ェチル基がより好ましい。また、アルコキシ基としては、炭素数 6以下のも のが好ましぐメトキシ基、エトキシ基がより好ましい。
[0035] また、 R2と R3、 R4と R5、 R1と R6が一緒になつてそれらが結合する炭素原子と共に 6 員の芳香族炭化水素環 (置換基を有して 、てもよ 、)を形成して 、ることも好ま 、。 芳香族炭化水素環の置換基としては、アルキル基 (メチル基、ェチル基など)、アルコ キシ基 (メトキシ基、エトキシ基など)などが挙げられる。
[0036] !^〜 は水素原子であることが特に好まし!/、。
[0037] L1の具体例としては、下式 (L1 1)〜 (L1 4)で表される配位子が挙げられるが、 本発明はこれらに限定されるものではない。 [0038] [化 2]
Figure imgf000011_0001
(L1 — 1)
2, 2,—ビビリジン—4, 4,ージカルボン酸(H dcbpy)
2
[0039] [化 3]
Figure imgf000011_0002
(L1 -2)
1, 10—フエナント口リン— 4, 7—ジカルボン酸(H dcphen)
2
[0040] [化 4]
Figure imgf000011_0003
(L1 - 3)
2—(2—(4一力ノレボキシピリジノレ))ー4一力ノレボキシキノリン(H dcpq)
2
[0041] [化 5]
Figure imgf000012_0001
( L 1 - 4 )
2, 2,ービキノリン 4, 4,ージカルボン酸(H dcbiq)
2
但し、式 (L1 1)〜( 4)中の複素環およびベンゼン環は置換基を有していても よぐまた、 COOHの Hは脱離していてもよい。置換基としては、メチル基、ェチル 基などの炭素数 6以下のアルキル基、メトキシ基、エトキシ基などの炭素数 6以下のァ ルコキシ基などが挙げられる。
[0042] 前述の通り、 L2は、多座配位可能なキレート型配位子であり、好ましくは二座もしく は三座もしくは四座配位可能なキレート型配位子、さらに好ましくは二座配位可能な キレート型配位子である。具体的には、 2, 2,—ビビリジン、 1, 10—フエナント口リン、 2- (2—ピリジ-ル)キノリンまたは 2, 2'ービキノリンなどの誘導体などが挙げられる
[0043] L2は、置換基を有しても、有してなくてもょ 、。 L2の置換基としては、アルキル基 (メ チル基、ェチル基など)、ァリール基 (フ -ル基、トリル基など)、アルコキシ基 (メトキ シ基、エトキシ基など)、および水酸基(-OH)などが挙げられる。特に、電子供与性 を示す基が好ましい。
[0044] L2としては、下式 (L2—A)で表される配位子が挙げられる。
[0045] [化 6]
Figure imgf000012_0002
( L 2 - A) 式中、尺11、 R12、 R13、 R14、 R15、 R16、 R17及び R18は水素原子、アルコキシ基、水酸 基または置換もしくは無置換の炭化水素基を表す力、または、これらの二つ以上が 一緒になつてそれらが結合する炭素原子と共に置換もしくは無置換の芳香族炭化水 素環または置換もしくは無置換の脂肪族炭化水素環を形成している。
[0046] RU〜R18は好ましくは水素原子、アルキル基、アルコキシ基であり、水素原子、アル キル基であることがより好ましい。アルキル基としては、炭素数 6以下のものが好ましく 、メチル基、ェチル基がより好ましい。また、アルコキシ基としては、炭素数 6以下のも のが好ましぐメトキシ基、エトキシ基がより好ましい。
[0047] また、 RU〜R18の隣接する二つ、または R11と R18が一緒になつてそれらが結合する 炭素原子と共に 6員の芳香族炭化水素環 (置換基を有して!/ヽてもよ!/ヽ)を形成して!/ヽ ることも好ましい。芳香族炭化水素環の置換基としては、アルキル基 (メチル基、ェチ ル基など)、アルコキシ基 (メトキシ基、エトキシ基など)などが挙げられる。
[0048] RU〜R18は水素原子またはメチル基であることが特に好ま 、。また、 R11と R18が 一緒になつてそれらが結合する炭素原子と共に 6員の芳香族炭化水素環 (メチル基 などの置換基を有していてもよい)を形成しており、 R12〜R17は水素原子またはメチ ル基、より好ましくは水素原子であることも特に好ま 、。
[0049] L2の具体例としては、下式 (L2— 1)〜(L2— 4)で表される配位子が挙げられるが、 本発明はこれらに限定されるものではない。
[0050] [化 7]
Figure imgf000013_0001
( L 2 一 1 )
2, 2, 一ビビリジン(bpy)
[0051] [化 8]
Figure imgf000014_0001
(L2 —2)
1, 10—フエナント口リン(phen)
[0052] [化 9]
Figure imgf000014_0002
(L2 一 3)
2- (2—ピリジ-ル)キノリン (pq)
[0053] [化 10]
Figure imgf000014_0003
(L2 一 4)
2, 2,ービキノリン(biq)
但し、式 (L2— 1)〜(L2— 4)中の複素環およびベンゼン環は置換基を有していても よい。置換基としては、炭素数 6以下のアルキル基、炭素数 6以下のアルコキシ基、メ チル基などの置換基を有して 、てもよ 、フエ-ル基、水酸基などが挙げられる。
[0054] BLは架橋配位子であって、ヘテロ原子を含む環状構造を有するものである。そし て、この環状構造 (複素共役環)に含まれるヘテロ原子が M1及び M2に配位する配位 原子である。ヘテロ原子としては、窒素、酸素、硫黄、燐などが挙げられる。 [0055] BLは、四座配位子であることが好ましぐさらに好ましくはァニオン性である。また、
BLは、環状構造 (複素共役環)上に置換基を有しても、有しなくてもよい。
[0056] BLとしては、下式(BL—A)で表されるものが挙げられる。
[0057] [化 11]
Figure imgf000015_0001
( B L - A) 式中、 R31、 R32及び R33は水素原子または置換もしくは無置換の炭化水素基を表す 力 または、これらの二つ以上が一緒になつてそれらが結合する炭素原子と共に置 換もしくは無置換の芳香族炭化水素環または置換もしくは無置換の脂肪族炭化水素 環を形成しており、 R34、 R35及び R36は水素原子または置換もしくは無置換の炭化水 素基を表すか、または、これらの二つ以上が一緒になつてそれらが結合する炭素原 子と共に置換もしくは無置換の芳香族炭化水素環または置換もしくは無置換の脂肪 族炭化水素環を形成して ヽる。
[0058] R31〜R36は好ましくは水素原子、アルキル基、アルコキシ基であり、水素原子、アル キル基であることがより好ましい。アルキル基としては、炭素数 6以下のものが好ましく 、メチル基、ェチル基がより好ましい。また、アルコキシ基としては、炭素数 6以下のも のが好ましぐメトキシ基、エトキシ基がより好ましい。
[0059] また、 R31〜R36の隣接する二つが一緒になつてそれらが結合する炭素原子と共に 6 員の芳香族炭化水素環 (置換基を有して 、てもよ 、)を形成して 、ることも好ま 、。 芳香族炭化水素環の置換基としては、アルキル基 (メチル基、ェチル基など)、アルコ キシ基 (メトキシ基、エトキシ基など)などが挙げられる。
[0060] R31〜R36は水素原子またはメチル基であることが特に好ましぐ R31〜R36は水素原 子であることがさらに好ましい。
[0061] また、 BLとしては、下式(BL— B)で表されるものも挙げられる。 [0062] [化 12]
Figure imgf000016_0001
( B L - B ) 式中、 R41及び R42は水素原子または置換もしくは無置換の炭化水素基を表すか、 または、これらが一緒になつてそれらが結合する炭素原子と共に置換もしくは無置換 の芳香族炭化水素環または置換もしくは無置換の脂肪族炭化水素環を形成しており 、 R43及び R44は水素原子または置換もしくは無置換の炭化水素基を表すか、または 、これらが一緒になつてそれらが結合する炭素原子と共に置換もしくは無置換の芳香 族炭化水素環または置換もしくは無置換の脂肪族炭化水素環を形成している。
[0063] R41〜R44は好ましくは水素原子、アルキル基、アルコキシ基であり、水素原子、アル キル基であることがより好ましい。アルキル基としては、炭素数 6以下のものが好ましく 、メチル基、ェチル基がより好ましい。また、アルコキシ基としては、炭素数 6以下のも のが好ましぐメトキシ基、エトキシ基がより好ましい。
[0064] また、 R41と R42、 R43と R44が一緒になつてそれらが結合する炭素原子と共に 6員の 芳香族炭化水素環 (置換基を有して ヽてもよ ヽ)を形成して ヽることも好ま ヽ。芳香 族炭化水素環の置換基としては、アルキル基 (メチル基、ェチル基など)、アルコキシ 基 (メトキシ基、エトキシ基など)などが挙げられる。
[0065] R41〜R44は水素原子またはメチル基であることが特に好ましぐ R41〜R44は水素原 子であることがさらに好ましい。また、 R41と R42、 R43と R44が一緒になつてそれらが結 合する炭素原子と共に 6員の芳香族炭化水素環 (メチル基などの置換基を有して!/、 てもよ 、)を形成して 、ることも特に好まし 、。
[0066] 上式(BL— B)で表されるもの中では、下式(BL— C)で表されるものが好ましい。
[0067] [化 13]
Figure imgf000017_0001
( B L - C ) 式中、 R51、 R5 RM及び 4は水素原子または置換もしくは無置換の炭化水素基 を表すか、または、これらの二つ以上が一緒になつてそれらが結合する炭素原子と共 に置換もしくは無置換の芳香族炭化水素環または置換もしくは無置換の脂肪族炭化 水素環を形成しており、 R55、 R56、 R57及び R58は水素原子または置換もしくは無置換 の炭化水素基を表すか、または、これらの二つ以上が一緒になつてそれらが結合す る炭素原子と共に置換もしくは無置換の芳香族炭化水素環または置換もしくは無置 換の脂肪族炭化水素環を形成して ヽる。
[0068] R51〜R58は好ましくは水素原子、アルキル基、アルコキシ基であり、水素原子、アル キル基であることがより好ましい。アルキル基としては、炭素数 6以下のものが好ましく 、メチル基、ェチル基がより好ましい。また、アルコキシ基としては、炭素数 6以下のも のが好ましぐメトキシ基、エトキシ基がより好ましい。
[0069] また、 R51〜R58の隣接する二つが一緒になつてそれらが結合する炭素原子と共に 6 員の芳香族炭化水素環 (置換基を有して 、てもよ 、)を形成して 、ることも好ま 、。 芳香族炭化水素環の置換基としては、アルキル基 (メチル基、ェチル基など)、アルコ キシ基 (メトキシ基、エトキシ基など)などが挙げられる。
[0070] R51〜R58は水素原子またはメチル基であることが特に好ましぐ R51〜R58は水素原 子であることがさらに好ましい。
[0071] BLの具体例としては、下式(BL— 1)〜(BL— 4)で表されるものが挙げられるが、 本発明はこれらに限定されるものではない。
[0072] [化 14] >-
(BL- 1)
2, 2, 一ビビリミジン(bpm)
[0073] [化 15]
Figure imgf000018_0001
(BL- 2) テトラチアフルバレン (TTF)
[0074] [化 16] ノ N
〜N N一
(BL- 3)
2, 2, 一ビイミダゾラト(Bilm)
[0075] [化 17]
Figure imgf000018_0002
(BL-4) 2, 2, 一ビベンズイミダゾラト(BiBzIm) 但し、式 (BL— 1)〜(BL— 4)中の複素環およびベンゼン環は置換基を有していて もよい。置換基としては、炭素数 6以下のアルキル基、炭素数 6以下のアルコキシ基 などが挙げられ、また、式 (BL— 4)中のベンゼン環上の隣接する二つの炭素原子が 一緒になつて新たなベンゼン環 (置換基を有して 、てもよ 、)を形成して 、てもよ!/、。
[0076] 光電変換素子に用いる金属錯体色素である場合、 BLが上式 (BL— 3)、または (B L-4)で表される配位子であることが好まし!/、。
[0077] また、 (L1) M^BD M' CL2) (X) は、水または有機溶媒を結晶溶媒として含んで
2 2 n
いてもよい。有機溶媒としては、 DMSO、ァセトニトリル、 DMF、 DMAC、メタノール などが挙げられる。尚、結晶溶媒の数は特に規定されない。
[0078] Xは対イオンであり、錯体 [ (L1) M1 (BL) M2 (L2) ]がカチオンであれば対イオンは
2 2
ァニオン、錯体 [ (L1) M^BD M' CL2) ]がァニオンであれば対イオンはカチオンで
2 2
ある。ここに nは、錯体の電荷を中和するのに必要な対イオンの数を表す。
[0079] Xの具体例として、対イオンがァ-オンの場合、へキサフルォロリン酸イオン、過塩 素酸イオン、テトラフエ-ルホウ酸イオン、テトラフルォロホウ酸イオン、トリフルォロメタ ンスルホン酸イオン、チォシアン酸イオン、硫酸イオン、硝酸イオン、および塩化物ィ オン、ヨウ化物イオンなどのハロゲン化物イオンなどが挙げられる。
[0080] Xの具体例として、対イオンがカチオンの場合、アンモ-ゥムイオン、テトラブチルァ ンモニゥムイオン、ナトリウムイオンなどのアルカリ金属イオン、およびプロトンなどが 挙げられる。
[0081] 金属錯体色素としては、特に、 L1が上式 (L1 1)で表される配位子(一 COOHの Hが脱離して 、るもの、複素環およびベンゼン環がさらに置換基を有して 、るものも 含む)であり、 L2が上式 (L2- 1)または (L2— 2)で表される配位子 (複素環およびべ ンゼン環が置換基を有して 、るものも含む)であり、 BLが上式 (BL— 3)または(BL— 4)で表される配位子 (複素環およびベンゼン環が置換基を有して!/ヽるものも含む)で あり、 M1及び M2がルテニウム(Ru)、オスミウム(Os)、コバルト(Co)、ニッケル(Ni)、 銅 (Cu)または鉄 (Fe)であるものが好ま U、。
[0082] 本発明の (L1) M^BD M^L2) (X) で示される非対称な二核金属錯体の具体例
2 2 n
としては、下式 (D— 1)〜(D— 16)で表されるものが挙げられる力 本発明はこれら に限定されるものではない。
[0083] [化 18]
Figure imgf000020_0001
(D— 1)
[(H dcbpy) Ru (Bilm) Ru (bpy) ] (CIO )
2 2 2 4
[0084] [化 19]
Figure imgf000020_0002
(D-2)
[(H dcbpy) (Hdcbpy) Ru (Bilm) Ru (bpy) ] (PF )
2 2 6
[0085] [化 20]
Figure imgf000021_0001
(D-3)
[(H dcbiq) (Hdcbiq) Ru (Bilm) Ru (bpy) ] (PF )
2 2 6
[0086] [化 21]
Figure imgf000021_0002
(D-4)
[(H dcbpy) (Hdcbpy) Ru (BiBzIm) Ru (bpy) ] (PF )
2 2 6
[0087] [化 22]
Figure imgf000022_0001
(D-5)
[(H dcbpy) (Hdcbpy) Ru (BiBzIm) Ru (bpy) ] (BF )
[0088] [化 23]
(BPh4")
Figure imgf000022_0002
(D— 6)
[(H dcbpy) (Hdcbpy) Ru (BiBzIm) Ru (bpy) ] (BPh )
[0089] [化 24]
Figure imgf000023_0001
(D- 7)
[(H dcbpy) (Hdcbpy) Ru (BiBzIm) Ru (bpy) ] (OSO CF )
[0090] [化 25]
Figure imgf000023_0002
(D-8)
[(H dcbpy) (Hdcbpy) Ru (BiBzIm) Ru (bpy) ] (CIO )
[0091] [化 26]
Figure imgf000024_0001
(D- 9)
[(H dcbpy) (Hdcbpy) Ru (BiBzIm) Ru (bpy) ] (NO )
[0092] [化 27]
Figure imgf000024_0002
(D— 10)
[(H dcbpy) (Hdcbpy) Ru (BiBzIm) Ru (bpy) ] (I)
[0093] [化 28]
Figure imgf000025_0001
Figure imgf000025_0002
(D- 12)
[(H dcbpy) (Hdcbpy) Ru (BiBzIm) Ru (biq) ] (PF )
2 2 6 化 30]
Figure imgf000026_0001
6 pyp) ()py (H) u ( dcbH )dcb RudmbPF
Figure imgf000027_0001
(D— 1 5 )
[ (H dcbpy) (Hdcbpy) Ru (BiBzIm) Os (bpy) ] (PF )
[0098] [化 33]
Figure imgf000027_0002
(D— 1 6 )
[ (Hdcbpy) Ru (bpm) Ru (bpy) ] (PF )
2 2 6 2
本発明の金属錯体は、 Inorganic Chemistry,第 17卷、第 9号、第 2660〜266 6頁、 1978年、 Journal of the American Chemical Society、第 115卷、第 6382〜6390頁、 1993年等の文献中に引用された方法を参考にして製造すること ができる。
[0099] 本発明の金属錯体 (L1) M^BD M^L2) (X) は、例えば、次のようにして二つの
2 2 n
単核金属錯体 (L1) M lと (BL) M2 (L2) を合成し、これらを反応させることにより
2 2 2
合成することができる。 [0100] L1が上式 (1^— 1)であり、 M1が Ruである単核金属錯体 (L1) M'Cl (M^— l)は
2 2
次の合成スキームに従って合成することができる。
[0101] [化 34]
Figure imgf000028_0001
上式において、 L1がカルボキシル基以外の置換基を有するもの、 M1が Ru以外の 遷移金属であるものも同様にして合成することができる。
[0102] また、 L1が上式 (1^—4)であり、 M1が Ruである単核金属錯体 (L1) M'Cl (M'C -
2 2
2)は次の合成スキームに従って合成することができる。
[0103] [化 35]
Figure imgf000028_0002
上式において、 L1がカルボキシル基以外の置換基を有するもの、 M1が Ru以外の 遷移金属であるものも同様にして合成することができる。
[0104] 一方、単核金属錯体 (BL) M2 (L2) は次の合成スキームに従って合成することがで
2
きる。 [0105] [化 36]
Cl
c
Figure imgf000029_0001
スキーム中の H BLは BL中の二つのへテロ原子(窒素原子など)がプロトン化され
2
た状態を示す。
[0106] 尚、 BLが上式(BL— 1)〜(BL— 4)で表されるもの(置換基を有しているものも含 む)、 L2が上式 (L2— 1)〜 (L24)で表されるもの(置換基を有して 、るものも含む) は何れも、この合成スキームに従って合成することができる。但し、 BLが上式 (BL— 1)で表されるもの(置換基を有しているものも含む)については、後段の NaOMeによ る反応工程は不要で、 M2 (L2) C1と BLを反応させると (BL) M2 (L2) が得られる。
2 2 2
[0107] このようにして合成した(L1) M'Cl (M C)と(BL) M2 (L2) (M )を次の合成スキ
2 2 2
ームに従って反応させ、(L1) M^BD M' CL2) (X) を合成することができる。
2 2 n
[0108] [化 37]
し2
M1— BL ~ M2 (X) r
Li し2 上記の金属錯体は、金属錯体色素として用いることができ、金属錯体色素により増 感された半導体微粒子を用いて、光化学電池を製造することができる。
[0109] 本発明の光電変換素子は、上記の金属錯体色素により増感された半導体微粒子 を含むものである。より具体的には、上記の金属錯体色素により増感された半導体微 粒子を電極上に固定したものである。
[0110] 導電性電極は、透明基板上に形成された透明電極であることが好ましい。導電剤と しては、金、銀、銅、白金、パラジウムなどの金属、錫をドープした酸化インジウム (IT O)に代表される酸化インジウム系化合物、フッ素をドープした酸ィ匕錫 (FTO)に代表 される酸ィ匕錫系化合物、酸ィ匕亜鉛系化合物などが挙げられる。 [0111] 半導体微粒子としては、酸化チタン、酸化亜鉛、または酸ィ匕錫などが挙げられる。 また、酸化インジウム、酸化ニオブ、酸化タングステン、酸化バナジウムや、チタン酸 ストロンチウム、チタン酸カルシウム、チタン酸バリウム、ニオブ酸カリウムなどの複合 酸化物半導体、カドミウムまたはビスマスの硫ィ匕物、カドミウムのセレンィ匕物またはテ ルル化物、ガリウムのリンィ匕物またはヒ素化物なども挙げられる。半導体微粒子として は、酸化物が好ましぐ酸化チタン、酸化亜鉛、または酸化錫、およびこれらのいず れか 1種以上を含む混合物が特に好ま ヽ。
[0112] 半導体微粒子の一次粒子径は特に限定されないが、通常、 l〜5000nm、好ましく は 2〜500nm、特に好ましくは 5〜300nmである。
[0113] 本発明の光化学電池は、上記の光電変換素子を用いたものである。より具体的に は、電極として上記の本発明の光電変換素子と対極とを有し、その間に電解質層を 有するものである。本発明の光電変換素子に用いた電極と対極の少なくとも片方は 透明電極である。
[0114] 対極は光電変換素子と組み合わせて光化学電池としたときに正極として作用するも のである。対極としては、上記導電性電極と同様に導電層を有する基板を用いること もできるが、金属板そのものを使用すれば、基板は必ずしも必要ではない。対極に用 いる導電剤としては、白金や炭素などの金属、フッ素をドープした酸ィ匕錫などの導電 性金属酸ィ匕物が挙げられる。
[0115] 電解質 (酸化還元対)としては特に限定されず、公知のものをいずれも用いることが できる。例えば、ヨウ素とヨウ化物(例えば、ヨウ化リチウム、ヨウ化カリウム等の金属ョ ゥ化物、またはヨウ化テトラブチルアンモニゥム、ヨウ化テトラプロピルアンモニゥム、ョ ゥ化ピリジ-ゥム、ヨウ化イミダゾリゥム等の 4級アンモ-ゥム化合物のヨウ化物)の組 み合わせ、臭素と臭化物の組み合わせ、塩素と塩化物の組み合わせ、アルキルビオ ローゲンとその還元体の組み合わせ、キノン Zハイドロキノン、鉄 (Π)イオン Z鉄 (ΠΙ) イオン、銅(I)イオン Z銅(π)イオン、マンガン(π)イオン Zマンガン(in)イオン、コバ ルトイオン (π) zコバルトイオン (in)等の遷移金属イオン対、フエロシアン Zフエリシ アン、四塩ィ匕コバルト (Π) Z四塩ィ匕コバルト (πι)、四臭化コバルト (Π) Z四臭化コバ ルト(ΠΙ)、六塩化イリジウム (Π) Z六塩化イリジウム (ΠΙ)、六シァノ化ルテニウム (Π) Z六シァノ化ルテニウム(in)、六塩化ロジウム(π) Z六塩化ロジウム(in)、六塩化レ ニゥム(in) Z六塩化レニウム(IV)、六塩化レニウム(IV) Z六塩化レニウム (V)、六 塩ィ匕オスミウム (in) Z六塩ィ匕オスミウム (IV)、六塩ィ匕オスミウム (IV) Z六塩化ォスミ ゥム(V)等の錯イオンの組み合わせ、コノ レト、鉄、ルテニウム、マンガン、ニッケル、 レニウムといった遷移金属とビビリジンやその誘導体、ターピリジンやその誘導体、フ ェナント口リンやその誘導体といった複素共役環及びその誘導体で形成されているよ うな錯体類、フエ口セン Zフエロセ -ゥムイオン、コバルトセン Zコバルトセ-ゥムィォ ン、ルテノセン Zルテノセゥムイオンと 、つたシクロペンタジェン及びその誘導体と金 属の錯体類、ポルフィリン系化合物類等が使用できる。好ましい電解質は、ヨウ素とョ ゥ化リチウムや 4級アンモ-ゥム化合物のヨウ化物とを組み合わせた電解質である。 電解質の状態は、有機溶媒に溶解した液体であっても、溶融塩、ポリマーマトリックス に含浸漬した 、わゆるゲル電解質や、固体電解質であってもよ 、。
[0116] 本発明の光化学電池は、従来力 適用されている方法によって製造することができ る。
[0117] 例えば、透明電極上に酸ィ匕物等の半導体微粒子のペーストを塗布し、加熱焼成し 半導体微粒子の薄膜を作製する。半導体微粒子の薄膜がチタ-ァの場合、温度 45 0°C、反応時間 30分で焼成する。この薄膜の付いた透明電極を色素溶液に浸漬し、 色素を担持して光電変換素子を作製する。さらにこの光電変換素子と対極として白 金あるいは炭素を蒸着した透明電極を合わせ、その間に電解質溶液を入れること〖こ より本発明の光化学電池を製造することが出来る。
また、本発明の二核金属錯体は、有機 ELの電子輸送層の材料としても用いられる 実施例
[0118] 本発明を以下の実施例によりさらに詳細に説明するが、本発明はそれらに限定さ れるものではない。
[0119] 尚、構造の確認に用いた元素分析測定は株式会社柳本製作所製ャナコ MT— 5、 あるいは株式会社ジエイ ·サイエンス ·ラボ製マイクロコーダ一 JM 10を、1 H— NMR測 定は日本電子株式会社製 AL— 400型 FT— NMRを用いて測定を行った。 [0120] (実施例 1)二核金属錯体 [ (H dcbpy) Ru (Bilm) Ru (bpy) ] (CIO ) (D— 1)の
2 2 2 4 2 合成
1.単核金属錯体 (H dcbpy) RuCl (M^— 1)の合成
2 2 2
窒素雰囲気下、 500ml三口フラスコに、市販の RuCl · 3Η 0 (2. 53g, 9. 68mm
3 2
ol)、 H dcbpy (4. 50g, 18. 4mmol)、および N, N—ジメチルホルムアミドを 300m
2
1加え、 2. 45GHzのマイクロ波照射下 45分間還流した。放冷後ろ過し、得られたろ 液を減圧乾固した。得られた残留物をアセトン Zジェチルエーテル(1 :4)で洗浄後、 2molZl塩酸 300mlを加え、 20分間超音波攪拌、さらに超音波攪拌止め 2時間攪 拌した。攪拌終了後、不溶物をろ取し、 2molZl塩酸、アセトン Zジェチルエーテル ( 1 :4)およびジェチルエーテルで洗浄した。真空乾燥後、 5. 75gの M C— 1を得た( 収率 85%)。
[0121] [化 38]
Figure imgf000032_0001
(M 1C-1 )
2.単核金属錯体 (Bilm) Ru (bpy) (M2C— 1)の合成
2
窒素雰囲気下、 100ml三口フラスコに、 Inorg. Synth. , volXXIV, 291 (1986) に記載の方法で合成した Ru (bpy) CI (0. 501g, 0. 96mmol)、J. Chem. Soc.
2 2
, 4790 (1961)に記載の方法で合成した 2, 2,一ビイミダゾール(BilmH ) (0. 156
2 g, 1. 16mmol)、およびエタノール Z水(1 : 1)を 50mlカ卩え、 2. 45GHzのマイクロ 波照射下 30分間還流した。放冷後ろ過し、得られたろ液のエタノールを減圧留去し た。得られた水溶液に NH PF水溶液を加え、対ァ-オン PF—の塩として錯体を析
4 6 6
出させた。析出物をろ取後水洗し、メタノール力 再結晶した。析出した結晶をろ別 後、冷メタノールおよびジェチルエーテルで洗浄した。真空乾燥後、 0. 575gの [ (Bi ImH )Ru(bpy) ] (PF ) を得た(収率 70%)。
2 2 6 2
[0122] 次に、窒素雰囲気下、 50mlシュレンク管に上記により得られた [ (BilmH )Ru (bp
2 y) ] (PF ) (0. 505g, 0. 59mmol)、およびメタノールを 30ml加え、 4molZlナトリ
2 6 2
ゥムメトキシドメタノール溶液を 1. 48ml滴下した。この懸濁液を 30分間還流し、その 後室温に冷却した。不溶解物をろ取し、冷メタノール、およびジェチルエーテルで洗 浄した。真空乾燥後、濃褐色粉末を 0. 251g得た。
[0123] さらに、窒素雰囲気下、 20mlシュレンク管に得られた濃褐色粉末 0. 139g、および メタノールを 5mlカ卩え、 4molZlナトリウムメトキシドメタノール溶液を 0. 5ml滴下し、 再度 1時間還流した。放冷後、不溶解物をろ取し、冷メタノール、およびジェチルェ 一テルで洗浄した。真空乾燥後、 M2C— 1を 96. 8mg得た。
[0124] [化 39]
Figure imgf000033_0001
(M2C-1 )
3. D— 1の合成
窒素雰囲気下、 100ml三口フラスコに、 M C— 1 (83. 9mg, 0. 12mmol)、およ びエタノール Z水(2 : 1)を 60mlカ卩え、 ImolZl水酸化ナトリウム水溶液を 0. 5ml滴 下し溶解させた。この溶液に M2C— 1 (78. lmg, 0. 13mmol)を加え、 2. 45GHz のマイクロ波照射下 15分間還流した。放冷後、極少量の不溶解物をろ別後、ろ液の エタノールを減圧留去した。得られた水溶液に 0. 5molZl過塩素酸水溶液を PH2. 5になるまで滴下した。析出した錯体をろ取し、 pH2. 5過塩素酸水溶液、アセトン Z ジェチルエーテル (4 : 1)、およびジェチルエーテルで洗浄した。真空乾燥後、 D- 1 を 0. 110g得た (収率 66%)。元素分析値は三水和物として良好な一致を示した。 [0125] 元素分析 観測値 C:43.50, H:3.50, N:12.30、
理論値 C:43.30, H:3.10, N:12.10。
[0126] — NMR ^ベクトルを図 1に示す。
[0127] (実施例 2)二核金属錯体 [ (H dcbpy) (Hdcbpy) Ru (Bilm) Ru (bpy) ] (PF ) (
2 2 6
D— 2)の合成
窒素雰囲気下、 100ml三口フラスコに、 M C— 1(62.4mg, 0.090mmol)、およ びエタノール Z水(1:1)を 30mlカ卩え、 ImolZl水酸化ナトリウム水溶液を 0.4ml滴 下し溶解させた。この溶液に M2C— 1(58.4mg, 0.097mmol)を加え、 2.45GH zのマイクロ波照射下 15分間還流した。放冷後ろ過し、ろ液のエタノールを減圧留去 した。得られた水溶液に 0.5molZlへキサフルォロリン酸水溶液を PH2.5になるま で滴下した。析出した錯体をろ取し、 pH2.5へキサフルォロリン酸水溶液、アセトン Zジェチルエーテル (4:1)、およびジェチルエーテルで洗浄した。真空乾燥後、 D 2を 49.3mg得た (収率 41%)。元素分析値は四水和物として良好な一致を示し た。
[0128] 元素分析 観測値 C:44.60, H:3.50, N:12.60、
理論値 C:44.50, H:3.20, N:12.40。
[0129] — NMR ^ベクトルを図 2に示す。
[0130] (実施例 3)二核金属錯体 [ (H dcbiq) (Hdcbiq) Ru (Bilm) Ru (bpy) ] (PF ) (D
2 2 6 3)の合成
1.単核金属錯体 (H dcbiq) RuCl (M C— 2)の合成
2 2 2
窒素雰囲気下、 100ml三口フラスコに、 J. Chem. Soc. , Dalton Trans.204 ( 1973)に記載の方法で合成した RuCl (DMSO) (0.468g, 0.97mmol)、巿販
2 4
の K dcbiq (0.91g, 1.92mmol)、およびエチレングリコールを 40ml加え、 2.45
2
GHzのマイクロ波照射下 3分間還流した。放冷後ろ過し、得られたろ液に 0. Imol/ 1硝酸を pH2.5になるまで滴下した。析出した錯体をろ取し、 pH2.5硝酸、アセトン Zジェチルエーテル (4:1)、およびジェチルエーテルで洗浄した。真空乾燥後、 M1 C— 2を 0.72g得た(収率 83%)。
[0131] [化 40]
Figure imgf000035_0001
(M1C-2)
2. D— 3の合成
窒素雰囲気下、 100ml三口フラスコに、 MiC— S^e. Omg, 0. llmmol)、およ びエタノール Z水(1:1)を 100ml加え、 ImolZl水酸化ナトリウム水溶液を 0.45ml 滴下し溶解させた。この溶液に M2C— 1(70.8mg, 0.12mmol)を加え、 2.45GH zのマイクロ波照射下 15分間還流した。放冷後ろ過し、ろ液のエタノールを減圧留去 した。得られた懸濁液をろ過し、ろ液に 0.5molZlへキサフルォロリン酸水溶液を P H2.5になるまで滴下した。析出した錯体をろ取し、 pH2.5へキサフルォロリン酸水 溶液、アセトン Zジェチルエーテル (4:1)、およびジェチルエーテルで洗浄した。真 空乾燥後、 D— 3を 95.2mg得た (収率 60%)。元素分析値は無水物として良好な 一致を示した。
[0132] 元素分析 観測値 C:54.30, H: 3.20, N: 11.40、
理論値 C:53.59, H:2.93, N:ll.36。
[0133] — NMR ^ベクトルを図 3に示す。
[0134] (実施例 4)二核金属錯体 [ (H dcbpy) (Hdcbpy) Ru (BiBzIm) Ru (bpy) ] (PF )
2 2 6
(D— 4)の合成
1.単核金属錯体 (BiBzIm) Ru (bpy) (Μ¾— 2)の合成
2
窒素雰囲気下、 100ml三口フラスコに、 Ru (bpy) CI (0.505g, 0.97mmol)、I
2 2
norg. Chem. , 34, 5979 (1995)を参照して合成した 2, 2,—ビベンズイミダゾー ル(BiBzImH ) (0.343g, 1.46mmol)、およびエチレングリコールを 20mlカ卩え、 2 . 45GHzのマイクロ波照射下 5分間還流した。放冷後、 20mlの水をカ卩え、未反応の ビベンズイミダゾールを析出させた。ろ過後得られたろ液に NH PF水溶液を加え、
4 6
対ァニオン PF—の塩として錯体を析出させた。析出物をろ取後水洗し、メタノールか
6
ら再結晶した。析出した結晶をろ別後、冷メタノールおよびジェチルエーテルで洗浄 した。真空乾燥後、 0. 905gの [ (BiBzImH )Ru(bpy) ] (PF ) を得た(収率 96%)
2 2 6 2
[0135] 次に、窒素雰囲気下、 50mンュレンク管に上記により得られた [ (BiBzImH )Ru(
2 bpy) ] (PF ) (0. 877g, 0. 90mmol)、およびメタノールを 30ml加え、 28%ナトリ
2 6 2
ゥムメトキシドメタノール溶液を 1. 8ml滴下した。この懸濁液を 1時間還流し、その後 室温に冷却した。不溶解物をろ取し、水、冷メタノール、およびジェチルエーテルで 洗净した。真空乾燥後、 Μ — 2を 0. 587g得た (収率 96%)。
[0136] [化 41]
Figure imgf000036_0001
(M2C-2)
2. D— 4の合成
窒素雰囲気下、 300ml三口フラスコに、 Mic—KO. 509g, 0. 73mmol)、および エタノール Z水(1 : 1)を 100ml加え、 ImolZl水酸化ナトリウム水溶液を 3. 2ml滴 下し溶解させた。この溶液に M2C— 2 (0. 522g, 0. 77mmol)を加え、 2. 45GHz のマイクロ波照射下 30分間還流した。放冷後、少量の不溶解物をろ別後、ろ液のェ タノールを減圧留去した。得られた懸濁液をろ過し、ろ液に 0. 5molZlへキサフルォ 口リン酸水溶液を PH2. 5になるまで滴下した。析出した錯体をろ取し、 pH2. 5へキ サフルォロリン酸水溶液、アセトン Zジェチルエーテル(4 : 1)、およびジェチルエー テルで洗浄した。真空乾燥後、 D— 4を 0. 873g得た (収率 85%)。元素分析値は二 水和物として良好な一致を示した。
[0137] 元素分析 観測値 C:49.07, H:3.29, N:ll.89、
理論値 C:49.23, H:3.06, N:ll.88。
[0138] — NMR ^ベクトルを図 4に示す。
[0139] (実施例 5)D—5, D-6, D— 7, D— 8, D— 9および D— 10の合成
上記実施例 4の D— 4の合成において、 0.5molZlへキサフルォロリン酸水溶液お よび pH2.5へキサフルォロリン酸水溶液の代わりに対ァ-オンに対応する酸をそれ ぞれ用いた以外は同様にして D— 5, D-7, D-8, D— 9および D— 10を合成した 。 D— 6については対応する酸がないため、 0.5molZl塩酸水溶液および PH2.5 塩酸水溶液を用い、 0.5mol/l塩酸水溶液の滴下前に M^— 1の 10倍モルのテト ラフエ-ルほう酸ナトリウムを加えて合成した。 D— 5, D— 6, D-7, D-8, D— 9お よび D— 10の構造は元素分析および1 H— NMRスペクトルにて同様に確認した。
[0140] D— 5の元素分析値は、三水和物として良好な一致を示した。
[0141] 元素分析 観測値 C:50.66, H:3.26, N:12.18、
理論値 C:50.66, H:3.30, N:12.22。
[0142] D— 6の元素分析値は、四水和物として良好な一致を示した。
[0143] 元素分析 観測値 C:60.15, H:3.81, N:10.34、
理論値 C:60.59, H:4.15, N:10.34。
[0144] D—7の元素分析値は、四水和物として良好な一致を示した。
[0145] 元素分析 観測値 C:48.87, H: 3.04, N: 11.60、
理論値 C:48.69, H:3.26, N:ll.55。
[0146] D— 8の元素分析値は、四水和物として良好な一致を示した。
[0147] 元素分析 観測値 C:49.40, H: 3.10, N:ll.85、
理論値 C:49.56, H:3.37, N:ll.96。
[0148] D— 9の元素分析値は、六水和物として良好な一致を示した。
[0149] 元素分析 観測値 C:49.46, H:3.34, N:12.41、
理論値 C:49.61, H:3.66, N:12.97。
[0150] D— 10の元素分析値は、二水和物として良好な一致を示した。 [0151] 元素分析 観測値 C :49. 70, H : 3. 23, N : l l. 89、
理論値 C :49. 86, H : 3. 10, N : 12. 03。
[0152] D- 5, D-6, D— 7, D— 8, D— 9および D— 10の1 H— NMR ^ベクトルをそれぞ れ図 5,図 6,図 7,図 8,図 9および図 10に示す。
[0153] (実施例 6)二核金属錯体 [ (H dcbpy) (Hdcbpy) Ru (BiBzIm) Ru (phen) ] (PF
2 2
) (D—11)の合成
6
1·単核金属錯体(BiBzIm) Ru (phen) (Μ — 3)の合成
2
窒素雰囲気下、 100ml三口フラスコに、 Inorg. Synth. , volXXIV, 291 (1986) を参照して合成した Ru (phen) CI (0· 509g, 0· 90mmol)、 2, 2,一ビベンズイミ
2 2
ダゾール(BiBzImH ) (0. 252g, 1· 08mmol)、およびエタノール
2 Ζ水(1: 1)を 50 ml加え、 2. 45GHzのマイクロ波照射下 30分間還流した。放冷後ろ過し、得られた ろ液のエタノールを減圧留去した。得られた懸濁液をろ過し、ろ液に NH PF水溶液
4 6 を加え、対ァニオン PF—の塩として錯体を析出させた。析出物をろ取後水洗し、メタ
6
ノール力も再結晶した。析出した結晶をろ別後、冷メタノールおよびジェチルエーテ ルで洗浄した。真空乾燥後、 0. 545gの [ (BiBzImH )Ru (phen) ] (PF ) を得た(
2 2 6 2 収率 62%)。
[0154] 次に、窒素雰囲気下、 50mlシュレンク管に上記により得られた [ (BiBzImH )Ru(
2 phen) ] (PF ) (0. 483g, 0. 49mmol)、およびメタノールを 20ml加え、 28%ナト
2 6 2
リウムメトキシドメタノール溶液を 0. 95ml滴下した。この懸濁液を 1時間還流し、その 後室温に冷却した。不溶解物をろ取し、冷メタノール、水、およびジェチルエーテル で洗浄した。真空乾燥後、 Μ — 3を 0. 334g得た (収率 91%)。
[0155] [化 42]
Figure imgf000039_0001
(M2C-3)
2. D— 11の合成
窒素雰囲気下、 100ml三口フラスコに、 Mic—KO. 106g, 0. 15mmol)、および エタノール Z水(2 : 1)を 60mlカ卩え、 ImolZl水酸化ナトリウム水溶液を 0. 61ml滴 下し溶解させた。この溶液に M2C— 3 (0. 114g, 0. 15mmol)をカロえ、 2. 45GHz のマイクロ波照射下 15分間還流した。放冷後、少量の不溶解物をろ別後、ろ液のェ タノールを減圧留去した。得られた懸濁液をろ過し、ろ液に 0. 5molZlへキサフルォ 口リン酸水溶液を PH2. 5になるまで滴下した。析出した錯体をろ取し、 pH2. 5へキ サフルォロリン酸水溶液、アセトン Zジェチルエーテル(4 : 1)、およびジェチルエー テルで洗浄した。真空乾燥後、 D— 11を 0. 173g得た (収率 76%)。元素分析値は 四水和物として良好な一致を示した。
[0156] 元素分析 観測値 C :49. 60, H : 3. 10, N : l l. 20、
理論値 C :49. 67, H : 3. 16, N : l l. 21。
[0157] — NMR ^ベクトルを図 11に示す。
[0158] (実施例 7)二核金属錯体 [ (H dcbpy) (Hdcbpy) Ru (BiBzIm) Ru (biq) ] (PF )
2 2 6
(D— 12)の合成
1.単核金属錯体 (BiBzIm) Ru (biq) (Μ¾— 4)の合成
2
窒素雰囲気下、 100ml三口フラスコに、 Inorg. Synth. , volXXIV, 291 (1986) を参照して合成した Ru (biq) CI (0. 228g, 0. 33mmol)、 2, 2, 一ビベンズイミダ
2 2
ゾール(BiBzImH ) (0. 153g, 0. 65mmol)、およびエチレングリコールを 10mlカロ
2
え、 2. 45GHzのマイクロ波照射下 5分間還流した。放冷後、 10mlの水をカ卩え、未反 応のビベンズイミダゾールを析出させた。ろ過後得られたろ液に NH PF水溶液を加 え、対ァニオン PF—の塩として錯体を析出させた。析出物をろ取し、水およびジェチ
6
ルエーテルで洗浄した。真空乾燥後、 0. 242gの [ (BiBzImH )Ru (biq) ] (PF )
2 2 6 2 を得た (収率 64%)。
[0159] 次に、窒素雰囲気下、 20mlシュレンク管に上記により得られた [ (BiBzImH )Ru(
2 phen) ] (PF ) (0. 205g, 0. 18mmol)、およびメタノールを 20ml加え、 28%ナト
2 6 2
リウムメトキシドメタノール溶液を 0. 43ml滴下した。この懸濁液を 1. 5時間還流し、そ の後室温に冷却した。不溶解物をろ取し、冷メタノール、水、およびジェチルエーテ ルで洗浄した。真空乾燥後、 Μ — 4を 0. 140g得た (収率 81%)。
[0160] [化 43]
Figure imgf000040_0001
(M2C-4)
2. D— 12の合成
窒素雰囲気下、 100ml三口フラスコに、 M C— 1 (75. 4mg, 0. l lmmol)、およ び N, N—ジメチルホルムアミド Z水(3 : 1)を 40ml加え、 ImolZl水酸化ナトリウム水 溶液を 0. 45ml滴下し溶解させた。この溶液に M2C— 4 (0. 114g, 0. 12mmol)を 加え、 2. 45GHzのマイクロ波照射下 15分間還流した。放冷後ろ過し、ろ液を減圧 乾固した。得られた残留物に水 30mlを加え溶解し、不溶解物をろ過により除去した 。得られたろ液に 0. 5molZlへキサフルォロリン酸水溶液を PH2. 5になるまで滴下 した。析出した錯体をろ取し、 pH2. 5へキサフルォロリン酸水溶液、アセトン Zジェ チルエーテル (4 : 1)、およびジェチルエーテルで洗浄した。真空乾燥後、 D— 12を 0. 143g得た (収率 82%)。元素分析値は二水和物として良好な一致を示した。
[0161] 元素分析 観測値 C : 55. 00, H : 3. 40, N : 10. 50、 理論値 C : 55. 02, H : 3. 18, N : 10. 41。
[0162] — NMR ^ベクトルを図 12に示す。
[0163] (実施例 8)二核金属錯体 [ (H dcbpy) (Hdcbpy) Ru (BiBzIm) Ru (dmbpy) ] (P
2 2
F ) (D— 13)の合成
6
1·単核金属錯体(BiBzIm) Ru (dmbpy) (Μ¾— 5)の合成
2
窒素雰囲気下、 100ml三口フラスコに、 Inorg. Synth. , volXXIV, 291 (1986) を参照して合成した Ru (dmbpy) CI (1· 00g, 1. 79mmol)、 2, 2,一ビベンズイミ
2 2
ダゾール(BiBzImH ) (0. 49g, 2. 09mmol)、およびエチレングリコールを 40ml加
2
え、 2. 45GHzのマイクロ波照射下 5分間還流した。放冷後、 40mlの水をカ卩え、未反 応のビベンズイミダゾールを析出させた。ろ過後得られたろ液に NH PF水溶液を加
4 6 え、対ァニオン PF—の塩として錯体を析出させた。析出物をろ取し、水およびジェチ
6
ルエーテルで洗浄した。真空乾燥後、 1. 58gの [ (BiBzImH )Ru (dmbpy) ] (PF
2 2 6
) を得た (収率 89%)。
2
[0164] 次に、窒素雰囲気下、 50mンュレンク管に上記により得られた [ (BiBzImH )Ru(
2 dmbpy) ] (PF ) (1. OOg, 1. Olmmol)、およびメタノールを 30ml加え、 28%ナト
2 6 2
リウムメトキシドメタノール溶液を 1. 9ml滴下した。この懸濁液を 1時間還流し、その後 室温に冷却した。不溶解物をろ取し、冷メタノール、水、およびジェチルエーテルで 洗净した。真空乾燥後、 Μ — 5を 0. 74g得た (収率 95%)。
[0165] [化 44]
Figure imgf000041_0001
(M2C-5) 2. D— 13の合成
窒素雰囲気下、 100ml三口フラスコに、 MiC—KO. 204g, 0. 29mmol)、および エタノール Z水(1 : 1)を 50mlカ卩え、 ImolZl水酸化ナトリウム水溶液を 1. 2ml滴下 し溶解させた。この溶液に M2C— 5 (0. 228g, 0. 29mmol)を加え、 2. 45GHzの マイクロ波照射下 15分間還流した。放冷後ろ過し、ろ液のエタノールを減圧留去した 。得られた懸濁液をろ過し、ろ液に 0. 5molZlへキサフルォロリン酸水溶液を PH2. 5になるまで滴下した。析出した錯体をろ取し、 pH2. 5へキサフルォロリン酸水溶液 、アセトン Zジェチルエーテル (4 : 1)、およびジェチルエーテルで洗浄した。真空乾 燥後、 D— 13を 0. 366g得た (収率 87%)。元素分析値は無水和物として良好な一 致を示した。
[0166] 元素分析 観測値 C : 51. 80, H : 3. 40, N : l l. 50、
理論値 C : 51. 89, H : 3. 30, N : l l. 71。
[0167] — NMR ^ベクトルを図 13に示す。
[0168] (実施例 9)二核金属錯体 [ (H dcbpy) (Hdcbpy) Ru (TMBiBzIm) Ru (bpy) ] (
2 2
PF ) (D— 14)の合成
6
1.単核金属錯体 (TMBiBzIm) Ru (bpy) (Μ¾— 6)の合成
2
窒素雰囲気下、 100ml三口フラスコに、 Ru (bpy) CI (0. 508g, 0. 98mmol)、I
2 2
norg. Chem. , 34, 5981— 5982 (1995)に記載の方法で合成した 5, 6, 5' , 6' —テトラメチル一 2, 2, 一ビベンズイミダゾール(TMBiBzImH ) (0. 343g, 1. 18m
2
mol)、およびエチレングリコールを 20mlカ卩え、 2. 45GHzのマイクロ波照射下 5分間 還流した。放冷後、 20mlの水を加え、未反応の TMBiBzImHを析出させた。ろ過
2
後得られたろ液に NH PF水溶液を加え、対ァ-オン PF—の塩として錯体を析出さ
4 6 6
せた。析出物をろ取し、水およびジェチルエーテルで洗浄した。真空乾燥後、 0. 96 9gの [ (TMBiBzImH )Ru (bpy) ] (PF ) を得た(収率 99%)。
2 2 6 2
[0169] 次に、窒素雰囲気下、 50mlシュレンク管に上記により得られた [ (TMBiBzImH )
2
Ru(bpy) ] (PF ) (0. 93g, 0. 93mmol)、およびメタノールを 30ml加え、 28%ナ
2 6 2
トリウムメトキシドメタノール溶液を 1. 9ml滴下した。この懸濁液を 1時間還流し、その 後室温に冷却した。不溶解物をろ取し、冷メタノール、水、およびジェチルエーテル で洗浄した。真空乾燥後、 Μ — 6を 0.58g得た (収率 81%)。
[0170] [化 45]
Figure imgf000043_0001
(M2C-6)
2. D— 14の合成
窒素雰囲気下、 100ml三口フラスコに、 MiC—KO.102g, 0.15mmol)、および N, N—ジメチルホルムアミド Z水(5:1)を 60ml加え、 ImolZl水酸化ナトリウム水溶 液を 0.62ml滴下し溶解させた。この溶液に M2C— 6(0.115g, 0. 16mmol)をカロ え、 2.45GHzのマイクロ波照射下 25分間還流した。放冷後ろ過し、得られたろ液を 減圧乾固した。得られた残留物に水 50mlを加え溶解し、不溶解物をろ過により除去 した。得られたろ液に 0.5molZlへキサフルォロリン酸水溶液を PH2.5になるまで 滴下した。析出した錯体をろ取し、 pH2.5へキサフルォロリン酸水溶液、アセトン Z ジェチルエーテル (4:1)、およびジェチルエーテルで洗浄した。真空乾燥後、 D-1 4を 0. 145g得た (収率 67%)。元素分析値は二水和物として良好な一致を示した。
[0171] 元素分析 観測値 C:50.62, H:3.53, N:ll.35、
理論値 C:50.61, H:3.49, N:ll.42。
[0172] — NMR ^ベクトルを図 14に示す。
[0173] (実施例 10)二核金属錯体 [ (H dcbpy) (Hdcbpy) Ru (BiBzIm) Os (bpy) ] (PF
2 2
)(D—15)の合成
6
1.単核金属錯体 (BiBzIm)Os(bpy) (Μ¾— 7)の合成
2
窒素雰囲気下、 100ml三口フラスコに、 Inorg. Chem. , 27, 3195(1988)を参 照して合成した Os (bpy) CI (0.501g, 0.87mmol)、 BiBzImH (0.613g, 2.6 2mmol)、およびエチレングリコールを 20ml加え、 2. 45GHzのマイクロ波照射下 5 分間還流した。放冷後、 20mlの水をカ卩え、未反応の BiBzImHを析出させた。ろ過
2
後得られたろ液に NH PF水溶液を加え、対ァ-オン PF—の塩として錯体を析出さ
4 6 6
せた。析出物をろ取し、水およびジェチルエーテルで洗浄した。真空乾燥後、 0. 79 Ogの [ (BiBzImH ) Os (bpy) ] (PF ) を得た(収率 87%)。
2 2 6 2
[0174] 次に、窒素雰囲気下、 50mlシュレンク管に上記により得られた [ (BiBzImH ) Os (
2 bpy) ] (PF ) (0. 77g, 0. 74mmol)、およびメタノールを 30ml加え、 28%ナトリウ
2 6 2
ムメトキシドメタノール溶液を 1. 45ml滴下した。この懸濁液を 1時間還流し、その後 室温に冷却した。不溶解物をろ取し、冷メタノール、水、およびジェチルエーテルで 洗净した。真空乾燥後、 Μ — 7を 0. 51g得た (収率 89%)。
[0175] [化 46]
Figure imgf000044_0001
(M'C-7)
2. D— 15の合成
窒素雰囲気下、 100ml三口フラスコに、 Mic—KO. 101g, 0. 15mmol)、および N, N—ジメチルホルムアミド Z水(3 : 1)を 40ml加え、 ImolZl水酸化ナトリウム水溶 液を 0. 61ml滴下し溶解させた。この溶液に M2C— 7 (0. 168g, 0. 22mmol)をカロ え、 2. 45GHzのマイクロ波照射下 15分間還流した。放冷後ろ過し、得られたろ液を 減圧乾固した。得られた残留物に水 30mlを加え溶解し、不溶解物をろ過により除去 した。得られたろ液に 0. 5molZlへキサフルォロリン酸水溶液を PH2. 5になるまで 滴下した。析出した錯体をろ取し、 pH2. 5へキサフルォロリン酸水溶液、アセトン Z ジェチルエーテル (4 : 1)、およびジェチルエーテルで洗浄した。真空乾燥後、 D- 1 5を 0. 172g得た (収率 79%)。元素分析値は二水和物として良好な一致を示した。 [0176] 元素分析 観測値 C :46. 80, H : 3. 30, N : 10. 90、
理論値 C :46. 31, H : 2. 88, N : l l. 17。
[0177] XH - NMR ^ベクトルを図 15に示す。
[0178] (実施例 11)吸収スペクトルの測定
D-4, D— 11, D— 12, D— 13および既存の単核金属錯体色素である下記の比 較色素 A (N3dye,小島化学薬品社製ルテニウム有機錯体)について、濃度 3 X 10 _5molZlのエタノール溶液を調製し、波長が 250nmから 800nmの紫外可視吸収ス ベクトル(日本分光株式会社製 V— 570)を用いて測定した。結果を図 16,図 17,図 18および図 19に示す。
[0179] [化 47]
Figure imgf000045_0001
比較色素 A 図 16,図 17,図 18および図 19から明らかなように、本発明の二核金属錯体色素 はいずれも現行で高い光電変換効率を示す比較色素 Aと同様の吸収波長域を有し 、さらにより高い吸光係数を有していた。従って、本発明の二核金属錯体色素を光化 学電池に用いると、光をより多く吸収して光電流に変換できるため大変好ま 、。
[0180] (実施例 12)
1.多孔質チタ-ァ電極の作製
(多孔質チタニア電極 (T- 1)の作製)
30wt%チタ-ァ微粒子分散スラリー 5. Og (チタン工業株式会社製、 20nm微粒子 )にァセチルアセトン 0. 2ml、 2wt%のヒドロキシェチルセルロース lmlと 10wt%の ポリオキシエチレンォクチルフエニルエーテル水溶液 lmlをカ卩ぇ 1時間攪拌と伴に超 音波を与え、チタ-ァペーストを作製した。このペーストをペースト Aとする。更に、チ タニア微粒子 3. Ogを pHO. 7の硝酸 7mlに混合し、この混合物にァセチルアセトン 0 . 2ml、界面活性剤 0. 2ml、更に分子量 20000のポリエチレングリコールを力卩ぇ攪 拌と超音波を 1時間加え、チタ-ァペーストを作製した。このチタ-ァペーストをぺー スト Bとする。まず、ペースト Aを旭硝子株式会社製透明導電性ガラス電極上に、電 極の一部をマスクして、 100 mのドクターブレードで塗布した。次に、得られた膜を 室温乾燥した後、 70 mのドクターブレードを用いた以外はペースト Aの塗布法と同 様の方法を用いてペースト Bを塗布し二層化した。乾燥後この膜を 450°C、 30分間 焼成し、 1cm2の多孔質チタ-ァ電極 (T— 1)を作製した。
[0181] (多孔質チタニア電極 (T— 2)の作製)
旭硝子株式会社製透明導電性ガラス電極上に、電極の一部をマスクして、 200 mのドクターブレードで昭和電工製チタ-ァペースト SP— 100を塗布した。この塗布 した膜を 5分間室温で風乾した後 450°Cで 30分間焼成し、 1cm2の多孔質チタ-ァ 電極 (T— 2)を作製した。
[0182] (多孔質チタニア電極 (T— 3)の作製)
チタ-ァ微粒子 3. Ogを pHO. 7の硝酸 7gに分散させた。このペーストにァセチル アセトン 0. 2mlと界面活性剤である 10%トリトン Xを 0. 2ml添カ卩した。次に分子量 20 000のポリエチレングリコール 1. 2gを添加し、最後にこのペーストにエタノール lml を添加、そしてこのペーストに超音波を照射しながら、 15分間攪拌、分散化させた。 この超音波攪拌作業を 4回繰り返しペーストを得た。得られたペーストを旭硝子株式 会社製透明導電性ガラス電極上に、電極の一部をマスクして、 100 /z mのドクターブ レードで塗布した。得られた膜を 25°C、 60%の雰囲気下で 10分間エージングし、こ のエージングした膜を 450°Cで 30分間焼成した。冷却した膜に対し、同じ作業を再 度行 、二層化し、 1cm2の多孔質チタ-ァ電極 (T— 3)を作製した。
[0183] 2.色素を吸着した多孔質チタ-ァ電極の作製
(D— 1, D— 2および比較色素 Aを吸着した多孔質チタ-ァ電極の作製) D— 1および D— 2それぞれのエタノール Zジメチルスルホキシド(95 : 5)飽和色素 溶液 (3 X 10_4molZl未満)に多孔質チタニア電極 (T— 1)を 50°Cで 15時間浸漬し た。次に、エタノールで洗浄し乾燥後、色素吸着多孔質チタ-ァ電極を得た。
[0184] また、 3 X 10_4molZlのエタノール溶液に 50°Cで 4時間浸漬した以外は同様にし て、比較色素 Aを吸着した多孔質チタ-ァ電極を得た。
[0185] (D—4, D—l l, D—13, D— 14および比較色素 Aを吸着した多孔質チタ-ァ電 極の作製)
D— 4, D— 11, D— 13および D— 14それぞれの t—ブタノール/ァセトニトリル(1 : 1)飽和色素溶液 (3 X 10_4molZl未満)に多孔質チタニア電極 (T— 2)を 30°Cで 1 0時間浸漬した。次に、ァセトニトリルで洗浄し乾燥後、色素吸着多孔質チタニア電 極を得た。
[0186] また、 3 X 10_4molZlの t—ブタノール Zァセトニトリル(1 : 1)にした以外は同様に して、比較色素 Aを吸着した多孔質チタ-ァ電極を得た。
[0187] (D— 4, D— 5, D— 6, D— 7, D— 8, D— 9および D— 10を吸着した多孔質チタ ユア電極の作製)
D 4, D 5, D 6, D 7, D 8, D 9および D 10それぞれの tーブタノ一 ル Zァセトニトリル(1: 1)飽和色素溶液(3 X 10_4molZl未満)に多孔質チタニア電 極 (T— 3)を 30°Cで 20時間浸漬した。次に、ァセトニトリルで洗浄し乾燥後、色素吸 着多孔質チタニア電極を得た。
[0188] 3.光化学電池の作製
以上のようにして得られた色素吸着多孔質チタ-ァ電極と白金板 (対極)を重ね合 わせた。次に、電解質溶液として 3—メトキシプロピオ-トリルにヨウ化リチウム、ヨウ素 、 4 t ブチルピリジン、および 1, 2 ジメチルー 3 プロピルイミダゾリゥムアイオダ イドをそれぞれ 0. 1、 0. 05、 0. 5、および 0. 6molZlとなるように溶解、調整したも のを用い、両電極の隙間に毛細管現象を利用して染み込ませることにより光化学電 池を作製した。図 20に本実施例で作製した光化学電池の構造を示す。
[0189] 4.光電変換効率の測定
得られた光化学電池の光電変換効率を英弘精機株式会社製のソーラーシュミレー ターを用い、 lOOmWZcm2の擬似太陽光を照射し測定した。表 1および表 2にそれ ぞれの色素の光電変換効率をまとめて示す。また、表 3に D— 4および比較色素 Aの 1モル当たりの短絡電流密度および光電変換効率を示す。
[0190] [表 1]
多孔質チタニア電極 光電変換効率(%)
D-1 T-1 1.8
D-2 T-1 2.6
D-4 T-2 4.6
D-1 1 T-2 4.4
D-13 T-2 3.7
D-14 T-2 2.8
比較色素 A T-1 4.1
比較色素 A T-2 4.3
[0191] [表 2] 多孔質チタニア電極 光電変換効率 (96)
D-4 T-3 5.4
D-5 T-3 4.9
D-6 T-3 3.3
D-7 ト 3 4.4
D-8 T-3 4.2
D - 9 T-3 4.7
D-10 T— 3 4.3
[0192] [表 3] 短絡電流密度 光重変換効率
( l08mA/mol-cm2) ( x l07%/mol)
D-4 2.2 8.6
比較色素 A 1.4 5.4
表 1より、本発明の金属錯体色素 D—4および D— 11において比較色素 Aよりも高 い光電変換効率が得られた。また、表 2より、本発明の金属錯体色素 D— 4の対ァ- オンを代えた錯体(D— 5, D-6, D- 7, D-8, D— 9および D— 10)においても高 い光電変換効率が得られた。また、表 3より本発明の金属錯体色素は分子当たりの 短絡電流密度および放電変換効率が比較色素 Aよりも向上しており、光電変換能が 優れていることがわ力る。
[0193] (実施例 13)色素の熱安定性評価
D-4, D- l l, D— 13および比較色素 Aについて、 TG— MS測定により擬似 Air (He: 80% + 0 : 20%)下における各色素の熱安定性を分解ガス成分の発生温度
2
によって評価した。尚、 TGは、株式会社リガク製の Thermo plus TG8120を用い 、昇温速度 10°C,min、擬似 Air流量 lOOmlZminの条件で測定し、トランスファー ライン温度 200°Cで MS装置に導入した。 MSは、株式会社島津製作所製の質量分 析装置 QP— 5000複合システムを用い、注入口温度 250°C、インターフェイス温度 3 00°C、イオンィ匕法 EI (70eV)、走査質量範囲 10〜300の条件で測定した。
[0194] 表 4にそれぞれの色素を熱分解した際に発生する配位子由来のガス成分の発生開 始温度を示す。
[0195] [表 4]
ガス成分 ガス発生開始温度 (°C)
D-4 C02 280
D - 1 1 COz 300
D-13 COz 280
比較色素 A C02 250
比較色素 A S02 240 表 4より、本発明の二核金属錯体はいずれもカルボキシル基(— COOH)由来のガ ス成分と考えられる COの発生開始温度が比較色素 Aよりも 30°C以上高いことがわ
2
かる。さらに、比較色素 Aの場合はカルボキシル基の分解温度よりも低温でイソチォ シアナート基(一 NCS)由来のガス成分であると考えられる SOの発生が観測された
2
が、本発明の二核金属錯体では、カルボキシル基の分解温度よりも低温側では他の ガス成分は観測されなカゝつた。したがって、本発明の二核金属錯体は、分解部位が 少な 、ことからも熱安定性に優れて 、るため、大変好まし 、。 [0196] (実施例 14)色素を吸着した多孔質チタニア電極の作製
実施例 4により得られた本発明の二核金属錯体色素 (D— 4)を吸着した多孔質チ タニア電極を作製した。以下にその手順を示す。
[0197] 多孔質チタ-ァ電極の作製 30wt%チタ-ァ微粒子分散スラリー 5. 0004g (チタ ン工業株式会社製、 20nm微粒子)にァセチルアセトン 0. 2ml、 2wt%のヒドロキシ ェチルセルロース lmlと 10wt%のポリオキシエチレンォクチルフエ-ルエーテル水 溶液 lmlを加え 1時間攪拌と伴に超音波を与え、チタ-ァペーストを作製した。この ペーストをペースト Aとする。更に、チタ-ァ微粒子 2. 9997gを pHO. 7の硝酸 7ml に混合、この混合物にァセチルアセトン 0. 2ml、界面活性剤 0. 2ml、更に分子量 2 0000のポリエチレングリコールをカ卩ぇ攪拌と超音波を 1時間加え、チタ-ァペースト を作製した。このチタ-ァペーストをペースト Bとする。ペースト Aを 50 μ mのスぺーサ 一を用い透明導電性ガラス電極上にドクターブレードを用い塗布し膜を作製した。こ の膜を室温乾燥した後ペースト Bを同様に塗布し乾燥後この膜を 450°C、 30分間焼 成し、 1cm2および 5cm2の多孔質チタ-ァ電極を作製した。
[0198] 次に、色素溶液として、実施例 4により得られた本発明の二核金属錯体色素(D— 4 )のエタノール飽和溶液 (3 X 10_4molZl以下)を作製し、 50°Cで 15時間浸漬した。 浸漬後、エタノールで洗浄し、窒素気流下で乾燥することにより、 1cm2および 5cm2 の色素吸着多孔質チタニア電極を得た。
[0199] (比較例 1)
色素として上述の式 (A)で表された比較色素 Aの色素溶液を 3 X 10_4molZlのェ タノール溶液にした以外は、実施例 14と同様にして、 1cm2および 5cm2の色素吸着 多孔質チタ-ァ電極を得た。
[0200] (実施例 15)色素の吸着量測定
実施例 14および比較例 1で得られた 5cm2の色素吸着多孔質チタ-ァ電極のそれ ぞれの色素吸着量を測定した。次にその手順を示す。
[0201] 色素吸着多孔質チタ-ァ電極を 0. OlmolZl水酸化ナトリウムのエタノール Z水(1 : 1)溶液に一晚浸漬することにより色素を脱着させた。この脱着液の吸収スペクトル を測定(日本分光社製 V— 570)することにより、 1cm2当たりの色素吸着量を算出し た。実施例 4により得られた二核金属錯体色素 (D— 4)および比較色素 Aのそれぞ れの吸着量の結果を、表 5にまとめて示す。
[0202] [表 5] 色素吸着量
金属錯体色素 (10— ¾o l/cm2)
D - 4 6. 5
_比較色素 A 8. 8 ―
(実施例 16)光化学電池の作製
光化学電池の作製手順を以下に示す。
[0203] 実施例 14および比較例 1で作製した lcm2の色素吸着多孔質チタ-ァ電極と白金 板 (対極)を重ね合わせた。次に、電解質溶液として 3—メトキシプロピオ-トリルにョ ウイ匕リチウム、ヨウ素、 4— t—ブチルピリジン、 1, 2—ジメチルー 3—プロピルイミダゾ リウムァィ才ダイドをそれぞれ 0. 1、 0. 05、 0. 5、 0. 6mol/lとなるように溶解、調整 したものを用い、両電極の隙間に毛細管現象を利用して染み込ませることにより光化 学電池を作製した。
[0204] (実施例 17)光化学電池の評価測定
光化学電池の評価測定は、英弘精機社製のソーラーシユミレーターを用い、実施 例 16で作製した光化学電池に、 lOOmWZcm2の擬似太陽光を照射した。表 6に、 実施例 4により得られた本発明の二核金属錯体色素(D— 4)および比較色素 A、そ れぞれの特性値をまとめて示す。表 6中の Jscおよび Vocは、それぞれ金属錯体色素 1モル当たりの短絡電流密度、および開放電圧を示す。尚、色素 1モル当たりの短絡 電流密度は、表 5の結果をもとに算出した。
[0205] [表 6] Jsc Voc
金属錯体色素 (lOSA-mor^cm— (V)
D - 4 1. 72 0. 71
比較色素 A 1. 49 0. 66
表 6より、一分子当たりの短絡電流密度は、実施例 4により得られた本発明の二核 金属錯体色素 (D— 4)の方が比較色素 Aより高くなつており、光電変換能が向上した ことが明白である。
[0206] (実施例 18)二核金属錯体 [ (Hdcbpy) Ru (bpm) Ru (bpy) ] (PF ) (D— 16)の
2 2 6 2
合成
1.単核金属錯体 [ (bpm) Ru (bpy) ] (PF ) (Μ¾— 8)の合成
2 6 2
窒素雰囲気下、 100ml三口フラスコに、実施例 1で得られた Ru (bpy) CI (0. 216
2 2 g, 0. 42mmol)、 2, 2,—ビビリミジン(bpm) (0. 133g, 0. 84mmol)、およびエタ ノール Z水(1 : 1) 40mlをカ卩え、 2. 45GHzのマイクロ波照射下 30分間還流した。放 冷後、 NH PF水溶液を加え、対ァ-オン PF—の塩として錯体を析出させた。析出
4 6 6
物をろ取後水洗し、アセトン Zジェチルエーテル力も再結晶した。析出した結晶をろ 別後、ジェチルエーテルで洗浄した。真空乾燥後、 1^2じー8を0. 259g得た (収率 7
1%)。
[0207] [化 48]
Figure imgf000052_0001
(M 2 C - 8 )
2. D— 16の合成
窒素雰囲気下、 100ml三口フラスコに M C— 1 (0. 102g, 0. 15mmol)、および エタノール Z水(1 : 1)を 40mlカ卩え、 ImolZl水酸化ナトリウム溶液を 0. 6ml滴下し 溶解させた。この溶液に M2C— 8 (0. 135g, 0. 15mmol)をカロえ、 2. 45GHzのマ イク口波照射下 10分間還流した。放冷後ろ過し、ろ液のエタノールを減圧乾固した。 得られた懸濁液を濾過し、ろ液に 0. 5molZlへキサフルォロリン酸水溶液を PH2. 5 になるまで滴下した。析出した錯体をろ取し、 pH2. 5へキサフルォロリン酸水溶液、 アセトン Zジェチルエーテル (4 : 1)、およびジェチルエーテルで洗浄した。真空乾 燥後、 D— 16を 0. 108g得た (収率 42%)。元素分析値は四水和物として良好な一 致を示した。
[0208] 元素分析 観測値 C :41. 30, H : 3. 40, N : 10. 90、
理論値 C :41. 06, H : 2. 92, N : l l. 05。
[0209] — NMR ^ベクトルを図 21に示す。
[0210] (実施例 19)二核金属錯体色素の量子化学計算
二核金属錯体モデルに対し、量子化学計算により構造最適化を行った。ソフトゥェ ァとしては Material Studio2. 0を用いた。計算手法としては密度汎関数法 (DFT) を用い、このときの交換相関関数として VWN、基底関数系には DNPを用いた。また 、計算を簡略化するために、有効内核ポテンシャル近似を用いた。(構造最適化に おいてエネルギーに対する収束条件は 10_5a. u.以下とした。構造最適計算で行わ れる SCFに対し、その収束条件はエネルギーに対して 10_6a. u.以下とした。 ) 上記の構造最適化で得られた錯体モデルに対し、量子化学計算によりエネルギー 状態計算を行った。計算手法としては密度汎関数法を用いた。このときの具体的な 交換相関関数としては BLYPを用いた。このときの基底関数系としては DNPを用 ヽ た。さらには計算を簡略ィ匕するために、有効内核ポテンシャル近似を用いた。 (SCF 計算に対し、その収束条件はエネルギーに対して 10_6a. u.以下とし、各状態の電 子の占有数について 0以上 2以下の整数を条件とした。 )
上記の結果に対し、実施例 4により得られた本発明の二核金属錯体色素 (D— 4) に示される構造の HOMO (ネクスト HOMOを含む)軌道の形を視覚化したものを図 22、 LUMO (ネクスト LUMOを含む)軌道の形を視覚化したものを図 23に、実施例 18により得られた二核金属錯体色素(D— 16)に示される構造の HOMO (ネクスト H OMOを含む)軌道の形を視覚化したものを図 24、 LUMO (ネクスト LUMOを含む) 軌道の形を視覚化したものを図 25に示す。尚、視覚化は、ソフトフトウェア Material Studio 2. 0を用い、 Iso— Value= ±0. 03の条件で行った。また、一般式:(L1)
2
M' CBD M^L2) (X) (式中、
2 n ΐ M BL、 M2、 L2、および Xは前記と同義である。
)で示される非対称な二核金属錯体の HOMO— LUMOの電子遷移の方向と光化 学電池回路内部の電子の流れを図 26に概念的に示す。尚、図 26中において Xは省 略する。
[0211] 図 26で示されるように HOMO— LUMOの電子遷移の方向と光化学電池回路内 部の電子の流れ方向が一致するような HOMOおよび LUMOの軌道配置をとること が好ましぐ図 22および図 23から本発明の二核金属錯体色素(D— 4)は上記二方 向が一致しており、図 24および図 25から実施例 18により得られた二核金属錯体色 素(D—16)は上記二方向が一致していない。したがって、本発明の二核金属錯体 色素(D— 4)はよりスムーズな電子移動を起こすことができ、効率のよい光化学電池 を構成することができることがゎカゝる。
[0212] (比較例 2)
実施例 18で得られた二核金属錯体色素 (D— 16)の光電変換効率は、実施例 12 の D— 1, D— 2および比較色素 Aを吸着した多孔質チタ-ァ電極の作製において、 エタノール Zジメチルスルホキシド(95: 5)飽和色素溶液の代わりにエタノール飽和 色素溶液を用いた以外は同様にして光化学電池を作製し測定を行った。表 7に光電 変換効率の結果を、図 27に電流電圧特性曲線を示す。また、実施例 12で得られた D— 4の光電変換効率および電流電圧特性曲線を、それぞれ表 7および図 27に合 わせて示す。
[0213] [表 7]
光電変換効率 (%)
D- 4 4.6
D-16 く 0.1 表 7、図 27および実施例 19の結果より、適切な HOMO— LUMOの軌道配置を有 する本発明の二核金属錯体色素(D— 4)は、 HOMO— LUMOの軌道配置が適切 でな 、実施例 18で得られた二核金属錯体色素 (D— 16)より、明らかに光化学電池 特性が優れて 、ることがわ力る。
[0214] (比較例 3)
実施例 18で得られた二核金属錯体色素 (D— 16)の光化学電池の評価測定は、 実施例 14と同様にして lcm2の色素吸着多孔質チタ-ァ電極を、実施例 16と同様に して光化学電池を作製し、実施例 17と同様にして光化学電池の評価測定を行った。 表 8に光電変換効率( 7? )の結果を、図 28に電流電圧特性曲線を示す。また、実施 例 17で得られた本発明の二核金属錯体色素 (D— 4)の光電変換効率( 7? )の結果 および電流電圧特性曲線を、それぞれ表 8および図 28に合わせて示す。
[0215] [表 8] 金属錯体色素 n (¾)
D— 4 4. 0
— D— 1 6 < 0. 1
表 8、図 28および実施例 19の結果より、適切な HOMO— LUMOの軌道配置を有 する実施例 4により得られた本発明の二核金属錯体色素(D— 4)は、 HOMO— LU MOの軌道配置が適切でな 、実施例 18で得られた二核金属錯体色素(D— 16)より 、明らかに光化学電池特性が優れていることがわかる。

Claims

請求の範囲
[1] 一般式:(L1) M^BD M^L2) (X)で示される非対称な二核金属錯体。(但し、
2 2 n
M1及び M2は、遷移金属であって、同一でも異なっていてもよぐ L1及び L2は、多座 配位可能なキレート型配位子であって、 L1と L2は異なるものであり、二つの L1は異な るものであってもよく、二つの L2も異なるものであってもよぐ BLはへテロ原子を含む 環状構造を少なくとも二つ有する架橋配位子であって、 M1及び M2に配位する配位 原子がこの環状構造に含まれるヘテロ原子である。 Xは対イオンである。 nは錯体の 電荷を中和するのに必要な対イオンの数を表す。 )
[2] L1及び L2が二座もしくは三座もしくは四座配位可能なキレート型配位子であること を特徴とする請求項 1記載の二核金属錯体。
[3] L1及び L2が、ビビリジル、ピリジルキノリン、ビキノリン、またはフエナント口リンの誘導 体である二座配位子であることを特徴とする請求項 1記載の二核金属錯体。
[4] L1が、カルボキシル基( COOH)または— COO—で少なくとも一つ置換された配 位子であることを特徴とする請求項 1記載の二核金属錯体。
[5] L1が、下式 (L1 A)で表される配位子であることを特徴とする請求項 1記載の二核 金属錯体。
[化 1]
Figure imgf000056_0001
( L 1 - A)
(式中、 COOHの Hは脱離していてもよぐ R\ R2、 R3、 R4、 R5及び R6は水素原子 、アルコキシ基または置換もしくは無置換の炭化水素基を表す力、または、これらの 二つ以上が一緒になつてそれらが結合する炭素原子と共に置換もしくは無置換の芳 香族炭化水素環または置換もしくは無置換の脂肪族炭化水素環を形成している。) L1が、下式 (L1 1)、または (L1 4)で表される配位子であることを特徴とする請求 項 1記載の二核金属錯体。(但し、式 (1^— 1)及び (1^— 4)中、複素環は置換基を 有していてもよぐ COOHの Hは脱離していてもよい。 )
[化 2]
Figure imgf000057_0001
(い - 1)
[化 3]
Figure imgf000057_0002
(L1 -4)
[7] L2が、下式 (L2— A)で表される配位子であることを特徴とする請求項 1記載の二核 金属錯体。
[化 4]
Figure imgf000057_0003
(L2 A)
(式中、 1、 R12、 R13、 R14、 R15、 R16、 R17及び R18は水素原子、アルコキシ基、水酸 基または置換もしくは無置換の炭化水素基を表す力、または、これらの二つ以上が 一緒になつてそれらが結合する炭素原子と共に置換もしくは無置換の芳香族炭化水 素環または置換もしくは無置換の脂肪族炭化水素環を形成している。)
L2が、下式 (L2—l)、(L2— 2)、または (L2— 4)のいずれかで表される配位子であ ることを特徴とする請求項 1記載の二核金属錯体。(但し、式 (L2— 1)、(L2— 2)及び (L2-4)中、複素環およびベンゼン環は置換基を有していてもよい。 )
[化 5]
Figure imgf000058_0001
( L 2 一 4 )
[9] BLが、四座配位子であることを特徴とする請求項 1記載の二核金属錯体。
[10] BL力 下式 (BL—A)、または(BL— B)で表される配位子であることを特徴とする 請求項 1記載の二核金属錯体。
[化 8]
Figure imgf000059_0001
( B L - A)
(式中、 Rd 及び は水素原子または置換もしくは無置換の炭化水素基を表す 力 または、これらの二つ以上が一緒になつてそれらが結合する炭素原子と共に置 換もしくは無置換の芳香族炭化水素環または置換もしくは無置換の脂肪族炭化水素 環を形成しており、 R34、 R35及び R36は水素原子または置換もしくは無置換の炭化水 素基を表すか、または、これらの二つ以上が一緒になつてそれらが結合する炭素原 子と共に置換もしくは無置換の芳香族炭化水素環または置換もしくは無置換の脂肪 族炭化水素環を形成している。 )
[化 9]
Figure imgf000059_0002
( Bし一 B )
(式中、 R41及び R42は水素原子または置換もしくは無置換の炭化水素基を表すか、 または、これらが一緒になつてそれらが結合する炭素原子と共に置換もしくは無置換 の芳香族炭化水素環または置換もしくは無置換の脂肪族炭化水素環を形成しており 、 R43及び R44は水素原子または置換もしくは無置換の炭化水素基を表すか、または 、これらが一緒になつてそれらが結合する炭素原子と共に置換もしくは無置換の芳香 族炭化水素環または置換もしくは無置換の脂肪族炭化水素環を形成している。) [11] BLが、下式 (BL—C)で表される配位子であることを特徴とする請求項 10記載の二 核金属錯体。 [化 10]
Figure imgf000060_0001
(BL-C)
(式中、 R51、 R5 RM及び 4は水素原子または置換もしくは無置換の炭化水素基を 表すか、または、これらの二つ以上が一緒になつてそれらが結合する炭素原子と共 に置換もしくは無置換の芳香族炭化水素環または置換もしくは無置換の脂肪族炭化 水素環を形成しており、 R55、 R56、 R57及び R58は水素原子または置換もしくは無置換 の炭化水素基を表すか、または、これらの二つ以上が一緒になつてそれらが結合す る炭素原子と共に置換もしくは無置換の芳香族炭化水素環または置換もしくは無置 換の脂肪族炭化水素環を形成している。 )
BL力 下式(BL— 1)、 (BL— 3)、または(BL— 4)で表される配位子であることを 特徴とする請求項 1記載の二核金属錯体。(但し、式 (BL— 1)、 (BL— 3)及び (BL 4)中、複素環およびベンゼン環は置換基を有していてもよい。 )
[化 11]
Figure imgf000060_0002
(BL- 1)
[化 12]
Figure imgf000060_0003
(BL- 3) [化 13]
Figure imgf000061_0001
( Bし一 4 )
[13] M1及び M2が、第 VIII族〜第 XI族の遷移金属であることを特徴とする請求項 1記載 の二核金属錯体。
[14] M1及び M2が、ルテニウム(Ru)、オスミウム(Os)、 コノルト(Co)、ニッケル(Ni)、 銅 (Cu)または鉄 (Fe)であることを特徴とする請求項 1記載の二核金属錯体。
[15] L1が、上式 (L1 1)、または (L1 4)で表される配位子であり、
L2が、上式 (L2—l)、(L2— 2)、または (L2— 4)のいずれかで表される配位子であ り、
BL力 上式(BL— 1)、 (BL— 3)、または(BL— 4)で表される配位子であり、 M1及び M2が、ルテニウム(Ru)、オスミウム(Os)、 コノルト(Co)、ニッケル (Ni)、 銅 (Cu)または鉄 (Fe)であることを特徴とする請求項 1記載の二核金属錯体。
[16] 一般式:(L1) M^BD M^L2) (X)で示される非対称な二核金属錯体 (但し、 M1
2 2 n
及び M2は、遷移金属であって、同一でも異なっていてもよぐ L1及び L2は、多座配 位可能なキレート型配位子であって、 L1と L2は異なるものであり、二つの L1は異なる ものであってもよぐ二つの L2も異なるものであってもよぐ Xは対イオンであり、 nは錯 体の電荷を中和するのに必要な対イオンの数を表し、 BLはへテロ原子を含む環状 構造を少なくとも二つ有する架橋配位子であって、 M1及び M2に配位する配位原子 力 の環状構造に含まれるヘテロ原子であり、 L1が半導体微粒子に固定され得る置 換基を有し、かつ主に (L1) M1に LUMOが分布する構造である。)からなることを特
2
徴とする金属錯体色素。
[17] L1が、上式 (1^- 1)で表される配位子であり、
L2が、上式 (L2— 1)、または (L2— 2)で表される配位子であり、
BL力 上式(BL— 3)、または(BL— 4)で表される配位子であり、 M1及び M2が、ルテニウム(Ru)、オスミウム(Os)、コノルト(Co)、ニッケル (Ni)、 銅 (Cu)または鉄 (Fe)であることを特徴とする請求項 16記載の金属錯体色素。
[18] 請求項 16記載の金属錯体色素により増感された半導体微粒子を含むことを特徴と する光電変換素子。
[19] 前記半導体微粒子が、酸化チタン、酸化亜鉛、または酸ィ匕錫であることを特徴とする 請求項 18記載の光電変換素子。
[20] 請求項 18記載の光電変換素子を用いることを特徴とする光化学電池。
PCT/JP2005/018289 2004-10-01 2005-10-03 二核金属錯体、金属錯体色素、光電変換素子、及び光化学電池 WO2006038587A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AT05787497T ATE525753T1 (de) 2004-10-01 2005-10-03 Binukleärer metallkomplex, metallkomplexfarbstoff,photoelektrischer transducer und photochemische batterie
CN2005800407089A CN101065359B (zh) 2004-10-01 2005-10-03 双核金属络合物、金属络合物色素、光电转换元件及光化学电池
JP2006539282A JP5003871B2 (ja) 2004-10-01 2005-10-03 二核金属錯体、金属錯体色素、光電変換素子、及び光化学電池
EP05787497A EP1798222B1 (en) 2004-10-01 2005-10-03 Binuclear metal complex, metal complex dye, photoelectric transducer and photochemical battery
US11/575,745 US7825250B2 (en) 2004-10-01 2005-10-03 Binuclear metal complex, metal complex dye, photoelectric conversion element, and photochemical battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-290075 2004-10-01
JP2004290076 2004-10-01
JP2004-290076 2004-10-01
JP2004290075 2004-10-01

Publications (1)

Publication Number Publication Date
WO2006038587A1 true WO2006038587A1 (ja) 2006-04-13

Family

ID=36142660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/018289 WO2006038587A1 (ja) 2004-10-01 2005-10-03 二核金属錯体、金属錯体色素、光電変換素子、及び光化学電池

Country Status (6)

Country Link
US (1) US7825250B2 (ja)
EP (1) EP1798222B1 (ja)
JP (1) JP5003871B2 (ja)
CN (2) CN102558239A (ja)
AT (1) ATE525753T1 (ja)
WO (1) WO2006038587A1 (ja)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008124164A (ja) * 2006-11-10 2008-05-29 Sony Corp 半導体装置およびその製造方法
WO2008093742A1 (ja) 2007-01-31 2008-08-07 Ube Industries, Ltd. 二核金属錯体の製造方法
JP2008189551A (ja) * 2007-01-31 2008-08-21 Ube Ind Ltd 二核金属錯体の製造方法
WO2008153184A1 (ja) * 2007-06-14 2008-12-18 Ube Industries, Ltd. 二核ルテニウム錯体色素により増感された半導体微粒子と、イオン液体を主成分とする電解質溶液とを備える光化学電池
WO2009025382A1 (ja) * 2007-08-23 2009-02-26 Ube Industries, Ltd. 二核ルテニウム錯体色素、二核ルテニウム錯体色素酸性水溶液及びその製造方法
JP2009067838A (ja) * 2007-09-11 2009-04-02 Ube Ind Ltd 二核ルテニウム錯体色素及びその製造方法
WO2009102068A1 (ja) * 2008-02-14 2009-08-20 Ube Industries, Ltd. 二核ルテニウム錯体色素溶液、及び当該錯体色素溶液を用いて得られる光増感された半導体微粒子を用いた光電変換素子、並びにそれを用いた光化学電池
WO2009154275A1 (ja) 2008-06-19 2009-12-23 宇部興産株式会社 二核ルテニウム錯体色素、ルテニウム-オスミウム錯体色素、当該錯体色素を有する光電変換素子、及び光化学電池
WO2010055856A1 (ja) 2008-11-12 2010-05-20 宇部興産株式会社 二核金属錯体色素により増感された半導体微粒子と、イオン液体を主成分とする電解質溶液とを備える光化学電池
JP2011060589A (ja) * 2009-09-10 2011-03-24 Ube Industries Ltd 二核ルテニウム錯体色素により増感された半導体微粒子と、アリールアミン化合物を含有する電解質溶液とを備える光化学電池
JP2011057858A (ja) * 2009-09-10 2011-03-24 Ube Industries Ltd 電子吸引基を置換基として持つ連結分子を有する二核ルテニウム錯体色素を有する光電変換素子、及び光化学電池
WO2011049027A1 (ja) 2009-10-20 2011-04-28 宇部興産株式会社 置換ビピリジル基を有する二核ルテニウム錯体色素を有する光電変換素子、及び光化学電池
JP2011146276A (ja) * 2010-01-15 2011-07-28 Ube Industries Ltd 二核ルテニウム錯体色素溶液を用いて得られる光増感された半導体微粒子を用いた光電変換素子、並びにそれを用いた光化学電池
WO2011115137A1 (ja) 2010-03-16 2011-09-22 宇部興産株式会社 置換ビピリジル基を有する二核ルテニウム錯体色素を有する光電変換素子、及び光化学電池
JP2013505565A (ja) * 2009-09-18 2013-02-14 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング 有機電子デバイス、並びに有機半導体マトリックス材料をドープするためのドーパント
WO2013089194A1 (ja) * 2011-12-13 2013-06-20 宇部興産株式会社 二核ルテニウム錯体色素、当該色素を有する光電変換素子及び光化学電池
JP2013144721A (ja) * 2011-12-13 2013-07-25 Ube Industries Ltd 二核ルテニウム錯体色素、当該色素を有する光電変換素子及び光化学電池
KR101297258B1 (ko) 2010-07-09 2013-08-16 삼성에스디아이 주식회사 염료 감응 태양 전지용 염료, 그 제조 방법 및 이를 채용한 태양 전지
JP2014503623A (ja) * 2010-12-03 2014-02-13 ダイパワー ルテニウムポリピリジン錯体を主体とした二酸化チタン増感色素の前駆体錯体の合成のための方法
WO2016148100A1 (ja) * 2015-03-17 2016-09-22 富士フイルム株式会社 ルテニウム錯体色素、色素溶液、光電変換素子および色素増感太陽電池
JP2017525831A (ja) * 2014-05-29 2017-09-07 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft 二核典型金属リン光発光体

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI384310B (zh) * 2009-04-13 2013-02-01 Univ Nat Cheng Kung 光伏致變色元件及其應用
EP2499693B1 (en) 2009-11-10 2015-09-09 Daimler AG Composite proton conducting electrolyte with improved additives and membrane electrode assembly for fuel cells
CN103347887A (zh) * 2010-12-02 2013-10-09 宇部兴产株式会社 双核金属络合物及含有其的有机电致发光元件
ITMI20121672A1 (it) * 2012-10-05 2014-04-06 Eni Spa Colorante organico per una cella solare sensibilizzata da colorante
MD4279C1 (ro) * 2013-01-17 2014-10-31 Институт Химии Академии Наук Молдовы Colorant pentru polimerii termoplastici
CA2907356C (en) * 2013-03-15 2022-07-12 Sherri Ann MCFARLAND Metal-based coordination complexes as photodynamic compounds and their use
US9748504B2 (en) 2014-03-25 2017-08-29 Universal Display Corporation Organic electroluminescent materials and devices
CN103952009B (zh) * 2014-05-08 2015-12-30 中国工程物理研究院化工材料研究所 一种近红外宽光谱金属配合物染料及其制备方法
US11289700B2 (en) 2016-06-28 2022-03-29 The Research Foundation For The State University Of New York KVOPO4 cathode for sodium ion batteries

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000323191A (ja) * 1999-05-14 2000-11-24 Fuji Photo Film Co Ltd 光電変換素子および光電気化学電池ならびに金属錯体色素
JP2004359677A (ja) * 2003-05-13 2004-12-24 Asahi Kasei Corp 複核錯体

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE532194T1 (de) * 1999-05-14 2011-11-15 Fujifilm Corp Metallkomplex-farbstoff für eine photoelektrochemische zelle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000323191A (ja) * 1999-05-14 2000-11-24 Fuji Photo Film Co Ltd 光電変換素子および光電気化学電池ならびに金属錯体色素
JP2004359677A (ja) * 2003-05-13 2004-12-24 Asahi Kasei Corp 複核錯体

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
GHOLAMKHASS B ET AL: "Adjacent-versus Remote-Site Electron Injection in TiO2 Surfaces Modified with Binuclear Ruthenium Complexes.", INORGANIC CHEMISTRY., vol. 42, no. 9, 2003, pages 2919 - 2932, XP002994917 *
HAGA M ET AL: "Electrochemistry of symmetrical and asymmetrical dinuclear ruthenium, osmium, and mixed-metal 2,2'-bipyridine complexes bridged by 2,2-bibenzimidazolate.", INORGANIC CHEMISTRY., vol. 30, no. 3, 1991, pages 475 - 480, XP002994915 *
KALYANASUNDARAN K ET AL: "Tuning of the CT excited state and validity of the energy gap law in mixed ligand complexes of Ru(II) containing 4,4'-dicarboxy-2,2'-bipyridine.", CHEMICAL PHYSICS LETTERS., vol. 193, no. 4, 1992, pages 292 - 297, XP002994914 *
KLEVERLAAN C J ET AL: "Stepwise Charge Separation in Heterotriads. Binuclear Ru(II) - Rh(III) Complexes on Nanocrystalline Titanium Dioxide.", J AM CHEM SOC., vol. 122, no. 12, 2000, pages 2840 - 2849, XP002994918 *
LEES A C ET AL: "Photophysical Properties of TiO2 Surfaces Modified with Dinuclear RuRu and RuOs Polypyridyl Complexes.", INORGANIC CHEMISTRY., vol. 40, no. 21, 2001, pages 5343 - 5349, XP002994916 *
MAJUMDAR P ET AL: "Biimidazole complexes of ML 2 2+ [M=Ru or Os, L=2-(phenylazo)pyridine]. Synthesis, structure and redox properties of mono- and di-nuclear complexes.", INORGANIC CHEM., no. 10, 1998, pages 1569 - 1574, XP002994919 *
RILLEMA DP ET AL: "Multimetallic Ruthenium( 11) Complexes Based on Biimidazole and Bibenzimidazole: Effect of Dianionic Bridging Ligands on Redox and Spectral Properties.", INORGANIC CHEMISTRY., vol. 29, no. 2, 1990, pages 167 - 175, XP002994920 *

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008124164A (ja) * 2006-11-10 2008-05-29 Sony Corp 半導体装置およびその製造方法
WO2008093742A1 (ja) 2007-01-31 2008-08-07 Ube Industries, Ltd. 二核金属錯体の製造方法
JP2008189551A (ja) * 2007-01-31 2008-08-21 Ube Ind Ltd 二核金属錯体の製造方法
JP5293190B2 (ja) * 2007-01-31 2013-09-18 宇部興産株式会社 二核金属錯体の製造方法
JP5273044B2 (ja) * 2007-06-14 2013-08-28 宇部興産株式会社 二核ルテニウム錯体色素により増感された半導体微粒子と、イオン液体を主成分とする電解質溶液とを備える光化学電池
WO2008153184A1 (ja) * 2007-06-14 2008-12-18 Ube Industries, Ltd. 二核ルテニウム錯体色素により増感された半導体微粒子と、イオン液体を主成分とする電解質溶液とを備える光化学電池
WO2009025382A1 (ja) * 2007-08-23 2009-02-26 Ube Industries, Ltd. 二核ルテニウム錯体色素、二核ルテニウム錯体色素酸性水溶液及びその製造方法
JP5493857B2 (ja) * 2007-08-23 2014-05-14 宇部興産株式会社 二核ルテニウム錯体色素、二核ルテニウム錯体色素酸性水溶液及びその製造方法
JP2009067838A (ja) * 2007-09-11 2009-04-02 Ube Ind Ltd 二核ルテニウム錯体色素及びその製造方法
JPWO2009102068A1 (ja) * 2008-02-14 2011-06-16 宇部興産株式会社 二核ルテニウム錯体色素溶液、及び当該錯体色素溶液を用いて得られる光増感された半導体微粒子を用いた光電変換素子、並びにそれを用いた光化学電池
WO2009102068A1 (ja) * 2008-02-14 2009-08-20 Ube Industries, Ltd. 二核ルテニウム錯体色素溶液、及び当該錯体色素溶液を用いて得られる光増感された半導体微粒子を用いた光電変換素子、並びにそれを用いた光化学電池
JP5633370B2 (ja) * 2008-06-19 2014-12-03 宇部興産株式会社 二核ルテニウム錯体色素、ルテニウム−オスミウム錯体色素、当該錯体色素を有する光電変換素子、及び光化学電池
US8859894B2 (en) 2008-06-19 2014-10-14 Ube Industries, Ltd. Binuclear ruthenium complex dye, ruthenium-osmium complex dye, photoelectric conversion element using any one of the complex dyes, and photochemical cell
WO2009154275A1 (ja) 2008-06-19 2009-12-23 宇部興産株式会社 二核ルテニウム錯体色素、ルテニウム-オスミウム錯体色素、当該錯体色素を有する光電変換素子、及び光化学電池
WO2010055856A1 (ja) 2008-11-12 2010-05-20 宇部興産株式会社 二核金属錯体色素により増感された半導体微粒子と、イオン液体を主成分とする電解質溶液とを備える光化学電池
CN102257669A (zh) * 2008-11-12 2011-11-23 宇部兴产株式会社 包括经双核金属络合物染料敏化的半导体颗粒以及主要由离子液体组成的电解质溶液的光化学电池
JP5494490B2 (ja) * 2008-11-12 2014-05-14 宇部興産株式会社 二核金属錯体色素により増感された半導体微粒子と、イオン液体を主成分とする電解質溶液とを備える光化学電池
JP2011057858A (ja) * 2009-09-10 2011-03-24 Ube Industries Ltd 電子吸引基を置換基として持つ連結分子を有する二核ルテニウム錯体色素を有する光電変換素子、及び光化学電池
JP2011060589A (ja) * 2009-09-10 2011-03-24 Ube Industries Ltd 二核ルテニウム錯体色素により増感された半導体微粒子と、アリールアミン化合物を含有する電解質溶液とを備える光化学電池
JP2013505565A (ja) * 2009-09-18 2013-02-14 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング 有機電子デバイス、並びに有機半導体マトリックス材料をドープするためのドーパント
US9166178B2 (en) 2009-09-18 2015-10-20 Osram Oled Gmbh Organic electronic device and dopant for doping an organic semiconducting matrix material
JP5761024B2 (ja) * 2009-10-20 2015-08-12 宇部興産株式会社 置換ビピリジル基を有する二核ルテニウム錯体色素を有する光電変換素子、及び光化学電池
WO2011049027A1 (ja) 2009-10-20 2011-04-28 宇部興産株式会社 置換ビピリジル基を有する二核ルテニウム錯体色素を有する光電変換素子、及び光化学電池
JP2011146276A (ja) * 2010-01-15 2011-07-28 Ube Industries Ltd 二核ルテニウム錯体色素溶液を用いて得られる光増感された半導体微粒子を用いた光電変換素子、並びにそれを用いた光化学電池
WO2011115137A1 (ja) 2010-03-16 2011-09-22 宇部興産株式会社 置換ビピリジル基を有する二核ルテニウム錯体色素を有する光電変換素子、及び光化学電池
US8633380B2 (en) 2010-03-16 2014-01-21 Ube Industries, Ltd. Photoelectric conversion element comprising binuclear ruthenium complex dye having a substituted bipyridyl group, and photochemical cell
KR101297258B1 (ko) 2010-07-09 2013-08-16 삼성에스디아이 주식회사 염료 감응 태양 전지용 염료, 그 제조 방법 및 이를 채용한 태양 전지
US8618294B2 (en) 2010-07-09 2013-12-31 Samsung Sdi Co., Ltd. Dye for dye-sensitized solar cells, method of preparing the same, and solar cell including the dye
JP2014503623A (ja) * 2010-12-03 2014-02-13 ダイパワー ルテニウムポリピリジン錯体を主体とした二酸化チタン増感色素の前駆体錯体の合成のための方法
WO2013089194A1 (ja) * 2011-12-13 2013-06-20 宇部興産株式会社 二核ルテニウム錯体色素、当該色素を有する光電変換素子及び光化学電池
JPWO2013089194A1 (ja) * 2011-12-13 2015-04-27 宇部興産株式会社 二核ルテニウム錯体色素、当該色素を有する光電変換素子及び光化学電池
JP2013144721A (ja) * 2011-12-13 2013-07-25 Ube Industries Ltd 二核ルテニウム錯体色素、当該色素を有する光電変換素子及び光化学電池
JP2017525831A (ja) * 2014-05-29 2017-09-07 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft 二核典型金属リン光発光体
WO2016148100A1 (ja) * 2015-03-17 2016-09-22 富士フイルム株式会社 ルテニウム錯体色素、色素溶液、光電変換素子および色素増感太陽電池
JPWO2016148100A1 (ja) * 2015-03-17 2018-01-11 富士フイルム株式会社 ルテニウム錯体色素、色素溶液、光電変換素子および色素増感太陽電池

Also Published As

Publication number Publication date
JP5003871B2 (ja) 2012-08-15
JPWO2006038587A1 (ja) 2008-05-15
EP1798222A1 (en) 2007-06-20
ATE525753T1 (de) 2011-10-15
US20080015356A1 (en) 2008-01-17
EP1798222B1 (en) 2011-09-21
US7825250B2 (en) 2010-11-02
CN101065359B (zh) 2013-06-19
EP1798222A4 (en) 2009-06-24
CN102558239A (zh) 2012-07-11
CN101065359A (zh) 2007-10-31

Similar Documents

Publication Publication Date Title
WO2006038587A1 (ja) 二核金属錯体、金属錯体色素、光電変換素子、及び光化学電池
EP0983282B1 (en) Metal complex photosensitizer and photovoltaic cell
JP5633370B2 (ja) 二核ルテニウム錯体色素、ルテニウム−オスミウム錯体色素、当該錯体色素を有する光電変換素子、及び光化学電池
JP5003865B2 (ja) 二核金属錯体色素溶液およびこの溶液を用いた光電変換素子、及び光化学電池
JP5293190B2 (ja) 二核金属錯体の製造方法
JP5170357B2 (ja) 光電変換素子、及び光化学電池
JP5428312B2 (ja) 光電変換素子、及び光化学電池
KR20130028912A (ko) 치환 바이피리딜기를 갖는 이핵 루테늄 착물 색소를 포함하는 광전 변환 소자, 및 광화학 전지
JP2014503623A (ja) ルテニウムポリピリジン錯体を主体とした二酸化チタン増感色素の前駆体錯体の合成のための方法
Yu et al. Ruthenium sensitizer with a thienylvinylbipyridyl ligand for dye-sensitized solar cells
JP2004176072A (ja) 金属錯体光増感剤と光電気化学電池
JP5035502B2 (ja) キニザリン架橋金属錯体
JP5061626B2 (ja) 二核金属錯体の製造方法
WO2009102068A1 (ja) 二核ルテニウム錯体色素溶液、及び当該錯体色素溶液を用いて得られる光増感された半導体微粒子を用いた光電変換素子、並びにそれを用いた光化学電池
JP5493857B2 (ja) 二核ルテニウム錯体色素、二核ルテニウム錯体色素酸性水溶液及びその製造方法
JP2009129652A (ja) 光電変換素子、及び光化学電池
JP5838820B2 (ja) 二核ルテニウム錯体色素、当該色素を有する光電変換素子及び光化学電池
JP5446207B2 (ja) 光電変換素子、及び光化学電池
JP5239269B2 (ja) 二核ルテニウム錯体色素及びその製造方法
Fürer The application of Cu (I) phenanthroline dyes in DSCs with optimized I⁻/I₃⁻ and Co (II/III) electrolytes

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11575745

Country of ref document: US

Ref document number: 2005787497

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006539282

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 200580040708.9

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2005787497

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11575745

Country of ref document: US