WO2011115137A1 - 置換ビピリジル基を有する二核ルテニウム錯体色素を有する光電変換素子、及び光化学電池 - Google Patents

置換ビピリジル基を有する二核ルテニウム錯体色素を有する光電変換素子、及び光化学電池 Download PDF

Info

Publication number
WO2011115137A1
WO2011115137A1 PCT/JP2011/056110 JP2011056110W WO2011115137A1 WO 2011115137 A1 WO2011115137 A1 WO 2011115137A1 JP 2011056110 W JP2011056110 W JP 2011056110W WO 2011115137 A1 WO2011115137 A1 WO 2011115137A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
group
ruthenium complex
group represented
complex dye
Prior art date
Application number
PCT/JP2011/056110
Other languages
English (en)
French (fr)
Inventor
一成 垣田
貴文 岩佐
剛久 角田
白井 昌志
古谷 敏男
西野 繁栄
秀好 島
Original Assignee
宇部興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部興産株式会社 filed Critical 宇部興産株式会社
Priority to US13/635,226 priority Critical patent/US8633380B2/en
Priority to JP2012505709A priority patent/JP5780238B2/ja
Priority to KR1020127026588A priority patent/KR20130028912A/ko
Priority to AU2011228146A priority patent/AU2011228146A1/en
Priority to EP11756322A priority patent/EP2548926A1/en
Priority to CN201180022339.6A priority patent/CN102884137B/zh
Publication of WO2011115137A1 publication Critical patent/WO2011115137A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • H01M14/005Photoelectrochemical storage cells
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/10Metal complexes of organic compounds not being dyes in uncomplexed form
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0046Ruthenium compounds
    • C07F15/0053Ruthenium compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/10The polymethine chain containing an even number of >CH- groups
    • C09B23/102The polymethine chain containing an even number of >CH- groups two heterocyclic rings linked carbon-to-carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/361Polynuclear complexes, i.e. complexes comprising two or more metal centers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/344Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising ruthenium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a photoelectric conversion element having a binuclear ruthenium complex dye having a substituted bipyridyl group, and a photochemical battery using the photoelectric conversion element.
  • Solar cells are highly expected as a clean renewable energy source.
  • all of the batteries must be overcome, such as high manufacturing costs, difficulty in securing raw materials, recycling problems, and difficulty in increasing the area. Have problems.
  • solar cells using organic materials have been proposed with the aim of increasing the area and reducing the price, but all have a conversion efficiency of about 1%, which is far from practical use.
  • This battery is a wet solar cell using a porous titania thin film sensitized with a ruthenium dye as a working electrode.
  • the advantage of this solar cell is that it can be used as an inexpensive photoelectric conversion element because an inexpensive material can be used without being purified to a high purity, and further, the absorption of the dye used is broad, and a wide visible light wavelength range. It is possible to convert sunlight into electricity. However, further improvement in conversion efficiency is necessary for practical use, and development of a dye having a higher extinction coefficient and absorbing light up to a longer wavelength region is desired.
  • Patent Document 2 discloses a dipyridyl ligand-containing metal mononuclear complex that is a metal complex dye useful as a photoelectric conversion element, and Non-Patent Document 2 discloses a polynuclear ⁇ -diketonate complex dye. ing.
  • Patent Document 3 has a plurality of metals and a plurality of ligands as a novel multinuclear complex having an excellent photoelectric conversion function for extracting electrons upon receiving energy of actinic rays such as light.
  • a binuclear complex having a coordination structure in which the bridging ligand (BL) coordinated to has a heteroconjugated ring and a coordination structure not having a heteroconjugated ring is disclosed.
  • Patent Document 4 discloses a binuclear metal complex having a coordination structure having a heteroconjugate ring as a metal complex dye from which a photoelectric conversion element having high photoelectric conversion efficiency is obtained.
  • An object of the present invention is to provide a photoelectric conversion device having a higher absorption coefficient, a light absorption capability up to a longer wavelength region, and capable of converting sunlight into electricity over a wide light wavelength region. It is to provide a metal complex dye for providing a conversion element and a photochemical battery, or a metal complex dye for providing a highly durable photoelectric conversion element and a photochemical battery.
  • the present invention relates to the following matters.
  • Z represents a 5-membered heteroarylene group
  • n represents the number of Z
  • R is a hydrogen atom, a linear or branched carbon atom having 1 to 18 carbon atoms.
  • R 1 and R 2 each independently represent a hydrogen atom, a linear or branched alkyl group having 1 to 30 carbon atoms, or R 1 and R present in the same pyridine ring
  • R 1 and R 2 are bonded to each other to form a ring, provided that two R 1 and two R 2 may be the same or different.
  • Ar represents an aryl group which may have a substituent. However, two Ars may be the same or different.) Any one of the groups represented by X represents a counter ion, and m represents the number of counter ions necessary to neutralize the charge of the complex. However, two
  • At least one of the above represents a group represented by the formula (2-1) or a group represented by the formula (2-3), wherein n is an integer of 1 to 4, or
  • the protons (H + ) of one or more carboxyl groups (—COOH) may be dissociated.
  • a photoelectric conversion element comprising the binuclear ruthenium complex dye described in 1 and a semiconductor fine particle.
  • a photochemical battery comprising the photoelectric conversion element as described in 2 above.
  • a photochemical battery comprising the photoelectric conversion element as described in 2 above and an opposite electrode as an electrode, and an electrolyte layer therebetween.
  • a method for producing a photoelectric conversion element comprising a step of immersing semiconductor fine particles in a solution containing the binuclear ruthenium complex dye described in 1 above.
  • the present invention it is possible to provide a metal complex dye having a higher extinction coefficient and a light absorption ability up to a longer wavelength region.
  • this metal complex dye it may be possible to provide a photoelectric conversion element and a photochemical battery with high photoelectric conversion efficiency that can convert sunlight into electricity over a wide light wavelength range.
  • FIG. 1 is a diagram showing ultraviolet-visible absorption spectra of a dinuclear ruthenium complex (1a) and an existing dinuclear ruthenium complex (3).
  • FIG. 2 is a diagram showing ultraviolet-visible absorption spectra of the dinuclear ruthenium complex (2a) and the existing dinuclear ruthenium complex (3).
  • FIG. 3 is a diagram showing ultraviolet-visible absorption spectra of the dinuclear ruthenium complex (1b) and the existing dinuclear ruthenium complex (5).
  • FIG. 4 is a diagram showing ultraviolet-visible absorption spectra of the dinuclear ruthenium complex (2b) and the existing dinuclear ruthenium complex (6).
  • the binuclear ruthenium complex dye having a substituted bipyridyl group of the present invention is represented by the above general formula (1).
  • As the binuclear ruthenium complex dye of the present invention (I) two
  • At least one of the above is a group represented by the formula (2-1), wherein n is an integer of 1 to 4, and R is a hydrogen atom or a linear or branched alkyl group having 1 to 18 carbon atoms.
  • n is an integer of 1 to 4
  • R is a hydrogen atom or a linear or branched alkyl group having 1 to 18 carbon atoms.
  • At least one of the groups is a group represented by the formula (2-3) (also referred to as a binuclear ruthenium complex dye (B)).
  • (2-3) also referred to as a binuclear ruthenium complex dye (B)
  • R 1 and / or R 2 is a group represented by the formula (2-2), which is a linear or branched alkyl group having 1 to 30 carbon atoms (both dinuclear ruthenium complex dye (C)) To tell.) Is preferred.
  • n is an integer of 1 to 4 and R is a hydrogen atom or a linear or branched alkyl group having 1 to 18 carbon atoms, or a group represented by the formula (2-1) -2), more preferably R 1 is a linear or branched alkyl group having 1 to 30 carbon atoms, and R 2 is a hydrogen atom.
  • R is a hydrogen atom or a linear or branched alkyl group having 1 to 18 carbon atoms, or a group represented by the formula (2-1) -2), more preferably R 1 is a linear or branched alkyl group having 1 to 30 carbon atoms, and R 2 is a hydrogen atom.
  • R 1 is a hydrogen atom.
  • R 2 is a group represented by the formula (2-2) in which R 2 are bonded to each other to form a benzene ring,
  • Ar in the formula (2-3) is preferably a phenyl group which may have a substituent, and the formula (3-1)
  • R 3 represents a linear or branched alkyl group having 1 to 18 carbon atoms.
  • the group represented by is particularly preferable.
  • R 1 is a linear or branched alkyl group having 1 to 30 carbon atoms
  • R 2 is a hydrogen atom. 2 or a group represented by the formula (2-2) in which R 1 is a hydrogen atom and R 2 are bonded to each other to form a benzene ring,
  • R 1 is a linear or branched alkyl group having 1 to 30 carbon atoms and R 2 is a group represented by the formula (2-2) which is a hydrogen atom.
  • Z represents a 5-membered heteroarylene group.
  • Z for example, a thiazolyl group is preferable.
  • Z may be 1 or 2 to 4, preferably 1 to 3, more preferably 2. That is, in the formula (2-1), n is preferably 1 to 3, and more preferably 2. When n is 2 or more, a plurality of Z may be different. In some cases, Z may be 0, or 0 may be preferable.
  • R represents a hydrogen atom, a linear or branched alkyl group having 1 to 18 carbon atoms, or a carboxyl group. Two R may be different.
  • R is a hydrogen atom or a linear or branched group such as methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, etc.
  • the alkyl group having 1 to 18 carbon atoms is preferable, a hydrogen atom, a linear or branched alkyl group having 1 to 12 carbon atoms is more preferable, and an alkyl group having 1 to 12 carbon atoms is particularly preferable.
  • a group represented by the formula (2-1) in which n is 0 and R is a carboxyl group is also particularly preferable.
  • Z may have a substituent (that is, any hydrogen atom may be substituted with a substituent).
  • substituent include 1 to carbon atoms such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, an undecyl group, and a dodecyl group.
  • alkyl groups alkoxy having 1 to 18 carbon atoms such as methoxy, ethoxy, propoxy, butoxy, pentoxy, hexyloxy, heptyloxy, octyloxy, nonyloxy, decyloxy, undecyloxy, dodecyloxy, etc.
  • alkylthio group having 1 to 18 carbon atoms such as a methylthio group, an ethylthio group, a propylthio group, a butylthio group, a pentylthio group, a hexylthio group, a heptylthio group, an octylthio group, a nonylthio group, a decylthio group, an undecylthio group, a dodecylthio group; , N-dimethylamino group, N, N-di Tylamino group, N, N-dipropylamino group, N, N-dibutylamino group, N, N-dipentylamino group, N, N-dihexylamino group, N, N-diheptylamino group, N, N-dioctyl N, N-dialkylamino groups having 1 to 18 carbon atoms such
  • Silyl group dimethylsilyl group, diethylsilyl group, dipropylsilyl group, dibutylsilyl group, dipentylsilyl group, dihexylsilyl group, diheptylsilyl group, dioctylsilyl group, dinonylsilyl group, didecylsilyl group, diundecylsilyl group, didodecyl C1-C18 dialkylsilyl groups such as silyl groups; trimethylsilyl groups, triethylsilyl groups, tripropylsilyl groups, tributylsilyl groups, tripentylsilyl groups, trihexylsilyl groups, triheptylsilyl groups, trioctylsilyl groups , Trialkylsilyl groups having 1 to 18 carbon atoms such as trinonylsilyl group, tridecylsilyl group, triundecylsily
  • substituents are not particularly limited, and adjacent groups may be bonded to each other to form a ring.
  • R 1 and R 2 represent a hydrogen atom, a linear or branched alkyl group having 1 to 30, preferably 1 to 18 carbon atoms, or the same pyridine R 1 and R 2 present in the ring, or R 2 are bonded to each other to form a ring.
  • Two R 1 and two R 2 may be different.
  • R 1 and R 2 include a hydrogen atom; methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl Group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, and octadecyl group.
  • R 1 is a linear or branched alkyl group having 1 to 18 carbon atoms, more preferably a linear or branched alkyl group having 1 to 12 carbon atoms
  • R 2 is preferably a hydrogen atom.
  • R 1 and R 2 may be substituted, and may have a substituent represented by Z.
  • substituents are not particularly limited, and adjacent groups may be bonded to each other to form a ring.
  • R 1 and R 2 present in the same pyridine ring, or R 2 may be bonded to each other to form a ring.
  • the ring formed include a non-conjugated ring such as a cyclohexane ring; a conjugated ring such as a benzene ring, a naphthalene ring, an anthracene ring, and a pentacene ring, preferably a conjugated ring, and more preferably Is a benzene ring.
  • R 1 is a hydrogen atom
  • R 2 is bonded to each other to form a ring, preferably a benzene ring.
  • the formed ring may be substituted or may have a substituent represented by Z.
  • these groups include various isomers.
  • Ar represents an aryl group which may have a substituent, for example, a phenyl group, a naphthyl group, an anthryl group, a tetracenyl group, a pentacenyl group, an azulenyl group, a fluorenyl group, a phenanthrenyl group, Examples include triphenylenyl group, pyrenyl group, chrycenyl group, picenyl group, perylenyl group, pentaferenyl group, dibenzophenanthrenyl group and the like.
  • Ar for example, a substituted or unsubstituted phenyl group is preferable.
  • Two Ar may be different.
  • Ar may have a substituent (that is, an arbitrary hydrogen atom may be substituted with a substituent), and examples of the substituent include the substituent represented by Z.
  • substituents that is, an arbitrary hydrogen atom may be substituted with a substituent
  • the number and position of these substituents are not particularly limited, and adjacent groups may be bonded to each other to form a ring.
  • R 3 represents a linear or branched alkyl group having 1 to 18 carbon atoms. Is particularly preferred.
  • R3 examples include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, an undecyl group, and a dodecyl group.
  • X represents a counter ion, for example, hexafluorophosphate ion, perchlorate ion, tetraphenylborate ion, tetrafluoroborate ion, trifluoromethanesulfonate ion, thiocyanic acid.
  • m represents the number of counter ions necessary to neutralize the charge of the complex.
  • the binuclear ruthenium complex dye (binuclear ruthenium complex dye (A)) having a five-membered heteroaryl group-substituted bipyridyl group of the present invention can be obtained by referring to WO2006 / 038587 and the like, for example, as shown in the following formula: It is obtained by reacting different mononuclear ruthenium complexes.
  • X ⁇ represents a monovalent anion which is a counter ion.
  • X ⁇ represents a monovalent anion which is a counter ion
  • Y represents a halogen atom
  • L represents a neutral molecule, for example, an organic compound such as a water molecule or acetone. Solvent molecule etc., where cod is 1,5-cyclooctadiene.
  • the counter ion (X) is not limited to a monovalent anion, but other ions can be synthesized in the same manner.
  • the binuclear ruthenium complex dye (binuclear ruthenium complex dye (B)) having an unsaturated group-substituted bipyridyl group of the present invention is obtained by reacting different mononuclear ruthenium complexes with each other as shown in the following formula, for example. It is done.
  • X ⁇ represents a monovalent anion which is a counter ion
  • Y represents a halogen atom
  • Z represents a neutral molecule.
  • Cod represents 1,5-cyclooctadiene. .
  • the counter ion (X) is not limited to a monovalent anion, but other ions can be synthesized in the same manner.
  • One mononuclear ruthenium complex is once synthesized via a mononuclear ruthenium complex precursor, but is a synthesis intermediate of the general formula (2)
  • the compound of the general formula (3) may have one NH proton as in the general formula (4).
  • the dinuclear ruthenium complex dye (binuclear ruthenium complex dye (B)) having another unsaturated group-substituted bipyridyl group of the present invention, for example, reacts different mononuclear ruthenium complexes with each other as shown in the following formula. Obtained by.
  • the counter ion (X) is not limited to a monovalent anion, but other ions can be synthesized in the same manner.
  • the binuclear ruthenium complex dye (binuclear ruthenium complex dye (C)) having a substituted bipyridyl group according to the present invention is, for example, a ligand of [Ru (p-cymene) Cl 2 ] 2 as shown in the following formula: It is obtained by sequentially reacting mononuclear ruthenium complexes.
  • R 1 and R 2 are as defined above.
  • X ⁇ represents a monovalent anion which is a counter ion.
  • the counter ion (X) is not limited to a monovalent anion, but other ions can be synthesized in the same manner.
  • protons (H + ) of one or more carboxyl groups (—COOH) may be dissociated.
  • Proton (H + ) dissociation is mainly performed by adjusting the pH of the solution.
  • the photoelectric conversion element of the present invention contains the binuclear ruthenium complex dye and semiconductor fine particles.
  • the dinuclear ruthenium complex dye is adsorbed on the surface of the semiconductor fine particles, and the semiconductor fine particles are sensitized with the ruthenium complex dye.
  • the photoelectric conversion element of the present invention is obtained by fixing semiconductor fine particles sensitized with the ruthenium complex dye on a conductive support (electrode).
  • the conductive electrode is preferably a transparent electrode formed on a transparent substrate.
  • the conductive agent include metals such as gold, silver, copper, platinum, and palladium, indium oxide compounds represented by tin-doped indium oxide (ITO), and fluorine-doped tin oxide (FTO). Examples thereof include tin oxide compounds and zinc oxide compounds.
  • the semiconductor fine particles include titanium oxide, zinc oxide, and tin oxide. Also, complex oxide semiconductors such as indium oxide, niobium oxide, tungsten oxide, vanadium oxide, strontium titanate, calcium titanate, barium titanate, potassium niobate, cadmium or bismuth sulfide, cadmium selenide or telluride And gallium phosphide or arsenide. As the semiconductor fine particles, oxides are preferable, and for example, titanium oxide, zinc oxide, tin oxide, or a mixture containing any one or more of these is particularly preferable.
  • the primary particle size of the semiconductor fine particles is not particularly limited, but is usually 1 to 5000 nm, preferably 2 to 500 nm, and particularly preferably 5 to 400 nm.
  • a semiconductor layer containing semiconductor fine particles is formed on a conductive support and then immersed in a solution containing the dinuclear ruthenium complex dye.
  • the semiconductor layer can be formed by applying a paste of semiconductor fine particles on a conductive support and heating and baking. And after immersing in a pigment
  • the solvent for the dye solution examples include water; alcohols such as methanol, ethanol, isopropyl alcohol, t-butyl alcohol, and ethylene glycol; nitriles such as acetonitrile and propionitrile; N, N-dimethylacetamide, N, N Amides such as dimethylformamide; ureas such as N-methylpyrrolidone; sulfoxides such as dimethyl sulfoxide, and the like, preferably water, alcohols, nitriles, more preferably water, ethanol, isopropyl alcohol, t- Butanol and acetonitrile are used.
  • these solvents may be used independently and may mix and use 2 or more types.
  • the concentration of the dye in the solution is preferably 0.001 mmol / l to the saturation concentration of each complex dye of the present invention, more preferably 0.001 to 100 mmol / l, particularly preferably 0.01 to 10 mmol / l, and more. Preferably, it is 0.05 to 1.0 mmol / l.
  • a compound having a steroid skeleton such as cholic acid, deoxycholic acid, chenodeoxycholic acid may be added to the dye solution.
  • the temperature for adsorbing the dye is usually 0 to 80 ° C., preferably 20 to 40 ° C.
  • the time for adsorbing the dye can be appropriately determined according to conditions such as the type and concentration of the dinuclear ruthenium complex dye.
  • the photochemical battery of the present invention uses the photoelectric conversion element of the present invention as described above. More specifically, the photoelectric conversion element of the present invention and a counter electrode are provided as electrodes, and an electrolyte layer is provided therebetween. At least one of the electrode using the photoelectric conversion element of the present invention and the counter electrode is a transparent electrode.
  • the counter electrode functions as a positive electrode when combined with a photoelectric conversion element to form a photochemical battery.
  • a substrate having a conductive layer can be used as in the case of the conductive electrode.
  • the conductive agent used for the counter electrode include metals such as platinum and carbon, and conductive metal oxides such as tin oxide doped with fluorine.
  • the electrolyte (redox couple) is not particularly limited, and any known one can be used.
  • iodine and iodide for example, metal iodides such as lithium iodide and potassium iodide, or quaternary ammonium compounds such as tetrabutylammonium iodide, tetrapropylammonium iodide, pyridinium iodide, imidazolium iodide) Iodide), bromine and bromide, chlorine and chloride, alkyl viologen and its reduced form, quinone / hydroquinone, iron (II) ion / iron (III) ion, copper (I) ion / Transition metal ion pairs such as copper (II) ion, manganese (II) ion / manganese (III) ion, cobalt ion (II) / cobalt ion (III), ferro
  • a preferable electrolyte is an electrolyte in which iodine and lithium iodide or iodide of a quaternary ammonium compound are combined.
  • the state of the electrolyte may be a liquid dissolved in an organic solvent, a molten salt, a so-called gel electrolyte immersed in a polymer matrix, or a solid electrolyte.
  • the solvent for the electrolyte examples include water, alcohols, nitriles, chain ethers, cyclic ethers, chain esters, cyclic esters, chain amides, cyclic amides, chain sulfones, cyclic Sulfones, chain ureas, cyclic ureas, amines and the like are used.
  • the said solvent is not limited to these, It can use individually or in mixture of 2 or more types.
  • the photochemical battery of the present invention can be manufactured by a conventionally applied method.
  • a semiconductor fine particle paste such as an oxide is applied on a transparent electrode and heated and fired to produce a thin film of semiconductor fine particles.
  • the thin film of semiconductor fine particles is titania, it is fired, for example, at a temperature of 450 to 500 ° C. and a heating time of 30 minutes.
  • the transparent electrode with the thin film is immersed in a dye solution (a solution containing the dinuclear ruthenium complex dye of the present invention), and the dye is supported to produce a photoelectric conversion element.
  • the photochemical cell of the present invention can be manufactured by combining this photoelectric conversion element with a transparent electrode on which platinum or carbon is deposited as a counter electrode, and putting an electrolyte solution therebetween.
  • reaction solution was allowed to cool, H 2 dcbpy (0.08 g, 0.328 mmol) was added, the mixture was deaerated again, and reacted at 140 ° C. for 21.5 hours. After allowing the reaction solution to cool, 0.030 g of sodium hydroxide and [Ru (dnbpy) 2 (BiBzIm)] (0.330 g, 0.294 mmol) were added and reacted at 140 ° C. for 6.5 hours.
  • reaction solution was filtered, the filtrate was concentrated under reduced pressure, 30 mL of acetone and 90 mL of pH 2.4 hexafluorophosphoric acid aqueous solution were added to the concentrate, stirred for 1 hour at room temperature, filtered, and acetone: pH 2.
  • a typical structure of the dinuclear ruthenium complex dye is shown in Formula (1a). Some of the complex dyes have one or more protons of the carboxyl group dissociated.
  • Example A2 (Synthesis of dinuclear ruthenium complex dye (2a))
  • Example A2-A (Synthesis of mononuclear ruthenium complex (M-1); [Ru (Etcbpy) 2 (H 2 O) 2 ] (OTf) 2 )
  • H 2 dcbpy 5.44 g, 22.3 mmol
  • concentrated sulfuric acid 10 mL
  • ethanol 130 mL were added to a 500 mL three-necked flask, and the mixture was refluxed overnight for reaction.
  • the reaction solution was allowed to cool, neutralized, and filtered.
  • the residue was washed with hot water and recrystallized with ethanol / water (95: 5).
  • the crystals were filtered and dried under vacuum to obtain 4.92 g of Etcbpy.
  • Example A2-B Synthesis of mononuclear ruthenium complex (M-2) [(BiBzIm) Ru (BiHeBiTbpy) 2 ]) BiHeBiTbpy (0.375 g, 0.574 mmol), [Ru (cod) Cl 2 ] n (0.096 g, 0.344 mmol) and N, N-dimethylacetamide 36 mL were added to a 200 mL three-necked flask and deaerated. Thereafter, the mixture was refluxed for 24 minutes with stirring under 2.45 GHz microwave irradiation.
  • Example A2-C Synthesis of dinuclear ruthenium complex dye (2a)
  • M-1 0.038 g, 0.038 mmol
  • M-2 0.059 g, 0.036 mmol
  • N N— Degassed by adding 12.5 mL of dimethylacetamide. Thereafter, the mixture was refluxed for 24 minutes with stirring under 2.45 GHz microwave irradiation.
  • the obtained reaction solution was filtered, the filtrate was concentrated under reduced pressure, and 16.3 mL of 0.2 mol / L sodium hydroxide aqueous solution was added to the concentrate, followed by heating at 100 ° C. for 2 hours. The reaction solution was allowed to cool and then filtered. After adding 7.5 mL of methanol, 7.5 mL of water, and 0.02 mL of 1 mol / L sodium hydroxide aqueous solution to the filtrate and performing ultrasonic agitation for 15 minutes, a solution using 0.72 mol / L hexafluorophosphoric acid aqueous solution was used. Was adjusted to pH 3.8 and allowed to stand overnight.
  • This dinuclear ruthenium complex dye is shown in Formula (2a). Some of the complex dyes have one or more protons of the carboxyl group dissociated.
  • Example A3-1 (Preparation of porous titania electrode)
  • the catalyst chemical titania paste PST-18NR was applied to the transparent layer, and PST-400C was applied to the diffusion layer, and applied onto a transparent conductive glass electrode manufactured by Asahi Glass Co., Ltd. using a screen printer.
  • the obtained film was aged for 5 minutes in an atmosphere of 25 ° C. and a relative humidity of 60%, and the aged film was baked at 450 ° C. for 30 minutes. The same operation was repeated on the cooled membrane until a predetermined thickness was obtained, thereby producing a 16 mm 2 porous titania electrode.
  • Example A3-2 Preparation of porous titania electrode adsorbed with dye
  • Porous titania electrode is immersed in a 0.2 mmol / l dye solution of dinuclear ruthenium complex dye (solvent: 1: 1 mixed solvent of t-butanol / acetonitrile) at 30 ° C. for a predetermined time, dried and dye-adsorbed porous A titania electrode was obtained.
  • Example A3-3 (Production of photochemical battery) The dye adsorbing porous titania electrode obtained as described above and a platinum plate (counter electrode) were superposed. Next, an electrolyte solution (3-methoxypropionitrile, lithium iodide, iodine, 4-t-butylpyridine and 1,2-dimethyl-3-propylimidazolium iodide was added at 0.1 mol / l and 0.05 mol, respectively. / L, 0.5 mol / l, and 0.6 mol / l) were soaked into the gaps between the two electrodes using a capillary phenomenon to produce a photochemical battery.
  • an electrolyte solution (3-methoxypropionitrile, lithium iodide, iodine, 4-t-butylpyridine and 1,2-dimethyl-3-propylimidazolium iodide was added at 0.1 mol / l and 0.05 mol, respectively.
  • Example A4 (measurement of UV-visible absorption spectrum) A 3 ⁇ 10 ⁇ 5 mol / L ethanol solution was prepared for each of the following complexes, and an ultraviolet-visible absorption spectrum was measured.
  • Binuclear ruthenium complex of the present invention (1a; synthesized in Example A1)
  • Binuclear ruthenium complex of the present invention (2a; synthesized in Example A2)
  • Existing dinuclear ruthenium complex (3; synthesized in Reference Example A1)
  • the ultraviolet-visible absorption spectrum of the binuclear ruthenium complex (1a) and the binuclear ruthenium complex (3) is shown in FIG. 1, and the ultraviolet-visible absorption spectrum of the binuclear ruthenium complex (2a) and the binuclear ruthenium complex (3) is shown in FIG. .
  • the complex of the present invention (binuclear ruthenium complex dye), that is, the complex (1a) in which a [2,2′-bithiophene] -5-yl group is introduced at the 4-position and the 4′-position of the 2,2′-bipyridine ring,
  • the absorption wavelength region is increased by about 40 nm, and the absorbance at the peak at the longest wavelength side under the same concentration condition is 1 .3 times increase.
  • the complex (2a) of the present invention has a light absorption wavelength region shifted to the long wavelength side of about 58 nm as compared with the known binuclear ruthenium complex (3) in which the 4th and 4 ′ positions are unsubstituted, and 350 The absorbance around ⁇ 450 nm was greatly improved. This revealed that the complex of the present invention can be a dye for producing a high-performance photochemical battery.
  • Example B1-A mononuclear ruthenium complex (M-1); synthesis of [Ru (Etcbpy) 2 (H 2 O) 2 ] (OTf) 2 ) [Ru (Etcbpy) 2 (H 2 O) 2 ] (OTf) 2 was synthesized in the same manner as Example A2-A.
  • the mononuclear ruthenium complex (M-1) (0.141 g, 0.139 mmol)
  • the mononuclear ruthenium complex (M-3) (0.202 g, 0.139 mmol)
  • N, N -Degassed 25 mL of dimethylacetamide. Thereafter, the mixture was refluxed for 22 minutes with stirring under microwave irradiation of 2.45 GHz. The resulting reaction solution was allowed to cool and then concentrated under reduced pressure.
  • a typical structure of this dinuclear ruthenium complex dye is shown in Formula (1b). Some of the complex dyes have one or more protons of the carboxyl group dissociated.
  • Example B2 (Production of photochemical battery) In the same manner as in Examples A3-1 to A3-3, a dye-adsorbing porous titania electrode was produced, and a photochemical battery was produced.
  • Example B3 (measurement of UV-visible absorption spectrum) A 3 ⁇ 10 ⁇ 5 mol / L ethanol solution was prepared for each of the following complexes, and an ultraviolet-visible absorption spectrum was measured.
  • Binuclear ruthenium complex of the present invention (1b; synthesized in Example B1)
  • (2) Existing dinuclear ruthenium complex (5; synthesized in Reference Example B2)
  • FIG. 3 shows ultraviolet-visible absorption spectra of the binuclear ruthenium complex (1b) and the existing dinuclear ruthenium complex (5).
  • the complex of the present invention (binuclear ruthenium complex dye), that is, the complex (1b) having a styryl group introduced at the 4th and 4 'positions of the 2,2'-bipyridine ring has no known 4th and 4' positions.
  • the light absorption wavelength range is shifted to the long wavelength side by about 40 nm, and the absorbance at the same concentration condition at the peak of the longest wavelength side is increased 1.1 times.
  • the complex of the present invention can be a dye for producing a high-performance photochemical battery.
  • reaction solution was allowed to cool, H 2 dcbpy (0.160 g, 0.655 mmol) was added, degassed again, and reacted at 140 ° C. for 8.5 hours. After allowing the reaction solution to cool, 1.32 mL of a 1 mol / L aqueous sodium hydroxide solution and [Ru (phen) 2 (BiBzIm)] (0.408 g, 0.588 mmol) were added, and the reaction was allowed to reflux for 3 hours.
  • the obtained reaction solution was concentrated under reduced pressure, and 30 mL of methanol and 0.1 mL of 2 mol / L hydrochloric acid were added to the concentrate, followed by filtration.
  • Fractionation gave a fraction containing the desired product.
  • the obtained fraction was concentrated under reduced pressure, and the concentrate was suspended in methanol, acetone and 0.4 mol / L hexafluorophosphoric acid aqueous solution (pH 2), and then allowed to stand overnight.
  • the obtained solid was filtered to obtain 0.116 g of a binuclear ruthenium complex dye (2b).
  • Example B5 (Production of photochemical battery) In the same manner as in Examples A3-1 to A3-3, a dye-adsorbing porous titania electrode was produced, and a photochemical battery was produced.
  • Example B6 (measurement of UV-visible absorption spectrum) A 3 ⁇ 10 ⁇ 5 mol / L ethanol solution was prepared for each of the following complexes, and an ultraviolet-visible absorption spectrum was measured.
  • FIG. 4 shows ultraviolet-visible absorption spectra of the binuclear ruthenium complex (2b) and the existing binuclear ruthenium complex (6).
  • Example B7 Measurement of photoelectric conversion efficiency
  • the photoelectric conversion efficiency of the obtained photochemical battery was simulated using a solar simulator manufactured by Eihiro Seiki Co., Ltd. of 100 mW / cm 2 . Sunlight was irradiated and measured. The results are shown in Table 1.
  • the complex of the present invention (binuclear ruthenium complex dye), that is, the complex (2b) in which a styryl group is introduced at the 4th and 4 ′ positions of the 2,2′-bipyridine ring is a known dicarboxylic acid at the 4th and 4 ′ positions.
  • the light absorption wavelength range was shifted to the longer wavelength side by about 40 nm, and the extinction coefficient at the peak on the longest wavelength side was increased 1.1 times. Furthermore, a relatively high photoelectric conversion efficiency was exhibited. From these facts, it was found that the complex of the present invention can be a dye for producing a high-performance photochemical battery.
  • reaction solution was allowed to cool, H 2 dcbpy (0.080 g, 0.328 mmol) was added, the mixture was degassed again, and reacted at 160 ° C. for 4 hours. After allowing the reaction solution to cool, 0.67 mL of a 1 mol / L aqueous sodium hydroxide solution and [Ru (phen) 2 (BiBzIm)] (0.207 g, 0.298 mmol) were added and reacted while refluxing for 5.5 hours. .
  • reaction solution was concentrated under reduced pressure, the concentrate was dissolved in 30 mL of methanol, 8 mL of a hexafluorophosphoric acid aqueous solution having pH 2 was added, and the precipitated solid was filtered.
  • a typical structure of this dinuclear ruthenium complex dye is shown in Formula (C2). Some of the complex dyes have one or more protons of the carboxyl group dissociated.
  • a 200 mL three-necked flask was degassed by adding dichloro-p-cymene ruthenium dimer (0.200 g, 0.327 mmol), dnbpy (0.277 g, 0.657 mmol) and 100 mL of N, N-dimethylformamide. . Then, it was made to react at 60 degreeC for 4 hours.
  • reaction solution was allowed to cool, H 2 dcbpy (0.160 g, 0.656 mmol) was added, the mixture was degassed again, and reacted at 160 ° C. for 4 hours. After allowing the reaction solution to cool, 1.34 mL of a 1 mol / L aqueous sodium hydroxide solution and [Ru (dnbpy) 2 (BiBzIm)] (0.678 g, 0.589 mmol) were added, and the reaction was allowed to reflux for 2 hours.
  • the obtained reaction solution is concentrated under reduced pressure, and the concentrate is dissolved in methanol and separated by liquid chromatography (developing solvent: methanol (containing 0.2% by volume of formic acid)) to contain the desired product.
  • the fraction to be obtained was obtained.
  • the obtained fraction was concentrated under reduced pressure, and the concentrate was dissolved in 2.5 mL of methanol. Thereafter, 2.5 mL of a pH 2 hexafluorophosphoric acid aqueous solution was added. The precipitated solid was filtered to obtain 0.096 g of a binuclear ruthenium complex dye (C3).
  • This dinuclear ruthenium complex dye is shown in Formula (C3). Some of the complex dyes have one or more protons of the carboxyl group dissociated.
  • Example C3 (Preparation of a photochemical battery) In the same manner as in Examples A3-1 to A3-3, a dye-adsorbing porous titania electrode was produced, and a photochemical battery was produced.
  • Example C4 (durability evaluation) The obtained photochemical battery was allowed to stand in a dark place at 60 ° C. for a predetermined time, then returned to room temperature, and the photoelectric conversion efficiency ( ⁇ ) was changed to 100 mW / cm 2 of pseudo-sunlight using a solar simulator manufactured by Eihiro Seiki Co., Ltd. Irradiated and measured. Table 2 shows the maintenance ratio of the photoelectric conversion efficiency after 5 days when the photoelectric conversion efficiency after 100 days in the dark at 60 ° C. of each complex dye is defined as 100%.
  • the present invention it is possible to provide a metal complex dye having a higher extinction coefficient and a light absorption ability up to a longer wavelength region.
  • the metal complex dye of the present invention it is possible to absorb a wider range of light, convert sunlight into electricity over a wide light wavelength range, and highly efficient photoelectric that can absorb more sunlight.
  • a conversion element and a photochemical battery can be provided.
  • a photoelectric conversion element and a photochemical battery having high durability can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)
  • Pyridine Compounds (AREA)

Abstract

 本発明は、より高い吸光係数を持ち、より長波長域までの光吸収能力を有し、広い光波長域にわたって太陽光を電気に変換でき、光電変換効率が高い光電変換素子、及び光化学電池を提供することが可能となり得る二核ルテニウム錯体色素、及び、高い耐久性を有する光電変換素子、及び光化学電池を提供することが可能となり得る二核ルテニウム錯体色素に関する。

Description

置換ビピリジル基を有する二核ルテニウム錯体色素を有する光電変換素子、及び光化学電池
 本発明は、置換ビピリジル基を有する二核ルテニウム錯体色素を有する光電変換素子、及びそれを用いた光化学電池に関する。
 太陽電池はクリーンな再生型エネルギー源として大きく期待されており、単結晶シリコン系、多結晶シリコン系、アモルファスシリコン系の太陽電池や、テルル化カドミウム、セレン化インジウム銅などの化合物からなる太陽電池の実用化をめざした研究がなされている。しかし、家庭用電源として普及させるためには、いずれの電池も製造コストが高いことや、原材料の確保が困難なこと、リサイクルの問題、また大面積化が困難であるなど克服しなければならない多くの問題を抱えている。そこで、大面積化や低価格化を目指し有機材料を用いた太陽電池が提案されてきたが、いずれも変換効率が1%程度と実用化にはほど遠いものであった。
 こうした状況の中、1991年にグレッツェルらにより、色素によって増感された半導体微粒子を用いた光電変換素子および太陽電池、ならびにこの太陽電池の作製に必要な材料及び製造技術が開示された(例えば、非特許文献1、特許文献1参照)。この電池は、ルテニウム色素によって増感された多孔質チタニア薄膜を作用電極とする湿式太陽電池である。この太陽電池の利点は、安価な材料を高純度に精製せずに用いることができるため、安価な光電変換素子として提供できること、さらに用いられる色素の吸収がブロードであり、広い可視光の波長域にわたって太陽光を電気に変換できることである。しかしながら、実用化のためには更なる変換効率の向上が必要であり、より高い吸光係数を有し、より長波長域まで光を吸収する色素の開発が望まれている。
 又、特許文献2には、光電変換素子として有用な金属錯体色素であるジピリジル配位子含有金属単核錯体が開示されており、非特許文献2には、多核β-ジケトナート錯体色素が開示されている。
 一方、特許文献3には、光などの活性光線のエネルギーを受けて電子を取り出す光電変換機能の優れた新規な複核錯体として、複数の金属と複数の配位子を有し、その複数の金属に配位する橋かけ配位子(BL)が複素共役環を有する配位構造と複素共役環を有しない配位構造を有する複核錯体が開示されている。
 更に、特許文献4には、高い光電変換効率を有する光電変換素子が得られる金属錯体色素として、複素共役環を有する配位構造を有する二核金属錯体が開示されている。
特開平1-220380号公報 特開2003-261536号公報 特開2004-359677号公報 国際公開第2006/038587号パンフレット
Nature、第353巻、737頁、1991年 色素増感太陽電池の最新技術(株式会社シーエムシー、2001年5月25日発行、117頁)
 本発明の目的は、より高い吸光係数を持ち、より長波長域までの光吸収能力を有し、広い光波長域にわたって太陽光を電気に変換することが可能となり得る、光電変換効率が高い光電変換素子、及び光化学電池を提供するための金属錯体色素、あるいは高い耐久性を有する光電変換素子、及び光化学電池を提供するための金属錯体色素を提供することである。
 本発明は以下の事項に関する。
 1. 一般式(1)
Figure JPOXMLDOC01-appb-C000040
(式中、2つの
Figure JPOXMLDOC01-appb-C000041
及び
Figure JPOXMLDOC01-appb-C000042
は、同一でも異なっていてもよく、それぞれ互いに独立に、式(2-1)
Figure JPOXMLDOC01-appb-C000043

(式中、Zは五員環へテロアリーレン基を示し、nはZの個数を表し、0~4の整数であり、Rは水素原子、直鎖又は分岐状の炭素原子数1~18のアルキル基又はカルボキシル基を示す。ただし、2個のR及び複数個のZは同一でも異なっていてもよい。)
で示される基、又は式(2-2)
Figure JPOXMLDOC01-appb-C000044
(式中、R及びRは、それぞれ互いに独立に、水素原子、直鎖又は分岐状の炭素原子数1~30のアルキル基を示すか、または、同じピリジン環に存在するRとR、又はR同士は互いに結合して環を形成している。ただし、2個のR及び2個のRは同一でも異なっていてもよい。)
で示される基、又は式(2-3)
Figure JPOXMLDOC01-appb-C000045
(式中、Arは置換基を有していても良いアリール基を示す。ただし、2個のArは同一でも異なっていてもよい。)
で示される基のいずれかを示す。Xは対イオンを示し、mは錯体の電荷を中和するのに必要な対イオンの数を示す。但し、2つの
Figure JPOXMLDOC01-appb-C000046
及び
Figure JPOXMLDOC01-appb-C000047
の少なくとも1つは、nが1~4の整数である式(2-1)で示される基、又は式(2-3)で示される基を示すか、又は
Figure JPOXMLDOC01-appb-C000048
が、式(2-2)で示される基を示す。1又は複数のカルボキシル基(-COOH)のプロトン(H)は解離していても良い。)
で示される二核ルテニウム錯体色素。
 2. 前記1記載の二核ルテニウム錯体色素と半導体微粒子を含むことを特徴とする光電変換素子。
 3. 前記半導体微粒子が、酸化チタン、酸化亜鉛及び酸化スズからなる群より選ばれる少なくとも1種の半導体微粒子であることを特徴とする前記2記載の光電変換素子。
 4. 前記2記載の光電変換素子を備えることを特徴とする光化学電池。
 5. 電極として前記2記載の光電変換素子と対極とを有し、その間に電解質層を有することを特徴とする光化学電池。
 6. 前記1記載の二核ルテニウム錯体色素を含む溶液に半導体微粒子を浸漬する工程を有することを特徴とする光電変換素子の製造方法。
 7. 導電性支持体上に、半導体微粒子を含む半導体層を形成する工程と、
 この半導体層を前記1記載の二核ルテニウム錯体色素を含む溶液に浸漬する工程と
を有することを特徴とする光電変換素子の製造方法。
 本発明により、より高い吸光係数を持ち、より長波長域までの光吸収能力を有する金属錯体色素を提供することができる。この金属錯体色素を用いることにより、広い光波長域にわたって太陽光を電気に変換することができる、光電変換効率が高い光電変換素子、及び光化学電池を提供することが可能となり得る。
 また、本発明により、高い耐久性を有する光電変換素子、及び光化学電池が得られる金属錯体色素を提供することができる。
図1は、二核ルテニウム錯体(1a)と既存の二核ルテニウム錯体(3)の紫外可視吸収スペクトルを示した図である。
図2は、二核ルテニウム錯体(2a)と既存の二核ルテニウム錯体(3)の紫外可視吸収スペクトルを示した図である。 図3は、二核ルテニウム錯体(1b)と既存の二核ルテニウム錯体(5)の紫外可視吸収スペクトルを示した図である。 図4は、二核ルテニウム錯体(2b)と既存の二核ルテニウム錯体(6)の紫外可視吸収スペクトルを示した図である。
 本発明の置換ビピリジル基を有する二核ルテニウム錯体色素は前記の一般式(1)で示されるものである。本発明の二核ルテニウム錯体色素としては、
 (i)2つの
Figure JPOXMLDOC01-appb-C000049
及び
Figure JPOXMLDOC01-appb-C000050
の少なくとも1つが、nが1~4の整数であり、Rが水素原子、又は直鎖又は分岐状の炭素原子数1~18のアルキル基である式(2-1)で示される基であるもの(二核ルテニウム錯体色素(A)とも言う。)
 (ii)2つの
Figure JPOXMLDOC01-appb-C000051
及び
Figure JPOXMLDOC01-appb-C000052
の少なくとも1つが、式(2-3)で示される基であるもの(二核ルテニウム錯体色素(B)とも言う。)
 (iii)2つの
Figure JPOXMLDOC01-appb-C000053
が、式(2-2)で示される基であり、
Figure JPOXMLDOC01-appb-C000054
が、Rおよび/またはRが直鎖又は分岐状の炭素原子数1~30のアルキル基である式(2-2)で示される基であるもの(二核ルテニウム錯体色素(C)とも言う。)
が好ましい。
 二核ルテニウム錯体色素(A)の中では、2つの
Figure JPOXMLDOC01-appb-C000055
が、nが1~4の整数であり、Rが水素原子、又は直鎖又は分岐状の炭素原子数1~18のアルキル基である式(2-1)で示される基、又は式(2-2)で示される基であり、更に好ましくはRが直鎖又は分岐状の炭素原子数1~30のアルキル基であり、Rが水素原子である式(2-2)で示される基であり、
Figure JPOXMLDOC01-appb-C000056
が、nが1~4の整数であり、Rが水素原子、又は直鎖又は分岐状の炭素原子数1~18のアルキル基である式(2-1)で示される基であるものが好ましい。また、2つの
Figure JPOXMLDOC01-appb-C000057
が、nが1~4の整数であり、Rが水素原子、又は直鎖又は分岐状の炭素原子数1~18のアルキル基である式(2-1)で示される基であり、
Figure JPOXMLDOC01-appb-C000058
が、nが0であり、Rがカルボキシル基である式(2-1)で示される基であるものも好ましい。
 二核ルテニウム錯体色素(B)の中では、2つの
Figure JPOXMLDOC01-appb-C000059
が、式(2-3)で示される基、又は式(2-2)で示される基、更に好ましくは式(2-2)で示される基であり、特に好ましくはRが水素原子であり、R同士が互いに結合してベンゼン環を形成している式(2-2)で示される基であり、
Figure JPOXMLDOC01-appb-C000060
が、式(2-3)で示される基であるものが好ましい。また、2つの
Figure JPOXMLDOC01-appb-C000061
が、式(2-3)で示される基であり、
Figure JPOXMLDOC01-appb-C000062
が、nが0であり、Rがカルボキシル基である式(2-1)で示される基であるものも好ましい。
 式(2-3)中のArは、置換基を有していても良いフェニル基であることが好ましく、式(3-1)
Figure JPOXMLDOC01-appb-C000063
(式中、R3は直鎖又は分岐状の炭素原子数1~18のアルキル基を示す。)
で示される基であることが特に好ましい。
 二核ルテニウム錯体色素(C)の中では、2つの
Figure JPOXMLDOC01-appb-C000064
が、式(2-2)で示される基であり、更に好ましくはRが直鎖又は分岐状の炭素原子数1~30のアルキル基であり、Rが水素原子である式(2-2)で示される基、又はRが水素原子であり、R同士が互いに結合してベンゼン環を形成している式(2-2)で示される基であり、
Figure JPOXMLDOC01-appb-C000065
が、Rが直鎖又は分岐状の炭素原子数1~30のアルキル基であり、Rが水素原子である式(2-2)で示される基であるものが好ましい。
 式(2-1)において、Zは五員環へテロアリーレン基を示し、例えば、チエニル基、フリル基、ピロリル基、チアゾリル基、オキサゾリル基、イミダゾリル基、イソチアゾリル基、イソオキサゾリル基、ピラゾリル基、トリアゾリル基、オキサジアゾリル基、チアジアゾリル基などが挙げられる。Zとしては、例えば、チアゾリル基が好ましい。
 Zは1個でも、2~4個でもよく、好ましくは1~3個であり、更に好ましくは2個である。すなわち、式(2-1)において、nは好ましくは1~3であり、更に好ましくは2である。nが2以上の場合、複数存在するZは異なっていてもよい。また、場合によりZは0個でもよく、0個が好ましい場合もある。
 式(2-1)において、Rは水素原子、直鎖又は分岐状の炭素原子数1~18のアルキル基又はカルボキシル基を示す。2個のRは異なっていてもよい。Rとしては、水素原子、又はメチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基等の直鎖又は分岐状の炭素原子数1~18のアルキル基が好ましく、水素原子、直鎖又は分岐状の炭素原子数1~12のアルキル基が更に好ましく、炭素原子数1~12のアルキル基が特に好ましい。
Figure JPOXMLDOC01-appb-C000066
としては、nが0であり、Rがカルボキシル基である式(2-1)で示される基も特に好ましい。
 前記Zは、前記R以外にも、置換基を有していても良い(即ち、任意の水素原子が置換基で置換されていても良い)。その置換基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基等の炭素原子数1~18のアルキル基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペントキシ基、ヘキシロキシ基、ヘプチロキシ基、オクチロキシ基、ノニロキシ基、デシロキシ基、ウンデシロキシ基、ドデシロキシ基等の炭素原子数1~18のアルコキシ基;メチルチオ基、エチルチオ基、プロピルチオ基、ブチルチオ基、ペンチルチオ基、ヘキシルチオ基、ヘプチルチオ基、オクチルチオ基、ノニルチオ基、デシルチオ基、ウンデシルチオ基、ドデシルチオ基等の炭素原子数1~18のアルキルチオ基;N,N-ジメチルアミノ基、N,N-ジエチルアミノ基、N,N-ジプロピルアミノ基、N,N-ジブチルアミノ基、N,N-ジペンチルアミノ基、N,N-ジヘキシルアミノ基、N,N-ジヘプチルアミノ基、N,N-ジオクチルアミノ基、N,N-ジノニルアミノ基、N,N-ジデシルアミノ基、N,N-ジウンデシルアミノ基、N,N-ジドデシルアミノ基等の炭素原子数1~18のN,N-ジアルキルアミノ基;N-メチルアミノ基、N-エチルアミノ基、N-プロピルアミノ基、N-ブチルアミノ基、N-ペンチルアミノ基、N-ヘキシルアミノ基、N-ヘプチルアミノ基、N-オクチルアミノ基、N-ノニルアミノ基、N-デシルアミノ基、N-ウンデシルアミノ基、N-ドデシルアミノ基等の炭素原子数1~18のN-アルキルアミノ基;メチルシリル基、エチルシリル基、プロピルシリル基、ブチルシリル基、ペンチルシリル基、ヘキシルシリル基、ヘプチルシリル基、オクチルシリル基、ノニルシリル基、デシルシリル基、ウンデシルシリル基、ドデシルシリル基等の炭素原子数1~18のアルキルシリル基;ジメチルシリル基、ジエチルシリル基、ジプロピルシリル基、ジブチルシリル基、ジペンチルシリル基、ジヘキシルシリル基、ジヘプチルシリル基、ジオクチルシリル基、ジノニルシリル基、ジデシルシリル基、ジウンデシルシリル基、ジドデシルシリル基等の炭素原子数1~18のジアルキルシリル基;トリメチルシリル基、トリエチルシリル基、トリプロピルシリル基、トリブチルシリル基、トリペンチルシリル基、トリヘキシルシリル基、トリヘプチルシリル基、トリオクチルシリル基、トリノニルシリル基、トリデシルシリル基、トリウンデシルシリル基、トリドデシルシリル基等の炭素原子数1~18のトリアルキルシリル基;エテニル基、プロペニル基、ブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基、ノネニル基、デセニル基、ウンデセニル基、ドデセニル基等の炭素原子数1~18のアルケニル基;エチニル基、プロピニル基、ブチニル基、ペンチニル基、へキシニル基、オクチニル基、ノニニル基、デシニル基、ウンデシニル基、ドデシニル基等の炭素原子数1~18のアルキニル基;メチルイミノ基、エチルイミノ基、プロピルイミノ基、ブチルイミノ基、ペンチルイミノ基、ヘキシルイミノ基、ヘプチルイミノ基、オクチルイミノ基、ノニルイミノ基、デシルイミノ基、ウンデシルイミノ基、ドデシルイミノ基等の炭素原子数1~18のアルキルイミノ基;ヒドロキシ基;アミノ基;メルカプト基;フルオロ原子、クロロ原子、ブロモ原子、ヨード原子等のハロゲン原子、カルボキシル基が挙げられる。
 なお、これらの置換基の数や位置は特に限定されず、隣接する基同士が互いに結合して環を形成していても良い。
 式(2-2)において、R及びRは、水素原子、直鎖又は分岐状の炭素原子数1~30、好ましくは炭素原子数1~18のアルキル基を示すか、または、同じピリジン環に存在するRとR、又はR同士は互いに結合して環を形成している。2個のR及び2個のRは異なっていてもよい。
 R及びRとしては、例えば、水素原子;メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基が挙げられる。R及びRとしては、例えば、Rが直鎖又は分岐状の炭素原子数1~18のアルキル基、更に好ましくは直鎖又は分岐状の炭素原子数1~12のアルキル基であり、Rが水素原子であることが好ましい。R及びRは置換されていてもよく、Zで示した置換基を有していても良い。
 なお、これらの置換基の数や位置は特に限定されず、隣接する基同士が互いに結合して環を形成していても良い。
 また、同じピリジン環に存在するRとR、又はR同士が互いに結合して環を形成していてもよい。形成される環としては、例えば、シクロヘキサン環等の非共役系の環;ベンゼン環、ナフタレン環、アントラセン環、ペンタセン環等の共役系の環が挙げられるが、好ましくは共役系の環、更に好ましくはベンゼン環である。式(2-2)において、Rが水素原子であり、R同士が互いに結合して環、好ましくはベンゼン環を形成していることも特に好ましい。形成される環は置換されていてもよく、Zで示した置換基を有していても良い。
 なお、これらの基は各種異性体を含む。
 式(2-3)において、Arは置換基を有していても良いアリール基を示し、例えば、フェニル基、ナフチル基、アントリル基、テトラセニル基、ペンタセニル基、アズレニル基、フルオレニル基、フェナントレニル基、トリフェニレニル基、ピレニル基、クリセニル基、ピセニル基、ペリレニル基、ペンタフェレニル基、ジベンゾフェナントレニル基などが挙げられる。Arとしては、例えば、置換もしくは無置換のフェニル基が好ましい。2個のArは異なっていてもよい。
 前記Arは置換基を有していても良く(即ち、任意の水素原子が置換基で置換されていても良く)、その置換基としては、例えば、Zで示した置換基が挙げられる。なお、これらの置換基の数や位置は特に限定されず、隣接する基同士が互いに結合して環を形成していても良い。
 Arとしては、例えば、式(3-1)
Figure JPOXMLDOC01-appb-C000067
(式中、R3は直鎖又は分岐状の炭素原子数1~18のアルキル基を示す。)
で示される基が特に好ましい。
 R3としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基が挙げられ、直鎖又は分岐状の炭素原子数1~12のアルキル基が好ましく、直鎖又は分岐状の炭素原子数1~6のアルキル基が更に好ましい。
 又、一般式(1)において、Xは、対イオンを示し、例えば、ヘキサフルオロリン酸イオン、過塩素酸イオン、テトラフェニルホウ酸イオン、テトラフルオロホウ酸イオン、トリフルオロメタンスルホン酸イオン、チオシアン酸イオン、硫酸イオン、硝酸イオン、ハロゲン化物イオン等が挙げられるが、好ましくはヘキサフルオロリン酸イオン、テトラフルオロホウ酸イオン、トリフルオロメタンスルホン酸イオン、硝酸イオン、ハロゲン化物イオンであり、更に好ましくはヘキサフルオロリン酸イオン、テトラフルオロホウ酸イオン、硝酸イオン、ヨウ化物イオンである。mは錯体の電荷を中和するのに必要な対イオンの数を示す。
 本発明の五員環ヘテロアリール基置換ビピリジル基を有する二核ルテニウム錯体色素(二核ルテニウム錯体色素(A))は、WO2006/038587等を参考にして、例えば、以下の式に示すように、異なる単核ルテニウム錯体同士を反応させることによって得られる。
Figure JPOXMLDOC01-appb-C000068
(式中、Z、n、R、R及びRは前記と同義である。Xは対イオンである1価のアニオンを示す。)
Figure JPOXMLDOC01-appb-C000069
(式中、Z、n及びRは前記と同義である。Xは対イオンである1価のアニオンを示し、Yはハロゲン原子、Lは中性分子、例えば、水分子やアセトン等の有機溶媒分子などを示す。なお、codは1,5-シクロオクタジエンである。)
 なお、対イオン(X)は1価のアニオンに限られないが、他のものも同様にして合成することができる。
 本発明の不飽和基置換ビピリジル基を有する二核ルテニウム錯体色素(二核ルテニウム錯体色素(B))は、例えば、以下の式に示すように、異なる単核ルテニウム錯体同士を反応させることによって得られる。
Figure JPOXMLDOC01-appb-C000070
(式中、Arは前記と同義であり、Xは対イオンである1価のアニオンを示し、Yはハロゲン原子、Zは中性分子を示す。なお、codは1,5-シクロオクタジエンである。)
 なお、対イオン(X)は1価のアニオンに限られないが、他のものも同様にして合成することができる。
 片方の単核ルテニウム錯体は、一旦、単核ルテニウム錯体前駆体を経由して合成されるが、その合成中間体である、一般式(2)
Figure JPOXMLDOC01-appb-C000071
(式中、Ar、X及びmは前記と同義である。)
で示される単核ルテニウム錯体、及び一般式(3)
Figure JPOXMLDOC01-appb-C000072
(式中、Arは前記と同義である。)
で示される単核ルテニウム錯体は新規化合物である。
 なお、一般式(3)の化合物は、一般式(4)のように一つNHプロトンを有していてもよい。
Figure JPOXMLDOC01-appb-C000073
(式中、Ar、X及びmは前記と同義である。)
 本発明の別の不飽和基置換ビピリジル基を有する二核ルテニウム錯体色素(二核ルテニウム錯体色素(B))は、例えば、以下の式に示すように、異なる単核ルテニウム錯体同士を反応させることによって得られる。
Figure JPOXMLDOC01-appb-C000074
(式中、Ar、R及びRは前記と同義である。Xは対イオンである1価のアニオンを示す。)
 なお、対イオン(X)は1価のアニオンに限られないが、他のものも同様にして合成することができる。
 本発明の置換ビピリジル基を有する二核ルテニウム錯体色素(二核ルテニウム錯体色素(C))は、例えば、以下の式に示すように、[Ru(p-cymene)Clに配位子、単核ルテニウム錯体を順次反応させることによって得られる。
Figure JPOXMLDOC01-appb-C000075
(式中、R及びRは前記と同義である。Xは対イオンである1価のアニオンを示す。)
 なお、対イオン(X)は1価のアニオンに限られないが、他のものも同様にして合成することができる。
 本発明の置換ビピリジル基を有する二核ルテニウム錯体色素は、1又は複数のカルボキシル基(-COOH)のプロトン(H)が解離していても良い。プロトン(H)の解離は、主として溶液のpHを調整することによってなされる。
 本発明の光電変換素子は、前記二核ルテニウム錯体色素と半導体微粒子とを含むものである。前記二核ルテニウム錯体色素は半導体微粒子表面に吸着されており、半導体微粒子はルテニウム錯体色素により増感されている。
 より具体的には、本発明の光電変換素子は、上記のルテニウム錯体色素により増感された半導体微粒子を導電性支持体(電極)上に固定したものである。
 導電性電極は、透明基板上に形成された透明電極であることが好ましい。導電剤としては、例えば、金、銀、銅、白金、パラジウム等の金属、スズをドープした酸化インジウム(ITO)に代表される酸化インジウム系化合物、フッ素をドープした酸化錫(FTO)に代表される酸化スズ系化合物、酸化亜鉛系化合物等が挙げられる。
 半導体微粒子としては、例えば、酸化チタン、酸化亜鉛、酸化スズ等が挙げられる。又、酸化インジウム、酸化ニオブ、酸化タングステン、酸化バナジウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸バリウム、ニオブ酸カリウムなどの複合酸化物半導体、カドミウム又はビスマスの硫化物、カドミウムのセレン化物又はテルル化物、ガリウムのリン化物又はヒ素化物等も挙げられる。半導体微粒子としては、酸化物が好ましく、例えば、酸化チタン、酸化亜鉛、酸化スズ、又はこれらのいずれか1種以上を含む混合物が特に好ましい。
 半導体微粒子の一次粒子径は特に限定されないが、通常、1~5000nm、好ましくは2~500nm、特に好ましくは5~400nmである。
 半導体微粒子に二核ルテニウム錯体色素を吸着させる方法としては、導電性支持体上に半導体微粒子を含む半導体層(半導体微粒子膜)を形成した後、これを二核ルテニウム錯体色素を含む溶液に浸漬する方法が挙げられる。半導体層は、導電性支持体上に半導体微粒子のペーストを塗布し、加熱焼成して形成することができる。そして、色素溶液に浸漬後、この半導体層が形成された導電性支持体を洗浄、乾燥する。
 色素溶液の溶媒としては、例えば、水;メタノール、エタノール、イソプロピルアルコール、t-ブチルアルコール、エチレングリコール等のアルコール類;アセトニトリル、プロピオニトリル等のニトリル類;N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド等のアミド類;N-メチルピロリドン等の尿素類;ジメチルスルホキシド等のスルホキシド類が挙げられるが、好ましくは水、アルコール類、ニトリル類、更に好ましくは水、エタノール、イソプロピルアルコール、t-ブタノール、アセトニトリルが用いられる。なお、これらの溶媒は単独で用いてもよく、2種以上を混合して用いてもよい。
 溶液中の色素の濃度は、好ましくは0.001mmol/l~本発明の各々の錯体色素の飽和濃度、更に好ましくは0.001~100mmol/l、特に好ましくは0.01~10mmol/l、より好ましくは0.05~1.0mmol/lである。
 又、色素溶液には、例えば、コール酸、デオキシコール酸、ケノデオキシコール酸等のステロイド骨格を有する化合物を添加しても良い。
 色素を吸着させる際の温度は、通常、0~80℃とすれば良く、好ましくは20~40℃である。色素を吸着させる時間(色素溶液に浸漬する時間)は、二核ルテニウム錯体色素の種類、濃度等の条件に応じて適宜決定することができる。
 本発明の光化学電池は、上記のような本発明の光電変換素子を用いたものである。より具体的には、電極として上記の本発明の光電変換素子と対極とを有し、その間に電解質層を有するものである。本発明の光電変換素子を用いた電極と対極の少なくとも片方は透明電極である。
 対極は光電変換素子と組み合わせて光化学電池としたときに正極として作用するものである。対極としては、上記導電性電極と同様に導電層を有する基板を用いることもできるが、金属板そのものを使用すれば、基板は必ずしも必要ではない。対極に用いる導電剤としては、白金や炭素等の金属、フッ素をドープした酸化スズ等の導電性金属酸化物が挙げられる。
 電解質(酸化還元対)としては特に限定されず、公知のものをいずれも用いることができる。例えば、ヨウ素とヨウ化物(例えば、ヨウ化リチウム、ヨウ化カリウム等の金属ヨウ化物、またはヨウ化テトラブチルアンモニウム、ヨウ化テトラプロピルアンモニウム、ヨウ化ピリジニウム、ヨウ化イミダゾリウム等の4級アンモニウム化合物のヨウ化物)の組み合わせ、臭素と臭化物の組み合わせ、塩素と塩化物の組み合わせ、アルキルビオローゲンとその還元体の組み合わせ、キノン/ハイドロキノン、鉄(II)イオン/鉄(III)イオン、銅(I)イオン/銅(II)イオン、マンガン(II)イオン/マンガン(III)イオン、コバルトイオン(II)/コバルトイオン(III)等の遷移金属イオン対、フェロシアン/フェリシアン、四塩化コバルト(II)/四塩化コバルト(III)、四臭化コバルト(II)/四臭化コバルト(III)、六塩化イリジウム(II)/六塩化イリジウム(III)、六シアノ化ルテニウム(II)/六シアノ化ルテニウム(III)、六塩化ロジウム(II)/六塩化ロジウム(III)、六塩化レニウム(III)/六塩化レニウム(IV)、六塩化レニウム(IV)/六塩化レニウム(V)、六塩化オスミウム(III)/六塩化オスミウム(IV)、六塩化オスミウム(IV)/六塩化オスミウム(V)等の錯イオンの組み合わせ、コバルト、鉄、ルテニウム、マンガン、ニッケル、レニウムといった遷移金属とビピリジンやその誘導体、ターピリジンやその誘導体、フェナントロリンやその誘導体といった複素共役環及びその誘導体で形成されているような錯体類、フェロセン/フェロセニウムイオン、コバルトセン/コバルトセニウムイオン、ルテノセン/ルテノセウムイオンといったシクロペンタジエン及びその誘導体と金属の錯体類、ポルフィリン系化合物類等が使用できる。好ましい電解質は、ヨウ素とヨウ化リチウムや4級アンモニウム化合物のヨウ化物とを組み合わせた電解質である。電解質の状態は、有機溶媒に溶解した液体であっても、溶融塩、ポリマーマトリックスに含浸漬したいわゆるゲル電解質や、固体電解質であっても良い。
 電解液の溶媒としては、例えば、水、アルコール類、ニトリル類、鎖状エーテル類、環状エーテル類、鎖状エステル類、環状エステル類、鎖状アミド類、環状アミド類、鎖状スルホン類、環状スルホン類、鎖状尿素類、環状尿素類、アミン類等が使用される。なお、前記溶媒は、これらに限定されるものではなく、単独又は2種類以上を混合して用いることができる。
 本発明の光化学電池は、従来から適用されている方法によって製造することができる。
 例えば、前述のように、透明電極上に酸化物等の半導体微粒子のペーストを塗布し、加熱焼成して半導体微粒子の薄膜を作製する。半導体微粒子の薄膜がチタニアの場合、例えば温度450~500℃、加熱時間30分で焼成する。この薄膜の付いた透明電極を色素溶液(本発明の二核ルテニウム錯体色素を含む溶液)に浸漬し、色素を担持して光電変換素子を作製する。更に、この光電変換素子と対極として白金又は炭素を蒸着した透明電極を合わせ、その間に電解質溶液を入れることにより本発明の光化学電池を製造することができる。
 本発明を以下の実施例により更に詳細に説明するが、本発明の範囲はそれらに限定されるものではない。
 なお、実施例中の略称は以下の通りである。
bpy;2,2’-ビピリジン
dnbpy;4,4’-ジノニル-2,2’-ビピリジン
dcbpy;2,2’-ビピリジン-4,4’-ジカルボン酸
Etcbpy;2,2’-ビピリジン-4,4’-ジカルボン酸ジエチルエステル
BiBzImH,BiBzIm;2,2’-ビベンズイミダゾール
BiHeBiTbpy;4,4’-ビス(5’-ヘキシル-[2,2’-ビチオフェン]-5-イル)-2,2’-ビピリジン
BiHexoStbpy;4,4’-ビス(4-(ヘキシロキシ)スチリル)-2,2’-ビピリジン
phen;1,10-フェナントロリン
OTf:トリフルオロメタンスルホン酸イオン
cod;1,5-シクロオクタジエン
 <二核ルテニウム錯体色素(A)>
実施例A1(二核ルテニウム錯体色素(1a)の合成)
 アルゴン雰囲気下、200mLの三口フラスコにジクロロ-p-シメンルテニウムダイマー(0.100g,0.163mmol)、BiHeBiTbpy(0.214g,0.328mmol)及びN,N-ジメチルホルムアミド50mLを加えて脱気した。その後、60℃で4時間反応させた。
 反応液を放冷後、Hdcbpy(0.08g,0.328mmol)を加え、再び脱気した後、140℃で21.5時間反応させた。反応液を放冷後、水酸化ナトリウム0.030g、[Ru(dnbpy)(BiBzIm)](0.330g,0.294mmol)を加え、140℃で6.5時間反応させた。
 得られた反応液を濾過し、濾液を減圧下で濃縮し、濃縮物にアセトン30mL及びpH2.4ヘキサフルオロリン酸水溶液90mLを加え、室温で1時間攪拌した後、濾過し、アセトン:pH2.4ヘキサフルオロリン酸水溶液=1:3で洗浄し、二核ルテニウム錯体色素(1a)0.610gを得た。
 この二核ルテニウム錯体色素の代表構造を式(1a)に示す。当該錯体色素は、カルボキシル基の1又は複数のプロトンが解離しているものもある。
Figure JPOXMLDOC01-appb-C000076
実施例A2(二核ルテニウム錯体色素(2a)の合成)
 実施例A2-A(単核ルテニウム錯体(M-1);[Ru(Etcbpy)(HO)](OTf)の合成)
 窒素雰囲気下、500mLの三口フラスコに市販のHdcbpy(5.44g,22.3mmol)、濃硫酸(10mL)及びエタノール130mLを加え、一晩還流し、反応させた。反応液を放冷後、中和し、濾過した。濾物を熱水で洗浄し、エタノール/水(95:5)で再結晶を行った。結晶を濾過し、真空乾燥し、Etcbpy4.92gを得た。
 次に、アルゴン雰囲気下、1000mLの三口フラスコに市販の塩化ルテニウム(1.18g,4.51mmol)、Etcbpy(2.64g,8.79mmol)及びエタノール500mLを加え、7時間還流し、反応させた。反応液を放冷後、濾過し、真空乾燥して、[Ru(Etcbpy)Cl]1.64gを得た。また、濾液を減圧濃縮し、濃縮物に2mol/L塩酸300mLを加え、5分室温で攪拌後、濾過した。濾物を水で洗浄し、エタノール/ジクロロメタン(10:3)で再結晶を行い、濾過し、真空乾燥して、[Ru(Etcbpy)Cl]1.34gを得、計2.98gを得た。
 続いて、200mLの三口フラスコに[Ru(Etcbpy)Cl](1.37g,1.77mmol)、トリフルオロメタンスルホン酸銀(1.09g,4.25mmol)及びジクロロメタン140mLを加え、室温で1時間攪拌した。反応液を一晩静置した後、濾過した。濾液を減圧下で濃縮し、濃縮物にジエチルエーテルを加え、5分間室温で攪拌した後、濾過した。濾物をジエチルエーテルで洗浄し、真空乾燥し、[Ru(Etcbpy)(HO)](OTf)1.62gを得た。
 実施例A2-B(単核ルテニウム錯体(M-2)[(BiBzIm)Ru(BiHeBiTbpy)]の合成)
 200mLの三口フラスコにBiHeBiTbpy(0.375g,0.574mmol)、[Ru(cod)Cl(0.096g,0.344mmol)及びN,N-ジメチルアセトアミド36mLを加えて脱気した。その後、2.45GHzのマイクロ波照射下にて攪拌しながら24分間還流させた。反応液を放冷後、吸引濾過によって濾物を回収し、N,N-ジメチルアセトアミドで洗浄、真空乾燥し、[Ru(BiHeBiTbpy)Cl]0.371gを得た。
 次に、アルゴン雰囲気下、100mLの三口フラスコにRu(BiHeBiTbpy)Cl(0.357g,0.242mmol)、BiBzImH(0.062g,0.266mmol)及びN,N-ジメチルアセトアミド25mLを加えて脱気した。その後、2.45GHzのマイクロ波照射下にて攪拌しながら断続的に98分間還流させた。反応液を放冷後、濾過した。得られた濾液に水12mLを加え、1mLの水に溶解させたヘキサフルオロリン酸アンモニウム(0.158g,0.097mmol)を加え、室温で1時間攪拌した。攪拌した懸濁液を濾過し、濾物をN,N-ジメチルアセトアミド:水=20:12で洗浄後、真空乾燥し、[Ru(BiHeBiTbpy)BiBzImH](PF0.166gを得た。
 続いて、100mLの三口フラスコに[Ru(BiHeBiTbpy)BiBzImH](PF(0.149g,0.077mmol)、メタノール5mL及び28%ナトリウムメトキシド メタノール溶液0.15mL(0.77mmol)を加えて脱気した。その後、2時間還流させた。反応液を放冷後、濾過した。濾物を反応溶液と同じ濃度のナトリウムメトキシド メタノール溶液で洗浄し、真空乾燥し、単核ルテニウム錯体(M-2)[Ru(BiHeBiTbpy)(BiBzIm)]0.133gを得た。
 実施例A2-C(二核ルテニウム錯体色素(2a)の合成)
 アルゴン雰囲気下、20mLのシュレンクに単核ルテニウム錯体(M-1)(0.038g,0.038mmol)、単核ルテニウム錯体(M-2)(0.059g,0.036mmol)及びN,N-ジメチルアセトアミド12.5mLを加えて脱気した。その後、2.45GHzのマイクロ波照射下にて攪拌しながら24分間還流させた。得られた反応液を濾過し、その濾液を減圧下で濃縮し、濃縮物に0.2mol/L水酸化ナトリウム水溶液16.3mLを加え、100℃で2時間加熱した。反応液を放冷後、濾過した。濾物にメタノール7.5mL、水7.5mL、1mol/L水酸化ナトリウム水溶液0.02mLを加え、超音波攪拌を15分行った後、0.72mol/Lヘキサフルオロリン酸水溶液を用いて溶液のpHを3.8に調整し、一晩静置した。その後、濾過し、濾物をpH3.8ヘキサフルオロリン酸水溶液、アセトン:ジエチルエーテル=1:8の溶液で洗浄し、真空乾燥後、メタノール12mL、水12mL、1mol/L水酸化ナトリウム水溶液0.02mLを加え、超音波攪拌を15分行った後、0.72mol/Lヘキサフルオロリン酸水溶液を用いて溶液のpHを2.8に調整し、一晩静置した。その後、濾過し、濾物をpH2.8ヘキサフルオロリン酸水溶液で洗浄し、二核ルテニウム錯体色素(2a)0.034gを得た。
 この二核ルテニウム錯体色素の代表構造を式(2a)に示す。当該錯体色素は、カルボキシル基の1又は複数のプロトンが解離しているものもある。
Figure JPOXMLDOC01-appb-C000077
参考例A1(既存の二核ルテニウム錯体色素(3)の合成)
 既知の方法で二核ルテニウム錯体色素(3)を合成した。
Figure JPOXMLDOC01-appb-C000078
実施例A3-1(多孔質チタニア電極の作製)
 触媒化成製のチタニアペーストPST-18NRを透明層に、PST-400Cを拡散層に用い、旭硝子株式会社製透明導電性ガラス電極上にスクリーン印刷機を用いて塗布した。得られた膜を25℃、相対湿度60%の雰囲気下で5分間エージングし、このエージングした膜を450℃で30分間焼成した。冷却した膜に対し、同じ作業を所定の厚みになるまで繰り返し、16mmの多孔質チタニア電極を作製した。
実施例A3-2(色素を吸着した多孔質チタニア電極の作製)
 二核ルテニウム錯体色素の0.2mmol/l色素溶液(溶媒:t-ブタノール/アセトニトリルの1:1混合溶媒)に多孔質チタニア電極を30℃で所定の時間浸漬し、乾燥して色素吸着多孔質チタニア電極を得た。
実施例A3-3(光化学電池の作製)
 以上のようにして得られた色素吸着多孔質チタニア電極と白金板(対極)を重ね合わせた。次に、電解質溶液(3-メトキシプロピオニトリルにヨウ化リチウム、ヨウ素、4-t-ブチルピリジン及び1,2-ジメチル-3-プロピルイミダゾリウムアイオダイドをそれぞれ0.1mol/l、0.05mol/l、0.5mol/l、0.6mol/lとなるように溶解したもの)を両電極の隙間に毛細管現象を利用して染み込ませることにより光化学電池を作製した。
実施例A4(紫外可視吸収スペクトル測定)
 以下の錯体それぞれについて3×10-5mol/Lエタノール溶液を調製し、紫外可視吸収スペクトルを測定した。
(1)本発明の二核ルテニウム錯体(1a;実施例A1で合成)
(2)本発明の二核ルテニウム錯体(2a;実施例A2で合成)
(3)既存の二核ルテニウム錯体(3;参考例A1で合成)
 二核ルテニウム錯体(1a)と二核ルテニウム錯体(3)の紫外可視吸収スペクトルを図1に、二核ルテニウム錯体(2a)と二核ルテニウム錯体(3)の紫外可視吸収スペクトルを図2に示す。
 本発明の錯体(二核ルテニウム錯体色素)、即ち、2,2’-ビピリジン環の4位及び4’位に[2,2’-ビチオフェン]-5-イル基を導入した錯体(1a)は、公知の4位及び4’位が無置換の二核ルテニウム錯体(3)と比べて吸収波長域が約40nm長波長化し、且つ最も長波長側のピークにおける同濃度条件下での吸光度が1.3倍増加していた。本発明の錯体(2a)は、公知の4位及び4’位が無置換の二核ルテニウム錯体(3)と比べて光の吸収波長域が約58nm長波長側へシフトしており、且つ350~450nm付近の吸光度が大幅に向上した。このことにより、本発明の錯体は、高い性能の光化学電池を製造するための色素となり得ることが判明した。
 <二核ルテニウム錯体色素(B)>
参考例B1(BiHexoStbpyの合成)
 Journal Of American Chemical Society,2006年,128巻,4146-4154頁を参考に合成した。
実施例B1(二核ルテニウム錯体色素(1b)〔Ar=4-(ヘキシロキシ)フェニル〕の合成)
 実施例B1-A(単核ルテニウム錯体(M-1);[Ru(Etcbpy)(HO)](OTf)の合成)
 実施例A2-Aと同様にして、[Ru(Etcbpy)(HO)](OTf)を合成した。
 実施例B1-B(単核ルテニウム錯体(M-3);[(BiBzIm)Ru(BiHexoStbpy)]〔Ar=4-(ヘキシロキシ)フェニル〕の合成)
 200mLの三口フラスコにBiHexoStbpy(1.106g,1.973mmol)、[Ru(cod)Cl(0.268g,0.957mmol)及びN,N-ジメチルホルムアミド100mLを加えて脱気した。その後、2.45GHzのマイクロ波照射下にて攪拌しながら34分間還流させた。反応液を放冷後、吸引濾過によって濾物を回収し、N,N-ジメチルホルムアミドで洗浄、真空乾燥し、[Ru(BiHexoStbpy)Cl]0.779gを得た。
 次に、アルゴン雰囲気下、100mLの三口フラスコにRu(BiHexoStbpy)Cl(0.769g,0.595mmol)、BiBzImH(0.153g,0.654mmol)及びエチレングリコール25mLを加えて脱気した。その後、2.45GHzのマイクロ波照射下にて攪拌しながら21分間還流させた。反応液を放冷後、アセトン70mL、水30mLを加え、室温で1時間攪拌した。その後、反応液を濾過した。濾液に2mLの水に溶解させたヘキサフルオロリン酸アンモニウム(0.388g,2.380mmol)を加え、室温で30分攪拌した。濾物を水で洗浄後、真空乾燥し、[Ru(BiHexoStbpy)BiBzImH](PF0.789gを得た。
 続いて、100mLの三口フラスコに[Ru(BiHexoStbpy)BiBzImH](PF(0.751g,0.430mmol)、メタノール11mL及び10%リチウムメトキシド メタノール溶液1.63mL(4.30mmol)を加えて脱気した。その後、1時間還流させた。反応液を放冷後、濾過した。濾物を0.39mol/L(反応溶液と同じ濃度)リチウムメトキシド メタノール溶液で洗浄し、真空乾燥し、単核ルテニウム錯体(M-3)[Ru(BiHexoStbpy)(BiBzIm)]0.626gを得た。
 実施例B1-C(二核ルテニウム錯体色素(1b)〔Ar=4-(ヘキシロキシ)フェニル〕の合成)
 アルゴン雰囲気下、100mLの三口フラスコに単核ルテニウム錯体(M-1)(0.141g,0.139mmol)、単核ルテニウム錯体(M-3)(0.202g,0.139mmol)及びN,N-ジメチルアセトアミド25mLを加えて脱気した。その後、2.45GHzのマイクロ波照射下にて攪拌しながら22分間還流させた。得られた反応液を放冷後、減圧下で濃縮し、濃縮物に0.2mol/L水酸化ナトリウム水溶液36mLを加え、100℃で2時間加熱した。反応液を放冷後、濾過した。濾物をアセトン:ジエチルエーテル=1:8の溶液で洗浄した。その後、濾物を水50mLに懸濁させ、0.72mol/Lヘキサフルオロリン酸水溶液を用いて溶液のpHを3.5に調整し、一晩静置した。その後、濾過し、濾物をpH3.5ヘキサフルオロリン酸水溶液、アセトン:ジエチルエーテル=1:8の溶液、及びジエチルエーテルで洗浄し、真空乾燥し、二核ルテニウム錯体色素(1b)0.125gを得た。
 この二核ルテニウム錯体色素の代表構造を式(1b)に示す。当該錯体色素は、カルボキシル基の1又は複数のプロトンが解離しているものもある。
Figure JPOXMLDOC01-appb-C000079
参考例B2(二核ルテニウム錯体色素(5)〔実施例B1において4-(ヘキシロキシ)スチリル基を無置換にしたもの〕の合成)
 既知の方法で二核ルテニウム錯体色素(5)を合成した。
Figure JPOXMLDOC01-appb-C000080
実施例B2(光化学電池の作製)
 実施例A3-1~A3-3と同様にして、色素吸着多孔質チタニア電極を作製し、光化学電池を作製した。
実施例B3(紫外可視吸収スペクトル測定)
 以下の錯体それぞれについて3×10-5mol/Lエタノール溶液を調製し、紫外可視吸収スペクトルを測定した。
(1)本発明の二核ルテニウム錯体(1b;実施例B1で合成)
(2)既存の二核ルテニウム錯体(5;参考例B2で合成)
 二核ルテニウム錯体(1b)と既存の二核ルテニウム錯体(5)の紫外可視吸収スペクトルを図3に示す。
 本発明の錯体(二核ルテニウム錯体色素)、即ち、2,2’-ビピリジン環の4位及び4’位にスチリル基を導入した錯体(1b)は、公知の4位及び4’位が無置換の二核ルテニウム錯体(5)と比べて光の吸収波長域が約40nm長波長側へシフトしており、且つ最も長波長側のピークにおける同濃度条件下での吸光度が1.1倍増加していた。このことにより、本発明の錯体は、高い性能の光化学電池を製造するための色素となり得ることが判明した。
実施例B4(二核ルテニウム錯体色素(2b)〔Ar=4-(ヘキシロキシ)フェニル、R=水素原子、R同士が互いに結合してベンゼン環を形成〕の合成)
 アルゴン雰囲気下、300mLの三口フラスコにジクロロ-p-シメンルテニウムダイマー(0.200g,0.326mmol)、BiHexoStbpy(0.366g,0.653mmol)及びN,N-ジメチルホルムアミド100mLを加えて脱気した。その後、60℃で3.5時間反応させた。
 反応液を放冷後、Hdcbpy(0.160g,0.655mmol)を加え、再び脱気した後、140℃で8.5時間反応させた。反応液を放冷後、1mol/L水酸化ナトリウム水溶液1.32mL、[Ru(phen)(BiBzIm)](0.408g,0.588mmol)を加え、3時間還流しながら反応させた。
 得られた反応液を減圧下で濃縮し、濃縮物にメタノール30mL及び2mol/L塩酸0.1mLを加え、濾過した。濾物をメタノールに溶解し、液体クロマトグラフィー(展開溶媒;メタノール(0.2容量%のギ酸を含有);水(0.2容量%のギ酸を含有)=88:12(容量比))で分取して、目的物を含有するフラクションを得た。得られたフラクションを減圧下で濃縮し、濃縮物をメタノール、アセトン及び0.4mol/Lヘキサフルオロリン酸水溶液(pH2)に懸濁させた後、一晩放置した。得られた固体を濾過し、二核ルテニウム錯体色素(2b)0.116gを得た。
 この二核ルテニウム錯体色素の代表構造を式(2b)に示す。当該錯体色素は、カルボキシル基の1又は複数のプロトンが解離しているものもある。
Figure JPOXMLDOC01-appb-C000081
参考例B3(既存の二核ルテニウム錯体色素(6)の合成)
 既知の方法で二核ルテニウム錯体色素(6)を合成した。
Figure JPOXMLDOC01-appb-C000082
実施例B5(光化学電池の作製)
 実施例A3-1~A3-3と同様にして、色素吸着多孔質チタニア電極を作製し、光化学電池を作製した。
実施例B6(紫外可視吸収スペクトル測定)
 以下の錯体それぞれについて3×10-5mol/Lエタノール溶液を調製し、紫外可視吸収スペクトルを測定した。
(1)本発明の二核ルテニウム錯体(2b;実施例B4で合成)
(2)既存の二核ルテニウム錯体(6;参考例B3で合成)
 二核ルテニウム錯体(2b)と既存の二核ルテニウム錯体(6)の紫外可視吸収スペクトルを図4に示す。
実施例B7(光電変換効率の測定)
 本発明の二核ルテニウム錯体(2b)と既存の二核ルテニウム錯体(6)について、得られた光化学電池の光電変換効率を、英弘精機株式会社製のソーラーシュミレーターを用い、100mW/cmの擬似太陽光を照射し測定した。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000083
 本発明の錯体(二核ルテニウム錯体色素)、即ち、2,2’-ビピリジン環の4位及び4’位にスチリル基を導入した錯体(2b)は、公知の4位及び4’位にジカルボン酸を持つ二核ルテニウム錯体(6)と比べて光の吸収波長域が約40nm長波長側へシフトしており、且つ最も長波長側のピークにおける吸光係数が1.1倍増加していた。更に、相対的に高い光電変換効率を示していた。これらのことにより、本発明の錯体は、高い性能の光化学電池を製造するための色素となり得ることが判明した。
 <二核ルテニウム錯体色素(C)>
実施例C1(二核ルテニウム錯体色素(C2)〔左側のRuの配位子:R=ノニル基、R=水素原子;右側のRuの配位子:R同士が互いに結合してベンゼン環を形成〕の合成)
 アルゴン雰囲気下、100mLの三口フラスコにジクロロ-p-シメンルテニウムダイマー(0.100g,0.164mmol)、dnbpy(0.139g,0.329mmol)及びN,N-ジメチルホルムアミド50mLを加えて脱気した。その後、60℃で4時間反応させた。
 反応液を放冷後、Hdcbpy(0.080g,0.328mmol)を加え、再び脱気した後、160℃で4時間反応させた。反応液を放冷後、1mol/L水酸化ナトリウム水溶液0.67mL、[Ru(phen)(BiBzIm)](0.207g,0.298mmol)を加え、5.5時間還流しながら反応させた。
 得られた反応液を減圧下で濃縮し、濃縮物をメタノール30mLに溶解させた後、pH2のヘキサフルオロリン酸水溶液8mLを加え、析出した固体を濾過した。
 次いで、濾液にpH2のヘキサフルオロリン酸水溶液16.5mLを加え、析出した固体を濾過した。濾物を乾燥させた後、メタノールに溶解し、液体クロマトグラフィー(展開溶媒;メタノール(0.2容量%のギ酸を含有))で分取して、目的物を含有するフラクションを得た。得られたフラクションを減圧下で濃縮し、濃縮物をメタノール10mLに溶解させた。その後、pH2のヘキサフルオロリン酸水溶液10mLを加えた。析出した固体を濾過し、二核ルテニウム錯体色素(C2)0.104gを得た。
 この二核ルテニウム錯体色素の代表構造を式(C2)に示す。当該錯体色素は、カルボキシル基の1又は複数のプロトンが解離しているものもある。
Figure JPOXMLDOC01-appb-C000084
実施例C2(二核ルテニウム錯体色素(C3)〔R=ノニル基、R=水素原子〕の合成)
 アルゴン雰囲気下、200mLの三口フラスコにジクロロ-p-シメンルテニウムダイマー(0.200g,0.327mmol)、dnbpy(0.277g,0.657mmol)及びN,N-ジメチルホルムアミド100mLを加えて脱気した。その後、60℃で4時間反応させた。
 反応液を放冷後、Hdcbpy(0.160g,0.656mmol)を加え、再び脱気した後、160℃で4時間反応させた。反応液を放冷後、1mol/L水酸化ナトリウム水溶液1.34mL、[Ru(dnbpy)(BiBzIm)](0.678g,0.589mmol)を加え、2時間還流しながら反応させた。
 得られた反応液を減圧下で濃縮し、濃縮物をメタノールに溶解し、液体クロマトグラフィー(展開溶媒;メタノール(0.2容量%のギ酸を含有))で分取して、目的物を含有するフラクションを得た。得られたフラクションを減圧下で濃縮し、濃縮物をメタノール2.5mLに溶解させた。その後、pH2のヘキサフルオロリン酸水溶液2.5mLを加えた。析出した固体を濾過し、二核ルテニウム錯体色素(C3)0.096gを得た。
 この二核ルテニウム錯体色素の代表構造を式(C3)に示す。当該錯体色素は、カルボキシル基の1又は複数のプロトンが解離しているものもある。
Figure JPOXMLDOC01-appb-C000085
参考例C1(二核ルテニウム錯体色素(C4)〔左側のRuの配位子:R=COOH、R=水素原子;右側のRuの配位子:R同士が互いに結合してベンゼン環を形成〕の合成)
 既知の方法で二核ルテニウム錯体色素(C4)を合成した。
Figure JPOXMLDOC01-appb-C000086
参考例C2(二核ルテニウム錯体色素(C5)〔左側のRuの配位子:R=COOH、R=水素原子;右側のRuの配位子:R=ノニル基、R=水素原子〕の合成)
 既知の方法で二核ルテニウム錯体色素(C5)を合成した。
Figure JPOXMLDOC01-appb-C000087
実施例C3(光化学電池の作製)
 実施例A3-1~A3-3と同様にして、色素吸着多孔質チタニア電極を作製し、光化学電池を作製した。
実施例C4(耐久性評価)
 得られた光化学電池を60℃暗所で所定の時間静置した後、室温に戻し、光電変換効率(η)を英弘精機株式会社製のソーラーシュミレーターを用い、100mW/cmの擬似太陽光を照射し測定した。各々の錯体色素の60℃暗所放置1日後の光電変換効率を100%とした場合の5日後の光電変換効率の維持率を表2に示す。
Figure JPOXMLDOC01-appb-T000088
 以上の結果より、本発明の錯体色素を用いると、Rにカルボキシル基を有する錯体と比べて、光電変換効率の維持率(即ち、耐久性)が向上することが判明した。
 本発明により、より高い吸光係数を持ち、より長波長域までの光吸収能力を有する金属錯体色素を提供することができる。本発明の金属錯体色素を用いると、より広範囲の光を吸収でき、広い光波長域にわたって太陽光を電気に変換することが可能であり、また、より多くの太陽光を吸収できる高効率の光電変換素子、及び光化学電池を提供することができる。
 また、本発明により、高い耐久性を有する光電変換素子、及び光化学電池を提供することができる。

Claims (25)

  1.  一般式(1)
    Figure JPOXMLDOC01-appb-C000001
    (式中、2つの
    Figure JPOXMLDOC01-appb-C000002
    及び
    Figure JPOXMLDOC01-appb-C000003
    は、同一でも異なっていてもよく、それぞれ互いに独立に、式(2-1)
    Figure JPOXMLDOC01-appb-C000004
    (式中、Zは五員環へテロアリーレン基を示し、nはZの個数を表し、0~4の整数であり、Rは水素原子、直鎖又は分岐状の炭素原子数1~18のアルキル基又はカルボキシル基を示す。ただし、2個のR及び複数個のZは同一でも異なっていてもよい。)
    で示される基、又は式(2-2)
    Figure JPOXMLDOC01-appb-C000005
    (式中、R及びRは、それぞれ互いに独立に、水素原子、直鎖又は分岐状の炭素原子数1~30のアルキル基を示すか、または、同じピリジン環に存在するRとR、又はR同士は互いに結合して環を形成している。ただし、2個のR及び2個のRは同一でも異なっていてもよい。)
    で示される基、又は式(2-3)
    Figure JPOXMLDOC01-appb-C000006
    (式中、Arは置換基を有していても良いアリール基を示す。ただし、2個のArは同一でも異なっていてもよい。)
    で示される基のいずれかを示す。Xは対イオンを示し、mは錯体の電荷を中和するのに必要な対イオンの数を示す。但し、2つの
    Figure JPOXMLDOC01-appb-C000007
    及び
    Figure JPOXMLDOC01-appb-C000008
    の少なくとも1つは、nが1~4の整数である式(2-1)で示される基、又は式(2-3)で示される基を示すか、又は
    Figure JPOXMLDOC01-appb-C000009
    が、式(2-2)で示される基を示す。1又は複数のカルボキシル基(-COOH)のプロトン(H)は解離していても良い。)
    で示される二核ルテニウム錯体色素。
  2.  一般式(1)において、2つの
    Figure JPOXMLDOC01-appb-C000010
    及び
    Figure JPOXMLDOC01-appb-C000011
    の少なくとも1つが、nが1~4の整数であり、Rが水素原子、又は直鎖又は分岐状の炭素原子数1~18のアルキル基である式(2-1)で示される基を示すことを特徴とする請求項1記載の二核ルテニウム錯体色素。
  3.  一般式(1)において、2つの
    Figure JPOXMLDOC01-appb-C000012
    が、nが1~4の整数であり、Rが水素原子、又は直鎖又は分岐状の炭素原子数1~18のアルキル基である式(2-1)で示される基、又は式(2-2)で示される基を示し、
    Figure JPOXMLDOC01-appb-C000013
    が、nが1~4の整数であり、Rが水素原子、又は直鎖又は分岐状の炭素原子数1~18のアルキル基である式(2-1)で示される基を示すことを特徴とする請求項2記載の二核ルテニウム錯体色素。
  4.  一般式(1)において、2つの
    Figure JPOXMLDOC01-appb-C000014
    が、Rが直鎖又は分岐状の炭素原子数1~30のアルキル基であり、Rが水素原子である式(2-2)で示される基を示し、
    Figure JPOXMLDOC01-appb-C000015
    が、nが1~4の整数であり、Rが水素原子、又は直鎖又は分岐状の炭素原子数1~18のアルキル基である式(2-1)で示される基を示すことを特徴とする請求項3記載の二核ルテニウム錯体色素。
  5.  一般式(1)において、2つの
    Figure JPOXMLDOC01-appb-C000016
    が、nが1~4の整数であり、Rが水素原子、又は直鎖又は分岐状の炭素原子数1~18のアルキル基である式(2-1)で示される基を示し、
    Figure JPOXMLDOC01-appb-C000017
    が、nが0であり、Rがカルボキシル基である式(2-1)で示される基を示すことを特徴とする請求項2記載の二核ルテニウム錯体色素。
  6.  一般式(1)において、2つの
    Figure JPOXMLDOC01-appb-C000018
    及び
    Figure JPOXMLDOC01-appb-C000019
    の少なくとも1つが、式(2-3)で示される基を示すことを特徴とする請求項1記載の二核ルテニウム錯体色素。
  7.  一般式(1)において、2つの
    Figure JPOXMLDOC01-appb-C000020
    が、式(2-3)で示される基、又は式(2-2)で示される基を示し、
    Figure JPOXMLDOC01-appb-C000021
    が、式(2-3)で示される基を示すことを特徴とする請求項6記載の二核ルテニウム錯体色素。
  8.  一般式(1)において、2つの
    Figure JPOXMLDOC01-appb-C000022
    が、式(2-2)で示される基を示し、
    Figure JPOXMLDOC01-appb-C000023
    が、式(2-3)で示される基を示すことを特徴とする請求項7記載の二核ルテニウム錯体色素。
  9.  一般式(1)において、2つの
    Figure JPOXMLDOC01-appb-C000024
    が、Rが水素原子であり、R同士が互いに結合してベンゼン環を形成している式(2-2)で示される基を示し、
    Figure JPOXMLDOC01-appb-C000025
    が、式(2-3)で示される基を示すことを特徴とする請求項8記載の二核ルテニウム錯体色素。
  10.  一般式(1)において、2つの
    Figure JPOXMLDOC01-appb-C000026
    が、式(2-3)で示される基を示し、
    Figure JPOXMLDOC01-appb-C000027
    が、nが0であり、Rがカルボキシル基である式(2-1)で示される基を示すことを特徴とする請求項6記載の二核ルテニウム錯体色素。
  11.  式(2-3)中のArが、置換基を有していても良いフェニル基を示すことを特徴とする請求項6~10のいずれかに記載の二核ルテニウム錯体色素。
  12.  式(2-3)中のArが、式(3-1)
    Figure JPOXMLDOC01-appb-C000028
    (式中、R3は直鎖又は分岐状の炭素原子数1~18のアルキル基を示す。)
    で示される基を示すことを特徴とする請求項11記載の二核ルテニウム錯体色素。
  13.  一般式(1)において、2つの
    Figure JPOXMLDOC01-appb-C000029
    が、式(2-2)で示される基を示し、
    Figure JPOXMLDOC01-appb-C000030
    が、Rおよび/またはRが直鎖又は分岐状の炭素原子数1~30のアルキル基である式(2-2)で示される基を示すことを特徴とする請求項1記載の二核ルテニウム錯体色素。
  14.  一般式(1)において、2つの
    Figure JPOXMLDOC01-appb-C000031
    が、式(2-2)で示される基を示し、
    Figure JPOXMLDOC01-appb-C000032
    が、Rが直鎖又は分岐状の炭素原子数1~30のアルキル基であり、Rが水素原子である式(2-2)で示される基を示すことを特徴とする請求項13記載の二核ルテニウム錯体色素。
  15.  一般式(1)において、2つの
    Figure JPOXMLDOC01-appb-C000033
    が、Rが直鎖又は分岐状の炭素原子数1~30のアルキル基であり、Rが水素原子である式(2-2)で示される基を示し、
    Figure JPOXMLDOC01-appb-C000034
    が、Rが直鎖又は分岐状の炭素原子数1~30のアルキル基であり、Rが水素原子である式(2-2)で示される基を示すことを特徴とする請求項14記載の二核ルテニウム錯体色素。
  16.  一般式(1)において、2つの
    Figure JPOXMLDOC01-appb-C000035
    が、Rが水素原子であり、R同士が互いに結合してベンゼン環を形成している式(2-2)で示される基を示し、
    Figure JPOXMLDOC01-appb-C000036
    が、Rが直鎖又は分岐状の炭素原子数1~30のアルキル基であり、Rが水素原子である式(2-2)で示される基を示すことを特徴とする請求項14記載の二核ルテニウム錯体色素。
  17.  請求項1~16のいずれかに記載の二核ルテニウム錯体色素と半導体微粒子を含むことを特徴とする光電変換素子。
  18.  前記半導体微粒子が、酸化チタン、酸化亜鉛及び酸化スズからなる群より選ばれる少なくとも1種の半導体微粒子であることを特徴とする請求項17記載の光電変換素子。
  19.  請求項17~18のいずれかに記載の光電変換素子を備えることを特徴とする光化学電池。
  20.  電極として請求項17~18のいずれかに記載の光電変換素子と対極とを有し、その間に電解質層を有することを特徴とする光化学電池。
  21.  請求項1~16のいずれかに記載の二核ルテニウム錯体色素を含む溶液に半導体微粒子を浸漬する工程を有することを特徴とする光電変換素子の製造方法。
  22.  導電性支持体上に、半導体微粒子を含む半導体層を形成する工程と、
     この半導体層を請求項1~16のいずれかに記載の二核ルテニウム錯体色素を含む溶液に浸漬する工程と
    を有することを特徴とする光電変換素子の製造方法。
  23.  一般式(2)
    Figure JPOXMLDOC01-appb-C000037
    (式中、Ar、X及びmは、前記と同義である。)
    で示される単核ルテニウム錯体前駆体。
  24.  一般式(3)
    Figure JPOXMLDOC01-appb-C000038
    (式中、Arは、前記と同義である。)
    で示される単核ルテニウム錯体。
  25.  一般式(4)
    Figure JPOXMLDOC01-appb-C000039
    (式中、Ar、X及びmは、前記と同義である。)
    で示される単核ルテニウム錯体。
PCT/JP2011/056110 2010-03-16 2011-03-15 置換ビピリジル基を有する二核ルテニウム錯体色素を有する光電変換素子、及び光化学電池 WO2011115137A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US13/635,226 US8633380B2 (en) 2010-03-16 2011-03-15 Photoelectric conversion element comprising binuclear ruthenium complex dye having a substituted bipyridyl group, and photochemical cell
JP2012505709A JP5780238B2 (ja) 2010-03-16 2011-03-15 置換ビピリジル基を有する二核ルテニウム錯体色素を有する光電変換素子、及び光化学電池
KR1020127026588A KR20130028912A (ko) 2010-03-16 2011-03-15 치환 바이피리딜기를 갖는 이핵 루테늄 착물 색소를 포함하는 광전 변환 소자, 및 광화학 전지
AU2011228146A AU2011228146A1 (en) 2010-03-16 2011-03-15 Photoelectric conversion element that contains dye consisting of binuclear ruthenium complex having substituted bipyridyl groups, and photochemical cell
EP11756322A EP2548926A1 (en) 2010-03-16 2011-03-15 Photoelectric conversion element that contains dye consisting of binuclear ruthenium complex having substituted bipyridyl groups, and photochemical cell
CN201180022339.6A CN102884137B (zh) 2010-03-16 2011-03-15 包含具有经取代的联吡啶基团的双核钌络合物染料的光电转换元件和光化学电池

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2010059487 2010-03-16
JP2010-059487 2010-03-16
JP2010-074553 2010-03-29
JP2010074552 2010-03-29
JP2010074553 2010-03-29
JP2010-074552 2010-03-29
JP2010-232561 2010-10-15
JP2010232561 2010-10-15
JP2010266254 2010-11-30
JP2010-266254 2010-11-30

Publications (1)

Publication Number Publication Date
WO2011115137A1 true WO2011115137A1 (ja) 2011-09-22

Family

ID=44649221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/056110 WO2011115137A1 (ja) 2010-03-16 2011-03-15 置換ビピリジル基を有する二核ルテニウム錯体色素を有する光電変換素子、及び光化学電池

Country Status (8)

Country Link
US (1) US8633380B2 (ja)
EP (1) EP2548926A1 (ja)
JP (1) JP5780238B2 (ja)
KR (1) KR20130028912A (ja)
CN (1) CN102884137B (ja)
AU (1) AU2011228146A1 (ja)
TW (1) TWI526503B (ja)
WO (1) WO2011115137A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013089194A1 (ja) * 2011-12-13 2013-06-20 宇部興産株式会社 二核ルテニウム錯体色素、当該色素を有する光電変換素子及び光化学電池
JP2013144721A (ja) * 2011-12-13 2013-07-25 Ube Industries Ltd 二核ルテニウム錯体色素、当該色素を有する光電変換素子及び光化学電池
US20130324733A1 (en) * 2010-12-02 2013-12-05 Ube Industries, Ltd. Binuclear metal complex, and organic electroluminescence element comprising same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI520458B (zh) * 2014-04-03 2016-02-01 財團法人工業技術研究院 靜電放電箝制電路與靜電放電箝制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01220380A (ja) 1988-02-12 1989-09-04 Gebr Sulzer Ag 光電気化学電池・その製法及び使用法
JP2003261536A (ja) 2001-11-27 2003-09-19 Ube Ind Ltd 金属錯体、金属錯体色素、光電変換素子、及び光化学電池
JP2004359677A (ja) 2003-05-13 2004-12-24 Asahi Kasei Corp 複核錯体
WO2006038587A1 (ja) 2004-10-01 2006-04-13 Ube Industries, Ltd. 二核金属錯体、金属錯体色素、光電変換素子、及び光化学電池
JP2007302879A (ja) * 2006-05-11 2007-11-22 National Central Univ 光増感色素
JP2009080988A (ja) * 2007-09-25 2009-04-16 Panasonic Electric Works Co Ltd 光電変換素子
WO2009154275A1 (ja) * 2008-06-19 2009-12-23 宇部興産株式会社 二核ルテニウム錯体色素、ルテニウム-オスミウム錯体色素、当該錯体色素を有する光電変換素子、及び光化学電池

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11144773A (ja) * 1997-09-05 1999-05-28 Fuji Photo Film Co Ltd 光電変換素子および光再生型光電気化学電池
EP0991092B1 (en) * 1998-09-30 2008-07-23 FUJIFILM Corporation Semiconductor particle sensitized with methine dye
US6291763B1 (en) * 1999-04-06 2001-09-18 Fuji Photo Film Co., Ltd. Photoelectric conversion device and photo cell
DE60027512T2 (de) * 1999-08-04 2006-10-12 Fuji Photo Film Co., Ltd., Minami-Ashigara Elektrolytzusammensetzung und photolektrochemische Zelle
JP5054269B2 (ja) * 2000-07-27 2012-10-24 日本化薬株式会社 色素増感光電変換素子
JP5142307B2 (ja) * 2000-11-28 2013-02-13 独立行政法人産業技術総合研究所 有機色素を光増感剤とする半導体薄膜電極、光電変換素子
TW541330B (en) * 2001-03-07 2003-07-11 Nippon Kayaku Kk Photo-electric conversion device and oxide semiconductor fine particle
WO2003005481A1 (fr) * 2001-07-06 2003-01-16 Nippon Kayaku Kabushiki Kaisha Element de conversion photoelectrique sensibilise par une matiere colorante
US8227690B2 (en) * 2003-03-14 2012-07-24 Nippon Kayaku Kabushiki Kaisha Dye-sensitized photoelectric conversion device
US7741559B2 (en) 2003-05-13 2010-06-22 Asahi Kasei Kabushiki Kaisha Photoelectric conversion element
JP5003865B2 (ja) * 2006-03-17 2012-08-15 宇部興産株式会社 二核金属錯体色素溶液およびこの溶液を用いた光電変換素子、及び光化学電池
WO2009102068A1 (ja) * 2008-02-14 2009-08-20 Ube Industries, Ltd. 二核ルテニウム錯体色素溶液、及び当該錯体色素溶液を用いて得られる光増感された半導体微粒子を用いた光電変換素子、並びにそれを用いた光化学電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01220380A (ja) 1988-02-12 1989-09-04 Gebr Sulzer Ag 光電気化学電池・その製法及び使用法
JP2003261536A (ja) 2001-11-27 2003-09-19 Ube Ind Ltd 金属錯体、金属錯体色素、光電変換素子、及び光化学電池
JP2004359677A (ja) 2003-05-13 2004-12-24 Asahi Kasei Corp 複核錯体
WO2006038587A1 (ja) 2004-10-01 2006-04-13 Ube Industries, Ltd. 二核金属錯体、金属錯体色素、光電変換素子、及び光化学電池
JP2007302879A (ja) * 2006-05-11 2007-11-22 National Central Univ 光増感色素
JP2009080988A (ja) * 2007-09-25 2009-04-16 Panasonic Electric Works Co Ltd 光電変換素子
WO2009154275A1 (ja) * 2008-06-19 2009-12-23 宇部興産株式会社 二核ルテニウム錯体色素、ルテニウム-オスミウム錯体色素、当該錯体色素を有する光電変換素子、及び光化学電池

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Current Technology in Dye-sensitized Solar Battery", 25 May 2001, CMC CO., LTD., pages: 117
JOURNAL OF AMERICAN CHEMICAL SOCIETY, vol. 128, 2006, pages 4146 - 4154
KUANG, DAIBIN ET AL.: "High Molar Extinction Coefficient Heteroleptic Ruthenium Complexes for Thin Film Dye-Sensitized Solar Cells", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 128, no. 12, 2006, pages 4146 - 4154, XP008166974 *
NATURE, vol. 353, 1991, pages 737

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130324733A1 (en) * 2010-12-02 2013-12-05 Ube Industries, Ltd. Binuclear metal complex, and organic electroluminescence element comprising same
US9029541B2 (en) * 2010-12-02 2015-05-12 Ube Industries, Ltd. Binuclear metal complex, and organic electroluminescence element comprising same
WO2013089194A1 (ja) * 2011-12-13 2013-06-20 宇部興産株式会社 二核ルテニウム錯体色素、当該色素を有する光電変換素子及び光化学電池
JP2013144721A (ja) * 2011-12-13 2013-07-25 Ube Industries Ltd 二核ルテニウム錯体色素、当該色素を有する光電変換素子及び光化学電池
JPWO2013089194A1 (ja) * 2011-12-13 2015-04-27 宇部興産株式会社 二核ルテニウム錯体色素、当該色素を有する光電変換素子及び光化学電池

Also Published As

Publication number Publication date
JPWO2011115137A1 (ja) 2013-06-27
CN102884137A (zh) 2013-01-16
AU2011228146A1 (en) 2012-10-25
KR20130028912A (ko) 2013-03-20
TW201200565A (en) 2012-01-01
JP5780238B2 (ja) 2015-09-16
EP2548926A1 (en) 2013-01-23
US20130014824A1 (en) 2013-01-17
TWI526503B (zh) 2016-03-21
US8633380B2 (en) 2014-01-21
CN102884137B (zh) 2015-07-29

Similar Documents

Publication Publication Date Title
JP5633370B2 (ja) 二核ルテニウム錯体色素、ルテニウム−オスミウム錯体色素、当該錯体色素を有する光電変換素子、及び光化学電池
KR20110095306A (ko) 새로운 리간드 및 감응제를 포함하는 광전 변환 소자
JPWO2006038587A1 (ja) 二核金属錯体、金属錯体色素、光電変換素子、及び光化学電池
Dragonetti et al. A new thiocyanate-free cyclometallated ruthenium complex for dye-sensitized solar cells: Beneficial effects of substitution on the cyclometallated ligand
JP5761024B2 (ja) 置換ビピリジル基を有する二核ルテニウム錯体色素を有する光電変換素子、及び光化学電池
JP5780238B2 (ja) 置換ビピリジル基を有する二核ルテニウム錯体色素を有する光電変換素子、及び光化学電池
JP5170357B2 (ja) 光電変換素子、及び光化学電池
JP5428312B2 (ja) 光電変換素子、及び光化学電池
Konti et al. A Ru (II) molecular antenna bearing a novel bipyridine–acrylonitrile ligand: Synthesis and application in dye solar cells
JP6086069B2 (ja) 二核ルテニウム錯体色素、当該色素を有する光電変換素子及び光化学電池
WO2009102068A1 (ja) 二核ルテニウム錯体色素溶液、及び当該錯体色素溶液を用いて得られる光増感された半導体微粒子を用いた光電変換素子、並びにそれを用いた光化学電池
JP5424246B2 (ja) 新規光増感剤及び光起電力素子
JP5493857B2 (ja) 二核ルテニウム錯体色素、二核ルテニウム錯体色素酸性水溶液及びその製造方法
JP5838820B2 (ja) 二核ルテニウム錯体色素、当該色素を有する光電変換素子及び光化学電池
JP5556096B2 (ja) 電子吸引基を置換基として持つ連結分子を有する二核ルテニウム錯体色素を有する光電変換素子、及び光化学電池
JP5573056B2 (ja) 二核ルテニウム錯体色素により増感された半導体微粒子と、アリールアミン化合物を含有する電解質溶液とを備える光化学電池
JP2009129652A (ja) 光電変換素子、及び光化学電池
JP2009067838A (ja) 二核ルテニウム錯体色素及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180022339.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11756322

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012505709

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13635226

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011756322

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127026588

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2011228146

Country of ref document: AU

Date of ref document: 20110315

Kind code of ref document: A