WO2009102068A1 - 二核ルテニウム錯体色素溶液、及び当該錯体色素溶液を用いて得られる光増感された半導体微粒子を用いた光電変換素子、並びにそれを用いた光化学電池 - Google Patents

二核ルテニウム錯体色素溶液、及び当該錯体色素溶液を用いて得られる光増感された半導体微粒子を用いた光電変換素子、並びにそれを用いた光化学電池 Download PDF

Info

Publication number
WO2009102068A1
WO2009102068A1 PCT/JP2009/052582 JP2009052582W WO2009102068A1 WO 2009102068 A1 WO2009102068 A1 WO 2009102068A1 JP 2009052582 W JP2009052582 W JP 2009052582W WO 2009102068 A1 WO2009102068 A1 WO 2009102068A1
Authority
WO
WIPO (PCT)
Prior art keywords
ruthenium complex
complex dye
solution
photoelectric conversion
dinuclear ruthenium
Prior art date
Application number
PCT/JP2009/052582
Other languages
English (en)
French (fr)
Inventor
Takafumi Iwasa
Yoshihisa Kakuta
Original Assignee
Ube Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries, Ltd. filed Critical Ube Industries, Ltd.
Priority to JP2009553489A priority Critical patent/JPWO2009102068A1/ja
Publication of WO2009102068A1 publication Critical patent/WO2009102068A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System compounds of the platinum group
    • C07F15/0046Ruthenium compounds
    • C07F15/0053Ruthenium compounds without a metal-carbon linkage
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/344Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising ruthenium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/361Polynuclear complexes, i.e. complexes comprising two or more metal centers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution

Definitions

  • the present invention uses a dye solution containing a dinuclear ruthenium complex dye capable of obtaining a photochemical battery excellent in initial photoelectric conversion efficiency and durability, and a photosensitized semiconductor fine particle obtained using the complex dye solution.
  • the present invention relates to a photoelectric conversion element and a photochemical battery using the photoelectric conversion element.
  • Solar cells are highly expected as clean renewable energy sources.
  • solar cells made of single crystal silicon, polycrystalline silicon, amorphous silicon, or compounds such as cadmium telluride and indium copper selenide Research aimed at putting batteries into practical use has been conducted.
  • solar cells using organic materials have been proposed with the aim of increasing the area and reducing the price, but all of them have a conversion efficiency of about 1% and are far from practical use.
  • Gretzel et al. Disclosed a photoelectric conversion element and a solar cell using semiconductor fine particles sensitized with a dye, and materials and manufacturing techniques necessary for the production of the solar cell (for example, non-patent literature). 1, see Patent Document 1).
  • the battery is a wet solar battery using a porous titania thin film sensitized with a ruthenium dye as a working electrode.
  • the advantage of this solar cell is that it is possible to provide an inexpensive photoelectric conversion element because it is not necessary to purify an inexpensive material with high purity, and furthermore, the absorption of the dye used is broad, over a wide visible light wavelength range. It can convert sunlight into electricity. However, further improvement in conversion efficiency is necessary for practical use, and development of a dye having a higher extinction coefficient and absorbing light up to a higher wavelength region is still desired.
  • Patent Document 2 discloses a metal mononuclear complex containing a dipyridyl ligand that is a metal complex dye useful as a photoelectric conversion element, and Non-Patent Document 2 discloses a polynuclear ⁇ -diketonate complex dye. .
  • Patent Document 3 discloses a novel multinuclear complex having an excellent photoelectric conversion function for extracting electrons by receiving energy of actinic rays such as light, and has a plurality of metals and a plurality of ligands.
  • a binuclear complex having a coordination structure in which the bridging ligand (BL) positioned has a heteroconjugated ring and a coordination structure having no heteroconjugated ring is disclosed.
  • Patent Document 4 discloses a binuclear metal complex having a coordination structure having a heteroconjugated ring as a metal complex dye capable of obtaining a photoelectric conversion element having high photoelectric conversion efficiency. Thereafter, an acid is added to the reaction solution to adjust the pH to 2.5, and the binuclear metal complex is isolated.
  • An object of the present invention is to provide a dye solution containing a dinuclear ruthenium complex dye that can solve the above problems and can realize a photochemical battery excellent in initial photoelectric conversion efficiency and durability. Furthermore, it is providing the photoelectric conversion element using the semiconductor fine particle photosensitized with the said pigment
  • the present invention relates to the following matters.
  • L 1 represents a nitrogen-containing bidentate ligand having two carboxyl groups
  • L 2 represents a nitrogen-containing bidentate ligand
  • BL represents a nitrogen-containing tetradentate ligand
  • X represents a counter ion.
  • N represents the number of counter ions necessary to neutralize the charge of the complex, provided that L 1 and L 2 are different, and two L 1 may be the same or different, L 2 may be the same or different, and the carboxyl group (COOH) in L 1 may be deprotonated (H + ) to be a carboxy ion (COO ⁇ ).
  • a photoelectric conversion element comprising semiconductor fine particles sensitized with a dinuclear ruthenium complex dye
  • a photoelectric conversion element, wherein the semiconductor fine particles sensitized with a dinuclear ruthenium complex dye are semiconductor fine particles obtained by adsorbing a dye using the dinuclear ruthenium complex dye solution described in 2 above.
  • a photochemical battery comprising the photoelectric conversion element as described in 8 above and an electrolyte solution.
  • a photoelectric conversion element comprising semiconductor fine particles sensitized with a dinuclear ruthenium complex dye, 14.
  • a photoelectric conversion element, wherein the semiconductor fine particles sensitized with a dinuclear ruthenium complex dye are semiconductor fine particles obtained by adsorbing a dye using the dinuclear ruthenium complex dye solution described in the above item 13.
  • a photochemical battery comprising the photoelectric conversion element as described in 19 above and an electrolyte solution.
  • a photochemical battery excellent in initial photoelectric conversion efficiency and durability can be obtained.
  • the dye-sensitized semiconductor fine particles in which the semiconductor fine particles are immersed in the dinuclear ruthenium complex dye solution of the present invention and the dye is adsorbed to the semiconductor fine particles photochemistry excellent in initial photoelectric conversion efficiency and durability is used.
  • a battery can be obtained.
  • the photochemical battery is considered to be suitable for practical use because it has extremely high stability, high durability, and high photoelectric conversion efficiency.
  • the asymmetric binuclear ruthenium complex dye of the present invention is represented by the general formula (1).
  • X represents a counter ion.
  • Specific examples of X include, for example, hexafluorophosphate ion, perchlorate ion, tetraphenylborate ion, tetrafluoroborate ion, trifluoromethanesulfonate ion, thiocyanate ion, sulfate ion, nitrate ion, chloride Ions, halide ions such as iodide ion, sulfite ion, thiosulfate ion, carbonate ion, monohydrogen phosphate ion, etc., preferably hexafluorophosphate ion, tetrafluoroborate ion, nitrate ion, sulfuric acid ion Ions and halide ions, more preferably hexafluorophosphate ions, tetrafluoroborate ions, nitrate
  • L 1 represents a nitrogen-containing bidentate ligand having two carboxyl groups.
  • the carboxyl group (COOH) may be deprotonated (H + ) to become a carboxy ion (COO ⁇ ).
  • the L 1 is included two in the complex, they may be the same or different.
  • L 1 includes a ligand represented by the following formula (1-A).
  • R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are each independently a hydrogen atom or a substituted or unsubstituted linear or branched group It represents an alkyl group, or two or more of these together form a substituted or unsubstituted aromatic hydrocarbon ring with the carbon atom to which they are attached.
  • alkyl group those having 6 or less carbon atoms are preferable, and a methyl group and an ethyl group are more preferable.
  • R 2 and R 3 , R 4 and R 5 , R 1 and R 6 are combined together and a carbon atom to which they are bonded together with a 6-membered aromatic hydrocarbon ring (which may have a substituent) It is also preferable to form.
  • substituent of the aromatic hydrocarbon ring include an alkyl group (such as a methyl group and an ethyl group) and an alkoxy group (such as a methoxy group and an ethoxy group).
  • R 1 to R 6 are all hydrogen atoms, or R 1 and R 6 are hydrogen atoms, R 2 and R 3 , R 4 and R 5 are joined together and the 6-membered carbon atom to which they are bonded. It is preferable that an aromatic hydrocarbon ring is formed, and it is particularly preferable that all of R 1 to R 6 are hydrogen atoms.
  • L 1 examples include 2,2′-bipyridine-4,4′-dicarboxylic acid (4,4′-dicarboxy-2,2′-bipyridine), 1,10-phenanthroline-4,7-dicarboxylic acid.
  • the carboxyl group (COOH) in these ligands may be deprotonated (H + ) to become a carboxy ion (COO ⁇ ).
  • BL represents a nitrogen-containing tetradentate ligand.
  • BL includes a ligand represented by the following formula (1-B1).
  • each of R 31 , R 32 and R 33 independently represents a hydrogen atom or a substituted or unsubstituted linear or branched alkyl group, or two or more of these are combined to form a bond A substituted or unsubstituted aromatic hydrocarbon ring together with the carbon atoms to be represented, and each of R 34 , R 35 and R 36 independently represents a hydrogen atom or a substituted or unsubstituted linear or branched alkyl group. Or two or more of these together form a substituted or unsubstituted aromatic hydrocarbon ring with the carbon atom to which they are attached.
  • alkyl group those having 18 or less carbon atoms, more preferably 6 or less are preferable, and a methyl group and an ethyl group are more preferable.
  • R 31 to R 36 are joined together to form a 6-membered aromatic hydrocarbon ring (which may have a substituent) together with the carbon atom to which they are bonded.
  • substituent of the aromatic hydrocarbon ring include an alkyl group (such as a methyl group and an ethyl group) and an alkoxy group (such as a methoxy group and an ethoxy group).
  • R 31 to R 36 are preferably hydrogen atoms or methyl groups, and it is particularly preferable that all of R 31 to R 36 are hydrogen atoms.
  • examples of BL include a ligand represented by the following formula (1-B2).
  • each of R 41 and R 42 independently represents a hydrogen atom or a substituted or unsubstituted linear or branched alkyl group, or a group that is substituted or unsubstituted together with a carbon atom to which they are bonded together.
  • R 43 and R 44 each independently represent a hydrogen atom or a substituted or unsubstituted linear or branched alkyl group, or they are taken together;
  • a substituted or unsubstituted aromatic hydrocarbon ring is formed with the carbon atom to which they are bonded.
  • alkyl group those having 18 or less carbon atoms, more preferably 6 or less are preferable, and a methyl group and an ethyl group are more preferable.
  • R 41 and R 42 , R 43 and R 44 together form a 6-membered aromatic hydrocarbon ring (which may have a substituent) together with the carbon atom to which they are bonded. Is also preferable.
  • substituent of the aromatic hydrocarbon ring include an alkyl group (such as a methyl group and an ethyl group) and an alkoxy group (such as a methoxy group and an ethoxy group).
  • R 41 to R 44 are preferably hydrogen atoms or methyl groups, and R 41 to R 44 are particularly preferably all hydrogen atoms.
  • R 41 and R 42 , R 43 and R 44 together form a 6-membered aromatic hydrocarbon ring (which may have a substituent such as a methyl group) together with the carbon atom to which they are bonded.
  • a ligand represented by the following formula (1-B3) is preferable.
  • R 51 , R 52 , R 53 and R 54 each independently represent a hydrogen atom or a substituted or unsubstituted linear or branched alkyl group
  • R 55 , R 56 , R 57 and R 58 are Each independently represents a hydrogen atom or a substituted or unsubstituted linear or branched alkyl group.
  • alkyl group those having 18 or less carbon atoms, more preferably 6 or less are preferable, and a methyl group and an ethyl group are more preferable.
  • R 51 ⁇ R 58 is a hydrogen atom or a methyl group, or R 51 ⁇ R 58 are all hydrogen atoms, R 52, R 53, R 56 and R 57 are methyl groups, R 51, R 54 , R 55 and R 58 are particularly preferably hydrogen atoms, and it is further preferable that R 51 to R 58 are all hydrogen atoms.
  • Examples of BL include 2,2′-bipyrimidine, 2,2′-biimidazole, and 2,2′-bibenzimidazole, and preferably 2,2′-biimidazole and 2,2′- Bibenzimidazole is preferable, and 2,2′-bibenzimidazole is more preferable.
  • L 2 represents a nitrogen-containing bidentate ligand.
  • Two L 2 are contained in the complex, but they may be the same or different.
  • L 2 includes a ligand represented by the following formula (1-C).
  • R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 and R 18 each independently represent a hydrogen atom or a substituted or unsubstituted linear or branched alkyl group, Or two or more of these together form a substituted or unsubstituted aromatic hydrocarbon ring with the carbon atom to which they are attached.
  • alkyl group those having 18 or less carbon atoms, more preferably 6 or less are preferable, and a methyl group and an ethyl group are more preferable.
  • R 11 to R 18 two adjacent R 11 to R 18 , or R 11 and R 18 together, together with the carbon atom to which they are bonded, together with a 6-membered aromatic hydrocarbon ring (which may have a substituent) It is also preferable to form.
  • substituent of the aromatic hydrocarbon ring include an alkyl group (such as a methyl group and an ethyl group) and an alkoxy group (such as a methoxy group and an ethoxy group).
  • R 11 to R 18 are preferably hydrogen atoms or methyl groups, R 11 to R 18 are all hydrogen atoms, or R 12 and R 17 are methyl groups, and R 11 , R 13 to R 16 and It is particularly preferred that R 18 is a hydrogen atom.
  • R 11 and R 18 are combined to form a 6-membered aromatic hydrocarbon ring (which may have a substituent such as a methyl group) together with the carbon atom to which they are bonded, and R 12 It is particularly preferable that R 17 is a hydrogen atom or a methyl group, more preferably a hydrogen atom.
  • R 13 and R 14 , and R 15 and R 16 together form a 6-membered aromatic hydrocarbon ring (which may have a substituent such as a methyl group) together with the carbon atom to which they are bonded.
  • R 11 , R 12 , R 17 and R 18 are particularly preferably a hydrogen atom or a methyl group, more preferably a hydrogen atom.
  • L 2 examples include 2,2′-bipyridine, 2,2′-4,4′-dimethyl-bipyridine, 1,10-phenanthroline, 2- (2-pyridinyl) quinoline, 2,2′-biquinoline and the like. Among them, 2,2′-bipyridine, 2,2′-4,4′-dimethyl-bipyridine, and 1,10-phenanthroline are preferable.
  • binuclear ruthenium complex used in the present invention as described above include the following compounds (D-1) to (D-15).
  • H of —COOH may be eliminated.
  • the asymmetric binuclear ruthenium complex dye of the present invention has the general formula (2)
  • L 1 represents a nitrogen-containing bidentate ligand having two carboxyl groups
  • Y represents a halogen atom
  • the carboxyl group (COOH) is deprotonated (H + ) to form a carboxy ion ( COO -) may become a).
  • L 2 represents a nitrogen-containing bidentate ligand
  • BL represents a nitrogen-containing tetradentate ligand.
  • Y represents a halogen atom, and is, for example, a fluorine atom, a chlorine atom, a bromine atom or an iodine atom, preferably a chlorine atom or a bromine atom.
  • the two Ys may be the same or different.
  • the asymmetric binuclear ruthenium complex dye of the present invention can be obtained by the following two steps.
  • the 1st process of this invention is a process with which a ruthenium complex (2) and a ruthenium complex (3) are made to react, Preferably it reacts in the mixed solvent of water and an organic solvent.
  • the reaction between the ruthenium complex (2) and the ruthenium complex (3) is carried out by deprotonating the ruthenium complex (3) in advance and then deprotonating the ruthenium complex (3) as shown by the formula (4). More preferably, it is carried out by a method in which ruthenium complex (2) is reacted.
  • deprotonation of the ruthenium complex (3) is performed in an organic solvent, and the reaction between the ruthenium complex (2) and the ruthenium complex (3) after deprotonation is performed in a mixed solvent of water and an organic solvent. Is preferred.
  • L 1 represents a nitrogen-containing bidentate ligand having two carboxyl groups
  • Y represents a halogen atom
  • L 2 represents a nitrogen-containing bidentate ligand
  • BL represents a nitrogen-containing tetradentate ligand.
  • organic solvent used examples include alcohols such as methanol, ethanol, isopropyl alcohol, t-butyl alcohol, and ethylene glycol; nitriles such as acetonitrile and propionitrile; N, N-dimethylacetamide, N, N-dimethyl Amides such as formamide; ureas such as N-methylpyrrolidone; and sulfoxides such as dimethyl sulfoxide.
  • alcohols are preferably used, and methanol and ethanol are more preferably used.
  • the amount of the organic solvent used in the deprotonation reaction of the ruthenium complex (3) is not particularly limited, but is preferably 10 to 100 ml, more preferably 20 to 40 ml, per 1 mmol of the ruthenium complex (3).
  • the amount of the mixed solvent of water and organic solvent in the reaction between the ruthenium complex (2) and the deprotonated ruthenium complex (3) or the non-deprotonated ruthenium complex (3) is not particularly limited.
  • the ruthenium complex (2) is preferably 60 to 360 ml, more preferably 120 to 180 ml, with respect to 1 mmol of the ruthenium complex (2). Times, more preferably 1 to 2 times.
  • the amount of the ruthenium complex (3) to be used is preferably 0.9 to 1.5 mol, more preferably 1.0 to 1.2 mol, particularly preferably 1.0 to 1 mol of the ruthenium complex (2). ⁇ 1.1 moles.
  • the base used include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide; alkali metal carbonates such as sodium carbonate and potassium carbonate; alkali metal hydrogen carbonates such as sodium hydrogen carbonate and potassium hydrogen carbonate Ammonium hydroxide; quaternary ammonium hydroxide salt such as tetrabutylammonium hydroxide; lithium methoxide, sodium methoxide, potassium methoxide, sodium ethoxide, potassium ethoxide, sodium t-butoxide, potassium t-butoxide, etc.
  • Alkali metal alkoxides alkali metal alkoxides; alkali metal hydrides such as lithium hydride, sodium hydride, potassium hydride, calcium hydride or alkaline earth metal hydrides; amines such as triethylamine, diisopropylethylamine, tributylamine; Lysine, heterocyclic amines such as quinoline.
  • alkali metal hydrides such as lithium hydride, sodium hydride, potassium hydride, calcium hydride or alkaline earth metal hydrides
  • amines such as triethylamine, diisopropylethylamine, tributylamine
  • Lysine heterocyclic amines such as quinoline.
  • an alkali metal alkoxide is preferably used, and sodium methoxide and lithium methoxide are more preferably used.
  • an alkali metal hydroxide or a quaternary hydroxide is used. Ammonium salts are used, and lithium hydroxide, sodium hydroxide, potassium hydroxide, and tetrabutylammonium hydroxide are more preferably used.
  • the base used for deprotonation of the ruthenium complex (3) is the same as the base used for reacting the ruthenium complex (2) with the ruthenium complex (3) after deprotonation. May be different.
  • these bases may be used individually or in mixture of 2 or more types, and what is melt
  • the amount of the base used is preferably 2 to 20 mol, more preferably 4 to 10 mol, relative to 1 mol of the ruthenium complex (3).
  • the deprotonated ruthenium complex (3) or the non-deprotonated ruthenium complex (3) preferably 3 to 5 moles, more preferably 1 mole relative to 1 mole of the ruthenium complex (2). Is 3.7 to 4.5 moles.
  • the ruthenium complex (3), the base and the organic solvent are mixed and reacted with stirring, preferably at 20 to 200 ° C., more preferably at 50 to 90 ° C. 3) is deprotonated.
  • the deprotonated ruthenium complex (3), ruthenium complex (2), base, water and organic solvent are mixed and reacted at 50 to 200 ° C., more preferably 80 to 100 ° C. with stirring. It is performed by the method of making it.
  • the ruthenium complex (3), the ruthenium complex (2), a base, water and an organic solvent are mixed.
  • the reaction can be carried out preferably at 50 to 200 ° C., more preferably at 80 to 100 ° C.
  • the reaction pressure is not particularly limited.
  • the ruthenium complex (2) and the ruthenium complex (3) can be synthesized by a known method (for example, see International Publication No. 2006/038587).
  • the 2nd process of this invention is a process of adding an acid to the reaction liquid obtained at the 1st process, adjusting the pH of a reaction liquid, and isolating a binuclear ruthenium complex dye.
  • Examples of the acid used include hexafluorophosphoric acid, perchloric acid, tetraphenylboric acid, tetrafluoroboric acid, trifluoromethanesulfonic acid, thiocyanic acid, sulfuric acid, nitric acid, hydrofluoric acid, hydrochloric acid, hydrogen bromide Acid, hydroiodic acid and the like can be mentioned, preferably hexafluorophosphoric acid, tetrafluoroboric acid, trifluoromethanesulfonic acid, nitric acid, hydroiodic acid, more preferably hexafluorophosphoric acid, tetrafluoroboric acid.
  • Nitric acid and hydroiodic acid are used. In addition, you may use these acids individually or in mixture of 2 or more types.
  • the amount of acid used is not particularly limited as long as the dinuclear ruthenium complex dye can be isolated, but the pH of the reaction solution is preferably more than 2.5 and less than 5, more preferably. Is preferably an amount that can be adjusted to be greater than 3 and 5 or less.
  • an acid is added to the reaction solution obtained in the first step, and the pH of the reaction solution is preferably adjusted to be more than 2.5 and 5 or less.
  • the pH of the reaction solution is preferably adjusted to be more than 2.5 and 5 or less.
  • the ruthenium complex dye may be a proton-deficient ruthenium complex dye in which the carboxyl group (COOH) in the ligand is deprotonated (H + ) to form a carboxy ion (COO ⁇ ). good.
  • the number of deprotonation is 1 to 4, but it may be obtained as a mixture of plural kinds depending on the pH of the solution when the ruthenium complex dye is isolated. Therefore, in the case of a mixture of ruthenium complex dyes having different numbers of deprotons, the average value thereof is taken as the number of deprotons of the ruthenium complex dye.
  • the dinuclear ruthenium complex dye solution of the present invention contains the dinuclear ruthenium complex dye (binuclear ruthenium complex dye represented by the general formula (1)) obtained in the second step, and the concentration of the dye is saturated.
  • the concentration of the ruthenium complex dye in the solution is preferably more than 0.1 ⁇ 10 ⁇ 4 mol / l and less than the saturation concentration.
  • the content of the ruthenium complex dye in the solution is preferably 10% or more and less than 100% of the content of the ruthenium complex dye in the saturated solution.
  • a solvent that forms a homogeneous phase with water is preferable.
  • alcohols such as methanol, ethanol, isopropyl alcohol, and t-butyl alcohol; Nitriles; ketones such as acetone are used.
  • the dinuclear ruthenium complex dye solution of the present invention is a dilute solution prepared by preparing a saturated solution of a dinuclear ruthenium complex dye, adding a solvent thereto, and diluting the saturated solution to a predetermined concentration or dilution rate. Preferably there is. There seems to be a difference in the dinuclear ruthenium complex dyes in solution. Moreover, it is because a preferable density
  • the amount of solvent used for dilution is appropriately adjusted according to the target diluted solution.
  • the solvent to be diluted may be different from the solvent of the saturated solution.
  • the semiconductor fine particles sensitized with the dinuclear ruthenium complex dye of the present invention are brought into contact with the dinuclear ruthenium complex dye and the semiconductor fine particles using the dinuclear ruthenium complex dye solution of the present invention to adsorb the dye to the semiconductor fine particles. Is obtained.
  • Examples of the semiconductor fine particles include metal oxides such as titanium oxide, zinc oxide, tin oxide, indium oxide, niobium oxide, tungsten oxide, and vanadium oxide; strontium titanate, calcium titanate, barium titanate, potassium niobate, and the like.
  • the primary particle size of the semiconductor fine particles is not particularly limited, but those having a particle size of preferably 1 to 5000 nm, more preferably 2 to 500 nm, and particularly preferably 3 to 300 nm are used. These semiconductor fine particles may be used alone or in admixture of two or more.
  • the semiconductor fine particles sensitized with the dinuclear ruthenium complex dye are brought into contact with the semiconductor fine particles (for example, coating, immersion, etc.) in which the dinuclear ruthenium complex dye is dissolved in a solvent (the binuclear ruthenium complex dye solution of the present invention).
  • a solvent the binuclear ruthenium complex dye solution of the present invention.
  • the temperature at which the dye is adsorbed (temperature at which the semiconductor fine particles are immersed in the dye solution) and the time for adsorbing the dye (time at which the dye is immersed in the dye solution) may be determined as appropriate.
  • a thin film containing semiconductor fine particles is formed on an electrode, and this is immersed in the dinuclear ruthenium complex dye solution of the present invention so that the dye is adsorbed on the semiconductor fine particles to produce a photoelectric conversion element. it can.
  • the photoelectric conversion element of the present invention includes semiconductor fine particles sensitized by the above-described dinuclear ruthenium complex dye. Specifically, for example, the semiconductor fine particles sensitized by the ruthenium complex dye are disposed on the electrode. It is fixed.
  • the electrode is a conductive electrode, preferably a transparent electrode formed on a transparent substrate.
  • the conductive agent include metals such as gold, silver, copper, platinum, and palladium, indium oxide compounds represented by indium oxide (ITO) doped with tin, and tin oxide (FTO) doped with fluorine. Examples thereof include tin oxide compounds and zinc oxide compounds.
  • the photochemical battery of the present invention can be produced using semiconductor fine particles sensitized with the above-described dinuclear ruthenium complex dye.
  • the photochemical battery of the present invention specifically has the above-described photoelectric conversion element of the present invention and a counter electrode as electrodes, and an electrolyte solution layer therebetween. Note that at least one of the electrode and the counter electrode used in the photoelectric conversion element of the present invention is a transparent electrode.
  • the counter electrode functions as a positive electrode when combined with a photoelectric conversion element to form a photochemical battery.
  • a substrate having a conductive layer can be used as in the case of the conductive electrode. However, if the metal plate itself is used, the substrate is not necessarily required.
  • the conductive agent used for the counter electrode for example, a conductive metal oxide such as tin oxide doped with a metal such as platinum or carbon or fluorine is preferably used.
  • the electrolyte solution preferably contains a redox pair (a redox pair).
  • the redox pair to be used is not particularly limited.
  • Bromine and bromides for example, metal bromides such as lithium bromide and potassium bromide; bromides of quaternary ammonium compounds such as tetrabutylammonium bromide, tetrapropylammonium bromide, pyridinium bromide and imidazolium bromide
  • the photochemical cell of the present invention can be manufactured by a conventionally applied method, for example, (1) A semiconductor fine particle paste such as an oxide is applied on a transparent electrode and heated and fired to produce a thin film of semiconductor fine particles. (2) Next, when the thin film of semiconductor fine particles is titania, baking is performed at a temperature of 400 to 550 ° C. for 0.5 to 1 hour. (3) The transparent electrode with the obtained thin film is immersed in a dye solution, and a dinuclear ruthenium complex dye is supported to produce a photoelectric conversion element. (4) The obtained photoelectric conversion element is combined with a transparent electrode on which platinum or carbon is vapor-deposited as a counter electrode, and an electrolyte solution is put therebetween.
  • the photochemical battery of the present invention can be manufactured by performing the operation described above.
  • the photoelectric conversion efficiency of the photochemical battery was measured by irradiating simulated sunlight from a solar simulator (manufactured by Eihiro Seiki Co., Ltd.).
  • Example 1 Evaluation of photoelectric conversion efficiency (Preparation of porous titania electrode) (Preparation of porous titania electrode) Using a titania paste PST-18NR (catalyst conversion) for the transparent layer, PST-400C (catalyst conversion) for the diffusion layer, and using a screen printer on the transparent conductive glass electrode (Asahi Glass Co., Ltd.) Applied. The obtained film was aged for 5 minutes in an atmosphere of 25 ° C. and a relative humidity of 60%, and the aged film was baked at 440 to 460 ° C. for 30 minutes. By repeating this operation, a 16 mm 2 porous titania electrode was produced.
  • the conversion efficiency is low when the concentration of the dye solution is 0.0975 ⁇ 10 ⁇ 4 mol / l and 0.1 ⁇ 10 ⁇ 4 mol / l, and the conversion efficiency is also low with each saturated solution.
  • the conversion efficiency is high when the concentration of the dye solution is greater than 0.1 ⁇ 10 ⁇ 4 mol / l and less than the saturation concentration.
  • a diluted solution in which a saturated solution of a dinuclear ruthenium complex dye is diluted with a solvent to adjust the concentration tends to give better results.
  • Example 2 Evaluation of photoelectric conversion efficiency (Preparation of porous titania electrode) In the same manner as in Example 1, a 16 mm 2 porous titania electrode was produced.
  • Table 2 shows the conversion efficiencies of the photochemical cells prepared using the dinuclear ruthenium complex dye solutions having the respective dilution ratios.
  • the dilution rate means “the content (relative amount) of the ruthenium complex dye in the solution when the content of the ruthenium complex dye in the saturated solution of the ruthenium complex dye is 100%”.
  • a diluted solution obtained by diluting a saturated solution of a dinuclear ruthenium complex dye with a solvent exhibits higher conversion efficiency than a saturated solution.
  • the dilution rate is less than 10%, that is, when the content of the ruthenium complex dye in the solution is less than 10% of the content of the ruthenium complex dye in the saturated solution, the adsorption rate is slow. There was a tendency to decrease.
  • a solution containing a dinuclear ruthenium complex dye capable of obtaining a photochemical battery excellent in initial photoelectric conversion efficiency and durability can be provided. Furthermore, the present invention provides a photoelectric conversion element using semiconductor fine particles photosensitized with a dye obtained by using this complex dye solution, and a photochemical battery excellent in initial photoelectric conversion efficiency and durability using the same. Can do.

Abstract

 本発明は、色素を半導体微粒子に吸着させるのに用いられる非対称二核ルテニウム錯体色素を含む溶液であって、当該二核ルテニウム錯体色素の濃度が0.1×10-4mol/lより大きく飽和濃度未満であるか、又は溶液中の二核ルテニウム錯体色素の含有量が、飽和溶液中の二核ルテニウム錯体色素の含有量の10%以上100%未満であることを特徴とする二核ルテニウム錯体色素溶液に関する。

Description

二核ルテニウム錯体色素溶液、及び当該錯体色素溶液を用いて得られる光増感された半導体微粒子を用いた光電変換素子、並びにそれを用いた光化学電池
 本発明は、初期光電変換効率及び耐久性に優れた光化学電池を得ることができる二核ルテニウム錯体色素を含む色素溶液、及び当該錯体色素溶液を用いて得られる光増感された半導体微粒子を用いた光電変換素子、並びにそれを用いた光化学電池に関する。
 太陽電池はクリーンな再生型エネルギー源として大きく期待されており、例えば、単結晶シリコン系、多結晶シリコン系、アモルファスシリコン系の太陽電池や、テルル化カドミウム、セレン化インジウム銅等の化合物からなる太陽電池の実用化をめざした研究がなされている。しかしながら、家庭用電源として普及させるためには、いずれの電池も製造コストが高いことや、原材料の確保が困難なことやリサイクルの問題、又、大面積化が困難であるなど克服しなければならない多くの問題を抱えている。そこで、大面積化や低価格化を目指し、有機材料を用いた太陽電池が提案されてきたが、いずれも変換効率が1%程度と実用化にはほど遠いものであった。
 こうした状況の中、グレッツェルらにより、色素によって増感された半導体微粒子を用いた光電変換素子及び太陽電池、並びにこの太陽電池の作製に必要な材料及び製造技術が開示された(例えば、非特許文献1、特許文献1参照)。当該電池は、ルテニウム色素によって増感された多孔質チタニア薄膜を作用電極とする湿式太陽電池である。この太陽電池の利点は、安価な材料を高純度に精製する必要がなく用いられるため、安価な光電変換素子として提供できること、更に用いられる色素の吸収がブロードであり、広い可視光の波長域にわたって太陽光を電気に変換できることである。しかしながら、実用化のためには更なる変換効率の向上が必要であり、より高い吸光係数を有し、より高波長域まで光を吸収する色素の開発が依然として望まれている。
 特許文献2には、光電変換素子として有用な金属錯体色素であるジピリジル配位子含有金属単核錯体が開示されており、非特許文献2には、多核β-ジケトナート錯体色素が開示されている。
 特許文献3には、光等の活性光線のエネルギーを受けて電子を取り出す光電変換機能の優れた新規な複核錯体として、複数の金属と複数の配位子を有し、その複数の金属に配位する橋かけ配位子(BL)が複素共役環を有する配位構造と複素共役環を有しない配位構造を有する複核錯体が開示されている。又、特許文献4には、高い光電変換効率を有する光電変換素子が得られる金属錯体色素として、複素共役環を有する配位構造を有する二核金属錯体が開示されており、実施例では、合成後、反応液に酸を加えてpHを2.5として二核金属錯体を単離している。
 しかしながら、さらに高い光電変換効率を有し、且つ優れた耐久性を有する光電変換素子および光化学電池を実現できる金属錯体色素および金属錯体色素溶液が望まれている。
特開平1-220380号公報 特開2003-261536号公報 特開2004-359677号公報 国際公開第2006/038587号 Nature,737,353(1991) 色素増感太陽電池の最新技術,株式会社シーエムシー発行、117頁(2001年)
 本発明の目的は、上記問題点を解決し、初期光電変換効率及び耐久性に優れた光化学電池を実現できる二核ルテニウム錯体色素を含む色素溶液を提供することである。さらには、この錯体色素溶液を用いて得られる当該色素によって光増感された半導体微粒子を用いた光電変換素子、及び光化学電池を提供することである。
 本発明は以下の事項に関する。
 1. 一般式(1)
Figure JPOXMLDOC01-appb-C000002
(式中、Lは、カルボキシル基をふたつ有する含窒素二座配位子、Lは、含窒素二座配位子、BLは、含窒素四座配位子、Xは、対イオンを示し、nは、錯体の電荷を中和するのに必要な対イオンの数を示す。但し、LとLは異なるものであり、二つのLは同一でも異なっていてもよく、二つのLも同一でも異なっていてもよい。なお、L中のカルボキシル基(COOH)は、脱プロトン(H)化されてカルボキシイオン(COO)となっていても良い。)
で示される非対称二核ルテニウム錯体色素を含む溶液であって、
 当該色素の濃度が飽和濃度未満であることを特徴とする二核ルテニウム錯体色素溶液。
 2. 上記一般式(1)で示される非対称二核ルテニウム錯体色素を含む溶液であって、
 当該二核ルテニウム錯体色素の濃度が0.1×10-4mol/lより大きく飽和濃度未満であることを特徴とする二核ルテニウム錯体色素溶液。
 3. 溶媒が、水と均一相を形成する溶媒である上記2記載の二核ルテニウム錯体色素溶液。
 4. Xが、ヘキサフルオロリン酸イオン、テトラフルオロホウ酸イオン、硝酸イオン又はヨウ化物イオンである上記2記載の二核ルテニウム錯体色素溶液。
 5. Lが、2,2’-ビピリジン、2,2’-(4,4’-ジメチル)ビピリジン又は1,10-フェナントロリンである上記2記載の二核ルテニウム錯体色素溶液。
 6. Lが、4,4’-ジカルボキシ-2,2’-ビピリジンである上記2記載の二核ルテニウム錯体色素溶液。
 7. BLが、2,2’-ビイミダゾール又は2,2’-ビベンズイミダゾールである上記2記載の二核ルテニウム錯体色素溶液。
 8. 二核ルテニウム錯体色素により増感された半導体微粒子を含む光電変換素子であって、
 二核ルテニウム錯体色素により増感された半導体微粒子が、上記2記載の二核ルテニウム錯体色素溶液を用いて色素を吸着させた半導体微粒子であることを特徴とする光電変換素子。
 9. 二核ルテニウム錯体色素により増感された半導体微粒子が電極上に固定されている上記8記載の光電変換素子。
 10. 半導体微粒子が、酸化チタン、酸化亜鉛、酸化スズ、又はそれらの混合物である上記8記載の光電変換素子。
 11. 上記8記載の光電変換素子及び電解質溶液を含む光化学電池。
 12. 電解質溶液が、レドックス対を含む上記11記載の光化学電池。
 13. 上記一般式(1)で示される非対称二核ルテニウム錯体色素を含む溶液であって、
 溶液中の二核ルテニウム錯体色素の含有量が、飽和溶液中の二核ルテニウム錯体色素の含有量の10%以上100%未満であることを特徴とする二核ルテニウム錯体色素溶液。
 14. 溶媒が、水と均一相を形成する溶媒である上記13記載の二核ルテニウム錯体色素溶液。
 15. Xが、ヘキサフルオロリン酸イオン、テトラフルオロホウ酸イオン、硝酸イオン又はヨウ化物イオンである上記13記載の二核ルテニウム錯体色素溶液。
 16. Lが、2,2’-ビピリジン、2,2’-(4,4’-ジメチル)ビピリジン又は1,10-フェナントロリンである上記13記載の二核ルテニウム錯体色素溶液。
 17. Lが、4,4’-ジカルボキシ-2,2’-ビピリジンである上記13記載の二核ルテニウム錯体色素溶液。
 18. BLが、2,2’-ビイミダゾール又は2,2’-ビベンズイミダゾールである上記13記載の二核ルテニウム錯体色素溶液。
 19. 二核ルテニウム錯体色素により増感された半導体微粒子を含む光電変換素子であって、
 二核ルテニウム錯体色素により増感された半導体微粒子が、上記13記載の二核ルテニウム錯体色素溶液を用いて色素を吸着させた半導体微粒子であることを特徴とする光電変換素子。
 20. 二核ルテニウム錯体色素により増感された半導体微粒子が電極上に固定されている上記19記載の光電変換素子。
 21. 半導体微粒子が、酸化チタン、酸化亜鉛、酸化スズ、又はそれらの混合物である上記19記載の光電変換素子。
 22. 上記19記載の光電変換素子及び電解質溶液を含む光化学電池。
 23. 電解質溶液が、レドックス対を含む上記22記載の光化学電池。
 本発明の二核ルテニウム錯体色素溶液を用いることにより、初期光電変換効率及び耐久性に優れた光化学電池を得ることができる。具体的には、本発明の二核ルテニウム錯体色素溶液に半導体微粒子を浸漬して色素を半導体微粒子に吸着させた色素増感半導体微粒子を用いることにより、初期光電変換効率及び耐久性に優れた光化学電池を得ることができる。なお、当該光化学電池は、安定性が極めて高く、高耐久性を有し、光電変換効率が高いために、実用化に適したものであると考えられる。
 本発明の非対称二核ルテニウム錯体色素は、前記一般式(1)で示されるものである。
 一般式(1)において、Xは、対イオンを示す。Xの具体例としては、例えば、ヘキサフルオロリン酸イオン、過塩素酸イオン、テトラフェニルホウ酸イオン、テトラフルオロホウ酸イオン、トリフルオロメタンスルホン酸イオン、チオシアン酸イオン、硫酸イオン、硝酸イオン、塩化物イオン、ヨウ化物イオンなどのハロゲン化物イオンや、亜硫酸イオン、チオ硫酸イオン、炭酸イオン、リン酸一水素イオン等が挙げられ、好ましくはヘキサフルオロリン酸イオン、テトラフルオロホウ酸イオン、硝酸イオン、硫酸イオン、ハロゲン化物イオンであり、更に好ましくはヘキサフルオロリン酸イオン、テトラフルオロホウ酸イオン、硝酸イオン、ヨウ化物イオンである。nは、錯体の電荷を中和するのに必要な対イオンの数を示し、通常、0~2である。
 Lは、カルボキシル基をふたつ有する含窒素二座配位子を示す。カルボキシル基(COOH)は、脱プロトン(H)化されてカルボキシイオン(COO)となっていても良い。このLは、錯体内にふたつ含まれているが、それらは同一でも異なっていてもよい。
 Lとしては、下式(1-A)で表される配位子が挙げられる。
Figure JPOXMLDOC01-appb-C000003
 式中、-COOHのHは脱離していてもよく、R、R、R、R、R及びRは、それぞれ独立に、水素原子または置換もしくは無置換の直鎖もしくは分岐アルキル基を表すか、または、これらの二つ以上が一緒になってそれらが結合する炭素原子と共に置換もしくは無置換の芳香族炭化水素環を形成している。
 アルキル基としては、炭素数6以下のものが好ましく、メチル基、エチル基がより好ましい。
 また、RとR、RとR、RとRが一緒になってそれらが結合する炭素原子と共に6員の芳香族炭化水素環(置換基を有していてもよい)を形成していることも好ましい。芳香族炭化水素環の置換基としては、アルキル基(メチル基、エチル基など)、アルコキシ基(メトキシ基、エトキシ基など)などが挙げられる。
 R~Rは全て水素原子であるか、RとRが水素原子であり、RとR、RとRが一緒になってそれらが結合する炭素原子と共に6員の芳香族炭化水素環を形成していることが好ましく、R~Rが全て水素原子であることが特に好ましい。
 Lとしては、例えば、2,2’-ビピリジン-4,4’-ジカルボン酸(4,4’-ジカルボキシ-2,2’-ビピリジン)、1,10-フェナントロリン-4,7-ジカルボン酸、2-(2-(4-カルボキシピリジル))-4-カルボキシキノリン、2,2’-ビキノリン-4,4’-ジカルボン酸等が挙げられるが、好ましくは2,2’-ビピリジン-4,4’-ジカルボン酸である。なお、これらの配位子中のカルボキシル基(COOH)は、脱プロトン(H)化されてカルボキシイオン(COO)となっていても良い。
 BLは、含窒素四座配位子を示す。
 BLとしては、下式(1-B1)で表される配位子が挙げられる。
Figure JPOXMLDOC01-appb-C000004
 式中、R31、R32及びR33は、それぞれ独立に、水素原子または置換もしくは無置換の直鎖もしくは分岐アルキル基を表すか、または、これらの二つ以上が一緒になってそれらが結合する炭素原子と共に置換もしくは無置換の芳香族炭化水素環を形成しており、R34、R35及びR36は、それぞれ独立に、水素原子または置換もしくは無置換の直鎖もしくは分岐アルキル基を表すか、または、これらの二つ以上が一緒になってそれらが結合する炭素原子と共に置換もしくは無置換の芳香族炭化水素環を形成している。
 アルキル基としては、炭素数18以下、より好ましくは6以下のものが好ましく、メチル基、エチル基がより好ましい。
 また、R31~R36の隣接する二つが一緒になってそれらが結合する炭素原子と共に6員の芳香族炭化水素環(置換基を有していてもよい)を形成していることも好ましい。芳香族炭化水素環の置換基としては、アルキル基(メチル基、エチル基など)、アルコキシ基(メトキシ基、エトキシ基など)などが挙げられる。
 R31~R36は水素原子またはメチル基であることが好ましく、R31~R36が全て水素原子であることが特に好ましい。
 また、BLとしては、下式(1-B2)で表される配位子も挙げられる。
Figure JPOXMLDOC01-appb-C000005
 式中、R41及びR42は、それぞれ独立に、水素原子または置換もしくは無置換の直鎖もしくは分岐アルキル基を表すか、または、これらが一緒になってそれらが結合する炭素原子と共に置換もしくは無置換の芳香族炭化水素環を形成しており、R43及びR44は、それぞれ独立に、水素原子または置換もしくは無置換の直鎖もしくは分岐アルキル基を表すか、または、これらが一緒になってそれらが結合する炭素原子と共に置換もしくは無置換の芳香族炭化水素環を形成している。
 アルキル基としては、炭素数18以下、より好ましくは6以下のものが好ましく、メチル基、エチル基がより好ましい。
 また、R41とR42、R43とR44が一緒になってそれらが結合する炭素原子と共に6員の芳香族炭化水素環(置換基を有していてもよい)を形成していることも好ましい。芳香族炭化水素環の置換基としては、アルキル基(メチル基、エチル基など)、アルコキシ基(メトキシ基、エトキシ基など)などが挙げられる。
 R41~R44は水素原子またはメチル基であることが好ましく、R41~R44が全て水素原子であることが特に好ましい。また、R41とR42、R43とR44が一緒になってそれらが結合する炭素原子と共に6員の芳香族炭化水素環(メチル基などの置換基を有していてもよい)を形成していることも特に好ましく、例えば下式(1-B3)で表される配位子であることが好ましい。
Figure JPOXMLDOC01-appb-C000006
 式中、R51、R52、R53及びR54は、それぞれ独立に、水素原子または置換もしくは無置換の直鎖もしくは分岐アルキル基を表し、R55、R56、R57及びR58は、それぞれ独立に、水素原子または置換もしくは無置換の直鎖もしくは分岐アルキル基を表す。
 アルキル基としては、炭素数18以下、より好ましくは6以下のものが好ましく、メチル基、エチル基がより好ましい。
 R51~R58は水素原子またはメチル基であることが好ましく、R51~R58が全て水素原子であるか、R52、R53、R56及びR57がメチル基であり、R51、R54、R55及びR58が水素原子であることが特に好ましく、R51~R58が全て水素原子であることがさらに好ましい。
 BLとしては、例えば、2,2’-ビピリミジン、2,2’-ビイミダゾール、2,2’-ビベンズイミダゾール等が挙げられるが、好ましくは2,2’-ビイミダゾール、2,2’-ビベンズイミダゾールであり、更に好ましくは2,2’-ビベンズイミダゾールである。
 Lは、含窒素二座配位子を示す。このLは、錯体内にふたつ含まれているが、それらは同一でも異なっていてもよい。
 Lとしては、下式(1-C)で表される配位子が挙げられる。
Figure JPOXMLDOC01-appb-C000007
 式中、R11、R12、R13、R14、R15、R16、R17及びR18は、それぞれ独立に、水素原子または置換もしくは無置換の直鎖もしくは分岐アルキル基を表すか、または、これらの二つ以上が一緒になってそれらが結合する炭素原子と共に置換もしくは無置換の芳香族炭化水素環を形成している。
 アルキル基としては、炭素数18以下、より好ましくは6以下のものが好ましく、メチル基、エチル基がより好ましい。
 また、R11~R18の隣接する二つ、またはR11とR18が一緒になってそれらが結合する炭素原子と共に6員の芳香族炭化水素環(置換基を有していてもよい)を形成していることも好ましい。芳香族炭化水素環の置換基としては、アルキル基(メチル基、エチル基など)、アルコキシ基(メトキシ基、エトキシ基など)などが挙げられる。
 R11~R18は水素原子またはメチル基であることが好ましく、R11~R18が全て水素原子であるか、R12及びR17がメチル基であり、R11、R13~R16及びR18が水素原子であることが特に好ましい。また、R11とR18が一緒になってそれらが結合する炭素原子と共に6員の芳香族炭化水素環(メチル基などの置換基を有していてもよい)を形成しており、R12~R17は水素原子またはメチル基、より好ましくは水素原子であることも特に好ましい。さらに、R13とR14、R15とR16が一緒になってそれらが結合する炭素原子と共に6員の芳香族炭化水素環(メチル基などの置換基を有していてもよい)を形成しており、R11、R12、R17及びR18は水素原子またはメチル基、より好ましくは水素原子であることも特に好ましい。
 Lとしては、例えば、2,2’-ビピリジン、2,2’-4,4’-ジメチル-ビピリジン、1,10-フェナントロリン、2-(2-ピリジニル)キノリン、2,2’-ビキノリン等が挙げられるが、好ましくは2,2’-ビピリジン、2,2’-4,4’-ジメチル-ビピリジン、1,10-フェナントロリンである。
 上記のような本発明において使用する二核ルテニウム錯体の具体例としては、例えば、以下の(D-1)から(D-15)の化合物が挙げられる。なお、式(D-1)~(D-15)中の-COOHのHは脱離していてもよい。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
 本発明の非対称二核ルテニウム錯体色素は、一般式(2)
Figure JPOXMLDOC01-appb-C000012
(式中、Lは、カルボキシル基をふたつ有する含窒素二座配位子、Yは、ハロゲン原子を示す。なお、カルボキシル基(COOH)は、脱プロトン(H)化されてカルボキシイオン(COO)となっていても良い。)
で示されるルテニウム錯体(2)と、一般式(3)
Figure JPOXMLDOC01-appb-C000013
(式中、Lは、含窒素二座配位子、BLは、含窒素四座配位子を示す。)
で示されるルテニウム錯体(3)とを反応させることによって得ることができる。
 一般式(2)において、Yは、ハロゲン原子を示し、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子であり、好ましくは塩素原子、臭素原子である。なお、ふたつのYは同一でも異なっていてもよい。
 本発明の非対称二核ルテニウム錯体色素は、以下のふたつの工程によって得られる。
(A)ルテニウム錯体(2)とルテニウム錯体(3)とを反応させる第1工程。
(B)次いで、酸を加えて反応液のpHを調整し、二核ルテニウム錯体色素を単離する第2工程。
(A)第1工程
 本発明の第1工程は、ルテニウム錯体(2)とルテニウム錯体(3)とを反応させる工程であり、好ましくは水と有機溶媒の混合溶媒中で反応を行う。ルテニウム錯体(2)とルテニウム錯体(3)との反応は、式(4)で示されるように、予めルテニウム錯体(3)を脱プロトン化させた後に、脱プロトン化されたルテニウム錯体(3)とルテニウム錯体(2)を反応させる方法によって行うことが更に好ましい。この場合、ルテニウム錯体(3)の脱プロトン化は有機溶媒中で行い、ルテニウム錯体(2)と脱プロトン化後のルテニウム錯体(3)との反応は水と有機溶媒の混合溶媒中で行うことが好ましい。
Figure JPOXMLDOC01-appb-C000014
(式中、Lは、カルボキシル基をふたつ有する含窒素二座配位子、Yは、ハロゲン原子、Lは、含窒素二座配位子、BLは、含窒素四座配位子を示す。)
 使用する有機溶媒としては、例えば、メタノール、エタノール、イソプロピルアルコール、t-ブチルアルコール、エチレングリコール等のアルコール類;アセトニトリル、プロピオニトリル等のニトリル類;N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド等のアミド類;N-メチルピロリドン等の尿素類;ジメチルスルホキシド等のスルホキシド類が挙げられる。ルテニウム錯体(3)の脱プロトン化の反応においては、好ましくはアルコール類が使用され、更に好ましくはメタノール、エタノールが使用される。ルテニウム錯体(2)と脱プロトン化後のルテニウム錯体(3)または脱プロトン化されていないルテニウム錯体(3)との反応においては、好ましくはエタノール、N,N-ジメチルホルムアミドが使用され、更に好ましくはエタノールが使用される。なお、これらの有機溶媒は、単独又は二種以上を混合して使用しても良い。
 ルテニウム錯体(3)の脱プロトン化反応における有機溶媒の使用量は、特に限定されないが、ルテニウム錯体(3)1ミリモルに対して、好ましくは10~100ml、更に好ましくは20~40mlである。
 ルテニウム錯体(2)と脱プロトン化させた後のルテニウム錯体(3)または脱プロトン化されていないルテニウム錯体(3)との反応における水と有機溶媒の混合溶媒の使用量は、特に限定されないが、ルテニウム錯体(2)1ミリモルに対して、好ましくは60~360ml、更に好ましくは120~180mlであり、その混合比(容量比)は、水1に対して、有機溶媒が好ましくは1~5倍、更に好ましくは1~2倍である。
 ルテニウム錯体(3)の使用量は、ルテニウム錯体(2)1モルに対して、好ましくは0.9~1.5モル、更に好ましくは1.0~1.2モル、特に好ましくは1.0~1.1モルである。
 本発明の第1工程は、塩基の存在下で行うことが望ましい。使用される塩基としては、例えば、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物;炭酸ナトリウム、炭酸カリウム等のアルカリ金属炭酸塩;炭酸水素ナトリウム、炭酸水素カリウム等のアルカリ金属炭酸水素塩;水酸化アンモニウム;水酸化テトラブチルアンモニウム等の水酸化四級アンモニウム塩;リチウムメトキシド、ナトリウムメトキシド、カリウムメトキシド、ナトリウムエトキシド、カリウムエトキシド、ナトリウムt-ブトキシド、カリウムt-ブトキシド等のアルカリ金属アルコキシド;水素化リチウム、水素化ナトリウム、水素化カリウム、水素化カルシウム等のアルカリ金属水素化物またはアルカリ土類金属水素化物;トリエチルアミン、ジイソプロピルエチルアミン、トリブチルアミン等のアミン類;ピリジン、キノリン等の複素環式アミン類が挙げられる。
 なお、ルテニウム錯体(3)を脱プロトン化する際には、好ましくはアルカリ金属アルコキシドが使用され、更に好ましくはナトリウムメトキシド、リチウムメトキシドが使用される。ルテニウム錯体(2)と脱プロトン化させた後のルテニウム錯体(3)または脱プロトン化されていないルテニウム錯体(3)とを反応させる際には、好ましくはアルカリ金属水酸化物、水酸化四級アンモニウム塩が使用され、更に好ましくは水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化テトラブチルアンモニウムが使用される。ルテニウム錯体(3)を脱プロトン化する際に使用する塩基と、ルテニウム錯体(2)と脱プロトン化させた後のルテニウム錯体(3)とを反応させる際に使用する塩基とは同一であっても、異なっていても良い。なお、これらの塩基は、単独又は二種以上を混合して使用しても良く、水や各種有機溶媒に溶解しているものを使用しても良い。
 塩基の使用量は、ルテニウム錯体(3)の脱プロトン化においては、ルテニウム錯体(3)1モルに対して、好ましくは2~20モル、更に好ましくは4~10モルであり、ルテニウム錯体(2)と脱プロトン化後のルテニウム錯体(3)または脱プロトン化されていないルテニウム錯体(3)との反応においては、ルテニウム錯体(2)1モルに対して、好ましくは3~5モル、更に好ましくは3.7~4.5モルである。
 本発明の第1工程では、まず、ルテニウム錯体(3)、塩基及び有機溶媒を混合して、攪拌しながら、好ましくは20~200℃、更に好ましくは50~90℃で反応させてルテニウム錯体(3)を脱プロトン化させる。次いで、脱プロトン化されたルテニウム錯体(3)、ルテニウム錯体(2)、塩基、水及び有機溶媒を混合して、攪拌しながら、好ましくは50~200℃、更に好ましくは80~100℃で反応させる等の方法によって行われる。また、ルテニウム錯体(3)を脱プロトン化せずにルテニウム錯体(2)と反応させる場合も、同様に、ルテニウム錯体(3)、ルテニウム錯体(2)、塩基、水及び有機溶媒を混合して、攪拌しながら、好ましくは50~200℃、更に好ましくは80~100℃で反応させることができる。なお、反応圧力は特に制限されない。
 ルテニウム錯体(2)およびルテニウム錯体(3)は、公知の方法によって合成することができる(例えば、国際公開第2006/038587号参照)。
(B)第2工程
 本発明の第2工程は、第1工程で得られた反応液に酸を加えて反応液のpHを調整し、二核ルテニウム錯体色素を単離する工程である。
 使用される酸としては、例えば、ヘキサフルオロリン酸、過塩素酸、テトラフェニルホウ酸、テトラフルオロホウ酸、トリフルオロメタンスルホン酸、チオシアン酸、硫酸、硝酸、フッ化水素酸、塩酸、臭化水素酸、ヨウ化水素酸等が挙げられるが、好ましくはヘキサフルオロリン酸、テトラフルオロホウ酸、トリフルオロメタンスルホン酸、硝酸、ヨウ化水素酸であり、更に好ましくはヘキサフルオロリン酸、テトラフルオロホウ酸、硝酸、ヨウ化水素酸が使用される。なお、これらの酸は、単独又は二種以上を混合して使用しても良い。
 酸の使用量(加える酸の量)は、二核ルテニウム錯体色素を単離することができる量であれば特に制限されないが、反応液のpHを好ましくは2.5より大きく5以下、更に好ましくは3より大きく5以下となるように調整することができる量が好ましい。
 本発明の第2工程では、第1工程で得られた反応液に酸を加えて、反応液のpHを好ましくは2.5より大きく5以下となるように調整する。反応液のpHをこの範囲内に調整することによって、二核ルテニウム錯体色素が析出してくる。この析出した固体を濾過等によって取得することにより、二核ルテニウム錯体色素を単離することができる。
 なお、当該ルテニウム錯体色素は、配位子中のカルボキシル基(COOH)が脱プロトン(H)化されてカルボキシイオン(COO)となっているプロトン欠損型のルテニウム錯体色素となっていても良い。この際、脱プロトン数は1~4個であるが、ルテニウム錯体色素を単離する際の溶液のpHによっては複数種の混合物として取得される場合がある。そのため、脱プロトン数が異なるルテニウム錯体色素の混合物の場合には、それらの平均値を当該ルテニウム錯体色素の脱プロトン数とする。
 本発明の二核ルテニウム錯体色素溶液は、前記の第2工程で得られた二核ルテニウム錯体色素(上記一般式(1)で示される二核ルテニウム錯体色素)を含み、当該色素の濃度が飽和濃度未満である溶液、より好ましくは二核ルテニウム錯体色素の飽和溶液が溶媒で希釈されているルテニウム錯体色素希釈溶液である。上記一般式(1)で示される二核ルテニウム錯体色素を用いることにより、初期光電変換効率及び耐久性に優れた光化学電池を得ることができるが、色素を半導体微粒子に吸着させるのに用いる色素溶液の濃度を飽和濃度未満にすることにより、初期光電変換効率が更に向上する。
 溶液中のルテニウム錯体色素の濃度は、0.1×10-4mol/lより大きく飽和濃度未満であることが好ましい。
 別の実施態様では、溶液中のルテニウム錯体色素の含有量が、飽和溶液中のルテニウム錯体色素の含有量の10%以上100%未満であることが好ましい。吸着時間の速度を実用化レベルより低下させないためには、溶液中のルテニウム錯体色素の含有量が飽和溶液中のルテニウム錯体色素の含有量の10%以上である溶液を使用することが好ましい。
 本発明の二核ルテニウム錯体色素溶液の溶媒としては、水と均一相を形成する溶媒が好ましく、好適には、例えば、メタノール、エタノール、イソプロピルアルコール、t-ブチルアルコール等のアルコール類;アセトニトリル等のニトリル類;アセトン等のケトン類が使用される。なお、これらの有機溶媒は、単独又は二種以上を混合して使用しても良い。
 本発明の二核ルテニウム錯体色素溶液は、二核ルテニウム錯体色素の飽和溶液を調製し、これに溶媒を加え、所定の濃度または希釈率になるように飽和溶液を希釈して調製した希釈溶液であることが好ましい。溶液中の二核ルテニウム錯体色素に違いがあると思われる。また、二核ルテニウム錯体色素の種類により好ましい濃度、希釈率及び飽和濃度が異なるからである。
 なお、希釈する溶媒の使用量は、目的の希釈溶液に応じて適宜調節する。希釈する溶媒は、飽和溶液の溶媒と異なるものであってもよい。
 本発明の二核ルテニウム錯体色素によって増感された半導体微粒子は、本発明の二核ルテニウム錯体色素溶液を用いて二核ルテニウム錯体色素と半導体微粒子とを接触させ、色素を半導体微粒子に吸着させることによって得られるものである。
 半導体微粒子としては、例えば、酸化チタン、酸化亜鉛、酸化スズ、酸化インジウム、酸化ニオブ、酸化タングステン、酸化バナジウム等の金属酸化物類;チタン酸ストロンチウム、チタン酸カルシウム、チタン酸バリウム、ニオブ酸カリウム等の複合酸化物類;硫化カドミウム、硫化ビスマス等の金属硫化物;セレン化カドミウム等の金属セレン化物;テルル化カドミウム等の金属テルル化物;リン化ガリウム等の金属リン化物;ヒ素化ガリウム等の金属ヒ素化物が挙げられるが、好ましくは金属酸化物、更に好ましくは酸化チタン、酸化亜鉛、酸化スズが使用される。なお、半導体微粒子の一次粒子径は特に制限されないが、好ましくは1~5000nm、更に好ましくは2~500nm、特に好ましくは3~300nmのものが使用される。これらの半導体微粒子は、単独又は二種以上を混合して使用しても良い。
 二核ルテニウム錯体色素により増感された半導体微粒子は、二核ルテニウム錯体色素を溶媒に溶解した溶液(本発明の二核ルテニウム錯体色素溶液)を半導体微粒子に接触(例えば、塗布、浸漬等)させることによって製造される(例えば、国際公開第2006/038587号パンフレット参照)。なお、接触させた後に、各種溶媒で洗浄して乾燥させることが望ましい。色素を吸着させる際の温度(半導体微粒子を色素溶液に浸漬する際の温度)および色素を吸着させる時間(色素溶液に浸漬する時間)は適宜決めればよい。
 なお、後述するように、電極上に半導体微粒子を含む薄膜を形成し、これを本発明の二核ルテニウム錯体色素溶液に浸漬して色素を半導体微粒子に吸着させて光電変換素子を作製することができる。
 本発明の光電変換素子は、先述した二核ルテニウム錯体色素によって増感された半導体微粒子を含むものであり、具体的には、例えば、当該ルテニウム錯体色素により増感された半導体微粒子を電極上に固定したものである。
 前記電極は、導電性電極であり、好ましくは透明基板上に形成された透明電極である。導電剤としては、例えば、金、銀、銅、白金、パラジウム等の金属、スズをドープした酸化インジウム(ITO)に代表される酸化インジウム系化合物、フッ素をドープした酸化スズ(FTO)に代表される酸化スズ系化合物、酸化亜鉛系化合物などが挙げられる。
 本発明の光化学電池は、上記の二核ルテニウム錯体色素により増感された半導体微粒子を用いて製造することができる。
 本発明の光化学電池は、具体的には、電極として上記の本発明の光電変換素子と対極とを有し、その間に電解質溶液層を有するものである。なお、本発明の光電変換素子に用いた電極と対極の少なくとも片方は透明電極である。
 対極は、光電変換素子と組み合わせて光化学電池としたときに正極として作用するものである。対極としては、上記導電性電極と同様に導電層を有する基板を用いることもできるが、金属板そのものを使用すれば、基板は必ずしも必要ではない。対極に用いる導電剤としては、例えば、白金等の金属、炭素、フッ素をドープした酸化スズ等の導電性金属酸化物が好適に使用される。
 電解質溶液は、レドックス対(酸化還元対)を含んでいることが望ましい。使用するレドックス対は特に限定されないが、例えば、
(1)ヨウ素とヨウ化物(例えば、ヨウ化リチウム、ヨウ化カリウム等の金属ヨウ化物;ヨウ化テトラブチルアンモニウム、ヨウ化テトラプロピルアンモニウム、ヨウ化ピリジニウム、ヨウ化イミダゾリウム等の4級アンモニウム化合物のヨウ化物)の組み合わせ、
(2)臭素と臭化物(例えば、臭化リチウム、臭化カリウム等の金属臭化物;臭化テトラブチルアンモニウム、臭化テトラプロピルアンモニウム、臭化ピリジニウム、臭化イミダゾリウム等の4級アンモニウム化合物の臭化物)の組み合わせ、
(3)塩素と塩化物(例えば、塩化リチウム、塩化カリウム等の金属塩化物;塩化テトラブチルアンモニウム、塩化テトラプロピルアンモニウム、塩化ピリジニウム、塩化イミダゾリウム等の4級アンモニウム化合物の塩化物)の組み合わせ、
(4)アルキルビオローゲンとその還元体の組み合わせ、
(5)キノン/ハイドロキノン、鉄(II)イオン/鉄(III)イオン、銅(I)イオン/銅(II)イオン、マンガン(II)イオン/マンガン(III)イオン、コバルトイオン(II)/コバルトイオン(III)等の遷移金属イオン対、
(6)フェロシアン/フェリシアン、四塩化コバルト(II)/四塩化コバルト(III)、四臭化コバルト(II)/四臭化コバルト(III)、六塩化イリジウム(II)/六塩化イリジウム(III)、六シアノ化ルテニウム(II)/六シアノ化ルテニウム(III)、六塩化ロジウム(II)/六塩化ロジウム(III)、六塩化レニウム(III)/六塩化レニウム(IV)、六塩化レニウム(IV)/六塩化レニウム(V)、六塩化オスミウム(III)/六塩化オスミウム(IV)、六塩化オスミウム(IV)/六塩化オスミウム(V)等の錯イオンの組み合わせ、
(7)コバルト、鉄、ルテニウム、マンガン、ニッケル、レニウム等の遷移金属と、ビピリジンやその誘導体、ターピリジンやその誘導体、フェナントロリンやその誘導体等の複素共役環及びその誘導体で形成されている錯体類、
(8)フェロセン/フェロセニウムイオン、コバルトセン/コバルトセニウムイオン、ルテノセン/ルテノセニウムイオン等のシクロペンタジエン及びその誘導体と金属の錯体類、
(9)ポルフィリン系化合物類
が挙げられるが、好ましくは前記(1)で挙げたレドックス対が使用される。なお、これらのレドックス対は、単独又は二種以上を混合して使用しても良い。
 本発明の光化学電池は、従来から適用されている方法によって製造することができ、例えば、
(1)透明電極上に酸化物等の半導体微粒子のペーストを塗布し、加熱焼成して半導体微粒子の薄膜を作製する。
(2)次いで、半導体微粒子の薄膜がチタニアの場合、温度400~550℃で0.5~1時間焼成する。
(3)得られた薄膜の付いた透明電極を色素溶液に浸漬し、二核ルテニウム錯体色素を担持して光電変換素子を作製する。
(4)得られた光電変換素子と対極として白金又は炭素を蒸着した透明電極を合わせ、その間に電解質溶液を入れる。
という操作を行うことにより、本発明の光化学電池を製造することが出来る。
 次に、実施例を挙げて本発明を具体的に説明するが、本発明の範囲はこれらに限定されるものではない。なお、光化学電池の光電変換効率は、ソーラーシュミレーター(英弘精機株式会社製)の擬似太陽光を照射して測定した。
参考例1(L=4,4’-ジカルボキシ-2,2’-ビピリジン、Y=塩素原子;ルテニウム錯体2aの合成)
 攪拌装置、温度計及び還流冷却器を備えた内容積500mlの三口フラスコに、市販の三塩化ルテニウム・三水和物3.22g(12.3mmol)、4,4’-ジカルボキシ-2,2’-ビピリジン5.72g(23.4mmol)及びN,N’-ジメチルホルムアミド300mlを加え、2.45GHzのマイクロ波照射下にて、窒素雰囲気下、攪拌しながら158~162℃にて45分間反応させた。反応終了後、反応液を濾過し、濾液を減圧下で濃縮した。得られた濃縮物をアセトン/ジエチルエーテル(=1/4(容量比))の混合液で洗浄し、次いで、2mol/l塩酸300mlを加え、超音波攪拌を30分間、通常の攪拌を2時間行った。攪拌終了後、得られた溶液を濾過した後、濾物を2mol/l塩酸、アセトン/ジエチルエーテル(=1/4(容量比))の混合液、ジエチルエーテルの順で洗浄し、固体を乾燥させ、暗紫色固体として、ルテニウム錯体2a7.23gを得た(単離収率:88.6%)。
参考例2(L=ビピリジン、BL=2,2’-ビベンズイミダゾール;ルテニウム錯体3aの合成)
 攪拌装置、温度計及び還流冷却器を備えた内容積300mlの三口フラスコに、ジクロロビス(2,2’-ビピリジル)ルテニウム(II)1.00g(1.92mmol)、2,2’-ビベンズイミダゾール0.540g(2.31mmol)及びエチレングリコール40mlを加え、2.45GHzのマイクロ波照射下にて、窒素雰囲気下、攪拌しながら200~204℃にて5分間反応させた。反応終了後、水80mlを加え、通常の攪拌を1時間行った。攪拌終了後、得られた溶液を濾過し、濾液に3.52mol/lヘキサフルオロリン酸アンモニウム水溶液2mlを加え、通常の攪拌を1時間行った。攪拌終了後、析出した固体を濾過し、濾物を水、アセトン/ジエチルエーテル(=1/4(容量比))の混合液、ジエチルエーテルの順で洗浄し、固体を乾燥させ、橙色固体として、ルテニウム錯体3a1.63gを得た(単離収率:87.1%)。
参考例3(脱プロトン化されたルテニウム錯体3aの合成)
 攪拌装置、温度計及び還流冷却器を備えた内容積100mlの三口フラスコに、参考例2で得られたルテニウム錯体3a1.62g(1.67mmol)及びメタノール32mlを加えた後、10%リチウムメトキシドメタノール溶液3.33ml(16.7mmol)を加え、窒素雰囲気下、攪拌しながら82~86℃で1時間反応させた。反応終了後、反応液を濾過し、濾物を冷却したメタノール、水、ジエチルエーテルの順で洗浄し、固体を乾燥させ、暗赤紫色固体として、脱プロトン化されたルテニウム錯体3a1.05gを得た(単離収率:92.3%)。
参考例4(L=4,4’-ジカルボキシ-2,2’-ビピリジン、L=ビピリジン、BL=2,2’-ビベンズイミダゾール、X=ヘキサフルオロリン酸イオン;ルテニウム錯体色素1a(pH2.8)の合成)
 攪拌装置、温度計及び還流冷却器を備えた内容積300mlの三口フラスコに、ルテニウム錯体2a0.601g(0.86mmol)、水/エタノール混合溶液(容量比:1/1)100ml及び1mol/l水酸化ナトリウム水溶液3.7ml(3.7mmol)を加えた。次いで、脱プロトン化されたルテニウム錯体3a0.621g(0.91mmol)を加え、2.45GHzのマイクロ波照射下にて、窒素雰囲気下、攪拌しながら86~90℃にて30分間反応させた。反応終了後、反応液を濾過し、濾液を減圧下で濃縮した。濃縮後、得られた溶液を濾過し、濾液に0.5mol/lヘキサフルオロリン酸水溶液を反応液のpHが2.8になるまで加え、4℃に冷却し一晩放置した。析出した結晶を濾過し、pH2.8のヘキサフルオロリン酸水溶液、アセトン/ジエチルエーテル(=1/4(容量比))の混合液、ジエチルエーテルの順で洗浄し、固体を乾燥させ、暗赤紫色固体として、二核ルテニウム錯体色素1a(pH2.8)1.11gを得た(単離収率:84.7%)。
参考例5(L=4,4’-ジカルボキシ-2,2’-ビピリジン、L=ビピリジン、BL=2,2’-ビベンズイミダゾール、X=ヘキサフルオロリン酸イオン;ルテニウム錯体色素1a(pH3.5)の合成)
 攪拌装置、温度計及び還流冷却器を備えた内容積300mlの三口フラスコに、ルテニウム錯体2a1.01g(1.45mmol)、水/エタノール混合溶液(容量比:1/1)200ml及び1mol/l水酸化ナトリウム水溶液5.77ml(5.77mmol)を加えた。次いで、脱プロトン化されたルテニウム錯体3a1.04g(1.53mmol)を加え、2.45GHzのマイクロ波照射下にて、窒素雰囲気下、攪拌しながら86~90℃にて30分間反応させた。反応終了後、反応液を濾過し、濾液を減圧下で濃縮した。濃縮後、得られた溶液を濾過し、濾液に0.5mol/lヘキサフルオロリン酸水溶液を反応液のpHが3.5になるまで加え、4℃に冷却し一晩放置した。析出した結晶を濾過し、pH3.5のヘキサフルオロリン酸水溶液、アセトン/ジエチルエーテル(=1/4(容量比))の混合液、ジエチルエーテルの順で洗浄し、固体を乾燥させ、暗赤紫色固体として、二核ルテニウム錯体色素1a(pH3.5)1.67gを得た(単離収率:84.3%)。
参考例6(L=1,10-フェナントロリン、BL=2,2’-ビベンズイミダゾール;ルテニウム錯体3bの合成)
 攪拌装置、温度計及び還流冷却器を備えた内容積100mlの三口フラスコに、ジクロロビス(1,10-フェナントロリン)ルテニウム(II)1.00g(1.76mmol)、2,2’-ビベンズイミダゾール0.495g(2.11mmol)及びエチレングリコール40mlを加え、2.45GHzのマイクロ波照射下にて、窒素雰囲気下、攪拌しながら200~204℃にて5分間反応させた。反応終了後、水80mlを加え、通常の攪拌を1時間行った。攪拌終了後、得られた溶液を濾過し、濾液に3.52mol/lヘキサフルオロリン酸アンモニウム水溶液2mlを加え、通常の攪拌を1時間行った。攪拌終了後、析出した固体を濾過し、濾物を水、アセトン/ジエチルエーテル(=1/4(容量比))の混合液、ジエチルエーテルの順で洗浄し、固体を乾燥させ、橙色固体として、ルテニウム錯体3b1.40gを得た(単離収率:80.6%)。
参考例7(脱プロトン化されたルテニウム錯体3bの合成)
 攪拌装置、温度計及び還流冷却器を備えた内容積100mlの三口フラスコに、参考例6で得られたルテニウム錯体3b1.39g(1.41mmol)及びメタノール28mlを加えた後、28%ナトリウムメトキシドメタノール溶液2.81ml(14.1mmol)を加え、窒素雰囲気下、攪拌しながら82~86℃で1時間反応させた。反応終了後、反応液を濾過し、濾物を冷却したメタノール、水、ジエチルエーテルの順で洗浄し、固体を乾燥させ、暗赤紫色固体として、脱プロトン化されたルテニウム錯体3b0.881gを得た(単離収率:83.7%)。
参考例8(L=4,4’-ジカルボキシ-2,2’-ビピリジン、L=1,10-フェナントロリン、BL=2,2’-ビベンズイミダゾール、X=ヘキサフルオロリン酸イオン;ルテニウム錯体色素1b(pH2.8)の合成)
 攪拌装置、温度計及び還流冷却器を備えた内容積500mlの三口フラスコに、ルテニウム錯体2a1.08g(1.55mmol)、水100ml、エタノール100ml及び1mol/l水酸化ナトリウム水溶液6.05ml(6.05mmol)を加えた。次いで、脱プロトン化されたルテニウム錯体3b1.22g(1.63mmol)を加え、2.45GHzのマイクロ波照射下にて、窒素雰囲気下、攪拌しながら86~90℃にて90分間反応させた。反応終了後、反応液を濾過し、濾液を減圧下で濃縮した。濃縮後、得られた溶液を濾過し、濾液に0.5mol/lヘキサフルオロリン酸水溶液を反応液のpHが2.8になるまで加え、4℃に冷却し一晩放置した。析出した結晶を濾過し、pH2.8のヘキサフルオロリン酸水溶液、アセトン/ジエチルエーテル(=1/4(容量比))の混合液、ジエチルエーテルの順で洗浄し、固体を乾燥させ、暗赤紫色固体として、二核ルテニウム錯体色素1b(pH2.8)2.11gを得た(単離収率:93.2%)。
参考例9(L=4,4’-ジカルボキシ-2,2’-ビピリジン、L=1,10-フェナントロリン、BL=2,2’-ビベンズイミダゾール、X=ヘキサフルオロリン酸イオン;ルテニウム錯体色素1b(pH3.5)の合成)
 攪拌装置、温度計及び還流冷却器を備えた内容積500mlの三口フラスコに、ルテニウム錯体2a0.772g(1.11mmol)、水80ml、エタノール80ml及び1mol/l水酸化ナトリウム水溶液4.44ml(4.44mmol)を加えた。次いで、脱プロトン化されたルテニウム錯体3b0.870g(1.16mmol)を加え、2.45GHzのマイクロ波照射下にて、窒素雰囲気下、攪拌しながら86~90℃にて90分間反応させた。反応終了後、反応液を濾過し、濾液を減圧下で濃縮した。濃縮後、得られた溶液を濾過し、濾液に0.5mol/lヘキサフルオロリン酸水溶液を反応液のpHが3.5になるまで加え、4℃に冷却し一晩放置した。析出した結晶を濾過し、pH3.5のヘキサフルオロリン酸水溶液、アセトン/ジエチルエーテル(=1/4(容量比))の混合液、ジエチルエーテルの順で洗浄し、固体を乾燥させ、暗赤紫色固体として、二核ルテニウム錯体色素1b(pH3.5)1.09gを得た(単離収率:68.2%)。
参考例10(L=4,4’-ジメチル-2,2’-ビピリジル、BL=2,2’-ビベンズイミダゾール;ルテニウム錯体3cの合成)
 攪拌装置、温度計及び還流冷却器を備えた内容積200mlの三口フラスコに、ジクロロビス(4,4’-ジメチル-2,2’-ビピリジル)ルテニウム(II)1.50g(2.69mmol)、2,2’-ビベンズイミダゾール0.755g(3.22mmol)及びエチレングリコール60mlを加え、2.45GHzのマイクロ波照射下にて、窒素雰囲気下、攪拌しながら200~204℃にて5分間反応させた。反応終了後、水120mlを加え、通常の攪拌を1時間行った。攪拌終了後、得られた溶液を濾過し、濾液に3.58mol/lヘキサフルオロリン酸アンモニウム水溶液3mlを加え、通常の攪拌を1時間行った。攪拌終了後、析出した固体を濾過し、濾物を水、アセトン/ジエチルエーテル(=1/4(容量比))の混合液、ジエチルエーテルの順で洗浄し、固体を乾燥させ、暗橙色固体として、ルテニウム錯体3c2.39gを得た(単離収率:89.4%)。
参考例11(脱プロトン化されたルテニウム錯体3cの合成)
 攪拌装置、温度計及び還流冷却器を備えた内容積100mlの三口フラスコに、参考例10で得られたルテニウム錯体3c2.38g(2.40mmol)及びメタノール24mlを加えた後、28%ナトリウムメトキシドメタノール溶液4.79ml(24.0mmol)を加え、窒素雰囲気下、攪拌しながら82~86℃で1時間反応させた。反応終了後、反応液を濾過し、濾物を水、ジエチルエーテルの順で洗浄し、固体を乾燥させ、暗赤紫色固体として、脱プロトン化されたルテニウム錯体3c1.77gを得た(単離収率:95.6%)。
参考例12(L=4,4’-ジカルボキシ-2,2’-ビピリジン、L=4,4’-ジメチル-2,2’-ビピリジル、BL=2,2’-ビベンズイミダゾール、X=ヘキサフルオロリン酸イオン;ルテニウム錯体色素1c(pH3.8)の合成)
 攪拌装置、温度計及び還流冷却器を備えた内容積500mlの三口フラスコに、ルテニウム錯体2a1.04g(1.49mmol)、水100ml、エタノール100ml及び1mol/l水酸化ナトリウム水溶液6.02ml(6.02mmol)を加えた。次いで、脱プロトン化されたルテニウム錯体3c1.21g(1.57mmol)を加え、2.45GHzのマイクロ波照射下にて、窒素雰囲気下、攪拌しながら86~90℃にて30分間反応させた。反応終了後、反応液を濾過し、濾液を減圧下で濃縮した。濃縮後、得られた溶液を濾過し、濾液に0.5mol/lヘキサフルオロリン酸水溶液を反応液のpHが3.8になるまで加え、4℃に冷却し一晩放置した。析出した結晶を濾過し、pH3.8のヘキサフルオロリン酸水溶液、アセトン/ジエチルエーテル(=1/4(容量比))の混合液、ジエチルエーテルの順で洗浄し、固体を乾燥させ、暗赤紫色固体として、二核ルテニウム錯体色素1c(pH3.8)1.34gを得た(単離収率:69.6%)。
例1(光電変換効率の評価)
(多孔質チタニア電極の作製)
 チタニアペーストPST-18NR(触媒化成製)を透明層に、PST-400C(触媒化成製)を拡散層に用い、透明導電性ガラス電極(旭硝子株式会社製)の上に、スクリーン印刷機を用いて塗布した。得られた膜を25℃、相対湿度60%の雰囲気下で5分間エージングし、このエージングした膜を440~460℃で30分間焼成した。この操作を繰り返すことで、16mmの多孔質チタニア電極を作製した。
(色素を吸着した多孔質チタニア電極の作製)
 t-ブチルアルコールとアセトニトリルの容積比1:1の混合溶媒に、合成した各種二核ルテニウム錯体色素の所定量を加えて、所定の濃度の当該ルテニウム錯体色素の溶液を調製した。次いで、調製した所定の濃度の色素溶液に多孔質チタニア電極を内温30℃の恒温器中で15~65時間浸漬した後、乾燥させて、光電変換効率測定用の色素を吸着した多孔質チタニア電極を作製した。
(光化学電池の作製)
 3-メトキシプロピオニトリル、ヨウ化リチウム、ヨウ素、4-t-ブチルピリジン及び1,2-ジメチル-3-プロピルイミダゾリウムアイオダイドから、ヨウ化物イオンの濃度が1.0mol/lの電解質溶液を調製した。そして、作製した色素吸着多孔質チタニア電極と白金板(対極)を重ね合わせた後、調製した電解質溶液を両電極の隙間に毛細管現象を利用して染み込ませることによって光化学電池を作製した。各々の濃度の二核ルテニウム錯体色素溶液を用いて作製した光化学電池の変換効率を表1に示した。
Figure JPOXMLDOC01-appb-T000015
 この結果より、色素溶液の濃度が0.0975×10-4mol/l及び0.1×10-4mol/lでは変換効率が低く、又、それぞれの飽和溶液でも変換効率が低いということが分かる。即ち、実施例と比較例とを対比すれば、色素溶液の濃度が0.1×10-4mol/lより大きく飽和濃度未満で高い変換効率を示すことが分かる。又、二核ルテニウム錯体色素の飽和溶液を溶媒で希釈して濃度を調整した希釈溶液の方が良い結果が得られる傾向にある。
例2(光電変換効率の評価)
(多孔質チタニア電極の作製)
 例1と同様にして、16mmの多孔質チタニア電極を作製した。
(色素を吸着した多孔質チタニア電極の作製)
 t-ブチルアルコールとアセトニトリルの容積比1:1の混合溶媒に、合成した各種二核ルテニウム錯体色素の所定量を加えて、当該ルテニウム錯体色素の飽和溶液及びその希釈溶液を調製した。次いで、調製した飽和色素溶液及びその希釈溶液に多孔質チタニア電極を内温30℃の恒温器中で15~65時間浸漬した後、乾燥させて、光電変換効率測定用の色素を吸着した多孔質チタニア電極を作製した。
(光化学電池の作製)
 3-メトキシプロピオニトリル、ヨウ化リチウム、ヨウ素、4-t-ブチルピリジン及び1,2-ジメチル-3-プロピルイミダゾリウムアイオダイドから、ヨウ化物イオンの濃度が1.0mol/lの電解質溶液を調製した。そして、作製した色素吸着多孔質チタニア電極と白金板(対極)を重ね合わせた後、調製した電解質溶液を両電極の隙間に毛細管現象を利用して染み込ませることによって光化学電池を作製した。各々の希釈率の二核ルテニウム錯体色素溶液を用いて作製した光化学電池の変換効率を表2に示した。ここで、希釈率とは、「ルテニウム錯体色素の飽和溶液中のルテニウム錯体色素の含有量を100%としたときの溶液中のルテニウム錯体色素の含有量(相対量)」のことを言う。
Figure JPOXMLDOC01-appb-T000016
 この結果より、二核ルテニウム錯体色素の飽和溶液を溶媒で希釈した希釈溶液の方が、飽和溶液よりも高い変換効率を示すことが分かる。なお、希釈率が10%未満であった場合、即ち溶液中のルテニウム錯体色素の含有量が飽和溶液中のルテニウム錯体色素の含有量の10%未満であった場合には、吸着速度がゆるやかに低下する傾向にあった。
 本発明により、初期光電変換効率及び耐久性に優れた光化学電池を得ることができる二核ルテニウム錯体色素を含む溶液を提供することができる。さらには、この錯体色素溶液を用いて得られた色素によって光増感された半導体微粒子を用いた光電変換素子、及びそれを用いた初期光電変換効率及び耐久性に優れた光化学電池を提供することができる。

Claims (23)

  1.  一般式(1)
    Figure JPOXMLDOC01-appb-C000001
    (式中、Lは、カルボキシル基をふたつ有する含窒素二座配位子、Lは、含窒素二座配位子、BLは、含窒素四座配位子、Xは、対イオンを示し、nは、錯体の電荷を中和するのに必要な対イオンの数を示す。但し、LとLは異なるものであり、二つのLは同一でも異なっていてもよく、二つのLも同一でも異なっていてもよい。なお、L中のカルボキシル基(COOH)は、脱プロトン(H)化されてカルボキシイオン(COO)となっていても良い。)
    で示される非対称二核ルテニウム錯体色素を含む溶液であって、
     当該色素の濃度が飽和濃度未満であることを特徴とする二核ルテニウム錯体色素溶液。
  2.  上記一般式(1)で示される非対称二核ルテニウム錯体色素を含む溶液であって、
     当該二核ルテニウム錯体色素の濃度が0.1×10-4mol/lより大きく飽和濃度未満であることを特徴とする二核ルテニウム錯体色素溶液。
  3.  溶媒が、水と均一相を形成する溶媒である請求項2記載の二核ルテニウム錯体色素溶液。
  4.  Xが、ヘキサフルオロリン酸イオン、テトラフルオロホウ酸イオン、硝酸イオン又はヨウ化物イオンである請求項2記載の二核ルテニウム錯体色素溶液。
  5.  Lが、2,2’-ビピリジン、2,2’-(4,4’-ジメチル)ビピリジン又は1,10-フェナントロリンである請求項2記載の二核ルテニウム錯体色素溶液。
  6.  Lが、4,4’-ジカルボキシ-2,2’-ビピリジンである請求項2記載の二核ルテニウム錯体色素溶液。
  7.  BLが、2,2’-ビイミダゾール又は2,2’-ビベンズイミダゾールである請求項2記載の二核ルテニウム錯体色素溶液。
  8.  二核ルテニウム錯体色素により増感された半導体微粒子を含む光電変換素子であって、
     二核ルテニウム錯体色素により増感された半導体微粒子が、請求項2記載の二核ルテニウム錯体色素溶液を用いて色素を吸着させた半導体微粒子であることを特徴とする光電変換素子。
  9.  二核ルテニウム錯体色素により増感された半導体微粒子が電極上に固定されている請求項8記載の光電変換素子。
  10.  半導体微粒子が、酸化チタン、酸化亜鉛、酸化スズ、又はそれらの混合物である請求項8記載の光電変換素子。
  11.  請求項8記載の光電変換素子及び電解質溶液を含む光化学電池。
  12.  電解質溶液が、レドックス対を含む請求項11記載の光化学電池。
  13.  上記一般式(1)で示される非対称二核ルテニウム錯体色素を含む溶液であって、
     溶液中の二核ルテニウム錯体色素の含有量が、飽和溶液中の二核ルテニウム錯体色素の含有量の10%以上100%未満であることを特徴とする二核ルテニウム錯体色素溶液。
  14.  溶媒が、水と均一相を形成する溶媒である請求項13記載の二核ルテニウム錯体色素溶液。
  15.  Xが、ヘキサフルオロリン酸イオン、テトラフルオロホウ酸イオン、硝酸イオン又はヨウ化物イオンである請求項13記載の二核ルテニウム錯体色素溶液。
  16.  Lが、2,2’-ビピリジン、2,2’-(4,4’-ジメチル)ビピリジン又は1,10-フェナントロリンである請求項13記載の二核ルテニウム錯体色素溶液。
  17.  Lが、4,4’-ジカルボキシ-2,2’-ビピリジンである請求項13記載の二核ルテニウム錯体色素溶液。
  18.  BLが、2,2’-ビイミダゾール又は2,2’-ビベンズイミダゾールである請求項13記載の二核ルテニウム錯体色素溶液。
  19.  二核ルテニウム錯体色素により増感された半導体微粒子を含む光電変換素子であって、
     二核ルテニウム錯体色素により増感された半導体微粒子が、請求項13記載の二核ルテニウム錯体色素溶液を用いて色素を吸着させた半導体微粒子であることを特徴とする光電変換素子。
  20.  二核ルテニウム錯体色素により増感された半導体微粒子が電極上に固定されている請求項19記載の光電変換素子。
  21.  半導体微粒子が、酸化チタン、酸化亜鉛、酸化スズ、又はそれらの混合物である請求項19記載の光電変換素子。
  22.  請求項19記載の光電変換素子及び電解質溶液を含む光化学電池。
  23.  電解質溶液が、レドックス対を含む請求項22記載の光化学電池。
PCT/JP2009/052582 2008-02-14 2009-02-16 二核ルテニウム錯体色素溶液、及び当該錯体色素溶液を用いて得られる光増感された半導体微粒子を用いた光電変換素子、並びにそれを用いた光化学電池 WO2009102068A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009553489A JPWO2009102068A1 (ja) 2008-02-14 2009-02-16 二核ルテニウム錯体色素溶液、及び当該錯体色素溶液を用いて得られる光増感された半導体微粒子を用いた光電変換素子、並びにそれを用いた光化学電池

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2008-033330 2008-02-14
JP2008033326 2008-02-14
JP2008-033326 2008-02-14
JP2008033330 2008-02-14
JP2008269473 2008-10-20
JP2008-269472 2008-10-20
JP2008-269473 2008-10-20
JP2008269472 2008-10-20

Publications (1)

Publication Number Publication Date
WO2009102068A1 true WO2009102068A1 (ja) 2009-08-20

Family

ID=40957097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/052582 WO2009102068A1 (ja) 2008-02-14 2009-02-16 二核ルテニウム錯体色素溶液、及び当該錯体色素溶液を用いて得られる光増感された半導体微粒子を用いた光電変換素子、並びにそれを用いた光化学電池

Country Status (2)

Country Link
JP (1) JPWO2009102068A1 (ja)
WO (1) WO2009102068A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011049027A1 (ja) * 2009-10-20 2011-04-28 宇部興産株式会社 置換ビピリジル基を有する二核ルテニウム錯体色素を有する光電変換素子、及び光化学電池
CN102884137A (zh) * 2010-03-16 2013-01-16 宇部兴产株式会社 包含具有经取代的联吡啶基团的双核钌络合物染料的光电转换元件和光化学电池
JP2014503623A (ja) * 2010-12-03 2014-02-13 ダイパワー ルテニウムポリピリジン錯体を主体とした二酸化チタン増感色素の前駆体錯体の合成のための方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000323191A (ja) * 1999-05-14 2000-11-24 Fuji Photo Film Co Ltd 光電変換素子および光電気化学電池ならびに金属錯体色素
WO2006038587A1 (ja) * 2004-10-01 2006-04-13 Ube Industries, Ltd. 二核金属錯体、金属錯体色素、光電変換素子、及び光化学電池
JP2007059293A (ja) * 2005-08-26 2007-03-08 Jsr Corp 色素増感太陽電池の製造方法および色素増感太陽電池
JP2007109500A (ja) * 2005-10-13 2007-04-26 Toppan Printing Co Ltd 色素増感太陽電池
JP2007200656A (ja) * 2006-01-25 2007-08-09 Sharp Corp 色素増感太陽電池、その製造方法、および製造装置
JP2007250412A (ja) * 2006-03-17 2007-09-27 Ube Ind Ltd 光電変換素子、及び光化学電池
JP2007277513A (ja) * 2006-03-17 2007-10-25 Ube Ind Ltd 二核金属錯体色素溶液およびこの溶液を用いた光電変換素子、及び光化学電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000323191A (ja) * 1999-05-14 2000-11-24 Fuji Photo Film Co Ltd 光電変換素子および光電気化学電池ならびに金属錯体色素
WO2006038587A1 (ja) * 2004-10-01 2006-04-13 Ube Industries, Ltd. 二核金属錯体、金属錯体色素、光電変換素子、及び光化学電池
JP2007059293A (ja) * 2005-08-26 2007-03-08 Jsr Corp 色素増感太陽電池の製造方法および色素増感太陽電池
JP2007109500A (ja) * 2005-10-13 2007-04-26 Toppan Printing Co Ltd 色素増感太陽電池
JP2007200656A (ja) * 2006-01-25 2007-08-09 Sharp Corp 色素増感太陽電池、その製造方法、および製造装置
JP2007250412A (ja) * 2006-03-17 2007-09-27 Ube Ind Ltd 光電変換素子、及び光化学電池
JP2007277513A (ja) * 2006-03-17 2007-10-25 Ube Ind Ltd 二核金属錯体色素溶液およびこの溶液を用いた光電変換素子、及び光化学電池

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011049027A1 (ja) * 2009-10-20 2011-04-28 宇部興産株式会社 置換ビピリジル基を有する二核ルテニウム錯体色素を有する光電変換素子、及び光化学電池
CN102656236A (zh) * 2009-10-20 2012-09-05 宇部兴产株式会社 包括具有经取代的联吡啶基团的双核钌络合物染料的光电转换元件和光化学电池
CN102884137A (zh) * 2010-03-16 2013-01-16 宇部兴产株式会社 包含具有经取代的联吡啶基团的双核钌络合物染料的光电转换元件和光化学电池
CN102884137B (zh) * 2010-03-16 2015-07-29 宇部兴产株式会社 包含具有经取代的联吡啶基团的双核钌络合物染料的光电转换元件和光化学电池
JP2014503623A (ja) * 2010-12-03 2014-02-13 ダイパワー ルテニウムポリピリジン錯体を主体とした二酸化チタン増感色素の前駆体錯体の合成のための方法

Also Published As

Publication number Publication date
JPWO2009102068A1 (ja) 2011-06-16

Similar Documents

Publication Publication Date Title
JP5003871B2 (ja) 二核金属錯体、金属錯体色素、光電変換素子、及び光化学電池
JP5633370B2 (ja) 二核ルテニウム錯体色素、ルテニウム−オスミウム錯体色素、当該錯体色素を有する光電変換素子、及び光化学電池
JP5494490B2 (ja) 二核金属錯体色素により増感された半導体微粒子と、イオン液体を主成分とする電解質溶液とを備える光化学電池
JP5003865B2 (ja) 二核金属錯体色素溶液およびこの溶液を用いた光電変換素子、及び光化学電池
JP5761024B2 (ja) 置換ビピリジル基を有する二核ルテニウム錯体色素を有する光電変換素子、及び光化学電池
JP5293190B2 (ja) 二核金属錯体の製造方法
JP5170357B2 (ja) 光電変換素子、及び光化学電池
JP5428312B2 (ja) 光電変換素子、及び光化学電池
WO2009102068A1 (ja) 二核ルテニウム錯体色素溶液、及び当該錯体色素溶液を用いて得られる光増感された半導体微粒子を用いた光電変換素子、並びにそれを用いた光化学電池
KR20130028912A (ko) 치환 바이피리딜기를 갖는 이핵 루테늄 착물 색소를 포함하는 광전 변환 소자, 및 광화학 전지
JP5493857B2 (ja) 二核ルテニウム錯体色素、二核ルテニウム錯体色素酸性水溶液及びその製造方法
JP5682574B2 (ja) 二核ルテニウム錯体色素により増感された半導体微粒子と、アンモニウム塩化合物またはホスホニウム塩化合物を含有する電解質溶液とを備える光化学電池
JP5273044B2 (ja) 二核ルテニウム錯体色素により増感された半導体微粒子と、イオン液体を主成分とする電解質溶液とを備える光化学電池
JP5061626B2 (ja) 二核金属錯体の製造方法
JP2009129652A (ja) 光電変換素子、及び光化学電池
JP5573056B2 (ja) 二核ルテニウム錯体色素により増感された半導体微粒子と、アリールアミン化合物を含有する電解質溶液とを備える光化学電池
JP5239269B2 (ja) 二核ルテニウム錯体色素及びその製造方法
WO2013089194A1 (ja) 二核ルテニウム錯体色素、当該色素を有する光電変換素子及び光化学電池
JP5446207B2 (ja) 光電変換素子、及び光化学電池
JP2011146276A (ja) 二核ルテニウム錯体色素溶液を用いて得られる光増感された半導体微粒子を用いた光電変換素子、並びにそれを用いた光化学電池
JP2013144721A (ja) 二核ルテニウム錯体色素、当該色素を有する光電変換素子及び光化学電池
JP2011057858A (ja) 電子吸引基を置換基として持つ連結分子を有する二核ルテニウム錯体色素を有する光電変換素子、及び光化学電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09710615

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009553489

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09710615

Country of ref document: EP

Kind code of ref document: A1