WO2006038306A1 - 内燃機関の制御装置および内燃機関の制御方法 - Google Patents

内燃機関の制御装置および内燃機関の制御方法 Download PDF

Info

Publication number
WO2006038306A1
WO2006038306A1 PCT/JP2004/014898 JP2004014898W WO2006038306A1 WO 2006038306 A1 WO2006038306 A1 WO 2006038306A1 JP 2004014898 W JP2004014898 W JP 2004014898W WO 2006038306 A1 WO2006038306 A1 WO 2006038306A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel injection
control
internal combustion
combustion engine
injection amount
Prior art date
Application number
PCT/JP2004/014898
Other languages
English (en)
French (fr)
Inventor
Ikuo Ando
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to US11/661,683 priority Critical patent/US8176727B2/en
Priority to JP2006539125A priority patent/JP4420024B2/ja
Priority to PCT/JP2004/014898 priority patent/WO2006038306A1/ja
Priority to CN2004800441174A priority patent/CN101031710B/zh
Priority to DE112004002979.1T priority patent/DE112004002979B8/de
Publication of WO2006038306A1 publication Critical patent/WO2006038306A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/1502Digital data processing using one central computing unit
    • F02P5/1508Digital data processing using one central computing unit with particular means during idling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • F02D41/0255Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus to accelerate the warming-up of the exhaust gas treating apparatus at engine start
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0215Introducing corrections for particular conditions exterior to the engine in relation with elements of the transmission
    • F02D41/0225Introducing corrections for particular conditions exterior to the engine in relation with elements of the transmission in relation with the gear ratio or shift lever position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/08Introducing corrections for particular operating conditions for idling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/1502Digital data processing using one central computing unit
    • F02P5/1506Digital data processing using one central computing unit with particular means during starting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an internal combustion engine control device and an internal combustion engine control method.
  • An internal combustion engine control apparatus and an internal combustion engine control method according to the present invention provide a more appropriate correction for increasing the fuel injection amount when starting an unwarmed internal combustion engine and performing catalyst warm-up by retarding the ignition timing.
  • One of the purposes is to start at the timing.
  • the internal combustion engine control apparatus and internal combustion engine control method according to the present invention corrects an increase in fuel injection amount when starting an unwarmed internal combustion engine and warming up the catalyst by retarding the ignition timing.
  • One of the objectives is to end it at an appropriate timing.
  • the internal combustion engine control apparatus and internal combustion engine control method of the present invention employ the following means in order to achieve at least a part of the above object.
  • a control device for an internal combustion engine is a control device for an internal combustion engine in which a purification device having a catalyst for purifying exhaust gas in an exhaust system, the ignition timing of which can be changed, wherein the catalyst is unwarmed.
  • the fuel injection amount that achieves the target air-fuel ratio is injected from the fuel injection valve until the predetermined increase condition is satisfied, and after the predetermined increase condition is satisfied, the fuel injection amount that is corrected to increase the fuel injection amount that satisfies the target air-fuel ratio
  • the gist of the present invention is to perform fuel injection control at the time of starting to inject the injection amount from the fuel injection valve.
  • a fuel injection amount that becomes the target air-fuel ratio is injected from the fuel injection valve until a predetermined increase condition is satisfied after the ignition timing is retarded, After the increase condition is satisfied, the fuel injection amount is corrected from the fuel injection amount, which is the target air fuel ratio, and is injected from the fuel injection valve. That is, the timing for correcting the increase in the fuel injection amount when the catalyst is warmed up by retarding the ignition timing is when the predetermined increase condition is satisfied after the start of the retard of the ignition timing. For this reason, the fuel efficiency at the time of starting the internal combustion engine is improved compared to the case in which the fuel injection amount is corrected to be increased simultaneously with the start of the retard of the ignition timing.
  • the predetermined increase condition a condition in which the ignition timing reaches a predetermined angle can be used, or a condition in which a predetermined time has elapsed since the ignition timing retarded by the start point fire control is used. You can also.
  • the “fuel injection amount that becomes the target air-fuel ratio” may be an injection amount that is calculated by multiplying the basic fuel injection amount that becomes the theoretical air-fuel ratio by a correction coefficient based on the state of the internal combustion engine.
  • the throttle opening is gradually increased until a predetermined opening is reached after the fuel injection amount increase correction by the start time fuel injection control is performed. It is also possible to execute a control for ending the fuel injection amount increase correction after the throttle opening reaches the predetermined opening as the start time fuel injection control. . In this way, it is possible to suppress the lean that may occur when the throttle opening is increased, and to end the fuel injection amount increase correction after the lean suppression is finished.
  • increasing the throttle opening can increase the intake air volume and promote catalyst warm-up.
  • the fuel injection control at start-up may be control that ends the increase correction of the fuel injection amount when a predetermined time elapses after the throttle opening reaches the predetermined opening.
  • the predetermined time takes into account the delay of the air flow with respect to the increase in the throttle opening.
  • the start-time throttle control is stopped when an output request to the internal combustion engine is made during the execution of the control.
  • the start time fuel injection control is a control that ends the increase correction of the fuel injection amount when a predetermined time elapses after the start of the internal combustion engine when the start time throttle control is stopped. You can also This way For example, the fuel injection amount increase correction is completed when a predetermined time has elapsed from the start of the internal combustion engine even if the timing for ending the fuel injection amount increase correction is lost due to the stop throttle control at the start. It is possible to suppress the increase correction of the unnecessary fuel injection amount.
  • the start time fuel injection control is a control for ending the fuel injection amount increase correction when a predetermined time has elapsed since the start of the internal combustion engine. You can also. In this way, it is possible to prevent the fuel injection amount increase correction from being performed for a long time.
  • the fuel injection amount increase correction when the fuel injection amount control at start-up ends the fuel injection amount increase correction, the fuel injection amount increase correction has a degree of attenuation based on the air-fuel ratio immediately before the end. It is also possible to assume that the control is to end the process. In this way, it is possible to suppress a sudden change in the air-fuel ratio that may occur when the fuel injection amount increase correction is finished.
  • a control device for a second internal combustion engine of the present invention is a control device for an internal combustion engine in which a purification device having a catalyst for purifying exhaust gas is attached to an exhaust system, wherein the catalyst is in an unwarmed state.
  • start throttle control is executed to gradually increase the throttle opening from the first timing after starting until the predetermined opening is reached, and the second throttle control is started.
  • a fuel injection amount that is corrected by increasing the fuel injection amount that becomes the target air-fuel ratio from the timing is injected from the fuel injection valve, and the fuel injection amount increase correction is terminated after the throttle opening reaches the predetermined opening.
  • the main point is to execute fuel injection control.
  • the throttle control at the start is gradually increased from the first timing after the start of the internal combustion engine until the throttle opening reaches a predetermined opening.
  • Second tie as the engine starts The fuel injection amount obtained by increasing the fuel injection amount that becomes the target air-fuel ratio from the ming is injected from the fuel injection valve, and the fuel injection amount increase correction is terminated after the throttle opening reaches the predetermined opening. Therefore, the catalyst warm-up can be promoted by increasing the intake air amount by increasing the throttle opening. Further, the lean that may occur when the throttle opening is increased can be suppressed, and the fuel injection amount increase correction can be ended after the lean suppression is finished. As a result, it is possible to correct the fuel injection amount more appropriately, improve the fuel efficiency at the start of the internal combustion engine, and suppress deterioration of emissions due to excessive fuel injection. .
  • the fuel injection control at the time of start ends the fuel injection amount increase correction when a predetermined time has elapsed after the throttle opening reaches the predetermined opening. It can be assumed that the control is to Here, the predetermined time considers the delay of the air flow with respect to the increase in the throttle opening. Therefore, the fuel injection amount increase correction can be completed at a more appropriate timing.
  • the start-time throttle control is a control for stopping the control when an output request to the internal combustion engine is made during the execution of the control.
  • the fuel injection control at the start is a control for ending the increase correction of the fuel injection amount when a predetermined time has elapsed from the start of the internal combustion engine when the throttle control at the start is stopped. You can also In this way, even if the timing for ending the fuel injection amount increase correction is lost due to the suspension of the start-time throttle control, the fuel injection amount increase correction is performed when a predetermined time has elapsed since the start of the internal combustion engine. Thus, it is possible to suppress unnecessary fuel injection amount increase correction.
  • the first internal combustion engine control method is capable of changing an ignition timing and an exhaust system.
  • the fuel injection amount at which the target air-fuel ratio becomes the fuel injection valve until the predetermined increase condition is satisfied after the ignition timing retardation by the start time fire control is started.
  • a fuel injection amount that becomes a target air-fuel ratio is injected from the fuel injection valve until a predetermined increase condition is satisfied after the ignition timing is retarded, After the increase condition is satisfied, the fuel injection amount is corrected from the fuel injection amount, which is the target air fuel ratio, and is injected from the fuel injection valve. That is, the timing for correcting the increase in the fuel injection amount when the catalyst is warmed up by retarding the ignition timing is when the predetermined increase condition is satisfied after the start of the retard of the ignition timing.
  • the throttle opening is gradually increased until the predetermined opening is reached.
  • the start-up fuel injection control is executed, and the control for ending the fuel injection amount increase correction after the throttle opening reaches the predetermined opening is executed as the start-up fuel injection control.
  • the intake air amount can be increased and catalyst warm-up can be promoted.
  • the start time fuel injection control is control for ending correction for increasing the fuel injection amount when a predetermined time has elapsed since the start of the internal combustion engine. You can also. In this way, it is possible to prevent the fuel injection amount increase correction from being performed for a long time.
  • the fuel injection amount increase correction is performed with a degree of attenuation based on the air-fuel ratio immediately before the end. It is also possible to assume that the control is to end the process. In this way, it is possible to suppress a sudden change in the air-fuel ratio that may occur when the fuel injection amount increase correction is finished.
  • a second control method for an internal combustion engine of the present invention is a control method for an internal combustion engine in which a purification device having a catalyst for purifying exhaust gas is attached to an exhaust system, wherein the catalyst is in an unwarmed state.
  • start throttle control is executed to gradually increase the throttle opening from the first timing after the start until the predetermined opening is reached.
  • the fuel injection amount that has been corrected to increase the fuel injection amount that becomes the target air-fuel ratio from the timing of 2 is injected from the fuel injection valve, and the fuel injection amount increase correction is terminated after the throttle opening reaches the predetermined opening.
  • the main point is to execute the starting fuel injection control.
  • start-time throttle control is executed in which the throttle opening is gradually increased from the first timing after the start of the internal combustion engine until the predetermined opening is reached.
  • the fuel injection amount is corrected by increasing the fuel injection amount that becomes the target air-fuel ratio from the second timing when the engine is started, and is injected after the throttle opening reaches the predetermined opening. End the increase correction of the shot amount. Therefore, the catalyst warm-up can be promoted by increasing the intake air amount by increasing the throttle opening. Further, the lean that may occur when the throttle opening is increased can be suppressed, and the fuel injection amount increase correction can be ended after the lean suppression is finished.
  • the start-time throttle control is a control for stopping the control when an output request is made to the internal combustion engine during the execution of the control.
  • the start-time fuel injection control is a control for ending the fuel injection amount increase correction when a predetermined time has elapsed from the start of the internal combustion engine when the start-time throttle control is stopped.
  • FIG. 1 is a configuration diagram showing an outline of the configuration of a hybrid vehicle 20 equipped with a control device for an internal combustion engine according to an embodiment of the present invention.
  • FIG. 2 is a configuration diagram showing an outline of the configuration of the engine 22.
  • FIG. 3 is a flowchart showing an example of a start-up control routine executed by the engine E C U 24.
  • FIG. 4 is a flowchart showing an example of a fuel injection time setting routine executed by the engine ECU 24.
  • FIG. 5 is an explanatory diagram showing an example of the change over time of the engine speed N e, the air-fuel ratio AF, the ignition timing 0, the throttle opening TH, and the fuel increase flag F 1 when the engine 22 is started. It is. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a configuration diagram showing an outline of the configuration of a hybrid automobile 20 equipped with an internal combustion engine control apparatus according to an embodiment of the present invention.
  • the hybrid vehicle 20 of the embodiment has a three-shaft power distribution system connected to the engine 22 and a crankshaft 26 as an output shaft of the engine 22 via a damper 28.
  • Integrated mechanism 3 motor MG 1 capable of generating electricity connected to power distribution integration mechanism 30, and ring gear shaft 3 2 as a drive shaft connected to power distribution integration mechanism 30 0 Reduction gear 3 attached to a 5, a motor MG 2 connected to the reduction gear 35, and a hybrid electronic control unit 70 that controls the entire power output device.
  • the engine 2 2 is configured as an internal combustion engine that can output power using a hydrocarbon-based fuel such as gasoline or light oil, for example.
  • a hydrocarbon-based fuel such as gasoline or light oil, for example.
  • the air purified by the air cleaner 1 2 2 is supplied to the throttle valve 1 2 Intake through 4 and fuel injection valve 1 2 6 to inject gasoline, mix the inhaled air and gasoline, inhale this mixture into the fuel chamber through intake valve 1 2 8, and ignite
  • the reciprocating motion of the piston 1 3 2 that is explosively burned by the electric spark generated by the plug 1 3 0 and pushed down by the energy is converted into the rotational motion of the crankshaft ⁇ 2 6.
  • Exhaust from engine 2 2 is discharged to the outside air through a purification device (three-way catalyst) 1 3 4 that purifies harmful components such as carbon monoxide (CO), hydrocarbons (HC), and nitrogen oxides (NOX) Is done.
  • the engine 22 is controlled by an engine electronic control unit (hereinafter referred to as engine ECU) 24. Signals from various sensors that detect the state of the engine 22 are input to the engine ECU 24 via an input port (not shown).
  • the engine ECU 2 4 has a crank position sensor 1 4 0 that detects the intake air temperature Ta from the temperature sensor 1 2 2 a attached to the air cleaner 1 2 2 and the rotational position of the crankshaft ⁇ 2 6.
  • the engine ECU 24 outputs various control signals for driving the engine 22 through an output port (not shown). For example, from the engine ECU 2 4, a drive signal to the fuel injection valve 1 2 6, a drive signal to the throttle motor 1 3 6 that adjusts the position of the throttle valve 1 2 4, and an inverter integrated with the igniter The control signal to the clutch coil 1 3 8 and the control signal to the variable valve timing mechanism 1 5 0 that can change the opening / closing timing of the intake valve 1 2 8 are output via the output port.
  • the engine ECU 24 communicates with the hybrid electronic control unit 70, and controls the operation of the reengine 22 with the control signal from the hybrid electronic control unit 70, as needed. In the operating state of engine 2 2 Related data is output.
  • the engine ECU 24 calculates the rotational speed Ne of the engine 2 2 based on the crank position from the crank position sensor 140.
  • the power distribution and integration mechanism 30 includes an external gear sun gear 3 1, an internal gear ring gear 3 2 disposed concentrically with the sun gear 3 1, a plurality of gears meshed with the sun gear 3 1 and meshed with the ring gear 3 2.
  • Planetary gear mechanism that includes a sun gear 3 1, ring gear 3 2, and carrier 34 as rotational elements, and a pinion gear 3 3, and a carrier 3 4 that holds a plurality of pinion gears 3 3 so as to rotate and revolve freely. It is configured as.
  • the carrier 34 has the crankshaft 26 of the engine 2 2
  • the sun gear 3 1 has the motor MG 1
  • the ring gear 3 2 has the reduction gear 3 5 via the ring gear shaft 3 2a.
  • Each is connected.
  • the ring gear shaft 3 2 a is connected to drive wheels 63 a and 63 b of the vehicle via a gear mechanism 60 and a differential gear 62.
  • Both the motor MG 1 and the motor MG 2 are configured as well-known synchronous generator motors that can be driven as generators and can be driven as electric motors, and are connected to power lines 54 via inverters 4 1 and 4 2. Connected to re-battery 50.
  • the motors MG 1 and MG 2 are both driven and controlled by a motor electronic control unit (hereinafter referred to as motor ECU) 40.
  • the motor ECU 40 includes signals necessary for driving and controlling the motors MG 1 and MG 2, such as signals from rotational position detection sensors 43 and 44 that detect the rotational positions of the rotors of the motors MG 1 and MG 2.
  • the phase current applied to the motors MG 1 and MG 2 detected by the current sensor (not shown) is input.
  • the motor ECU 40 outputs switching control signals to the inverters 4 1 and 42. Yes.
  • the motor ECU 40 communicates with the electronic control unit for hybrid 70 and
  • the motor MG1 and MG2 are driven and controlled by the control signal from the electronic control unit 70, and the data on the operating status of the motors MG1 and MG2 is transferred to the electronic control unit 70 for hybrid as necessary. Output.
  • the battery 50 is managed by a battery electronic control unit (hereinafter referred to as battery ECU) 52.
  • the battery ECU 5 2 has a signal required for managing the battery 50, for example, a voltage between terminals from a voltage sensor (not shown) installed between the terminals of the battery 50, and an output terminal of the battery 50. Inputs the charging / discharging current from the current sensor (not shown) attached to the power line 54 connected to, the battery temperature Tb from the temperature sensor 51 attached to the battery 50, etc. In response, data relating to the state of the battery 50 is output to the electronic control unit for re-hybrid 70 through communication.
  • the battery E C U 52 calculates the remaining capacity (SOC) based on the integrated value of the charge / discharge current detected by the current sensor in order to manage the battery 50.
  • the hybrid electronic control unit 70 is configured as a microphone processor centered on the CPU 72. In addition to the CPU 72, the ROM 74 stores the processing program and temporarily stores the data. RAM 7 6 for storing, input / output port and communication port (not shown) are provided.
  • the hybrid electronic control unit 70 has an ignition signal from the ignition switch 80, a shift position sensor 8 that detects the operating position of the shift lever 8 1, and a shift position SP from the accelerator pedal 8 3 Accelerator pedal position sensor that detects the amount of pedal depression 8 Accelerator opening from Acc 4, Brake pedal position sensor 8 6 that detects the amount of depression of brake pedal 8 5 Brake pedal position BP, Vehicle speed sensor 8 Vehicle speed V from 8 is input via the input port.
  • the electronic control unit for hybrid 70 is an engine ECU. 24, motor ECU 40, and battery ECU 52 via a communication port. Various control signals and data are exchanged with engine ECU 24, motor ECU 40, and battery ECU 52. Yes.
  • the hybrid vehicle 20 of the embodiment configured in this manner is connected to the ring gear shaft 3 2 a as the drive shaft based on the accelerator opening A cc corresponding to the depression amount of the accelerator pedal 83 by the driver and the vehicle speed V.
  • the engine 22, the motor MG 1, and the motor MG 2 are controlled so that the required torque to be output is calculated and the required power corresponding to this required torque is output to the ring gear shaft 3 2 a.
  • the operation control of the engine 22 and the motor MG 1 and the motor MG 2 includes controlling the operation of the engine 22 so that the power corresponding to the required power is output from the engine 22, and all the power output from the engine 2 2 is controlled.
  • FIG. 3 is a flowchart showing an example of a start-up control routine that is executed by the engine ECU 24 when the motor MG 1 and the motor MG 2 start motoring of the engine 22.
  • the engine ECU 24 When the start-up control routine is executed, the engine ECU 24 first drives the throttle motor 1 3 6 so that the throttle opening TH is narrowed to a slightly smaller opening than the opening during idling operation.
  • the throttle valve 1 2 4 is closed and the ignition timing 0 of the spark plug 1 3 0 is set to adjust to the starting ignition timing 0 st (step S 1 0 0).
  • the starting ignition timing 0 st can be determined by experiments or the like as the ignition timing at which the first explosion of the engine 22 is likely to occur.
  • step S 1 1 0, S 1 2 0 fuel injection control and ignition for injecting fuel from the fuel injection valve 1 2 6 Ignition control to control the ignition of the plug 1 3 0 is started (step S 1 3 0), and the ignition timing 0 is gradually retarded in order to quickly warm up the catalyst of the purifier 1 3 4. Is started (step S 1 4 0).
  • the ignition control is a control for gradually retarding the ignition timing 0 while confirming whether or not misfiring has occurred (whether or not combustion has occurred).
  • the fuel increase flag F 1 is set to a value 1 (steps S 1 5 0, S 1 6 0). If the retard of the ignition timing 0 progresses to some extent, misfire is likely to occur. Therefore, misfire is prevented by correcting the fuel injection amount from the fuel injection valve 1 26 to increase.
  • the fuel injection control will be described later.
  • the throttle valve 1 2 4 that has been throttled after a predetermined time t 1 has elapsed since the start of the engine 2 2 is set for the catalyst warm-up.
  • the valve gradually starts to open until it reaches the opening TH set (steps S 1 70, S 1 80).
  • the throttle opening TH is increased in order to warm up the catalyst of the purification device 1 3 4 more quickly by increasing the amount of intake air. Due to such an increase in the intake air amount and the delay of the ignition timing 0 described above, the catalyst of the purification device 1 3 4 is quickly warmed up.
  • these controls are called catalyst dredge control.
  • the throttle The fuel increase flag F 1 is reset to the value 0 and the fuel increase end flag F 2 is set to the value 1 when the predetermined time t 3 has elapsed since the opening TH reached the opening TH set.
  • the reason why the throttle opening TH waits for a predetermined time t 3 after reaching the opening TH set is to consider the time delay of the intake air amount with respect to the increase in the throttle opening TH.
  • the fuel injection amount increase correction ends when the throttle opening TH increases as the throttle opening TH increases. This is because the phenomenon in which the air-fuel ratio AF that can occur at the time of leaning becomes lean.
  • the fuel injection amount increase correction can be quickly completed when the necessity is completed.
  • the accelerator pedal 83 is greatly depressed.
  • catalyst warm-up control such as retarding the ignition timing 0 and increasing the intake air amount is stopped. That is, the increase in throttle opening TH is stopped. For this reason, it is meaningless to wait for a predetermined time t 3 after the throttle opening TH reaches the opening TH set, and the fuel injection amount increase correction must be terminated at this timing. Can not be.
  • the increase correction of the fuel injection amount is terminated at a timing when a predetermined time t2 elapses after the start of the engine 22 is started. Thereby, it is possible to prevent the fuel injection amount increase correction from continuing for a long time.
  • FIG. 4 is a flowchart showing an example of a fuel injection time setting routine executed by the engine ECU 24 when the engine 22 is started. This routine is repeated as an interrupt process while the start-up control routine illustrated in FIG. 3 is being executed. Repeatedly executed.
  • the engine ECU 24 When the fuel injection time setting routine is executed, the engine ECU 24 first starts the rotation speed N e of the engine 2 2 and the intake air amount Q a from the vacuum sensor 1 48, the intake air temperature T a from the temperature sensor 1 22 a Then, processing for inputting data necessary for fuel injection control, such as the cooling water temperature Tw from the water temperature sensor 1 42 and the air-fuel ratio AF from the air-fuel ratio sensor 1 35 a is executed (step S 3 0 0). Then, the basic fuel injection time T P is set based on the input engine speed N e, the intake air amount Q a and the intake air temperature T a (step S 3 10). Basic fuel injection time TP is basically set to be the stoichiometric air-fuel ratio.
  • the correction coefficient FF is calculated based on the elapsed time t from the start of the fuel injection control, the coolant temperature Tw, and the intake air temperature Ta (step S 320).
  • the correction factor FF is, for example, two time factors with different degrees of attenuation but decaying with the elapsed time t, a water temperature coefficient that decays as the cooling water temperature Tw rises, and a reference temperature (for example, 25 ° C). It can be calculated as the sum of the intake air temperature coefficient according to the difference from the intake air temperature Ta.
  • the correction coefficient F F is calculated so that it is added to the reference value 1 (for example, the absolute value is in the range up to 0.3).
  • a value 1 is set to the feedback correction term FAF for correcting the deviation of the air-fuel ratio AF detected by the air-fuel ratio sensor 1 3 5 a from the target air-fuel ratio (for example, the stoichiometric air-fuel ratio) (step S 33 0)
  • the fuel increase flag F 1 is 0, increase correction TK is set to 0 (steps S 340, S 3 5 0).
  • increase correction TK is the predetermined increase.
  • step S 37 0 When the fuel increase end flag F 2 is 0 (step S 37 0), the calculated basic fuel injection time TP, the set correction coefficient FF, and the feedback correction term Based on the FAF and the increase correction TK, the fuel injection time TAU is calculated by the following equation (1) (step S 390), and the fuel injection time setting routine ends.
  • the value 0 is set in the fuel increase flag F 1 and the value 0 is set in the fuel increase end flag F 2
  • the value 0 is set in the increase correction TK.
  • the fuel injection amount increase correction is not performed.
  • the increase increase correction TK has the predetermined increase time T set. Since it is set, the fuel injection amount is increased by TK.
  • the predetermined increase time T set is the misfire that can occur with the increase in the throttle opening TH by the increase in the fuel injection time necessary to prevent misfire that may occur when the ignition timing is retarded. It can be set as an increase in the fuel injection time necessary to prevent this.
  • TAU TP-FAF-(1 + FF) + TK (1)
  • the increase correction TK is subjected to a smoothing process using the air-fuel ratio AF (step S 3 80 )
  • the fuel injection time TAU is calculated by the equation (1) using the increase correction TK subjected to the annealing process (step S390), and the fuel injection time setting routine ends.
  • the smoothing process using the air-fuel ratio AF is quickly reduced when the air-fuel ratio AF is on the rich side, and the amount of smoothing correction TK is quickly reduced to a value of 0, and is slow when the air-fuel ratio AF is on the lean side.
  • TK The increase correction of TK can be performed to increase the degree of smoothing so that the value TK becomes zero.
  • Fig. 5 shows the engine speed when the engine 22 is started by the start-up control routine N 2, air-fuel ratio AF, ignition timing 0, throttle opening TH, fuel increase flag F 1 time
  • the solid line is the one when the start-up control of the embodiment is performed, and the alternate long and short dash line indicates the air-fuel ratio AF when the fuel injection amount increase correction is not performed.
  • step S 1 1 when the engine speed N e reaches the threshold value N ref (steps S 1 1 0 to S 1 30), and after that, the ignition timing is 0, and then retarded (Step S 1 40). Since the value 1 is set in the fuel increase flag F 1 at the time T 2 when the ignition timing 0 is retarded to the threshold 0 ref (steps S 1 50, S 1 60), the predetermined increase time is set in the increase correction TK.
  • T set is set (step S 360), and the fuel injection amount increase correction is started.
  • the air-fuel ratio AF becomes leaner and it becomes easy to misfire, but in the embodiment, since the fuel injection amount increase correction is performed, the air-fuel ratio AF is the stoichiometric air-fuel ratio. (AFO in the figure) Slightly richer than that, preventing misfire. Therefore, by correcting the fuel injection amount at the timing when the ignition timing 0 is retarded to the threshold 0 ref, the fuel consumption and emission can be reduced compared to the case where the fuel injection amount is corrected at an early timing. Can be improved.
  • the throttle opening TH is gradually increased to the opening THset (steps S1 70, S1 80
  • the ignition timing 0 is also adjusted so as not to misfire. If the throttle opening TH is increased, the fuel injection amount will not be corrected unless the fuel injection amount is increased, but the fuel injection amount will increase. By performing the correction, the air-fuel ratio AF becomes slightly richer than the stoichiometric air-fuel ratio (AFO in the figure), and misfire is prevented.
  • the fuel increase flag F 1 is set to the value 0 and the fuel increase end flag is reached. Since the value 1 is set to F 2 (steps 3 1 90 to 5 2 1 0), the fuel injection amount increase correction is terminated. As a result, the increase correction of the fuel injection amount can be quickly completed when the necessity is completed. Note that when the fuel injection amount increase correction is completed, the increase correction TK is smoothed by the air-fuel ratio AF, so that the change in the air-fuel ratio AF due to a sudden change in the fuel injection amount is suppressed. And stable fuel injection control can be performed. FIG.
  • the fuel increase flag F 1 is set to a value of 0 even though the fuel increase flag F 1 is set to 0 in order to express the degree of the smoothing process. It was shown to be.
  • the accelerator pedal 83 is depressed greatly during the catalyst warm-up control, when the re-vehicle speed V increases and power from the engine 22 becomes necessary, the retard of the ignition timing 0 and intake The increase in air volume is stopped, and the throttle opening TH may not reach the opening TH set.
  • the predetermined time t 2 has elapsed since the start of the engine 22 At time T6, the fuel injection amount increase correction is completed. Thereby, it is possible to prevent the fuel injection amount increase correction from continuing for a long time.
  • the catalyst of the purification device 1 3 4 is warmed up.
  • the ignition timing 0 is retarded, and at the timing when the ignition timing 0 is retarded to the threshold value S ref, the fuel injection amount is increased to prevent misfire. Increase the fuel injection amount at a slightly later timing when starting This can improve fuel efficiency and suppress emission deterioration compared with the correction.
  • the throttle opening TH is increased to promote catalyst warm-up, and when the throttle opening TH reaches the target opening degree TH set for a predetermined time t3, the fuel injection amount is increased.
  • the increase correction is completed, the increase correction of the fuel injection amount can be quickly completed when the necessity is completed. As a result, it is possible to suppress inconveniences caused by the increase correction of the excessive fuel injection amount, for example, deterioration of fuel efficiency and emission.
  • the engine t 2 is started for a predetermined time t 2. Since the increase correction of the fuel injection amount is completed when elapses, it is possible to suppress the increase correction of the fuel injection amount from continuing for a long time.
  • the correction of the fuel injection amount is started at the timing when the ignition timing 0 is retarded to the threshold 0 ref.
  • the fuel injection amount increase correction may be started at the timing when a predetermined time has elapsed from the start of the start of the ignition, or the fuel injection is performed at a timing when a predetermined time has elapsed since the start of the ignition timing 0 delay
  • the amount increase correction may be started.
  • the fuel injection amount is increased when a predetermined time t 3 has elapsed after the throttle opening TH has reached the target opening TH set. However, when the throttle opening TH reaches the target opening TH set, which is the target value.
  • the fuel injection amount increase correction may be terminated, or the throttle opening
  • the fuel injection amount increase correction may be terminated when a predetermined time has elapsed since the start of the increase in TH.
  • the throttle opening TH starts to increase after the ignition timing ⁇ is retarded, but the ignition timing 0 is retarded.
  • the throttle opening TH may be increased at the same time as the start of.
  • the catalyst warm-up is performed by retarding the ignition timing 0 and increasing the intake air amount by increasing the throttle opening TH.
  • the catalyst may be warmed up by retarding the timing 0, but it may not be warmed up by increasing the throttle opening TH.
  • the catalyst is warmed up by increasing the throttle opening TH, but the ignition timing is The catalyst may not be warmed up with a delay of 0.
  • the fuel injection amount increase correction may be terminated when a predetermined time t2 has elapsed since the engine 22 started.
  • the fuel injection amount correction is corrected when the throttle opening TH starts increasing or after a predetermined time has elapsed since the engine 22 was started. You can start when.
  • the increase correction of the fuel injection amount is finished when a predetermined time t 2 has elapsed since the start of the engine 22, the engine is controlled regardless of whether or not the power from the engine 22 is required.
  • the increase correction of the fuel injection amount may be terminated when a predetermined time t2 has elapsed since the start of the start of 22. In this case, the throttle opening It does not matter if H is not increased.
  • the increase correction TK is subjected to a smoothing process by the air-fuel ratio AF. Since the increase in the fuel injection amount may be attenuated based on the air-fuel ratio AF, the increase in the fuel injection amount may be attenuated by a process other than the annealing process. Further, when the fuel injection amount increase correction is ended, the fuel injection amount increase may be immediately ended without being attenuated.
  • start-up control is performed to warm up the catalyst of the purification device 1 3 4
  • start-up control will also be performed when the engine 2 2 is started after the system is started and the engine 2 2 is started for the first time. It does not matter if you do
  • the control device for the internal combustion engine is mounted on the hybrid vehicle 20.
  • the control device may be mounted on a vehicle that does not include a traveling motor.
  • the fuel injection amount increase correction may be terminated when the predetermined time t 2 has elapsed since the start of the engine 22.
  • control device for the internal combustion engine of the above-described embodiment or modification is not limited to being mounted on an automobile, but may be mounted on a vehicle such as a train other than an automobile, or a moving body such as a ship or an aircraft. It may be incorporated in equipment other than moving objects.
  • control device for the internal combustion engine mounted on the hybrid vehicle 20 is used.
  • control method of the internal combustion engine may be used.
  • the present invention can be used in the manufacturing industry of control devices for internal combustion engines.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Signal Processing (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Ignition Timing (AREA)

Abstract

エンジンを始動した後、触媒暖機のために点火時期の遅角を開始し、点火時期θが閾値θrefまで遅角されたときに燃料噴射量の増量補正を開始するために燃料増量フラグF1に値1をセットする。そして、スロットル開度THを増加させ、スロットル開度THの増加が終了してから所定時間t3だけ経過したときに燃料噴射量の増量補正を終了する。これにより、必要に応じて燃料噴射量の増量補正を行なうことができる。この結果、燃費の向上を図ることができると共にエミッションの悪化を抑制することができる。

Description

明細書 内燃機関の制御装置および内燃機関の制御方法 技術分野
本発明は、 内燃機関の制御装置および内燃機関の制御方法に関する。 背景技術
従来、 この種の内燃機関の制御装置としては、 未暧機状態の内燃機関 を始動したときには、 排気を浄化する浄化装置内の触媒の暖機を促進す るために点火時期を遅角すると共に燃料噴射量を増量補正するものが提 案されている (例えば、 特開平 8— 8 6 2 3 6号公報など) 。 この装置 では、 点火時期を遅角することによって生じる失火やアイ ドルスピード コントロールバルブの開度を増大する際に生じるリーンを抑制するため に、 点火時期の遅角開始と同時に燃料噴射量の増量補正を行ない、 アイ ドルスピードコントロールバルブの開度増大が終了した時点で燃料噴射 量の増量補正を終了し、 空燃比がリーンに傾くのを抑制し、 触媒の迅速 な暖機を促進している。 なお、 触媒の迅速な暖機は、 内燃機関からの排 気の迅速な浄化に繋がり、 エミッションを向上させるものとなる。 発明の開示
このように内燃機関の始動時の触媒暖機は、 エミッションを向上させ るものであり、 有効なものであるが、 燃料噴射量を増量補正するために、 燃費の悪化や過剰な燃料によるエミッションの悪化が生じる場合もある。 このため、 燃料噴射量の増量補正をより適正な時期に開始すると共によ リ適正な時期に終了することが望まれる。 本発明の内燃機関の制御装置および内燃機関の制御方法は、 未暖機状 態の内燃機関を始動して点火時期遅角による触媒暖機を行なう際の燃料 噴射量の増量補正をより適正なタイミングで開始することを目的の一つ とする。 また、 本発明の内燃機関の制御装置および内燃機関の制御方法 は、 未暖機状態の内燃機関を始動して点火時期遅角による触媒暖機を行 なう際の燃料噴射量の増量補正をよリ適正なタイミングで終了すること を目的の一つとする。
本発明の内燃機関の制御装置および内燃機関の制御方法は、 上述の目 的の少なくとも一部を達成するために以下の手段を採った。
本発明の第 1の内燃機関の制御装置は、 点火時期が変更可能で排気系 に排気を浄化する触媒を有する浄化装置が取り付けられた内燃機関の制 御装置であって、 前記触媒が未暖機状態にある前記内燃機関を始動する 際には、 始動直後から点火時期を徐々に遅角させる始動時点火制御を実 行し、 該始動時点火制御による点火時期の遅角が開始されてから所定の 増量条件が成立するまでは目標空燃比となる燃料噴射量を燃料噴射弁か ら噴射すると共に前記所定の増量条件が成立した以降は前記目標空燃比 となる燃料噴射量を増量補正した燃料噴射量を燃料噴射弁から噴射する 始動時燃料噴射制御を実行することを要旨とする。
この本発明の第 1の内燃機関の制御装置では、 点火時期の遅角が開始 されてから所定の増量条件が成立するまでは目標空燃比となる燃料噴射 量を燃料噴射弁から噴射し、 所定の増量条件が成立した以降は目標空燃 比となる燃料噴射量を増量補正した燃料噴射量を燃料噴射弁から噴射す る。 即ち、 点火時期遅角による触媒暖機の際の燃料噴射量の増量補正の タイミングを点火時期の遅角を開始してから所定の増量条件が成立した ときとするのである。 このため、 点火時期の遅角の開始と同時に燃料噴 射量の増量補正を行なうものに比して内燃機関の始動時の燃費を向上さ せることができると共に過剰な燃料噴射によるエミッションの悪化を抑 制することができる。 ここで、 所定の増量条件としては、 点火時期が所 定の角度に至った条件を用いることもできるし、 始動時点火制御による 点火時期の遅角が開始されてから所定時間経過した条件を用いることも できる。 また、 「目標空燃比となる燃料噴射量」 は、 理論空燃比となる 基本燃料噴射量に内燃機関の状態に基づく補正係数を乗じて演算されて なる噴射量であるものとすることもできる。
こうした本発明の第 1の内燃機関の制御装置において、 前記始動時燃 料噴射制御による燃料噴射量の増量補正が行なわれた以降に所定開度に 至るまでスロッ トル開度を徐々に大きくする始動時スロッ トル制御を実 行すると共に前記始動時燃料噴射制御としてスロッ トル開度が前記所定 開度に至った以降に燃料噴射量の増量補正を終了する制御を実行するも のとすることもできる。 こうすれば、 スロッ トル開度を増大する際に生 じ得るリーンを抑制することができると共にこうしたリーンの抑制を終 了した後に燃料噴射量の増量補正を終了することができる。 もとより、 スロッ トル開度を増加することにより吸入空気量を多く して触媒暖機を 促進することができる。 この場合、 前記始動時燃料噴射制御は、 スロッ トル開度が前記所定開度に至ってから所定時間経過したときに燃料噴射 量の増量補正を終了する制御であるものとすることもできる。 ここで、 所定時間は、 スロッ トル開度の増加に対する空気流量の遅れなどを考慮 するものである。 また、 こうした態様の本発明の第 1の内燃機関の制御 装置において、 前記始動時スロッ トル制御は該制御を実行している最中 に前記内燃機関への出力要求がなされたときには該制御を中止する制御 であり、 前記始動時燃料噴射制御は前記始動時スロッ トル制御が中止さ れたときには前記内燃機関の始動から所定時間経過したときに燃料噴射 量の増量補正を終了する制御であるものとすることもできる。 こうすれ ば、 始動時スロッ トル制御が中止されたことに伴って燃料噴射量の増量 補正を終了するタイミングが失われても内燃機関の始動から所定時間経 過したときに燃料噴射量の増量補正を終了することができ、 不要な燃料 噴射量の増量補正を抑制することができる。
また、 本発明の第 1の内燃機関の制御装置において、 前記始動時燃料 噴射制御は、 前記内燃機関の始動から所定時間経過したときに燃料噴射 量の増量補正を終了する制御であるものとすることもできる。 こうすれ ば、 燃料噴射量の増量補正が長時間に亘つて実行されるのを防止するこ とができる。
さらに、 本発明の第 1の内燃機関の制御装置において、 前記始動時燃 料噴射制御は、 燃料噴射量の増量補正を終了するときには終了直前の空 燃比に基づく減衰程度をもって燃料噴射量の増量補正を終了する制御で あるものとすることもできる。 こうすれば、 燃料噴射量の増量補正を終 了する際に生じ得る空燃比の急変を抑制することができる。
本発明の第 2の内燃機関の制御装置は、 排気系に排気を浄化する触媒 を有する浄化装置が取り付けられた内燃機関の制御装置であって、 前記 触媒が未暖機状態にある前記内燃機関を始動する際には、 始動後の第 1 のタイミングからスロッ トル開度を所定開度に至るまで徐々に大きくす る始動時スロッ トル制御を実行し、 前記内燃機関の始動に伴う第 2のタ イミングから目標空燃比となる燃料噴射量を増量補正した燃料噴射量を 燃料噴射弁から噴射すると共にスロッ トル開度が前記所定開度に至った 以降に燃料噴射量の増量補正を終了する始動時燃料噴射制御を実行する ことを要旨とする。
この本発明の第 2の内燃機関の制御装置では、 内燃機関の始動後の第 1のタイミングからスロッ トル開度を所定開度に至るまで徐々に大きく する始動時スロッ トル制御を実行し、 内燃機関の始動に伴う第 2のタイ ミングから目標空燃比となる燃料噴射量を増量補正した燃料噴射量を燃 料噴射弁から噴射し、 スロッ トル開度が所定開度に至った以降に燃料噴 射量の増量補正を終了する。 したがって、 スロッ トル開度を増加するこ とにより吸入空気量を多く して触媒暖機を促進することができる。 また、 スロッ トル開度を増大する際に生じ得るリーンを抑制することができる と共にこうしたリーンの抑制を終了した後に燃料噴射量の増量補正を終 了することができる。 この結果、 より適正に燃料噴射量の増量補正を行 なうことができ、 内燃機関の始動時の燃費を向上させることができると 共に過剰な燃料噴射によるェミッションの悪化を抑制することができる。
こうした本発明の第 2の内燃機関の制御装置において、 前記始動時燃 料噴射制御は、 スロッ トル開度が前記所定開度に至ってから所定時間経 過したときに燃料噴射量の増量補正を終了する制御であるものとするこ ともできる。 ここで、 所定時間は、 スロッ トル開度の増加に対する空気 流量の遅れなどを考慮するものである。 したがって、 より適正なタイミ ングで燃料噴射量の増量補正を終了することができる。
また、 本発明の第 2の内燃機関の制御装置において、 前記始動時スロ ッ トル制御は該制御を実行している最中に前記内燃機関への出力要求が なされたときには該制御を中止する制御であリ、 前記始動時燃料噴射制 御は前記始動時スロッ トル制御が中止されたときには前記内燃機関の始 動から所定時間経過したときに燃料噴射量の増量補正を終了する制御で あるものとすることもできる。 こうすれば、 始動時スロッ トル制御が中 止されたことに伴って燃料噴射量の増量補正を終了するタイミングが失 われても内燃機関の始動から所定時間経過したときに燃料噴射量の増量 補正を終了することができ、 不要な燃料噴射量の増量補正を抑制するこ とができる。
本発明の第 1の内燃機関の制御方法は、 点火時期が変更可能で排気系 に排気を浄化する触媒を有する浄化装置が取り付けられた内燃機関の制 御方法であって、 前記触媒が未暖機状態にある前記内燃機関を始動する 際には、 始動直後から点火時期を徐々に遅角させる始動時点火制御を実 行し、 該始動時点火制御による点火時期の遅角が開始されてから所定の 増量条件が成立するまでは目標空燃比となる燃料噴射量を燃料噴射弁か ら噴射すると共に前記所定の増量条件が成立した以降は前記目標空燃比 となる燃料噴射量を増量補正した燃料噴射量を燃料噴射弁から噴射する 始動時燃料噴射制御を実行することを要旨とする。
この本発明の第 1の内燃機関の制御方法では、 点火時期の遅角が開始 されてから所定の増量条件が成立するまでは目標空燃比となる燃料噴射 量を燃料噴射弁から噴射し、 所定の増量条件が成立した以降は目標空燃 比となる燃料噴射量を増量補正した燃料噴射量を燃料噴射弁から噴射す る。 即ち、 点火時期遅角による触媒暖機の際の燃料噴射量の増量補正の タイミングを点火時期の遅角を開始してから所定の増量条件が成立した ときとするのである。 このため、 点火時期の遅角の開始と同時に燃料噴 射量の増量補正を行なうものに比して内燃機関の始動時の燃費を向上さ せることができると共に過剰な燃料噴射によるェミッションの悪化を抑 制することができる。
こうした本発明の第 1の内燃機関の制御方法において、 前記始動時燃 料噴射制御による燃料噴射量の増量補正が行なわれた以降に所定開度に 至るまでスロッ トル開度を徐々に大きくする始動時ス口ッ トル制御を実 行すると共に前記始動時燃料噴射制御としてスロッ トル開度が前記所定 開度に至った以降に燃料噴射量の増量補正を終了する制御を実行するも のとすることもできる。 こうすれば、 スロッ トル開度を増大する際に生 じ得るリーンを抑制することができると共にこうしたリーンの抑制を終 了した後に燃料噴射量の増量補正を終了することができる。 もとより、 スロッ トル開度を増加することにより吸入空気量を多く して触媒暖機を 促進することができる。
また、 本発明の第 1の内燃機関の制御方法において、 前記始動時燃料 噴射制御は、 前記内燃機関の始動から所定時間経過したときに燃料噴射 量の増量補正を終了する制御であるものとすることもできる。 こうすれ ば、 燃料噴射量の増量補正が長時間に亘つて実行されるのを防止するこ とができる。
さらに、 本発明の第 1の内燃機関の制御方法において、 前記始動時燃 料噴射制御は、 燃料噴射量の増量補正を終了するときには終了直前の空 燃比に基づく減衰程度をもって燃料噴射量の増量補正を終了する制御で あるものとすることもできる。 こうすれば、 燃料噴射量の増量補正を終 了する際に生じ得る空燃比の急変を抑制することができる。
本発明の第 2の内燃機関の制御方法は、 排気系に排気を浄化する触媒 を有する浄化装置が取リ付けられた内燃機関の制御方法であって、 前記 触媒が未暖機状態にある前記内燃機関を始動する際には、 始動後の第 1 のタイミングからスロッ トル開度を所定開度に至るまで徐々に大きくす る始動時スロッ トル制御を実行し、 前記内燃機関の始動に伴う第 2のタ ィミングから目標空燃比となる燃料噴射量を増量補正した燃料噴射量を 燃料噴射弁から噴射すると共にスロッ トル開度が前記所定開度に至った 以降に燃料噴射量の増量補正を終了する始動時燃料噴射制御を実行する ことを要旨とする。
この本発明の第 2の内燃機関の制御方法では、 内燃機関の始動後の第 1のタイミングからスロッ トル開度を所定開度に至るまで徐々に大きく する始動時スロッ トル制御を実行し、 内燃機関の始動に伴う第 2のタイ ミングから目標空燃比となる燃料噴射量を増量補正した燃料噴射量を燃 料噴射弁から噴射し、 スロッ トル開度が所定開度に至った以降に燃料噴 射量の増量補正を終了する。 したがって、 スロッ トル開度を増加するこ とにより吸入空気量を多く して触媒暖機を促進することができる。 また、 スロッ トル開度を増大する際に生じ得るリーンを抑制することができる と共にこうしたリーンの抑制を終了した後に燃料噴射量の増量補正を終 了することができる。 この結果、 より適正に燃料噴射量の増量補正を行 なうことができ、 内燃機関の始動時の撚費を向上させることができると 共に過剰な燃料噴射によるェミッションの悪化を抑制することができる。 また、 本発明の第 2の内燃機関の制御方法において、 前記始動時スロ ッ トル制御は該制御を実行している最中に前記内燃機関への出力要求が なされたときには該制御を中止する制御であり、 前記始動時燃料噴射制 御は前記始動時スロッ トル制御が中止されたときには前記内燃機関の始 動から所定時間経過したときに燃料噴射量の増量補正を終了する制御で あるものとすることもできる。 こうすれば、 始動時スロッ トル制御が中 止されたことに伴って燃料噴射量の増量補正を終了するタイミングが失 われても内燃機関の始動から所定時間経過したときに燃料噴射量の増量 補正を終了することができ、 不要な燃料噴射量の増量補正を抑制するこ とができる。 図面の簡単な説明
図 1は、 本発明の一実施例である内燃機関の制御装置を搭載したハイ プリッ ド自動車 2 0の構成の概略を示す構成図、
図 2は、 エンジン 2 2の構成の概略を示す構成図、
図 3は、 エンジン E C U 2 4によリ実行される始動時制御ルーチンの 一例を示すフローチヤ一ト、
図 4は、 エンジン E C U 2 4により実行される燃料噴射時間設定ルー チンの一例を示すフローチヤ一ト、 図 5は、 エンジン 2 2が始動される際のエンジン 2 2の回転数 N eや 空燃比 A F , 点火時期 0, スロッ トル開度 T H, 燃料増量フラグ F 1の 時間変化の一例を示す説明図である。 発明を実施するための最良の形態
次に、 本発明を実施するための最良の形態を実施例を用いて説明する。 図 1は、 本発明の一実施例である内燃機関の制御装置を搭載したハイブ リッ ド自動車 2 0の構成の概略を示す構成図である。 実施例のハイプリ ッ ド自動車 2 0は、 図示するように、 エンジン 2 2と、 エンジン 2 2の 出力軸としてのクランクシャフ ト 2 6にダンバ 2 8を介して接続された 3軸式の動力分配統合機構 3 0と、 動力分配統合機構 3 0に接続された 発電可能なモータ M G 1 と、 動力分配統合機構 3 0に接続された駆動軸 としてのリングギヤ軸 3 2 aに取り付けられた減速ギヤ 3 5と、 この減 速ギヤ 3 5に接続されたモータ M G 2と、 動力出力装置全体をコントロ ールするハイプリッ ド用電子制御ュニッ ト 7 0とを備える。
エンジン 2 2は、 例えばガソリンまたは軽油などの炭化水素系の燃料 により動力を出力可能な内燃機関として構成されており、 図 2に示すよ うに、 エアクリーナ 1 2 2により清浄された空気をスロッ トルバルブ 1 2 4を介して吸入すると共に燃料噴射弁 1 2 6からガソリンを噴射して 吸入された空気とガソリンとを混合し、 この混合気を吸気バルブ 1 2 8 を介して燃料室に吸入し、 点火プラグ 1 3 0による電気火花によって爆 発燃焼させて、 そのエネルギによリ押し下げられるピストン 1 3 2の往 復運動をクランクシャフ 卜 2 6の回転運動に変換する。 エンジン 2 2か らの排気は、 一酸化炭素 (C O ) や炭化水素 (H C ) , 窒素酸化物 (N O X ) の有害成分を浄化する浄化装置 (三元触媒) 1 3 4を介して外気 へ排出される。 エンジン 2 2は、 エンジン用電子制御ユニッ ト (以下、 エンジン E C Uという) 2 4により制御されている。 エンジン E C U 2 4には、 ェン ジン 2 2の状態を検出する種々のセンサからの信号が図示しない入力ポ ートを介して入力されている。 例えば、 エンジン E C U 2 4には、 エア クリーナ 1 2 2に取り付けられた温度センサ 1 2 2 aからの吸気温 T a やクランクシャフ 卜 2 6の回転位置を検出するクランクポジションセン サ 1 4 0からのクランクポジション, エンジン 2 2の冷却水の温度を検 出する水温センサ 1 4 2からの冷却水温 T w, 燃焼室へ吸排気を行なう 吸気バルブ 1 2 8や排気バルブを開閉するカムシャフ 卜の回転位置を検 出するカムポジションセンサ 1 4 4からのカムポジション, スロッ トル バルブ 1 2 4のポジションを検出するスロッ トルバルブポジションセン サ 1 4 6からのスロッ トルポジション, エンジン 2 2の負荷としての吸 入空気量を検出するバキュームセンサ 1 4 8からの吸入空気量 Q a、 浄 化装置 1 3 4の上流側に取リ付けられた空燃比センサ 1 3 5 aからの空 燃比 A F , 浄化装置 1 3 4の下流側に取り付けられた酸素センサ 1 3 5 bからの酸素信号などが入力ポートを介して入力されている。 また、 ェ ンジン E C U 2 4からは、 エンジン 2 2を駆動するための種々の制御信 号が図示しない出力ポートを介して出力されている。 例えば、 エンジン E C U 2 4からは、 燃料噴射弁 1 2 6への駆動信号や、 スロッ トルバル ブ 1 2 4のポジションを調節するスロッ トルモータ 1 3 6への駆動信号、 ィグナイタと一体化されたイダ二ッシヨンコイル 1 3 8への制御信号、 吸気バルブ 1 2 8の開閉タイミングの変更可能な可変バルブタィミング 機構 1 5 0への制御信号などが出力ポー卜を介して出力されている。 ェ ンジン E C U 2 4は、 ハイブリッ ド用電子制御ュニッ 卜 7 0と通信して おり、 ハイブリッ ド用電子制御ユニッ ト 7 0からの制御信号によリエン ジン 2 2を運転制御すると共に必要に応じてエンジン 2 2の運転状態に 関するデータを出力する。 なお、 エンジン E C U 24は、 クランクポジ ションセンサ 1 40からのクランクポジションに基づいてエンジン 2 2 の回転数 N eなども計算している。
動力分配統合機構 30は、 外歯歯車のサンギヤ 3 1 と、 このサンギヤ 3 1 と同心円上に配置された内歯歯車のリングギヤ 3 2と、 サンギヤ 3 1に嚙合すると共にリングギヤ 3 2に嚙合する複数のピニオンギヤ 3 3 と、 複数のピニオンギヤ 3 3を自転かつ公転自在に保持するキャリア 3 4とを備え、 サンギヤ 3 1 とリングギヤ 3 2とキャリア 34とを回転要 素として差動作用を行なう遊星歯車機構として構成されている。 動力分 配統合機構 30は、 キャリア 34にはエンジン 2 2のクランクシャフト 26が、 サンギヤ 3 1 にはモータ M G 1が、 リングギヤ 3 2にはリング ギヤ軸 3 2 aを介して減速ギヤ 3 5がそれぞれ連結されている。 リング ギヤ軸 3 2 aは、 ギヤ機構 60およびデファレンシャルギヤ 62を介し て車両の駆動輪 63 a, 63 bに連結されている。
モータ M G 1 およびモータ M G 2は、 いずれも発電機として駆動する ことができると共に電動機として駆動できる周知の同期発電電動機とし て構成されており、 インバータ 4 1 , 4 2を介して電力ライン 54によ リバッテリ 50に接続されている。 モータ MG 1 , MG 2は、 いずれも モータ用電子制御ユニッ ト (以下、 モータ E C Uという) 40により駆 動制御されている。 モータ E C U 40には、 モータ MG 1, MG 2を駆 動制御するために必要な信号、 例えばモータ MG 1, MG 2の回転子の 回転位置を検出する回転位置検出センサ 43 , 44からの信号や図示し ない電流センサによリ検出されるモータ MG 1 , MG 2に印加される相 電流などが入力されており、 モータ E C U 40からは、 インバータ 4 1 , 42へのスイッチング制御信号が出力されている。 モータ E C U 40は、 ハイプリッ ド用電子制御ュニッ ト 7 0と通信しており、 ハイプリッ ド用 電子制御ュニッ 卜 7 0からの制御信号によってモータ M G 1 , M G 2を 駆動制御すると共に必要に応じてモータ M G 1 , M G 2の運転状態に関 するデータをハイプリッ ド用電子制御ュニッ ト 7 0に出力する。
ノ ッテリ 5 0は、 バッテリ用電子制御ユニッ ト (以下、 ノ《ッテリ E C Uという) 5 2によって管理されている。 ノく ッテリ E C U 5 2には、 バ ッテリ 5 0を管理するのに必要な信号、 例えば, バッテリ 5 0の端子間 に設置された図示しない電圧センサからの端子間電圧, バッテリ 5 0の 出力端子に接続された電力ライン 5 4に取リ付けられた図示しない電流 センサからの充放電電流, バッテリ 5 0に取り付けられた温度センサ 5 1からの電池温度 T bなどが入力されており、 必要に応じてバッテリ 5 0の状態に関するデータを通信によリハイプリッ ド用電子制御ュニッ 卜 7 0に出力する。 なお、 ノく ッテリ E C U 5 2では、 バッテリ 5 0を管理 するために電流センサによリ検出された充放電電流の積算値に基づいて 残容量 (S O C ) も演算している。
ハイブリッ ド用電子制御ユニッ ト 7 0は、 C P U 7 2を中心とするマ イク口プロセッサとして構成されており、 C P U 7 2の他に処理プログ ラムを記憶する R O M 7 4と、 データを一時的に記憶する R A M 7 6と 図示しない入出力ポー卜および通信ポー卜とを備える。 ハイブリツ ド用 電子制御ュニッ 卜 7 0には、 ィグニッションスィツチ 8 0からのィグニ ッシヨン信号, シフ トレバー 8 1の操作位置を検出するシフトポジショ ンセンサ 8 2からのシフ卜ポジション S P , アクセルペダル 8 3の踏み 込み量を検出するアクセルペダルポジションセンサ 8 4からのアクセル 開度 A c c , ブレーキペダル 8 5の踏み込み量を検出するブレーキぺダ ルポジションセンサ 8 6からのブレーキペダルポジシヨン B P , 車速セ ンサ 8 8からの車速 Vなどが入力ポートを介して入力されている。 ハイ ブリッ ド用電子制御ュニッ ト 7 0は、 前述したように、 エンジン E C U 24やモータ E C U 40, バッテリ E C U 5 2と通信ポートを介して接 続されており、 エンジン E C U 24やモータ E C U 40 , ノくッテリ E C U 5 2と各種制御信号やデータのやリとリを行なっている。
こうして構成された実施例のハイプリッ ド自動車 20は、 運転者によ るアクセルペダル 83の踏み込み量に対応するアクセル開度 A c cと車 速 Vとに基づいて駆動軸としてのリングギヤ軸 3 2 aに出力すべき要求 トルクを計算し、 この要求トルクに対応する要求動力がリングギヤ軸 3 2 aに出力されるように、 エンジン 22とモータ MG 1 とモータ M G 2 とが運転制御される。 エンジン 22とモータ MG 1 とモータ MG 2の運 転制御としては、 要求動力に見合う動力がエンジン 22から出力される ようにエンジン 2 2を運転制御すると共にエンジン 2 2から出力される 動力のすべてが動力分配統合機構 3 0とモータ MG 1 とモータ MG 2と によって トルク変換されてリングギヤ軸 3 2 aに出力されるようモータ MG 1 およびモータ MG 2を駆動制御する トルク変換運転モードゃ要求 動力とバッテリ 50の充放電に必要な電力との和に見合う動力がェンジ ン 22から出力されるようにエンジン 22を運転制御すると共にバッテ リ 50の充放電を伴ってエンジン 2 2から出力される動力の全部または その一部が動力分配統合機構 30とモータ MG 1 とモータ MG 2とによ る トルク変換を伴って要求動力がリングギヤ軸 3 2 aに出力されるよう モータ MG 1 およびモータ MG 2を駆動制御する充放電運転モード、 ェ ンジン 2 2の運転を停止してモータ MG 2からの要求動力に見合う動力 をリングギヤ軸 3 2 aに出力するよう運転制御するモータ運転モードな どがある。
次に、 こう して構成された実施例のハイプリッ ド自動車 20の動作、 特にハイプリッ ド自動車 20がシステム起動されて最初にエンジン 22 を始動する際の動作について説明する。 エンジン 22の始動は、 モータ 運転モードによリ走行しているときには、 モータ M G 1 から動力分配統 合機構 3 0を介してエンジン 2 2をモータリングする トルクを出力する と共にエンジン 2 2をモータリングする際に動力分配統合機構 3 0を介 してリングギヤ軸 3 2 aに出力される トルクをキャンセルする トルクと 運転者のアクセルペダル 8 3の操作に伴って設定されるリングギヤ軸 3 2 aに出力すべき要求トルクとの和がリングギヤ軸 3 2 aに出力される ようモータ M G 2から出力することにより行なわれる。 図 3は、 モータ M G 1 とモータ M G 2とによりエンジン 2 2のモータ リングが開始され た際にエンジン E C U 2 4により実行される始動時制御ルーチンの一例 を示すフローチャートである。
始動時制御ルーチンが実行されると、 エンジン E C U 2 4は、 まず、 スロッ トル開度 T Hがアイ ドリング運転時の開度よリ若干小さな開度に 絞り込まれるようスロッ トルモータ 1 3 6を駆動してスロッ トルバルブ 1 2 4を閉弁すると共に点火プラグ 1 3 0の点火時期 0を^め設定され た始動時点火時期 0 s t に調整する (ステップ S 1 0 0 ) 。 ここで始動 時点火時期 0 s tは、 エンジン 2 2の初爆が生じやすい点火時期として 実験などにより定めることができる。 そして、 エンジン 2 2の回転数 N eが閾値 N r e f 以上になるのを待って (ステップ S 1 1 0 , S 1 2 0 ) 、 燃料噴射弁 1 2 6から燃料を噴射する燃料噴射制御と点火プラグ 1 3 0の点火を制御する点火制御とを開始し (ステップ S 1 3 0 ) 、 浄 化装置 1 3 4の触媒を迅速に暖機するために点火時期 0を徐々に遅角す るのを開始する (ステップ S 1 4 0 ) 。 点火プラグ 1 3 0の点火時期 0 を遅角すると、 エンジン 2 2における燃焼が通常の点火時期に比して後 段で行なわれるから、 比較的高温の排気が浄化装置 1 3 4に供給され、 浄化装置 1 3 4の触媒は迅速に暖機されるようになる。 なお、 点火時期 0の遅角を徐々に行なうのは、 点火時期 0の急激な遅角によリ失火する のを防止するためである。 したがって、 点火制御は、 失火していないか 否か (燃焼が生じているか否か) を確認しながら点火時期 0を徐々に遅 角する制御となる。
次に、 点火時期 0が閾値 0 r e f まで遅角されるのを待って燃料増量 フラグ F 1に値 1 をセッ トする (ステップ S 1 5 0 , S 1 6 0 ) 。 点火 時期 0の遅角がある程度進むと失火しやすくなるため、 燃料噴射弁 1 2 6からの燃料噴射量を増量補正することにより、 失火を防止するのであ る。 燃料噴射制御については後述する。
続いて、 エンジン 2 2の始動を開始してから所定時間 t 1が経過する のを待って絞リ込まれていたスロッ トルバルブ 1 2 4をスロッ トル開度 T Hが触媒暖機用に め設定された開度 T H s e tに至るまで徐々に開 弁するのを開始する (ステップ S 1 7 0, S 1 8 0 ) 。 ここで、 スロッ トル開度 T Hを大きくするのは吸入空気量を多く してより迅速に浄化装 置 1 3 4の触媒を暖機するためである。 こうした吸入空気量の増加と前 述した点火時期 0の遅角とにより浄化装置 1 3 4の触媒は迅速に暖機さ れることになる。 実施例では、 これらの制御を触媒暧機制御と呼ぶ。 次に、 エンジン 2 2の始動を開始してから所定時間 t 2が経過するか スロッ トル開度 T Hが開度 T H s e tに至ってから所定時間 t 3だけ経 過するかのいずれかを待って燃料噴射量の増量補正を終了するために燃 料増量フラグ F 1 を値 0にリセッ 卜すると共に燃料増量終了フラグ F 2 に値 1 をセッ トし (ステップ S 1 9 0〜 S 2 1 0 ) 、 始動時制御ル一チ ンを終了する。 ここで、 モータ運転モードにより走行しながら上述の触 媒暖機制御を実行することができる通常時では、 スロッ トル開度 T Hが 開度 T H s e tに至ってから所定時間 t 3だけ経過するタイミングの方 がエンジン 2 2の始動を開始してから所定時間 t 2が経過するタイミン グょリ早くなるように設定されている。 したがって、 通常はスロッ トル 開度 T Hが開度 T H s e tに至ってから所定時間 t 3だけ経過したとき に燃料増量フラグ F 1 を値 0にリセッ 卜すると共に燃料増量終了フラグ F 2を値 1にセッ 卜することになる。 スロッ トル開度 T Hが開度 T H s e tに至ってから所定時間 t 3だけ経過するのを待つのは、 スロッ トル 開度 T Hの増加に対する吸入空気量の時間遅れを考慮するためである。 また、 スロッ トル開度 T Hが開度 T H s e tに至った以降に燃料噴射量 の増量補正を終了するのはス口ッ トル開度 T Hの増加の終了に伴ってス ロッ トル開度 T Hの増加の際に生じ得る空燃比 A Fがリーン (希薄) と なる現象も終了するからである。 これにより、 燃料噴射量の増量補正を その必要性が終了した時点で迅速に終了させることができる。 一方、 モ ータ運転モードにより走行しながら上述の触媒暖機制御を実行すること ができない非通常時、 例えば触媒暖機制御を行なつている最中にァクセ ルペダル 8 3が大きく踏み込まれたリ車速 Vが大きくなってエンジン 2 2からの動力が必要になったときには、 点火時期 0の遅角や吸入空気量 の増加などの触媒暖機制御は中止される。 即ち、 スロッ トル開度 T Hの 増加が中止される。 このため、 スロッ トル開度 T Hが開度 T H s e tに 至ってから所定時間 t 3だけ経過するタイミングを待つのは無意味なも のとなリ、 このタイミングで燃料噴射量の増量補正を終了することがで きなくなる。 実施例では、 こうした事態にも対処できるよう、 エンジン 2 2の始動を開始してから所定時間 t 2が経過するタイミングで燃料噴 射量の増量補正を終了させるのである。 これにより、 燃料噴射量の増量 補正が長時間継続するのを抑制することができる。
次に、 始動時の燃料噴射制御について説明する。 図 4はエンジン 2 2 の始動時にエンジン E C U 2 4によリ実行される燃料噴射時間設定ルー チンの一例を示すフローチャートである。 このルーチンは、 図 3に例示 した始動時制御ルーチンが実行されている最中に割り込み処理として繰 リ返し実行される。
燃料噴射時間設定ルーチンが実行されると、 エンジン E C U 24は、 まず、 エンジン 2 2の回転数 N eやバキュームセンサ 1 48からの吸入 空気量 Q a , 温度センサ 1 22 aからの吸気温 T a , 水温センサ 1 42 からの冷却水温 Tw, 空燃比センサ 1 3 5 aからの空燃比 A Fなど燃料 噴射制御に必要なデータを入力する処理を実行する (ステップ S 3 0 0) 。 そして、 入力したエンジン 2 2の回転数 N eと吸入空気量 Q aと 吸気温 T aとに基づいて基本燃料噴射時間 T Pを設定する (ステップ S 3 1 0) 。 基本燃料噴射時間 T Pは、 基本的には、 理論空燃比となるよ う設定される。
続いて、 燃料噴射制御を開始してからの経過時間 t と冷却水温 Twと 吸気温 T aとに基づいて補正係数 F Fを計算する (ステップ S 3 20) 。 補正係数 F Fは、 例えば、 減衰の程度が異なるが経過時間 t に従って減 衰する二つの時間係数と、 冷却水温 Twの上昇に伴って減衰する水温係 数と、 基準温度 (例えば 25°C) と吸気温 T aとの差に応じた吸気温係 数との和として計算することができる。 実施例では、 補正係数 F Fとし て基準値の値 1 に加える程度 (例えばその絶対値が 0. 3までの範囲) となるよう計算するものとした。
次に、 空燃比センサ 1 3 5 aによリ検出される空燃比 A Fの目標空燃 比 (例えば理論空燃比) からのズレを補正するフィードバック補正項 F A Fに値 1 をセッ トし (ステップ S 33 0) 、 燃料増量フラグ F 1が値 0のときには増量補正 T Kに値 0を設定し (ステップ S 340, S 3 5 0) 、 燃料増量フラグ F 1が値 1のときには増量補正 T Kに所定増量時 間 T s e t を設定する (ステップ S 340, S 3 60 ) 。 そして、 燃料 増量終了フラグ F 2が値 0のときには (ステップ S 37 0) 、 計算した 基本燃料噴射時間 T Pや設定した補正係数 F F, フィードバック補正項 F A F, 増量補正 T Kに基づいて次式 ( 1 ) により燃料噴射時間 T A U を計算して (ステップ S 3 90) 、 燃料噴射時間設定ルーチンの終了す る。 上述したように、 燃料増量フラグ F 1 に値 0が設定されていると共 に燃料増量終了フラグ F 2に値 0が設定されているときには増量補正 T Kには値 0が設定されているから、 燃料噴射量の増量補正は行なわれず、 燃料増量フラグ F 1 に値 1が設定されていると共に燃料増量終了フラグ F 2に値 0が設定されているときには増量補正 T Kには所定増量時間 T s e tが設定されているから、 増量補正 T Kによる燃料噴射量の増量補 正が行なわれる。 ここで、 所定増量時間 T s e tは、 点火時期 0の遅角 の際に生じ得る失火を防止するのに必要な燃料噴射時間の増加分ゃスロ ッ トル開度 T Hの増加に伴って生じ得る失火を防止するのに必要な燃料 噴射時間の増加分などと設定することができる。
T A U = T P - F A F - ( 1 + F F) + T K ( 1 ) 一方、 燃料増量終了フラグ F 2が値 1 のときには増量補正 T Kに対し て空燃比 A Fによるなまし処理を施して (ステップ S 3 80) 、 なまし 処理が施された増量補正 T Kを用いて式 ( 1 ) により燃料噴射時間 T A Uが計算され (ステップ S 390) 、 燃料噴射時間設定ルーチンは終了 する。 ここで、 空燃比 A Fによるなまし処理は、 空燃比 A Fがリッチ側 のときには迅速に増量補正 T Kが値 0となるようなましの程度を小さく し、 空燃比 A Fがリーン側のときにはゆつく りの増量補正 T Kが値 0と なるようなましの程度を大きくするように行なうことができる。 これに よリ、 燃料噴射量の増量補正を終了する際の燃料噴射量の急変に伴う空 燃比 A Fの変動を抑制することができ、 安定した燃料噴射制御を行なう ことができる。 図 5は、 始動時制御ルーチンによリエンジン 22が始動される際のェ ンジン 2 2の回転数 N eや空燃比 A F, 点火時期 0, スロッ トル開度 T H, 燃料増量フラグ F 1の時間変化の一例を示す説明図である。 図中、 実線は実施例の始動時制御を行なつたときのものであり、 一点鎖線は燃 料噴射量の増量補正を行なわないときの空燃比 A Fを示す。 図示するよ うに、 時間 T Oにモータ MG 1 とモータ MG 2とによるエンジン 2 2の モータリングが開始され、 スロッ トル開度丁 Hが絞り込まれると共に点 火時期 0が始動時点火時期 0 s tに調整される。 エンジン 22の回転数 N eが閾値 N r e f に至った時間 T 1に燃料噴射制御と点火制御が開始 され (ステップ S 1 1 0〜S 1 30) 、 点火時期 0は、 その後、 遅角が 開始される (ステップ S 1 40) 。 点火時期 0が閾値 0 r e f まで遅角 された時間 T 2には、 燃料増量フラグ F 1 に値 1がセッ 卜されるから (ステップ S 1 50, S 1 60 ) 、 増量補正 T Kに所定増量時間 T s e tがセッ トされ (ステップ S 3 60) 、 燃料噴射量の増量補正が開始さ れる。 燃料噴射量の増量補正が行なわれないときには空燃比 A Fが大き くなリリーンになるため失火しやすくなるが、 実施例では、 燃料噴射量 の増量補正が行なわれるため、 空燃比 A Fは理論空燃比 (図中 A F O) より若干リッチ側となり、 失火は防止される。 したがって、 点火時期 0 が閾値 0 r e f まで遅角されたタイミングで燃料噴射量の増量補正を行 なうことにより、 早すぎるタイミングで燃料噴射量の増量補正を行なう ものに比して燃費やエミッションを改善することができる。 エンジン 2 2の始動から時間 t 1が経過した時間 T 3では、 絞り込まれたスロッ ト ル開度 T Hを開度 T H s e tまで徐々に大きくする処理が開始され (ス テツプ S 1 70, S 1 80 ) 、 これに伴って失火しないように点火時期 0も調整される。 スロッ トル開度 T Hを増加させると、 燃料噴射量の増 量補正を行なわないとこれに伴ってリーンになるが、 燃料噴射量の増量 補正を行なうことにより、 空燃比 A Fは理論空燃比 (図中 A F O ) より 若干リッチ側となり、 失火は防止される。 スロットル開度 T Hが開度 T H s e tに至った時間 T 4から所定時間 t 3だけ経過した時間 T 5に至 ると、 燃料増量フラグ F 1に値 0がセッ 卜されると共に燃料増量終了フ ラグ F 2に値 1がセッ トされるから (ステップ3 1 9 0〜5 2 1 0 ) 、 燃料噴射量の増量補正は終了される。 これにより、 燃料噴射量の増量補 正をその必要性が終了した時点で迅速に終了させることができる。 なお、 燃料噴射量の増量補正を終了する際には増量補正 T Kは空燃比 A Fによ るなまし処理が施されるから、 燃料噴射量の急変に伴う空燃比 A Fの変 動を抑制することができ、 安定した燃料噴射制御を行なうことができる。 なお、 図 5には、 このなまし処理の程度を表現するために燃料増量フラ グ F 1に値 0が設定されているにも拘わらず、 燃料増量フラグ F 1がな まされて値 0となるように示した。 また、 触媒暖機制御を行なっている 最中にアクセルペダル 8 3が大きく踏み込まれたリ車速 Vが大きくなつ てエンジン 2 2からの動力が必要になったときには、 点火時期 0の遅角 や吸入空気量の増加は中止され、 スロッ トル開度 T Hが開度 T H s e t に至るようにはならない場合が生じるが、 この場合、 エンジン 2 2の始 動を開始してから所定時間 t 2が経過した時間 T 6に燃料噴射量の増量 補正は終了される。 これにより、 燃料噴射量の増量補正が長時間継続す るのを抑制することができる。
以上説明した実施例のハイプリッ ド自動車 2 0が搭載する内燃機関の 制御装置によれば、 システム起動されて最初にエンジン 2 2を始動する 際には、 浄化装置 1 3 4の触媒の暖機を促進するために点火時期 0を遅 角し、 点火時期 0が閾値 S r e f まで遅角されたタイミングで失火を防 止するために燃料噴射量の増量補正を行なうから、 点火時期 0の遅角を 開始したタイミングゃこれよリ若干遅いタイミングで燃料噴射量を増量 補正するものに比して燃費の向上を図ることができると共にエミッショ ンの悪化を抑制することができる。 また、 触媒暖機を促進するためにス ロッ トル開度 T Hを増加し、 スロッ トル開度 T Hが目標値である開度 T H s e tに至ってから所定時間 t 3だけ経過したときに燃料噴射量の増 量補正を終了するから、 燃料噴射量の増量補正をその必要性が終了した 時点で迅速に終了させることができる。 この結果、 過剰な燃料噴射量の 増量補正により生じる不都合、 例えば、 燃費の悪化ゃェミッションの悪 化を抑制することができる。 さらに、 触媒暖機制御を行なっている最中 にエンジン 2 2からの動力が必要になリ触媒暖機制御が中止されたとき には、 エンジン 2 2の始動を開始してから所定時間 t 2が経過したとき に燃料噴射量の増量補正を終了するから、 燃料噴射量の増量補正が長時 間継続するのを抑制することができる。 加えて、 燃料噴射量の増量補正 を終了するときには、 増量補正 T Kに対して空燃比 A Fによるなまし処 理が施されるから、 燃料噴射量の増量補正を終了する際の燃料噴射量の 急変に伴う空燃比 A Fの変動を抑制することができ、 安定した燃料噴射 制御を行なうことができる。
実施例のハイプリッ ド自動車 2 0が搭載する内燃機関の制御装置では、 点火時期 0が閾値 0 r e f まで遅角されたタイミングで燃料噴射量の增 量補正を開始するものとしたが、 エンジン 2 2の始動を開始してから所 定時間経過したタイミングで燃料噴射量の増量補正を開始するものとし てもよいし、 点火時期 0の遅角を開始してから所定時間経過したタイミ ングで燃料噴射量の増量補正を開始するものとしてもよい。
実施例のハイプリッド自動車 2 0が搭載する内燃機関の制御装置では、 スロッ トル開度 T Hが目標値である開度 T H s e tに至ってから所定時 間 t 3だけ経過したときに燃料噴射量の増量補正を終了するものとした が、 スロッ トル開度 T Hが目標値である開度 T H s e tに至ったときに 燃料噴射量の増量補正を終了するものとしてもよいし、 スロッ トル開度
T Hの増加を開始してから所定時間経過したときに燃料噴射量の増量補 正を終了するものとしてもよい。
実施例のハイプリッ ド自動車 2 0が搭載する内燃機関の制御装置では、 点火時期 Θの遅角を開始してからスロッ トル開度 T Hの増加を開始する ものとしたが、 点火時期 0の遅角の開始と同時にスロッ トル開度 T Hの 増加を開始するものとしても構わない。
実施例のハイプリッド自動車 2 0が搭載する内燃機関の制御装置では、 点火時期 0の遅角とスロッ トル開度 T Hの増加による吸入空気量の増加 とにより触媒暖機を行なうものとしたが、 点火時期 0の遅角による触媒 暖機は行なうがスロッ トル開度 T Hの増加による触媒暖機は行なわない ものとしてもよく、 逆に、 スロッ トル開度 T Hの増加による触媒暖機は 行なうが点火時期 0の遅角による触媒暖機は行なわないものとしてもよ し、。 点火時期 0の遅角による触媒暖機だけを行なう場合、 燃料噴射量の 増量補正はエンジン 2 2の始動を開始してから所定時間 t 2が経過した ときに終了すればよい。 また、 スロッ トル開度 T Hの増加による触媒暖 機だけを行なう場合、 燃料噴射量の増量補正はスロッ トル開度 T Hの増 加を開始したときやエンジン 2 2を始動してから所定時間経過したとき に開始すればよい。
実施例のハイプリッ ド自動車 2 0が搭載する内燃機関の制御装置では、 触媒暖機制御を行なっている最中にエンジン 2 2からの動力が必要にな リ触媒暖機制御が中止されたときには、 エンジン 2 2の始動を開始して から所定時間 t 2が経過したときに燃料噴射量の増量補正を終了するも のとしたが、 エンジン 2 2からの動力の必要の有無に拘わらず、 ェンジ ン 2 2の始動を開始してから所定時間 t 2が経過したときに燃料噴射量 の増量補正を終了するものとしてもよい。 この場合、 スロッ トル開度丁 Hの増加を行なわないものとしても構わない。
実施例のハイプリッ ド自動車 2 0が搭載する内燃機関の制御装置では、 燃料噴射量の増量補正を終了するときには、 増量補正 T Kに対して空燃 比 A Fによるなまし処理を施すものとしたが、 空燃比 A Fに基づいて燃 料噴射量の増量分を減衰すればよいから、 なまし処理以外の処理によつ て燃料噴射量の増量分を減衰させるものとしてもよい。 また、 燃料噴射 量の増量補正を終了する際には、 燃料噴射量の増量分を減衰させずに直 ちに終了させるものとしても構わない。
実施例のハイプリッ ド自動車 2 0が搭載する内燃機関の制御装置では、 システム起動されて最初にエンジン 2 2を始動する際に浄化装置 1 3 4 の触媒を暖機するために始動時制御を行なうものとしたが、 浄化装置 1 3 4の触媒の暖機が未完了であれば、 システム起動されて最初にェンジ ン 2 2を始動する際以降のエンジン 2 2の始動の際にも始動時制御を行 なうものとしても構わない。
実施例では、 内燃機関の制御装置をハイブリッ ド自動車 2 0に搭載す るものとしたが、 走行用のモータを搭載しない自動車に搭載するものと してもよい。 この場合、 走行要求に迅速に対応するために、 触媒暖機の ためにスロッ トル開度 T Hを増加して吸入空気量 Q aを大きくする処理 は行なわない方が好ましい。 この場合、 燃料噴射量の増量補正の終了は エンジン 2 2の始動を開始してから所定時間 t 2が経過したときに行な えばよい。
上述した実施例や変形例の内燃機関の制御装置は、 自動車に搭載され る場合に限られず、 自動車以外の列車などの車両, 船舶や航空機などの 移動体に搭載されるものとしてもよいし、 移動体以外の設備に組み込ま れるものとしてもよい。
実施例では、 ハイプリッ ド自動車 2 0に搭載された内燃機関の制御装 置として説明したが、 内燃機関の制御方法の形態としてもよいのは勿論 である。
以上、 本発明を実施するための最良の形態について実施例を用いて説 明したが、 本発明はこうした実施例に何等限定されるものではなく、 本 発明の要旨を逸脱しない範囲内において、 種々なる形態で実施し得るこ とは勿論である。 産業上の利用の可能性
本発明は、 内燃機関の制御装置の製造産業などに利用可能である。

Claims

請求の範囲
1 . 点火時期が変更可能で排気系に排気を浄化する触媒を有する浄化装 置が取り付けられた内燃機関の制御装置であって、
前記触媒が未暖機状態にある前記内燃機関を始動する際には、 始動直 後から点火時期を徐々に遅角させる始動時点火制御を実行し、 該始動時 点火制御による点火時期の遅角が開始されてから所定の増量条件が成立 するまでは目標空燃比となる燃料噴射量を燃料噴射弁から噴射すると共 に前記所定の増量条件が成立した以降は前記目標空燃比となる燃料噴射 量を増量補正した燃料噴射量を燃料噴射弁から噴射する始動時燃料噴射 制御を実行する
内燃機関の制御装置。
2 . 請求項 1記載の内燃機関の制御装置であって、
前記所定の増量条件は、 前記点火時期が所定の角度に至った条件であ る
内燃機関の制御装置。
3 . 請求項 1記載の内燃機関の制御装置であって、
前記所定の増量条件は、 前記始動時点火制御による点火時期の遅角が 開始されてから所定時間経過した条件である
内燃機関の制御装置。
4 . 請求項 1記載の内燃機関の制御装置であって、
前記目標空燃比となる燃料噴射量は、 理論空燃比となる基本燃料噴射 量に前記内燃機関の状態に基づく補正係数を乗じて演算されてなる噴射 里 C*ある
内燃機関の制御装置。
5 . 請求項 1ないし 4いずれか記載の内燃機関の制御装置であって、 前記始動時燃料噴射制御による燃料噴射量の増量補正が行なわれた以 降に所定開度に至るまでスロッ トル開度を徐々に大きくする始動時スロ ッ トル制御を実行すると共に前記始動時燃料噴射制御としてスロッ トル 開度が前記所定開度に至った以降に燃料噴射量の増量補正を終了する制 御を実行する
内燃機関の制御装置。
6 . 請求項 5記載の内燃機関の制御装置であって、
前記始動時燃料噴射制御は、 スロッ トル開度が前記所定開度に至って から所定時間経過したときに燃料噴射量の増量補正を終了する制御であ る
内燃機関の制御装置。
7 . 請求項 5または 6記載の内燃機関の制御装置であって、
前記始動時スロッ トル制御は、 該制御を実行している最中に前記内燃 機関への出力要求がなされたときには該制御を中止する制御であり、 前記始動時燃料噴射制御は、 前記始動時スロッ トル制御が中止された ときには前記内燃機関の始動から所定時間経過したときに燃料噴射量の 増量補正を終了する制御である
内燃機関の制御装置。
8 . 請求項 1ないし 4いずれか記載の内燃機関の制御装置であって、 前記始動時燃料噴射制御は、 前記内燃機関の始動から所定時間経過し たときに燃料噴射量の増量補正を終了する制御である
内燃機関の制御装置。
9 . 請求項 5ないし 8いずれか記載の内燃機関の制御装置であって、 前記始動時燃料噴射制御は、 撚料噴射量の増量補正を終了するときに は終了直前の空燃比に基づく減衰程度をもって燃料噴射量の増量補正を 終了する制御である 内燃機関の制御装置。
1 0 . 排気系に排気を浄化する触媒を有する浄化装置が取り付けられた 内燃機関の制御装置であって、
前記触媒が未暖機状態にある前記内燃機関を始動する際には、 始動後 の第 1のタイミングからスロッ トル開度を所定開度に至るまで徐々に大 きくする始動時スロッ トル制御を実行し、 前記内燃機関の始動に伴う第 2のタイミングから目標空燃比となる燃料噴射量を増量補正した燃料噴 射量を燃料噴射弁から噴射すると共にスロッ トル開度が前記所定開度に 至った以降に燃料噴射量の増量補正を終了する始動時燃料噴射制御を実 行する
内燃機関の制御装置。
1 1 . 請求項 1 0記載の内燃機関の制御装置であって、
前記始動時燃料噴射制御は、 スロッ トル開度が前記所定開度に至って から所定時間経過したときに燃料噴射量の増量補正を終了する制御であ る
内燃機関の制御装置。
1 2 . 請求項 1 0または 1 1記載の内燃機関の制御装置であって、 前記始動時スロッ トル制御は、 該制御を実行している最中に前記内燃 機関への出力要求がなされたときには該制御を中止する制御であり、 前記始動時燃料噴射制御は、 前記始動時スロッ トル制御が中止された ときには前記内燃機関の始動から所定時間経過したときに燃料噴射量の 増量補正を終了する制御である
内燃機関の制御装置。
1 3 . 点火時期が変更可能で排気系に排気を浄化する触媒を有する浄化 装置が取リ付けられた内燃機関の制御方法であって、
前記触媒が未暖機状態にある前記内燃機関を始動する際には、 始動直 後から点火時期を徐々に遅角させる始動時点火制御を実行し、 該始動時 点火制御による点火時期の遅角が開始されてから所定の増量条件が成立 するまでは目標空燃比となる燃料噴射量を燃料噴射弁から噴射すると共 に前記所定の増量条件が成立した以降は前記目標空燃比となる燃料噴射 量を増量補正した燃料噴射量を燃料噴射弁から噴射する始動時燃料噴射 制御を実行する
内燃機関の制御方法。
1 4 . 請求項 1 3記載の内燃機関の制御方法であって、
前記始動時燃料噴射制御による燃料噴射量の増量補正が行なわれた以 降に所定開度に至るまでスロッ トル開度を徐々に大きくする始動時スロ ッ トル制御を実行すると共に前記始動時燃料噴射制御としてスロッ トル 開度が前記所定開度に至った以降に燃料噴射量の増量補正を終了する制 御を実行する
内燃機関の制御方法。
1 5 . 請求項 1 3記載の内燃機関の制御方法であって、
前記始動時燃料噴射制御は、 前記内燃機関の始動から所定時間経過し たときに燃料噴射量の増量補正を終了する制御である
内燃機関の制御方法。
1 6 . 請求項 1 4または 1 5記載の内燃機関の制御装置であって、 前記始動時燃料噴射制御は、 燃料噴射量の増量補正を終了するときに は終了直前の空燃比に基づく減衰程度をもって燃料噴射量の増量補正を 終了する制御である
内燃機関の制御方法。
1 7 . 排気系に排気を浄化する触媒を有する浄化装置が取り付けられた 内燃機関の制御方法であって、
前記触媒が未暖機状態にある前記内燃機関を始動する際には、 始動後 の第 1のタイミングからスロッ トル開度を所定開度に至るまで徐々に大 きくする始動時スロッ トル制御を実行し、 前記内燃機関の始動に伴う第
2のタイミングから目標空燃比となる燃料噴射量を増量補正した燃料噴 射量を燃料噴射弁から噴射すると共にスロッ トル開度が前記所定開度に 至った以降に燃料噴射量の増量補正を終了する始動時燃料噴射制御を実 行する
内燃機関の制御方法。
1 8 . 請求項 1 7記載の内燃機関の制御方法であって、
前記始動時スロッ トル制御は、 該制御を実行している最中に前記内燃 機関への出力要求がなされたときには該制御を中止する制御であり、 前記始動時燃料噴射制御は、 前記始動時スロッ トル制御が中止された ときには前記内燃機関の始動から所定時間経過したときに燃料噴射量の 増量補正を終了する制御である
内燃機関の制御方法。
PCT/JP2004/014898 2004-10-01 2004-10-01 内燃機関の制御装置および内燃機関の制御方法 WO2006038306A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US11/661,683 US8176727B2 (en) 2004-10-01 2004-10-01 Internal combustion engine control apparatus and control method of internal combustion engine
JP2006539125A JP4420024B2 (ja) 2004-10-01 2004-10-01 内燃機関の制御装置および内燃機関の制御方法
PCT/JP2004/014898 WO2006038306A1 (ja) 2004-10-01 2004-10-01 内燃機関の制御装置および内燃機関の制御方法
CN2004800441174A CN101031710B (zh) 2004-10-01 2004-10-01 内燃机的控制装置以及内燃机的控制方法
DE112004002979.1T DE112004002979B8 (de) 2004-10-01 2004-10-01 Verbrennungsmotor-Steuerungsvorrichtung und Steuerungsverfahren für einen Verbrennungsmotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/014898 WO2006038306A1 (ja) 2004-10-01 2004-10-01 内燃機関の制御装置および内燃機関の制御方法

Publications (1)

Publication Number Publication Date
WO2006038306A1 true WO2006038306A1 (ja) 2006-04-13

Family

ID=36142396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/014898 WO2006038306A1 (ja) 2004-10-01 2004-10-01 内燃機関の制御装置および内燃機関の制御方法

Country Status (5)

Country Link
US (1) US8176727B2 (ja)
JP (1) JP4420024B2 (ja)
CN (1) CN101031710B (ja)
DE (1) DE112004002979B8 (ja)
WO (1) WO2006038306A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009011452A2 (en) * 2007-07-17 2009-01-22 Toyota Jidosha Kabushiki Kaisha Controller of internal combustion engine

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008151064A (ja) * 2006-12-19 2008-07-03 Toyota Motor Corp 内燃機関の制御装置
JP2008240704A (ja) * 2007-03-28 2008-10-09 Denso Corp 内燃機関の制御装置
CN101852137B (zh) * 2009-03-31 2014-11-05 比亚迪股份有限公司 一种混合动力车发动机的节气门系统及其控制方法
KR101684500B1 (ko) * 2011-12-06 2016-12-09 현대자동차 주식회사 하이브리드 차량의 엔진 제어 방법
JP2014519432A (ja) * 2012-03-30 2014-08-14 本田技研工業株式会社 内燃機関制御装置及び内燃機関制御方法
DE112013007190T5 (de) * 2013-06-24 2016-03-03 Toyota Jidosha Kabushiki Kaisha Steuervorrichtung für Hybridfahrzeug
WO2015052815A1 (ja) 2013-10-10 2015-04-16 三菱電機株式会社 内燃機関の制御装置および制御方法
CN204610119U (zh) * 2015-03-12 2015-09-02 浙江吉利控股集团有限公司 用于串联式混合动力车辆的点火系统
JP6235053B2 (ja) * 2016-02-01 2017-11-22 株式会社ケーヒン 内燃機関制御装置
WO2017154451A1 (ja) * 2016-03-08 2017-09-14 ボッシュ株式会社 微小燃料噴射量補正方法及びコモンレール式燃料噴射制御装置
JP6520910B2 (ja) * 2016-12-26 2019-05-29 トヨタ自動車株式会社 内燃機関の制御装置
JP7183962B2 (ja) * 2019-06-05 2022-12-06 トヨタ自動車株式会社 内燃機関の制御装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2514446B2 (ja) * 1989-12-25 1996-07-10 株式会社ユニシアジェックス ノッキング制御機能付内燃機関の燃料供給制御装置
JPH1047119A (ja) * 1996-07-31 1998-02-17 Suzuki Motor Corp 内燃機関の燃料噴射量制御装置
JP2002089339A (ja) * 2000-09-12 2002-03-27 Toyota Motor Corp 筒内噴射式火花点火内燃機関
JP2002213180A (ja) * 2001-01-19 2002-07-31 Japan Institute Of Wastewater Engineering Technology 泥水式シールド掘進方法
JP2003074404A (ja) * 2001-09-04 2003-03-12 Nissan Motor Co Ltd 内燃機関の制御装置
JP3546757B2 (ja) * 1999-05-25 2004-07-28 トヨタ自動車株式会社 内燃機関の燃焼制御装置
JP3552573B2 (ja) * 1999-03-08 2004-08-11 トヨタ自動車株式会社 内燃機関の吸入空気量の制御装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01190934A (ja) 1988-01-22 1989-08-01 Hitachi Ltd 内燃機関の燃料噴射量制御装置
JPH0821283A (ja) * 1994-07-08 1996-01-23 Unisia Jecs Corp 内燃機関の空燃比制御装置
JPH0886236A (ja) 1994-09-19 1996-04-02 Toyota Motor Corp 内燃機関の空燃比制御装置
US5497745A (en) * 1995-02-24 1996-03-12 Ford Motor Company Engine control for enhanced catalyst warm up while maintaining manifold vacuum
US5845492A (en) * 1995-09-18 1998-12-08 Nippondenso Co., Ltd. Internal combustion engine control with fast exhaust catalyst warm-up
JP2001050086A (ja) * 1999-08-09 2001-02-23 Denso Corp 内燃機関の空燃比制御装置
DE60027987T8 (de) * 1999-11-09 2007-02-15 Honda Giken Kogyo K.K. Steuerungssystem für eine Brennkraftmaschine
US6681741B2 (en) * 2000-12-04 2004-01-27 Denso Corporation Control apparatus for internal combustion engine
DE10100682A1 (de) * 2001-01-09 2002-07-11 Bosch Gmbh Robert Verfahren zur Aufheizung eines Katalysators bei Verbrennungsmotoren mit Benzindirekteinspritzung
JP2002213280A (ja) 2001-01-15 2002-07-31 Nissan Motor Co Ltd エンジンの燃料供給量制御装置
JP2002257480A (ja) 2001-02-28 2002-09-11 Nkk Corp Co2低排出型燃焼装置及びその使用方法
JP3979019B2 (ja) * 2001-03-09 2007-09-19 株式会社デンソー 内燃機関の制御装置
DE10114050A1 (de) * 2001-03-15 2002-10-02 Volkswagen Ag Verfahren zum Warmlauf eines einer fremdgezündeten, direkteinspritzenden Verbrennungskraftmaschine nachgeschalteten Katalysators
DE10222703B4 (de) * 2001-05-23 2015-06-18 Denso Corporation Steuergerät für eine Brennkraftmaschine
JP2003138960A (ja) 2001-11-05 2003-05-14 Denso Corp 内燃機関の触媒早期暖機制御装置
US6640539B1 (en) * 2002-07-12 2003-11-04 Ford Global Technologies, Llc Engine control for low emission vehicle starting

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2514446B2 (ja) * 1989-12-25 1996-07-10 株式会社ユニシアジェックス ノッキング制御機能付内燃機関の燃料供給制御装置
JPH1047119A (ja) * 1996-07-31 1998-02-17 Suzuki Motor Corp 内燃機関の燃料噴射量制御装置
JP3552573B2 (ja) * 1999-03-08 2004-08-11 トヨタ自動車株式会社 内燃機関の吸入空気量の制御装置
JP3546757B2 (ja) * 1999-05-25 2004-07-28 トヨタ自動車株式会社 内燃機関の燃焼制御装置
JP2002089339A (ja) * 2000-09-12 2002-03-27 Toyota Motor Corp 筒内噴射式火花点火内燃機関
JP2002213180A (ja) * 2001-01-19 2002-07-31 Japan Institute Of Wastewater Engineering Technology 泥水式シールド掘進方法
JP2003074404A (ja) * 2001-09-04 2003-03-12 Nissan Motor Co Ltd 内燃機関の制御装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009011452A2 (en) * 2007-07-17 2009-01-22 Toyota Jidosha Kabushiki Kaisha Controller of internal combustion engine
WO2009011452A3 (en) * 2007-07-17 2009-04-23 Toyota Motor Co Ltd Controller of internal combustion engine

Also Published As

Publication number Publication date
DE112004002979B8 (de) 2016-08-18
DE112004002979B4 (de) 2016-06-09
US20080216465A1 (en) 2008-09-11
US8176727B2 (en) 2012-05-15
CN101031710B (zh) 2010-05-05
DE112004002979T5 (de) 2007-08-23
JPWO2006038306A1 (ja) 2008-05-15
CN101031710A (zh) 2007-09-05
JP4420024B2 (ja) 2010-02-24

Similar Documents

Publication Publication Date Title
JP6149841B2 (ja) ハイブリッド自動車
JP4766149B2 (ja) 内燃機関装置およびその制御方法並びに車両
JP2010241170A (ja) 動力出力装置、それを備えたハイブリッド自動車および動力出力装置の制御方法
JP5459333B2 (ja) ハイブリッド自動車の制御装置
JP2011069277A (ja) 内燃機関装置および内燃機関の燃料噴射制御方法並びに車両
JP4420024B2 (ja) 内燃機関の制御装置および内燃機関の制御方法
JP5692008B2 (ja) ハイブリッド車
JP2019127887A (ja) 内燃機関装置
JP2012031742A (ja) 自動車
JP7234996B2 (ja) エンジン装置およびこれを備えるハイブリッド自動車
JP7447776B2 (ja) 内燃機関の制御装置
JP7115632B2 (ja) 内燃機関の制御方法および制御装置
JP7409230B2 (ja) エンジン装置
JP2013216223A (ja) ハイブリッド車両
JP4973595B2 (ja) 内燃機関装置および内燃機関の始動制御方法
JP7188366B2 (ja) エンジン装置
JP7226257B2 (ja) 駆動装置
JP4973596B2 (ja) 内燃機関装置および内燃機関の始動制御方法
JP6848815B2 (ja) ハイブリッド自動車
JP6747364B2 (ja) 駆動装置
JP4962404B2 (ja) 内燃機関装置および車両並びに内燃機関装置の制御方法
JP2006299811A (ja) 内燃機関の始動装置およびこれを搭載する自動車並びに内燃機関の始動装置に用いられる制御方法
JP6733556B2 (ja) 自動車
KR100830655B1 (ko) 내연기관의 제어장치 및 제어방법
JP6304051B2 (ja) ハイブリッド自動車

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11661683

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006539125

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200480044117.4

Country of ref document: CN

Ref document number: 1120040029791

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077007410

Country of ref document: KR

RET De translation (de og part 6b)

Ref document number: 112004002979

Country of ref document: DE

Date of ref document: 20070823

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 04773695

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607