JP5459333B2 - ハイブリッド自動車の制御装置 - Google Patents

ハイブリッド自動車の制御装置 Download PDF

Info

Publication number
JP5459333B2
JP5459333B2 JP2012034052A JP2012034052A JP5459333B2 JP 5459333 B2 JP5459333 B2 JP 5459333B2 JP 2012034052 A JP2012034052 A JP 2012034052A JP 2012034052 A JP2012034052 A JP 2012034052A JP 5459333 B2 JP5459333 B2 JP 5459333B2
Authority
JP
Japan
Prior art keywords
air
fuel ratio
value
engine
ratio sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012034052A
Other languages
English (en)
Other versions
JP2013169859A (ja
Inventor
和哉 宮地
寿一 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012034052A priority Critical patent/JP5459333B2/ja
Priority to US13/769,617 priority patent/US20130218442A1/en
Publication of JP2013169859A publication Critical patent/JP2013169859A/ja
Application granted granted Critical
Publication of JP5459333B2 publication Critical patent/JP5459333B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1486Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor with correction for particular operating conditions
    • F02D41/1488Inhibiting the regulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control
    • F02D41/2461Learning of the air-fuel ratio control by learning a value and then controlling another value
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0062Adapting control system settings
    • B60W2050/0075Automatic parameter input, automatic initialising or calibrating means
    • B60W2050/0083Setting, resetting, calibration
    • B60W2050/0088Adaptive recalibration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0614Position of fuel or air injector
    • B60W2510/0619Air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2474Characteristics of sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0814Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop
    • F02N11/0818Conditions for starting or stopping the engine or for deactivating the idle-start-stop mode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors

Description

本発明は、ハイブリッド自動車の制御装置に関する。
従来、この種のハイブリッド自動車の制御装置としては、空燃比センサの出力値に基づいてエンジンの空燃比フィードバック制御を行なうものにおいて、エンジンの一時停止後の再始動から所定時間が経過したときにおける空燃比センサの出力値がリーン領域のときに、空燃比センサの応答遅れの異常を検出してエンジンの間欠運転を不許可とするものが提案されている(例えば、特許文献1参照)。このハイブリッド自動車では、こうした制御により、再始動時の排気エミッションの悪化を抑制している。
特開2008−143482号公報
上述のハイブリッド自動車の制御装置では、エンジンの再始動から所定時間が経過する前にエンジンの運転を停止する場合などには、空燃比センサに応答遅れの異常があるか否かを判定することができない。また、上述のハイブリッド自動車の制御装置では、空燃比センサの応答遅れの異常を検出するだけで、その応答性自体については把握(学習)していない。したがって、空燃比センサの応答性の学習方法を構築することやその学習を比較的多くの機会に行なえるようにすることが課題の一つとされている。
本発明のハイブリッド自動車は、空燃比センサの応答性の学習方法を構築することやその学習を比較的多くの機会に行なえるようにすることを主目的とする。
本発明のハイブリッド自動車の制御装置は、上述の主目的を達成するために以下の手段を採った。
本発明のハイブリッド自動車の制御装置は、
エンジンと、前記エンジンをクランキング可能なモータと、前記モータに電力を供給可能なバッテリと、前記エンジンの排気系に取り付けられて空燃比に応じて出力値が変化する空燃比センサと、を備えるハイブリッド自動車の制御装置であって、
前記モータによる前記エンジンのクランキング時における前記空燃比センサの出力値の傾きを用いて前記空燃比センサの応答性の学習を行なう、
ことを特徴とする。
このハイブリッド自動車の制御装置では、モータによるエンジンのクランキング時における空燃比センサの出力値の傾きを用いて空燃比センサの応答性の学習を行なう。通常、エンジンのクランキング時には、吸気管に新たな空気(新気)が導入されることから、空燃比がリーン側に変化する。そして、この空燃比の変化に応じて空燃比センサの出力値が変化する。したがって、エンジンのクランキング時における空燃比センサの出力値の傾きを用いることにより、空燃比センサの応答性の学習を行なうことができる。また、ハイブリッド自動車では、システム起動からシステム停止までエンジンを間欠運転しながら走行することから、エンジンのクランキング時における空燃比センサの出力値の傾きを用いて空燃比センサの応答性の学習を行なうことにより、エンジンの始動後に所定時間が経過してから学習を行なうものに比して、より多くの機会に学習を行なうことができると考えられる。ここで、「空燃比センサ」は、空燃比が大きいほど出力値が略リニアに大きくなるセンサである、ものとすることもできる。
こうした本発明のハイブリッド自動車の制御装置において、
前記エンジンのクランキング時における前記空燃比センサの出力値の傾きの最大値であるクランキング時最大傾き値を、前記エンジンのクランキング開始時における前記空燃比センサの出力値と大気圧とスロットル開度とのうち少なくとも一つを用いて正規化し、該正規化後のクランキング時最大傾き値を用いて前記空燃比センサの応答性の学習値を演算する、ものとすることもできる。ここで、「正規化」は、クランキング時最大傾き値を、エンジンのクランキング開始時における空燃比センサの出力値が所定空燃比のときのクランキング時最大傾き値に変換したり、大気圧が所定気圧のときのクランキング最大傾き値に変換したり、スロットル開度が所定開度のときのクランキング時最大傾き値に変換したりする、ものとすることもできる。
この正規化後のクランキング時最大傾き値を用いて空燃比センサの応答性の学習値を演算する態様のハイブリッド自動車の制御装置において、前記演算した正規化後のクランキング時最大傾き値に値0より大きく値1より小さな反映係数を乗じた値と、前回の前記空燃比センサの応答性の学習値に値1から反映係数を減じた値を乗じた値と、の和を前記空燃比センサの応答性の学習値として演算する、ものとすることもできる。ここで、「反映係数」は、値0より大きく値1より小さな値を用いることができる。
また、本発明のハイブリッド自動車の制御装置において、前記モータの出力が閾値未満に制限されているか前記エンジンのクランキング時の該エンジンの回転数の立ち上がりが閾値より遅いときには、前記空燃比センサの応答性の学習を行なわない、ものとすることもできる。
さらに、本発明のハイブリッド自動車の制御装置において、前記エンジンの始動後において、空燃比フィードバック制御を開始するタイミングを、前記空燃比センサの応答性が低いほど遅くなる傾向に設定する、ものとすることもできる。この態様のハイブリッド自動車の制御装置において、前記エンジンの始動から所定時間が経過した後で、且つ、前記空燃比センサの出力値が、目標空燃比よりリッチ側で且つ前記空燃比センサの応答性が低いほど目標空燃比に近づくよう定められた閾値または該閾値より理論空燃比側に至ったときに、空燃比フィードバック制御を開始する、ものとすることもできる。
あるいは、本発明のハイブリッド自動車の制御装置において、空燃比フィードバック制御における積分項の制限値を、前記空燃比センサの応答性が低いほど小さくなる傾向に設定する、ものとすることもできる。
本発明の一実施例としてのハイブリッド自動車20の構成の概略を示す構成図である。 エンジン22の構成の概略を示す構成図である。 空燃比センサ135aおよび酸素センサ135bの出力特性の一例を示す説明図である。 電池温度Tbと入出力制限Win,Woutの基本値との関係の一例を示す説明図である。 バッテリ50の蓄電割合SOCと出力制限用補正係数と入力制限用補正係数との関係の一例を示す説明図である。 実施例のエンジンECU24により実行される空燃比センサ応答性学習ルーチンの一例を示すフローチャートである。 開始時電圧Vaf0と最大傾き値ΔVafmaxとの関係を示す関係ラインの一例を示す説明図である。 モータMG1によってエンジン22をクランキングして始動する際のエンジン22の回転数Ne,吸入空気量Qa,空燃比センサ135aの出力電圧Vaf,傾き値ΔVafの時間変化の様子を示す説明図である。 エンジンECU24により実行される空燃比F/B制御開始許可ルーチンの一例を示すフローチャートである。 開始空燃比設定用マップの一例を示す説明図である。 エンジン22の回転数Ne,空燃比センサ135aの出力電圧Vaf,空燃比フィードバック補正量ΔQf,空燃比フィードバック制御の実行の有無の時間変化の様子の一例を示す説明図である。 変形例の空燃比センサ応答性学習ルーチンの一例を示すフローチャートである。 変形例の空燃比センサ応答性学習ルーチンの一例を示すフローチャートである。 大気圧Paと最大傾き値ΔVafmaxとの関係を示す関係ラインの一例を示す説明図である。 スロットル開度THと最大傾き値ΔVafmaxとの関係を示す関係ラインの一例を示す説明図である。 積分項制限値設定用マップの一例を示す説明図である。 変形例のハイブリッド自動車120の構成の概略を示す構成図である。 変形例のハイブリッド自動車220の構成の概略を示す構成図である。 変形例のハイブリッド自動車320の構成の概略を示す構成図である。 変形例のハイブリッド自動車420の構成の概略を示す構成図である。
次に、本発明を実施するための形態を実施例を用いて説明する。
図1は、本発明の一実施例としてのハイブリッド自動車20の構成の概略を示す構成図である。実施例のハイブリッド自動車20は、図示するように、ガソリンや軽油などを燃料として動力を出力するエンジン22と、エンジン22を駆動制御するエンジン用電子制御ユニット(以下、エンジンECUという)24と、エンジン22のクランクシャフト26にキャリアが接続されると共に駆動輪38a,38bにデファレンシャルギヤ37を介して連結された駆動軸36にリングギヤが接続されたプラネタリギヤ30と、例えば同期発電電動機として構成されて回転子がプラネタリギヤ30のサンギヤに接続されたモータMG1と、例えば同期発電電動機として構成されて回転子が駆動軸36に接続されたモータMG2と、モータMG1,MG2を駆動するためのインバータ41,42と、インバータ41,42の図示しないスイッチング素子をスイッチング制御することによってモータMG1,MG2を駆動制御するモータ用電子制御ユニット(以下、モータECUという)40と、例えばリチウムイオン二次電池として構成されてインバータ41,42を介してモータMG1,MG2と電力をやりとりするバッテリ50と、バッテリ50を管理するバッテリ用電子制御ユニット(以下、バッテリECUという)52と、車両全体を制御するハイブリッド用電子制御ユニット(以下、HVECUという)70と、を備える。
エンジン22は、例えばガソリンまたは軽油などの炭化水素系の燃料により動力を出力可能な内燃機関として構成されており、図2に示すように、エアクリーナ122により清浄された空気をスロットルバルブ124を介して吸入すると共に燃料噴射弁126からガソリンを噴射して吸入された空気とガソリンとを混合し、この混合気を吸気バルブ128を介して燃焼室に吸入し、点火プラグ130による電気火花によって爆発燃焼させて、そのエネルギにより押し下げられるピストン132の往復運動をクランクシャフト26の回転運動に変換する。エンジン22からの排気は、一酸化炭素(CO)や炭化水素(HC),窒素酸化物(NOx)の有害成分を浄化する浄化触媒(三元触媒)134aを有する浄化装置134を介して外気へ排出される。三元触媒134aでは、エンジン22からの排気が理論空燃比に対してリーン雰囲気のときには排気から酸素が吸蔵され、エンジン22からの排気が理論空燃比に対してリッチ雰囲気のときには吸蔵された酸素が排気へ放出される。また、エンジン22の排気管における浄化装置134の上流側には空燃比に応じて出力値(出力電圧Vaf)が略リニアに変化する空燃比センサ135aが設けられており、浄化装置134の下流側には空燃比が理論空燃比に対してリッチ側かリーン側かに応じて出力値(出力電圧Vo)が急激に変化する酸素センサ135bが設けられている。図3に空燃比センサ135aおよび酸素センサ135bの出力特性の一例を示す。図3の例では、空燃比センサ135aは、空燃比が大きいほど出力電圧Vafが略リニアに大きくなり、酸素センサ135bは、空燃比が理論空燃比に対してリッチ側のときには出力値Voが比較的大きくなり、リーン側のときには出力値Voが比較的小さくなる。
エンジンECU24は、CPU24aを中心とするマイクロプロセッサとして構成されており、CPU24aの他に、処理プログラムを記憶するROM24bと、データを一時的に記憶するRAM24cと、図示しない入出力ポートおよび通信ポートとを備える。エンジンECU24には、エンジン22の状態を検出する種々のセンサからの信号、例えば、クランクシャフト26の回転位置を検出するクランクポジションセンサ140からのクランクポジションやエンジン22の冷却水の温度を検出する水温センサ142からの冷却水温Tw,燃焼室内に取り付けられた図示しない圧力センサからの筒内圧力Pin,燃焼室へ吸排気を行なう吸気バルブ128や排気バルブを開閉するカムシャフトの回転位置を検出するカムポジションセンサ144からのカムポジション,スロットルバルブ124のポジションを検出するスロットルバルブポジションセンサ146からのスロットル開度TH,吸気管に取り付けられたエアフローメータ148からの吸入空気量Qa,同じく吸気管に取り付けられた温度センサ149からの吸気温Tin,浄化触媒134aの温度を検出する温度センサ134bからの触媒温度Tc,排気管に取り付けられた空燃比センサ135aからの出力電圧Vaf,同じく排気管に取り付けられた酸素センサ135bからの出力電圧Voなどが入力ポートを介して入力されている。また、エンジンECU24からは、エンジン22を駆動するための種々の制御信号、例えば、燃料噴射弁126への駆動信号や、スロットルバルブ124のポジションを調節するスロットルモータ136への駆動信号、イグナイタと一体化されたイグニッションコイル138への制御信号、吸気バルブ128の開閉タイミングを変更可能な可変バルブタイミング機構150への制御信号などが出力ポートを介して出力されている。エンジンECU24は、HVECU70と通信しており、HVECU70からの制御信号によりエンジン22を運転制御すると共に必要に応じてエンジン22の運転状態に関するデータを出力する。なお、エンジンECU24は、クランクポジションセンサ140からのクランクポジションに基づいてクランクシャフト26の回転数、即ちエンジン22の回転数Neも演算している。
モータECU40は、図示しないが、CPUを中心とするマイクロプロセッサとして構成されており、CPUの他に、処理プログラムを記憶するROMやデータを一時的に記憶するRAM,入出力ポート,通信ポートを備える。モータECU40には、モータMG1,MG2を駆動制御するために必要な信号、例えばモータMG1,MG2の回転子の回転位置を検出する回転位置検出センサ43,44からの回転位置θm1,θm2や図示しない電流センサにより検出されるモータMG1,MG2に印加される相電流などが入力ポートを介して入力されており、モータECU40からは、インバータ41,42の図示しないスイッチング素子へのスイッチング制御信号などが出力ポートを介して出力されている。また、モータECU40は、HVECU70と通信しており、HVECU70からの制御信号によってモータMG1,MG2を駆動制御すると共に必要に応じてモータMG1,MG2の運転状態に関するデータをHVECU70に出力する。なお、モータECU40は、回転位置検出センサ43,44からのモータMG1,MG2の回転子の回転位置θm1,θm2に基づいてモータMG1,MG2の回転角速度ωm1,ωm2や回転数Nm1,Nm2も演算している。
バッテリECU52は、図示しないが、CPUを中心とするマイクロプロセッサとして構成されており、CPUの他に、処理プログラムを記憶するROMやデータを一時的に記憶するRAM,入出力ポート,通信ポートを備える。バッテリECU52には、バッテリ50を管理するのに必要な信号、例えば、バッテリ50の端子間に設置された図示しない電圧センサからの端子間電圧Vbやバッテリ50の出力端子に接続された電力ラインに取り付けられた図示しない電流センサからの充放電電流Ib,バッテリ50に取り付けられた温度センサ51からの電池温度Tbなどが入力されており、必要に応じてバッテリ50の状態に関するデータを通信によりHVECU70に送信する。また、バッテリECU52は、バッテリ50を管理するために、電流センサにより検出された充放電電流Ibの積算値に基づいてそのときのバッテリ50から放電可能な電力の容量の全容量に対する割合である蓄電割合SOCを演算したり、演算した蓄電割合SOCと電池温度Tbとに基づいてバッテリ50を充放電してもよい最大許容電力である入出力制限Win,Woutを演算したりしている。なお、バッテリ50の入出力制限Win,Woutは、電池温度Tbに基づいて入出力制限Win,Woutの基本値を設定し、バッテリ50の蓄電割合SOCに基づいて出力制限用補正係数と入力制限用補正係数とを設定し、設定した入出力制限Win,Woutの基本値に補正係数を乗じることにより設定することができる。図4に電池温度Tbと入出力制限Win,Woutの基本値との関係の一例を示し、図5にバッテリ50の蓄電割合SOCと出力制限用補正係数と入力制限用補正係数との関係の一例を示す。こうして設定される入力制限Winは、電池温度Tbが所定温度Tblo(例えば、0℃や5℃,10℃など)より低い領域で電池温度Tbが低いほど大きく制限される(絶対値が小さい値となる)と共に電池温度Tbが所定温度Tbhi(例えば、45℃や50℃,55℃など)より高い領域で電池温度Tbが高いほど大きく制限され、蓄電割合SOCが所定値Shi(例えば、55%や60%,65%など)より高い領域で蓄電割合SOCが大きいほど大きく制限される。また、出力制限Woutは、電池温度Tbが所定温度Tbloより低い領域で電池温度Tbが低いほど大きく制限されると共に電池温度Tbが所定温度Tbhiより高い領域で電池温度Tbが高いほど大きく制限され、蓄電割合SOCが所定値Slo(例えば、35%や40%,45%など)より低い領域で蓄電割合SOCが小さいほど大きく制限される。
HVECU70は、図示しないが、CPUを中心とするマイクロプロセッサとして構成されており、CPUの他に、処理プログラムを記憶するROMやデータを一時的に記憶するRAM,入出力ポート,通信ポートを備える。HVECU70には、イグニッションスイッチ80からのイグニッション信号やシフトレバー81の操作位置を検出するシフトポジションセンサ82からのシフトポジションSP,アクセルペダル83の踏み込み量を検出するアクセルペダルポジションセンサ84からのアクセル開度Acc,ブレーキペダル85の踏み込み量を検出するブレーキペダルポジションセンサ86からのブレーキペダルポジションBP,車速センサ88からの車速V,大気圧センサ89からの大気圧Paなどが入力ポートを介して入力されている。HVECU70は、前述したように、エンジンECU24やモータECU40,バッテリECU52と通信ポートを介して接続されており、エンジンECU24やモータECU40,バッテリECU52と各種制御信号やデータのやりとりを行なっている。
こうして構成された実施例のハイブリッド自動車20では、運転者によるアクセルペダルの踏み込み量に対応するアクセル開度Accと車速Vとに基づいて駆動軸36に出力すべき要求トルクTr*を計算し、この要求トルクTr*に対応する要求動力が駆動軸36に出力されるように、エンジン22とモータMG1とモータMG2とが運転制御される。エンジン22とモータMG1とモータMG2との運転制御としては、要求動力に見合う動力がエンジン22から出力されるようにエンジン22を運転制御すると共にエンジン22から出力される動力のすべてがプラネタリギヤ30とモータMG1とモータMG2とによってトルク変換されて駆動軸36に出力されるようモータMG1およびモータMG2を駆動制御するトルク変換運転モードや、要求動力とバッテリ50の充放電に必要な電力との和に見合う動力がエンジン22から出力されるようにエンジン22を運転制御すると共にバッテリ50の充放電を伴ってエンジン22から出力される動力の全部またはその一部がプラネタリギヤ30とモータMG1とモータMG2とによるトルク変換を伴って要求動力が駆動軸36に出力されるようモータMG1およびモータMG2を駆動制御する充放電運転モード,エンジン22の運転を停止してモータMG2からの要求動力に見合う動力を駆動軸36に出力するよう運転制御するモータ運転モードなどがある。なお、トルク変換運転モードと充放電運転モードとは、いずれもエンジン22の運転を伴って要求動力が駆動軸36に出力されるようエンジン22とモータMG1とモータMG2とを制御するモードであり、実質的な制御における差異はないため、以下、両者を合わせてエンジン運転モードという。
エンジン運転モードでは、HVECU70は、アクセルペダルポジションセンサ84からのアクセル開度Accと車速センサ88からの車速Vとに基づいて駆動軸36に出力すべき要求トルクTr*を設定し、設定した要求トルクTr*に駆動軸36の回転数Nr(例えば、モータMG2の回転数Nm2や車速Vに換算係数を乗じて得られる回転数)を乗じて走行に要求される走行用パワーPdrv*を計算し、計算した走行用パワーPdrv*からバッテリ50の充放電要求パワーPb*(バッテリ50から放電するときが正の値)を減じてエンジン22から出力すべきパワーとしての要求パワーPe*を設定する。そして、要求パワーPe*を効率よくエンジン22から出力することができるエンジン22の回転数NeとトルクTeとの関係としての動作ライン(例えば燃費最適動作ライン)を用いてエンジン22の目標回転数Ne*と目標トルクTe*とを設定し、バッテリ50の入出力制限Win,Woutの範囲内で、エンジン22の回転数Neが目標回転数Ne*となるようにするための回転数フィードバック制御によってモータMG1から出力すべきトルクとしてのトルク指令Tm1*を設定すると共にモータMG1をトルク指令Tm1*で駆動したときにプラネタリギヤ30を介して駆動軸36に作用するトルクを要求トルクTr*から減じてモータMG2のトルク指令Tm2*を設定し、設定した目標回転数Ne*と目標トルクTe*とについてはエンジンECU24に送信し、トルク指令Tm1*,Tm2*についてはモータECU40に送信する。目標回転数Ne*と目標トルクTe*とを受信したエンジンECU24は、目標回転数Ne*と目標トルクTe*とによってエンジン22が運転されるようエンジン22の吸入空気量制御や燃料噴射制御,点火制御などを行ない、トルク指令Tm1*,Tm2*を受信したモータECU40は、モータMG1,MG2がトルク指令Tm1*,Tm2*で駆動されるようインバータ41,42のスイッチング素子のスイッチング制御を行なう。こうした制御により、エンジン22を効率よく運転しながらバッテリ50の入出力制限Win,Woutの範囲内で要求トルクTr*を駆動軸36に出力して走行することができる。このエンジン運転モードでは、エンジン22の要求パワーPe*がエンジン22を運転停止した方がよい要求パワーPe*の範囲の上限として定められた停止用閾値Pstop以下に至ったときなどに、エンジン22の停止条件が成立したと判定して、エンジン22の運転を停止してモータ運転モードに移行する。
ここで、エンジン22の燃料噴射制御について説明する。燃料噴射制御では、まず、エアフローメータ148からの吸入空気量Qaに基づいて空燃比を目標空燃比AF*(例えば理論空燃比)とするための基本燃料噴射量Qftmpを設定し、空燃比センサ135aの出力電圧Vafに対応する空燃比(以下、検出空燃比AFdetという)が目標空燃比AF*となるよう次式(1)により空燃比フィードバック補正量ΔQfを設定し、設定した空燃比フィードバック補正量ΔQfを基本燃料噴射量Qftmpに加えて目標燃料噴射量Qf*を設定し、設定した目標燃料噴射量Qf*を用いて燃料噴射弁126を制御する。ここで、式(1)は、検出空燃比AFdetが目標空燃比AF*となるようにするためのフィードバック制御(空燃比フィードバック制御)における関係式であり、式(1)中、「k1」は比例項のゲインであり、「k2」は積分項のゲインである。なお、エンジン22の始動完了直後など空燃比フィードバック制御を実行しないときには、基本燃料噴射量Qftmpを目標燃料噴射量Qf*を設定し、設定した目標燃料噴射量Qf*を用いて燃料噴射弁126を制御する。
ΔQf=k1・(AF*-AFdet)+k2・∫(AF*-AFdet)dt (1)
モータ運転モードでは、HVECU70は、アクセル開度Accと車速Vとに基づいて駆動軸36に出力すべき要求トルクTr*を設定し、モータMG1のトルク指令Tm1*に値0を設定する共にバッテリ50の入出力制限Win,Woutの範囲内で要求トルクTr*が駆動軸36に出力されるようモータMG2のトルク指令Tm2*を設定してモータECU40に送信する。そして、トルク指令Tm1*,Tm2*を受信したモータECU40は、モータMG1,MG2がトルク指令Tm1*,Tm2*で駆動されるようインバータ41,42のスイッチング素子のスイッチング制御を行なう。こうした制御により、エンジン22を運転停止した状態でバッテリ50の入出力制限Win,Woutの範囲内で要求トルクTr*を駆動軸36に出力して走行することができる。このモータ運転モードでは、要求トルクTr*に駆動軸36の回転数Nrを乗じて得られる走行用パワーPdrv*からバッテリ50の充放電要求パワーPb*を減じて得られるエンジン22の要求パワーPe*がエンジン22を始動した方がよい要求パワーPe*の範囲の下限として定められた始動用閾値Pstart以上に至ったときなどに、エンジン22の始動条件が成立したと判定して、エンジン22を始動してエンジン運転モードに移行する。
エンジン22の始動は、バッテリ50の入出力制限Win,Woutの範囲内で、エンジン22をクランキングするためのクランキングトルクTcをモータMG1から出力すると共にこのトルクの出力に伴って駆動軸36に作用するトルクをキャンセルするためのトルクをモータMG2から出力することによってエンジン22をクランキングし、エンジン22の回転数Neが所定回転数Nest(例えば1000rpm)に至ったときに燃料噴射制御や点火制御などを開始する、ことによって行なわれる。なお、このエンジン22の始動の最中も要求トルクTr*が駆動軸36に出力されるようモータMG2の駆動制御が行なわれる。即ち、モータMG2から出力すべきトルクは、要求トルクTr*とモータMG1によってエンジン22をクランキングする際に駆動軸36に作用するトルクをキャンセルするためのトルクとの和のトルクとなる。また、モータMG1によってエンジン22をクランキングする際、実施例では、エンジン22については、スロットル開度THがアイドル運転を行なう際のスロットル開度THとしてのアイドル用目標開度THid*となるよう制御するものとした。
また、実施例のハイブリッド自動車20では、エンジン22のアイドル運転を行なう際には、エンジン22の回転数Neがアイドル回転数Nidlとなるよう予め定められた基本開度THtmpに対して、エンジン22の回転数Neとアイドル回転数Nidlとの差分が打ち消されるよう補正を施してアイドル用目標開度THid*を設定し、設定したアイドル用目標開度THid*を用いてエンジン22を制御すると共に、アイドル用目標開度THid*を学習する。
次に、こうして構成された実施例のハイブリッド自動車20の動作、特に、空燃比センサ135aの応答性の学習を行なう際の動作について説明する。図6は、実施例のエンジンECU24により実行される空燃比センサ応答性学習ルーチンの一例を示すフローチャートである。このルーチンは、繰り返し実行される。
空燃比センサ応答性学習ルーチンが実行されると、エンジンECU24のCPU24aは、まず、エンジン22の始動条件が不成立から成立になったときであるか否かを判定し(ステップS100)、エンジン22の始動条件が不成立から成立になったときでないと判定されたときには、本ルーチンを終了する。ここで、エンジン22の始動条件が不成立から成立になったときとしては、モータ運転モードでの走行中に要求パワーPe*が始動用閾値Pstart以上に至ったときなどを考えることができる。このステップS100の処理は、モータMG1によるエンジン22のクランキングの開始時であるか否かを判定する処理である。
ステップS100でエンジン22の始動条件が不成立から成立になったときであると判定されたときには、空燃比センサ135aの応答性の学習条件が成立しているか否かを判定し(ステップS110)、学習条件が成立していないと判定されたときには、本ルーチンを終了する。ここで、学習条件は、例えば、エンジン22の運転停止後に所定時間(例えば、1秒や2秒など)が経過している時間条件や、空燃比センサ135aの出力電圧Vafが所定電圧Vafref未満である電圧条件などを用いることができる。ここで、所定電圧Vafrefは、理論空燃比(値14.6)より大きい所定空燃比(例えば、値17や値18など)に対応する電圧を用いるものとした。実施例では、時間条件や電圧条件などのうち少なくとも一つが成立しないときには学習条件は成立していないと判定し、これらの全てが成立しているときには学習条件が成立していると判定するものとした。
ステップS110で学習条件が成立していると判定されたときには、空燃比センサ135aの出力電圧Vafを入力してそれをエンジン22のクランキング開始時の出力電圧Vafとしての開始時電圧Vaf0に設定すると共に(ステップS120,S130)、出力電圧Vafの単位時間(例えば、50msecや60msec,70msecなど)当たりの変化量としての傾き値ΔVaf,その傾き値ΔVafの最大値としての最大傾き値ΔVafmax,最大傾き値ΔVafmaxを正規化した値としての正規化後最大傾き値ΔVafmaxlvのそれぞれに初期値としての値0を設定する(ステップS140)。
続いて、傾き値ΔVafを入力すると共に(ステップS150)、入力した傾き値ΔVafを最大傾き値ΔVafmaxと比較し(ステップS160)、傾き値ΔVafが最大傾き値ΔVafmaxより大きいときには、傾き値ΔVafを最大傾き値ΔVafmaxに設定すなわち最大傾き値ΔVafmaxを更新し(ステップS170)、傾き値ΔVafが最大傾き値ΔVafmax以下のときには、ステップS170の処理を実行しない。ここで、傾き値ΔVafは、エンジンECU24により実行される図示しない傾き値演算ルーチンにより、空燃比センサ135aの現在の出力電圧Vafから単位時間だけ前の出力電圧Vafを減じた値を入力するものとした。
そして、エンジン22の始動が完了したか否か(エンジン22のクランキングが終了したか否か)を判定し(ステップS180)、エンジン22の始動が完了していない(エンジン22のクランキングが終了していない)と判定されたときには、ステップS150に戻る。なお、エンジン22の始動が完了したか否かは、例えば、エンジン22が完爆したか否かなどによって判定することができる。
こうしてステップS150〜S180の処理を繰り返し実行して、ステップS180でエンジン22の始動が完了した(エンジン22のクランキングが終了した)と判定されると、開始時電圧Vaf0を用いて最大傾き値ΔVafmaxを正規化して正規化後最大傾き値ΔVafmaxnoを設定すると共に(ステップS190)、設定した正規化後最大傾き値ΔVafmaxnoを用いて空燃比センサ135aの応答性の学習値ΔVafmaxlvを設定して(ステップS200)、本ルーチンを終了する。
ステップS190の正規化後最大傾き値ΔVafmaxnoの設定は、実施例では、最大傾き値ΔVafmaxを、開始時電圧Vaf0を用いて、所定空燃比(例えば理論空燃比)AFsetに対応する空燃比センサ135aの出力電圧Vafである所定空燃比対応電圧Vafsetにおける最大傾き値ΔVafmaxとして正規化(変換)することによって行なうものとした。図7は、開始時電圧Vaf0と最大傾き値ΔVafmaxとの関係を示す関係ラインの一例を示す説明図である。以下、この関係ラインにおける、各開始時電圧Vaf0に対応する最大傾き値を「ΔVafmaxf[Vaf0]」として表わす。関係ラインは、例えば、開始時電圧Vaf0と最大傾き値ΔVafmaxとの関係を予め実験や解析などによって複数求めてそれぞれ点としてプロットすると共にプロットした複数の点を用いて最小二乗法などによって関数近似を行なうことによって求めることができる。図7から分かるように、空燃比センサ135aは、開始時電圧Vaf0に応じて最大傾き値ΔVafmaxが異なる特性、具体的には、開始時電圧Vaf0が所定空燃比対応電圧Vafset近傍で極大となり、所定空燃比対応電圧Vafset近傍から離れるほど最大傾き値ΔVafmaxが小さくなる特性を有している。これを踏まえて、実施例では、最大傾き値ΔVafmaxと、関係ラインにおける開始時電圧Vaf0,所定空燃比対応電圧Vafsetに対応する最大傾き値ΔVafmaxf[Vaf0],ΔVafmaxf[Vafset]と、を用いて次式(2)により正規化後最大傾き値ΔVafmaxmoを計算するものとした。こうした処理により、データ(正規化後最大傾き値ΔVafmaxmo)を利用しやすくすることができる。また、図7では、参考のために、上述の所定電圧Vafrefについても図示した。開始時電圧Vaf0が所定電圧Vafref以上の領域では、式(2)における「ΔVafmaxf[Vafset]/ΔVafmaxf[Vaf0]」の値がかなり大きくなるため、正規化の精度(信頼性)が比較的低くなると考えられる。このため、実施例では、上述のステップS110の処理では、空燃比センサ135aの出力電圧Vafが所定電圧Vafref未満である電圧条件を考慮するものとした。
ΔVafmaxno=ΔVafmax・ΔVafmaxf[Vafset]/ΔVafmaxf[Vaf0] (2)
ステップS200の空燃比センサ135aの応答性の学習値ΔVafmaxlvの設定は、正規化後最大傾き値ΔVafmaxmoと空燃比センサ135aの応答性の前回の学習値(前回ΔVafmaxlv)とを用いて次式(3)により計算することによって行なうものとした。ここで、式(3)中、「kv」は、正規化後最大傾き値ΔVafmaxmoを新たな学習値ΔVafmaxlvに反映させるための反映係数kvであり、値0より大きく値1より小さな値、例えば、値0.10や値0.15,値0.20などを用いることができる。このように反映係数kvを用いて空燃比センサ135aの応答性の学習値ΔVafmaxlvを計算することにより、学習値ΔVafmaxlvの急変を抑制することができる。
ΔVafmaxlv=kv・ΔVafmaxmo+(1-kv)・前回ΔVafmaxlv (3)
ここで、エンジン22のクランキング時に空燃比センサ135aの応答性の学習を行なう理由について説明する。図8は、モータMG1によってエンジン22をクランキングして始動する際のエンジン22の回転数Ne,吸入空気量Qa,空燃比センサ135aの出力電圧Vaf,傾き値ΔVafの時間変化の様子を示す説明図である。図8に示すように、モータMG1によるエンジン22のクランキングが開始されると(時刻t11)、エンジン22の回転数Neや吸入空気量Qaの増加によって空燃比センサ135aの出力電圧Vafが増加し(リーン側の値となり)、傾き値ΔVafが増加する。エンジン22のクランキング時(特に、回転数Neが所定回転数Nestに至る前)には、エンジン22で燃料噴射が行なわれておらず且つ吸入空気量Qaが比較的小さい。したがって、エンジン22での燃料噴射が行なわれている運転時や、エンジン22で燃料噴射は行なわれていないが吸入空気量Qaが比較的大きい(エンジン22がある程度大きな回転数Neで回転しながらフューエルカットされている)フューエルカット時に比して、空燃比センサ135aの応答性のより細かな違いが傾き値ΔVafに現われやすい。この結果、エンジン22のクランキング時に空燃比センサ135aの応答性の学習値ΔVafmaxlvを計算することにより、空燃比センサ135aの応答性の学習をより適正に行なうことができる。また、ハイブリッド自動車20では、システム起動からシステム停止までのいわゆる1トリップにおいて、エンジン22を間欠運転しながら(エンジン22の始動や停止を行ないながら)走行するから、エンジン22のクランキング時に空燃比センサ135aの応答性の学習を行なうことにより、エンジン22の始動後にある程度の時間が経過してから空燃比センサ135aの応答性の学習を行なうものに比して、学習をより多くの機会に行なうことができると考えられる。
以上、空燃比センサ135aの応答性の学習(学習値ΔVafmaxlvの更新)を行なう際の動作について説明した。次に、空燃比センサ135aの応答性の学習値ΔVafmaxlvを用いて、エンジン22の始動後に空燃比フィードバック制御の開始を許可する際の動作について説明する。図9は、エンジンECU24により実行される空燃比F/B制御開始許可ルーチンの一例を示すフローチャートである。このルーチンは、エンジン22の始動完了時に実行が開始される。
空燃比F/B制御開始許可ルーチンが実行されると、エンジンECU24のCPU24aは、まず、学習値ΔVafmaxlvを入力すると共に(ステップS300)、入力した学習値ΔVafmaxlvに基づいて空燃比フィードバック制御の開始を許可する空燃比としての開始空燃比AFstを設定する(ステップS310)。ここで、開始空燃比AFstは、実施例では、学習値ΔVafmaxlvと開始空燃比AFstとの関係を予め定めて開始空燃比設定用マップとしてROM24bに記憶しておき、学習値ΔVafmaxlvが与えられるとマップから対応する開始空燃比AFstを導出して設定するものとした。開始空燃比設定用マップの一例を図10に示す。開始空燃比AFstは、図示するように、目標空燃比AF*(例えば理論空燃比)より小さい(リッチ側の)範囲で、学習値ΔVafmaxlvが所定値ΔVafmaxlv1以上の領域では固定値AFst1を設定し、学習値ΔVafmaxlvが所定値ΔVafmaxlv1未満の領域では学習値ΔVafmaxlvが小さいほど大きくなる傾向に設定するものとした。こうした傾向に開始空燃比AFstを設定する理由については後述する。
こうして開始空燃比AFstを設定すると、空燃比センサ135aの出力電圧Vafに対応する検出空燃比AFdetを入力し(ステップS320)、エンジン22の始動完了から所定時間Tref(例えば、400msecや500msec,600msecなど)が経過したか否か(ステップS330)、および、検出空燃比AFdetが開始空燃比AFst以上か否か判定し(ステップS340)、エンジン22の始動完了から所定時間Trefが経過していないときや、検出空燃比AFが開始空燃比AFst未満のときには、ステップS320に戻り、エンジン22の始動完了か所定時間Trefが経過しており且つ検出空燃比AFdetが開始空燃比AFst以上のときに、空燃比フィードバック制御の開始を許可して(ステップS350)、本ルーチンを終了する。
図11は、エンジン22の回転数Ne,空燃比センサ135aの出力電圧Vaf,空燃比フィードバック補正量ΔQf,空燃比フィードバック制御の実行の有無の時間変化の様子の一例を示す説明図である。図中、実線は実施例の様子を示し、一点鎖線はエンジン22の始動完了から所定時間Trefが経過した時刻t21に空燃比フィードバック制御を開始する比較例の様子を示す。図11の例では、空燃比センサ135aの応答性が比較的低いときの様子を示した。また、実際の空燃比(実AF)は、通常、エンジン22の始動時(クランキング時)にリーン側に比較的大きく振れ、エンジン22の始動完了後に、一旦リッチ側に大きく振れてから目標空燃比AF*に近づく。比較例では、時刻t21に空燃比フィードバック制御を開始するから、検出空燃比AFdetが目標空燃比AF*からある程度離れている状態で空燃比フィードバック制御を開始することになり実際の空燃比(実AF)が目標空燃比AF*に対してリーン側に大きく振れてしまう場合がある。これに対して、実施例では、時刻t21に検出空燃比AFdetが開始空燃比AFst未満のときには、検出空燃比AFdetが開始空燃比AFst以上に至った時刻t22に空燃比フィードバック制御を開始することにより、実際の空燃比(実AF)がリーン側に大きく振れるのを抑制することができる。所定時間Trefは、空燃比センサ135aの応答性が高いとき(例えば、学習値ΔVafmaxlvが所定値ΔVafmaxlv1以上のとき)に、空燃比フィードバック制御を開始しても実際の空燃比(実AF)が目標空燃比AF*よりリーン側に大きく振れないと考えられる時間を用いるものとした。また、開始空燃比AFstは、空燃比センサ135aの応答性の学習値ΔVafmaxlv(実際の空燃比(実AF)と検出空燃比AFdetとの乖離しやすさ)に応じて、空燃比フィードバック制御を開始しても実際の空燃比(実AF)が目標空燃比AF*よりリーン側に大きく振れないと考えられる値を設定するものとした。したがって、学習値ΔVafmaxlvに応じて開始空燃比AFstを設定することにより、空燃比フィードバック制御をより適正なタイミングで開始することができる。なお、目標空燃比AF*よりリッチ側で且つ学習値ΔVafmaxlvが小さいほど大きくなる傾向(目標空燃比AF*に近づく傾向)に開始空燃比AFstを設定することにより、空燃比フィードバック制御を開始するタイミングは、学習値ΔVafmaxlvが小さいほど遅い傾向となる。
以上説明した実施例のハイブリッド自動車20によれば、エンジン22のクランキング時における空燃比センサ135aの出力電圧Vafの傾き値ΔVafに基づく最大傾き値ΔVafmaxを用いて空燃比センサ135aの応答性の学習値ΔVafmaxlvを計算するから、空燃比センサ135aの応答性の学習をより適正に且つ比較的多くの機会に行なうことができる。
実施例のハイブリッド自動車20では、エンジン22をクランキングしたときには、空燃比センサ135aの応答性の学習を行なうものとしたが、エンジン22をクランキングしたときの状況によっては空燃比センサ135aの応答性の学習を行なわないものとしてもよい。この場合の空燃比センサ応答性学習ルーチンの一例を図12に示す。このルーチンは、ステップS400〜S420の処理を追加した点を除いて、図6の空燃比センサ応答性学習ルーチンと同様である。したがって、同一の処理については同一のステップ番号を付し、その詳細な説明は省略する。
図12の空燃比センサ応答性学習ルーチンでは、ステップS180でエンジン22の始動が完了した(エンジン22のクランキングが終了した)と判定されると、バッテリ50の電池温度Tbと、モータMG1によるエンジン22のクランキングを開始してからエンジン22が1回転したときのエンジン22の回転数Neである判定用回転数Nejと、を入力し(ステップS400)、バッテリ50の電池温度Tbを閾値Tbref1,Tbre2と比較すると共に(ステップS410)、エンジン22の判定用回転数Neを閾値Nerefと比較する(ステップS420)。ここで、バッテリ50の電池温度Tbは、温度センサ51により検出されたものをバッテリECU52からHVECU70を介して入力するものとした。また、エンジン22の判定用回転数Nejは、実施例では、クランクポジションセンサ140からのクランクポジションに基づいて演算されたものを読み込んで入力するものとした。
上述したように、エンジン22の始動時には、バッテリ50の入出力制限Win,Woutの範囲内で、クランキングトルクTcをモータMG1から出力すると共にこのクランキングトルクTcの出力に伴って駆動軸36に作用するトルクをキャンセルするためのトルクをモータMG2から出力することによってエンジン22をクランキングする。電池温度Tbが適正温度範囲より低いときや高いときには、バッテリ50の出力制限Woutが比較的小さくなることから、このクランキングトルクTcが比較的小さくなり、エンジン22の回転数Neの立ち上がりが遅くなる(回転数Neの増加が緩やかになる)。閾値Tbref1,Tbrerf2や閾値Nerefは、こうした状況か否かを判定するために用いられるものである。閾値Tbref1は、例えば、上述の所定温度Tblo(例えば、0℃や5℃,10℃など)より若干低い温度などを用いることができる。また、閾値Tbref2は、例えば、上述の所定温度Tbhi(例えば、45℃や50℃,55℃など)より若干高い温度などを用いることができる。さらに、閾値Nerefは、例えば、300rpmや400rpm,500rpmなどを用いることができる。
電池温度Tbが閾値Tbref1以上かつ閾値Tbref2以下でエンジン22の判定用回転数Nejが閾値Neref以上のときには、実施例と同様に、最大傾き値ΔVafmaxを正規化して正規化後最大傾き値ΔVafmaxnoを設定すると共に(ステップS190)、設定した正規化後最大傾き値ΔVafmaxnoを用いて空燃比センサ135aの応答性の学習値ΔVafmaxlvを設定して(ステップS200)、本ルーチンを終了する。この場合、空燃比センサ135aの応答性の学習を行なうことになる。
一方、電池温度Tbが閾値Tbref1未満のときや閾値Tbref2より高いとき,エンジン22の判定用回転数Nejが閾値Neref未満のときには、ステップS190,S200の処理を実行せずに、本ルーチンを終了する。この場合、空燃比センサ135aの応答性の学習を行なわないことになる。
クランキングトルクTcが小さくエンジン22の回転数Neの立ち上がりが遅い(回転数Neの増加が緩やかな)ときには、エンジン22からの排気量が小さいため、空燃比センサ135aの出力電圧Vafのリーン側の値への変化が鈍化し、最大傾き値ΔVafmaxが小さくなる。このため、このときの最大傾き値ΔVafmaxを用いて空燃比センサ135aの応答性の学習を行なうと、学習値ΔVafmaxlvがバラツキやすくなる場合がある。この変形例では、これを踏まえて、電池温度Tbが閾値Tbref1未満のときや閾値Tbref2より高いとき、エンジン22の判定用回転数Nejが閾値Neref未満のときには、空燃比センサ135aの応答性の学習を行なわないものとした。これにより、学習値ΔVafmaxlvのバラツキを抑制することができる。
この変形例によれば、電池温度Tbが閾値Tbref1未満のときや閾値Tbref2より高いとき、エンジン22の判定用回転数Nejが閾値Neref未満のときには、空燃比センサ135aの応答性の学習を行なわないから、学習値ΔVafmaxlvのバラツキを抑制することができる。
この変形例では、電池温度Tbとエンジン22の判定用回転数Nejとを用いて空燃比センサ135aの応答性の学習を行なうか否かを判定するものとしたが、いずれか一方だけを用いて空燃比センサ135aの応答性の学習を行なうか否かを判定するものとしてもよい。
また、この変形例では、電池温度Tbが閾値Tbref1未満のときや閾値Tbref2より高いときには、空燃比センサ135aの応答性の学習を行なわないものとしたが、これに代えて、クランキングトルクTc(バッテリ50の出力制限Woutの範囲内で設定されるトルク)が閾値Tcref未満に制限されているときには、空燃比センサ135aの応答性の学習を行なわないものとしてもよい。ここで、閾値Tcrefは、電池温度Tbが閾値Tbref1や閾値Tbref2のときのバッテリ50の出力制限Woutに対応するトルクなどを用いることができる。
さらに、この変形例では、エンジン22の判定用回転数Nej(モータMG1によるエンジン22のクランキングを開始してからエンジン22が1回転したときのエンジン22の回転数Ne)が閾値Neref未満のときには、空燃比センサ135aの応答性の学習を行なわないものとしたが、これに代えて、エンジン22の回転数Neの増加速度(単位時間当たりの増加量)ΔNeが閾値ΔNeref未満のときには空燃比センサ135aの応答性の学習を行なわないものとしたり、エンジン22の回転数Neが閾値Nerefに至るのに要する時間tstが閾値tstrefより長いときには空燃比センサ135aの応答性の学習を行なわないものとしたりするなどしてもよい。ここで、閾値ΔNerefや閾値tstrefは、それぞれ、閾値Nerefに対応する値などを用いることができる。
実施例のハイブリッド自動車20では、開始時電圧Vaf0を用いて最大傾き値ΔVafmaxを正規化して正規化後最大傾き値ΔVafmaxnoを設定するものとしたが、開始時電圧Vaf0に代えて又は加えて、開始時電圧Vaf0以外の1以上のパラメータ(例えば、大気圧Paやスロットル開度TH,吸気温Tinなど)を用いて最大傾き値ΔVafmaxを正規化して正規化後最大傾き値ΔVafmaxnoを設定するものとしてもよい。開始時電圧Vaf0に代えて大気圧Paとスロットル開度THとを用いて最大傾き値ΔVafmaxを正規化して正規化後最大傾き値ΔVafmaxnoを設定する場合の空燃比センサ応答性学習ルーチンの一例を図13に示す。このルーチンは、ステップS190の処理に代えてステップS500,S510の処理を実行する点を除いて、図6の空燃比センサ応答性学習ルーチンと同様である。したがって、同一の処理については同一のステップ番号を付し、その詳細な説明は省略する。
図13の空燃比センサ応答性学習ルーチンでは、ステップS180でエンジン22の始動が完了した(エンジン22のクランキングが終了した)と判定されると、大気圧センサ89により検出されてHVECU70から受信した大気圧Paと、スロットルバルブポジションセンサ146からのスロットル開度THと、を入力し(ステップS500)、入力した大気圧Paとスロットル開度THとを用いて最大傾き値ΔVafmaxを正規化して正規化後最大傾き値ΔVafmaxnoを設定すると共に(ステップS510)、設定した正規化後最大傾き値ΔVafmaxnoを用いて空燃比センサ135aの応答性の学習値ΔVafmaxlvを設定して(ステップS200)、本ルーチンを終了する。
ステップS510の正規化後最大傾き値ΔVafmaxnoの設定は、実施例では、最大傾き値ΔVafmaxを、大気圧Paとスロットル開度THとを用いて、所定気圧(例えば1気圧など)Pasetおよび所定開度(例えば、上述の基本開度THtmpなど)THsetにおける最大傾き値ΔVafmaxとして正規化(変換)することによって行なうものとした。図14は、大気圧Paと最大傾き値ΔVafmaxとの関係を示す関係ラインの一例を示す説明図であり、図15は、スロットル開度THと最大傾き値ΔVafmaxとの関係を示す関係ラインの一例を示す説明図である。以下、大気圧Paと最大傾き値ΔVafmaxとの関係ラインにおける、大気圧Paに対応する最大傾き値を「ΔVafmaxf[Pa]」として表わし、スロットル開度THと最大傾き値ΔVafmaxとの関係ラインにおける、スロットル開度THに対応する最大傾き値を「ΔVafmaxf[TH]」として表わす。図14および図15の関係ラインは、図7の関係ラインと同様に求めることができる。図14や図15から分かるように、空燃比センサ135aは、大気圧Paやスロットル開度THに応じて最大傾き値ΔVafmaxが異なる特性、具体的には、大気圧Paが小さいほど小さくなりスロットル開度THが小さいほど小さくなる特性を有している。これを踏まえて、この変形例では、図14の関係ラインにおける所定気圧Pasetに対応する最大傾き値ΔVafmaxf[Paset]を大気圧Paに対応する最大傾き値ΔVafmaxf[Pa]を除してられる補正係数Kpaと、図15の関係ラインにおける所定開度THsetに対応する最大傾き値ΔVafmaxf[THset]をスロットル開度THに対応する最大傾き値ΔVafmaxf[TH]で除して得られる補正係数Kthと、を最大傾き値ΔVafmaxに乗じて正規化後最大傾き値ΔVafmaxmoを計算するものとした。こうした処理により、実施例と同様に、データ(正規化後最大傾き値ΔVafmaxmo)を利用しやすくすることができる。
実施例のハイブリッド自動車20では、エンジン22のクランキング時における最大傾き値ΔVafmaxを正規化して正規化後最大傾き値ΔVafmaxnoを設定すると共に設定した正規化後最大傾き値ΔVafmaxnoを用いて空燃比センサ135aの応答性の学習値ΔVafmaxlvを計算するとしたが、最大傾き値ΔVafmaxを正規化せずに、例えば、開始時電圧Vaf0と最大傾き値ΔVafmaxとを関連づけて学習値ΔVafmaxlv[Vaf0]として設定するなどしてもよい。
実施例のハイブリッド自動車20では、正規化後最大傾き値ΔVafmaxmoと空燃比センサ135aの応答性の前回の学習値(前回ΔVafmaxlv)と反映係数kvとを用いて上述の式(3)により学習値ΔVafmaxlvを計算するものとしたが、正規化後最大傾き値ΔVafmaxmoをそのまま学習値ΔVafmaxlvに設定するものとしてもよい。
実施例のハイブリッド自動車20では、空燃比センサ135aの応答性の学習値ΔVafmaxlvを、空燃比フィードバック制御の開始タイミングの設定に用いるものとしたが、これに加えてまたは代えて、例えば、空燃比フィードバック補正量ΔQfの設定(例えば、式(1)における比例項のゲインk1や積分項のゲインk2,比例項や積分項の制限に用いる制限値の設定など)などに用いるものとしてもよい。
実施例のハイブリッド自動車20では、目標燃料噴射量Qf*の設定に用いる空燃比フィードバック補正量ΔQfは、空燃比センサ135aの出力電圧Vafに対応する空燃比である検出空燃比AFdetと目標空燃比AF*とを用いて上述の式(1)により計算するものとしたが、次式(4)に示すように、式(1)における積分項を制限値ΔQflim,−ΔQflimで制限して計算するものとしてもよい。この場合、制限値ΔQflimは、空燃比センサ135aの応答性の学習値ΔVafmaxlvと制限値ΔQflimとの関係を予め定めた図16に例示する積分項制限値設定用マップに学習値ΔVafmaxlvを適用して設定するものとしてもよい。図16の例では、制限値ΔQflimは、学習値ΔVafmaxlvが小さいほど小さくなる傾向に設定するものとした。空燃比センサ135aの応答性が低いときには、応答性が高いときに比して検出空燃比AFdetが目標空燃比AF*に対して乖離しやすく、式(1)における積分項の大きさひいては空燃比フィードバック補正量ΔQfの大きさが大きくなりやすいと考えられるが、学習値ΔVafmaxlvが小さいほど小さくなる傾向に設定した制限値ΔQflimを用いて式(1)における積分項を制限して空燃比フィードバック補正量ΔQfの設定に用いることにより、式(1)における積分項の大きさひいては空燃比フィードバック補正量ΔQfの大きさが過剰に大きくなるのを抑制することができる。
ΔQf=k1・(AF*-AF)+max(min(k2・∫(AF*-AF)dt,ΔQflim),-ΔQflim) (4)
実施例のハイブリッド自動車20では、モータMG2からの動力を駆動軸36に出力するものとしたが、図17の変形例のハイブリッド自動車120に例示するように、モータMG2からの動力を駆動軸36が接続された車軸(駆動輪38a,38bが接続された車軸)とは異なる車軸(図17における車輪39a,39bに接続された車軸)に接続するものとしてもよい。
実施例のハイブリッド自動車20では、エンジン22からの動力をプラネタリギヤ30を介して駆動輪38a,38bに接続された駆動軸36に出力するものとしたが、図18の変形例のハイブリッド自動車220に例示するように、エンジン22のクランクシャフトに接続されたインナーロータ232と駆動輪38a,38bに動力を出力する駆動軸36に接続されたアウターロータ234とを有しエンジン22からの動力の一部を駆動軸36に伝達すると共に残余の動力を電力に変換する対ロータ電動機230を備えるものとしてもよい。
実施例のハイブリッド自動車20では、エンジン22からの動力をプラネタリギヤ30を介して駆動輪38a,38bに接続された駆動軸36に出力すると共にモータMG2からの動力を駆動軸36に出力するものとしたが、図19の変形例のハイブリッド自動車320に例示するように、駆動輪38a,38bに接続された駆動軸36に変速機330を介してモータMGを取り付けると共にモータMGの回転軸にクラッチ329を介してエンジン22を接続する構成とし、エンジン22からの動力をモータMGの回転軸と変速機330とを介して駆動軸36に出力すると共にモータMGからの動力を変速機330を介して駆動軸に出力するものとしてもよい。あるいは、図20の変形例のハイブリッド自動車420に例示するように、エンジン22からの動力を変速機430を介して駆動輪38a,38bに接続された駆動軸36に出力すると共にモータMGからの動力を駆動輪38a,38bが接続された車軸とは異なる車軸(図20における車輪39a,39bに接続された車軸)に出力するものとしてもよい。即ち、エンジンと走行用の動力を入出力する電動機とを備えるものであれば如何なるタイプのハイブリッド自動車としてもよいのである。
実施例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係について説明する。実施例では、エンジン22が「エンジン」に相当し、モータMG1が「モータ」に相当し、バッテリ50が「バッテリ」に相当し、エンジン22のクランキング時における空燃比センサ135aの出力電圧Vafの傾き値ΔVafに基づく最大傾き値ΔVafmaxを用いて空燃比センサ135aの応答性の学習値ΔVafmaxlvを計算する図6の空燃比センサ応答性学習ルーチンを実行するエンジンECU24が「制御装置」に相当する。
ここで、「エンジン」としては、ガソリンや軽油などを燃料として動力を出力するエンジン22に限定されるものではなく、水素エンジンなど、如何なるタイプのエンジンであっても構わない。「モータ」としては、同期発電電動機として構成されたモータMG1に限定されるものではなく、誘導電動機など、エンジンをクランキング可能なものであれば如何なるタイプのモータであっても構わない。「バッテリ」としては、リチウムイオン二次電池として構成されたバッテリ50に限定されるものではなく、ニッケル水素二次電池やニッケルカドミウム二次電池,鉛蓄電池など、モータと電力のやりとりが可能なものであれば如何なるタイプのバッテリであっても構わない。「制御装置」としては、エンジン22のクランキング時における空燃比センサ135aの出力電圧Vafの傾き値ΔVafに基づく最大傾き値ΔVafmaxを用いて空燃比センサ135aの応答性の学習値ΔVafmaxlvを計算するものに限定されるものではなく、モータによるエンジンのクランキング時における空燃比センサの出力値の傾きを用いて空燃比センサの応答性の学習を行なうものであれば如何なるものとしても構わない。
なお、実施例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係は、実施例が課題を解決するための手段の欄に記載した発明を実施するための形態を具体的に説明するための一例であることから、課題を解決するための手段の欄に記載した発明の要素を限定するものではない。即ち、課題を解決するための手段の欄に記載した発明についての解釈はその欄の記載に基づいて行なわれるべきものであり、実施例は課題を解決するための手段の欄に記載した発明の具体的な一例に過ぎないものである。
以上、本発明を実施するための形態について実施例を用いて説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。
本発明は、ハイブリッド自動車の制御装置の製造産業などに利用可能である。
20,120,220,320,420 ハイブリッド自動車、22 エンジン、24 エンジン用電子制御ユニット(エンジンECU)、26 クランクシャフト、30 プラネタリギヤ、36 駆動軸、37 デファレンシャルギヤ、38a,38b 駆動輪、39a,39b 車輪、40 モータ用電子制御ユニット(モータECU)、41,42 インバータ、43,44 回転位置検出センサ、50 バッテリ、51 温度センサ、52 バッテリ用電子制御ユニット(バッテリECU)、70 ハイブリッド用電子制御ユニット(HVECU)、72 CPU、74 ROM、76 RAM、80 パワースイッチ、81 シフトレバー、82 シフトポジションセンサ、83 アクセルペダル、84 アクセルペダルポジションセンサ、85 ブレーキペダル、86 ブレーキペダルポジションセンサ、88 車速センサ、89 大気圧センサ、122 エアクリーナ、124 スロットルバルブ、126 燃料噴射弁、128 吸気バルブ、130 点火プラグ、132 ピストン、134 浄化装置、134a 浄化触媒、134b 温度センサ、135a 空燃比センサ、135b 酸素センサ、136,スロットルモータ、138 イグニッションコイル、140 クランクポジションセンサ、142 水温センサ、143 圧力センサ、144 カムポジションセンサ、146 スロットルバルブポジションセンサ、148 エアフローメータ、149 温度センサ、150 可変バルブタイミング機構、230 対ロータ電動機、232 インナーロータ、234 アウターロータ、329 クラッチ、330,430 変速機、MG,MG1,MG2 モータ。

Claims (6)

  1. エンジンと、前記エンジンをクランキング可能なモータと、前記モータに電力を供給可能なバッテリと、前記エンジンの排気系に取り付けられて空燃比に応じて出力値が変化する空燃比センサと、を備えるハイブリッド自動車の制御装置であって、
    前記モータによる前記エンジンのクランキング時且つ燃料噴射が行なわれていないときにおける前記空燃比センサの出力値の傾きを用いて前記空燃比センサの応答性の学習を行なう、
    ことを特徴とするハイブリッド自動車の制御装置。
  2. 請求項1記載のハイブリッド自動車の制御装置であって、
    前記エンジンのクランキング時における前記空燃比センサの出力値の傾きの最大値であるクランキング時最大傾き値を、前記エンジンのクランキング開始時における前記空燃比センサの出力値と大気圧とスロットル開度とのうち少なくとも一つを用いて正規化し、該正規化後のクランキング時最大傾き値を用いて前記空燃比センサの応答性の学習値を演算する、
    ハイブリッド自動車の制御装置。
  3. 請求項2記載のハイブリッド自動車の制御装置であって、
    前記演算した正規化後のクランキング時最大傾き値に値0より大きく値1より小さな反映係数を乗じた値と、前回の前記空燃比センサの応答性の学習値に値1から反映係数を減じた値を乗じた値と、の和を前記空燃比センサの応答性の学習値として演算する、
    ハイブリッド自動車の制御装置。
  4. 請求項1ないし3のいずれか1つの請求項に記載のハイブリッド自動車の制御装置であって、
    前記モータの出力が閾値未満に制限されているか前記エンジンのクランキング時の該エンジンの回転数の立ち上がりが閾値より遅いときには、前記空燃比センサの応答性の学習を行なわない、
    ハイブリッド自動車の制御装置。
  5. 請求項1ないし4のいずれか1つの請求項に記載のハイブリッド自動車の制御装置であって、
    前記エンジンの始動後において、空燃比フィードバック制御を開始するタイミングを、前記空燃比センサの応答性が低いほど遅くなる傾向に設定する、
    ハイブリッド自動車の制御装置。
  6. 請求項1ないし5のいずれか1つの請求項に記載のハイブリッド自動車の制御装置であって、
    空燃比フィードバック制御における積分項の制限値を、前記空燃比センサの応答性が低いほど小さくなる傾向に設定する、
    ハイブリッド自動車の制御装置。
JP2012034052A 2012-02-20 2012-02-20 ハイブリッド自動車の制御装置 Active JP5459333B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012034052A JP5459333B2 (ja) 2012-02-20 2012-02-20 ハイブリッド自動車の制御装置
US13/769,617 US20130218442A1 (en) 2012-02-20 2013-02-18 Control device and control method for hybrid vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012034052A JP5459333B2 (ja) 2012-02-20 2012-02-20 ハイブリッド自動車の制御装置

Publications (2)

Publication Number Publication Date
JP2013169859A JP2013169859A (ja) 2013-09-02
JP5459333B2 true JP5459333B2 (ja) 2014-04-02

Family

ID=48982901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012034052A Active JP5459333B2 (ja) 2012-02-20 2012-02-20 ハイブリッド自動車の制御装置

Country Status (2)

Country Link
US (1) US20130218442A1 (ja)
JP (1) JP5459333B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103547785B (zh) * 2011-05-24 2016-04-13 丰田自动车株式会社 传感器的特性补正装置
JP5648706B2 (ja) * 2013-04-19 2015-01-07 トヨタ自動車株式会社 内燃機関の空燃比制御装置
FR3013769B1 (fr) * 2013-11-25 2015-12-18 Peugeot Citroen Automobiles Sa Procede de mise en œuvre d'un moteur a combustion interne equipe d'une ligne d'echappement pourvu d'une sonde de gaz d'echappement.
JP6296228B2 (ja) * 2013-12-13 2018-03-20 三菱自動車工業株式会社 ハイブリッド車両の制御装置
JP6531515B2 (ja) * 2015-06-24 2019-06-19 トヨタ自動車株式会社 ハイブリッド自動車
KR101827140B1 (ko) * 2016-08-23 2018-02-07 현대자동차주식회사 람다 센서를 이용한 연료 분사량 제어방법 및 차량
WO2020208390A1 (ja) * 2019-04-12 2020-10-15 日産自動車株式会社 内燃機関の制御方法および制御装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60184939A (ja) * 1984-03-02 1985-09-20 Nissan Motor Co Ltd 空燃比制御装置
JPH05312072A (ja) * 1992-05-07 1993-11-22 Honda Motor Co Ltd 内燃エンジンの空燃比制御装置
JPH09203343A (ja) * 1996-01-25 1997-08-05 Unisia Jecs Corp 内燃機関の空燃比検出装置
JP3141823B2 (ja) * 1997-10-08 2001-03-07 トヨタ自動車株式会社 車載内燃機関の制御装置
JP3541874B2 (ja) * 1999-01-19 2004-07-14 三菱自動車工業株式会社 車両のエンジン始動装置
JP3341281B2 (ja) * 1999-04-08 2002-11-05 トヨタ自動車株式会社 空燃比学習制御装置
JP3956548B2 (ja) * 1999-09-20 2007-08-08 トヨタ自動車株式会社 ハイブリット車における蓄熱式触媒装置
JP3878398B2 (ja) * 2000-08-18 2007-02-07 株式会社日立製作所 エンジンの自己診断装置および制御装置
JP3952884B2 (ja) * 2002-07-19 2007-08-01 トヨタ自動車株式会社 自動車の制御装置
JP2008128161A (ja) * 2006-11-24 2008-06-05 Denso Corp 内燃機関の制御装置
US8744729B2 (en) * 2007-07-24 2014-06-03 Toyota Jidosha Kabushiki Kaisha Apparatus and method for detecting abnormal air-fuel ratio variation among cylinders of multi-cylinder internal combustion engine
JP2010236358A (ja) * 2009-03-30 2010-10-21 Denso Corp ガスセンサの信号処理装置
JP2010255479A (ja) * 2009-04-23 2010-11-11 Denso Corp ガスセンサの信号処理装置
JP5187409B2 (ja) * 2011-04-28 2013-04-24 トヨタ自動車株式会社 空燃比ばらつき異常検出装置
US8600648B2 (en) * 2011-05-02 2013-12-03 Ford Global Technologies, Llc Method and system for engine speed control
US10202895B2 (en) * 2011-11-28 2019-02-12 Toyota Jidosha Kabushiki Kaisha Control device of a vehicle, vehicle including control device, and control method of vehicle
JP5737261B2 (ja) * 2012-10-16 2015-06-17 トヨタ自動車株式会社 車両

Also Published As

Publication number Publication date
JP2013169859A (ja) 2013-09-02
US20130218442A1 (en) 2013-08-22

Similar Documents

Publication Publication Date Title
JP5505513B2 (ja) ハイブリッド自動車
JP5459333B2 (ja) ハイブリッド自動車の制御装置
JP4766149B2 (ja) 内燃機関装置およびその制御方法並びに車両
JP2010179780A (ja) ハイブリッド車およびその制御方法
JP2014073693A (ja) ハイブリッド自動車
JP2013193533A (ja) ハイブリッド車
JP2011069277A (ja) 内燃機関装置および内燃機関の燃料噴射制御方法並びに車両
JP2016144972A (ja) ハイブリッド自動車
JP2018154142A (ja) ハイブリッド自動車
JP5904131B2 (ja) ハイブリッド車両の制御装置およびハイブリッド車両
JP5716425B2 (ja) ハイブリッド自動車
WO2006038306A1 (ja) 内燃機関の制御装置および内燃機関の制御方法
JP6168097B2 (ja) ハイブリッド自動車
JP5991145B2 (ja) ハイブリッド自動車
JP2010105626A (ja) 車両およびその制御方法
JP2016113977A (ja) エンジンの制御装置
JP2016151187A (ja) 自動車
JP5751185B2 (ja) ハイブリッド車
JP2016159878A (ja) ハイブリッド自動車の制御装置
JP6668912B2 (ja) 内燃機関装置
JP6009978B2 (ja) ハイブリッド自動車
JP2012236548A (ja) ハイブリッド車
JP2013067297A (ja) ハイブリッド自動車
JP5796440B2 (ja) ハイブリッド車のアイドリング学習装置
JP7226257B2 (ja) 駆動装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131230

R151 Written notification of patent or utility model registration

Ref document number: 5459333

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151