WO2006036022A1 - 振動型ジャイロスコープ、及び振動型ジャイロスコープの製造方法 - Google Patents

振動型ジャイロスコープ、及び振動型ジャイロスコープの製造方法 Download PDF

Info

Publication number
WO2006036022A1
WO2006036022A1 PCT/JP2005/018505 JP2005018505W WO2006036022A1 WO 2006036022 A1 WO2006036022 A1 WO 2006036022A1 JP 2005018505 W JP2005018505 W JP 2005018505W WO 2006036022 A1 WO2006036022 A1 WO 2006036022A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
adjustment
piezoelectric vibrating
gyroscope
vibrating piece
Prior art date
Application number
PCT/JP2005/018505
Other languages
English (en)
French (fr)
Inventor
Osamu Kawauchi
Shigeki Miyazawa
Katsumi Takayama
Keiichi Yamaguchi
Original Assignee
Seiko Epson Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corporation filed Critical Seiko Epson Corporation
Priority to EP05790695A priority Critical patent/EP1804022A4/en
Priority to CN2005800333738A priority patent/CN101031775B/zh
Publication of WO2006036022A1 publication Critical patent/WO2006036022A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5607Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using vibrating tuning forks
    • G01C19/5628Manufacturing; Trimming; Mounting; Housings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/42Piezoelectric device making

Definitions

  • the present invention relates to a vibrating gyroscope for mounting a piezoelectric vibrating piece and detecting a rotational angular velocity of rotation applied to the piezoelectric vibrating piece, and a method for manufacturing the vibrating gyroscope.
  • FIG. 8 is a plan view showing an example of a piezoelectric vibrating piece of a conventional vibrating gyroscope.
  • the base 1 0 3 extends vertically from the fixed part 1 0 1 and one end 1 0 of the base 1 0 3 3 a is fixed to the fixed part 1 0 1.
  • the base portion 10 3 is provided with detection portions 1 0 5 a and 1 0 5 b. On the other end 10 3 b side of the base 10 3, there are two bending vibrations Jt 1 0 4 a and 1 0 4 b that are perpendicular to the base 10 3.
  • Excitation parts 1 0 6 a, 1 0 6 b, 1 0 6 c, 1 0 6 d are provided in the bending vibration pieces 1, 0 4 a, 1 0 4 b (for example, Patent Document 1 Piezoelectric Vibration
  • the operation of the piece 1 0 0 is explained: When a drive voltage is applied to the excitation units 1 0 6 a, 1 0 6 b, 1 0 6 c, 1 0 6 d, the bending vibration piece 1 0 4 a, 1 0 4 b bends and vibrates in the directions of arrow A and arrow B.
  • each piezoelectric vibrating piece 1 0 4 a, 1 0 4 Coriolis is added to b, and the Coriolis force is transmitted to the base 1 0 3.
  • This causes the base 1 0 3 to bend and vibrate in the direction of arrow D around the connecting part 1 2 6.
  • the vibrating gyroscope is placed between the natural resonance frequencies of the bending vibration pieces 10 4 a and 10 4 b and the natural resonance frequency of the base 10 3 as the detection unit. It is required to have a certain vibration frequency difference (hereinafter referred to as “detuning frequency J”. Furthermore, in the vibration type gyroscope, the natural resonance of each bending vibration piece 1 0 4 a and 1 0 4 b In order to prevent the propagation of bending vibration to the base caused by the difference in frequency (unbalance), the natural resonance frequencies of the bending vibration pieces 104a and 104b are matched. This is done by changing the mass of the base 10 3 and the flexural vibrating pieces 10 4 a and 104 b.
  • the protruding portion 1 3 5 protruding from the bending vibrating pieces 10 04 a and 10 04 b is provided on the other end 10 3 b side of the base 10. It has been. Then, the natural resonance frequency of the base portion 103 is changed by performing processing for removing the mass from the portion 1 37 of the protruding portion 1 35. Further, by applying a process for removing the mass from the portions 1 3 6 A and 13 6 B on the tip side of each of the bending vibration pieces 10 4 a and 10 4 b, each bending vibration piece 10 4 The natural resonant frequencies of a and 10 4 b are changed independently. The removal of these masses is performed, for example, by removing the thin film formed on the surface of the piezoelectric vibrating piece 10 by laser irradiation.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 11 1 7 2 3 3 4
  • the thickness of the thin film formed on the surface of the piezoelectric vibrating piece 100 is almost uniform, and the laser irradiation diameter is also uniform.
  • the mass of the thin film removed by the laser irradiation of is almost constant.
  • the amount of change in mass required here differs depending on the piezoelectric vibrating piece due to variations in manufacturing of the piezoelectric vibrating piece, and a large mass change is often required. In this way, if a large mass change is desired, it is possible to remove a thin film with a large area. Since a large area is processed, the processing time becomes long, or a large processing area is required, which prevents the piezoelectric vibrating piece from being downsized.
  • the present invention has been made in view of the above problems, and the purpose of the present invention is to vary the minimum removal amount that can be removed by using a mass removal device, and to perform rough adjustment and fine adjustment of each natural resonance frequency. It is an object of the present invention to provide a vibrating gyroscope that can be adjusted and a manufacturing method of the vibrating gyroscope. Summary of the Invention
  • the vibrating gyroscope of the present invention is a vibrating gyroscope that detects the rotational angular velocity of rotation applied to the piezoelectric vibrating piece, wherein the piezoelectric vibrating piece includes a base and the A support extended from the base, provided through a beam, and a drive unit that performs predetermined vibration, and a Coriolica that extends from the base in the same plane as the drive unit, and that rotates with the drive unit.
  • a detection unit that detects the detection vibration generated by the first driving unit, a first weight unit for adjusting the characteristics of the piezoelectric vibrating piece formed at a substantially distal end portion of the drive unit, and the first unit formed at a substantially distal end portion of the detection unit.
  • a second weight portion for adjusting the characteristics of the piezoelectric vibrating piece, and at least one of the first weight portion and the second weight portion is formed of a plurality of adjustment portions having different masses per unit area. It is characterized by being.
  • the vibratory gyroscope of the present invention at least two adjusting portions having different masses per unit area are formed on at least one of the first weight portion and the second weight portion.
  • the mass adjustment is performed by first making a large mass change in a short time with an adjustment unit having a large mass per unit area, and then performing a fine final alignment with an adjustment unit having a small mass per unit area. Is possible. Accordingly, it is possible to perform coarse adjustment and fine adjustment within one weight portion without increasing the area of the adjustment portion and without increasing the processing time. In other words, it is possible to easily perform coarse adjustment and fine adjustment of each natural resonance frequency with one adjustment unit having a relatively small area.
  • the mass of the first weight portion is set smaller than the mass of the second weight portion.
  • the adjustment of the drive unit which requires a relatively small mass adjustment, can be performed by the adjustment unit having a small mass per unit area. That is, the time required for adjustment can be reduced.
  • the adjustment unit may be any of the drive unit and the detection unit in which the adjustment unit is formed, and the drive unit has all of the directions substantially perpendicular to the extending direction of the drive unit.
  • the detection unit is formed over all regions in a direction substantially orthogonal to the extending direction of the detection unit.
  • the shift in the formation position in the direction (hereinafter referred to as the “width direction”) that is substantially orthogonal to the direction toward the tip of each of the drive unit and the detection unit, which occurs when the adjustment unit is formed, is taken into consideration.
  • the size of the adjustment unit can be set. In other words, by setting the width dimension of the adjustment unit to be larger than the width direction dimension of the drive unit and the detection unit, the adjustment unit is always in the width direction of the drive unit or the detection unit even if a misalignment occurs. It is formed over the entire area.
  • one end of the adjustment unit is displaced from the width direction of the drive unit or the detection unit, and the other end enters the inside of the drive unit or the detection unit. It is possible to prevent variation in the mass of the adjusting portion due to the above. In other words, it is possible to reduce variations in the natural resonance frequency of the adjustment unit and the drive unit.
  • At least one of the first weight part and the second weight part is formed of a plurality of adjustment parts having different thicknesses.
  • At least two adjustment parts having different thicknesses are formed on at least one of the first weight part and the second weight part. Therefore, if you want to change the mass greatly (coarse adjustment), remove the adjustment part with a large thickness. If you want a fine change (fine adjustment), remove the adjustment part with a small thickness. Can do. That is, when adjusting the mass, it is possible to make a large mass change in a short time in the adjustment portion with a large thickness, and then perform fine final alignment with the adjustment portion with a small thickness. Therefore, it is possible to perform coarse adjustment and fine adjustment within one weight portion without increasing the area of the adjustment portion and without increasing the processing time.
  • the adjusting portion of the first weight portion and the adjusting portion of the second weight portion are formed with the same thickness using the same metal.
  • the adjustment part of the 1st weight part and the adjustment part of the 2nd weight part can be formed by the same formation process.
  • the plurality of adjustment units having different thicknesses may be formed such that the adjustment unit on the side close to the tip of the drive unit or the detection unit is thicker than the other adjustment units. desirable.
  • the thickness of the adjustment portion at the substantially distal end portion that is easily affected by a change in mass is thick, rough adjustment can be performed more efficiently. Also .
  • a vibrating gyroscope characterized by having a cage and the above-described piezoelectric vibrating piece mounted on the cage. And a retainer, the above-described piezoelectric vibrating piece mounted on the retainer, and a circuit element mounted on the retainer and having at least a circuit for driving the piezoelectric vibrating piece. It is also possible to provide a vibratory gyroscope.
  • the method for manufacturing a vibrating gyroscope according to the present invention includes a base, a drive unit provided through a support beam extending in the same plane from the base, and performing a predetermined vibration, and in the same plane from the base. And a vibrating gyroscope comprising a piezoelectric vibrating piece having a detection unit that detects a detection vibration generated by Coriolis accompanying rotation of the drive unit, wherein an outer shape is formed
  • the approximate tip of the drive unit The eaves layer formed in the portion is removed to roughly adjust the natural resonance frequency of the drive unit, and the electrode: film is removed from the substantially distal end of the drive unit to remove the natural resonance frequency of the drive unit.
  • a step of performing a fine adjustment is performed.
  • the weight layer of the first weight part and the second weight part can be formed at the same time, it is possible to reduce the process of forming the weight layer. Man-hours can be reduced.
  • the detection unit that needs to adjust a large natural resonance frequency can be adjusted in a short time by removing the weight part, and the drive part that needs fine adjustment can be adjusted roughly by removing the weight part and the electrode film. By sequentially performing fine adjustment by removing noise, fine adjustment can be performed in a short time to match the desired natural resonance frequency. It becomes possible to make it. That is, it is possible to provide a vibration gyroscope with high accuracy at a low cost.
  • FIG. 1 is a plan view schematically showing a piezoelectric vibrating piece of the vibrating gyroscope of the first embodiment.
  • FIG. 2 is a plan view for schematically explaining the drive vibration of the piezoelectric vibrating piece.
  • FIG. 3 is a plan view for schematically explaining the detected vibration of the piezoelectric vibrating piece.
  • FIG. 4 is a schematic plan view showing laser processing of the adjustment unit.
  • FIG. 5 is a plan view showing a modification of the weight layer (a) to (c).
  • FIG. 6 is a front sectional view showing an outline of the vibrating gyroscope of the second embodiment.
  • FIGS. 7A to 7F are process explanatory views showing a schematic manufacturing process of the piezoelectric vibrating piece of the vibration type gyroscope of the third embodiment, and the left column is a front view near the tip of the drive arm. The right column is a front view near the tip of the detection arm.
  • Fig. 8 is a plan view showing a piezoelectric vibrating piece of a conventional vibratory jar scope.
  • FIG. 1 is a plan view schematically showing a piezoelectric vibrating piece of the vibrating gyroscope according to the first embodiment of the present invention.
  • the piezoelectric vibrating piece 10 is formed in the XY plane.
  • the piezoelectric vibrating piece 10 is made of quartz, and is a plane of the X axis and the Y ′ axis of the X axis called the electric axis, the Y axis called the mechanical axis, and the Z axis called the optical axis.
  • This is a Z-cut quartz crystal substrate cut out in the direction.
  • the piezoelectric vibrating piece 10 is formed of a quartz substrate having a predetermined thickness.
  • the plane shape of the piezoelectric vibrating piece 10 is developed on the XY plane in accordance with the crystal axis of the crystal, and is symmetric with respect to the center point G at 180 °.
  • the center point G is the position of the center of gravity of the piezoelectric vibrating piece 10.
  • a predetermined electrode is formed on the surface of the piezoelectric vibrating piece 10.
  • the piezoelectric vibrating piece 10 is formed with a rectangular base 12 having end faces parallel to the X-axis direction and the ⁇ -axis direction, respectively.
  • the base 12 is formed with two connecting arms 13 and 14 as support beams extending from the center of the two end faces parallel to the Y axis of the base 12 in the direction parallel to the X axis.
  • the base 1 2 includes a detection arm 16 A and a Y axis in the positive direction of the Y axis as a detection part extending in the direction parallel to the Y axis from the center of the two end faces parallel to the X axis of the base 12.
  • Detection arm 1 6 B is formed in the negative direction.
  • a pair of drive arms extending in a direction orthogonal to the connecting arm 13 is formed at the tip of each of the connecting arms 13 and 14.
  • a driving arm 1.5 .A is extended in the Y axis plus direction and a driving arm 15 B is extended in the Y axis minus direction.
  • a drive arm 15 C extends in the Y axis plus direction and a drive arm 15 D extends in the Y axis minus direction at the tip of the connecting arm 14.
  • a wide first weight portion 19 is formed at the tip of the drive arms 15 A, 15 B, 15 C, 15 D.
  • an electrode film 17 as an adjustment part and a weight layer 18 formed on the surface of the electrode film 17 are formed.
  • the weight layer 18 is formed to be thicker than the electrode film 17.
  • the weight layer 18 is provided in the full width in the width direction (X direction) of the first weight portion 19, and in this example, it is formed in an almost half region on the tip side of the first weight portion 19. Has been. Therefore, the first weight portion 19 is approximately half the area.
  • the electrode film 17 occupies the portion and the weight layer 18 occupies the other half.
  • the weight layer 18 can be formed of a metal such as gold or silver using a vacuum deposition method or the like.
  • a wide-width second weight portion 23 having a width wider than that of the first weight portion 19 is formed at the tip end portions of the detection arms 16 A and 16 B.
  • the second weight portion 23 is formed with an electrode film 17 as an adjustment portion and a weight layer 20 formed on the surface of the electrode film 17.
  • the weight layer 20 is formed so as to be thicker than the electrode film 17.
  • the weight layer 20 is provided in a width direction in the width direction (X direction) of the second weight part 23, and in this example, the weight layer 20 occupies most of the area of the second weight part 23. Is formed.
  • the weight layer 20 occupies almost the entire area, and the electrode film 17 occupies the remaining small portion.
  • the weight layer 20 can be formed of a metal such as gold or silver using a vacuum deposition method or the like, as in the case of the first weight layer.
  • the drive arms 15 A, 15 B, 15 C, and 15 D have dimensions such as width and length so as to generate drive vibration at a predetermined resonance frequency.
  • the detection arms 16 A and 16 B and the connecting arms 13 and 14 are detected at a predetermined co-frequency, and dimensions such as width and length are set to generate vibration.
  • FIG. 2 and 3 are plan views for schematically explaining the operation of the piezoelectric vibrating piece 10 of the first embodiment.
  • each vibrating arm is shown as a simplified line in order to express the vibration form in an easy-to-understand manner.
  • the same components as those in Fig. 1 are denoted by the same reference numerals, and description thereof is omitted.
  • FIG. 2 is a diagram for explaining drive vibration.
  • the drive vibration is bending vibration in which the drive arms 15 A, 15 B, 15 C and 15 D vibrate in the direction of the arrow A.
  • the vibration mode shown is repeated at a specified frequency.
  • the drive arms 15A and 15B The drive arms 1 5 C and 1 5 D are oscillating line-symmetrically around the Y axis passing through the center of gravity G. B hardly vibrates.
  • FIG. 3 is a diagram for explaining the detected vibration.
  • the detected vibration repeats the vibration state indicated by a solid line and the vibration state indicated by a two-dot chain line at the frequency of the drive vibration.
  • the detected vibration is generated when the piezoelectric vibrating piece 10 is performing the driving vibration shown in FIG. 2 and when the rotational angular velocity ⁇ around the ⁇ axis is applied to the piezoelectric vibrating piece 10, the drive arm 1 5 ⁇ , 1 It is generated by the action of Coriolica in the direction indicated by the arrow 8 at 58, 1550 and 150.
  • the drive arms 15 A, 15 B, 15 C, 15 D vibrate as indicated by arrow B.
  • the vibration indicated by arrow B is a circumferential vibration with respect to the center of gravity position G.
  • detection arms 1 6 A and 1 68 are arrows. In response to the vibration of arrow B, vibration in the direction opposite to the circumferential direction is performed.
  • the peripheral edge of the base 12 is driven by the drive arms 15 A, 15 B, 15 C, 15 D and the detection arms 16 A, 16 B as shown in FIG.
  • the vibration system is in a balanced state, it does not vibrate. Therefore, even if a lead member that supports the piezoelectric vibrating piece 10 is connected to the base portion 12, the vibration of the piezoelectric vibrating piece 10 is not affected.
  • the piezoelectric vibrating piece 10 shown in Fig. 1 has a drive arm 1 5 A, 1 5 B, 1 5 C, 1 5 D natural resonance frequency and detection arm 1 6 A, 1 6 to improve the measurement sensitivity. It is required to have a certain vibration frequency difference (hereinafter referred to as “detuning frequency”) between B and the natural resonance frequency. In order to adjust this detuning frequency, the mass is removed from the weight layer 20 and the electrode film 17 of the second weight portion 2 3 formed on the detection arms 16 A and 16 g and detected. Change the natural resonance frequency of arms 16 A and 16 B.
  • the process of removing the mass from the weight layer 20 and the electrode film 17 ′ is performed by processing one of the weight layer 20 and the electrode film 17 or by adding both.
  • the piezoelectric vibrating piece 10 shown in FIG. 1 is required to match the natural resonance frequencies of the drive arms 15 A, 15 B, 15 C, and 15 D. This is because the bending vibration of the drive arms 15 A, 15 B, 15 C and 15 D propagates to the detection arms 16 A and 16 B through the connecting arms 13 and 14. This is to prevent leakage. Vibration leakage is caused by the difference (unbalance) between the natural resonance frequencies of the drive arms 15 5, 15 5, 15 C, and 15 D. In order to eliminate this difference in natural resonance frequency, the natural resonance frequency of each drive arm 1 5 A, 1 5 ,, 15 C, 15 D is changed, and each drive arm 15 ⁇ , 15 ⁇ , 1 5 C and 1 5 D are matched so that the natural resonance frequencies match.
  • Adjustment of the natural resonance frequency of the drive arms 1 5 A, 1 5 B, 1 5 C and 1 5 D is achieved by adjusting the tips of the drive arms 1 5 ⁇ , 1 5 ⁇ , 1 5 C and 1 5 D, respectively. This is performed by removing mass from the weight layer 18 and the electrode film 17 of the first weight portion 19 formed on the portion.
  • the weight layer 18 and the electrode film 17 are provided approximately half by half in the first weight portion 19, and coarse adjustment is performed by removing the weight layer 18, and fine adjustment is performed by removing the electrode film 17. Make adjustments. Note that the process of removing the mass from the weight layer 1.8 and the electrode film 17 is performed by processing one of the weight layer 18 and the electrode film 17 or by processing both.
  • the process of removing mass from the weight layers 18 and 20 and the electrode film 17 is performed by irradiating a laser as an example to melt and evaporate the weight layers 18 and 20 and the electrode film 17.
  • a laser as an example to melt and evaporate the weight layers 18 and 20 and the electrode film 17.
  • the weight layer 18 is removed continuously or once by moving the laser and the driving arm 15 ⁇ ⁇ ⁇ ⁇ relatively while irradiating the laser 22.
  • Fig. 4 shows an example in which laser 22 is irradiated and removed continuously in the direction of the arrow, and the next row is sequentially repeated or processed. Processing is performed back and forth.
  • the removal process of the electrode film 17 is performed in the same manner as the weight layer 18.
  • the drive arm 15 A, 15 B, 15 C, 15 D includes the first weight portion 1 as an adjusting portion. 9 is formed by the weight layer 18 and the electrode film 17, and the detection arm 16 A, 16 B has a second weight part 23 as an adjustment part having a weight layer 20 and an electrode film 17 ′. It is formed by. Since the weight layers 18 and 20 and the electrode film 17 have different thicknesses, the masses that can be removed by laser irradiation of the same area are different. That is, the thick weight layers 18 and 20 can change the mass, and the thin electrode film 17 can change the mass.
  • the mass can be adjusted by making a large mass change (rough adjustment) in a short time with the thick weight layers 18 and 20 and making a fine mass change or fine adjustment with the thin electrode film 17. It becomes possible by doing. As a result, coarse and fine adjustment of each natural resonance frequency can be performed in a short time with a relatively small area adjustment unit, and it is possible to provide an inexpensive and small vibration gyroscope. Become.
  • the shape of the weight layer has been described by exemplifying a shape having a long side in the X direction shown in FIG. 1.
  • the shape is not limited to this, and the shape is not limited as long as a predetermined area is secured. Absent.
  • the shape shown in FIG. 5. (a) to FIG. 5 (c) may be used.
  • FIG. 5 (a) an electrode film 17 is formed on the surface, and a circular weight layer 18 is formed at the tip of the drive arm 15 A.
  • FIG. 5 (b) shows the first end of the drive arm 15A having the electrode film 17 formed on the surface of the front end portion of the drive arm 15A having the electrode film 17 formed on the surface thereof.
  • FIG. 5C shows a rectangular shape having a long side in the direction perpendicular to the weight layer shown in the first embodiment at the tip of the driving arm 15 A having the electrode film 17 formed on the surface.
  • Two weight layers 1 8 a and 1 8 b are formed. Further, the removal of the weight layers 1 8 and 20 and the electrode film 17 of the first weight part 19 and the second weight part 23 is performed by the weight layer 18, the electrode film 17, and the weight layer 2. It is not necessary to process all of 0 and the electrode film 17. If the desired mass can be adjusted, any part may be processed. For example, in the case of the first weight part 19, only the weight layer 18 is processed, or only the electrode film 17 is processed. There is a pattern in which both the weight layer 18 and the electrode film 17 are processed, and any of these patterns can be used.
  • FIG. 6 is a front sectional view showing a schematic structure of a vibrating gyroscope according to the present invention.
  • the vibratory gyroscope 30 of the present invention includes a piezoelectric vibrating piece 10, a circuit element 3 2, a support substrate 3 housed in a recess of a package 3 1 as a cage. 4. It consists of a support 3 5 and a lid 3 7.
  • a package 31 made of ceramic has a three-level recess.
  • the circuit element 3 2 is fixed to the lowermost stage of the package 31 with a conductive adhesive (not shown) or the like, and is connected to a connection wiring portion (not shown) formed in the middle stage of the package 31. Connected by metal wires (bonding wires) 3 3.
  • the circuit element 3.2 has a function of driving at least the piezoelectric vibrating piece 10 and detecting the rotational angular velocity.
  • One end of the support substrate 34 is connected and fixed to the upper stage of the package 31, and the piezoelectric vibrating reed 10 described in detail in the first embodiment is connected to one end of the support substrate 34. Support portions 35 are connected.
  • the support portion 35 is formed in a plurality of elongated shapes by a flexible metal thin plate or the like, and protrudes from the support substrate 34 to prevent contact between the support substrate 34 and the piezoelectric vibrating piece 10. This is the shape bent upward at this part.
  • a piezoelectric vibrating piece 10 is connected to the end in the bent direction.
  • the opening of the knock 31 is sealed with a lid 37 using, for example, seam welding, metal heat fusion, or the like via the connection 36.
  • the piezoelectric vibrating reed 10 described in detail in the first embodiment is mounted and stored in the package.
  • the piezoelectric vibrating piece 10 is inexpensive because the characteristics can be adjusted efficiently, and is small because the weight for adjusting characteristics can be made small. Therefore, according to this example, it is possible to provide a vibration gyroscope 30 that is small and inexpensive.
  • the configuration in which the circuit element 3 2 is accommodated in the package 31 has been described as an example.
  • the circuit element 3 2 may be configured not to be accommodated in the package 31. It has the same effect as the embodiment.
  • the circuit element 3 2 is mounted on a substrate (not shown) on which the vibrating gyroscope 30 is mounted, and the piezoelectric vibrating piece 10 and the piezoelectric vibration and moving piece 10 are supported in the package.
  • the support portion 3 5 and the support substrate 3 4 to which the support portion 35 is connected may be accommodated.
  • the step formed in the recess of the package 31 may have a two-stage structure.
  • the package 31 described above has been described with an example in which the recess has a three-stage or two-stage structure, the number of stages is not limited thereto, and may be a one-stage structure or a structure of four or more stages.
  • FIGS. (A) to (f) are explanatory diagrams illustrating a schematic manufacturing process in the piezoelectric vibrating piece 10 of the vibrating gyroscope of the first embodiment shown in FIG. 1 described above.
  • Fig. 7 is a diagram of the piezoelectric resonator element 10 viewed from the direction P shown in Fig. 1. The left column shows the vicinity of the tip of the drive arm 15 A, and the right column shows the vicinity of the tip of the detection arm 16 A. Is shown.
  • drive arms 15A, 15B, 15C, 15D as drive units shown in FIG. 1 and detection arms 16 as detection units are shown.
  • a piezoelectric vibrating piece 10 having an outer shape such as A and 16 B, for example, made of a quartz plate is prepared.
  • the manufacturing process of the piezoelectric vibrating piece 10 will be described in order, with the drive arm 1'5mm and the detection arm 16mm as representative.
  • Arms 15 A, 15 B, 15 C, 15 D and detection arms 16 A, 16 B are processed in the same process as needed.
  • an electrode film 17 is formed on the surface of the piezoelectric vibrating piece 10.
  • the electrode film 17 has, for example, a structure in which a base metal layer such as chromium (C r) is formed in order to improve adhesion to quartz, and a gold (A u) layer is formed on the surface thereof.
  • the electrode film 17 can be formed by vapor deposition or sputtering.
  • the weight layers 1 8 and 20 are formed.
  • a metal layer such as gold (Au) is formed by a vapor deposition method or a sputtering method through a metal mask, and the thickness of the layer is larger than that of the electrode film 17. Form thick.
  • the weight layer 18 is formed in an almost half region of the first weight portion 19, and the weight layer 20 is formed in almost the entire region of the second weight portion 23.
  • the mass of the detection arm 16A is adjusted, and the natural resonance frequency of the detection arm 16A is adjusted to a desired frequency.
  • This mass adjustment is performed for the adjustment of the detuning frequency described in the first embodiment. For example, by irradiating the focused laser L 0, the detector ⁇ 16 A is irradiated. This is done by melting and evaporating the formed weight layer 20 and removing it. If necessary, the electrode film 17 may be removed by melting and vaporizing.
  • the mass adjustment of the drive arm 15 A shown in FIGS. 7 (e) and 7 (f) is performed, and the natural resonance frequency of the drive arm 15 A is adjusted to a desired frequency.
  • the bending vibrations of the drive arms 15 A, 15 B, 15 C, 15 D described in the first embodiment pass through the connecting arms 13 3, 14 and the detection arms 16 A, 1 6 Propagated to B to prevent so-called vibration leakage.
  • the natural resonance frequency of each drive arm 1 5 A, 15 B, 15 C, 15 D is changed, and the natural resonance frequency of each drive arm 15 A, 15 B, 15 C, 15 D Align to match .
  • This mass adjustment is performed by, for example, melting and evaporating the weight layer 18 and the electrode film 17 formed on the drive arm 15 A by irradiating the focused laser L 1 and laser L 2. Do by removing.
  • the mass adjustment of the driving anim 15 A is performed by first irradiating the weight L 1 18 formed on the driving arm 15 A with the laser L 1 to Remove 8. Since the weight layer 18 is thick, the mass that can be removed by a single laser is large : In other words, by utilizing the fact that a large mass change can be generated, the natural resonance frequency is roughly adjusted. So-called rough adjustment is performed.
  • the electrode film 17 is removed by irradiating the electrode film 17 on the portion of the first weight portion 19 of the drive arm 15A with the laser L2. Since the electrode film 17 has a small film thickness, the mass that can be removed by one laser is small, and a fine mass can be adjusted. Therefore, so-called fine adjustment is performed by removing the mass of the electrode film 1 7.
  • the weight layers 18 and 20 of the first weight part 19 and the second weight part 23 are formed at the same time. Therefore, the number of manufacturing steps for forming the weight layers 18 and 20 can be reduced. Furthermore, according to this example, efficient adjustment can be performed by combining coarse adjustment and fine adjustment. In other words, the detection arms 16 A and 16 B that need to be adjusted to a large natural resonance frequency can be adjusted in a short time by removing the weight layer 20. Next, the drive arms 15 A, 15 B, 15 C, and 15 D that require fine adjustment are finely adjusted by removing the weight layer 18 and fine by removing the electrode film 17. By making adjustments in sequence, it is possible to make fine adjustments in a short time. In other words, it is possible to efficiently manufacture an accurate vibratory gyroscope, which can be provided at a low cost.
  • the portions from which the weight layer 18 and the weight layer 20 are removed become recesses 2 1 b and 2 1 a as shown in FIGS. 7 (e) and 7 (f).
  • This recess 2 lb, 2 1 a 7 (e) and FIG. 7 (f) may be in the weight layers 18, 20, or the weight layers 18, 20 and the weight layers 18, 2 Both the electrode film 17 formed under 0 may be removed, and the crystal face may be the bottom face.
  • the concave portion 21 a from which the weight layer 20 is removed is divided into three parts
  • FIG. 7 (f) the concave portion 21 b from which the weight layer 18 is removed is shown. Although it is divided into two parts, the present invention is not limited to this, and a single concave part may be formed by removing continuously.
  • the mass adjustment of the drive arm 15 A has been described using the weight layer 18 and the electrode film 17, but depending on the mass adjustment amount, only the weight layer 1 8 may be removed. When the mass is adjusted and the electrode film 17 is not removed, or only the electrode film 17 is removed and the mass is adjusted and the weight layer 18 is not removed.
  • the material for forming the weight layers 18 and 20 has a higher specific gravity than the material for forming the electrode film 17, for example, the weight layers 18 and 20 are made of gold, and the electrode film 17 is made of aluminum. Even if it is formed by, it has the same effect.
  • weight layers 18 and 20 have been described as being provided on the first weight portion 19 and the second weight portion 23, respectively, but the present invention is not limited to this. A plurality of weight layers having different thicknesses may be formed in the weight parts 23.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Manufacturing & Machinery (AREA)
  • Gyroscopes (AREA)

Description

明細書
振動型ジャィロスコープ、 及び振動型ジャィロスコ プの製造方法 技術分野
本発明は、 圧電振動片を搭載し、 この圧電振動片に加えられている回 転の回転角速度を検出するための振動型ジャィロスコープ、 及び振動型 ジャィロスコープの製造方法に関する。 背景の技術
従来から、 回転角速度を検出するための角速度センサとして、 圧電振 動片を用いた振動型ジャイロスコープが、 V T R、 スチールカメラの手 振れの検出などに用いられている。 この振動型ジャイロスコープの 例 を図面を用いて説明する。 図 8は、 従来の振動型ジャイロスコープの圧 電振動片の一例を示す平面図である。 図 8に示すように、 圧電振動片 1 0 0の主アーム 1 0 2においては、 基部 1 0 3が固定部 1 0 1から垂直 に延びており、 基部 1 0 3の一方の端部 1 0 3 aが固定部 1 0 1に固定 されている。 基部 1 0 3には、 検出部 1 0 5 a , 1 0 5 bが設けられて いる。 基部 1 0 3の他方の端部 1 0 3 b側には、 基部 1 0 3に対して垂 直方向に延びる 2本の駆動部である屈曲振動 Jt 1 0 4 a , 1 0 4 bが設 けられている。 屈曲振動片 1 ,0 4 a, 1 0 4 bには、 励振部 1 0 6 a, 1 0 6 b, 1 0 6 c , 1 0 6 dが設けられている (例えば、 特許文献 1 圧電振動片 1 0 0の動作について説明する。 励振部 1 0 6 a, 1 0 6 b , 1 0 6 c , 1 0 6 dに対して駆動電圧を印加すると、 屈曲振動片 1 0 4 a , 1 0 4 bは、 それぞれ矢印 A、 矢印 Bの方向に屈曲振動する。 このとき圧電振動片 1 0 0が X— Y平面内で矢印 ωの方向に回転すると 各圧電振動片 1 0 4 a, 1 0 4 bにコリオリカが加わり、 そのコリオリ 力が基部 1 0 3に伝わる。 これによつて、 基部 1 0 3が接続部分 1 2 6 を中心として矢印 Dの方向に屈曲振動する'。 この基部 1 0 3の屈曲振動 を検出部 1 0 5 a, 1 0 5 bで検出し、 検出した屈曲振動に応じた信号 を出力すことで回転各速度を検出する。
また、 振動型ジャイロスコープでは、 測定感度を良好にするために屈 曲振動片 1 0 4 a, 1 0 4 bの固有共振周波数ど検出部である基部 1 0 3の固有共振周波数との間に一定の振動周波数差 (以下、 「離調周波数 J という) を持つことが要求されている。 さらに、 振動型ジャイロスコ ープでは、 それぞれの屈曲振動片 1 0 4 a, 1 0 4 bの固有共振周波数. の違い (アンバランス) によって生ずる屈曲振動の基部への漏れ伝播を ■防止するために屈曲振動片 1 04 a, 1 04 bの固有共振周波数を合わ せる。 これらの固有共振周波数の調整は、 基部 1 0 3、 及び屈曲振動片 1 0 4 a , 1 04 bの質量を変化させることによって行う。
例えば、 図 8に示す圧電振動片 1 0 0では、 基部 1 0 の他方の端部 1 0 3 b側に、 屈曲振動片 1 04 a, 1 0 4 bから突出する突出部 1 3 5が設けられている。 そして、 突出部 1 3 5の一部分 1 3 7から質量を 除去する加工を施すことによって、 基部 1 0 3の固有共振周波数を変化 させる。 また、 それぞれの屈曲振動片 1 0 4 a , 1 0 4 bの各先端側の 一部分 1 3 6 A, 1 3 6 Bから質量を除去する加工を施すことによって 、 それぞれの屈曲振動片 1 0 4 a, 1 0 4 bの固有共振周波数を、 それ ぞれ独立して変化させる。 これらの質量の除去加工は、 例えば、 圧電振 動片 1 0 ひの表面に形成された薄膜をレーザの照射によって除去するな どで行われる。
【特許文献 1】 特開平 1 1一 7 2 3 3 4号公報
しかしながら、 前述のような質量の除去加工では、 庄電振動片 1 0 0 の表面に形成された薄膜の厚みがほぼ均一に形成されていること、 また レーザ照射径も均一であることから 1発のレーザ照射により除去される 薄膜の質量は、 ほぼ一定となる。 ここで必要とされる質量の変化量は、 圧電振動片の製造のバラツキなどによって圧電振動片毎に違っており、 大きな質量変化が必要とされることも多い。 このように、 大きな質量変 化を所望する場合には、 大きな面積の薄膜を除去すれば可能であるが、 大きな面積を加工するため加工時間が長くなる、 或いは、 大きな加工面 積が必要と'なることから圧電振動片の小型化を阻害する。 これらに対応 するため、 除去部の薄膜の厚さを厚く して、 1発のレーザ照射による除 去量を多くすることが用いられるが、 反面、 レーザ照射 1発の質量除去 量以下の微細な質量の除去は不可能となり、 最終的に必要となる微調整 が困難であった。 換言すれば、 大きな固有共振周波数の調整と微細な固 有共振周波数の調整を同時に行うことが困難であるという問題を有して いた。
本発明は、 上記問題に鑑みてなされたものであり、 その目的とすると ころは、 質量の除去装置を用いて除去できる最低除去量を可変し、 それ ぞれの固有共振周波数の粗調整と微調整を行うことができる振動型ジャ イロスコープ、 及び振動型ジャイロスコープの製造方法を提供すること にある。 発明の概要
かかる問題を解決するために、 本発明の振動型ジャィロスコープは、 圧電振動片に加えられる回転の回転角速度を検出する振動型ジャィ口ス コープであって、 前記圧電振動片は、 基部と、 前記基部から延出された 支持.梁を介して設けちれ、 所定の振動を行う駆動部と.、 前記基部から前 記駆動部と同一平面内に延出され、 前記駆動部の回転に伴うコリオリカ によって生じた検出振動を検出する検出部と、 前記駆動部の略先端部分 に形成された前記圧電振動片の特性調整用の第一錘部と、 前記検出部の 略先端部分に形成された前記圧電振動片の特性調整用の第二錘部と、 を 有し、 前記第一錘部及ぴ第二錘部の少なく とも一方が、 単位面積当たり の質量の異なる複数の調整部で形成されていることを特徴とする。
本発明の振動型ジャィロスコープによれば、 第一錘部と第二錘部の少 なく とも一方に、 単位面積当たりの質量の異なる少なく とも 2つの調整 部が形成されている。 これにより、 質量を大きく変化させたい場合 (粗 調) は、 単位面積当たりの質量が大きな調整部を除去し、 微細な変化を 所望する場合 (微調) は、 単位面積当たりの質量が小さな調整部を除去 することができる。 即ち、 質量の調整は、 先ず、 単位面積当たりの質量 が大きい調整部で短時間で大きな質量変化を行い、 続いて単位面積当た りの質量が小さい調整部で微細な最終合わせ込みを行うことが可能とな る。 従って、 調整部の面積を大きくすることなく、 また加工時間を長く することなく、 一つの錘部の中で粗調整と微調整を行うことが可能とな る。 換言すれば、 それぞれの固有共振周波数の粗調整と微調整を一つの 比較的小さな面積の調整部で簡単に行うことができる、 振動型ジャィ口
. ' ソ
スコープを提供することが可能となる。
また、 前記第一錘部の質量は、 前記第二錘部の質量より小さく設定さ れていることが望ましい。 '
このようにすれば、 比較的大きな質量の調整が必要な検出部の調整は
、 単位面積当たりの質量が大きな調整部で行い、 比較的小さな質量の調 整が必要な駆動部の調整は、 単位面積当たりの質量が小さな調整部で行 うことが可能となる。 即ち、 調整に要する時間を少なくすることができ
、 より効率的な質量調整を行うことが可能となる。
また、 前記調整部は、 前記駆動部及び前記検出部のうち該調整部が形 成されたものに対し、 前記駆動部にあっては該駆動部の延出方向と略直 交する方向の全ての領域にわたって形成され、 前記検出部にあっては該 検出部の延出方向と略直交する方向のすべての領域にわたって形成され ていることが望ましい。
このようにすれば、 調整部を形成する際に生じる駆動部と検出部との それぞれの先端に向かう方向と略直交する方向 (以下、 「幅方向」 とい う。 ) の形成位置のずれを考慮し、 調整部の大きさを設定することがで きる。 即ち、 調整部の幅寸法を駆動部と検出部の幅方向寸法より大きく 設定することにより、 形成の位置ずれが発生しても、 調整部は、 常に駆 動部、 又は検出部の幅方向の全領域にかかり形成される。 このことによ り、 調整部の形成の位置ずれにより、 調整部の一方端が駆動部又は検出 部の幅方向からはずれたり、 他の端が駆動部又は検出部の内側に入るこ とによる調整部の質量のばらつきを防止することが可能となる。 換言す れば、 調整部及び駆動部の固有共振周波数のばらつきを小さくすること が可能となる。 '
また、 前記第一錘部、 及び第二錘部の少なく と 一方が、 厚さの異な る複数の調整部で形成されていることが望ましい。
このようにすれば、 第一錘部と第二錘部の少なく とも一方に、 厚さの 異なる少なく とも 2つの調整部が形成されている。 これにより、 質量を 大きく変化させたい場合 (粗調整) は、 厚さの大きな調整部を除去し、 微細な変化を所望する場合 (微調整) は、 厚さの小さな調整部を除去す ることができる。 即ち、 質量の調整は、 厚さの大きい調整部で短時間で 大きな質量変化を成し、 続いて厚さの小さい調整部で微細な最終合わせ 込みを行うことが可能となる。 従って、 調整部の面積を大きくすること なく、 また加工時間を長くすることなく、 一つの錘部の中で粗調整と微 調整を行うことが可能となる。
また、 前記第一錘部の調整部と、 前記第二錘部の調整部とが、 同じ金 属を用い、 同じ厚さで形成されていることが望ましい。
このようにすれば、 第一錘部の調整部と第二錘部の調整部とを同じ形 成工程によって形成することができる。 換言すれば、 第一錘部の調整部 と第二錘部の調整部の形成を効率的に行うこどが可能となり、 より低い 製造コス トの琿動型ジャイロスコープを提供することが可能となる。 また、 前記厚さの異なる複数の調整部は、 前記駆動部、 又は前記検出 部の先端に近い側の前記調整部の厚さが、 他の調整部の厚さより厚く形 成されていることが望ましい。
このようにすれば、 質量変化の影響を受け易い略先端部分の調整部の 厚さが厚いことから粗調整をより効率的に行うことが可能となる。 また 。 比較的質量変化の影響を受け難い他の部分に厚さの小さな調整部を形 成することで、 微調整を行い易くすることが可能となる。 また、 保持器と、 前記保持器に実装された前述の圧電振動片とを有す ることを特徴とする振動型ジャイロスコープを提供することが可能とな る。 、 また、 保持器と、 前記保持器に実装された前述の圧電振動片と、 前記 保持器に実装され、 少なく とも前記圧電振動片を駆動する回路を有する 回路素子とを有することを特徴とする振動型ジャィロスコープを提供す ることも可能となる。
本発明の振動型ジャイロスコープの製造方法は、 基部と、 前記基部か ら同一平面内に延出された支持梁を介して設けられ、 所定の振動を行う 駆動部と、 前記基部から同一平面内に延出され、 前記駆動部の回転に伴 うコリオリカによって生じた検出振動を検出する検出部とを有する圧電 振動片を備えた振動型ジャィロスコープの製造方法であって、 外形形状 が形成された前記圧電振動片の表面に電極膜を形成する工程と、 前記検 出部の略先端部分に形成された前記電極膜の表面、 及び前記駆動部の略 先端部分に形成された前記電極膜の表面の一部、 に調整部としての錘層 を形成する工程と、 前記検出部の略先端部分に形成された少なく とも前 記錘層を除去して前記検出部の固有共振周波数を調整する工程と、 前記 駆動部の略先端部分に形成された前記綞層を除去して前記駆動部の固有 共振周波数の粗調整を行い、 前記駆動部の略先端部の前記.電極:膜.を除去 して前記駆動部の固有共振周波数の微調整を行う工程と、 を有すること 特徴とする。
本発明の振動型ジャィ口スコープの製造方法によれば、 第一錘部と第 二錘部の錘層を同時に形成することができることから、 錘層を形成する 工程を減らすことが可能となり、 製造工数を少なくすることができる。 また、 大きな固有共振周波数の調整が必要な検出部は、 錘部を除去する ことによって短時間で調整し、 微調整が必要な駆動部は、 錘部を除去す ることによる粗調整と電極膜を除去することによる微調整を順次行うこ とにより、 短時間で、 微細な調整を行い、 所望の固有共振周波数に合わ せることが可能となる。 即ち、 精度のよい振動型ジャイロスコープを低 コス トで提供することが可能となる。 図面の簡単な説明
図 1は、 第一実施形態の振動型ジャイロスコープの圧電振動片の概略 を示す平面図である。
図 2は、 圧電振動片の駆動振動を模式的に説明するための平面図であ る。
図 3は、 圧電振動片の検出振動を模式的に説明するための平面図であ る。
図 4は、 調整部のレーザ加工を示す模式的な平面図である。
図 5は、 ( a ) 〜 ( c ) は、 錘層の変形例を示す平面図である。
図 6は、 第二実施形態の振動型ジャィロスコープの概略を示す正断面 図である。
図 7は、 ( a ) 〜 ( f ) は、 第三実施形態の振動型ジャイロスコープ の圧電振動片の概略の製造工程を示す工程説明図であり、 左列は、 駆動 アームの先端付近の正面図、 右列は、 検出.アームの先端付近の正面図で ある。
図 8 .は.、 従来の振動型ジャィ口スコープの圧電振動片を示す平面..図で ある。 発明を実施するための最良の形態
本発明に係る振動型ジャィ口スコープの最良の形態について、 以下に 図面を用いて説明する。 なお、 本発明は、 後述の実施形態に限定される ものではない。
(第一実施形態)
図 1は、 本発明に係る第一実施形態の振動型ジャィロスコープの圧電 振動片の概略を示す平面図である。 図 1に示すように、 圧電振動片 1 0は、 X Y平面内に形成される。 第 一実施形態では、 圧電振動片 1 0は、 水晶で形成され、 電気軸と呼ばれ る X軸、 機械軸と呼ばれる Y軸及び光学軸と呼ばれる Z軸の、 X軸と Y' 軸の平面方向に切り出された Zカツ トの水晶基板である。 圧電振動片 1 0は、 所定の厚みの水晶基板で形成されている。 圧電振動片 1 0の平面 形状は、 水晶の結晶軸に合わせて X Y平面に展開され、 中心点 Gに対し て 1 8 0 ° 点対称の形状をしている。 中心点 Gは圧電振動片 1 0の重心 位置である。 また、 図 1では図示していないが、 圧電振動片 1 0の表面 には所定の電極が形成されている。
圧電振動片 1 0には、 X軸方向と γ軸方向にそれぞれ平行な端面をも つ矩形状の基部 1 2が形成されている。 基部 1 2には、 基部 1 2の Y軸 に平行な 2端面の中央から X軸に平行な方向に延出される支持梁として の二つの連結アーム 1 3, 1 4が形成されている。 さらに、 基部 1 2に は、 基部 1 2の X軸に平行な 2端面の中央から Y軸に平行な方向に延出 される検出部として、 Y軸プラス方向に検出アーム 1 6 Aと Y軸マイナ ス方向に検出アーム 1 6 Bとが形成ざれている。 連結アーム 1 3, 1 4 のそれぞれの先端には、 連結アーム 1 3に直交する方向に延出する 1対 の駆動アームが形成されている。 連結アーム 1 3の先端には、 Y軸プラ ス方向に駆動アーム 1. 5 .Aと Y軸マイナス方向に駆動アーム 1 5 Bが延_ 出されている。 さらに、 連結アーム 1 4の先端には、 Y軸プラス方向に 駆動アーム 1 5 Cと Y軸マイナス方向に駆動アーム 1 5 Dが延出されて いる。
駆動アーム 1 5 A, 1 5 B , 1 5 C , 1 5 Dの先端部には、 幅広形状 の第一錘部 1 9が形成されている。 第一錘部 1 9には、 調整部としての 電極膜 1 7と、 電極膜 1 7の表面に形成された錘層 1 8が形成されてい る。 なお、 錘層 1 8は、 電極膜 1 7と比較して厚さが厚くなるように形 成されている。 また、 錘層 1 8は、 第一錘部 1 9の幅方向 (X方向) に 幅いっぱいに設けられており、 本例では、 第一錘部 1 9の先端側のほぼ 半分の領域に形成されている。 従って、 第一錘部 1 9は、 面積のほぼ半 分を電極膜 1 7が占め、 残り半分を錘層 1 8が占めていることになる。 また、 錘層 1 8は、 例えば金、 銀などの金属を真空蒸着法などを用いて 形成することができる。
検出アーム 1 6 A , 1 6 Bの先端部には、 第一錘部 1 9より幅が広く 設定された幅広形状の第二錘部 2 3が形成されている。 幅を広くするこ とにより、 第二錘部 2 3の面積を広くすることができ、 除去することが できる質量を大きくすることが可能となる。 第二錘部 2 3には、 調整部 としての電極膜 1 7と、 電極膜 1 7の表面に形成された錘層 2 0が形成 されている。 錘層 2 0は、 電極膜 1 7と比較して厚さが厚くなるように 形成されている。 また、 錘層 2 0は、 第二錘部 2 3の幅方向 (X方向) に幅いつばいに設けられており、 本例では、 第二錘部 2 3の大部分の領 域を占めるように形成されている。 従って、 第二錘部 2 3は、 '面積のほ ぼすベての領域を錘層 2 0が占め、 残りの僅かな部分を電極膜 1 7が占 めている。 なお、 錘層 2 0は、 第一錘層と同じように、 例えば金、 銀な どの金属を真空蒸着法などを用いて形成することができる。
駆動アーム 1 5 A, 1 5 B , 1 5 C , 1 5 Dは、 所定の共振周波数の 駆動振動が発生するように幅や長さなどの寸法が設定されている。 また 、 検出アーム 1 6 A , 1 6 B、 及び連結アーム 1 3, 1 4は、 所定の共 周波数の検出.振動が発生するように幅や長さなどの寸法が.設定ざれて いる
続いて、 圧電振動片 1 0の振動動作について説明する。 図 2及ぴ図 3 は、 本第一実施形態の圧電振動片 1 0の動作を模式的に説明するための 平面図である。 図 2、 図 3においては、 振動形態をわかりやすく表現す るために、 各振動腕は簡略化して線で表している。 図 1 と同じ構成部分 を同じ符号で示し、 説明を省略する。
図 2は、 駆動振動を説明する図である。 図 2において、 駆動振動は、 駆動アーム 1 5 A, 1 5 B , 1 5 C , 1 5 Dが矢印 A方向に振動する屈 曲振動であって、 実線で示す振動姿態と、 二点鎖線で示す振動姿態を所 定の周波数で繰り返している。 このとき、 駆動アーム 1 5 A , 1 5 Bと 駆動アーム 1 5 C, 1 5 Dとが、 重心位置 Gを通る Y軸で線対称の振動 を行っているので、 基部 1 2、 連結アーム 1 3, 1 4及び検出アーム 1 6 A, 1 6 Bは、 とんど振動しない。
図 3は、 検出振動を説明する図である。 図 3において、 検出振動は、 実線で示す振動姿態と、 二点鎖線で示す振動姿態を、 前記駆動振動の周 波数で繰り返している。 検出振動は、 圧電振動片 1 0が図 2に示した駆 動振動を行っている状態で、 圧電振動片 1 0に Ζ軸周りの回転角速度 ω が加わった時、 駆動アーム 1 5 Α, 1 58及び1 5 〇, 1 50に矢印8 で示す方向のコリオリカが働くことによって発生する。
このことより、 駆動アーム 1 5 A, 1 5 B , 1 5 C, 1 5 Dが、 矢印 Bで示す振動を行う。 矢印 Bで示した振動は、 重心位置 Gに対して周方 向の振動である。 また同時に、 検出アーム 1 6 A, 1 68は、 矢印。に 示すように、 矢印 Bの振動に呼応して矢印 Bとは周方向反対向きの振動 を行う。
このとき、 基部 1 2の周縁部は、 駆動アーム 1 5 A, 1 5 B, 1 5 C , 1 5 Dと検出アーム 1 6 A, 1 6 Bとが図 2で示したような振動をし たとき振動系としては釣り合いが取れた状態であるため振動しない。 従 つて、 この基部 1 2に圧電振動片 1 0を支持するリ一ド部材を接続して も圧電振動片 1 0の振動に影響を与えることはない。
次に、 圧電振動片の特性調整について、 図 1を参照しながら説明する 。 図 1に示す圧電振動片 1 0は、 その測定感度を良好にするために駆動 アーム 1 5 A, 1 5 B, 1 5 C, 1 5 Dの固有共振周波数と検出アーム 1 6 A, 1 6 Bの固有共振周波数との間に一定の振動周波数差 (以下、 「離調周波数」 という) を持つことが要求されている。 この離調周波数 を合わせ込むために検出アーム 1 6 A, 1 6 gに形成されている第二錘 部 2 3の錘層 2 0及ぴ電極膜 1 7から質量を除去する加工を行い、 検出 アーム 1 6 A, 1 6 Bの固有共振周波数を変化させる。 離調周波数の調 整は、 調整量を多く取ることが必要なため、 第二錘部 2 3に占める錘層 2 0の領域を大きくすることによって、 調整量を多く取ることを可能と している。 なお、 錘層 2 0及び電極膜 1 7'から質量を'除去する加工は、 錘層 20及び電極膜 1 7のどちらか一方を加工する、 または、 双方を加 ェすることによって行う。
さらに、 図 1に示す圧電振動片 1 0は、 それぞれの駆動アーム 1 5 A , 1 5.B, 1 5 C, 1 5 Dの固有共振周波数を一致させることが要求さ れている。 これは、 駆動アーム 1 5 A, 1 5 B, 1 5 C , 1 5 Dの屈曲 振動が連結アーム 1 3 , 1 4を通り検出アーム 1 6 A, 1 6 Bへ伝播す る、 所謂、 振動漏れを防止するためである。 振動漏れは、 それぞれの駆 動アーム 1 5 Α, 1 5 Β , 1 5 C, 1 5 Dの固有共振周波数の違い (ァ ンバランス) によって生じる。 この固有共振周波数の違いを解消するた め、 それぞれの駆動アーム 1 5 A, 1 5 Β , 1 5 C , 1 5 Dの固有共振 周波数を変化させ、 それぞれの駆動アーム 1 5 Α, 1 5 Β , 1 5 C , 1 5 Dの固有共振周波数を一致させるように合わせ込みを行なう。 駆動ァ ーム 1 5 A, 1 5 B, 1 5 C , 1 5 Dの固有共振周波数の調整は、 それ ぞれの駆動アーム 1 5 Α, 1 5 Β , 1 5 C , 1 5 Dの先端部に形成され ている第一錘部 1 9の錘層 1 8及び電極膜 1 7から質量を除去する加工 によって行う。 錘層 1 8と電極膜 1 7とは第一錘部 1 9に概ね半分ずつ 設けられており、 錘層 1 8を除去することによって粗調整を行い、 電極 膜 1 7を除去することによって微調整を行う。' なお'、 錘層 1.8及ぴ電極 膜 1 7から質量を除去する加工は、 錘層 1 8及ぴ電極膜 1 7のどちらか 一方を加工する、 または、 双方を加工することによって行う。
なお、 本例では、 錘層 1 8 , 2 0及び電極膜 1 7から質量を除去する 加工は、 一例としてレーザを照射することによって錘層 1 8, 2 0及び 電極膜 1 7を溶融、 蒸発させる方法を用いている。 図 4のレーザ加工を 示す模式図に示すように、 レーザ 2 2を照射しながらレーザと駆動ァー ム 1 5 Αを相対的に移動することによって連続又は単発に錘層 1 8を除 去する。 図 4では、 レーザ 2 2が照射され、 そこから連続して矢印の方 向に除去する例を示しており、 順次次列を繰り返して加工する、 或いは 往復して加工を行う。 電極膜 1 7の除去加工も錘層 1 8と同様に行われ る。
第一実施形態に示す振動型ジャィ口スコープの圧電振動片 1 0によれ ば、 駆動アーム 1 5 A , 1 5 B, 1 5 C, 1 5 Dには、 調整部としての 第一錘部 1 9が錘層 1 8と電極膜 1 7とで形成され、 検出アーム 1 6 A , 1 6 Bには、 調整部としての第二錘部 2 3が錘層 2 0と電極膜 1 7'と により形成されている。 錘層 1 8, 2 0と電極膜 1 7とは、 厚さが異な つているいることから、 同面積のレーザ照射で除去できる質量が異なる 。 即ち、 厚さの大きな錘層 1 8 , 2 0は大きな質量変化をさせることが でき、 厚さの薄い電極膜 1 7は小さな質量変化をさせることができる。 従って、 質量の調整は、 厚さの大きい錘層 1 8, 2 0で短時間で大きな 質量変化 (粗調整) を行い、 厚さの薄い電極膜 1 7で微細な質量変化 い 微調整) を行うことで可能となる。 これらにより、 それぞれの固有共振 周波数の粗調整と微調整を、 比較的小さな面積の調整部で短時間に行う ことができるようになり、 安価で小型な振動型ジャイロスコープを提供 することが可能となる。
なお、 第一実施形態において錘層の形状は、 図 1に示す X方向に長辺 を有する形状を例示して説明したが、 これに限らず、 所定の面積が確保 されていれば形状は問わない。 例えば、 図 5 . ( a ) 〜図 5 ( c ) に示-す ような形状でもよい。 図 5 ( a ) には、 表面に電極膜 1 7が形成され 駆動アーム 1 5 Aの先端部分に円形の錘層 1 8が形成されている。 また 、 図 5 ( b ) には、 表面に電極膜 1 7が形成された駆動アーム 1 5 Aの 先端部分の表面に電極膜 1 7が形成された駆動アーム 1 5 Aの^端部分 に第一実施形態で示した錘層と直交する方向に長辺を有する矩形形状の 錘層 1 8が形成されている。 また、 図 5 ( c ) には、 表面に電極膜 1 7 が形成された駆動アーム 1 5 Aの先端部分に第一実施形態で示した錘層 と直交する方向に長辺を有する矩形形状の二つの錘層 1 8 a , 1 8 bが 形成されている。 また、 第一錘部 1 9及び第二錘部 2 3の錘層 1 8 , 2 0及ぴ電極膜 1 7の除去を行う加工は、 錘層 1 8と電極膜 1 7、 及び錘層 2 0と電極膜 1 7のすベてを加工することは必要としない。 所望する質量の調整がで きれば、 どの部分が加工されていてもよく、 一例として第一錘部 1 9で 説明すれば、 錘層 1 8のみ加工されている、 或いは電極膜 1 7のみ加工 されている、 或いは錘層 1 8 と電極膜 1 7の双方が加工されている、 パ ターンがあり、 この内のどのパターンであってもよレ、。
(第二実施形態)
図 6に沿って第二実施形態について説明する。 図 6は、 本発明に係る 振動型ジャィロスコープの概略構造を示す正断面図である。
図 6に示すように、 本発明の振動型ジャイロスコープ 3 0は、 圧電振 動片 1 0、 保持器としてのパッケージ 3 1の凹部の内に収納された、 回 路素子 3 2、 支持基板 3 4、 支持部 3 5、 蓋体 3 7などから構成されて いる。
例えば、 セラミックによって形成されたパッケージ 3 1は、 凹部が 3 段構造に形成されている。 回路素子 3 2は、 パッケージ 3 1の最下段に 導電性接着剤 '(図示せず) 等で固着ざれており、 パッケージ 3 1の中段 に形成された接続配線部 (図示せず) とワイヤーボンディングによる金 属細線 (ボンデ ングワイヤ) 3 3により接続されている。 回路素子 :3 . 2は、 少なく とも圧電振動片 1 0を駆動させ、 回転角速度を検出する機 能を有している。 支持基板 3 4は、 一方端がパッケージ 3 1の上段に接 続固着されており、 その表面には、 一方の端部に前述の第一実施形態で 詳述した圧電振動片 1 0が接続された支持部 3 5が接続されている。 支 持部 3 5は、 可撓性を有する金属薄板などにより複数の細長形状に形成 されており、 支持基板 3 4と圧電振動片 1 0との接触を防止するため、 支持基板 3 4から突出した部分で上方に折り曲げられた形状となってい る。 その折り曲げられた方向の端部に圧電振動片 1 0が接続されている 。 ノ ッケージ 3 1の開口部は、 接続部 3 6を介し、,例えばシーム溶接、 金属加熱融着などを用いて蓋体 3 7により封止されている。 第二実施形態によれば、 パッケージ内に、 第一実施形態で詳述した圧 電振動片 1 0を実装し、 収納している。 圧電振動片 1 0は、 特性の調整 を効率よく行うことができるため安価であり、 且つ、 特性調整用の錘部 を小さくできることから小型である。 従って、 本例によれば、 小型で安 価な振動型ジャィロスコープ 3 0を提供することが可能となる。
なお、 前述の第二実施形態では、 パッケージ 3 1内に、 回路素子 3 2 を収納する構成を一例として説明したが、 回路素子 3 2は、 パッケージ 3 1内に収納しない構成でもよく、 第二実施形態と.同様な効果を有して いる。 例えば、 回路素子 3 2は、 振動型ジャイロスコープ 3 0を実装す る基板 (図示せず) などに実装され、 パッケージ内には、 圧電振動片 1 0、 圧電振,動片 1 0を支持する支持部 3 5、 及び支持部 3 5が接続され た支持基板 3 4が収納される構成でもよい。 なお、 この構成では、 パッ ケージ 3 1の凹部に形成されている段差は、 2段構造でよい。
また、 前述のパッケージ 3 1は、 凹部が 3段または 2段構造の例を示 して説明したが、 段数はこれに限らず、 一段構造、 或いは 4段以上の構 造であってもよい。
(第三実施形態)
次に、 第三実施形態として、 本発明に係る振動型ジャイロスコープの 圧電振動片の製造方法について図面を参照しながら説明する。 図マ ( a ) 〜 ( f ) は、 先述した図 1に示す第一実施形態の振動型ジャイロスコ ープの圧電振動片 1 0における概略の製造工程を示十工程説明図である 。 図 7は、 圧電振動片 1 0を図 1に示す Pの方向から見た図であり、 左 列に駆動アーム 1 5 Aの先端付近を示し、 右列に検出アーム 1 6 Aの先 端付近を示している。
先ず、 図 7 ( a ) に示すように、 図 1に示す駆動部としての駆動ァー ム 1 5 A, 1 5 B , 1 5 C , 1 5 D、 及ぴ検出部としての検出アーム 1 6 A , 1 6 Bなどの外形形状を有する、 例えば水晶板からなる圧電振動 片 1 0を用意する。 以下、 圧電振動片 1 0の製造工程を、 駆動アーム 1 ' 5 Α、 及ぴ検出アーム 1 6 Αを代表として示して順次説明するが、 駆動 アーム 1 5 A, 1 5 B , 1 5 C, 1 5 D及び検出アーム 1 6 A, 1 6 B は、 必要に応じてそれぞれ同じ工程で同じ加工を施すことになる。
次に、 図 7 ( b ) に示すように、 圧電振動片 1 0の表面に電極膜 1 7 を形成する。 電極膜 1 7は、 例えば、 水晶との密着性を向上させるため にクロム (C r ) などの下地金属層を形成し、 その表面に金 (A u) 層 を形成した構成となっている。 電極膜 1 7の形成は、 蒸着法ゃスパッタ リング法などを用いて成膜することができる。
次に、 図 7 ( c ) に示すように、 駆動アーム 1 5 Aの先端部分の第一 錘部 1 9と検出アーム 1 6 Aの先端部分の第二錘部 2 3とに、 それぞれ 調整部としての錘層 1 8 , 2 0を形成する。 錘層 1 8, 2 0は、 例えば 、 金属マスクなどを介した蒸着法やスパッタリング法などにより、 金 ( Au) などの金属層を形成し、 その層の厚さは、 電極膜 1 7より も厚く 形成する。 錘層 1 8は、 第一錘部 1 9のほぼ半分の領域に形成し、 錘層 2 0は、 第二錘部 2 3のほぼ全領域に形成する。
次に、 図 7 (d) に示すように、 検出アーム 1 6 Aの質量調整を行い 、 検出アーム 1 6 Aの固有共振周波数を所望の周波数に合わせ込みを行 う。 この質量調整は、 第一実施形態で説明した、 離調周波数の調整のた めに行うものであり、 例えば、 集束されたレーザ L 0を照射することに よって、 検出ァー Λ 1 6 Aに形成された錘層 2 0を溶融、 · 蒸発.させて除 去することによって行う。 なお、 必要であれば、 電極膜 1 7を溶融、 蒸 発させて除去することもある。
次に、 図 7 ( e ) 、 及び図 7 ( f ) に示す、 駆動アーム 1 5 Aの質量 調整を行い、 駆動アーム 1 5 Aの固有共振周波数を所望の周波数に合わ せ込みを行う。 この質量調整は、 第一実施形態で説明した、 駆動アーム 1 5 A, 1 5 B, 1 5 C , 1 5 Dの屈曲振動が連結アーム 1 3, 1 4を 通り検出アーム 1 6 A, 1 6 Bへ伝播する、 所謂、 振動漏れを防止する ために行う。 それぞれの駆動アーム 1 5 A, 1 5 B , 1 5 C, 1 5 Dの 固有共振周波数を変化させ、 それぞれの駆動アーム 1 5 A, 1 5 B, 1 5 C , 1 5 Dの固有共振周波数を一致させるように合わせ込みを行なう 。 この質量調整は、 例えば、 集光されたレーザ L l、 及びレーザ L 2を 照射することによって、 駆動アーム 1 5 Aに形成された錘層 1 8と電極 膜 1 7とを溶融、 蒸発させて除去することによって行う。
駆動ァニム 1 5 Aの質量調整は、 先ず、 図 7 ( e ) に示すように、 駆 動アーム 1 5 Aに形成されている錘層 1 8に対し、 レーザ L 1を照射し 、 錘層 1 8を除去する。 錘層 1 8は、 厚さが大きいため 1発の.レーザで 除去できる質量が大きく :、 換言すれば、 大きな質量変化を発生すること ができることを利用して、 大まかに固有共振周波数を合わせ込む、 所謂 、 粗調整を行う。
続いて、 図 7 ( f ) に示すように、 駆動アーム 1 5 Aの第一錘部 1 9 の部分の電極膜 1 7にレーザ L 2を照射し電極膜 1 7を除去する。 電極 膜 1 7は、 膜厚が小さいため、 1発のレーザで除去できる質量が小さく 、 微細な質量の合わせ込みができる。 従って、 電極膜 1 7.の質量の除去 により、 所謂、 微調整を行う。
上述した第三実施形態に示す振動型ジャィ口スコープの圧電振動片の 製造方法によれば、 第一錘部 1 9と第二錘部 2 3の錘層 1 8, 2 0を同 時に形成することができることから、 錘層 1 8, 2 0を形成する製造ェ 数を少なくすることができる。 さらに、 本例によれば、 粗調整と微調整 を組合わせることにより効率のよい調整を行うことが.可能となる。 即ち一 、 大きな固有共振周波数の調整を行う必要のある検出アーム 1 6 A , 1 6 Bは、 錘層 2 0を除去することによって短時間で調整することが可能 となる。 続いて微調整の必要な駆動アーム 1 5 A , 1 5 B , 1 5 C , 1 5 Dは、 錘層 1 8を除去することによる粗調整と、 電極膜 1 7を除去す ることによる微調整を順次行うことにより、 短時間で微钾な調整までを 行うことが可能となる。 即ち、 精度のよい振動型ジャイロスコープを効 率よく製造することが可能となることから低コス トで提供することが可 能となる。
錘層 1 8及び錘層 2 0が除去された部分は、 図 7 ( e ) 、 及び図 7 ( f ) に示すように凹部 2 1 b, 2 1 a となる。 この凹部 2 l b , 2 1 a の底面は、 図 7 ( e ) 、 及び図 7 ( f ) に示すように錘層 1 8, 2 0中 にあってもよく、 或いは、 錘層 1 8, 2 0と錘層 1 8 , 2 0の下に形成 されている電極膜 1 7との両方を除去し、 水晶面が底面となっていても よい。 なお、 図 7 ( e ) では、 錘層 2 0が除去された凹部 2 1 aを 3つ に区分して示し、 図 7 ( f ) では、 錘層 1 8が除去された凹部 2 1 bを 2つに区分して示してあるが、 これに限らず、 連続して除去することに より、 まとまった一つの凹部としてもよい。
また、 前述の説明では、 錘層 1 8 , 2 0、 及び電極膜 1 7の^去は、 駆動アーム 1 5 A、 及び検出アーム 1 6 Aの一面を除去加工する例で説 明したがこれに限らず、 両面に形成された錘層 1 8 , 2 0、 及び電極膜 1 7を除去加工する ともできる。
また、 前述では駆動アーム 1 5 Aの質量調整を錘層 1 8と電極膜 1 7 とを用いて行うことで説明したが、 質量の調整量によっては、 錘層 1 8 のみの除去を行って質量を調整し電極膜 1 7の除去は行わない場合、 あ るいは、 電極膜 1 7のみの除去を行って質量を調整し錘層 1 8の除去は 行わない場合もある。
また、 錘層 1 8, 2 0を形成する材質を電極膜 1 7を形成する材質よ り比重の大きな材質、 例えば、 錘層 1 8, 2 0を金で形成し、 電極膜 1 7をアルミニウムで形成するなどしても同等な効果を有する。
また、 錘層 1 8, 2 0は、 第一錘部 1 9と第二錘部 2 3にそれぞれ一 つずつ設けることで説明したがこれに限らず、 第一錘部 1 , 9と第二錘部 2 3のうちに、 厚みの異なる錘層を複数形成してもよい。

Claims

請求の範囲
( 1 ) 圧電振動片に加えられる回転の回転角速度を検出する振動型ジ ャィロスコープであって、
前記圧電振動片は、
基部と、 '
前記基部から延出された支持梁を介して設けられ、 所定の振動を行う 駆動部と、 ·
前記基部から前記駆動部と同一平面内に延出され、 前記駆動部の回転 に伴ぅコリオリ力によって生じた検出振動を検出する検出部と、 前記駆動部の略先端部分に形成された前記圧電振動片の特性調整用の 第一錘部と、
前記検出部の略先端部分に形成された前記圧電振動片の特性調整用の 第二錘部と、 を有し、
前記第一錘部及び第二錘部の少なく とも一方が、 単位面積当たりの質 量の異なる複数の調整部で形成されていることを特徴とする振動型ジャ イロスコープ。
( 2 ) 請求項 1に記載の振動型ジャィロスコープにおいて、 前記第一錘部の質量は、 前記第二錘部の質量より小さく設定,されてい ることを特徴とする振動型ジャイロスコープ。
( 3 ) 請求項 1又は請求項 2に記載の振動型ジャイロスコープにおい て、
前記調整部は、 前記駆動部及び前記検出部のうち該調整部が形成され たものに対し、 前記駆動部にあっては該駆動部の延出方向と略直交する 方向の全ての領域にわたって形成され、 前記検出部にあっては該検出部 の延出方向と略直交する方向のすべての領域にわたって形成されている ことを特徴とする振動型ジャィロスコープ。
( 4 ) 請求項 1乃至請求項 3のいずれか一項に記載の振動型ジャィ口 スコープにおいて、 前記第一錘部、 及び第二錘部の少なく とも一方が、 厚さの異なる複数 の調整部で形成されていることを特徴とする振動型ジャィロスコープ。
( 5 ) 請求項 4に記載の振動型ジャィ口スコープにおいて、
前記第一錘部の調整部と、 前記第二錘部の調整部とが、 同じ金属を用 い、 同じ厚さで形成されていることを特徴とする振動型ジャイロスコー プ。 '
( 6 ) 請求項 4又は請求項 5に記載の振動型ジャィロスコープにおい て、
前記厚さの異なる複数の調整部は、 前記駆動部、 又は前記検出部の先 端に近い側の前記調整部の厚さが、 他の調整部の厚さより厚く形成され ていることを特徴とする振動型ジャィロスコープ。
( 7 ) 保持器と、
前記保持器に実装された請求項 1乃至請求項 6のいずれか一項に記載 の圧電振動片と、 を有することを特徴とする振動型ジャィロスコープ。
( 8 ) 保持器と、
前記保持器に実装された請求項 1乃至請求項 6のいずれか一項に記載 の圧電振動片と、
前記保持器に実装され、 少なく とも前記圧電振動片を駆動する回路を 有する回路素子とを有することを特徴とする振動.型ジャィロス:コープ.。
( 9 ) 基部と、 前記基部から同一平面内に延出された支持梁を介して 設けられ、 所定の振動を行う駆動部と、 .前記基部から同一平面内に延出 され、 前記駆動部の回転に伴うコリオリカによって生じた検出振動を検 出する検出部とを有する圧電振動片を備えた振動型ジャィロスコープの 製造方法であって、
外形形状が形成された前記圧電振動片の表面に電極膜を形成する工程 と、
前記検出部の略先端都分に形成された前記電極膜の表面、 及び前記駆 動部の略先端部分に形成された前記電極膜の表面の一部、 に調整部とし ての錘層を形成する工程と、 前記検出部の略先端部分に形成された少なく とも前記錘層を除去して 前記検出部の固有共振周波数を調整する工程と、
前記駆動部の略先端部分に形成された前記錘層を除去して前記駆動部 の固有共振周波数の粗調整を行い、 前記駆動部の略先端部の前記電極膜 を除去して前記駆動部の固有共振周波数の微調整を行う工程と、 を有す ることを特徴とする振動型ジャイロスコープの製造方法。
PCT/JP2005/018505 2004-09-30 2005-09-29 振動型ジャイロスコープ、及び振動型ジャイロスコープの製造方法 WO2006036022A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP05790695A EP1804022A4 (en) 2004-09-30 2005-09-29 VIBRANT GYROSCOPE AND PROCESS FOR PRODUCING A VIBRANT GYROSCOPE
CN2005800333738A CN101031775B (zh) 2004-09-30 2005-09-29 振动型陀螺仪及振动型陀螺仪的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004288716A JP2006105614A (ja) 2004-09-30 2004-09-30 振動型ジャイロスコープ、及び振動型ジャイロスコープの製造方法
JP2004-288716 2004-09-30

Publications (1)

Publication Number Publication Date
WO2006036022A1 true WO2006036022A1 (ja) 2006-04-06

Family

ID=36119134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/018505 WO2006036022A1 (ja) 2004-09-30 2005-09-29 振動型ジャイロスコープ、及び振動型ジャイロスコープの製造方法

Country Status (6)

Country Link
US (1) US7207221B2 (ja)
EP (1) EP1804022A4 (ja)
JP (1) JP2006105614A (ja)
KR (1) KR20070049250A (ja)
CN (2) CN101031775B (ja)
WO (1) WO2006036022A1 (ja)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101915574B (zh) * 2003-11-12 2013-01-09 精工爱普生株式会社 振子的支撑部件
JP5622347B2 (ja) * 2006-08-09 2014-11-12 セイコーエプソン株式会社 慣性センサ装置
JP2008058062A (ja) * 2006-08-30 2008-03-13 Epson Toyocom Corp 角速度センサ
JP5050448B2 (ja) * 2006-08-30 2012-10-17 セイコーエプソン株式会社 角速度センサおよび電子機器
DE102006049887A1 (de) * 2006-10-23 2008-04-24 Robert Bosch Gmbh Drehratensensor mit Quadraturkompensationsstruktur
US8333112B2 (en) 2008-06-10 2012-12-18 The Boeing Company Frequency tuning of disc resonator gyroscopes via resonator mass perturbation based on an identified model
GB2460935A (en) * 2008-06-10 2009-12-23 Boeing Co Frequency tuning of disc resonator gyroscopes via resonator mass perturbations based on an identified model
CN101368825B (zh) * 2008-09-25 2010-12-22 中国人民解放军国防科学技术大学 一种角振动硅微陀螺及其制作方法
US8256288B2 (en) * 2008-12-16 2012-09-04 Seiko Epson Corporation Sensor device
US8359920B2 (en) * 2009-05-15 2013-01-29 Lockheed Martin Corp. Gravity sensing instrument
US8631702B2 (en) 2010-05-30 2014-01-21 Honeywell International Inc. Hemitoroidal resonator gyroscope
JP5652155B2 (ja) * 2010-11-24 2015-01-14 セイコーエプソン株式会社 振動片、センサーユニット、電子機器、振動片の製造方法、および、センサーユニットの製造方法
JP5772286B2 (ja) * 2011-06-24 2015-09-02 セイコーエプソン株式会社 屈曲振動片及び電子機器
JP5838689B2 (ja) * 2011-09-26 2016-01-06 セイコーエプソン株式会社 センサー素子、センサー素子の製造方法、センサーデバイスおよび電子機器
JP5838695B2 (ja) * 2011-09-29 2016-01-06 セイコーエプソン株式会社 センサー素子、センサー素子の製造方法、センサーデバイスおよび電子機器
US20140238129A1 (en) * 2011-10-24 2014-08-28 Panasonic Corporation Angular velocity sensor and detection element used in same
JP5838749B2 (ja) * 2011-11-16 2016-01-06 セイコーエプソン株式会社 振動子、振動デバイスおよび電子機器
JP5970690B2 (ja) * 2012-02-14 2016-08-17 セイコーエプソン株式会社 センサー素子、センサーユニット、電子機器及びセンサーユニットの製造方法
CN103245339B (zh) 2012-02-14 2017-05-24 精工爱普生株式会社 振动片、传感器单元以及电子设备
JP6007541B2 (ja) * 2012-03-28 2016-10-12 セイコーエプソン株式会社 振動片およびその製造方法並びにジャイロセンサーおよび電子機器および移動体
JP6010968B2 (ja) * 2012-03-29 2016-10-19 セイコーエプソン株式会社 振動デバイス及び振動デバイスの製造方法
JP5970698B2 (ja) * 2012-03-29 2016-08-17 セイコーエプソン株式会社 振動片、センサーユニット、電子機器
JP5987426B2 (ja) * 2012-04-06 2016-09-07 セイコーエプソン株式会社 振動片、振動片の製造方法、センサーユニット、電子機器
JP6044101B2 (ja) * 2012-04-10 2016-12-14 セイコーエプソン株式会社 センサーデバイス、センサーデバイスの製造方法および電子機器
JP2013234873A (ja) * 2012-05-07 2013-11-21 Seiko Epson Corp 振動片およびその製造方法並びにジャイロセンサーおよび電子機器および移動体
JP5974629B2 (ja) * 2012-05-23 2016-08-23 セイコーエプソン株式会社 振動片、振動片の製造方法、角速度センサー、電子機器、移動体
JP2013253895A (ja) * 2012-06-08 2013-12-19 Seiko Epson Corp 電子デバイス、電子機器、移動体、および電子デバイスの製造方法
JP2014021038A (ja) * 2012-07-23 2014-02-03 Seiko Epson Corp 振動片、振動片の製造方法、振動子、電子デバイス、電子機器、および移動体
JP2014092500A (ja) * 2012-11-06 2014-05-19 Seiko Epson Corp 振動片、振動子、電子デバイス、電子機器、および移動体
JP6264839B2 (ja) 2013-10-29 2018-01-24 セイコーエプソン株式会社 振動素子、振動子、発振器、電子機器および移動体
JP6248576B2 (ja) * 2013-11-25 2017-12-20 セイコーエプソン株式会社 機能素子、電子機器、および移動体
JP6210345B2 (ja) * 2016-07-05 2017-10-11 セイコーエプソン株式会社 ジャイロセンサー素子、ジャイロセンサーユニット、電子機器及びジャイロセンサーユニットの製造方法
JP6432652B2 (ja) * 2017-07-24 2018-12-05 セイコーエプソン株式会社 振動片の製造方法
JP2019176413A (ja) * 2018-03-29 2019-10-10 セイコーエプソン株式会社 振動素子の周波数調整方法、振動素子の製造方法、振動素子、物理量センサー、慣性計測装置、電子機器および移動体
JP2020101429A (ja) * 2018-12-21 2020-07-02 セイコーエプソン株式会社 振動素子、振動素子の製造方法、物理量センサー、慣性計測装置、電子機器および移動体
CN110440777B (zh) * 2019-07-15 2021-04-02 北京自动化控制设备研究所 音叉敏感结构修调在线测试方法及角速率传感器
JP7251385B2 (ja) * 2019-07-30 2023-04-04 セイコーエプソン株式会社 振動デバイス、電子機器および移動体
JP2021132315A (ja) 2020-02-20 2021-09-09 セイコーエプソン株式会社 振動素子、振動デバイス、電子機器、移動体および振動素子の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10197256A (ja) * 1997-01-16 1998-07-31 Toyota Motor Corp 角速度検出装置
JPH1172334A (ja) 1996-11-28 1999-03-16 Ngk Insulators Ltd 振動子、振動型ジャイロスコープおよび振動子の調整方法
JP2003133885A (ja) 2001-10-22 2003-05-09 Seiko Epson Corp 振動片、振動子、発振器及び電子機器
JP2003166828A (ja) * 2001-11-30 2003-06-13 Ngk Insulators Ltd 物理量測定装置および振動子
WO2004079296A1 (ja) 2003-03-06 2004-09-16 Nec Corporation 六脚型圧電振動ジャイロスコープ

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2009379C3 (de) * 1970-02-27 1975-01-30 Gebrueder Junghans Gmbh, 7230 Schramberg Piezoelektrischer Oszillator in Form einer Stimmgabel als Zeitnormal für zeithaltende Geräte
US3683213A (en) * 1971-03-09 1972-08-08 Statek Corp Microresonator of tuning fork configuration
FR2464595A1 (fr) * 1979-08-31 1981-03-06 Ebauches Sa Procede de detection d'asymetrie de resonateurs a cristal piezoelectrique en forme de diapason et resonateurs pour sa mise en oeuvre
FR2477803A1 (fr) * 1980-03-04 1981-09-11 Suwa Seikosha Kk Resonateur a quartz du type diapason a couplage de modes
JPH1098350A (ja) * 1996-07-31 1998-04-14 Daishinku Co 圧電振動デバイス
US6018212A (en) * 1996-11-26 2000-01-25 Ngk Insulators, Ltd. Vibrator, vibratory gyroscope, and vibration adjusting method
US6249074B1 (en) * 1997-08-22 2001-06-19 Cts Corporation Piezoelectric resonator using sacrificial layer and method of tuning same
US6262520B1 (en) * 1999-09-15 2001-07-17 Bei Technologies, Inc. Inertial rate sensor tuning fork
JP2001196883A (ja) * 1999-11-01 2001-07-19 Murata Mfg Co Ltd 圧電共振素子の周波数調整方法
US7523537B1 (en) * 2000-07-13 2009-04-28 Custom Sensors & Technologies, Inc. Method of manufacturing a tuning fork with reduced quadrature errror and symmetrical mass balancing
JP4305623B2 (ja) * 2002-03-13 2009-07-29 セイコーエプソン株式会社 振動子および振動型ジャイロスコープ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1172334A (ja) 1996-11-28 1999-03-16 Ngk Insulators Ltd 振動子、振動型ジャイロスコープおよび振動子の調整方法
JPH10197256A (ja) * 1997-01-16 1998-07-31 Toyota Motor Corp 角速度検出装置
JP2003133885A (ja) 2001-10-22 2003-05-09 Seiko Epson Corp 振動片、振動子、発振器及び電子機器
JP2003166828A (ja) * 2001-11-30 2003-06-13 Ngk Insulators Ltd 物理量測定装置および振動子
WO2004079296A1 (ja) 2003-03-06 2004-09-16 Nec Corporation 六脚型圧電振動ジャイロスコープ

Also Published As

Publication number Publication date
US20060070442A1 (en) 2006-04-06
KR20070049250A (ko) 2007-05-10
CN101031775A (zh) 2007-09-05
EP1804022A4 (en) 2011-02-16
CN102200439A (zh) 2011-09-28
CN101031775B (zh) 2011-05-18
CN102200439B (zh) 2014-07-16
EP1804022A1 (en) 2007-07-04
US7207221B2 (en) 2007-04-24
JP2006105614A (ja) 2006-04-20

Similar Documents

Publication Publication Date Title
WO2006036022A1 (ja) 振動型ジャイロスコープ、及び振動型ジャイロスコープの製造方法
JP6078968B2 (ja) 振動片の製造方法
JP4163067B2 (ja) 物理量測定方法および装置
JPH1054723A (ja) 角速度検出装置
WO2002018875A1 (fr) Capteur de vitesse angulaire
JP4206975B2 (ja) 振動子、電子機器および振動子の周波数調整方法
US8065914B2 (en) Vibration gyro
JP5765087B2 (ja) 屈曲振動片、その製造方法及び電子機器
JP2006201118A (ja) 圧電振動ジャイロ素子およびジャイロセンサ
US20110138911A1 (en) Vibrating reed, vibrator, physical quantity sensor, and electronic apparatus
JPH09178492A (ja) 圧電振動体
JP2008224627A (ja) 角速度センサ、角速度センサの製造方法及び電子機器
JP2007163248A (ja) 圧電振動ジャイロ
JP2018165644A (ja) 振動素子の周波数調整方法、振動素子の製造方法および振動素子
JP6210345B2 (ja) ジャイロセンサー素子、ジャイロセンサーユニット、電子機器及びジャイロセンサーユニットの製造方法
JP3355998B2 (ja) 振動ジャイロ
JP2017207283A (ja) 振動素子の製造方法
JP2005345404A (ja) 圧電振動ジャイロ用振動子及びその製造方法
JP2004077351A (ja) 角速度センサ
JP2009222666A (ja) 振動ジャイロ用振動子およびその製造方法
JP4309814B2 (ja) 圧電振動ジャイロ用振動子の調整方法
JP2011127945A (ja) 圧電振動素子および圧電振動子
JP2017203692A (ja) 物理量センサーの製造方法および振動素子の周波数調整方法
JP3287201B2 (ja) 振動ジャイロ
JP2002372421A (ja) 角速度センサ及びその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580033373.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077009158

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2005790695

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005790695

Country of ref document: EP