WO2006030665A1 - 半田ペーストおよびそれを用いた電子機器 - Google Patents

半田ペーストおよびそれを用いた電子機器 Download PDF

Info

Publication number
WO2006030665A1
WO2006030665A1 PCT/JP2005/016291 JP2005016291W WO2006030665A1 WO 2006030665 A1 WO2006030665 A1 WO 2006030665A1 JP 2005016291 W JP2005016291 W JP 2005016291W WO 2006030665 A1 WO2006030665 A1 WO 2006030665A1
Authority
WO
WIPO (PCT)
Prior art keywords
solder
solder paste
flux
weight
temperature
Prior art date
Application number
PCT/JP2005/016291
Other languages
English (en)
French (fr)
Inventor
Norihito Tsukahara
Kazuhiro Nishikawa
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to JP2006535751A priority Critical patent/JPWO2006030665A1/ja
Priority to US11/660,552 priority patent/US20070277909A1/en
Publication of WO2006030665A1 publication Critical patent/WO2006030665A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/362Selection of compositions of fluxes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0244Powders, particles or spheres; Preforms made therefrom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • B23K35/262Sn as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3612Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with organic compounds as principal constituents
    • B23K35/3613Polymers, e.g. resins
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3457Solder materials or compositions; Methods of application thereof
    • H05K3/3485Applying solder paste, slurry or powder
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0224Conductive particles having an insulating coating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/111Preheating, e.g. before soldering
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3489Composition of fluxes; Methods of application thereof; Other methods of activating the contact surfaces

Definitions

  • the present invention relates to a solder paste used in the field of electronic equipment, particularly to a solder paste for soldering a minute electronic component onto various substrates and an electronic equipment using the same.
  • solder paste used here is about 80% to 90% by weight of solder fine powder having a particle size of several tens of zm, and about a flux composed of rosin, solvent, activator, thixotropic agent, etc. It is made into a paste by mixing as 10 wt% to 20 wt%, and its viscosity is adjusted to be suitable for screen printing.
  • solder paste is mainly used for the purpose of connecting electronic components such as semiconductor elements, resistors and capacitors on a printed wiring board.
  • the general implementation method is as follows. First, an appropriate amount of solder paste is applied on a copper foil land that is a connection terminal of a printed wiring board by screen printing or a dispenser. Next, the electronic component to be mounted is mounted on the copper foil land to which the solder paste is applied, for example, using an automatic mounting machine.
  • the electronic components are mainly surface mount electronic components such as so-called passive components and semiconductor integrated circuit elements.
  • the solder is melted by heating with a heating device such as a reflow oven, an infrared irradiation device or a laser irradiation device, and the copper foil land of the printed wiring board and the electrode terminal portion of the electronic component are joined to mount the solder.
  • a heating device such as a reflow oven, an infrared irradiation device or a laser irradiation device
  • the area of the electrode terminal portions of these electronic components is also decreasing.
  • the area ratio is about 0.5 and the amount applied is about 0.3 for the 1005 size.
  • the area]; wrinkle is about 0.2, and the coating amount is about 0.07.
  • the amount of solder paste to be applied must be significantly smaller than that of the conventional one. As a result, the solder melts insufficiently even under conditions where soldering was possible stably in the past. As a result, it has been found that solder balls or the like are generated, resulting in poor bonding.
  • the so-called lead soldering force mainly composed of a Pb—Sn alloy which has been used from the viewpoint of environmental protection, is also a lead-free solder, that is, Sn—Zn alloy, Sn_Ag alloy. Or it has been replaced by Sn_Ag_Cu alloy.
  • soldering between the electronic component and the wiring board is first preheated at a temperature of 140 ° C to 180 ° C in a reflow furnace, and then the solder melts from 200 ° C to Heat to 280 ° C soldering temperature.
  • the outermost flux flows between the solder particles, and the solder particles on the surface layer are not covered with the flux and are exposed directly to the atmosphere.
  • the solder particles in the surface layer are oxidized. For this reason, even if most of the solder particles in the solder paste are melted and integrated, the solder particles whose surface is oxidized cannot be melted and integrated, and eventually remain as solder balls.
  • solder ball causes short circuit failure. Furthermore, in the case of the above-described passive components having a small size and semiconductor integrated circuit elements having narrow terminal pitches, it is necessary to reduce the amount of solder paste used. Therefore, when solder balls that are not used effectively for soldering occur The occurrence of soldering defects and the reliability of the soldered parts are reduced.
  • Japanese Unexamined Patent Publication No. 6-7989 discloses the following method. For example, assuming that the generation of solder balls is caused by sagging of the solder paste during preheating, a solder paste in which a fluorine compound is added to the flux to prevent the sagging is shown.
  • the addition of a fluorine compound to the flux prevents the solder paste from sagging during preheating, thereby preventing the generation of solder balls.
  • solder particles also flow out and spread more widely than the print application area, causing sagging.
  • the solder particles in the expanded area are left behind even when melted, resulting in solder balls. This phenomenon is prevented by adding a fluorine compound.
  • the solder paste application area becomes very small as in the case of 0603 size passive components and the amount of solder paste applied becomes very small, such dripping hardly occurs. Therefore, it seems difficult to prevent the generation of solder balls that occur when a small amount of soldering is carried out simply by preventing the occurrence of sagging.
  • the method of the second example in which a material that generates nitrogen gas is included in the flux and the vicinity of the solder particles during preheating is in a nitrogen gas atmosphere is effective if the amount of the conventional solder paste is applied.
  • the amount of solder paste applied is very small, the amount of nitrogen gas generated will be small, so that it will not be possible to obtain a sufficient antioxidant effect.
  • the present invention prevents the oxidation of solder particles, which is a problem in soldering a small-sized passive component or a semiconductor integrated circuit element having a small terminal pitch, and uses a very small amount of solder paste. This makes it possible to perform solder bonding with high reliability.
  • the solder paste of the present invention has a structure in which a solder alloy powder is mixed with a flux, and the flux is added. It has a high temperature retention characteristic that covers the surface of the solder alloy powder at the preheating temperature during the heat melting process.
  • solder alloy powder is covered with the flux up to the preheat temperature and is not exposed to the air, the surface can be prevented from being oxidized. Therefore, even a 0603 size electronic component using a small amount of solder paste or a semiconductor integrated circuit device connected at a narrow pitch can be bonded with high reliability without generation of solder balls.
  • the electronic device of the present invention includes a circuit board on which electronic components are mounted, and the solder paste for soldering the electronic components to the circuit board is the solder paste described above. It is characterized by being.
  • Electronic components include passive components such as chip resistors and chip components, and functional components such as semiconductor integrated circuit elements and sensors.
  • FIG. 1A is a schematic diagram of the heating behavior of the solder paste in the case of a coating amount corresponding to a 1005 size chip component.
  • FIG. 1B is a schematic diagram showing a state in which preheating is performed at an application amount corresponding to the chip component.
  • FIG. 1C is a schematic view showing a molten state of the solder in a state where it is heated to a peak temperature that is a melting temperature of the solder at an application amount corresponding to the chip component.
  • FIG. 2A is a schematic diagram of the heating behavior of the solder paste in the case of a coating amount corresponding to a 0603 size chip component.
  • FIG. 2B is a schematic diagram showing a state in which preheating is performed at an application amount corresponding to the chip component.
  • FIG. 2C is a schematic view showing a molten state of the solder in a state where it is heated to a peak temperature that is the melting temperature of the solder at an application amount corresponding to the chip component.
  • FIG. 3 is a cross-sectional view showing an example in which an electronic circuit board used for a mobile phone is manufactured using the solder paste of Example 1.
  • 4 is a perspective view of a mobile phone using the electronic circuit board shown in FIG.
  • a flux for solder paste In general, when producing a flux for solder paste, the constituent materials of the flux are mixed and heated to form a solution. However, in this embodiment, since a heat-polymerizable polymer material whose viscosity increases irreversibly by heating is used, a flux solution is prepared by kneading at room temperature to uniformly dissolve and mix the constituent materials. . In this embodiment, a thermosetting resin is also included in the heat-polymerizable polymer.
  • the solder paste that is effective in the present embodiment is a solder having a particle size of 10/1 111 to 40/111 mixed with a pine resin resin, a thixotropic agent, an activator, and a solvent as a flux component to form a binder.
  • the alloy powder is mixed to make a paste, and heat polymerization type polymer whose viscosity increases at high temperature is added.
  • rosin resin Conventionally used rosin resin, thixotropic agent, activator and solvent can be used.
  • pine rosin resin WW rosin, polymerized rosin, hydrogenated rosin, etc.
  • Agents include stearyl amide and hydrogenated castor castor oil, and activators include dipheny.
  • Luganidine HBr Cyclohexylamine HBr, Adipic acid, Sebacic acid, etc.
  • solvents Butyl carbitol, Propylene glycol, Hexylene glycol, Hiichi TV neol, etc. It can be used.
  • a solder paste manufacturing method that is effective in the present embodiment is as follows. That is, the flux component is first heated and dissolved to form a solution, and then cooled to room temperature or below. Thereafter, by adding and mixing a heat-polymerizable polymer material such as an epoxy resin, a high-temperature retention property that covers the solder alloy powder (hereinafter sometimes referred to as solder particles) up to the preheating temperature is imparted. Alternatively, a thickening agent that suppresses a decrease in the viscosity of the flux at a high temperature is added so that the flux covers the surface of the solder particles even at the preheating temperature.
  • solder particles selected from 31—8 ⁇ -001, Sn-Ag-In-Bi, Sn—Zn—Bi, Sn—Ag—Cu—Bi, etc. are uniformly used as solder components.
  • a solder paste is prepared by mixing with.
  • the mixing ratio of the flux and the solder alloy powder is preferably 7 wt% to 13 wt% of the flux and 87 wt% to 93 wt% of the solder alloy powder.
  • the flux may have a viscosity that is equal to or higher than that at normal temperature when pre-heated. This makes it difficult for the flux to flow out even at the preheating temperature, so that the solder alloy powder can be reliably covered and oxidation can be prevented.
  • the flux may contain a heat-polymerizable polymer material. Further, this heat-polymerizable polymer material may be selected from polyester resin, methyl methacrylate resin, epoxy resin, polystyrene resin, phenol resin and drying oil. By using such a material, since the flux has a high viscosity even during preheating, the generation of solder balls can be effectively suppressed.
  • the above-mentioned flux has a viscosity at 140 ° C to 180 ° C equal to or higher than 70% of the viscosity at normal temperature, and reliably coats the surface of the solder alloy powder at the preheating temperature. And oxidation of the solder particles can be effectively suppressed.
  • the conventional lead solder can be used only with lead-free solder such as Sn_Ag_Cu alloy solder, Sn_Zn alloy solder or Sn_Ag alloy solder, which are generally used. This is effective when solder paste is used.
  • the flux may contain a polymer having thixotropic properties as a thickener.
  • This polymer is carboxyvinyl polymer, sodium alginate, propylene glycol alginate, ethyl cellulose, carboxymethyl cellulose, synthetic sodium magnesium silicate, dimethyl distearyl ammonium hectorite, sodium polyacrylate, hydroxyethyl cellulose, hydroxy At least one of propylmethylcellulose may be used. This makes it possible to suppress changes in viscosity at high temperatures.
  • the content of the flux may be less than 20 weight 0/0. This can reliably prevent the oxidation of the solder alloy powder during preheating. If the content is 15% by weight or less, a solder paste having excellent printing characteristics in addition to preventing oxidation can be realized. Furthermore, if the amount is 11% by weight or less, the amount of solder alloy powder can be relatively increased, so that even when a small amount of solder paste is applied, melting between the solder alloy powders is surely generated, and the generation of solder balls is further suppressed. it can.
  • the solder alloy powder may be any of Sn_Ag_Cu alloy, Sn_Ag_In_Bi alloy, Sn_Z n_Bi alloy and Sn_Ag_Cu_Bi alloy.
  • An electronic device includes a circuit board on which an electronic component is mounted, and a solder paste for soldering the electronic component to the circuit board is the solder paste described above. It is characterized by being.
  • Electronic components include passive components such as chip resistors and chip components, and functional components such as semiconductor integrated circuit elements and sensors.
  • the electronic device of the present invention includes a portable electronic device that is particularly required to be downsized and highly functional, such as a mobile phone, a portable information device, a laptop computer, a recording device, a video camera, a digital camera, When applied to a car navigation system, a remarkable effect is obtained.
  • a portable electronic device that is particularly required to be downsized and highly functional, such as a mobile phone, a portable information device, a laptop computer, a recording device, a video camera, a digital camera, When applied to a car navigation system, a remarkable effect is obtained.
  • an image receiving device such as a laptop personal computer or a television, or various household electric appliances and commercial electric appliances.
  • solder paste of the present invention it becomes possible to effectively suppress the oxidation of the surface of the solder alloy powder, and the electrode terminals on the printed wiring board and the electrodes of the electronic component can be strengthened. Can be soldered. Furthermore, since it is possible to suppress the generation of solder balls and the like during mounting, it is possible to prevent short-circuiting between terminals and obtain high connection reliability.
  • the flux was 8% by weight and the solder alloy powder (Sn-Ag-Cu) was 92% by weight.
  • the components of the flux were as follows.
  • the viscosity was adjusted to cover the surface of the solder particles even at the preheating temperature during reflow soldering.
  • the flux was 10% by weight and the solder alloy powder (Sn_Ag_In_Bi) was 90% by weight.
  • the components of the flux were as follows.
  • the preheating temperature during reflow soldering can be also achieved in the same manner as in Example 1.
  • the viscosity was adjusted to cover the surface of the solder particles.
  • the flux was 8% by weight and the solder alloy powder (Sn_Ag_Cu_Bi) was 92% by weight.
  • the flux components were as follows.
  • benzoyl peroxide is used as a curing catalyst for the styrene monomer, and as in the case of Example 1 and Example 2, even at the preheating temperature during reflow soldering, the viscosity of the flutters covers the surface of the solder particles. It was adjusted.
  • the flux was 11% by weight and the solder alloy powder (Sn_Ag_Cu) was 89% by weight.
  • the components of the flux were as follows.
  • Methyl methacrylate resin 10% by weight
  • benzoyl peroxide was used as a curing catalyst for the methyl methacrylate resin, and at the preheat temperature during reflow soldering as in Examples 1 to 3. The viscosity is adjusted so that the flux covers the surface of the solder particles.
  • the solder paste used in this embodiment has a flux of 8 wt% to 11 wt%, and a solder alloy powder of 89 wt% to 92 wt%. It is desirable to knead at room temperature or a temperature below room temperature. Also, it is preferable to store at room temperature or lower.
  • the particle size of the solder alloy powder is 10! ⁇ 30 zm was used.
  • the flux was 8% by weight and the solder alloy powder (Sn-Ag-Cu) was 92% by weight.
  • the components of the flux were as follows.
  • the flux was 10% by weight and the solder alloy powder (Sn_Ag_Cu) was 90% by weight.
  • the components of the flux were as follows.
  • the flux was 9% by weight and the solder alloy powder (Sn_Ag_Cu) was 91% by weight.
  • the components of the flux were as follows.
  • hydroxyethyl cellulose was added to 100% by weight of the flux.
  • sodium alginate, propylene glycol alginate, ethyl cellulose, carboxymethyl cellulose, dimethyl disteyl ammonium hectorite, sodium polyacrylate, hydroxypropyl methyl cell mouth It is also possible to use at least one of the source.
  • solder paste produced in Examples 1 to 7 of the present invention a conventional solder paste in which flux flows out or volatilizes at the preheating temperature is produced as follows. It was set as a comparative example.
  • the flux was 10% by weight and the solder alloy powder (Sn_Ag_Cu) was 90% by weight.
  • the components of the flux were as follows.
  • the flux was 11% by weight and the solder alloy powder (Sn_Ag_Cu) was 89% by weight.
  • the components of the flux were as follows. [0057] 48% by weight of polymerized rosin
  • solder paste from Example 1 to Example 7 described above and the solder paste from Comparative Example 1 and Comparative Example 2 1005 size chip resistance and 0603 size chip resistance are soldered onto the printed circuit board.
  • the molten state of the solder paste and the presence or absence of solder balls were evaluated. That is, it is required that the amount of solder applied to the 0603 size chip resistor should be about 1/4 compared to the amount of solder applied to the 1005 size chip resistor. Therefore, the solder paste amount required for each of the two types of chip resistors is applied to the solder bases of the above seven types of examples and the two types of comparative examples, and the solder paste is melted by heating. The state of solder ball generation was observed. The observation was performed as follows.
  • the printed wiring board on which the solder paste was applied was placed in the heating section of a high-temperature microscope, and the reflow conditions were set as follows to evaluate the change state of the solder paste during heating. In about 60 seconds from room temperature, it heated to 180 degreeC which is a preheating temperature, and hold
  • Table 1 shows the evaluation results.
  • the flux covered the solder particles during preheating as well as the 1005 size application amount and 0603 size application amount. It was observed that the whole melted at the time of heating. Even after cooling, the whole was melted and the solder ball was not seen.
  • a thickening agent such as a heat-polymerizable polymer such as an epoxy resin or a polyester resin or a carboxybule polymer
  • the flux covers the surface of the solder particles even at the preheat temperature, preventing oxidation. It depends on what was possible.
  • solder paste even when a small amount of solder paste is applied, it has been found that melting between the solder alloy powders is surely generated during heating for bonding, and the generation of solder balls can be further suppressed.
  • the flux sinks at the preheating temperature, and the solder particles are exposed to the atmosphere. For this reason, the surface of the solder particles existing in the outermost surface layer is oxidized. Oxidized solder particles were generated in almost the same manner for both the 1005 size coating amount and the 0603 size coating amount. However, in the case of a coating amount corresponding to 1005 size, it was confirmed that when the peak heating was performed, the whole melted. On the other hand, in the case of a coating amount corresponding to 0603 size, unmelted solder particles were present after peak heating, and solder balls were formed after cooling.
  • FIGS. 1A to 2C are schematic diagrams of the heating behavior of the solder paste in the case of a coating amount corresponding to a 1005 size chip component.
  • FIGS. 2A to 2C are schematic diagrams of the heating behavior of the solder paste in the case of a coating amount corresponding to a 0603 size chip component.
  • the electrode material 10 and the solder paste of the printed wiring board use the same material, but the amount of solder paste applied differs. That is, compared with the solder paste 20 shown in FIGS. 1A to 1C, the amount of the solder paste 200 shown in FIGS. 2A to 2C is about 1/4.
  • FIG. 1A and FIG. 2A are schematic cross-sectional views showing a state in which solder pastes 20 and 200 are respectively applied on the surface of the electrode terminal 10.
  • the solder pastes 20 and 200 on the electrode terminal 10 are formed by solder particles 22 and 220 and fluxes 24 and 240, respectively.
  • FIG. 1B and FIG. 2B are schematic views showing a state in which preheating is performed at the same temperature.
  • preheating in the case of a coating amount corresponding to 1005 size, as shown in FIG. 1B, the solder particles 22 existing on the surface side are exposed to the atmosphere due to the sinking and volatilization of the flux 24, and the surface is oxidized.
  • solder particles 26 having an oxide film are formed on the surface side of the solder paste 20.
  • the peak temperature which is the melting temperature at which the solder melts, the unoxidized solder particles 22 present inside melt and melt.
  • FIG. 1C is a schematic diagram showing a molten state of solder in a state where the solder is heated to a peak temperature that is a melting temperature of the solder. As can be seen from FIG. 1C, after melting, the solder 30 is uniformly melted and integrated.
  • solder particles 220 existing on the surface side are exposed to the atmosphere due to the settlement and volatilization of the flat during preheating, and the surface is oxidized. .
  • solder particles 260 having an oxide film are formed on the surface side of the solder paste 200. Even when heated to the peak temperature, the amount of unoxidized solder particles 220 is small, so the energy of volume expansion is small when they are melted and integrated. The oxide film on the surface of solder particles 260 having an oxide film is reduced. Something that cannot be broken is created. For this reason, it is considered that solder balls are generated.
  • FIG. 2C is a schematic diagram showing a molten state of the solder in a state where the solder is heated to a peak temperature that is a melting temperature of the solder. As can be seen from Fig. 2C, solder balls that remain with only solder 300 remain after melting.
  • the solder paste in the present invention uses a flux having a high temperature retention property that can cover the surface of the solder particles even at the preheating temperature. Even solder particles present on the outermost surface side can be shielded from the atmosphere to prevent surface oxidation. As a result, even with a small amount of application, it is possible to suppress a stable molten state and generation of solder balls, and it is possible to mount minute electronic components on a printed wiring board with high density.
  • FIG. 3 is a cross-sectional view showing an example in which an electronic circuit board used for a mobile phone is manufactured using the solder paste of Example 1 described above.
  • a 0603 size chip part 412, a 1005 size chip part 414, and a semiconductor chip 416 are mounted on a multilayer wiring board 410 made of a resin base material.
  • a multilayer wiring board 410 made of a resin base material.
  • FIG. 3 shows only three 0603-sized chip components 412, one 1005-size chip component 414, and only two semiconductor chips 416 are shown.
  • the multilayer wiring board 410 is also formed with internal conductors, inner vias, through conductors, and the like as shown.
  • elements having various functions such as a memory and a control LSI, may be mounted as a back chip, or may be mounted in a packaged state.
  • these implementations can use an optimum method according to the form of the semiconductor chip, such as a flip chip method, a wire bonding method, or a mounting method using a ball grind array as shown in the figure.
  • the semiconductor chip may be connected to the multilayer wiring board without using the solder paste of the present invention, for example, using a conductive adhesive or an anisotropic conductive resin.
  • FIG. 4 is a perspective view of a mobile phone using this electronic circuit board.
  • a bendable housing 420 is provided with buttons 424 having various functions and a display element 422, and an electronic circuit board shown in FIG. 3 is provided inside the housing.
  • This cellular phone has no short circuit or poor connection of the electronic circuit board, and has a good manufacturing yield and high reliability. Industrial applicability
  • solder particle oxidation which is a problem in soldering small-sized passive components and semiconductor integrated circuit elements with small terminal pitches, and ensures reliable soldering even when a small amount of solder paste is used It is useful in the field of circuit boards in which minute electronic components are soldered onto a board using solderable solder paste.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

 微小サイズの受動部品や端子ピッチの小さい半導体集積回路素子の半田付けにおいて課題となる半田粒子の酸化を防止して、微少量の半田ペーストを用いた場合であっても信頼性のよい半田接合を可能とする半田ペーストを提供する。具体的には、半田合金粉末をフラックスに混合してなる半田ペーストであって、フラックスが加熱溶融工程中におけるプリヒート温度において半田合金粉末の表面を被覆する高温滞留特性を有する構成とした。

Description

明 細 書
半田ペーストおよびそれを用いた電子機器
技術分野
[0001] 本発明は、電子機器分野において用いられる半田ペースト、特に微小な電子部品 を種々の基板上に半田接合するための半田ペーストおよびそれを用いた電子機器 に関する。
背景技術
[0002] 近年、電子機器の小型軽量化のために表面実装型電子部品を半田ペーストを用 いて、ファインパターンが形成されたプリント配線基板上に高密度実装する技術の開 発が続けられている。
[0003] ここで使用される半田ペーストは、粒径が数 10 z mの半田微粉末を約 80重量%〜 90重量%、およびロジン、溶剤、活性剤、チキソ性付与剤等からなるフラックスを約 1 0重量%〜20重量%として混合してペースト状としたものであり、その粘度はスクリー ン印刷に適するように調整して用いられる。
[0004] 半田ペーストは、主としてプリント配線基板上に半導体素子や抵抗、コンデンサ等 の電子部品を接続する目的で使用される。その一般的な実装方法としては、以下の ようである。まず、半田ペーストをプリント配線基板の接続端子となる銅箔ランド上にス クリーン印刷またはディスペンサー等により適量塗布する。つぎに、実装すべき電子 部品を、半田ペーストが塗布された銅箔ランド上に、例えば自動実装機を用いてマウ ントする。なお、電子部品としては、いわゆる受動部品や半導体集積回路素子等の 表面実装型の電子部品が主体である。その後、リフロー炉、赤外線照射装置あるい はレーザー照射装置等の加熱装置によって加熱して半田を溶融し、プリント配線基 板の銅箔ランドと電子部品の電極端子部とを接合して、実装が完了する。
[0005] ところで、これらの表面実装型電子部品は、携帯電話等に代表されるように電子機 器の小型化、高機能化に伴い高機能化、超小型化されてきている。例えば、受動部 品であるチップ抵抗やチップコンデンサは、その形状が従来の 1608サイズから 100 5サイズへと移行し、さらに最近では 0603サイズが実用に供されている。今後、さら に 0402サイズも開発されると予測される。また、半導体集積回路素子についても、端 子数が増加する傾向にある。しかし、このためにパッケージサイズを大きくすることは 好ましくないため、狭端子ピッチ化が要求されている。
[0006] このように受動部品の小型化や半導体集積回路の端子ピッチの狭小化に伴い、こ れらの電子部品の電極端子部の面積も小さくなつている。例えば、チップ抵抗ゃチッ プコンデンサの場合、 1608サイズの半田付け領域の面積および半田ペースト塗布 量をそれぞれ 100としたときに、 1005サイズでは面積比は約 0. 5、塗布量は約 0. 3 となり、 0603サイズでは面積];匕は約 0. 2、塗布量は約 0. 07となる。このように、 060 3サイズの電子部品をプリント配線基板の端子に半田接合する場合、塗布する半田 ペーストの塗布量は従来に比べて大幅に少ない量とすることが必要になっている。こ れに伴い、従来では安定して半田付けが可能であった条件においても、半田の溶融 が不充分となる。この結果、半田ボール等が生じ、接合不良が発生することが見出さ れている。
[0007] 半導体集積回路素子においても、端子数の増加に伴い端子ピッチが小さくなると、 同様に半田付け面積を小さくせざるを得なくなり同じような問題が発生している。
[0008] 一方、半田ペーストの組成においても、環境保全の面から従来用いられていた Pb —Sn合金を主成分とするいわゆる鉛半田力も鉛フリー半田、すなわち Sn—Zn系合 金、 Sn_Ag系合金または Sn_Ag_Cu系合金等に代わってきている。
[0009] これらの半田材料を用いる場合、電子部品と配線基板との半田付けはリフロー炉中 で最初に 140°C〜180°Cの温度でプリヒートしてから、半田が溶融する 200°C〜280 °Cの半田付け温度まで加熱して行う。このプリヒート時に、最表面のフラックスが半田 粒子間に流れてしまレ、、表面層の半田粒子はフラックスで覆われなくなり直接大気に 露出した状態が発生する。これにより表面層の半田粒子は酸化する。このため、半田 ペースト中の大部分の半田粒子が溶融、一体化しても、表面が酸化した半田粒子は 溶融、一体化できず、最終的に半田ボールとなって残存する。この半田ボールはショ ート不良等の原因になる。さらに、上記したような微小サイズの受動部品や狭端子ピ ツチの半導体集積回路素子では、使用する半田ペーストの量も非常に少なくすること が必要となる。したがって、半田付けに有効に利用されない半田ボールが発生すると 、半田付け不良の発生や半田付け部分の信頼性が低下する。
[0010] 半田ボールの発生を防ぐための従来の方法として、 日本特開平 6— 7989号公報 には以下のような方法が示されている。例えば、半田ボールの発生がプリヒート時の 半田ペーストのダレによるものであるとして、このダレを防ぐためにフラックス中にフッ 素化合物を添加した半田ペーストが示されてレ、る。
[0011] さらに、 日本特開 2000— 107887号公報では、フラックス中に亜硝酸ナトリウムの ような窒素ガスを発生する材料を含有し、プリヒート時に半田粒子近傍を窒素ガス雰 囲気として酸化を防ぐことが提案されている。この方法によれば、大気中リフロー炉を 用いても、半田付けする領域部のみは窒素ガス雰囲気にでき、半田粒子の酸化が防 止でさるとしている。
[0012] 第 1の例では、フラックスにフッ素化合物を添加することで、プリヒート時の半田ぺー ストのダレを防止して半田ボールの発生を防いでいる。プリヒート時にフラックスが流 れ出すと、半田粒子も流れ出して印刷塗布部よりも広く拡がってしまうことでダレが生 じる。しかも、拡がった領域の半田粒子は溶融時にも取り残されてしまレ、、その結果と して半田ボールとなる。この現象に対して、フッ素化合物を添加することで防止してい る。しかし、 0603サイズの受動部品等のように半田ペースト塗布面積が非常に小さく なり、半田ペーストの塗布量が非常に少なくなると、このようなダレの発生はほとんど 生じない。したがって、ダレの発生を防止するだけでは、微少量の半田付けにおいて 生じる半田ボールの発生を防ぐことは困難と思われる。
[0013] また、第 2の例の、フラックス中に窒素ガスを発生する材料を含有させて、プリヒート 時に半田粒子近傍を窒素ガス雰囲気とする方法も従来の半田ペーストの塗布量であ れば有効に作用しても、半田ペーストの塗布量が非常に少なくなると、発生する窒素 ガス量も少なくなるため酸化防止の効果が充分得られなくなると思われる。
発明の開示
[0014] 本発明は、微小サイズの受動部品や端子ピッチの小さい半導体集積回路素子の 半田付けにおいて課題となる半田粒子の酸化を防止して、微少量の半田ペーストを 用いた場合であっても信頼性のよい半田接合を可能とするものである。本発明の半 田ペーストは半田合金粉末をフラックスに混合してなる構成であって、フラックスが加 熱溶融工程中におけるプリヒート温度において半田合金粉末の表面を被覆する高温 滞留特性を有することを特徴とする。
[0015] この構成により、プリヒート温度まで半田合金粉末はフラックスに覆われていて空気 中に曝されることがないため、その表面の酸化を防止できる。したがって、微少量の 半田ペーストを用レ、る 0603サイズの電子部品や狭ピッチ接続する半導体集積回路 素子であっても、半田ボールの発生がなく信頼性の高い接合が可能となる。
[0016] さらに、本発明の電子機器は、電子部品が実装された回路基板を含む構成であつ て、上記の電子部品を回路基板に半田接合するための半田ペーストが上記に記載 の半田ペーストであることを特徴とする。なお、電子部品としては、チップ抵抗ゃチッ プ部品等の受動部品や半導体集積回路素子やセンサ等の機能部品を含む。
[0017] この構成により、従来再現性よく実装が困難であった微小サイズのチップ部品ゃ微 小ピッチの半導体素子等を再現性よぐかつ安定に実装することが可能となり、電子 機器の小型化を実現できる。
図面の簡単な説明
[0018] [図 1A]図 1Aは、 1005サイズのチップ部品に対応する塗布量の場合の半田ペースト の加熱挙動の模式図である。
[図 1B]図 1Bは、同チップ部品に対応する塗布量において、プリヒートを行った状態を 示す模式図である。
[図 1C]図 1Cは、同チップ部品に対応する塗布量において、半田の溶融温度である ピーク温度まで加熱した状態における半田の溶融状態を示す模式図である。
[図 2A]図 2Aは、 0603サイズのチップ部品に対応する塗布量の場合の半田ペースト の加熱挙動の模式図である。
[図 2B]図 2Bは、同チップ部品に対応する塗布量において、プリヒートを行った状態を 示す模式図である。
[図 2C]図 2Cは、同チップ部品に対応する塗布量において、半田の溶融温度である ピーク温度まで加熱した状態における半田の溶融状態を示す模式図である。
[図 3]図 3は、実施例 1の半田ペーストを用いて携帯電話に使用される電子回路基板 を作製した例を示す断面図である。 [図 4]図 4は、図 3に示す電子回路基板を用いた携帯電話の斜視図である。
符号の説明
10 電極端子
20, 200 半田ペースト
22, 220 半田粒子
24, 240 フラックス
26, 260 酸化皮膜を有する半田粒子
30, 300 溶融後半田
410 多層配線基板
412, 414 チップ部品
416 半導体チップ
420 筐体
422 表示素子
424 ボタン
発明を実施するための最良の形態
[0020] 以下、本発明の実施の形態について説明する。
[0021] —般的に半田ペースト用のフラックスを作製する場合、フラックスの各構成材料を混 合し、加熱して溶液状とする。しかし、本実施の形態では加熱することにより粘度が非 可逆的に増加する加熱重合型高分子材料を用いるために、常温で混練して各構成 材料を均一に溶解混合してフラックス溶液を作製する。なお、本実施の形態では、熱 硬化性樹脂も加熱重合型高分子に含めて説明する。
[0022] 本実施の形態に力かる半田ペーストは、フラックス成分として松脂系樹脂、チクソ剤 、活性剤、溶剤を混合してバインダとし、これに粒径が10 /1 111〜40 / 111の半田合金 粉末を混合してペースト状とし、さらに粘度が高温において上昇する加熱重合型高 分子を添加したことに特徴を有する。
[0023] 松脂系樹脂、チクソ剤、活性剤および溶剤には従来力 使用されているものを用い ること力 Sでき、例えば松脂系樹脂としては WWロジン、重合ロジン、水添ロジン等、チ クソ剤としてはステアリルアマイドや水素添カ卩ひまし油等、活性剤としてはジフェニー ルグァ二ジン HBr、シクロへキシルァミン HBr、アジピン酸、セバチン酸等、溶剤とし てはブチルカルビトール、プロピレングリコール、へキシレングリコール、 ひ一テレビネ オール等、従来使用されている溶剤をそれぞれ単独または組み合わせて用いること が可能である。
[0024] 本実施の形態に力 る半田ペーストの製造方法は、以下のようにする。すなわち、 最初に上記フラックス成分を加熱溶解して溶液状とした後、一旦常温以下に冷却す る。この後、エポキシ樹脂等の加熱重合型高分子材料を添加し混合することで、プリ ヒート温度まで半田合金粉末 (以下、半田粒子とよぶこともある)を覆う高温滞留特性 を付与する。あるいは、プリヒート温度においても半田粒子の表面をフラックスが覆う ように、高温時のフラックスの粘度低下を抑制する增粘剤を添加する。これらのフラッ タスに対して、半田成分として31—八§ー〇11、 Sn-Ag-In-Bi, Sn— Zn— Biおよ び Sn— Ag— Cu— Bi等から選択した半田粒子を均一に混合することで半田ペースト を作製する。なお、フラックスと半田合金粉末との混合割合は、フラックス 7重量%〜1 3重量%、半田合金粉末 87重量%〜93重量%が好ましい。
[0025] また、フラックスのプリヒート時の粘度が常温時の粘度と同等または高い粘度を有す る構成としてもよレ、。これにより、プリヒート温度においてもフラックスが流れ出し難くな り、半田合金粉末を確実に覆い、酸化を防止することができる。
[0026] また、フラックスが加熱重合型高分子材料を含有していてもよい。さらに、この加熱 重合型高分子材料をポリエステル樹脂、メタクリル酸メチル樹脂、エポキシ樹脂、ポリ スチレン樹脂、フエノール樹脂および乾性油のうちいずれかより選択して用いてもよ レ、。このような材料を用いることにより、プリヒートにおいてもフラックスが高い粘度を有 するので半田ボールの発生を効果的に抑制できる。
[0027] また、上記フラックスは 140°C〜: 180°Cにおける粘度が常温時の粘度に対して同等 または 70%以上であるもので、プリヒート温度において半田合金粉末の表面を確実 に被覆することができ、半田粒子の酸化を効果的に抑制できる。フラックスとして、こ の温度範囲でも粘度が比較的大きいことから、一般的に使用されている Sn_Ag_C u系合金半田、 Sn_Zn系合金半田あるいは Sn_Ag系合金半田等の鉛フリー半田 だけでなぐ従来の鉛半田を用いて半田ペーストとした場合に有効である。なお、こ れらの材料よりも低温で溶融する半田材料を用いて上記のフラックスを混合した半田 ペーストとすることもできる力 これらの半田材料の場合には、プリヒートも比較的低温 で行うため半田合金粉末の酸化も生じ難ぐ高温で溶融する半田材料の場合ほど顕 著な効果は得られ難い。
[0028] また、フラックスが増粘剤としてチクソトロピック性を備えた高分子を含有するようにし てもよレ、。この高分子がカルボキシビ二ルポリマー、アルギン酸ナトリウム、アルギン酸 プロピレングリコール、ェチルセルロース、カルボキシメチルセルロース、合成珪酸ナ トリウム 'マグネシウム、ジメチルジステアリルアンモニゥムヘクトライト、ポリアクリル酸 ナトリウム、ヒドロキシェチルセルロース、ヒドロキシプロピルメチルセルロースのうち少 なくとも一つを用いてもよい。これにより、高温時における粘度変化を抑制することが 可能となる。
[0029] さらに、フラックスの含有量が 20重量0 /0未満としてもよい。これにより、プリヒート時に 半田合金粉末の酸化を確実に防止することができる。また、 15重量%以下とすれば 、酸化の防止に加えて印刷特性にも優れた半田ペーストを実現できる。さらに、 11重 量%以下とすれば半田合金粉末量が相対的に多くできるので、半田ペーストを微小 量塗布した場合でも半田合金粉末間での溶融が確実に生じ、半田ボールの発生を さらに抑制できる。
[0030] さらに、半田合金粉末が Sn_Ag_Cu系合金、 Sn_Ag_In_Bi系合金、 Sn_Z n_Bi系合金および Sn_Ag_Cu_Bi系合金のいずれかを用いてもよレ、。これによ り、鉛フリー半田を用いた場合でも、微小領域での半田付け性が良好で、かつ信頼 性の高い半田接合を実現できる。
[0031] 本発明の電子機器は、電子部品が実装された回路基板を含む構成であって、上記 の電子部品を回路基板に半田接合するための半田ペーストが上記に記載の半田ぺ 一ストであることを特徴とする。なお、電子部品としては、チップ抵抗やチップ部品等 の受動部品や半導体集積回路素子やセンサ等の機能部品を含む。
[0032] この構成により、従来再現性よく実装が困難であった微小サイズのチップ部品ゃ微 小ピッチの半導体素子等を再現性よぐかつ安定に実装することが可能となり、電子 機器の小型化を実現できる。 [0033] なお、本発明の電子機器としては、小型化、高機能化が特に要求される携帯用電 子機器、例えば携帯電話、携帯情報機器、ノートパソコン、録音機器、ビデオカメラ、 デジタルカメラ、カーナビ等に適用すると顕著な効果が得られる。しかし、これらに限 定されることはなレ、。ラップトップパソコンやテレビ等の受像装置あるいは各種の家庭 用電気製品や業務用電気製品等、特に限定されず使用可能である。
[0034] 以上のように本発明の半田ペーストによれば、半田合金粉末の表面の酸化を効果 的に抑制することが可能となり、プリント配線基板上の電極端子と電子部品の電極と を強固に半田付けすることができる。さらに、実装中に半田ボール等の発生を抑制す ること力 Sできるため、端子間の短絡を防止し、高い接続信頼性を得ることができる。
[0035] つぎに、本実施の形態における半田ペーストの実施例について説明する。
[0036] (実施例 1)
フラックスを 8重量%、半田合金粉末(Sn— Ag— Cu)を 92重量%とした。なお、フ ラックスの成分は以下のようにした。
[0037] 重合ロジン 52重量%
硬化ひまし油 5重量%
ジフェニーノレグァニジン HBr 2重量0 /0
a テレビネオ一ノレ 33重量%
エポキシ樹月旨 8重量%
さらに、エポキシ樹脂の硬化剤として酸無水物、ポリアミドを必要量添加することに より、リフロー半田付け時のプリヒート温度においても、フラックスが半田粒子の表面を 覆う粘度に調整した。
[0038] (実施例 2)
フラックスを 10重量%、半田合金粉末(Sn_Ag_In_Bi)を 90重量%とした。な お、フラックスの成分は以下のようにした。
[0039] 重合ロジン 46重量%
Figure imgf000010_0001
4重量%
シクロへキシルァミン HBr
a テレビネオ一ノレ 40重量% ポリエステル樹脂
さらに、ポリエステル樹脂の硬化剤として、過酸化べンゾィル、ラウリルパーォキサイ ドにナフテン酸コバルト等の触媒を適量加えることにより、実施例 1の場合と同様にリ フロー半田付け時のプリヒート温度においても、フラックスが半田粒子の表面を覆う粘 度に調整した。
[0040] (実施例 3)
フラックスを 8重量%、半田合金粉末(Sn_Ag_ Cu_ Bi)を 92重量%とした。なお 、フラックスの成分は以下のようにした。
[0041] 重合ロジン 40重量%
硬化ひまし油 5重量%
ジフェニーノレグァニジン HBr
a—テレビネオ一ノレ
、ール
10重量%
さらに、スチレンモノマーの硬化触媒として過酸化ベンゾィルを使用し、実施例 1お よび実施例 2の場合と同様に、リフロー半田付け時のプリヒート温度においても、フラ ッタスが半田粒子の表面を覆う粘度に調整した。
[0042] (実施例 4)
フラックスを 11重量%、半田合金粉末(Sn_Ag_ Cu)を 89重量%とした。なお、フ ラックスの成分は以下のようにした。
[0043] 重合ロジン 40重量%
硬化ひまし油
シクロへキシルァミン HBr
a—テレビネオ一ノレ
へキシレングリコーノレ 10重量0 /0
メタクリル酸メチル樹脂 10重量%
さらに、メタクリル酸メチル樹脂の硬化触媒として、過酸化ベンゾィルを使用し、実 施例 1から実施例 3の場合と同様に、リフロー半田付け時のプリヒート温度においても 、フラックスが半田粒子の表面を覆う粘度に調整した。
[0044] 実施例 1から実施例 4までに示すように、本実施の形態に力かる半田ペーストはフラ ックスを 8重量%〜: 11重量%、半田合金粉末を89重量%〜92重量%として、常温ま たは常温以下の温度にて混練することが望ましい。また、保存は常温以下とすること が好ましレ、。なお、半田合金粉末の粒径が 10 !〜 30 z mのものを使用した。
[0045] なお、プリヒート温度までフラックスが半田粒子を覆う高温滞留特性を有するように するためには、上記実施例で説明した材料以外にフエノール樹脂または乾性油を用 いることも可能である。
[0046] つぎに、プリヒート温度においても半田粒子の表面をフラックスが覆うように、上記の フラックス基本成分に高温時のフラックスの粘度低下を抑制する增粘剤を添加した実 施例を以下に説明する。
[0047] (実施例 5)
フラックスを 8重量%、半田合金粉末(Sn— Ag— Cu)を 92重量%とした。なお、フ ラックスの成分は以下のようにした。
[0048] 重合ロジン 48重量%
硬化ひまし油 5重量%
ジフェニーノレグァニジン HBr 2重量0 /0
へキシレングリコーノレ 25重量%
ブチルカルビトール 20重量%
さらに、上記フラックス 100直量%に対して、カルボキシビ二ルポリマー 0. 3重量% を添加した。
[0049] (実施例 6)
フラックスを 10重量%、半田合金粉末(Sn_Ag_Cu)を 90重量%とした。なお、フ ラックスの成分は以下のようにした。
[0050] 重合ロジン 48重量%
硬化ひまし油 6重量%
ジフヱ二 ノレグァニジン HBr 3重量%
a テレビネオ一ノレ 43重量% さらに、上記フラックス 100重量0 /0に対して、合成珪酸ナトリウム ·マグネシウム 0. 1 重量%を添加した。
[0051] (実施例 7)
フラックスを 9重量%、半田合金粉末(Sn_Ag_ Cu)を 91重量%とした。なお、フ ラックスの成分は以下のようにした。
[0052] 重合ロジン 48重量%
硬化ひまし油 6重量%
ジフェニーノレグァニジン HBr 3重量0 /0
a テレビネオ一ノレ 43重量0 /0
さらに、上記フラックス 100重量%に対して、ヒドロキシェチルセルロース 0. 5重量 %を添加した。
[0053] なお、上記実施例における増粘剤以外に、アルギン酸ナトリウム、アルギン酸プロピ レングリコール、ェチルセルロース、カルボキシメチルセルロース、ジメチルジステアリ ルアンモニゥムヘクトライト、ポリアクリル酸ナトリウム、ヒドロキシプロピルメチルセル口 ースのうち、少なくともいずれかを用いることも可能である。
[0054] つぎに、本発明の実施例 1から実施例 7までに作製した半田ペーストと比較するた めに、プリヒート温度においてフラックスが流出あるいは揮発する従来の半田ペースト を以下のように作製して比較例とした。
[0055] (比較例 1)
フラックスを 10重量%、半田合金粉末(Sn_Ag_ Cu)を 90重量%とした。なお、フ ラックスの成分は以下のようにした。
[0056] 重合ロジン 50重量%
硬化ひまし油 5重量%
ジフェニーノレグァニジン HBr 2重量%
a—テレビネオ一ノレ 43重量0 /0
(比較例 2)
フラックスを 11重量%、半田合金粉末(Sn_Ag_ Cu)を 89重量%とした。なお、フ ラックスの成分は以下のようにした。 [0057] 重合ロジン 48重量%
硬化ひまし油 5重量%
ジフヱ二 ノレグァニジン HBr 2重量%
へキシレングリコーノレ 25重量%
ブチルカルビトール 20重量%
以上説明した実施例 1から実施例 7までの半田ペーストと比較例 1および比較例 2 の半田ペーストとを用いて、 1005サイズのチップ抵抗と 0603サイズのチップ抵抗と をプリント配線基板上に半田付けする場合において、半田ペーストの溶融状態およ び半田ボール発生の有無を評価した。すなわち、 1005サイズのチップ抵抗に対する 半田塗布量に比べて、 0603サイズのチップ抵抗に対する半田塗布量は約 1/4とす ること力 S要求される。したがって、上記の 7種類の実施例と 2種類の比較例の半田べ 一ストについて、上記 2種類のチップ抵抗に対してそれぞれ要求される半田ペースト 量を塗布し、加熱による半田ペーストの溶融状態と半田ボール発生状態を観察した 。なお、観察は以下のようにして行った。半田ペーストを塗布したプリント配線基板を 高温顕微鏡の加熱部に配置し、以下のようにリフロー条件を設定して加熱時の半田 ペーストの変化状態も評価した。室温から約 60秒間で、プリヒート温度である 180°C まで加熱し、この温度で 60秒間保持した。プリヒートを行った後、ピーク温度である 2 45°Cまで加熱し、 10秒間保持してから冷却した。このようにして半田ペーストを加熱 しながら半田の溶融状態および半田ボール発生状態を観察した。なお、加熱は大気 中雰囲気下で行った。
[0058] [表 1] 1 0 0 5サイズ対応塗布量 0 6 0 3サイズ対応塗布量
プリヒー ピーク 冷却後 評価 プリヒー ビーク加 冷却後 評価 卜時 加熱時 ト時 熱時 実施例 1 良好 良好 全体溶融 〇 良好 良好 全体溶 ¾ 〇 実施例 2 良好 良好 全体溶融 〇 良好 良好 全体溶融 〇 実施例 3 良好 良好 全体溶融 〇 良好 良好 全体溶融 〇 実施例 4 良好 良好 全体溶融 〇 良好 良好 全体溶融 〇 実施例 5 良好 良好 全体溶融 〇 良好 良好 全体溶融 〇 実施例 6 良好 良好 全体溶融 〇 良好 良好 全体溶融 〇 実施例 7 良好 良好 全体溶融 〇 良好 良好 全体溶 K 〇 比較例 1 半田粒子 半田粒子 来溶融半 半田ボー 睡出発生 良好 全体溶融 〇 露出あり 田粒子あ ル発生、 X 未溶融 比較例 2 半田粒子 半田粒子 未溶融半 半田ポー 露出発生 良好 全体溶融 〇 露出あり 田粒子あ ル発生、 X
Ό 未溶融
[0059] 表 1に、これらの評価結果を示す。表 1からわかるように実施例 1から実施例 7までの 半田ペーストでは、 1005サイズ対応塗布量および 0603サイズ対応塗布量の場合と もに、プリヒート時においてもフラックスが半田粒子を覆っており、ピーク加熱時点で 全体が溶融しているのが観察された。冷却後においても全体が溶融しており半田ボ ールは見られな力 た。これは、エポキシ樹脂やポリエステル樹脂等の加熱重合型 高分子あるいはカルボキシビュルポリマー等の増粘剤を添加することで、プリヒート温 度においてもフラックスが半田粒子の表面を覆レ、、酸化を防止することができたことに よる。
[0060] 上記の実施例 1から実施例 7までにおいては、半田ペースト中のフラックスの含有 量を 8重量%〜11重量%の場合について示した力 さらに種々の組成の半田ペース トを作製して試験した。その結果、フラックス量が 20重量%以下とすれば、従来のス クリーン印刷等で塗布形成でき、かつ酸化防止が可能であることを確認した。なお、 フラックス量の下限値は 5重量%であった。さらに、上限値を 15重量%とすれば、印 刷条件範囲をさらに拡大することが可能となり、望ましい範囲であることも見出した。 また、上限値を 11重量%以下とすれば、半田合金粉末量を相対的に多くできる。し たがって、半田ペーストを微小量塗布した場合でも、接合のための加熱時に半田合 金粉末間での溶融が確実に生じ、半田ボールの発生をさらに抑制できることも見出し [0061] 一方、比較例の半田ペーストは、どちらもプリヒート温度においてフラックスが沈下し ていき、半田粒子が大気中に露出するようになる。このため、最表面層に存在する半 田粒子の表面は酸化される。酸化が生じた半田粒子は、 1005サイズ対応塗布量と 0 603サイズ塗布量の両方でほぼ同じように発生した。しかし、 1005サイズ対応塗布 量の場合には、ピーク加熱を行うと全体が溶融することが確認された。一方、 0603サ ィズ対応塗布量の場合には、ピーク加熱後に未溶融半田粒子が存在し、冷却後に おいて半田ボールが生じた。
[0062] このように比較例の半田ペーストの場合、半田ペーストの塗布量により半田ボール の発生や未溶融状態が発生することについては、以下のように推測している。図 1A 力も図 1Cは、 1005サイズのチップ部品に対応する塗布量の場合の半田ペーストの 加熱挙動の模式図である。また、図 2Aから図 2Cは、 0603サイズのチップ部品に対 応する塗布量の場合の半田ペーストの加熱挙動の模式図である。図 1Aから図 2Cま でにおいて、プリント配線基板の電極端子 10および半田ペーストは同じ材料を用い ているが、半田ペーストの塗布量が異なる。すなわち、図 1Aから図 1Cまでに示す半 田ペースト 20に比べて、図 2Aから図 2Cまでに示す半田ペースト 200の塗布量は約 1/4である。
[0063] 図 1Aおよび図 2Aは、ともに電極端子 10の面上に半田ペースト 20、 200をそれぞ れ塗布した状態を示す断面模式図である。電極端子 10上の半田ペースト 20、 200 は、それぞれ半田粒子 22、 220とフラックス 24、 240とにより形成されてレヽる。
[0064] 図 1Bおよび図 2Bは、ともに同じ温度でプリヒートを行った状態を示す模式図である 。プリヒートを行うと、 1005サイズ対応塗布量の場合には、図 1Bに示すようにフラック ス 24の沈下と揮発により、表面側に存在する半田粒子 22が大気に露出し、表面が 酸化される。これにより、半田ペースト 20の表面側では、酸化皮膜を有する半田粒子 26が形成される。し力 ながら、半田が溶融する溶融温度であるピーク温度まで加熱 していくと、内部に存在する酸化されていない半田粒子 22が溶融し、一体化する。こ れは、半田粒子同士が溶融し一体化するときに体積膨張が生じ、このエネルギーに より酸化皮膜を有する半田粒子 26の表面の酸化膜を破り、全体が溶融するためであ ると推測している。したがって、半田ボールが生じず、かつ全体として均一に溶融す る。
[0065] 図 1Cは、半田の溶融温度であるピーク温度まで加熱した状態における半田の溶融 状態を示す模式図である。図 1Cからわかるように、溶融後半田 30は均一に溶融し一 体化している。
[0066] 一方、 0603サイズ対応塗布量の場合には、図 2Bに示すようにプリヒート時にフラッ タスの沈下と揮発により、表面側に存在する半田粒子 220が大気に露出し、表面が 酸化される。これにより、半田ペースト 200の表面側では、酸化皮膜を有する半田粒 子 260が形成される。ピーク温度まで加熱しても、酸化されていない半田粒子 220の 量が少ないので、これらが溶融し一体化するときの体積膨張のエネルギーは小さぐ 酸化皮膜を有する半田粒子 260の表面の酸化皮膜を破ることができないものが生じ る。このために、半田ボールが発生するものと思われる。
[0067] 図 2Cは、半田の溶融温度であるピーク温度まで加熱した状態における半田の溶融 状態を示す模式図である。図 2Cからわかるように、溶融後半田 300だけでなぐ半田 ボールが残存している。
[0068] 以上のように、比較例の半田ペーストでは塗布量を少なくすると、未溶融の半田粒 子が残存し、半田ボールとなる。しかし、実施例 1から実施例 7までの半田ペーストで は、半田ボールは生じなかった。これは、プリヒート温度においてフラックスが半田粒 子を確実に覆い、酸化を防止していることによる。これらの結果から、 0603サイズの ような微小な電子部品をプリント配線基板に半田接合するときに半田ボールが生じる のを防ぐためには、プリヒート温度において半田粒子の表面をフラックスが覆うように 高温滞留特性を持たせることが効果的であることが見出された。
[0069] 上記の説明より明らかなように、本発明における半田ペーストは、プリヒート温度に おいても半田粒子の表面を覆うことができる高温滞留特性を有したフラックスを用い ているので、半田ペーストの最表面側に存在する半田粒子であっても大気から遮断 して表面の酸化を防止することができる。この結果、微少な塗布量であっても安定し た溶融状態と半田ボールの発生を抑制することができ、微小な電子部品をプリント配 線基板上に高密度に実装することが可能となる。
[0070] なお、フラックスの高温滞留特性を付与するためには、上記のように加熱重合型高 分子材料や増粘剤を添加するだけでなぐ従来のフラックスを用いて、その含有量を 増カロさせることでもよレ、。ただし、プリント配線基板の電極端子面上に塗布する印刷 方法をフラックスの含有量に応じて選択することが必要である。
[0071] 図 3は、上記実施例 1の半田ペーストを用いて、携帯電話に使用される電子回路基 板を作製した例を示す断面図である。この電子回路基板は、樹脂基材からなる多層 配線基板 410上に、 0603サイズのチップ部品 412、 1005サイズのチップ部品 414 および半導体チップ 416が実装されている。なお、この断面図においては、 0603サ ィズのチップ部品 412が 3個、 1005サイズのチップ部品 414が 1個および半導体チ ップ 416が 2個だけしか示していなレ、。しかし、実際の電子回路基板では、さらに多く のチップ部品が実装されているだけでなぐ 1608サイズのチップ部品、コネクタ、フィ ルタ素子等も実装されている力 図示していない。また、多層配線基板 410は、図示 するように内装導体やインナービアおよび貫通導体等も形成されている。
[0072] このような電子回路基板においては、 0603サイズのチップ部品が多用されている 力 本発明の実施例 1で説明した半田ペーストを用いることにより半田ボール等の発 生によるショート不良や接続不良等が発生しなかった。なお、実施例 2から 7までの半 田ペーストを用いても同様の結果が得られた。
[0073] なお、半導体チップ 416は、メモリや制御用 LSI等の種々の機能を有する素子をべ ァチップで実装してもよいし、パッケージした状態で実装してもよい。また、これらの実 装は図示するようなフリップチップ方式、ワイヤボンディング方式あるいはボールグリツ ドアレーを用いた実装方式等、半導体チップの形態に応じて最適な方式を使用する こと力 Sできる。さらに、半導体チップの多層配線基板への接続については、本発明の 半田ペーストを用いず、例えば導電性接着剤ゃ異方導電性樹脂を用いて接続しても よい。
[0074] 図 4は、この電子回路基板を用いた携帯電話の斜視図である。この携帯電話は、折 曲げが可能な筐体 420に種々の機能を有するボタン 424と表示素子 422が配設され ており、筐体の内部に図 3に示す電子回路基板が配設されている。この携帯電話は 、電子回路基板のショート不良や接続不良等が生じず、製造歩留まりがよぐかつ高 信頼性とすることができた。 産業上の利用可能性
微小サイズの受動部品や端子ピッチの小さい半導体集積回路素子の半田付けに おいて課題となる半田粒子の酸化を防止して、微少量の半田ペーストを用いた場合 であっても信頼性のよい半田接合が可能な半田ペーストにより、微小サイズの電子部 品を基板上に半田接合する回路基板分野に有用である。

Claims

請求の範囲
[1] 半田合金粉末をフラックスに混合してなる半田ペーストであって、
前記フラックスが、加熱溶融工程中におけるプリヒート温度において前記半田合金粉 末の表面を被覆する高温滞留特性を有することを特徴とする半田ペースト。
[2] 前記フラックスのプリヒート時の粘度が、常温時の粘度と同等または高い粘度を有す ることを特徴とする請求項 1に記載の半田ペースト。
[3] 前記フラックスが、加熱重合型高分子材料を含有していることを特徴とする請求項 1 に記載の半田ペースト。
[4] 前記加熱重合型高分子材料が、ポリエステル樹脂、メタクリル酸メチル樹脂、ェポキ シ樹脂、ポリスチレン樹脂、フエノール樹脂および乾性油のいずれかであることを特 徴とする請求項 3に記載の半田ペースト。
[5] 前記フラックスは、 140°C〜: 180°Cにおける粘度が常温時の粘度に対して同等また は 70%以上であることを特徴とする請求項 1に記載の半田ペースト。
[6] 前記フラックスが、増粘剤としてチクソトロピック性を備えた高分子を含有することを特 徴とする請求項 5に記載の半田ペースト。
[7] 前記高分子が、カルボキシビュルポリマー、アルギン酸ナトリウム、アルギン酸プロピ レングリコール、ェチルセルロース、カルボキシメチルセルロース、合成珪酸ナトリウム
'マグネシウム、ジメチルジステアリルアンモニゥムヘクトライト、ポリアクリル酸ナトリウ ム、ヒドロキシェチルセルロース、ヒドロキシプロピルメチルセルロースのうち少なくとも 一つであることを特徴とする請求項 6に記載の半田ペースト。
[8] 前記フラックスの含有量が、 20重量%未満であることを特徴とする請求項 1に記載の 半田ペースト。
[9] 前記半田合金粉末が、 Sn— Ag— Cu系合金、 Sn— Ag— In— Bi系合金、 Sn— Zn
Bi系合金および Sn— Ag— Cu— Bi系合金のいずれかであることを特徴とする請 求項 1に記載の半田ペースト。
[10] 電子部品が実装された回路基板を含む電子機器であって、
前記電子部品を前記回路基板に半田接合するための半田ペーストが請求項 1から 請求項 9までに記載の半田ペーストであることを特徴とする電子機器。
PCT/JP2005/016291 2004-09-13 2005-09-06 半田ペーストおよびそれを用いた電子機器 WO2006030665A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006535751A JPWO2006030665A1 (ja) 2004-09-13 2005-09-06 半田ペーストおよびそれを用いた電子機器
US11/660,552 US20070277909A1 (en) 2004-09-13 2005-09-06 Solder Paste and Electronic Device Using Same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004265148 2004-09-13
JP2004-265148 2004-09-13

Publications (1)

Publication Number Publication Date
WO2006030665A1 true WO2006030665A1 (ja) 2006-03-23

Family

ID=36059920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/016291 WO2006030665A1 (ja) 2004-09-13 2005-09-06 半田ペーストおよびそれを用いた電子機器

Country Status (4)

Country Link
US (1) US20070277909A1 (ja)
JP (1) JPWO2006030665A1 (ja)
CN (1) CN100551604C (ja)
WO (1) WO2006030665A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011016967A (ja) * 2009-07-10 2011-01-27 Panasonic Electric Works Co Ltd 熱硬化性樹脂組成物及び回路基板
JP2017535066A (ja) * 2014-09-09 2017-11-24 マイクロニック アーベーMycronic Ab はんだペーストフラックスを塗布するための方法および装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011258838A (ja) * 2010-06-10 2011-12-22 Fujitsu Ltd 積層回路基板、接着シート、積層回路基板の製造方法および接着シートの製造方法
JP5728636B2 (ja) * 2010-09-29 2015-06-03 パナソニックIpマネジメント株式会社 導電性接着剤、及びそれを用いた回路基板、電子部品モジュール
CN103170757A (zh) * 2011-12-23 2013-06-26 富泰华工业(深圳)有限公司 锡膏及其制备方法
US8872315B2 (en) * 2012-08-09 2014-10-28 Infineon Technologies Ag Electronic device and method of fabricating an electronic device
US9554468B2 (en) 2013-12-19 2017-01-24 Intel Corporation Panel with releasable core
US9522514B2 (en) 2013-12-19 2016-12-20 Intel Corporation Substrate or panel with releasable core
US9554472B2 (en) * 2013-12-19 2017-01-24 Intel Corporation Panel with releasable core
US9434135B2 (en) 2013-12-19 2016-09-06 Intel Corporation Panel with releasable core
CN107921588A (zh) * 2015-08-04 2018-04-17 索尔维公司 制造焊剂组合物的方法
CN106119667B (zh) * 2016-06-29 2018-05-25 北京态金科技有限公司 熔点为60℃的低熔点金属粘接膏及其制备方法和应用
TWI674682B (zh) * 2016-09-07 2019-10-11 優顯科技股份有限公司 光電半導體裝置及其製造方法
US10160066B2 (en) * 2016-11-01 2018-12-25 GM Global Technology Operations LLC Methods and systems for reinforced adhesive bonding using solder elements and flux
CN107755921B (zh) * 2017-09-18 2020-04-21 广东省焊接技术研究所(广东省中乌研究院) 一种水性有机成膏体及其包含该成膏体的铝焊膏
CN108538878A (zh) * 2018-07-11 2018-09-14 大连德豪光电科技有限公司 微发光二极管基板及其制备方法、显示装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08174265A (ja) * 1994-12-27 1996-07-09 Matsushita Electric Ind Co Ltd クリ−ムはんだ
JPH08174264A (ja) * 1994-12-20 1996-07-09 Nec Corp ソルダーペースト

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01157798A (ja) * 1987-12-15 1989-06-21 Showa Denko Kk クリームはんだ
JP3137477B2 (ja) * 1992-12-22 2001-02-19 トヨタ自動車株式会社 クリームはんだ用フラックス
JPH1085984A (ja) * 1996-09-10 1998-04-07 Aoki Metal:Kk はんだ付け用フラックス及びやに入りはんだ
JPH11320176A (ja) * 1998-05-18 1999-11-24 Fujitsu Ltd はんだペースト
JP3105505B1 (ja) * 1999-11-19 2000-11-06 株式会社ニホンゲンマ はんだ用フラックスおよびソルダペースト
US6402013B2 (en) * 1999-12-03 2002-06-11 Senju Metal Industry Co., Ltd Thermosetting soldering flux and soldering process
WO2002028574A1 (en) * 2000-10-02 2002-04-11 Asahi Kasei Kabushiki Kaisha Functional alloy particles
JP2002144077A (ja) * 2000-11-08 2002-05-21 Uchihashi Estec Co Ltd はんだ付け方法及びソルダペースト
JP4486287B2 (ja) * 2001-09-26 2010-06-23 タムラ化研株式会社 ソルダペースト組成物及びリフローはんだ付方法
US20050056365A1 (en) * 2003-09-15 2005-03-17 Albert Chan Thermal interface adhesive

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08174264A (ja) * 1994-12-20 1996-07-09 Nec Corp ソルダーペースト
JPH08174265A (ja) * 1994-12-27 1996-07-09 Matsushita Electric Ind Co Ltd クリ−ムはんだ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011016967A (ja) * 2009-07-10 2011-01-27 Panasonic Electric Works Co Ltd 熱硬化性樹脂組成物及び回路基板
JP2017535066A (ja) * 2014-09-09 2017-11-24 マイクロニック アーベーMycronic Ab はんだペーストフラックスを塗布するための方法および装置
JP2021010013A (ja) * 2014-09-09 2021-01-28 マイクロニック アーベーMycronic Ab はんだペーストフラックスを塗布するための方法および装置

Also Published As

Publication number Publication date
JPWO2006030665A1 (ja) 2008-05-15
CN100551604C (zh) 2009-10-21
CN101018643A (zh) 2007-08-15
US20070277909A1 (en) 2007-12-06

Similar Documents

Publication Publication Date Title
WO2006030665A1 (ja) 半田ペーストおよびそれを用いた電子機器
KR102183512B1 (ko) 솔더 페이스트
CN100404597C (zh) 导热性粘合剂组合物和器件连接工艺
JP5342453B2 (ja) 導電性ペーストおよびこれを用いた電気電子機器
WO2017110052A1 (ja) ペースト状熱硬化性樹脂組成物、半導体部品、半導体実装品、半導体部品の製造方法、半導体実装品の製造方法
JP2006199937A (ja) 導電性接着剤、これを用いた導電部及び電子部品モジュール
JP2002336992A (ja) 回路基板はんだ付用はんだ加工物及び回路基板
JP3592006B2 (ja) ビアホール充填用導電性ペースト及びそれを用いたプリント配線板
WO2008056676A1 (fr) Pâte à braser sans plomb, carte de circuit électronique utilisant cette pâte à braser sans plomb, et procédé de fabrication de carte de circuit électronique
JP2002224880A (ja) はんだペースト、および電子装置
JP2000151095A (ja) プリント配線基板に対する部品のはんだ付け方法、プリント配線基板の作製方法
JP2006225426A (ja) 導電性接着剤
JP2008238253A (ja) Pbフリーはんだ接続材料及びこれを用いた半導体実装構造体の製造方法
JP2002201448A (ja) 導電性接着剤
JPH10279903A (ja) 導電性接着剤
JP2007116181A (ja) 回路基板
JPH067989A (ja) ソルダーペースト
JP6677231B2 (ja) 電子部品の接合方法および接合体の製造方法
JP2005297011A (ja) ソルダーペーストおよび半田付け物品
KR101239665B1 (ko) 도전성 복합체 및 이를 이용한 이방성 도전성 접착제
KR102150263B1 (ko) 무연솔더 페이스트
JPH02117794A (ja) クリーム半田
JP2002224884A (ja) 半田付け用フラックス及びこれを用いた半田バンプの形成方法
WO2023106219A1 (ja) 積層体および接合部材
JP5140328B2 (ja) 導電性接着剤を用いて形成された導通接続部およびその導通接続部を用いた回路基板と電子電気機器

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006535751

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11660552

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580030731.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05778482

Country of ref document: EP

Kind code of ref document: A1

WWP Wipo information: published in national office

Ref document number: 11660552

Country of ref document: US