WO2006027885A1 - 板状材料の加工面の決定方法、加工方法及びこれらの装置 - Google Patents

板状材料の加工面の決定方法、加工方法及びこれらの装置 Download PDF

Info

Publication number
WO2006027885A1
WO2006027885A1 PCT/JP2005/011715 JP2005011715W WO2006027885A1 WO 2006027885 A1 WO2006027885 A1 WO 2006027885A1 JP 2005011715 W JP2005011715 W JP 2005011715W WO 2006027885 A1 WO2006027885 A1 WO 2006027885A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
processing
plane
height
determining
Prior art date
Application number
PCT/JP2005/011715
Other languages
English (en)
French (fr)
Inventor
Koichi Nakashima
Nobuyoshi Komachi
Original Assignee
Nippon Mining & Metals Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining & Metals Co., Ltd. filed Critical Nippon Mining & Metals Co., Ltd.
Priority to CN2005800295223A priority Critical patent/CN101010644B/zh
Priority to KR1020077007566A priority patent/KR100876574B1/ko
Priority to US11/574,629 priority patent/US7650201B2/en
Priority to JP2006535051A priority patent/JP4527120B2/ja
Priority to EP05765163.0A priority patent/EP1785793B1/en
Publication of WO2006027885A1 publication Critical patent/WO2006027885A1/ja

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/401Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for measuring, e.g. calibration and initialisation, measuring workpiece for machining purposes
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/404Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/007Automatic control or regulation of feed movement, cutting velocity or position of tool or work while the tool acts upon the workpiece
    • B23Q15/14Control or regulation of the orientation of the tool with respect to the work
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37049First a rasterscan, then align workpiece as function of height average, scan again
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37402Flatness, roughness of surface
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37596Surface layer to be machined away, lowest point, minimum material to be cut
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/50Machine tool, machine tool null till machine tool work handling
    • G05B2219/50046Control of level, horizontal, inclination of workholder, slide
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/50Machine tool, machine tool null till machine tool work handling
    • G05B2219/50063Probe, measure, verify workpiece, feedback measured values
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/40Minimising material used in manufacturing processes

Definitions

  • the present invention relates to a processing surface of a plate-like material in surface processing for obtaining a flat and uniform thickness of the plate-like material with the least machining allowance from a plate-like material having a two-dimensional deformation.
  • the present invention relates to a determination method, a processing method, and these apparatuses.
  • Ceramic sintered plates such as sputtering targets and rolled or forged metal plates are mostly subjected to two- or three-dimensional deformations due to thermal or processing distortion during the manufacturing process.
  • mechanical forces such as cutting, grinding, and electric discharge are used.
  • a material having such a deformation is set by an operator as it is on a processing machine and the above-described processing is performed, or the operator roughly measures the deformation of each plate-shaped material in advance with a straight edge or the like.
  • a spacer was added to achieve flatness.
  • the current situation is that it is performed by the operator's intuition.
  • Conventional techniques include a device that can accurately measure the thickness of each plate-shaped workpiece including warpage (see, for example, Patent Document 1), a measurement device that has warpage, a measurement reference section, Substrate warpage measurement device consisting of a measurement unit, a displacement measuring device that converts electrical signals, a warp amount display unit, and a control unit (see, for example, Patent Document 2)
  • a ceramic product manufacturing method (for example, see Patent Document 3) that measures the surface state by receiving reflected light and measuring the surface state.
  • a plate flatness measuring device (for example, see Patent Document 5) comprising a gauge (for example, refer to Patent Document 4), a downward measuring instrument for measuring flatness, a plate support pin, a vertical motion actuator, and a pressure adjusting unit.
  • There is a method for measuring the shape irregularity of a ceramic substrate by infrared thermography for example, see Patent Document 6).
  • Patent Document 1 JP-A-6-66549
  • Patent Document 2 Japanese Patent Publication No.59-36202
  • Patent Document 3 Japanese Patent Laid-Open No. 63-173607
  • Patent Document 4 Japanese Patent Laid-Open No. 7-128002
  • Patent Document 5 Japanese Patent No. 3418819
  • Patent Document 6 Japanese Patent No. 3183935
  • sintered ceramic plates such as sputtering targets and rolled or forged metal plates are subjected to thermal or processing distortion during the manufacturing process, and are often accompanied by two- to three-dimensional deformation.
  • a flat and uniform thickness plate material is obtained from a plate material having two- and three-dimensional deformation, and a flat and uniform thickness plate with the least processing allowance. It is an object of the present invention to provide a method for determining a processed surface of a plate-like material and a device therefor in the case of surface processing such as cutting, grinding, electric discharge machining, etc. for obtaining a material.
  • the present inventors have conducted intensive research, and as a result, measured the height Z from the reference plane at an arbitrary plane position, and obtained height data. Measures the absolute value of the difference between the maximum value Z and the minimum value Z and minimizes the machining allowance max mm
  • the present invention 1) A method for determining the processing surface of a plate material that minimizes the machining allowance when processing a plate material having two or three-dimensional deformation to a uniform thickness. It is assumed that the plane coordinate axes of the plate-like material are X and Y, the vertical coordinate axis is ⁇ , and the vertical ABCD of the surface plate is imaginary on the computer. The plane ABCD force in the plane A BCD coordinates ( ⁇ , ⁇ ) is also the distance (height) Z to the coordinate (X, ⁇ ) of the top surface of the plate-like material to be measured ( ⁇ , Measure the specified number of coordinates while changing
  • each coordinate force on the plane ABCD is expressed as a new height Zmn by measuring the distance to the corresponding coordinate point of the material, as in the first measurement.
  • For all coordinate points ( ⁇ , ⁇ ) on the plane ABCD measure the height from the plane ABCD force to the upper surface of the plate-like material, find the medium force maximum value Zmn (max) and minimum value Zmn (min), All the differences D are calculated for the slope condition, and the height difference D is obtained.
  • a method for determining a machined surface of a plate-like material wherein the smallest value of 00-mn is determined that the plane ABCD (Dmin) is parallel to the plane of the minimum machining allowance.
  • the height Z from the height of the measurement points at the four corners of the plate material to the plate material is the highest. 1 or 2 above, wherein the value obtained by subtracting the small value Zmin is the thickness of the spacer that enters the four corners when the plate-like material is set in the processing machine. To determine the surface finish of the surface.
  • the processing surface of the plate material is determined by the method described in any one of 1 to 7 above, and based on this, the plate material having two or three-dimensional deformation is cut and ground to a uniform thickness.
  • a machining method characterized by performing machining such as electric discharge machining.
  • the present invention also provides:
  • An apparatus for determining the processing surface of a plate material that minimizes the machining allowance when processing a plate material having two or three-dimensional deformation to a uniform thickness The surface plate to be placed, the plane coordinate axis of the plate-like material is X, Y, the vertical coordinate axis is ⁇ , and the vertical distance ABC from the platen is virtually a plane ABCD on the computer.
  • the minimum Z is the smallest machining plane ABCD determined as described above and the height Z to the flat ABCD force plate material is measured to the smallest value. 12.
  • the height Z from the height of the measurement points at the four corners of the plate-like material to the plate-like material from the plane ABCD force is the highest.
  • the processing surface of the plate-like material according to the above 13 is determined, comprising a device for correcting the thickness of the spacer accordingly. Equipment for doing.
  • the plate-like material according to any one of 11 to 15 above, comprising a device for surface grinding one side of the plate-like material, further inverting and placing it on a surface plate, and processing the back surface.
  • a device for determining the machined surface of a material comprising a device for surface grinding one side of the plate-like material, further inverting and placing it on a surface plate, and processing the back surface.
  • the apparatus for determining the processed surface of the plate-like material characterized by comprising an apparatus for determining.
  • a plane machining apparatus such as a surface grinder, a milling machine, or an electric discharge machine, comprising the apparatus described in 11 to 19 above.
  • the present invention provides a flat and uniform surface processing by machining such as cutting, grinding, and electrical discharge machining of a product from a plate-like material having a complex deformation in two or three dimensions with a minimum machining allowance. It has the outstanding effect that the plate-shaped material of thickness can be obtained.
  • the thickness of the prior art product can be increased.
  • the present invention has a remarkable effect.
  • FIG. 1 is an explanatory diagram when measuring the height (Zm, n) of a material S up to an arbitrary plane position (xm, yn) with the position of the sensor of the measuring device as the origin in the height direction. is there.
  • FIG.2 Plane (ABCD) of the same size as material S is virtually constructed in the computer, and plane A A BCD edge A is fixed, and only edge C is moved to the specified height It is.
  • FIG.3 Explanation of a case where a plane (ABCD) of the same size as material S is virtually configured in the computer, plane A BCD end A is fixed, and ends B and C are moved to the specified height
  • a plate-like material with complex deformation in two or three dimensions such as a sintered ceramic plate or a rolled or forged metal plate, on a surface plate with a certain flatness so that there is no rattling.
  • the coordinate axes in the plane direction of this material are set as X and Y, and the coordinate axes in the height direction are set as Z.
  • a measuring device such as a laser distance measuring device that can move parallel to the XY direction of the surface plate will be installed.
  • the plane parallel to the surface plate on which the Z-axis origin of this sensor moves is defined as plane P.
  • the height (Zm, n) of the material S up to an arbitrary plane position (Xm, Yn) is measured with the position of the sensor of the measuring device as the origin in the height direction.
  • the X and Y coordinate points of the measurement should be changed according to the deformation status of the product.
  • the X and Y coordinate points should be 20 mm pitch.
  • the height measuring method an appropriate method such as a laser distance sensor or a contact distance sensor can be used.
  • the height (Z coordinate) mentioned here is the distance from the perpendicular (P, ⁇ ) of the plane P where the sensor of the measuring device moves to the surface of the material S.
  • the positioning accuracy of ⁇ and ⁇ coordinates and the measurement accuracy of ⁇ coordinates are determined by the demand for reducing the machining allowance of material S. For example, in the case of expensive materials such as precious metals, it is effective to improve the yield of the material force when cutting the product plate by increasing the measurement accuracy of this device. Good! ,.
  • machining time when machining time is required like ceramics, it is effective to increase the accuracy of this device to reduce the cost of machining and shorten the machining time.
  • machining like metal materials with good machinability is effective. If time does not matter, the measurement accuracy may be low.
  • the material originally has deformation, it is somewhat complicated to calculate the change in height when the material is tilted. Therefore, instead of inclining the material S, the plane P can be inclined and the height can be recalculated.
  • the height of the coordinates (m, n) of the plane ABCD is expressed as (Zm, n) ⁇ .0,0.0. 0.0 and 0.0 indicate that the measured value is not affected by the operation, that is, the plane (ABCD) is tilted.
  • the end A of the plane ABCD is fixed, and the ends B and C are sequentially moved up and down (with a predetermined height (for example, 0.1 mm pitch) within a predetermined range in the Z axis method ( For example, ⁇ 3.0mm).
  • a predetermined height for example, 0.1 mm pitch
  • a predetermined range in the Z axis method For example, ⁇ 3.0mm.
  • Fig. 2 shows that the end A of the plane ABCD is fixed and only the end C is moved to the predetermined height.
  • Fig. 3 shows that the end A of the plane ABCD is fixed and the ends B and C are moved to the predetermined height. This is the case.
  • Edge D is automatically determined when ABC is determined. For example, when B is set to -3.0mm and C is set to -3.0mm, the distance from each coordinate of the plane ABCD to the corresponding coordinate point of the material is calculated, and the new height (Zm, n) -3.0, -3.0. -3.0 and -3.0, point B is lowered by 3.0mm from the origin, C The point is also 3.0mm below the origin.
  • the sensor is at the top, the top and bottom are reversed when the material is placed on the carpenter machine. At that time, if the thickness of the material varies depending on the location, the height force of the spacer determined by the above method cannot necessarily be realized as an optimum surface. If the variation is negligibly small, no correction is necessary. If material thickness variation becomes a problem, measure the thickness of the four corners and calculate the average value Ave. (X0Y0, XZY0, X0YZ, ⁇ ). By adding or subtracting the difference between the value and the thickness of each corner to the spacer height, it is possible to easily determine the optimum practical surface.
  • the material is turned upside down with respect to the time of measurement, and the spacer is fixed in a state of being laid under predetermined four corners. In this state, if machining is performed, it is possible to obtain a flat surface with the least machining allowance and no uncut material.
  • the ⁇ 2 axis is movable on the processing machine, and the inclination of the plane due to the movement can be set. It is possible to realize an optimum surface without a spacer by providing a device and providing a slope that realizes a surface obtained by making the optimum surface calculated by this device symmetric in the ⁇ -axis direction on the ⁇ plane.
  • the plane ABCD is horizontal, that is, a stake for correcting the height difference of the four corners of the material in the state at the time of the first measurement. It is desirable to insert a spacer.
  • the height of this spacer is equal to the value obtained by subtracting the height of the smallest measurement point and the measurement point of the place from the height to the measurement points at the four corners of the planar ABCD force material at the time of the first measurement. .
  • a surface including the origin in the ⁇ direction of measurement is virtualized by a computer, and the absolute value of the difference between the maximum value ⁇ and the minimum value ⁇ of the height data is obtained.
  • the height of the virtual plane can be calculated by the following equation. However, the displacement in the X and Y directions due to the tilting of the sintered body is negligible.
  • the lattice point on the imaginary plane is obtained from the Z coordinate axis as follows.
  • n is the number of measurement points in the X direction
  • m is the number of measurement points in the Y direction
  • i and j are the measurement order from the 0 point.
  • the surface processing method of the plate-like material according to the present invention is a method for surface cutting by machining such as cutting, grinding and electric discharge machining of a product from a plate-like material having complex deformation in two or three dimensions with a minimum processing cost. As a result, a flat and uniform plate-like material can be obtained.
  • the thickness of the prior art product can be increased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Automatic Control Of Machine Tools (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Numerical Control (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Description

明 細 書
板状材料の加工面の決定方法、加工方法及びこれらの装置
技術分野
[0001] 本発明は、 2、 3次元的な変形を有する板状材料から、最も加工代が少なぐ平坦 かつ均一な厚みの板状材料を得るための表面加工における板状材料の加工面の決 定方法、加工方法及びこれらの装置に関する。
背景技術
[0002] スパッタリングターゲット等のセラミックス製焼結板や圧延又は鍛造した金属板は、製 造工程中に熱的又は加工による歪みを受けて 2〜3次元的変形を伴うことが殆どであ る。このように 3次元的に変形を有する板状材料から平坦かつ均一な厚みの板状材 料を得るためには、切削加工、研削加工、放電カ卩ェなどの機械力卩ェが行なわれてい る。
従来、このような変形を有する材料は、作業者がそのまま加工機にセットして上記の 加工を行なうか、又は作業者が個々の板状材料の変形を事前にストレートエツヂ等 で概略測定し、加工機にそれをセットする段階でスぺーサを入れ平坦性を出して ヽ た。しかし、このような場合、作業者が勘にたよって行なわれているのが現状である。
[0003] 作業者が勘にたよって、例えば研削加工する場合には、たとえ熟練したものでも平 面を出すために、必要以上に研削をする必要がある。そうしなければ、平坦性や均 一厚さの精度を維持できないからである。したがって、材料自体の加工代を大きめに 設定する必要があり、これが歩留まり低下の原因となっていた。また、当然ながら加工 機械の稼動時間の増加につながつていた。
[0004] 従来の技術としては、反りを含む板状ワークそれぞれの有する厚みを精密に測定 することができる装置 (例えば、特許文献 1参照)、反りを有する測定装置であり、測 定基準部、測定部、電気信号に変換する変位測定器、反り量表示部、制御部からな る基板の反り測定装置 (例えば、特許文献 2参照)、セラミックス材料粉末を加圧して 成形し、その表面に光線を照射し、反射光を受けて表面状態を測定するセラミックス 製品の製造方法 (例えば、特許文献 3参照)、階段状部を設けた寸法測定セラミック スゲージ (例えば、特許文献 4参照)、平坦度を測定する下向き測定器、プレート支 持ピン、上下動ァクチユエ一ター、圧力調整部からなるプレート平坦度測定装置 (例 えば、特許文献 5参照)、赤外線サーモグラフィ一によつてセラミックス基板の形状不 整を測定する方法 (例えば、特許文献 6参照)がある。
しかし、これらは平坦性測定、変位測定あるいは形状不整を測定するための方法 又は装置であって、切削加工、研削加工、放電加工などの機械加工等の表面加工 を行なう際の、歩留まり向上を狙うと 、う発想は存在しな 、。
特許文献 1:特開平 6— 66549号公報
特許文献 2:特公昭 59 - 36202号公報
特許文献 3:特開昭 63 - 173607号公報
特許文献 4:特開平 7 - 128002号公報
特許文献 5:特許第 3418819号公報
特許文献 6 :特許第 3183935号公報
発明の開示
発明が解決しょうとする課題
[0005] 本発明は、スパッタリングターゲット等のセラミックス製焼結板や圧延又は鍛造した金 属板は、製造工程中に熱的又は加工による歪みを受けて多くは 2〜3次元的変形を 伴うが、このように 2〜3次元的に変形を有する板状材料から、平坦かつ均一な厚み の板状材料を得ようとするものであり、最も加工代が少なぐ平坦かつ均一な厚みの 板状材料を得るための、切削加工、研削加工、放電加工などによる表面加工の際の 、板状材料の加工面の決定方法及びそのための装置を提供することを目的とする。 課題を解決するための手段
[0006] 上記の課題を解決するために、本発明者らは鋭意研究を行った結果、任意の平面 位置における規準平面からの高さ Z を測定し、これによつて得られた高さデータの 最大値 Z と最小値 Z との差異の絶対値を測定すると共に、加工代が最少になる max mm
ように台盤上の板状材料の傾きを調整して表面加工することにより、歩留り良ぐ平坦 かつ均一な厚みの板状材料を得るができるとの知見を得た。
[0007] 本発明は、この知見に基づき、 1) 2、 3次元的な変形を有する板状材料を均一な厚みに加工する際の加工代を最少 にする板状材料の加工面の決定方法であって、定盤上に板状材料を載置し、該板 状材料の平面方向の座標軸を X,Y、垂直方向の座標軸を Ζとすると共に、コンビユー タ上で定盤カゝらの垂直方向の距離が Ηの平面 ABCDを仮想的に構成し、その平面 A BCDの座標 (Χ,Υ)に於ける平面 ABCD力も被測定物である板状材料の上面の座標 (X ,Υ)までの距離 (高さ) Z を (Χ,Υ)を変更しながら所定の座標数測定し、その全座標
00
点から最大値 Z (max)と最小値 Z (min)を捜し出してその差 D を計算し、次に平面
00 00 00
ABCDの端 A及び端 B又は端 A及び端 Cを固定し、それぞれ端 C及び端 Bの 、ずれか 一方を所定の高さずつ、 Z軸方向に所定の範囲で順次上下させ平面 ABCDを定盤に 対して傾斜させ、一単位傾斜を変える毎に、平面 ABCDの各座標力も材料の対応す る座標点までの距離を測定して新しい高さ Zmnと表現するとき、最初の測定と同様に 平面 ABCD上の全座標点(Χ,Υ)について平面 ABCD力ゝら板状材料上面までの高さを 測定し、その中力 最大値 Zmn (max)と最小値 Zmn (min)を捜し出してその差 D を計 mn 算することを全て傾斜条件について繰り返し、得られた高さの差 D
00-mnの最も小さい値 を平面 ABCD (Dmin)が最少加工代の平面と平行な平面であると決定することを特徴 とする板状材料の加工面の決定方法。
2)上記板状材料を反転させ加工機械の定盤に載せる際に、前記の様に決定された 最少加工平面 ABCD中で、平面 ABCD力ゝら板状材料までの高さ Zが最も小さ 、値の 測定点を捜し出し、これを定盤に接する点としてセットすることを特徴とする上記 1記 載の表面加工面の決定方法。
3)上記板状材料を反転させ加工機械の定盤にセットする際に、予め板状材料の四 隅の測定点の高さから、平面 ABCD力ゝら板状材料までの高さ Zが最も小さ 、値 Zminを 減算し、これによつて得られた値を、加工機械に板状材料をセットする際の四隅に入 れるスぺーサの厚さとすることを特徴とする上記 1又は 2記載の表面加工面の決定方 法。
4)板状材料厚さにばらつきがある場合には、その分だけスぺーサの厚さを補正する ことを特徴とする上記 3記載の表面加工面の決定方法。
5)板状材料の座標軸 X方向及び Y方向、 、ずれも 20mm以下のピッチの位置で高さ を測定することを特徴とする上記 1〜4のいずれかに記載の板状材料の加工面の決 定方法。
6)板状材料との距離 Zをレーザー式距離センサー又は接触式距離センサーで測定 することを特徴とする上記 1〜5のいずれかに記載の板状材料の加工面の決定方法
7)上記データに基づいて、板状材料の四隅に手動でスぺーサを挿入する代わりに、 NC制御可能な加工機械の 2軸傾転式加工テーブルの傾きを調整することを特徴と する上記 1〜6のいずれかに記載の板状材料の加工面の決定方法。
8)上記 1〜7のいずれかに記載の方法によって板状材料の加工面を決定し、これに 基づいて、 2、 3次元的な変形を有する板状材料を均一な厚みに切削加工、研削加 ェ、放電加工などの機械加工を行なうことを特徴とする加工方法。
9)上記 1〜7のいずれかに記載の方法によって板状材料の加工面の決定し、これに 基づいて、板状材料の片面を平面研削し、その後さらにこれを反転させて定盤に載 せ、裏面を加工することを特徴とする加工方法。
10)板状材料を当該機械の定盤に接着または電磁吸着等により、がたつきが無いよ うに固定し、上記 1〜7の方法で測定を行って最適傾斜条件を決定後、材料を反転 することなぐ加工機械の定盤の 2軸傾斜機構を使用し定盤を最適傾斜条件で得ら れた平面に平行に傾斜させ、その状態で加工する加工方法。
を提供する。
また、本発明は、
11) 2、 3次元的な変形を有する板状材料を均一な厚みに加工する際の加工代を最 少にする板状材料の加工面を決定するための装置であって、板状材料を載置する 定盤、該板状材料の平面方向の座標軸を X,Y、垂直方向の座標軸を Ζとすると共に、 定盤からの垂直方向の距離が Ηの平面 ABCDをコンピュータ上で仮想的に構成する ためのシステム、その平面 ABCDの座標 (Χ,Υ)の最初の測定点で板状材料との垂直 方向の距離 (高さ) Ζ を測定すると共に、それを全座標点について最大値 Zmaxと最
00
小値 Zminを捜し出してその差 D を計算する同システム、次に平面 ABCDの端 A及び
00
端 B又は端 A及び端 Cを固定し、それぞれ端 C及び端 Bの ヽずれか一方を所定の高さ で、 Z軸方向に所定の範囲で順次上下させる同システム、それと共に平面 ABCDの各 座標から材料の対応する座標点までの距離を計算して新し 、高さ Z
nmとする同システ ム、この操作を同様に全傾斜条件それぞれの全座標点につ!ヽて最大値 Zmaxと最小 値 Zminを捜し出してその差 D を計算する同システムを備え、これらの計算した D mn 00-mn の中で最も小さ 、値を持つ平面 ABCDの傾斜条件力 最少加工代の平面と平行な 平面とすることを特徴とする板状材料の加工面を決定するための装置。
12)上記板状材料を反転させ加工機械の定盤に載せる際に、前記の様に決定され た最少加工平面 ABCD中で、平面 ABCD力 板状材料までの高さ Zが最も小さい値 の測定点を捜し出し、これを定盤に接する点としてセットすることを特徴とする上記 11 記載の板状材料の加工面を決定するための装置。
13)上記板状材料を反転させ加工機械の定盤にセットする際に、予め板状材料の四 隅の測定点の高さから、平面 ABCD力ゝら板状材料までの高さ Zが最も小さ ヽ値 Zmin を減算し、これによつて得られた値を、加工機械に板状材料をセットする際の四隅に 入れるスぺーサを備えていることを特徴とする上記 11又は 12記載の板状材料の加 工面を決定するための装置。
14)板状材料厚さにばらつきがある場合には、その分だけスぺーサの厚さを補正す る装置を備えていることを特徴とする上記 13記載の板状材料の加工面を決定するた めの装置。
15) 2、 3次元的な変形を有する板状材料を均一な厚みに切削加工、研削加工、放 電力卩ェなどの機械カ卩ェ装置を備えて 、ることを特徴とする上記 11〜14の 、ずれか に記載の板状材料の加工面を決定するための装置。
16)板状材料の片面を平面研削した後、さらに反転させて定盤に載せ、裏面を加工 する装置を備えて 、ることを特徴とする上記 11〜 15の 、ずれかに記載の板状材料 の加工面を決定するための装置。
17)板状材料の座標軸 X方向及び Y方向、 、ずれも 20mm以下のピッチの位置で高さ を測定する装置を備えて 、ることを特徴とする上記 11〜 16の 、ずれかに記載の板 状材料の加工面を決定するための装置。
18)板状材料との距離 Zをレーザー式距離センサー又は接触式距離センサーで測 定する装置を備えて 、ることを特徴とする上記 11〜 17の 、ずれかに記載の板状材 料の加工面を決定するための装置。
19)上記データに基づいて、板状材料の四隅に手動でスぺーサを挿入する代わりに 、NC制御可能な加工機械の 2軸傾転式加工テーブルの傾きを調整する装置を備え て 、ることを特徴とする上記 11又は 12の 、ずれかに記載の板状材料の加工面を決 定するための装置。
20)上記 11〜 19に記載した装置を備えて 、ることを特徴とする平面研削盤、フライス 盤、放電加工機等の平面加工装置。
を提供する。
発明の効果
[0009] 本発明は、 2、 3次元の複雑な変形を有する板状材料から、最少の加工代で製品を 切削加工、研削加工、放電加工などの機械加工による表面加工によって、平坦で均 一厚みの板状材料を得ることができるという優れた効果を有する。
すなわち、より具体的には、決められた厚みの製品を製造する場合、材料の加工前 厚みに持たせる余裕を小さくすることが可能で、従来の方法よりも機械加工代を小さ く設定することができ、歩留まり向上と加工時間の短縮が可能となる。
また、変形のある材料から、厚み指定のない材料を機械加工により製造する場合、 従来技術製品の厚さを厚くすることができる。
さらに、加工機械のテーブルに材料をセットする際の試行錯誤が不要となり、熟練者 でなくとも容易に最少加工代で力卩ェが可能である。
以上の通り、本発明は著しい効果を有する。
図面の簡単な説明
[0010] [図 1]測定装置のセンサーの位置を高さ方向の原点とし、材料 Sの任意の平面位置( xm,yn)までの高さ(Zm,n)を測定する場合の説明図である。
[図 2]材料 Sと同じ大きさの平面 (ABCD)をコンピュータ内に仮想的に構成し、平面 A BCDの端 Aを固定し、端 Cのみを所定の高さに移動した場合の説明図である。
[図 3]材料 Sと同じ大きさの平面 (ABCD)をコンピュータ内に仮想的に構成し、平面 A BCDの端 Aを固定し、端 B,Cを所定の高さに移動した場合の説明図である。 発明を実施するための最良の形態
[0011] 次に、本発明を、必要に応じ図面を参照して具体的に説明する。但し、以下の説明 はあくまで、本発明が理解し易いように説明するための一例を示すもので、本発明は これらに制限されるものではない。すなわち、本発明の技術思想に立脚する変形、他 の構造又は構成は、当然本発明に含まれるものである。
セラミックスの焼結板や圧延又は鍛造した金属板のように、 2、 3次元の複雑な変形 を有する板状材料を、がたつきがないように一定の平坦度を有する定盤の上に置く。 説明のために、この材料の平面方向の座標軸を X, Yとし、高さ方向の座標軸を Zと 置く。定盤上には、定盤カゝら一定の高さを保ち、定盤の XY方向に平行に移動が可能 なレーザー距離測定装置等の測定装置を設置する。このセンサーの Z軸原点が動く 定盤に平行な面を平面 Pとする。
図 1に示すように、この測定装置のセンサーの位置を高さ方向の原点とし、材料 Sの 任意の平面位置 (Xm,Yn)までの高さ(Zm,n)を測定する。測定の X、 Y座標点は製品 の変形の状況により変更する必要がある力 例えば X方向、 Y方向とも 20mmピッチと する。
[0012] 高さ測定方法は、レーザー式距離センサー、接触式距離センサー等適当な方法を 用いることができる。なお、ここで言う高さ (Z座標)は、測定装置のセンサーが移動す る平面 Pの座標 (Χ,Υ)からの垂線が材料 S表面に達するまでの距離である。
Χ,Υ座標の位置決め精度、 Ζ座標の測定精度は、材料 Sの機械加工代の削減要求 度によって決定する。例えば貴金属のように高価な材料では、本装置の測定精度を 上げることで、材料力も製品板を削り出す際の歩留まり向上を図ることが有効である 力 鉄鋼のような安価な材料では精度は低くて良!、。
また、セラミックスのように加工時間が掛カる場合は、本装置の精度を上げてカロェ 代を削減し、加工時間を短縮することが有効であるが、切削性のよい金属材料のよう に加工時間が問題となら無い場合には測定精度が低くてもよい。
[0013] 材料の大きさに応じ、(X0,Y0)〜(Xx,Yy:最終の座標)までの高さ(Z0、 0〜Zx、 y) を全て測定する。全測定結果を表形式などデータ整理しやす!、形でコンピュータの 記録装置に一旦保存することができる。 まず、測定装置の Z方向の原点、即ち高さ Hの平面 Sを仮想する。各測定点の高さ はこの仮想面からの高さと言うことができる。
高さデータの最大値 (Zmax)と最小値 (Zmin)の差力 現在の加工代である。なぜな ら、現在の状態で材料 Sをカ卩工機のテーブルにセットすると、加工機の刀具は高さの 最少点 (Zmin)力も接し始め、加工の進行と共に最高点 (Zmax)に達したところで、材料 Sが平面となる力もである。従って、材料を最も少ないカ卩ェ代でカ卩ェできるようにする ためには、高さ (Zmin)と (Zmax)の差の絶対値が最少になるように、材料 Sを傾ければ よいと言うことになる。
[0014] しかし、材料にはもともと変形があるため、これを傾けたときの高さの変化を計算す ることはやや煩雑である。そこで、材料 Sを傾ける代わりに、平面 Pを傾け高さを再計 算させることができる。
コンピュータで平面 Pを傾ける方法には色々あるが、実際に則し、かつ計算が容易 で計算結果を直接スぺーサの厚さに反映することができるので、次の方法を採用し た。平面 P上にあり、材料 Sと同じ大きさの平面 (ABCD)をコンピュータ内に仮想的に 構成する。このとき、平面 ABCD内の座標(Xm,Yn)から、材料の座標 (Xm,Yn)までの 高さ (Zm,n)は、最初に測定した高さである。
[0015] 平面 ABCDの座標 (m,n)の高さを(Zm,n) Ζθ.0,0.0と表現する。 0.0,0.0は測定値〖こ何 も操作をカ卩えて ヽな 、こと、即ち平面 (ABCD)が傾 ヽて ヽな 、ことを示す。
測定した全座標点につ 、て Z (m,n) 0.0,0.0の最大値 (Zm,n) 0.0,0.0maxと最小値 (Zm ,n)0.0,0.0minを捜し出し、その差 HO.0,0.0を次式のようにして計算する。
H0.0,0.0= (Zm,n) 0.0,0.0max-(Zm,n)0.0,0.0 min。
次に、図 2及び図 3に示すように、平面 ABCDの端 Aを固定し、端 B,Cを所定の高さ( 例えば 0.1mmピッチ)で Z軸方法に所定の範囲で、順次上下(例えば ±3.0mm)する。 図 2は、平面 ABCDの端 Aを固定し、端 Cのみを所定の高さに移動した場合、図 3は、 平面 ABCDの端 Aを固定し、端 B,Cを所定の高さに移動した場合である。
端 Dは、 ABCが決まると自動的に決定される。例えば、まず Bを- 3.0mm、 Cを- 3.0mm とした場合の、平面 ABCDの各座標から、材料の対応する座標点までの距離を計算 し、新しい高さ(Zm,n) -3.0,-3.0とする。 -3.0,-3.0は、 B点が原点より 3.0mm下がり、 C 点も原点より 3.0mm下がっていることを表す。
[0016] この操作を全測定点にっ 、て実施し、 Z (m,n) -3.0,-3.0の最大値 (Zm,n) -3.0,-3.0 maxと最小値 (Zm,n) -3.0,-3.0 minを搜しだし、その差 H-3.0,-3.0を次式に基づいて 計算する。 H (-3.0,-3.0) = (Zm,n) -3.0,-3.0max-(Zm,n) - 3.0,- 3.0min。
次に、 Cを- 2.9mmとして、同じ操作を繰り返し、 H(- 3.0,- 2.9)を求める。同様に Cを 0. lmmずつ増やし、対応する H(— 3.0,C) (C=— 2.9、 H— 2.8、 H-2.7 Η0· · · ·Η+3.0) を全て求める。
この操作が終了したら、 Βを- 2.9とし、 Cを- 3.0〜+3.0まで増やしながら同じ操作を繰 り返し、 H(-2.9,C)を全て求める。さらに、 Bを- 2.8,- 2.7,- 2.6· · · ·。· · · ·+3.0とし、それ らに対応する H (B,C)を全て求める。この例では、 B力 0通り、 Cが 60通りなので、 H( B,C)は、 60 X 60 = 3, 600通りある。
[0017] この 3, 600通りの、 Hの中で最も小さい値を示す H (B,C)即ち H(B,C)minの組み合 わせ力 この材料に対する最少加工代の平面と平行な平面となる。
なお、平面 ABCD力 材料表面までの距離は、平面の傾斜により座標がずれるため 、正確を期すためには角度分の補正が必要である力 材料の長さに対し、傾斜量が 小さ 、ので実行面では無視しても力まわな 、。
次に、この H(B,C)minの中の測定点中で、平面 ABCDから材料までの高さ Zが最も 小さい値の測定点、 ZminZH (B,C) mimを探しだす。実際に加工する場合は、材料を 上下反転して加工機械の定盤にセットするので、この点が定盤に接する唯一の点で ある。但し、 ZminZH (B,C) mimとなる点が複数有る場合は、全ての点が定盤に接す ることになる。
[0018] 次に、材料の四隅の測定点の H(B,C)minにおける高さ Ζ(ΧΟ,Υο), Ζ(Χχ,ΥΟ), Z(X0.Y y), Z(Xx,Yy)から、 ZminZH (B,C) mimを減算する。これによつて得られた値力 材料 をカロェ機械にセットする際に、四隅の下に入れるスぺーサの厚さになる。
実際には、センサーが上部にあることから、材料をカ卩工機械に載せる場合に上下が 反転する。その際、材料の厚みが場所によってばらついていると、上述の方法で決め られたスぺーサの高さ力 必ずしも最適表面を実現できるとは言えないが、本例のご とく材料の厚さのばらつきが無視しうるほど小さい場合には、補正は不要である。 材料の厚さばらつきが問題になるような場合には、あら力じめ 4隅の厚さを測定して おき、その平均値 Ave. (X0Y0,XZY0,X0YZ、 ΧΖΥΖ)を計算し、この平均値と各隅の厚 みの差をスぺーサ高さに加減することにより、実用上の最適表面を簡易的に決定す ることがでさる。
[0019] 平面研削盤、正面フライス盤等の平面加工機のテーブルに、材料を測定時と表裏 反転し、かつスぺーサを所定の四隅の下に敷いた状態で固定する。この状態で、加 ェを行えば、最も加工代が少な 、状態で削り残しのな 、平面を得ることが可能である さらに、加工機に ΧΥ2軸が可動で、可動による平面の傾斜を設定できる装置を設け 、この装置で計算した最適表面を ΧΥ平面で Ζ軸方向に対称にした表面を実現する傾 斜を設けることにより、スぺーサ無しで最適表面を実現することが可能である。但し、 この場合、 4隅にはがたつきを防止するために、平面 ABCDが水平であるとき、即ち 最初の測定時の状態での材料の 4隅の高さの差を補正するためのスぺーサを入れる ことが望ましい。
このスぺーサの高さは、最初の測定時の平面 ABCD力 材料の四隅の測定点まで の高さから、最も高さの小さ 、場所の測定点の高さを減算した値に等し 、。
[0020] コンピュータで測定の Ζ方向の原点を含む面を仮想すると共に、高さデータの最大 値 Ζ と最小値 Ζ との差異の絶対値を求める。
max mm
仮想平面の高さは、以下の式により算出することができる。但し、焼結体を傾けること による X、 Y方向への位置ずれは、ワークの大きさ力 無視できるものとし、仮想平面 の格子点は、 Z座標軸は下記により求める。
Z=Zl/ (n- l) * i+Z2Z (m— 1) *j
但し、 nは X方向測定点数、 mは Y方向測定点数、 i、 jは、それぞれ 0点からの測定 順番を示す。
[0021] 以上により、コンピュータ上で板状材料を傾斜させると共に、このデータに基づいて 定盤と板状材料との間にスぺーサを入れ、板状材料の傾きを調整することができる。 また、このデータに基づいて、 NC制御可能な加工機械の 2軸傾転式加工テーブル の傾きを調整することが可能である。 このようにして、 2、 3次元の複雑な変形を有する板状材料から、最少の加工代で製 品を切削加工、研削加工、放電加工などの表面加工を行なうことができる。さらに、こ のようにして、板状材料の片面を平面研削した後、ひっくり返して定盤に載せ、裏面 をカロェすることができる。
産業上の利用可能性
本発明の板状材料の表面加工方法は、 2、 3次元の複雑な変形を有する板状材料 から、最少の加工代で製品を切削加工、研削加工、放電加工などの機械加工による 表面カ卩ェによって、平坦で均一厚みの板状材料を得ることができる。
すなわち、決められた厚みの製品を製造する場合、材料の加工前厚みに持たせる 余裕を小さくすることが可能で、従来の方法よりも機械加工代を小さく設定することが でき、歩留まり向上と加工時間の短縮が可能となる。
また、変形のある材料から、厚み指定のない材料を機械加工により製造する場合、 従来技術製品の厚さを厚くすることができる。
さらに、加工機械のテーブルに材料をセットする際の試行錯誤が不要となり、熟練者 でなくとも容易に最少加工代で力卩ェが可能である。
以上から、切削加工、研削加工、放電カ卩ェなどの機械カ卩ェによる表面カ卩ェによって 、最少の加工代で、平坦かつ均一厚みの板状材料を得ることができので、比較的高 価なスパッタリングターゲット等の製造に好適である。

Claims

請求の範囲
[1] 2、 3次元的な変形を有する板状材料を均一な厚みに加工する際の加工代を最少 にする板状材料の加工面の決定方法であって、定盤上に板状材料を載置し、該板 状材料の平面方向の座標軸を X,Y、垂直方向の座標軸を Ζとすると共に、コンビユー タ上で定盤カゝらの垂直方向の距離が Ηの平面 ABCDを仮想的に構成し、その平面 A BCDの座標 (Χ,Υ)に於ける平面 ABCD力も被測定物である板状材料の上面の座標 (X ,Υ)までの距離 (高さ) Z を (Χ,Υ)を変更しながら所定の座標数測定し、その全座標
00
点から最大値 Z (max)と最小値 Z (min)を捜し出してその差 D を計算し、次に平面
00 00 00
ABCDの端 A及び端 B又は端 A及び端 Cを固定し、それぞれ端 C及び端 Bの 、ずれか 一方を所定の高さずつ、 Z軸方向に所定の範囲で順次上下させ平面 ABCDを定盤に 対して傾斜させ、一単位傾斜を変える毎に、平面 ABCDの各座標力も材料の対応す る座標点までの距離を測定して新しい高さ Zmnと表現するとき、最初の測定と同様に 平面 ABCD上の全座標点(Χ,Υ)について平面 ABCD力ゝら板状材料上面までの高さを 測定し、その中力 最大値 Zmn (max)と最小値 Zmn (min)を捜し出してその差 D を計 mn 算することを全て傾斜条件について繰り返し、得られた高さの差 D の最も小さい値
00-mn
を平面 ABCD (Dmin)が最少加工代の平面と平行な平面であると決定することを特徴 とする板状材料の加工面の決定方法。
[2] 上記板状材料を反転させ加工機械の定盤に載せる際に、前記の様に決定された 最少加工平面 ABCD中で、平面 ABCD力ゝら板状材料までの高さ Zが最も小さ 、値の 測定点を捜し出し、これを定盤に接する点としてセットすることを特徴とする請求項 1 記載の表面加工面の決定方法。
[3] 上記板状材料を反転させ加工機械の定盤にセットする際に、予め板状材料の四隅 の測定点の高さから、平面 ABCD力ゝら板状材料までの高さ Zが最も小さ 、値 Zminを減 算し、これによつて得られた値を、加工機械に板状材料をセットする際の四隅に入れ るスぺーサの厚さとすることを特徴とする請求項 1又は 2記載の表面加工面の決定方 法。
[4] 板状材料厚さにばらつきがある場合には、その分だけスぺーサの厚さを補正するこ とを特徴とする請求項 3記載の表面加工面の決定方法。
[5] 板状材料の座標軸 X方向及び Y方向、いずれも 20mm以下のピッチの位置で高さ を測定することを特徴とする請求項 1〜4のいずれかに記載の板状材料の加工面の 決定方法。
[6] 板状材料との距離 Zをレーザー式距離センサー又は接触式距離センサーで測定す ることを特徴とする請求項 1〜5のいずれかに記載の板状材料の加工面の決定方法
[7] 上記データに基づいて、板状材料の四隅に手動でスぺーサを挿入する代わりに、 NC制御可能な加工機械の 2軸傾転式加工テーブルの傾きを調整することを特徴と する請求項 1〜6のいずれかに記載の板状材料の加工面の決定方法。
[8] 請求項 1〜7のいずれかに記載の方法によって板状材料の加工面を決定し、これに 基づいて、 2、 3次元的な変形を有する板状材料を均一な厚みに切削加工、研削加 ェ、放電加工などの機械加工を行なうことを特徴とする加工方法。
[9] 請求項 1〜7のいずれかに記載の方法によって板状材料の加工面の決定し、これに 基づいて、板状材料の片面を平面研削し、その後さらにこれを反転させて定盤に載 せ、裏面を加工することを特徴とする加工方法。
[10] 板状材料を当該機械の定盤に接着または電磁吸着等により、がたつきが無いように 固定し、請求項 1〜7の方法で測定を行って最適傾斜条件を決定後、材料を反転す ることなぐ加工機械の定盤の 2軸傾斜機構を使用し定盤を最適傾斜条件で得られ た平面に平行に傾斜させ、その状態で加工する加工方法。
[11] 2、 3次元的な変形を有する板状材料を均一な厚みに加工する際の加工代を最少 にする板状材料の加工面を決定するための装置であって、板状材料を載置する定 盤、該板状材料の平面方向の座標軸を X,Y、垂直方向の座標軸を Ζとすると共に、定 盤からの垂直方向の距離が Ηの平面 ABCDをコンピュータ上で仮想的に構成するた めのシステム、その平面 ABCDの座標 (Χ,Υ)の最初の測定点で板状材料との垂直方 向の距離 (高さ) Ζ を測定すると共に、それを全座標点について最大値 Zmaxと最小
00
値 Zminを捜し出してその差 D を計算する同システム、次に平面 ABCDの端 A及び端
00
B又は端 A及び端 Cを固定し、それぞれ端 C及び端 Bの 、ずれか一方を所定の高さで 、 Z軸方向に所定の範囲で順次上下させる同システム、それと共に平面 ABCDの各座 標から材料の対応する座標点までの距離を計算して新 U、高さ z nmとする同システム
、この操作を同様に全傾斜条件それぞれの全座標点につ!ヽて最大値 Zmaxと最小値 Zminを捜し出してその差 D を計算する同システムを備え、これらの計算した D の mn 00-mn 中で最も小さ 、値を持つ平面 ABCDの傾斜条件力 最少加工代の平面と平行な平 面とすることを特徴とする板状材料の加工面を決定するための装置。
[12] 上記板状材料を反転させ加工機械の定盤に載せる際に、前記の様に決定された 最少加工平面 ABCD中で、平面 ABCD力ゝら板状材料までの高さ Zが最も小さ 、値の 測定点を捜し出し、これを定盤に接する点としてセットすることを特徴とする請求項 11 記載の板状材料の加工面を決定するための装置。
[13] 上記板状材料を反転させ加工機械の定盤にセットする際に、予め板状材料の四隅 の測定点の高さから、平面 ABCD力ゝら板状材料までの高さ Zが最も小さ 、値 Zminを 減算し、これによつて得られた値を、加工機械に板状材料をセットする際の四隅に入 れるスぺーサを備えていることを特徴とする請求項 11又は 12記載の板状材料の加 工面を決定するための装置。
[14] 板状材料厚さにばらつきがある場合には、その分だけスぺーサの厚さを補正する 装置を備えていることを特徴とする請求項 13記載の板状材料の加工面を決定するた めの装置。
[15] 2、 3次元的な変形を有する板状材料を均一な厚みに切削加工、研削加工、放電カロ ェなどの機械カ卩ェ装置を備えて 、ることを特徴とする請求項 11〜14の 、ずれかに 記載の板状材料の加工面を決定するための装置。
[16] 板状材料の片面を平面研削した後、さらに反転させて定盤に載せ、裏面を加工する 装置を備えて 、ることを特徴とする請求項 11〜 15の 、ずれかに記載の板状材料の 加工面を決定するための装置。
[17] 板状材料の座標軸 X方向及び Y方向、いずれも 20mm以下のピッチの位置で高さを 測定する装置を備えて 、ることを特徴とする請求項 11〜 16の 、ずれかに記載の板 状材料の加工面を決定するための装置。
[18] 板状材料との距離 Zをレーザー式距離センサー又は接触式距離センサーで測定す る装置を備えて 、ることを特徴とする請求項 11〜 17の 、ずれかに記載の板状材料 の加工面を決定するための装置。
[19] 上記データに基づいて、板状材料の四隅に手動でスぺーサを挿入する代わりに、 NC制御可能な加工機械の 2軸傾転式加工テーブルの傾きを調整する装置を備えて いることを特徴とする請求項 11又は 12のいずれかに記載の板状材料の加工面を決 定するための装置。
[20] 請求項 11〜19に記載した装置を備えていることを特徴とする平面研削盤、フライ ス盤、放電加工機等の平面加工装置。
PCT/JP2005/011715 2004-09-03 2005-06-27 板状材料の加工面の決定方法、加工方法及びこれらの装置 WO2006027885A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2005800295223A CN101010644B (zh) 2004-09-03 2005-06-27 板状材料加工面的确定方法、加工方法及其装置
KR1020077007566A KR100876574B1 (ko) 2004-09-03 2005-06-27 판상 재료의 가공면 결정 방법, 가공 방법 및 이들 장치
US11/574,629 US7650201B2 (en) 2004-09-03 2005-06-27 Determination method and processing method of machined surface of plate-like material, and apparatus for use in said methods
JP2006535051A JP4527120B2 (ja) 2004-09-03 2005-06-27 板状材料の加工面の決定方法、加工方法及びこれらの装置
EP05765163.0A EP1785793B1 (en) 2004-09-03 2005-06-27 Methods for determining and machining worked surface of plate-like material and apparatus for these methods

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004256777 2004-09-03
JP2004-256777 2004-09-03

Publications (1)

Publication Number Publication Date
WO2006027885A1 true WO2006027885A1 (ja) 2006-03-16

Family

ID=36036179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/011715 WO2006027885A1 (ja) 2004-09-03 2005-06-27 板状材料の加工面の決定方法、加工方法及びこれらの装置

Country Status (7)

Country Link
US (1) US7650201B2 (ja)
EP (1) EP1785793B1 (ja)
JP (1) JP4527120B2 (ja)
KR (1) KR100876574B1 (ja)
CN (2) CN101010644B (ja)
TW (1) TW200609696A (ja)
WO (1) WO2006027885A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007105417A1 (ja) * 2006-03-06 2007-09-20 Nippon Mining & Metals Co., Ltd. 板状材料の加工面の決定方法、加工方法及び加工面を決定する装置並びに平面加工装置
JP2008062353A (ja) * 2006-09-08 2008-03-21 Disco Abrasive Syst Ltd 研削加工方法および研削加工装置
CN104759722A (zh) * 2015-04-02 2015-07-08 歌尔声学股份有限公司 快速换装工装及小孔机
JP2020157371A (ja) * 2019-03-28 2020-10-01 Jfeスチール株式会社 組立スラブの組立方法及びこれを用いたクラッド鋼板の製造方法並びに組立スラブ

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103292769B (zh) * 2013-06-19 2015-11-25 桂林电子科技大学 一种基于最小区域的平面倾斜度误差检测方法
CN103292770B (zh) * 2013-06-23 2015-12-23 桂林电子科技大学 一种计算圆锥体零件作用尺寸的方法
CN103292771B (zh) * 2013-06-25 2015-12-02 桂林电子科技大学 一种基于最小区域的零件圆锥度的计算方法
CN105373072A (zh) * 2014-09-01 2016-03-02 富泰华工业(深圳)有限公司 高精度平面加工系统及方法
CN104385358B (zh) * 2014-09-30 2017-12-05 长园和鹰智能科技有限公司 自动裁剪机及其压痕方法
CN105039916A (zh) * 2015-06-05 2015-11-11 柳州弘天科技有限公司 一种成型加工操作的机械加工方法
CN105509660B (zh) * 2015-11-30 2019-02-12 广东长盈精密技术有限公司 平面度测量方法
CN105509663B (zh) * 2016-02-17 2019-12-27 京东方光科技有限公司 一种背光源平整度检测系统及检测方法
CN105598801A (zh) * 2016-03-18 2016-05-25 浙江安吉双虎竹木业有限公司 一种全自动板材砂光装置
CN106382907A (zh) * 2016-09-29 2017-02-08 南京林业大学 一种地板生产线的板材倾斜检测方法
WO2019234908A1 (ja) * 2018-06-08 2019-12-12 日本電気株式会社 成形装置、制御方法、及び、制御プログラムが記録された記録媒体
WO2020213206A1 (ja) * 2019-04-18 2020-10-22 Jfeスチール株式会社 スラブの表面手入れ方法
JP6750757B1 (ja) * 2019-04-18 2020-09-02 Jfeスチール株式会社 スラブの表面手入れ方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5936202B2 (ja) 1976-11-30 1984-09-03 日本電気株式会社 基板のそり測定装置
JPS63173607A (ja) 1987-01-13 1988-07-18 株式会社東芝 セラミツクス製品の製造方法
JPH01193172A (ja) * 1988-01-29 1989-08-03 Sumitomo Metal Mining Co Ltd 基板上の薄膜の研磨方法
US4941100A (en) 1988-11-30 1990-07-10 Mcfarlane Arthur M G Automatic edger saw
JPH0666549A (ja) 1992-08-24 1994-03-08 Murata Mfg Co Ltd 板状ワークの厚み測定機
JPH07128002A (ja) 1992-01-10 1995-05-19 Ishizuka Glass Co Ltd セラミックス製ゲ−ジ
JP3183935B2 (ja) 1992-02-14 2001-07-09 同和鉱業株式会社 基板の形状不整測定方法
JP3418819B2 (ja) 1998-01-13 2003-06-23 東芝セラミックス株式会社 プレート平坦度測定装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1004833B (zh) * 1985-05-17 1989-07-19 品川白炼瓦株式会社 陶瓷及其同类材料的热变形测量系统
CN85102013B (zh) * 1985-07-03 1988-04-20 宋俊峰 一种随机轮廓表面粗糙度校准样块及其制造方法
JPS62176709A (ja) * 1986-01-28 1987-08-03 Toyota Central Res & Dev Lab Inc 曲面加工方法及びその工具
JP2800861B2 (ja) * 1991-11-19 1998-09-21 株式会社 エフ・エーラボ 三次元加工方法
US5448399A (en) * 1992-03-13 1995-09-05 Park Scientific Instruments Optical system for scanning microscope
JPH10112493A (ja) * 1996-08-13 1998-04-28 Sony Corp 表面矯正薄板保持装置、面調整手段及び向き調整手段
US6745616B1 (en) * 1999-10-21 2004-06-08 Mitutoyo Corporation Surface texture measuring machine, leveling device for surface texture measuring machine and orientation-adjusting method of workpiece of surface texture measuring machine
US6474379B1 (en) * 1999-12-16 2002-11-05 Merritt Plywood Machinery, Inc. Automatic flitch planer
CN1230663C (zh) * 2000-11-10 2005-12-07 东陶机器株式会社 移动式表面形状测定装置
JP2005001100A (ja) * 2003-02-21 2005-01-06 Seiko Epson Corp 非球面加工方法及び非球面形成方法
EP1703252A1 (en) * 2005-03-07 2006-09-20 Mitutoyo Corporation Method and program for leveling aspherical workpieces
KR100990343B1 (ko) 2006-03-06 2010-10-29 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 판상 재료의 가공면의 결정 방법, 가공 방법 및 가공면을 결정하는 장치 그리고 평면 가공 장치

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5936202B2 (ja) 1976-11-30 1984-09-03 日本電気株式会社 基板のそり測定装置
JPS63173607A (ja) 1987-01-13 1988-07-18 株式会社東芝 セラミツクス製品の製造方法
JPH01193172A (ja) * 1988-01-29 1989-08-03 Sumitomo Metal Mining Co Ltd 基板上の薄膜の研磨方法
US4941100A (en) 1988-11-30 1990-07-10 Mcfarlane Arthur M G Automatic edger saw
JPH07128002A (ja) 1992-01-10 1995-05-19 Ishizuka Glass Co Ltd セラミックス製ゲ−ジ
JP3183935B2 (ja) 1992-02-14 2001-07-09 同和鉱業株式会社 基板の形状不整測定方法
JPH0666549A (ja) 1992-08-24 1994-03-08 Murata Mfg Co Ltd 板状ワークの厚み測定機
JP3418819B2 (ja) 1998-01-13 2003-06-23 東芝セラミックス株式会社 プレート平坦度測定装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1785793A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007105417A1 (ja) * 2006-03-06 2007-09-20 Nippon Mining & Metals Co., Ltd. 板状材料の加工面の決定方法、加工方法及び加工面を決定する装置並びに平面加工装置
US7991501B2 (en) 2006-03-06 2011-08-02 Jx Nippon Mining & Metals Corporation Method for determining machining plane of planar material, machining method and device for determining machining plane and flat surface machining device
JP2008062353A (ja) * 2006-09-08 2008-03-21 Disco Abrasive Syst Ltd 研削加工方法および研削加工装置
CN104759722A (zh) * 2015-04-02 2015-07-08 歌尔声学股份有限公司 快速换装工装及小孔机
JP2020157371A (ja) * 2019-03-28 2020-10-01 Jfeスチール株式会社 組立スラブの組立方法及びこれを用いたクラッド鋼板の製造方法並びに組立スラブ
JP7052766B2 (ja) 2019-03-28 2022-04-12 Jfeスチール株式会社 組立スラブの組立方法及びこれを用いたクラッド鋼板の製造方法並びに組立スラブ

Also Published As

Publication number Publication date
EP1785793B1 (en) 2013-05-22
JP4527120B2 (ja) 2010-08-18
KR100876574B1 (ko) 2008-12-31
TW200609696A (en) 2006-03-16
KR20070050495A (ko) 2007-05-15
CN101916084A (zh) 2010-12-15
US7650201B2 (en) 2010-01-19
EP1785793A4 (en) 2010-05-05
US20070233312A1 (en) 2007-10-04
CN101010644B (zh) 2011-05-11
TWI323394B (ja) 2010-04-11
CN101916084B (zh) 2013-10-02
JPWO2006027885A1 (ja) 2008-07-31
CN101010644A (zh) 2007-08-01
EP1785793A1 (en) 2007-05-16

Similar Documents

Publication Publication Date Title
WO2006027885A1 (ja) 板状材料の加工面の決定方法、加工方法及びこれらの装置
JP4965554B2 (ja) 板状材料の加工面の決定方法、加工方法及び加工面を決定する装置並びに平面加工装置
TW469483B (en) Method and apparatus for aligning a cassette
TWI510323B (zh) 整形裝置及其定位機構
KR20170083993A (ko) 기판의 스크라이브 장치
JP2015051493A (ja) 工作機械および工作機械の回転軸の測定方法
TW200840990A (en) Apparatus for measuring shape of surface
JP6128977B2 (ja) 板材の周縁加工装置並びに加工精度の計測及び補正方法
JP2003236720A (ja) 歯車加工方法及び装置
CN114530400A (zh) 操作装置与两个工件之间的分布式间距补偿方法
KR20140004000A (ko) 기판의 가공 장치
JP2007079837A (ja) ヘッド作動制御装置及び制御方法及びステージ装置
JP5327070B2 (ja) スクライブ装置及びスクライブ方法
KR101265203B1 (ko) 스크라이브 장치 및 스크라이브 방법
JP2003097943A (ja) 移動ステージの真直度測定方法および装置とこれを用いた三次元形状測定機
JP2022181847A (ja) 電動プレス加工機
US20240092031A1 (en) Topographic compensation for a three-dimensional dual printer head printer
JP6900019B2 (ja) 多面体ワークの研削方法
JP2005286159A (ja) 切削加工方法および切削装置
US20240181766A1 (en) Alignment device and lamination device including the same
JP2002154028A (ja) 加工装置の移動ステージ機構

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 232/MUMNP/2007

Country of ref document: IN

Ref document number: 2006535051

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005765163

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200580029522.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11574629

Country of ref document: US

Ref document number: 2007233312

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020077007566

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005765163

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11574629

Country of ref document: US