WO2006026951A1 - Halbleitersensorbauteil mit hohlraumgehäuse und sensorchip und verfahren zur herstellung desselben - Google Patents

Halbleitersensorbauteil mit hohlraumgehäuse und sensorchip und verfahren zur herstellung desselben Download PDF

Info

Publication number
WO2006026951A1
WO2006026951A1 PCT/DE2005/001453 DE2005001453W WO2006026951A1 WO 2006026951 A1 WO2006026951 A1 WO 2006026951A1 DE 2005001453 W DE2005001453 W DE 2005001453W WO 2006026951 A1 WO2006026951 A1 WO 2006026951A1
Authority
WO
WIPO (PCT)
Prior art keywords
cavity
sensor chip
housing
spacers
sensor
Prior art date
Application number
PCT/DE2005/001453
Other languages
English (en)
French (fr)
Inventor
Michael Bauer
Angela Kessler
Wolfgang Schober
Alfred Haimerl
Joachim Mahler
Original Assignee
Infineon Technologies Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies Ag filed Critical Infineon Technologies Ag
Priority to US11/574,861 priority Critical patent/US7749797B2/en
Priority to JP2007529314A priority patent/JP4712042B2/ja
Publication of WO2006026951A1 publication Critical patent/WO2006026951A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0203Containers; Encapsulations, e.g. encapsulation of photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8312Aligning
    • H01L2224/83136Aligning involving guiding structures, e.g. spacers or supporting members
    • H01L2224/83138Aligning involving guiding structures, e.g. spacers or supporting members the guiding structures being at least partially left in the finished device
    • H01L2224/8314Guiding structures outside the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85203Thermocompression bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85205Ultrasonic bonding
    • H01L2224/85207Thermosonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8538Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/85385Shape, e.g. interlocking features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/16Fillings or auxiliary members in containers or encapsulations, e.g. centering rings
    • H01L23/18Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device
    • H01L23/24Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device solid or gel at the normal operating temperature of the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49861Lead-frames fixed on or encapsulated in insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01068Erbium [Er]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits

Definitions

  • the invention relates to a semiconductor sensor component with cavity housing and sensor chip and method for producing the same.
  • a semiconductor sensor component with a cavity housing is known from the patent application DE 10 2004 019 428.9.
  • Such semiconductor sensor components have the problem that the sensor chip is fixed in the cavity housing via a material with a low modulus of elasticity in such a way that repercussions of the mechanical loads of the rigid cavity housing, such as thermal stresses or vibration loads, act on the sensor chip and the measurement results partially distorted.
  • repercussions of the mechanical loads of the rigid cavity housing such as thermal stresses or vibration loads
  • the reliability of the sensor chip also depends on the variations in the quality of the adhesive with which the sensor chip is fastened to the bottom of the rigid cavity housing, so that partial resonant contact of the sensor chip, in particular when attaching bonding wires, occurs. As a result, production-related previous damage to the semiconductor chip or a reduced bond quality can not be ruled out, which impairs the reliability of the sensor chip. In addition, the different thermal expansion coefficients of the materials used cause te remplie due to mechanical stresses in Sensor ⁇ chip.
  • the object of the invention is to specify a semiconductor component with a cavity housing and a sensor chip and a method for producing same, so that on the one hand the yield in the production of such semiconductor sensor components is improved and, on the other hand, the reliability of such semiconductor sensor components in daily measurement practice is increased.
  • a semiconductor sensor component with a cavity housing is created, wherein the sensor chip is arranged in the cavity of the housing.
  • This sensor chip has a sensor region which preferably reacts to pressure fluctuations and / or temperature fluctuations.
  • the cavity housing has an opening to the surroundings in order to allow environmental parameters to act on the sensitive sensor area. Therefore, the sensor area faces this opening.
  • the sensor chip itself is embedded in the cavity of the housing on all sides in a rubber-elastic mass.
  • This semiconductor sensor component has the advantage that the sensor chip is mechanically decoupled from the cavity housing in the completely rubber-elastic mass surrounding it.
  • the sensor chip depends only on bonding wires, which are only a few micrometers thick and which serve for the transfer of measurement signals to corresponding external contacts of the cavity housing. These bonding wires are in an upper area embedded in the gas-elastic mass. Apart from this Aufhot ⁇ tion in the rubber-elastic mass no mechanical supports or points of contact are provided in the cavity housing. Only for assembly and transport purposes, the semiconductor chip in the cavity housing can advantageously be supported by introducing spacer pins through the bottom region of the cavity housing in a preferred embodiment of the invention.
  • the rubber-elastic mass has two areas: a lower area below the sensor chip, on which a semiconductor frame of the sensor chip is arranged with its rear side, and an upper area in which the edge sides and the upper side of the sensor chip are embedded with the sensor area itself are. These two areas are only distinguished during the production phase in order to simplify the production. These regions can no longer be distinguished in the cavity housing after finished semiconductor sensor component with cavity housing and sensor chip, especially if the same rubber-elastic material is used for the lower and upper regions.
  • the rubber-elastic mass is an optically transparent elastomer.
  • the optically transparent elastomers have the advantage that the photosensitivity of the semiconductor sensor chip can also be used for specific measurement purposes. However, if the sensor chip To be sensitive, it is also possible to use rubber-elastic masses with light-absorbing particles, such as soot particles.
  • the rubber-elastic mass comprises a silicone rubber.
  • silicone rubber have proven to be decoupling materials between the rigid cavity housing of the semiconductor sensor component and the sensor chip.
  • the sensor chip is preferably in electrical connection via bonding wires, as already mentioned above, and via contacts through the cavity housing with external contacts of the semiconductor sensor component.
  • the bonding wires have the advantage that they can be designed with only a few micrometers in diameter and thus support the mechanical decoupling of the rigid cavity housing and the rigid through contacts as well as the external contacts of the sensor chip.
  • the cavity housing has a bottom, which in turn has passage openings.
  • These passage openings are arranged such that the sensor chip can be mechanically supported on the one hand for transport and for assembly by means of corresponding pins which are guided through the opening in the bottom of the cavity housing.
  • these openings have the advantage that the sensor chip during the bonding process, ie in the manufacture of the semiconductor device, mechanically supported by these openings and corresponding supports and / or Abstands ⁇ holder in bonding, so that a reliable bond between bond wire and Mais ⁇ surfaces is made possible at the top of the sensor chip.
  • the cavity housing has at least one bottom and side walls, which laterally delimit the hollow space, wherein ends of spacers which protrude out of the bottom protrude and form an abutment for an arrangement and attachment of bonding wires on one form the sensor chip positioned at the ends of the spacers.
  • This construction of the floor is achieved technically by the passage openings provided in the cavity floor. After removing the abutment for the
  • Bonding of the sensor chip-released sensor chip in the rubber-elastic mass is mechanically decoupled from the rigid cavity housing so that its measured values are not impaired by the rigid cavity housing.
  • the spacers are pins that project through the floor into the cavity. These pins are dimensioned so that they support exactly the area of the sensor chip that is subjected to the greatest stress due to the bonding.
  • the lower part of the rubber-elastic mass is already applied to the bottom, so that the semiconductor chip is held laterally with the aid of the rubber-elastic mass and supported from below by the spacers.
  • a method for producing a semiconductor sensor with a cavity housing and a sensor chip with sensor area arranged in the cavity of the housing has the following method steps. First, a cavity housing with inner interconnects and outer contacts and a cavity floor is produced, wherein the inner interconnects with the outer contacts via via contacts or via flat conductor railways are connected. In the manufacture of the cavity housing, both the cavity floor and the side walls surrounding the hollow space floor are produced from a rigid plastic material in an injection molding process.
  • protruding ends of spacers are simultaneously poured into the cavity floor from the cavity floor, wherein the arrangement and size of the spacers are adapted to the planar extent of the semiconductor chip so that the ends of the spacers abutments for arranging and attaching form of bonding wires on ei ⁇ nem to be positioned on the ends of the spacer semiconductor chip.
  • the bottom of the cavity is then filled with a rubber-elastic mass as a lower area so far that at least the spacers are sheathed to their ends by the rubber-elastic mass.
  • the sensor chip is applied with its rear side to the ends of the spacers while fixing the sensor chip with the aid of the rubber-elastic mass.
  • bonding wires are bonded onto corresponding contact surfaces on the upper side of the sensor chip opposite the ends of the spacers and are attached to corresponding contact terminal surfaces of inner flat conductors of the hollow housing.
  • bonding wires and the sensor chip are embedded in the rubber-elastic mass by applying an upper region of the rubber-elastic compound, which encloses both the edge sides of the sensor chip and the sensor region of the sensor chip.
  • the spacers may then be removed from the bottom to form through openings in the bottom of the cavity housing.
  • This method has the advantage that the spacers can mechanically support the sensor chip as long as required for the production method, for example in the bonding step, or for the transport and assembly of the sensor chip at its place of use. Thereafter, as described above in the method, the spacers may be removed at any time to mechanically decouple the sensor chip completely from the rigid cavity housing to increase its sensor sensitivity and reliability.
  • a leadframe with a plurality of housing positions is first produced for producing a cavity housing with internal conductor tracks and external contacts.
  • the side walls and the bottom are then produced with cast-in spacers in the housing positions such that, for this purpose, the spacers are positioned in an injection mold prior to injection molding.
  • This variant of the method has the advantage that no bores need to be made later through the housing base for positioning the spacers, but that in a single injection molding process both the outer contacts and the inner flat conductors as well as the spacers necessary for the spacer are all already in the housing Pre-positioned injection mold and thus give a cavity housing, which can be punched out after Fertig ⁇ position of the leadframe from this.
  • the leadframe itself has the spacers, ie the spacers are firmly connected to the leadframe, so that the spacers can be removed from the finished semiconductor device after the injection molding process and after positioning the sensor chip and its connection to the inner leads with the lead frame.
  • the spacers there is no possibility to leave the spacers as support for the sensor chip in the housing until this semiconductor sensor component is inserted at its place of use.
  • transport spacers are introduced into the cavity housing bottom.
  • the filling of the bottom in the cavity of the cavity housing is carried out for both the lower region and for the upper region with a rubber-elastic mass mit ⁇ means of a Dispense technique.
  • This technique has the advantage that it very gently embeds the sensor chip with the bonding wires in a rubber-elastic mass.
  • Ver ⁇ drive for the attachment of bonding wires on contact surfaces of the sensor chip a thermocompression or a
  • Thermosonik bonding proven.
  • the removal of the spacers can also be done by means of etching, if the possibility is excluded to remove the spacers without damaging the sensor chip from the bottom portion of the rigid cavity housing.
  • the etching solution is adapted to the metal of the spacers, without the external contacts being etched or the rubber-elastic mass being damaged.
  • pins are inserted into the housing to stabilize the sensor chip during the manufacture of the transport and assembly days.
  • a chip adhesive can be used in In part, an extremely soft rubber-elastic material can be used.
  • the sensor chip itself can not vibrate during wire bonding because the pins support it.
  • the pins can be removed from the housing again, which can be made dependent was ⁇ the whether this should happen before the transport and assembly or not.
  • the chip can be completely embedded in an extremely soft rubber-elastic material and thus mechanically decoupled completely from the rigid cavity housing.
  • a single rubber-elastic material is used both for fixing the sensor chip on the spacers and for embedding the sensor chip.
  • the pins temporarily remain in the component as a function of a defined spacer or can be removed from the bottom region of the hollow housing immediately after the wire bonding and the die casting; 6. a complete mechanical decoupling of preferably pressure sensor chips by the inventive concept for the chip attachment during the loads is achieved by wire bonding.
  • FIG. 1 shows a schematic cross section through a semiconductor sensor component according to a first embodiment of the invention
  • Figures 2 to 7 show schematic cross sections through a
  • Figure 2 shows a schematic cross section through a cavity housing
  • FIG. 3 shows a schematic cross section through the cavity housing according to FIG. 2 after introduction of a lower region of a rubber-elastic mass
  • FIG. 4 shows a schematic cross section through the cavity housing according to FIG. 3 after application of a
  • FIG. 5 shows a schematic cross section through the cavity housing according to FIG. 4 after electrical connection of the sensor chip with inner flat conductors;
  • Figure 6 shows a schematic cross section through the
  • FIG. 7 shows a schematic cross section through the cavity housing according to FIG. 6 after removal of spacers from the bottom area of the cavity housing.
  • FIG. 1 shows a schematic cross section through a semiconductor sensor component 20 according to an embodiment of the invention.
  • the semiconductor sensor component 20 has a cavity housing 1.
  • the cavity 2 of the cavity housing 1 is open at the top.
  • This opening 5 allows the semiconductor sensor device 20 to maintain a physical connection to the environment 6. Therefore, the sensor region 4 of a sensor chip 3, which is arranged in the cavity 2 of the hollow space housing 1, faces this opening 5.
  • this sensor chip 3 is embedded on all sides in a rubber-elastic mass 7.
  • the rigid cavity housing 1 is mechanically decoupled from the sensor chip 3 by embedding the sensor chip 3 in a rubber-elastic mass 7 surrounding it on all sides.
  • the different coefficients of expansion of the different materials of the cavity housing 1, the electrical leads and the sensor chip 1 can not lead to thermal stresses, since these different expansions are compensated by the rubber-elastic mass 7 or not on the sensor chip be transmitted.
  • vibration loads for the rigid cavity housing 1 can only conditionally or heavily attenuated on the sensor affect the chip. This results in a higher reliability of this semiconductor sensor component 20 compared to conventional semiconductor sensor components.
  • the rubber-elastic mass 7 is uniformly marked in FIG. 1, but it consists of two regions.
  • a lower region 8 is arranged mainly below the sensor chip 3 and covers the rear side 10 of the sensor chip.
  • An upper region 9 of the rubber-elastic mass 7 is arranged principally on the upper side 13 of the sensor chip 3 and partially covers the edge sides 11 and 12 of the sensor chip and embeds bonding wires 14, on which the sensor chip hangs with its contact surfaces 24, into the rubber-elastic mass 7 one.
  • a sensor region 4 is arranged centrally in the middle of the sensor chip 3, while the bonding wires 14 end on the edge regions of the sensor chip.
  • the bonding wires 14 have a cross-section which carries only a few micrometers in its radius, so that the bonding wires themselves represent the only mechanical and electrical connection to the rigid cavity housing 1.
  • the bonding wires 14 are bonded onto inner flat conductor tracks 23 so that measuring signals can be conducted from the sensor chip 3 via the bonding wires 14 to the inner flat conductor tracks 23 and from there via through contacts 15 to external contacts 16.
  • the bottom 17 of the cavity housing 1 has passage openings 18 which also extend through the lower region 8 of the rubber-elastic mass 7. Spacers can be introduced into these passage openings 18 for transport and installation in order to ensure the position of the sensor chip during transport and installation. Only after installation in the field of application of the semiconductor sensor component 20 can then these spacers are removed with the release of the sensor chip from the bottom 17 of the cavity housing 1.
  • the bottom 17 of of seen ⁇ the 19, through which the through contacts 15, the signals lead to the outside to the external contacts 16, surrounded.
  • FIGS. 2 to 7 show schematic cross sections through a cavity housing 1 during different production phases of a semiconductor sensor component 20.
  • Components having the same functions as in FIG. 1 are identified by the same reference numerals and are not discussed separately in the following FIGS. 2 to 7.
  • FIG. 2 shows a schematic cross section through a cavity housing 1.
  • the cavity housing 1 is constructed from a plastic housing composition 27 and has a bottom 17 and side walls 19 surrounding the bottom 17, in which flat conductors 25 are anchored. These flat conductors 25 are part of a leadframe having a plurality of cavity housing positions. In each of the cavity housing positions is with
  • the cavity housing 1 present here has spacers 22 cast into the cavity floor 17, which here have the form of pins with pointed ends 21 of the spacers 22. These spacers 22 are arranged in the cavity floor so that their ends 21 protrude beyond the level of the cavity floor into the cavity 2 and are able to support a sensor chip 3 during bonding, during transport and / or during installation and to keep a distance.
  • On the side walls 19 are located in the bottom area inner conductor tracks 23, which merge in the cavity in be ⁇ coated bonding surfaces 26. These bonding surfaces 26 are electrically connected via through contacts 15 with the external contacts 16.
  • FIG. 3 shows a schematic cross section through the hollow space housing 1 according to FIG. 2 after introduction of a lower region of the rubber-elastic mass 7.
  • the rubber-elastic mass 7 is held in a viscous, viscous state so that a sensor chip penetrates into the lower region 8 of the rubber-elastic mass 7 can be molded until it touches the ends 21 of the spacer 22.
  • FIG. 4 shows a schematic cross section through the hollow space housing 1 according to FIG. 3 after applying a sensor chip 3 to the lower area 8 of the rubber-elastic mass 7.
  • the rear side 10 of the sensor chip 3 lies in an adhesive fit on the ends 21 of the spacers 22 are arranged in the bottom 17 of the cavity housing 1, on.
  • the sensor chip 3 is also fixed in the horizontal spatial directions, so that reliable bonding of bonding wires to the contact surfaces 24 of the sensor chip 3 is possible.
  • FIG. 5 shows a schematic cross section through the hollow space housing 1 according to FIG. 4 after electrical connection of the sensor chip to inner flat conductors 25
  • Bonding wires 14 are bonded with a bonding stylus on the contact surfaces 24 of the sensor chip 3 and then the bonding wires 14 are mounted on the bonding surfaces 26 of the flat conductors 25 in the cavity housing 1.
  • bonding which is a load on the sensor chip 3
  • the sensor chip 3 is supported by the spacers 22, which protrude from the bottom 17 of the cavity housing 1, in such a way that reliable bonding is achieved. bonds between the contact surfaces 24 of the sensor chip 3 and the bonding wires 14 arise.
  • FIG. 6 shows a schematic cross section through the hollow space housing 1 according to FIG. 5 after application of the upper region 9 of a rubber-elastic mass 7.
  • the sensor chip 3 is now completely surrounded by a rubber-elastic mass, only the spacers 22 provide a mechanical coupling to the rigid cavity housing 1. This coupling can be retained until the transport and assembly of the semiconductor sensor component 20 is completed. Thereafter, the spacers 22 may be removed from the floor 17.
  • FIG. 7 shows a schematic cross section through the hollow space housing 1 according to FIG. 6 after removal of the spacers 22 from the bottom 17 of the cavity housing 1.
  • the schematic cross section through this semiconductor component 20 of FIG. 7 now corresponds to the schematic cross section shown in FIG ⁇ gur 1 already shown.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Pressure Sensors (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

Die Erfindung betrifft ein Halbleitersensorbauteil (20) mit Hohlraumgehäuse (1) und Sensorchip (3) und ein Verfahren zur Herstellung desselben. Dabei weist das Hohlraumgehäuse (1) eine Öffnung (5) zur Umgebung (6) auf. Der Sensorbereich (4) des Sensorchips (3) ist dieser Öffnung 5) zugewandt. Der Sensorchip (3) ist in dem Hohlraum (2) des Hohlraumgehäuses (1) allseitig in eine gummielastische Masse (7) eingebettet.

Description

Beschreibung
Halbleitersensorbauteil mit Hohlraumgehäuse und Sensorchip und Verfahren zur Herstellung desselben
Die Erfindung betrifft ein Halbleitersensorbauteil mit Hohl¬ raumgehäuse und Sensorchip und Verfahren zur Herstellung des¬ selben.
Ein Halbleitersensorbauteil mit einem Hohlraumgehäuse ist aus der Patentanmeldung DE 10 2004 019 428.9 bekannt. Derartige Halbleitersensorbauteile haben das Problem, dass der Sensor¬ chip in dem Hohlraumgehäuse über ein Material mit niedrigem E-Modul derart durch Kleben fixiert ist, dass Rückwirkungen der mechanischen Belastungen des starren Hohlraumgehäuses, wie thermische Verspannungen oder Vibrationsbelastungen, auf den Sensorchip einwirken und die Messergebnisse teilweise verfälschen. Gegenüber der Umgebung werden derartige Sensor¬ chips in dem Hohlraumgehäuse durch ein weiches Material ge- schützt, um wenigstens die Oberseite mit dem Sensorbereich des Halbleitersensorchips vor zusätzlichen Belastungen zu schützen.
Die Zuverlässigkeit des Sensorchips hängt auch von den Schwankungen der Klebstoffqualität, mit dem der Sensorchip auf dem Boden des starren Hohlraumgehäuses befestigt ist, ab, so dass es teilweise zum Mitschwingen des Sensorchips, insbe¬ sondere beim Anbringen von Bonddrähten kommt. Dadurch sind fertigungsbedingte Vorschädigungen des Halbleiterchips oder eine verminderte Bondqualität als Folge nicht auszuschließen, was die Zuverlässigkeit des Sensorchips beeinträchtigt. Dar¬ über hinaus verursachen die unterschiedlichen thermischen Ausdehnungskoeffizienten der verwendeten Materialien Ausbeu- teverluste aufgrund von mechanischen Spannungen im Sensor¬ chip.
Aufgabe der Erfindung ist es, ein Halbleiterbauteil mit einem Hohlraumgehäuse und einem Sensorchip sowie ein Verfahren zur Herstellung derselben anzugeben, so dass zum einen die Aus¬ beute bei der Herstellung derartiger Halbleitersensorbauteile verbessert wird und zum anderen die Zuverlässigkeit derarti¬ ger Halbleitersensorbauteile in der täglichen Messpraxis er- höht ist.
Diese Aufgabe wird mit dem Gegenstand der unabhängigen An¬ sprüche gelöst. Vorteilhafte Weiterbildungen der Erfindung ergeben sich aus den abhängigen Ansprüchen.
Erfindungsgemäß wird ein Halbleitersensorbauteil mit einem Hohlraumgehäuse geschaffen, wobei in dem Hohlraum des Gehäu¬ ses der Sensorchip angeordnet ist. Dieser Sensorchip weist einen Sensorbereich auf, der vorzugsweise auf Druckschwankun- gen und/oder Temperaturschwankungen reagiert. Dazu weist das Hohlraumgehäuse eine Öffnung zur Umgebung auf, um Umgebungs¬ parameter auf den empfindlichen Sensorbereich wirken zu las¬ sen. Deshalb ist der Sensorbereich dieser Öffnung zugewandt. Der Sensorchip selbst ist in dem Hohlraum des Gehäuses all- seitig in eine gummielastische Masse eingebettet.
Dieses Halbleitersensorbauteil hat den Vorteil, dass der Sen¬ sorchip in der ihn vollständig umgebenden gummielastischen Masse mechanisch von dem Hohlraumgehäuse entkoppelt ist. Im Prinzip hängt der Sensorchip lediglich an Bonddrähten, die nur wenige Mikrometer dick sind und die zur Übergabe von Messsignalen an entsprechende Außenkontakte des Hohlraumge¬ häuses dienen. Diese Bonddrähte sind in einen oberen Bereich der guπimielastischen Masse eingebettet. Außer dieser Aufhän¬ gung in der gummielastischen Masse sind keinerlei mechanische Stützen oder Berührungspunkte im Hohlraumgehäuse vorgesehen. Lediglich für Montage- und Transportzwecke kann der Halblei- terchip im Hohlraumgehäuse in vorteilhafter Weise durch Ein¬ führen von Abstandsstiften durch den Bodenbereich des Hohl¬ raumgehäuses in einer bevorzugten Ausführungsform der Erfin¬ dung gestützt werden.
Im Prinzip weist die gummielastische Masse zwei Bereiche auf: einen unteren Bereich unterhalb des Sensorchips, auf dem ein Halbleiterrahmen des Sensorchips mit seiner Rückseite ange¬ ordnet ist, und einen oberen Bereich, in dem die Randseiten und die Oberseite des Sensorchips mit dem Sensorbereich selbst eingebettet sind. Diese beiden Bereiche werden ledig¬ lich während der Herstellungsphase unterschieden, um die Fer¬ tigung zu vereinfachen. Diese Bereiche sind nach fertigge¬ stelltem Halbleitersensorbauteil mit Hohlraumgehäuse und Sen¬ sorchip in dem Hohlraumgehäuse nicht mehr zu unterscheiden, zumal, wenn das gleiche gummielastische Material für den un¬ teren und den oberen Bereich eingesetzt wird.
Eine Grenzfläche zwischen dem unteren Bereich und dem oberen Bereich ist nur dann wahrzunehmen, wenn die gummielastischen Massen unterschiedliche Elastizitätskonstanten für den unte¬ ren und den oberen Bereich des Sensorchips aufweisen oder un¬ terschiedliche Einfärbungen besitzen, was für die Praxis nicht ausgeschlossen sein soll. In einer weiteren bevorzugten Ausführungsform der Erfindung ist die gummielastische Masse ein optisch transparentes Elastomer. Die optisch transparen¬ ten Elastomere haben den Vorteil, dass auch die Lichtempfind¬ lichkeit des Halbleitersensorchips für bestimmte Messzwecke eingesetzt werden kann. Sollte jedoch der Sensorchip photoun- empfindlich sein, so können auch gummielastische Massen mit lichtabsorbierenden Partikeln, wie Rußpartikeln, eingesetzt werden.
Weiterhin ist es vorgesehen, dass die gummielastische Masse einen Silikongummi aufweist. Derartige Silikongummi haben sich als Entkopplungsmassen zwischen dem starren Hohlraumge¬ häuse des Halbleitersensorbauteils und dem Sensorchip be¬ währt.
Weiterhin steht vorzugsweise der Sensorchip über Bonddrähte, wie bereits oben erwähnt, und über Durchkontakte durch das Hohlraumgehäuse mit Außenkontakten des Halbleitersensorbau¬ teils elektrisch in Verbindung. Dabei haben die Bonddrähte den Vorteil, dass sie mit nur wenigen Mikrometern Durchmesser ausgeführt werden können und somit die mechanische Entkopp¬ lung von dem starren Hohlraumgehäuse und den starren Durch¬ kontakten sowie den Außenkontakten von dem Sensorchip unter¬ stützen. Λ
In einer weiteren bevorzugten Ausführungsform der Erfindung weist das Hohlraumgehäuse einen Boden auf, der seinerseits Durchgangsöffnungen aufweist. Diese Durchgangsöffnungen sind derart angeordnet, dass der Sensorchip einerseits für Trans- porte und für die Montage durch entsprechende Stifte, die durch die Öffnung im Boden des Hohlraumgehäuses geführt wer¬ den, mechanisch gestützt werden kann. Außerdem haben diese Öffnungen den Vorteil, dass der Sensorchip beim Bondvorgang, d.h. bei der Herstellung des Halbleiterbauteils, über diese Öffnungen und über entsprechende Stützen und/oder Abstands¬ halter im Bonden mechanisch gestützt werden kann, sodass eine zuverlässige Bondverbindung zwischen Bonddraht und Kontakt¬ flächen an der Oberseite des Sensorchips ermöglicht wird. In einer weiteren bevorzugten Ausführungsform der Erfindung weist das Hohlraumgehäuse mindestens einen Boden und Seiten¬ wände auf, die den Hohlraum seitlich begrenzen, wobei aus dem Boden entfernbare Enden von Abstandshaltern herausragen, die ein Widerlager für eine Anordnung und Anbringen von Bonddräh¬ ten auf einem auf den Enden der Abstandshalter positionierten Sensorchip bilden. Diese Konstruktion des Bodens wird tech¬ nisch durch die im Hohlraumboden vorgesehenen Durchgangsöff- nungen erreicht. Der nach Entfernen der Widerlager für das
Bonden des Sensorchips freigegebene Sensorchip in der gummi¬ elastischen Masse ist mechanisch von dem starren Hohlraumge¬ häuse entkoppelt, sodass seine Messwerte durch das starre Hohlraumgehäuse nicht beeinträchtigt werden.
In einer weiteren Ausführungsform der Erfindung sind die Ab¬ standshalter Stifte, die durch den Boden hindurch in den Hohlraum hineinragen. Diese Stifte sind derart dimensioniert, dass sie exakt den Bereich des Sensorchips stützen, der durch das Bonden am stärksten belastet wird. Um den Halbleiterchip auf diesen Abstandshaltern zu fixieren, ist bereits der unte¬ re Bereich der gummielastischen Masse auf den Boden aufge¬ bracht, so dass der Halbleiterchip mit Hilfe der gummielasti¬ schen Masse seitlich gehalten und von unten durch die Ab- standshalter gestützt ist.
Ein Verfahren zur Herstellung eines Halbleitersensors mit ei¬ nem Hohlraumgehäuse und einem in dem Hohlraum des Gehäuses angeordneten Sensorchip mit Sensorbereich weist die nachfol- genden Verfahrensschritte auf. Zunächst wird ein Hohlraumge¬ häuse mit inneren Leiterbahnen und Außenkontakten und einem Hohlraumboden hergestellt, wobei die inneren Leiterbahnen mit den Außenkontakten über Durchkontakte oder über Flachleiter- bahnen verbunden sind. Bei dem Herstellen des Hohlraumgehäu¬ ses werden sowohl der Hohlraumboden als auch die den Hohl¬ raumboden umgebenden Seitenwände aus einem starren Kunst- stoffmaterial in einem Spritzgussverfahren hergestellt.
Bei dem Spritzgussvorgang werden gleichzeitig aus dem Hohl¬ raumboden herausragende Enden von Abstandshaltern in den Hohlraumboden eingegossen, wobei Anordnung und Größe der Ab¬ standshalter an die flächige Erstreckung des Halbleiterchips so angepasst werden, dass die Enden der Abstandhalter Wider¬ lager für ein Anordnen und Anbringen von Bonddrähten auf ei¬ nem auf den Enden des Abstandshalters zu positionierenden Halbleiterchip bilden. In diesem Hohlraumgehäuse wird dann zunächst der Boden des Hohlraums mit einer gummielastischen Masse als ein unterer Bereich so weit aufgefüllt, dass min¬ destens die Abstandshalter bis zu ihren Enden von der gummi¬ elastischen Masse umhüllt sind.
Danach wird der Sensorchip mit seiner Rückseite auf die Enden der Abstandshalter unter Fixieren des Sensorchips mit Hilfe der gummielastischen Masse aufgebracht. Anschließend werden Bonddrähte auf entsprechenden Kontaktflächen auf der Obersei¬ te des Sensorchips gegenüberliegend zu den Enden der Ab- standshalter aufgebondet und auf entsprechende Kontaktan¬ schlussflächen von Innenflachleitern des Hohlraumgehäuses an¬ gebracht. Danach werden Bonddrähte und der Sensorchip in die gummielastische Masse dadurch eingebettet, dass ein oberer Bereich der gummielastischen Masse aufgebracht wird, der so- wohl die Randseiten des Sensorchips als auch den Sensorbe¬ reich des Sensorchips umhüllt. Die Abstandshalter können dann aus dem Boden unter Bilden von Durchgangsöffnungen in dem Bo¬ den des Hohlraumgehäuses entfernt werden. Dieses Verfahren hat den Vorteil, dass die Abstandshalter so lange den Sensorchip mechanisch stützen können, wie es für das Herstellungsverfahren, beispielsweise im Bondschritt, o- der für den Transport und die Montage des Sensorchips an sei¬ nem Einsatzort erforderlich ist. Danach können die Abstands¬ halter, wie oben in dem Verfahren beschrieben wird, jederzeit entfernt werden, um den Sensorchip mechanisch vollständig vom starren Hohlraumgehäuse zu entkoppeln, um seine Sensoremp- findlichkeit und Zuverlässigkeit zu erhöhen.
In einer weiteren bevorzugten Durchführung des Herstellungs¬ verfahrens des Halbleitersensorbauteils wird zunächst zum Herstellen eines Hohlraumgehäuses mit inneren Leiterbahnen und Außenkontakten ein Flachleiterrahmen mit mehreren Gehäu¬ sepositionen hergestellt. Mittels Spritzgusstechnik werden dann die Seitenwände und der Boden mit eingegossenen Ab¬ standshaltern in den Gehäusepositionen derart hergestellt, dass dazu die Abstandshalter vor dem Spritzgießen in einer Spritzgussform positioniert werden. Diese Verfahrensvariante hat den Vorteil, dass keine Bohrungen durch den Gehäuseboden nachträglich zum Positionieren der Abstandshalter vorgenommen werden müssen, sondern dass in einem einzigen Spritzgusspro- zess sowohl die Außenkontakte als auch die Innenflachleiter als auch die für die Abstandshalterung notwendigen Abstands¬ halter sämtlich bereits in der Spritzgussform vorpositioniert sind und somit ein Hohlraumgehäuse ergeben, das nach Fertig¬ stellung des Flachleiterrahmens aus diesem herausgestanzt werden kann.
Bei einer weiteren Ausführungsform der Erfindung weist der Flachleiterrahmen selbst die Abstandshalter auf, d.h. die Ab¬ standshalter sind fest mit dem Flachleiterrahmen verbunden, so dass die Abstandshalter nach dem Spritzgussvorgang und nach dem Positionieren des Sensorchips und seiner Verbindung zu den Innenflachleitern mit dem Flachleiterrahmen von dem fertiggestellten Halbleiterbauteil entfernt werden kann. In diesem Fall entfällt die Möglichkeit, die Abstandshalter so lange als Stütze für den Sensorchip im Gehäuse zu belassen, bis dieses Halbleitersensorbauteil an seinem Einsatzort ein¬ gesetzt ist. Jedoch besteht die Möglichkeit nach dem Heraus¬ nehmen der Abstandshalter aus dem Flachleiterrahmen, dass Transportabstandshalter in den Hohlraumgehäuseboden einge¬ bracht werden.
Vorzugsweise wird das Auffüllen des Bodens in dem Hohlraum des Hohlraumgehäuses sowohl für den unteren Bereich als auch für den oberen Bereich mit einer gummielastischen Masse mit¬ tels einer Dispense-Technik durchgeführt. Diese Technik hat den Vorteil, dass sie äußerst schonend den Sensorchip mit den Bonddrähten in eine gummielastische Masse einbettet. Als Ver¬ fahren für das Anbringen von Bonddrähten auf Kontaktflächen des Sensorchips hat sich ein Thermokompressions- oder ein
Thermosonik-Bonden bewährt. Das Entfernen der Abstandshalter kann auch mittels Ätztechnik erfolgen, wenn die Möglichkeit ausgeschlossen ist, die Abstandshalter ohne Beschädigung des Sensorchips aus dem Bodenbereich des starren Hohlraumgehäuses zu entfernen. Bei dieser Ätztechnik wird die Ätzlösung auf das Metall der Abstandshalter abgestimmt, ohne dass dabei die Außenkontakte angeätzt oder die gummielastische Masse beschä¬ digt wird.
Zusammenfassend ist festzustellen, dass mit der vorliegenden Erfindung in das Gehäuse Stifte eingeführt werden, um den Sensorchip während der Fertigung des Transports und der Mon¬ tage zu stabilisieren. Dadurch kann als Chipklebstoff in vor- teilhafter Weise ein extrem weiches gummielastische Material eingesetzt werden. Der Sensorchip selbst kann während des Drahtbondens jedoch nicht in Schwingungen geraten, da die Stifte ihn stützen. Abschließend können die Stifte wieder von dem Gehäuse entfernt werden, was davon abhängig gemacht wer¬ den kann, ob dieses noch vor dem Transport und der Montage geschehen soll oder nicht.
Mit dieser Erfindung wird erreicht, dass 1. der Chip komplett in ein extrem weiches gummielastisches Material eingebettet werden kann und somit mechanisch auch komplett von dem starren Hohlraumgehäuse entkoppelt ist.
2. ein einziges gummielastisches Material sowohl für das Fixieren des Sensorchips auf den Abstandshaltern als auch zum Einbetten des Sensorchips verwendet wird.
3. beim Einsatz des Halbleitersensorbauteils auf den Sen- sorchip und insbesondere auf die Sensormembran im Sen¬ sorbereich keine unmittelbaren mechanischen Kräfte ein¬ wirken.
4. andererseits durch Stifte bzw. durch Abstandshalter für das Drahtbonden die notwendige mechanische Stabilität erreicht wird.
5. die Stifte als Funktion eines definierten Abstandshal¬ ters zeitweise im Bauteil verbleiben oder unmittelbar nach dem Drahtbonden und dem Chipverguss wieder aus dem Bodenbereich des Hohlraumgehäuses entfernt werden kön¬ nen; 6. eine komplette mechanische Entkopplung von vorzugsweise Drucksensorchips durch das erfindungsgemäße Konzept für die Chipbefestigung während der Belastungen durch das Drahtbonden erreicht wird.
Die Erfindung wird nun anhand der beigefügten Figuren näher erläutert.
Figur 1 zeigt einen schematischen Querschnitt durch ein Halbleitersensorbauteil gemäß einer ersten Ausfüh¬ rungsform der Erfindung;
Figuren 2 bis 7 zeigen schematische Querschnitte durch ein
Hohlraumgehäuse während unterschiedlicher Herstel- lungsphasen eines Halbleitersensorbauteils;
Figur 2 zeigt einen schematischen Querschnitt durch ein Hohlraumgehäuse;
Figur 3 zeigt einen schematischen Querschnitt durch das Hohlraumgehäuse gemäß Figur 2 nach Einbringen eines unteren Bereichs einer gummielastischen Masse;
Figur 4 zeigt einen schematischen Querschnitt durch das Hohlraumgehäuse gemäß Figur 3 nach Aufbringen eines
Sensorchips auf den unteren Bereich der gummielas¬ tischen Masse;
Figur 5 zeigt einen schematischen Querschnitt durch das Hohlraumgehäuse gemäß Figur 4 nach einem elektri¬ schen Verbinden des Sensorchips mit Innenflachlei- tern; Figur 6 zeigt einen schematischen Querschnitt durch das
Hohlraumgehäuse gemäß Figur 5 nach Aufbringen eines oberen Bereichs einer gummielastischen Masse;
Figur 7 zeigt einen schematischen Querschnitt durch das Hohlraumgehäuse gemäß Figur 6 nach Entfernen von Abstandshaltern aus dem Bodenbereich des Hohlraum¬ gehäuses.
Figur 1 zeigt einen schematischen Querschnitt durch ein Halb¬ leitersensorbauteil 20 gemäß einer Ausführungsform der Erfin¬ dung. Das Halbleitersensorbauteil 20 weist ein Hohlraumgehäu¬ se 1 auf. Der Hohlraum 2 des Hohlraumgehäuses 1 ist, wie Fi¬ gur 1 zeigt, nach oben offen. Diese Öffnung 5 ermöglicht dem Halbleitersensorbauteil 20, eine physische Verbindung zu der Umgebung 6 aufrecht zu erhalten. Deshalb ist der Sensorbe¬ reich 4 eines Sensorchips 3, der in dem Hohlraum 2 des Hohl¬ raumgehäuses 1 angeordnet ist, dieser Öffnung 5 zugewandt. In dem Hohlraum 2 des Hohlraumgehäuses 1 ist dieser Sensorchip 3 allseitig in eine gummielastische Masse 7 eingebettet.
Durch die Konstruktion dieses Halbleitersensorbauteils 20 wird mechanisch das starre Hohlraumgehäuse 1 von dem Sensor¬ chip 3 durch das Einbetten des Sensorchips 3 in eine allsei- tig umgebende gummielastische Masse 7 entkoppelt. Somit kön¬ nen die unterschiedlichen Ausdehnungskoeffizienten der unter¬ schiedlichen Materialien des Hohlraumgehäuses 1, der elektri¬ schen Zuleitungen und des Sensorchips 1 nicht zu thermischen Verspannungen führen, da diese unterschiedlichen Ausdehnungen bei thermischen Belastungen von der gummielastischen Masse 7 ausgeglichen bzw. nicht auf den Sensorchip übertragen werden. Auch Vibrationsbelastungen für das starre Hohlraumgehäuse 1 können sich nur bedingt bzw. stark gedämpft auf den Sensor- chip auswirken. Somit ergibt sich eine höhere Zuverlässigkeit dieses Halbleitersensorbauteils 20 gegenüber herkömmlichen Halbleitersensorbauteilen.
Die gummielastische Masse 7 ist in Figur 1 einheitlich ge¬ kennzeichnet, jedoch besteht sie aus zwei Bereichen. Ein un¬ terer Bereich 8 ist hauptsächlich unterhalb des Sensorchips 3 angeordnet und deckt die Rückseite 10 des Sensorchips ab. Ein oberer Bereich 9 der gummielastischen Masse 7 ist hauptsäch- lieh auf der Oberseite 13 des Sensorchips 3 angeordnet und bedeckt teilweise die Randseiten 11 und 12 des Sensorchips und bettet Bonddrähte 14, an denen der Sensorchip mit seinen Kontaktflächen 24 hängt, in die gummielastische Masse 7 ein.
Ein Sensorbereich 4 ist zentral in der Mitte des Sensorchips 3 angeordnet, während auf den Randbereichen des Sensorchips die Bonddrähte 14 enden. Die Bonddrähte 14 weisen einen Quer¬ schnitt auf, der nur wenige Mikrometer in seinem Radius be¬ trägt, so dass die Bonddrähte selbst die einzige mechanische und elektrische Verbindung zu dem starren Hohlraumgehäuse 1 darstellen. Dazu sind die Bonddrähte 14 auf innere Flachlei¬ terbahnen 23 aufgebondet, so dass Messsignale von dem Sensor¬ chip 3 über die Bonddrähte 14 zu den inneren Flachleiterbah¬ nen 23 und von dort über Durchkontakte 15 zu Außenkontakten 16 geleitet werden können.
Der Boden 17 des Hohlraumgehäuses 1 weist Durchgangsöffnungen 18 auf, die sich auch durch den unteren Bereich 8 der gummi¬ elastischen Masse 7 erstrecken. In diese Durchgangsöffnungen 18 können für Transport und Montage Abstandshalter einge¬ bracht werden, um die Lage des Sensorchips bei Transport und Montage zu gewährleisten. Erst nach erfolgter Montage im Einsatzbereich des Halbleitersensorbauteils 20 können dann diese Abstandshalter unter Freigabe des Sensorchips aus dem Boden 17 des Hohlraumgehäuses 1 entfernt werden. In dieser Ausführungsform der Erfindung ist der Boden 17 von Seitenwän¬ den 19, durch welche die Durchkontakte 15 die Signale nach außen zu den Außenkontakten 16 führen, umgeben.
Die Figuren 2 bis 7 zeigen schematische Querschnitte durch ein Hohlraumgehäuse 1 während unterschiedlicher Herstellungs¬ phasen eines Halbleitersensorbauteils 20. Komponenten mit gleichen Funktionen wie in Figur 1 werden mit gleichen Be¬ zugszeichen gekennzeichnet und in den nachfolgenden Figuren 2 bis 7 nicht extra erörtert.
Figur 2 zeigt einen schematischen Querschnitt durch ein Hohl- raumgehäuse 1. Das Hohlraumgehäuse 1 ist aus einer Kunst- stoffgehäusemasse 27 aufgebaut und weist einen Boden 17 und den Boden 17 umgebende Seitenwände 19 auf, in denen Flachlei¬ ter 25 verankert sind. Diese Flachleiter 25 sind Teil eines Flachleiterrahmens, der mehrere Hohlraumgehäusepositionen aufweist. In jeder der Hohlraumgehäusepositionen wird mit
Hilfe eines Spritzgussverfahrens ein derartiges Hohlraumge¬ häuse 1 eingeformt. Das hier vorliegende Hohlraumgehäuse 1 weist im Hohlraumboden 17 eingegossene Abstandshalter 22 auf, die hier die Form von Stiften mit spitz zulaufenden Enden 21 der Abstandshalter 22 aufweisen. Diese Abstandshalter 22 wer¬ den in dem Hohlraumboden so angeordnet, dass ihre Enden 21 über das Niveau des Hohlraumbodens in den Hohlraum 2 hinein¬ ragen und in der Lage sind, einen Sensorchip 3 beim Bonden, beim Transport und/oder bei der Montage zu stützen und auf Abstand zu halten. An den Seitenwänden 19 befinden sich im Bodenbereich innere Leiterbahnen 23, die im Hohlraum in be¬ schichtete Bondflächen 26 übergehen. Diese Bondflächen 26 sind über Durchkontakte 15 mit den Außenkontakten 16 elekt¬ risch verbunden.
Figur 3 zeigt einen schematischen Querschnitt durch das Hohl- raumgehäuse 1 gemäß Figur 2 nach Einbringen eines unteren Be¬ reichs der gummielastischen Masse 7. Dabei wird die gummi¬ elastische Masse 7 in einem zäh viskosen Zustand gehalten, so dass ein Sensorchip in den unteren Bereich 8 der gummielasti- schen Masse 7 eingeformt werden kann, bis er die Enden 21 der Abstandshalter 22 berührt.
Figur 4 zeigt einen schematischen Querschnitt durch das Hohl¬ raumgehäuse 1 gemäß Figur 3 nach Aufbringen eines Sensorchips 3 auf den unteren Bereich 8 der gummielastischen Masse 7. Da- bei liegt die Rückseite 10 des Sensorchips 3 haftschlüssig auf den Enden 21 der Abstandshalter 22, die im Boden 17 des Hohlraumgehäuses 1 angeordnet sind, auf. Durch die zu den Randseiten 11 und 12 hin verdrängte gummielastische Masse 7 wird der Sensorchip 3 auch in den horizontalen Raumrichtungen fixiert, so dass ein sicheres Bonden von Bonddrähten auf den Kontaktflächen 24 des Sensorchips 3 möglich ist.
Figur 5 zeigt einen schematischen Querschnitt durch das Hohl¬ raumgehäuse 1 gemäß Figur 4 nach einem elektrischen Verbinden des Sensorchips mit Innenflachleitern 25. Dazu werden die
Bonddrähte 14 mit einem Bondstichel auf den Kontaktflächen 24 des Sensorchips 3 gebondet und anschließend werden die Bond¬ drähte 14 auf den Bondflächen 26 der Flachleiter 25 in dem Hohlraumgehäuse 1 angebracht. Beim Bonden, das eine Belastung für den Sensorchip 3 darstellt, wird durch die Abstandshalter 22, die aus dem Boden 17 des Hohlraumgehäuses 1 herausragen, der Sensorchip 3 derart gestützt, dass zuverlässige Bondver- bindungen zwischen den Kontaktflächen 24 des Sensorchips 3 und den Bonddrähten 14 entstehen.
Figur 6 zeigt einen schematischen Querschnitt durch das Hohl- raumgehäuse 1 gemäß Figur 5 nach Aufbringen des oberen Be¬ reichs 9 einer gummielastischen Masse 7. Dabei werden die Bonddrähte 14, die Randseiten 11 und 12 des Halbleiterchips 3 und die Oberseite 13 des Halbleiterchips 3 in die gummielas- tische Masse 7 eingebettet. Somit ist nun der Sensorchip 3 vollständig von einer gummielastischen Masse umgeben, ledig¬ lich die Abstandshalter 22 sorgen für eine mechanische Kopp¬ lung zum starren Hohlraumgehäuse 1. Diese Kopplung kann bei¬ behalten werden, bis der Transport und die Montage des Halb¬ leitersensorbauteils 20 abgeschlossen ist. Danach können die Abstandshalter 22 von dem Boden 17 entfernt werden.
Figur 7 zeigt einen schematischen Querschnitt durch das Hohl¬ raumgehäuse 1 gemäß Figur 6 nach Entfernen der Abstandhalter 22 aus dem Boden 17 des Hohlraumgehäuses 1. Damit entspricht nun der schematische Querschnitt durch dieses Halbleiterbau¬ teil 20 der Figur 7 dem schematischen Querschnitt, der in Fi¬ gur 1 bereits gezeigt wird.

Claims

Patentansprüche
1. Halbleitersensorbauteil mit einem Hohlraumgehäuse (1) und einem in dem Hohlraum (2) des Gehäuses (1) angeord- neten Sensorchip (3) mit Sensorbereich (4), wobei das Hohlraumgehäuse (1) eine Öffnung (5) zur Umgebung (6) aufweist, und der Sensorbereich (4) der Öffnung (6) zu¬ gewandt ist, und wobei der Sensorchip (3) in dem Hohl¬ raum (2) des Gehäuses (1) allseitig in eine gummielasti- sehe Masse (7) eingebettet ist.
2. Halbleitersensorbauteil nach Anspruch 1, dadurch gekennzeichnet , dass die gummielastische Masse (7) zwei Bereiche (8, 9) auf- weist, einen unteren Bereich (8) unterhalb des Sensor¬ chips (3), auf dem die Rückseite (10) des Sensorchips (3) angeordnet ist und einen oberen Bereich (9), in den die Randseiten (11, 12) und die Oberseite (13) des Sen¬ sorchips (3) mit dem Sensorbereich (4) eingebettet ist.
3. Halbleitersensorbauteil nach Anspruch 1 Anspruch 2, dadurch gekennzeichnet, dass die gummielastische Masse (7) ein optisch transparentes Elastomer aufweist.
4. Halbleitersensorbauteil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet , dass die gummielastische Masse (7) Silikongummi aufweist.
5. Halbleitersensorbauteil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet , dass der Sensorchip (3) über Bonddrähte (14) und Durchkontak¬ te (15) durch das Hohlraumgehäuse (1) mit Außenkontakten
(16) des Halbleitersensorbauteils (20) elektrisch in Verbindung steht.
6. Halbleitersensorbauteil nach einem der vorhergehenden An-sprüche, dadurch gekennzeichnet , dass das Hohlraumgehäuse (1) einen Boden (17) aufweist, der seinerseits Durchgangsöffnungen (18) aufweist.
7. Hohlraumgehäuse für ein Halbleitersensorbauteil nach ei¬ nem der Ansprüche 1 bis 6, dadurch gekennzeichnet , dass das Hohlraumgehäuse (1) mindestens einen Boden (17) und Seitenwände (19) aufweist, die den Hohlraum (2) begren¬ zen, wobei aus dem Boden (17) entfernbare Enden (21) von Abstandshalter (22) herausragen, die ein Widerlager für ein Anordnen und Anbringen von Bonddrähten (14) auf ei- nem auf den Enden (21) der Abstandshalter (22) positio¬ nierten Sensorchip (3) bilden.
8. Halbleitersensorbauteil nach Anspruch 7, dadurch gekennzeichnet , dass die Abstandshalter (22) Stifte sind, die durch den Boden
(17) hindurch in den Hohlraum (2) ragen.
9. Halbleitersensorbauteil nach Anspruch 7 oder Anspruch 8, dadurch gekennzeichnet , dass die aus dem Boden (17) herausragenden Enden (21) der Ab¬ standshalter (22) von der gummielastische Masse (7) um¬ hüllt sind.
10. Verfahren zur Herstellung eines Halbleitersensorbauteils (20) mit einem Hohlraumgehäuse (1) und einem in dem Hohlraum (2) des Gehäuses (1) angeordneten Sensorchip (3) mit Sensorbereich (4), wobei das Verfahren folgende Verfahrensschritte aufweist:
Herstellen eines Hohlraumgehäuses (1) mit inneren Leiterbahnen (23) und Außenkontakten (16) und einem Hohlraumboden (17), sowie den Hohlraumboden (17) umgebenden Seitenwänden (19) und aus dem Hohlraum- boden (17) herausragenden Enden (21) von Abstands¬ haltern (22), wobei Anordnung und Größe der Ab¬ standhalter (22) an die flächige Erstreckung der Rückseite (10) eines Sensorchips (3) so angepasst werden, dass die Enden (21) der Abstandshalter (22) Widerlager für ein Anordnen und Anbringen von Bond¬ drähten (14) auf einem auf den Enden (21) der Ab- standshalter (22) positionierten Sensorchip (3) bilden; Auffüllen des Bodens (17) des Hohlraums (2) des Hohlraumgehäuses (1) mit einer gummielastischen
Masse (7) mindestens bis zu den Enden (21) der Ab¬ standhalter (22) ;
Aufbringen eines Sensorchips (3) mit seiner Rück¬ seite (10) auf die Enden (21) der Abstandshalter (22) unter Fixieren des Sensorchips (3) auf der gummielastischen Masse (7) ;
- Anbringen von Bonddrähten (14) auf Kontaktflächen (24) des Sensorchips (3) ; Einbetten der Bonddrähte (14) und des Sensorchips (3) in die gummielastische Masse (7);.
Entfernen der Abstandshalter (22) aus dem Boden (17) unter Bilden von Durchgangsöffnungen (18) im Boden (17) des Hohlraumgehäuses (1) .
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet , dass zum Herstellen eines Hohlraumgehäuses (1) mit inneren Leiterbahnen (23) und Außenkontakten (16) zunächst ein Flachleiterrahmen mit mehreren Gehäusepositionen herge¬ stellt wird, wobei mittels Spritzgusstechnik die Seiten¬ wände (19) und der Boden (17) mit eingegossenen Abstand¬ haltern (22) in den Gehäusepositionen hergestellt werden und dazu die Abstandhalter (22) vor dem Spritzgießen in einer Spritzgussform positioniert werden.
12. Verfahren nach Anspruch 10 oder Anspruch 11, dadurch gekennzeichnet, dass der Flachleiterrahmen die Abstandshalter (22) aufweist, die nach dem Spritzgussvorgang mit dem Flachleiterrahmen von den fertiggestellten Halbleitersensorbauteilen (20) entfernt werden.
13. Verfahren nach einem der Ansprüche 10 bis 12, dadurch gekennzeichnet, dass das Auffüllen des Bodens (17) des Hohlraums des Hohl¬ raumgehäuses (1) mit einer gummielastischen Masse (7) mittels Dispenstechnik erfolgt.
14. Verfahren nach einem der Ansprüche 10 bis 14, dadurch gekennzeichnet, dass das Anbringen von Bonddrähten (14) auf Kontaktflächen (24) des Sensorchips (3) mittels Thermokompressions- o- der Thermosonicbonden erfolgt.
15. Verfahren nach einem der Ansprüche 10 bis 14, dadurch gekennzeichnet , dass das Entfernen der Abstandshalter (22) mittels Ätztechnik erfolgt.
PCT/DE2005/001453 2004-09-07 2005-08-18 Halbleitersensorbauteil mit hohlraumgehäuse und sensorchip und verfahren zur herstellung desselben WO2006026951A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/574,861 US7749797B2 (en) 2004-09-07 2005-08-18 Semiconductor device having a sensor chip, and method for producing the same
JP2007529314A JP4712042B2 (ja) 2004-09-07 2005-08-18 空洞ハウジングおよびセンサチップを含む半導体センサ装置、および、その製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004043663.0 2004-09-07
DE200410043663 DE102004043663B4 (de) 2004-09-07 2004-09-07 Halbleitersensorbauteil mit Hohlraumgehäuse und Sensorchip und Verfahren zur Herstellung eines Halbleitersensorbauteils mit Hohlraumgehäuse und Sensorchip

Publications (1)

Publication Number Publication Date
WO2006026951A1 true WO2006026951A1 (de) 2006-03-16

Family

ID=35457385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2005/001453 WO2006026951A1 (de) 2004-09-07 2005-08-18 Halbleitersensorbauteil mit hohlraumgehäuse und sensorchip und verfahren zur herstellung desselben

Country Status (5)

Country Link
US (1) US7749797B2 (de)
JP (1) JP4712042B2 (de)
CN (1) CN100530699C (de)
DE (1) DE102004043663B4 (de)
WO (1) WO2006026951A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7464603B2 (en) 2005-04-04 2008-12-16 Infineon Technologies Ag Sensor component with a cavity housing and a sensor chip and method for producing the same
US7919857B2 (en) 2005-04-04 2011-04-05 Infineon Technologies Ag Plastic housing and semiconductor component with said plastic housing
US7964954B2 (en) 2006-03-13 2011-06-21 Infineon Technologies Ag Integrated circuit having a semiconductor sensor device with embedded column-like spacers
WO2012100861A1 (de) * 2011-01-26 2012-08-02 Robert Bosch Gmbh Bauteil und verfahren zum herstellen eines bauteils
US9863828B2 (en) 2014-06-18 2018-01-09 Seiko Epson Corporation Physical quantity sensor, electronic device, altimeter, electronic apparatus, and mobile object

Families Citing this family (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7345671B2 (en) * 2001-10-22 2008-03-18 Apple Inc. Method and apparatus for use of rotational user inputs
US20070085841A1 (en) * 2001-10-22 2007-04-19 Apple Computer, Inc. Method and apparatus for accelerated scrolling
US7312785B2 (en) 2001-10-22 2007-12-25 Apple Inc. Method and apparatus for accelerated scrolling
US7333092B2 (en) 2002-02-25 2008-02-19 Apple Computer, Inc. Touch pad for handheld device
US7499040B2 (en) 2003-08-18 2009-03-03 Apple Inc. Movable touch pad with added functionality
US20060181517A1 (en) * 2005-02-11 2006-08-17 Apple Computer, Inc. Display actuator
US20070152977A1 (en) * 2005-12-30 2007-07-05 Apple Computer, Inc. Illuminated touchpad
US7495659B2 (en) 2003-11-25 2009-02-24 Apple Inc. Touch pad for handheld device
US8059099B2 (en) 2006-06-02 2011-11-15 Apple Inc. Techniques for interactive input to portable electronic devices
JP2008511045A (ja) 2004-08-16 2008-04-10 フィンガーワークス・インコーポレーテッド タッチセンス装置の空間分解能を向上させる方法
US7880729B2 (en) 2005-10-11 2011-02-01 Apple Inc. Center button isolation ring
US20070152983A1 (en) * 2005-12-30 2007-07-05 Apple Computer, Inc. Touch pad with symbols based on mode
US8743060B2 (en) 2006-07-06 2014-06-03 Apple Inc. Mutual capacitance touch sensing device
US9360967B2 (en) 2006-07-06 2016-06-07 Apple Inc. Mutual capacitance touch sensing device
US8022935B2 (en) 2006-07-06 2011-09-20 Apple Inc. Capacitance sensing electrode with integrated I/O mechanism
US7795553B2 (en) 2006-09-11 2010-09-14 Apple Inc. Hybrid button
US20080088597A1 (en) * 2006-10-11 2008-04-17 Apple Inc. Sensor configurations in a user input device
US8274479B2 (en) 2006-10-11 2012-09-25 Apple Inc. Gimballed scroll wheel
US20080088600A1 (en) * 2006-10-11 2008-04-17 Apple Inc. Method and apparatus for implementing multiple push buttons in a user input device
US8482530B2 (en) 2006-11-13 2013-07-09 Apple Inc. Method of capacitively sensing finger position
US8683378B2 (en) 2007-09-04 2014-03-25 Apple Inc. Scrolling techniques for user interfaces
US7910843B2 (en) 2007-09-04 2011-03-22 Apple Inc. Compact input device
US20090058801A1 (en) * 2007-09-04 2009-03-05 Apple Inc. Fluid motion user interface control
US20090073130A1 (en) * 2007-09-17 2009-03-19 Apple Inc. Device having cover with integrally formed sensor
DE102007057441B4 (de) 2007-11-29 2019-07-11 Robert Bosch Gmbh Verfahren zur Herstellung eines mikromechanischen Bauelements mit einem volumenelastischen Medium und mikromechanischen Bauelement
US8416198B2 (en) 2007-12-03 2013-04-09 Apple Inc. Multi-dimensional scroll wheel
US8125461B2 (en) 2008-01-11 2012-02-28 Apple Inc. Dynamic input graphic display
US8820133B2 (en) 2008-02-01 2014-09-02 Apple Inc. Co-extruded materials and methods
DE102008029192A1 (de) * 2008-03-13 2009-09-24 Epcos Ag Fühler zum Erfassen einer physikalischen Größe und Verfahren zur Herstellung des Fühlers
US9454256B2 (en) 2008-03-14 2016-09-27 Apple Inc. Sensor configurations of an input device that are switchable based on mode
TW200952142A (en) * 2008-06-13 2009-12-16 Phoenix Prec Technology Corp Package substrate having embedded semiconductor chip and fabrication method thereof
US20100058251A1 (en) * 2008-08-27 2010-03-04 Apple Inc. Omnidirectional gesture detection
US20100060568A1 (en) * 2008-09-05 2010-03-11 Apple Inc. Curved surface input device with normalized capacitive sensing
US8816967B2 (en) 2008-09-25 2014-08-26 Apple Inc. Capacitive sensor having electrodes arranged on the substrate and the flex circuit
DE102008043517B4 (de) * 2008-11-06 2022-03-03 Robert Bosch Gmbh Sensormodul und Verfahren zur Herstellung eines Sensormoduls
CH699977A8 (de) * 2008-11-25 2010-08-31 Baumer Innotec Ag Vorrichtung und Verfahren zum Anordnen eines Gehäuses in einer vorgegebenen Lage relativ zu einem Referenzobjekt
US8395590B2 (en) 2008-12-17 2013-03-12 Apple Inc. Integrated contact switch and touch sensor elements
DE102009002584A1 (de) * 2009-04-23 2010-10-28 Robert Bosch Gmbh Sensoranordnung
US9354751B2 (en) 2009-05-15 2016-05-31 Apple Inc. Input device with optimized capacitive sensing
US8872771B2 (en) 2009-07-07 2014-10-28 Apple Inc. Touch sensing device having conductive nodes
US8551814B2 (en) * 2010-03-11 2013-10-08 Freescale Semiconductor, Inc. Method of fabricating a semiconductor device that limits damage to elements of the semiconductor device that are exposed during processing
US8191423B2 (en) * 2010-03-29 2012-06-05 Continental Automotive Systems, Inc. Grooved structure for die-mount and media sealing
JP5595145B2 (ja) 2010-07-02 2014-09-24 株式会社デンソー 半導体力学量センサ
DE102010030960B4 (de) * 2010-07-06 2020-12-10 Robert Bosch Gmbh Verfahren zur Herstellung eines schwingungsgedämpften Bauteils
JP2012073233A (ja) * 2010-08-31 2012-04-12 Mitsumi Electric Co Ltd センサ装置及び半導体センサ素子の実装方法
US8454789B2 (en) * 2010-11-05 2013-06-04 Raytheon Company Disposable bond gap control structures
US9324586B2 (en) * 2011-08-17 2016-04-26 Infineon Technologies Ag Chip-packaging module for a chip and a method for forming a chip-packaging module
DE102012215449A1 (de) * 2012-08-31 2014-03-27 Osram Opto Semiconductors Gmbh Gehäuse für ein elektronisches bauelement, elektronische baugruppe, verfahren zum herstellen eines gehäuses für ein elektronisches bauelement und verfahren zum herstellen einer elektronischen baugruppe
US9510495B2 (en) * 2012-11-27 2016-11-29 Freescale Semiconductor, Inc. Electronic devices with cavity-type, permeable material filled packages, and methods of their manufacture
US8937380B1 (en) 2013-08-30 2015-01-20 Infineon Technologies Austria Ag Die edge protection for pressure sensor packages
DE102013222307A1 (de) * 2013-11-04 2015-05-07 Robert Bosch Gmbh Mikroelektromechanische Sensoranordnung und Verfahren zum Herstellen einer mikroelektromechanischen Sensoranordnung
FR3015030B1 (fr) * 2013-12-12 2016-11-04 Sc2N Sa Dispositif comportant un capteur protege par de la resine
DE102014105861B4 (de) * 2014-04-25 2015-11-05 Infineon Technologies Ag Sensorvorrichtung und Verfahren zum Herstellen einer Sensorvorrichtung
CN105280621B (zh) 2014-06-12 2019-03-19 意法半导体(格勒诺布尔2)公司 集成电路芯片的堆叠和电子器件
US9598280B2 (en) * 2014-11-10 2017-03-21 Nxp Usa, Inc. Environmental sensor structure
US10060820B2 (en) * 2015-12-22 2018-08-28 Continental Automotive Systems, Inc. Stress-isolated absolute pressure sensor
US9896330B2 (en) * 2016-01-13 2018-02-20 Texas Instruments Incorporated Structure and method for packaging stress-sensitive micro-electro-mechanical system stacked onto electronic circuit chip
US11211305B2 (en) 2016-04-01 2021-12-28 Texas Instruments Incorporated Apparatus and method to support thermal management of semiconductor-based components
CN107290096A (zh) * 2016-04-11 2017-10-24 飞思卡尔半导体公司 具有膜片的压力感测集成电路器件
US10861796B2 (en) 2016-05-10 2020-12-08 Texas Instruments Incorporated Floating die package
US10132705B2 (en) * 2016-07-19 2018-11-20 Kulite Semiconductor Products, Inc. Low-stress floating-chip pressure sensors
US10179730B2 (en) * 2016-12-08 2019-01-15 Texas Instruments Incorporated Electronic sensors with sensor die in package structure cavity
US10074639B2 (en) 2016-12-30 2018-09-11 Texas Instruments Incorporated Isolator integrated circuits with package structure cavity and fabrication methods
US10121847B2 (en) 2017-03-17 2018-11-06 Texas Instruments Incorporated Galvanic isolation device
TWI663692B (zh) * 2018-02-27 2019-06-21 菱生精密工業股份有限公司 Pressure sensor package structure
US20200031661A1 (en) * 2018-07-24 2020-01-30 Invensense, Inc. Liquid proof pressure sensor
DE102018222781A1 (de) * 2018-12-21 2020-06-25 Robert Bosch Gmbh Drucksensoranordnung
DE102020207799A1 (de) 2020-06-24 2021-12-30 Robert Bosch Gesellschaft mit beschränkter Haftung MEMS-Modul

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60136254A (ja) * 1983-12-23 1985-07-19 Toshiba Corp 固体撮像装置およびその製造方法
DE4238113A1 (de) * 1992-11-12 1994-05-19 Mikroelektronik Und Technologi Anordnung zur spannungsfreien Chipmontage
US6121675A (en) * 1997-09-22 2000-09-19 Fuji Electric Co., Ltd. Semiconductor optical sensing device package
WO2004034472A1 (en) * 2002-10-11 2004-04-22 Graphic Techno Japan Co., Ltd. Semiconductor chip package for image sensor and method of making the same

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3885304A (en) * 1972-03-23 1975-05-27 Bosch Gmbh Robert Electric circuit arrangement and method of making the same
JPS6269537A (ja) * 1985-09-24 1987-03-30 Hitachi Ltd 半導体装置
US5173766A (en) * 1990-06-25 1992-12-22 Lsi Logic Corporation Semiconductor device package and method of making such a package
US5243756A (en) * 1991-06-28 1993-09-14 Digital Equipment Corporation Integrated circuit protection by liquid encapsulation
US5389738A (en) * 1992-05-04 1995-02-14 Motorola, Inc. Tamperproof arrangement for an integrated circuit device
JPH0645383A (ja) * 1992-07-27 1994-02-18 Nec Corp 樹脂封止方法及びその金型
US5686698A (en) * 1994-06-30 1997-11-11 Motorola, Inc. Package for electrical components having a molded structure with a port extending into the molded structure
EP0714125B1 (de) * 1994-11-24 1999-12-29 Dow Corning Toray Silicone Company Limited Verfahren zur Herstellung eines Halbleiterbauelements
JPH09138172A (ja) * 1995-11-14 1997-05-27 Fujikura Ltd 半導体圧力センサおよびその製造方法
JPH11274196A (ja) * 1998-03-26 1999-10-08 Seiko Epson Corp 半導体装置の製造方法およびモールドシステム並びに半導体装置
US6260417B1 (en) * 1999-10-13 2001-07-17 Denso Corporation Semiconductor pressure sensor device with multi-layered protective member that reduces void formation
JP2001118967A (ja) * 1999-10-19 2001-04-27 Sanyo Electric Co Ltd 固体撮像素子のパッケージ構造
US6841412B1 (en) * 1999-11-05 2005-01-11 Texas Instruments Incorporated Encapsulation for particle entrapment
US6483030B1 (en) * 1999-12-08 2002-11-19 Amkor Technology, Inc. Snap lid image sensor package
JP2002005951A (ja) * 2000-06-26 2002-01-09 Denso Corp 半導体力学量センサ及びその製造方法
JP4147729B2 (ja) * 2000-07-06 2008-09-10 沖電気工業株式会社 樹脂封止型半導体装置及びその製造方法
JP2002039887A (ja) 2000-07-25 2002-02-06 Denso Corp 半導体力学量センサおよびその製造方法
JP2002107249A (ja) 2000-10-03 2002-04-10 Fuji Electric Co Ltd 半導体圧力センサ
JP3888228B2 (ja) * 2002-05-17 2007-02-28 株式会社デンソー センサ装置
DE10223035A1 (de) 2002-05-22 2003-12-04 Infineon Technologies Ag Elektronisches Bauteil mit Hohlraumgehäuse, insbesondere Hochfrequenz-Leistungsmodul
DE10228593A1 (de) * 2002-06-26 2004-01-15 Infineon Technologies Ag Elektronisches Bauteil mit einer Gehäusepackung
DE10238581B4 (de) * 2002-08-22 2008-11-27 Qimonda Ag Halbleiterbauelement
DE102004019428A1 (de) * 2004-04-19 2005-08-04 Infineon Technologies Ag Halbleiterbauteil mit einem Hohlraumgehäuse und Verfahren zur Herstellung desselben
DE102005015454B4 (de) * 2005-04-04 2010-02-18 Infineon Technologies Ag Halbleitersensorbauteil mit Hohlraumgehäuse und Sensorchip sowie Verfahren zur Herstellung desselben

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60136254A (ja) * 1983-12-23 1985-07-19 Toshiba Corp 固体撮像装置およびその製造方法
DE4238113A1 (de) * 1992-11-12 1994-05-19 Mikroelektronik Und Technologi Anordnung zur spannungsfreien Chipmontage
US6121675A (en) * 1997-09-22 2000-09-19 Fuji Electric Co., Ltd. Semiconductor optical sensing device package
WO2004034472A1 (en) * 2002-10-11 2004-04-22 Graphic Techno Japan Co., Ltd. Semiconductor chip package for image sensor and method of making the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 009, no. 298 (E - 361) 26 November 1985 (1985-11-26) *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7464603B2 (en) 2005-04-04 2008-12-16 Infineon Technologies Ag Sensor component with a cavity housing and a sensor chip and method for producing the same
US7919857B2 (en) 2005-04-04 2011-04-05 Infineon Technologies Ag Plastic housing and semiconductor component with said plastic housing
US7964954B2 (en) 2006-03-13 2011-06-21 Infineon Technologies Ag Integrated circuit having a semiconductor sensor device with embedded column-like spacers
WO2012100861A1 (de) * 2011-01-26 2012-08-02 Robert Bosch Gmbh Bauteil und verfahren zum herstellen eines bauteils
CN103328373A (zh) * 2011-01-26 2013-09-25 罗伯特·博世有限公司 构件以及用于制造构件的方法
US9560744B2 (en) 2011-01-26 2017-01-31 Robert Bosch Gmbh Component and method for producing a component
US9863828B2 (en) 2014-06-18 2018-01-09 Seiko Epson Corporation Physical quantity sensor, electronic device, altimeter, electronic apparatus, and mobile object

Also Published As

Publication number Publication date
US20090026558A1 (en) 2009-01-29
DE102004043663B4 (de) 2006-06-08
JP4712042B2 (ja) 2011-06-29
DE102004043663A1 (de) 2006-04-06
CN100530699C (zh) 2009-08-19
JP2008512647A (ja) 2008-04-24
US7749797B2 (en) 2010-07-06
CN101053086A (zh) 2007-10-10

Similar Documents

Publication Publication Date Title
WO2006026951A1 (de) Halbleitersensorbauteil mit hohlraumgehäuse und sensorchip und verfahren zur herstellung desselben
DE10324139B4 (de) Mikroelektromechanisches Bauteil und Verfahren zu seiner Herstellung
DE112008000759B4 (de) Verfahren zur Herstellung eines Geräts mit integrierten Schaltungen betreffend eine mehrstufig gegossene Schaltungspackung
DE102005027767A1 (de) Integriertes magnetisches Sensorbauteil
DE102006011753A1 (de) Halbleitersensorbauteil mit Sensorgehäuse und Sensorchip und Verfahren zur Herstellung desselben
DE102010030960B4 (de) Verfahren zur Herstellung eines schwingungsgedämpften Bauteils
DE112009003555T5 (de) Magnetfeldsensoren und Verfahren zur Herstellung der Magnetfeldsensoren
DE102016106311A1 (de) Kavitätspackage mit kompositsubstrat
DE102014202821B4 (de) Gehäuse für ein mikromechanisches Sensorelement
WO2007020132A1 (de) Sensoranordnung mit einem substrat und mit einem gehäuse und verfahren zur herstellung einer sensoranordnung
DE102008046968A1 (de) Rotationserfassungsvorrichtung, sowie Herstellungsverfahren derselben
EP2549529B1 (de) Halbleitergehäuse und Verfahren zur Herstellung eines Halbleitergehäuses
EP2789578A2 (de) Bauelement mit federnden Elementen und Verfahren zur Herstellung des Bauelements
DE102015111785B4 (de) Geformtes Sensorgehäuse mit einem integrierten Magneten und Verfahren zur Herstellung geformter Sensorgehäuse mit einem integrierten Magneten
EP2936515B1 (de) Verfahren zum herstellen eines messaufnehmers
DE102006003305B3 (de) Vorrichtung und Verfahren zur Herstellung eines Gegenstands mittels Kunststoff-Formtechnik
DE102007043526A1 (de) Verfahren zum Herstellen einer Vielzahl von Chips und entsprechend hergestellter Chip
EP3009811B1 (de) Sensoranordnung und verfahren zur herstellung einer sensoranordnung
DE102010001759B4 (de) Mikromechanisches System und Verfahren zum Herstellen eines mikromechanischen Systems
DE102005054631A1 (de) Sensoranordnung mit einem Substrat und mit einem Gehäuse und Verfahren zur Herstellung einer Sensoranordnung
WO2008034663A1 (de) Sensoranordnung mit einem substrat und mit einem gehäuse und verfahren zur herstellung einer sensoranordnung
DE102007057904A1 (de) Sensormodul und Verfahren zur Herstellung des Sensormoduls
DE102010008618A1 (de) Halbleitervorrichtung
EP2607859B1 (de) Tragekörper zur Aufnahme eines Sensors
DE102011118734A1 (de) Verbundlagenschaltung mit von aussen zugänglichen integrierten Komponenten

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007529314

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200580037950.0

Country of ref document: CN

122 Ep: pct application non-entry in european phase
WWE Wipo information: entry into national phase

Ref document number: 11574861

Country of ref document: US