WO2006018944A1 - 燃料消費量評価システム - Google Patents

燃料消費量評価システム Download PDF

Info

Publication number
WO2006018944A1
WO2006018944A1 PCT/JP2005/013176 JP2005013176W WO2006018944A1 WO 2006018944 A1 WO2006018944 A1 WO 2006018944A1 JP 2005013176 W JP2005013176 W JP 2005013176W WO 2006018944 A1 WO2006018944 A1 WO 2006018944A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel consumption
fuel
vehicle
accelerator opening
speed
Prior art date
Application number
PCT/JP2005/013176
Other languages
English (en)
French (fr)
Inventor
Yoshitaka Nishiyama
Masaru Yamashita
Hiroshi Miyake
Akira Nakamura
Original Assignee
Nissan Diesel Motor Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004238134A external-priority patent/JP4353475B2/ja
Priority claimed from JP2004238139A external-priority patent/JP4353476B2/ja
Application filed by Nissan Diesel Motor Co., Ltd. filed Critical Nissan Diesel Motor Co., Ltd.
Priority to CN2005800270480A priority Critical patent/CN101002012B/zh
Priority to EP05766350A priority patent/EP1780393B1/en
Priority to US11/659,809 priority patent/US7454962B2/en
Publication of WO2006018944A1 publication Critical patent/WO2006018944A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F9/00Measuring volume flow relative to another variable, e.g. of liquid fuel for an engine
    • G01F9/02Measuring volume flow relative to another variable, e.g. of liquid fuel for an engine wherein the other variable is the speed of a vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • B60K35/20Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor
    • B60K35/28Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor characterised by the type of the output information, e.g. video entertainment or vehicle dynamics information; characterised by the purpose of the output information, e.g. for attracting the attention of the driver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K2360/00Indexing scheme associated with groups B60K35/00 or B60K37/00 relating to details of instruments or dashboards
    • B60K2360/16Type of output information
    • B60K2360/174Economic driving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/84Data processing systems or methods, management, administration

Definitions

  • the present invention relates to a system for evaluating the driving state of a vehicle, such as fuel consumption per mileage (hereinafter referred to as fuel efficiency), and a large difference in the total vehicle mass between empty and loaded vehicles.
  • the present invention relates to a system for evaluating the driving state of vehicles related to fuel consumption such as cars and buses.
  • (1) to (3) were judged to be “drivings that worsen fuel consumption” when exceeding a predetermined value. In such a method, if the judgment value is not exceeded, it is not judged as “operation that deteriorates fuel consumption”. However, in reality, fuel efficiency driving should be evaluated according to the degree of each item.
  • fuel consumption is a force that depends on the size of the total vehicle mass including cargo or passengers. These gradients and the effect of the size of the total vehicle mass are not reflected.
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-362185
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-16572
  • the present invention is proposed in view of the above-described problems of the prior art, and is an ability to save fuel or consume fuel wastefully relative to the average driving method. Quantitatively, the driver and the driver are based on the obtained data.
  • a fuel consumption evaluation system that enables Z or operation managers to provide specific fuel-saving driving instructions, set target values for fuel-saving driving, and consider changes in the total mass of the vehicle. Based on the obtained data without being influenced by traffic flow, it is possible to provide specific fuel-saving driving guidance to drivers and Z or operation managers, especially for drivers. Aiming for fuel-saving driving in real time ⁇ To provide a fuel consumption evaluation system that can provide guidance!
  • the fuel consumption evaluation system of the present invention measures the engine speed (N) of a truck (1).
  • Control means (10) for evaluating the fuel consumption (Q) is provided with a storage means (11), and a plurality of areas (E1; start acceleration) from the start to the stop of travel E2: Steady travel region, E3: Deceleration region, E4: Idle travel region, and parameters related to fuel consumption for each of the plurality of regions (E1 to E4) (“start acceleration shift up engine speed) N1 and start acceleration accelerator opening al ”Pl,“ Steady running engine speed ⁇ 2 ” ⁇ 2,“ Deceleration coasting ratio ” ⁇ 3,“ Idle running ” Speed V
  • the plurality of regions (E1 to E4) are regions in which the vehicle speed (V) or the moving average vehicle speed (Vm) increases with a relatively low speed force increasing the accelerator opening (e) (starting acceleration region E1) Area where the accelerator opening (ex) is reduced (deceleration area E3), the accelerator opening (oc) is relatively small and the engine speed (N) is relatively low, and the area (idle running area E4) And a steady travel region (E2) that does not fall into any of the three regions (El, E3, E4) described above (claim 2).
  • the accelerator opening (oc) is increased from the relatively low speed and the vehicle speed (V) or the moving average vehicle speed (Vm) increases (start acceleration area E1).
  • the parameters (P1) in) are the engine speed (shift-up engine speed N1) and the accelerator opening (a 1) at the time of gear shift, and in the area (deceleration area E3) where the accelerator opening (a) is reduced.
  • the parameter (P3) is the sum of the distance traveled (coasting) (A) and the distance traveled (decelerated) with the brake (decelerated) (A +) This is the ratio (coasting ratio P3) that the distance (A) traveled by stepping on both the accelerator and brake in B)! /, N!
  • the parameter (P4) is the vehicle speed (idle travel vehicle speed V4), and the parameter (P2) in the steady travel region (E2) not corresponding to any of the above three regions is the engine speed (steady travel engine speed). N2) (Claim 3).
  • the steady travel region (E2) is classified into a high speed travel region (E21) that travels at a predetermined vehicle speed or more over a predetermined distance and a region (E22) that does not correspond to the high speed travel region (E21).
  • the parameters (P21) are the engine speed (N), the vehicle speed (V), and the fuel equivalent amount used for acceleration before and after braking (Claim 4).
  • the plurality of regions are classified into a region (E5) where the distance from start to stop is a predetermined distance or less and a region not corresponding thereto, and the parameter in the region (E5) which is less than the predetermined distance.
  • P5 is a value “(vehicle speed V) 2 Z travel distance S” obtained by dividing the square of the vehicle speed by the travel distance (claim 5).
  • the fuel consumption evaluation system of the present invention increases the accelerator opening (oc) from the relatively low speed and increases the vehicle speed (V) or the moving average vehicle speed (Vm) (starting calorie).
  • the accelerator opening (ex) is relatively small and the engine speed (N) is relatively low (idle travel region E4), and the steady travel region (E2), the storage means (11) From the data stored in the above-mentioned parameters ("start acceleration shift up engine speed N1 and start acceleration accelerator opening ⁇ 1" ⁇ 1, "steady travel engine speed ⁇ 2" ⁇ 2, "idle travel vehicle speed V4" P4,
  • start acceleration shift up engine speed N1 and start acceleration accelerator opening ⁇ 1" ⁇ 1, "steady travel engine speed ⁇ 2" ⁇ 2, "idle travel vehicle speed V4" P4 On the other hand, in the region where the distance to the stop is less than or equal to the predetermined distance, there is a correlation between “(vehicle speed V) 2 Z travel distance S” P5) and fuel consumption (fuel consumption q per unit travel distance
  • the fuel consumption (Q) is the travel distance (S in the region (E3)).
  • the control means (10) is configured to compare the determined fuel consumption (Q) with an average value (Qm) obtained from data stored in the storage means (11). (Claim 8).
  • the control means (10) is configured to compare the determined fuel consumption (Q) with a target value (claim 9).
  • the fuel consumption evaluation system of the present invention may be configured to ignore data in a running state in which the determined fuel consumption (Q) is inaccurate (claim 10).
  • the inaccurate traveling state is a special traveling state such as, for example, an uphill, a downhill, or repeated ON / OFF operation of an accelerator, which will be described later.
  • the fuel consumption evaluation system of the present invention has output means (for example, the display 13, the printer 14, etc.), and is based on the determined fuel consumption (Q), the average value, or the target value. It is configured to output an evaluation (claim 11).
  • the fuel consumption evaluation system of the present invention includes an engine speed measuring means (2) for measuring an engine speed (N) of a vehicle (1), and an accelerator position measurement for measuring an accelerator position (a). Means (3), vehicle speed measuring means (4) for measuring vehicle speed (V), fuel flow measuring means (5) for measuring fuel flow rate (Fw), and engine load measurement for measuring engine load (L) Means (6) and the fuel consumption of the vehicle (1) from the measured engine speed (N), accelerator opening ( ⁇ ), vehicle speed (V), fuel flow rate (Fw) and engine load (L). (Q) and a control means (20) for calculating the vehicle mass (m), the control means (20) is provided with storage means (in-vehicle database 7), and a plurality of driving start forces and stoppages are provided.
  • the plurality of regions ( ⁇ 1 to ⁇ 4) include a region (start acceleration region E1) in which the vehicle speed (V) or the moving average vehicle speed increases as the accelerator opening degree (hi) increases even with a relatively low speed force.
  • the area where the opening is reduced (deceleration area ⁇ 3), the accelerator opening (a) is relatively small, the engine speed ( ⁇ ) is relatively low, and the region (idle running area ⁇ 4) And a steady running region ( ⁇ 2) that does not fall into any of the regions (El, ⁇ 3, ⁇ 4) Section 13).
  • the accelerator opening (oc) is increased from the relatively low speed and the vehicle speed (V) or the moving average vehicle speed is increased (start acceleration area E1).
  • the parameters (Pl, P2) are the engine speed at the time of gear shift (shift-up engine speed Nl; P1) and accelerator opening ( ⁇ 1; P2), and a region for reducing the accelerator opening ( ⁇ )
  • the above parameters (deceleration coasting ratio; ⁇ 5) in the deceleration area ⁇ 3) are the distance traveled (coasted) with both the accelerator and the brake ( ⁇ ) and the distance traveled with the brake (decelerated travel). ( ⁇ ) and the sum of ( ⁇ + ⁇ ) and stepping on both the accelerator and brake!
  • the ratio of the distance traveled by ( ⁇ ), where the accelerator opening (hi) is relatively small and Region where engine speed ( ⁇ ) is relatively low (idle running
  • the parameter ( ⁇ 6) in the region ⁇ 4) is the vehicle speed, and does not correspond to any of the above three regions, and the parameter ( ⁇ 3) in the steady running region ( ⁇ 2) is the engine speed (steady running engine).
  • the rotational speed is ⁇ 2) (claim 14).
  • the parameter relating to the fuel consumption between the start and stop is a value obtained by dividing the square of the vehicle speed by the travel distance, that is, “(vehicle speed) 2 km travel distance”.
  • the steady travel area ( ⁇ 2) is classified into a high speed travel area that travels at a predetermined vehicle speed over a predetermined distance and a non-applicable area, and data is collected (claim 15).
  • the information from the fuel flow rate measuring means (5) is integrated for each of the plurality of regions ( ⁇ 1 to ⁇ 4), and the obtained regions ( ⁇ 1 The integrated value of ⁇ 4) is obtained by adding up the starting force and the stoppage (claim 16).
  • the fuel consumption evaluation system of the present invention measures the engine speed (N) of the vehicle (1).
  • Fuel flow measurement means (5) that measures engine load measurement means (6) that measures engine load (L), measured engine speed (N), accelerator opening ( ⁇ ), vehicle speed (V ), Fuel flow (Fw) and engine load (L) data storage means (in-vehicle database 7), fuel consumption (Q) and vehicle mass (m )
  • the plurality of regions ( ⁇ 1 to ⁇ 4) include a region (start acceleration region E1) in which the vehicle speed (V) or the moving average vehicle speed increases while relatively low-speed force increases the accelerator opening (hi) and the accelerator.
  • the area where the opening is reduced (deceleration area ⁇ 3), the accelerator opening (a) is relatively small, the engine speed ( ⁇ ) is relatively low, and the region (idle running area ⁇ 4) And a steady running region ( ⁇ 2) that does not fall into any of the regions (El, ⁇ 3, ⁇ 4) (claim 20).
  • the accelerator opening (oc) is increased from the relatively low speed and the vehicle speed (V) or the moving average vehicle speed is increased (start acceleration area ⁇ 1).
  • the parameters (Pl, ⁇ 2) are the engine speed during gear shift (shift-up engine speed Nl; ⁇ 1) and accelerator opening ( ⁇ 1; ⁇ 2).
  • the parameter relating to the fuel consumption between the start and stop is a value obtained by dividing the square of the vehicle speed by the travel distance, that is, “(vehicle speed) 2 Z travel distance”.
  • the steady travel area (E2) is classified into a high speed travel area that travels at a predetermined vehicle speed over a predetermined distance and a non-applicable area, and data is collected (claim 22).
  • the information from the fuel flow rate measuring means (5) is integrated for each of the plurality of regions (E1 to E4), and the calculated regions (E1 To the sum of the values of E4) from start to stop (claim 23).
  • the recorded operation data is divided into a plurality of areas from the start of travel to the stop. (See Fig. 2), and parameters related to fuel consumption for each of the plurality of regions (see ⁇ E1: Start acceleration region, E2: Steady travel region, E3: Deceleration region, E4: Idle travel region)
  • Start acceleration shift up engine speed N1 and start acceleration accelerator opening a 1 ”Pl,“ Steady travel engine speed N2 ”P2,“ Deceleration coasting ratio ”P3,“ Idle travel vehicle speed V 4 ”P4 or“ (Vehicle speed V) 2 Z mileage S ”P5) is set (see Fig.
  • Each parameter (Pl, P2, P4, P5) excluding the deceleration coasting ratio (P3) and the fuel consumption (q) per unit distance in each region (E1 to E5) are correlated (correlation in Fig. 5).
  • the average value of the fuel consumption for each travel region can be obtained.
  • the average value of the fuel consumption for each running region by the correction coefficient (K) as necessary, a more appropriate fuel consumption can be obtained.
  • the average value (Qm) with the fuel consumption (Q) obtained from actual operation data how much fuel was saved or how much wasted for average operation Can be obtained quantitatively (see Figure 6) Can also be associated with a specification how the operation of the driver.
  • equation 1 shows how much power can be saved with respect to average coasting (when the calculation result is negative) or how much wasted force (when the calculation result is positive). Can be obtained quantitatively.
  • a Q Fuel saving amount with respect to the average value (Qm) of fuel consumption in the deceleration area (E3) [Unit: L] (in case of negative value), or (in case of waste amount: positive)
  • Equation 1 if the target deceleration coasting rate is used instead of the average deceleration coasting rate, it can be determined whether fuel consumption is saved or wasted for the target.
  • the target value of each parameter is averaged + (or
  • the level considered as an average may be variable.
  • the target level can be made variable.
  • the determination of “downhill (downhill)” is based on the case where the accelerator opening is equal to or less than a predetermined value and the engine speed is equal to or higher than a predetermined value, and an acceleration equal to or higher than a predetermined value corresponding to each gear ratio is generated. Downhill (downhill) ".
  • the determination of “uphill (uphill)” is determined as “uphill (uphill)” when the accelerator opening is equal to or greater than a predetermined value and the acceleration is equal to or lower than a predetermined value according to each transmission gear.
  • (1) and (2) are correlated with the fuel consumption per unit distance (q), they can be evaluated by the processing described above.
  • (3) obtain the fuel consumption used for acceleration before and after braking. By subtracting the amount of fuel consumed during normal driving from this amount of fuel consumed, the amount of fuel consumed that has been used in excess can be determined.
  • the driver's efforts can be reflected in the driver's evaluation by knowing how much the driver is actually fuel-saving driving by using a quantitative value called fuel consumption.
  • driving guidance can be specifically performed in a database.
  • the recorded operation data is divided into a plurality of travels from the travel start to the stop. (See Fig. 10), and parameters related to fuel consumption for each of the plurality of regions (see ⁇ E1: Start acceleration region, E2: Steady travel region, E3: Deceleration region, E4: Idle travel region)
  • Starting acceleration shift-up engine speed N 1 ”P 1,“ Starting acceleration accelerator opening al ”P2,“ Steady running engine speed ⁇ 2 ” ⁇ 3,“ Vehicle speed (V) 2 Z travel distance ” ⁇ 4,“ Deceleration coasting rate ” ⁇ 5,“ Idle traveling vehicle speed ” ⁇ 6) is set, and the correlation between the parameter ( ⁇ 1 to ⁇ 6) and the fuel consumption ratio ( ⁇ ) by any operation when the average driving method is 100% Based on the fuel consumption rate and the target
  • the operation that calculates the fuel consumption ratio addition, actual vehicle total mass, in order to correct the fuel consumption ratio
  • the fuel consumption is evaluated not only for the absolute amount but also for the average operation for each parameter. Compared with the method of rotation and target operation, the evaluation is regarded as familiar, and realistic measures can be taken to improve fuel consumption (execution of energy-saving operation).
  • the target fuel consumption and the fuel consumption that can be saved can be obtained by the following methods.
  • the fuel consumption (Gj) in actual operation is obtained by integrating the fuel flow signal from the vehicle.
  • Ga Gj X ⁇ & /
  • the fuel consumption (Gt) in the target driving method is obtained by multiplying the fuel consumption (Gj) in the actual driving by the fuel consumption ratio ( ⁇ t) in the target driving method. Then, it is calculated by dividing by the fuel consumption rate (e j) of the actual driving method.
  • Fuel consumption that can be saved that is, the difference in fuel consumption in the actual operation and the fuel consumption in the target operation ( ⁇ G) is the fuel consumption in the actual operation.
  • the fuel consumption in the target driving method is the fuel that can be saved from the actual fuel consumption. It is obtained by subtracting the total of each factor of consumption.
  • the target fuel efficiency is obtained by dividing the mileage by the fuel consumption in the target driving method.
  • the target fuel efficiency can be obtained with high accuracy.
  • the "target” in the target driving method is, for example, as shown in FIG.
  • the value can be obtained by subtracting the standard deviation from the average of the frequency distribution.
  • Each data relating to the fuel consumption described above is output from the control means (20) to the output means (22), and how much operation is performed with respect to the target value in each parameter (P1 to P6). Or output power (report) given to the driver and Z or the operation manager in the output data (report) that can be obtained quantitatively. It is possible to provide guidance (advice) on the amount of improvement in fuel consumption.
  • the level considered as an average may be variable.
  • the target level can be made variable.
  • the idling stop time and fuel consumption can be calculated so that advice and management can be provided for wasting fuel during long idling operations (related to parameter P6) while the vehicle is stopped. . By doing so, the driver's intention to save energy In addition to improving knowledge, it also contributes to improving the corporate image of the carrier.
  • the driver's efforts can be grasped by comparing the fuel consumption rate with how much fuel-saving driving the driver actually performed compared to the average driving. Can be reflected in the evaluation.
  • operation guidance can be provided in a database.
  • the recorded operation data is divided into a plurality of travels from the travel start to the stop. (See Fig. 22), and parameters related to fuel consumption for each of the plurality of regions (see ⁇ E1: Start acceleration region, E2: Steady travel region, E3: Deceleration region, E4: Idle travel region)
  • Starting acceleration shift-up engine speed N 1 ”P 1,“ Starting acceleration accelerator opening al ”P2,“ Steady running engine speed ⁇ 2 ” ⁇ 3,“ Vehicle speed (V) 2 Z travel distance ” ⁇ 4,“ Deceleration coasting rate ” ⁇ 5,“ Idle traveling vehicle speed ” ⁇ 6) is set, and the correlation between the parameter ( ⁇ 1 to ⁇ 6) and the fuel consumption ratio ( ⁇ ) by any operation when the average driving method is 100% Based on the fuel consumption rate and the target
  • the operation that calculates the fuel consumption ratio addition, actual vehicle total mass, in order to correct the fuel consumption
  • the fuel consumption is evaluated not only for the absolute amount but also for each parameter. Compared with the method of rotation and target operation, the evaluation is regarded as familiar, and realistic measures can be taken immediately for fuel cost improvement (execution of energy-saving operation).
  • the target fuel consumption and the fuel consumption that can be saved can be obtained by the following methods.
  • the fuel consumption (Gj) in actual operation is obtained by integrating the fuel flow signal from the vehicle.
  • Ga Gj X ⁇ & /
  • the fuel consumption (Gt) in the target driving method is obtained by multiplying the fuel consumption (Gj) in the actual driving by the fuel consumption ratio ( ⁇ t) in the target driving method. Then, it is calculated by dividing by the fuel consumption rate (e j) of the actual driving method.
  • Fuel consumption that can be saved that is, the difference in fuel consumption in the actual operation and the fuel consumption in the target operation ( ⁇ G) is the fuel consumption in the actual operation.
  • the fuel consumption in the target driving method is the fuel that can be saved from the actual fuel consumption. It is obtained by subtracting the total of each factor of consumption.
  • the target fuel efficiency is obtained by dividing the mileage by the fuel consumption in the target driving method.
  • the target fuel efficiency can be obtained with high accuracy.
  • the “target” in the target driving method is, for example, as shown in FIG.
  • the value can be obtained by subtracting the standard deviation from the average of the frequency distribution.
  • Each data relating to the fuel consumption described above is output from the control means (20) to the output means (22), and how much operation is performed with respect to the target value in each parameter (P1 to P6). Or output power (report) given to the driver and Z or the operation manager in the output data (report) that can be obtained quantitatively. It is possible to provide guidance (advice) on the amount of improvement in fuel consumption.
  • the level considered as an average may be variable.
  • the target level can be made variable.
  • Fuel is wasted during idling for a long time while stopped (related to parameter P6).
  • it is possible to obtain the idling stop time and fuel consumption. By doing so, it will increase the driver's awareness of energy-saving driving and contribute to improving the corporate image of the carrier.
  • the driver's efforts can be grasped by comparing the fuel consumption rate with how much fuel-saving driving the driver actually performed compared to the average driving. Can be reflected in the evaluation.
  • operation guidance can be provided in a database.
  • the first embodiment of the fuel consumption evaluation system is an engine speed measuring means for measuring the engine speed N of the truck 1 (hereinafter, the engine speed measuring means is referred to as an engine speed sensor). 2) Accelerator opening measurement means for measuring accelerator opening oc (hereinafter referred to as accelerator opening measuring means) 3.
  • Vehicle speed measuring means for measuring vehicle speed V (hereinafter referred to as vehicle speed measurement) 4), fuel flow measurement means for measuring the fuel flow rate Fw (hereinafter, fuel flow measurement means is referred to as a fuel meter) 5, measured engine speed N, accelerator opening oc, vehicle speed V, Control means for evaluating the fuel consumption Q of the lorry 1 from the fuel flow rate Fw (hereinafter, the control means is referred to as the control unit) 10 It is constituted by.
  • the control unit 10 includes storage means (hereinafter, the storage means is referred to as a database) 11 mounted on the vehicle 1 to be evaluated 11, for example, a computer main body 12 provided in a sales office, a display 13, and an input means 14. It has a printer 15 and a memory card 16 that can be carried by a driver.
  • storage means hereinafter, the storage means is referred to as a database
  • the control unit 10 classifies until the start of driving force is stopped into four areas in the illustrated example: a start acceleration area El, a steady travel area E2, a deceleration area E3, and an idle travel area E4.
  • the parameters related to the fuel consumption Q are ⁇ start acceleration shift up engine speed N1 and accelerator opening ⁇ 1 '' P1, ⁇ steady traveling engine speed ⁇ 2 '' ⁇ 2, “Deceleration coasting ratio” ⁇ 3, “Idle travel vehicle speed V4” P4 is set, and the correlation between these parameters P1 to P4 and fuel consumption (fuel consumption per unit travel distance) q (correlation line F in Fig. 5)
  • the fuel consumption amounts Q1 to Q4 for each of the plurality of regions E1 to E4 are determined, and the evaluation is performed based on the determined fuel consumption amounts Q1 to Q4.
  • the parameter “(vehicle speed V) 2 Z travel distance S” P5 means that the characteristic line in the characteristic diagram showing the relationship of the square of the vehicle speed V to the travel distance S in FIG.
  • the characteristic line b shows that if the vehicle speed is increased more than necessary, a large amount of energy is required, and that energy is thrown away as the heat of the brake when decelerating. It shows how energy is wasted. That is, the region force surrounded by the a line and the b line shows the wasteful energy for the average acceleration * deceleration.
  • the characteristic line c is a diagram conceptually imagining that energy is saved for the region surrounded by the a-line and the c-line because only the minimum necessary energy is input during acceleration, for example.
  • Dividing the square of the vehicle speed V by the mileage S is because each case does not necessarily have the same distance. Since it doesn't run, it is compared with the unit distance, and the comparison is fair.
  • the parameters P1 to P5 are easily associated with the manner of operation, and the accuracy of each fuel consumption Q calculated based on these parameters is improved.
  • the vehicle has been improved year by year to match the performance of such an improved vehicle 1. It can be a database.
  • Each parameter except the deceleration coasting ratio P3 “start acceleration shift up engine speed N1 and accelerator opening ⁇ 1” ⁇ 1, “steady running engine speed ⁇ 2” ⁇ 2, “idle running vehicle speed V4” ⁇ 4, or “(Vehicle speed V) 2 ⁇ Travel distance S” P5 has a correlation with the fuel consumption (fuel consumption q per unit distance) in each region (El ⁇ ).
  • the following shows a case where the normal running distance of 2000 km is exceeded in actual operation and the steady running engine speed N is l lOOrpm.
  • the amount of fuel consumed for the average operation is calculated. It is possible to quantitatively determine how much was saved or how much wasted. It can also be associated with how the driver is driving.
  • equation 1 shows how much power can be saved with respect to average coasting (when the calculation result is negative) or how much force is wasted (when the calculation result is positive). Case) can be obtained quantitatively.
  • ⁇ Q Fuel saving amount relative to average value Qm of fuel consumption in deceleration region [Unit: L] (in case of negative value), (or waste amount: in case of positive)
  • the target value of each parameter is determined as the average + (or one) 0. ⁇ ⁇ (standard deviation).
  • the target fuel consumption q per unit distance can be obtained for each time. Furthermore, by comparing these target values with actual operation data, it is possible to quantitatively grasp how superior or inferior the driver's driving method and fuel consumption are to the target values. I can do it.
  • the level considered as an average can be made variable.
  • the target level can be made variable.
  • downhill (downhill) is determined by determining that the accelerator opening ⁇ (see FIG. 2) detected by the accelerator opening sensor (reference numeral 3 in FIG. 1) is less than a predetermined value and the engine speed ⁇ ⁇ is predetermined. In the case where the value is greater than or equal to the value, a case where acceleration greater than or equal to a predetermined value corresponding to each transmission gear ratio is determined as “downhill (downhill)”.
  • Deceleration coasting rate can be determined appropriately.
  • the determination of “uphill (uphill)” is determined as “uphill (uphill)” when the accelerator opening ⁇ is equal to or larger than a predetermined value and the acceleration is equal to or lower than a predetermined value according to each transmission gear.
  • (1) and (2) are correlated with the fuel consumption q per unit distance, they can be evaluated by the processing described above.
  • step Sl the program is started, and the operation data recorded in the in-vehicle database 11 so far is read by, for example, the memory card 16 (step Sl).
  • the data copied to the memory card 16 is inserted into the sales office computer 12 by inserting the memory card 16 into a predetermined operation, and the computer 12 calculates the operating fuel consumption Q, the operating distance S, and the fuel consumption q. (Step S2).
  • step S3 the processing is divided into each travel region (start acceleration region El, steady travel region E2, deceleration region E3, idle travel region E4) (step S3), and fuel-saving operation in the start acceleration region E1 is performed.
  • Evaluation calculation (step S4) evaluation calculation of fuel-saving operation in the steady driving range E2 (step S5), evaluation calculation of fuel-saving driving in the deceleration region E3 (step S6), saving in the idle driving region E4
  • the fuel economy driving evaluation calculation (Step S7) and the fuel saving driving evaluation calculation (Step S8) in the start / stop zone are sequentially performed.
  • step S9 the average fuel consumption Qm and the fuel consumption (consumption per distance) q are calculated (step S9), and then the target values for the fuel consumption and the fuel consumption are calculated (step S9). (Step S10)
  • step S11 the operation fuel consumption Q and the fuel consumption q are compared with the target values calculated in steps S9 and S10, and the driving evaluation is performed. Finally, the above results are created as an operation advice report (step S12), and all controls (evaluation process) are completed.
  • the driver's efforts can be reflected in the driver's evaluation by knowing how much the driver is actually fuel-saving driving by using a quantitative value called fuel saving.
  • driving guidance can be specifically performed in a database.
  • the engine rotation sensor 2, the accelerator opening sensor 3, the vehicle speed sensor 4, and the fuel flow meter 5 as means for detecting each parameter are mounted on the vehicle by dedicated circuits. This is an embodiment connected to the database 11.
  • the accelerator signal, the fuel flow rate signal, the vehicle speed signal, and the engine speed signal are collected as digital signals to the LAN repeater 6 by the in-vehicle communication network “in-vehicle LAN” in advance. It is configured to be stored in the in-vehicle database 11 by a wire (communication cable) W. Except for these configurations, the operation and effects are substantially the same as those of the first embodiment shown in FIGS. 1 to 7, and the subsequent description is omitted.
  • the data recorded in the equipment U1 on the vehicle side, the equipment U2 on the management side, and the equipment U1 on the vehicle side are transferred to the equipment U2 on the management side.
  • the memory card 15 is a transfer means for sending.
  • the management side refers to, for example, a vehicle management department of a transportation company that owns the vehicle.
  • the vehicle-side equipment U1 is an engine speed measuring means for measuring the engine speed N of a vehicle (a truck in the illustrated example) 1 (hereinafter, the engine speed measuring means is referred to as an engine speed sensor) 2 And an accelerator opening measuring means for measuring the accelerator opening ⁇ (hereinafter, the accelerator opening measuring means is referred to as an accelerator opening sensor) 3 and a vehicle speed measuring means for measuring the vehicle speed V (hereinafter referred to as a vehicle speed measuring means).
  • Fuel flow measurement means for measuring the fuel flow rate Fw (hereinafter referred to as fuel meter) 5)
  • Engine load measurement means for measuring the engine load L (hereinafter referred to as engine load measurement) 6) and on-vehicle storage means for storing the measured engine speed N, accelerator opening a, vehicle speed V, fuel flow rate Fw, and engine load L as vehicle signals (hereinafter referred to as on-vehicle
  • the storage means is composed of an in-vehicle database and u) 7.
  • the vehicle data is input via the memory card 15, and the measured engine speed N, the accelerator opening ⁇ , the vehicle speed V, the fuel flow, and the vehicle data.
  • the printer 22 is an output means for outputting the evaluation results
  • the keyboard 24 is an input means attached to the control unit 20.
  • control unit 20 is configured to start and stop the driving force, in the illustrated example, the start acceleration region El, the steady travel region E2, the deceleration region E3, and the idle travel region E4. Classify into areas.
  • the parameters related to the fuel consumption Q are "start acceleration shift up engine speed N 1" P 1, "start acceleration accelerator opening al” P2, Set the travel engine speed ⁇ 2 '' ⁇ 3, ⁇ Vehicle speed (V) 2 Z travel distance '' ⁇ 4, ⁇ Deceleration coasting ratio '' ⁇ 5, ⁇ Idle traveling vehicle speed '' ⁇ 6, and set the parameters ⁇ 1 to ⁇ 6 and the average driving method Based on the correlation with the fuel consumption ratio when it is 100% (correlation line F in Fig. 12), the fuel consumption ratio is determined for each of the plurality of areas ⁇ 1 to ⁇ 4, and the determined fuel consumption It is structured to evaluate based on the ratio ⁇ !
  • the parameters P1 to P6 are easily associated with the manner of operation, and the accuracy of each fuel consumption Q calculated based on these parameters is improved.
  • the vehicle In addition to improving the accuracy of a new database that can be added to such a database (not shown) in the sequential control unit 20, the vehicle has been improved year by year and matched the performance of such an improved vehicle 1. It can be used as a database come.
  • the fuel consumption rate j in actual driving is obtained by the same method, it is 105% in the illustrated example.
  • the quantity of evaluation related to fuel consumption is the average driving method.
  • the percentage of fuel consumption when% is expressed as ⁇ !
  • the specific target fuel consumption and the fuel consumption that can be saved can also be calculated.
  • the fuel consumption Gj in actual operation is obtained by integrating the fuel flow rate signal from the fuel meter 5 or the engine control unit (not shown).
  • Ga Gj X la / lj
  • Fuel consumption Gt in the target driving method is calculated by multiplying the fuel consumption amount Gj in the actual operation by the fuel consumption rate t in the target driving method, and then Obtained by dividing by the fuel consumption ratio ⁇ j of the manufacturer.
  • Fuel consumption that can be saved that is, the difference between the fuel consumption in the actual operation and the fuel consumption in the target operation ⁇ G is the fuel consumption Gj in the actual operation. Calculate by reducing the fuel consumption Gt in the target driving method.
  • the fuel consumption in the target driving method is obtained by subtracting the total of each fuel consumption factor that can be saved from the actual fuel consumption.
  • the target fuel efficiency is obtained by dividing the mileage by the fuel consumption in the target driving method.
  • the target fuel efficiency can be obtained with high accuracy.
  • Fig. 13 is a correlation diagram showing the relationship between the driving method and the fuel consumption rate in the fixed volume state
  • Fig. 14 shows the relationship between the driving method and the fuel consumption rate in the empty state. It is a correlation diagram showing the relationship.
  • the ratio of fuel consumption is 103% in actual operation compared to the average driving method, and the ratio of fuel consumption is 92% in the target driving method.
  • the ratio of fuel consumption is 105% in actual operation, and the ratio of fuel consumption is 90% in the target driving method, and the difference to the average driving method is widening.
  • Fig. 15 the fixed volume and the total vehicle mass of empty vehicles are known, and the fuel consumption rate in actual operation is also determined as 105% and 103%, respectively, according to Figs. Aj point of product and Bj point of empty car are obtained. If Aj point and Bj point are connected by straight line FF and the position of the total mass of the vehicle during actual operation is selected on that line, the fuel consumption ratio 104% is read when the average driving method at that time is 100% I can do it.
  • Fig. 16 the total vehicle mass of the fixed volume and the empty vehicle is known, and the fuel consumption ratio in the target driving method is also calculated as 90% and 92%, respectively, according to Figs. 13 and 14.
  • the fixed point At point and the empty Bt point are obtained. If the At point and Bt point are connected by a straight line FF and the position of the total vehicle mass in the target driving method on that line is selected, the fuel consumption rate when the average driving method at that time is 100% 91 % Can be read.
  • the total vehicle mass m can be determined, for example, by the following method.
  • the engine load (L) is, for example, the engine torque
  • the vehicle driving force (tire rotational force) is the gear ratio of the power transmission system (transmission, differential) and the mechanical efficiency of each transmission system. It is obtained by knowing the tire radius and the friction coefficient of the tire.
  • the in-vehicle database 7 and the control unit U2 on the management side (analysis PC) 20 are configured to be able to send and receive data via wireless communication, and vehicle measurements were taken.
  • Various data recorded in the in-vehicle database shall be input to the control unit 20 immediately.
  • step S1 operation data (engine speed N, accelerator opening, vehicle speed V, fuel flow rate Fw, and engine load L) are read. Proceeding to step S2, the in-vehicle database 7 or the control unit 20 on the management side determines whether or not the vehicle is stopped. If the vehicle is stopped (YES in step S2), the process proceeds to the next step S3. If the vehicle is not stopped (NO in step S2), the control is restored.
  • step S3 the operating fuel consumption, travel distance, and fuel consumption are calculated from the vehicle data, and then the process proceeds to step S4 to calculate the total mass m of the operating vehicle by the method described above.
  • step S5 for each parameter (P1 to P6) of driving method, the ratio of fuel consumption of actual driving method is calculated when the fuel consumption of average driving method is 100%. To do.
  • step S6 for each parameter (P1 to P6) of the driving method, the fuel consumption ratio of the target driving method when the fuel consumption of the average driving method is set to 100%. Is calculated.
  • step S7 the process is divided into the travel regions (E1; start acceleration region, E2; steady travel region, E3; deceleration region, E4: idle travel region).
  • step S9 an evaluation of fuel-saving driving in the steady driving region E2 is calculated.
  • step S10 the evaluation of the fuel saving operation in the deceleration region E3 is calculated.
  • step S11 an evaluation of fuel-saving driving in the idle driving region E4 is calculated.
  • step S12 the evaluation of the fuel saving operation in E1 to E4, that is, the section from start to stop is calculated.
  • step S13 (1) average fuel consumption and fuel consumption (total of factors of each driving method) are calculated.
  • step S14 (2) target fuel consumption and fuel consumption (total of parameters for each driving method) are calculated.
  • step S15 the actual operating fuel consumption and fuel consumption are compared with the calculation results of (1) and (2) to calculate driving evaluation (add evaluation).
  • step S16 various data relating to the fuel consumption obtained in step S15 and the evaluation of operation are summarized as a report in a predetermined format, for example, and output to the printer 22 for the driver and the vehicle. Presented to the operation manager.
  • FIG. 18 is a radar chart showing a part of the fuel-saving driving diagnosis report output as a summary of the fuel-saving driving evaluation. According to Figure 18, on general roads, the power to keep good driving in order to achieve fuel saving. On highways, the engine speed range, brake operation, and travel speed are all over the parameters. Demonstrate that there is room for improvement.
  • the report may optionally output the actual fuel consumption, the amount of fuel saved for the average driving method, and the amount saved at that time. .
  • the amount of fuel saved or the amount of wasted power can be obtained quantitatively and accurately with respect to the average operation for each area obtained by this method. It can also be associated with how the driver is driving.
  • the average driving method when the average driving method is set to 100%, the fuel consumption ratio in actual operation is obtained, and the average driving method or The amount of fuel saved or how much wasted can be quantitatively and accurately grasped for the target driving method.
  • Guidance can be made quantitatively or compared to the average driving method and target driving method.
  • the driver's efforts can be grasped in the driver's evaluation by knowing how much the driver actually performed the fuel-saving driving by the quantitative value called the fuel saving amount.
  • driving guidance can be specifically performed in a database.
  • the level considered as an average can be made variable.
  • the target level can be made variable.
  • the engine rotation sensor 2, the accelerator opening sensor 3, the vehicle speed sensor 4, and the fuel flow meter 5, which are the detection means for each parameter, are respectively in-vehicle database 7 using dedicated circuits. It is embodiment connected to.
  • the accelerator signal, the fuel flow signal, the vehicle speed signal, and the engine speed signal are collected in advance as digital signals in the LAN device 8 by the in-vehicle communication network “in-vehicle LAN”. It is configured to be stored in the in-vehicle database 7 by the cable W. Except for these configurations, the operation and effects are substantially the same as those of the third embodiment shown in FIGS. 9 to 18, and the subsequent description is omitted.
  • the fifth embodiment of the fuel consumption evaluation system includes a vehicle (1) -side equipment U1 and a management-side equipment U2.
  • the management side refers to, for example, a vehicle management department of a transportation company that owns the vehicle.
  • the vehicle-side equipment U1 is an engine speed measuring means for measuring the engine speed ⁇ ⁇ of a vehicle (a truck in the illustrated example) 1 (hereinafter, the engine speed measuring means is referred to as an engine speed sensor) 2 And an accelerator opening measuring means for measuring the accelerator opening ⁇ (hereinafter, the accelerator opening measuring means is referred to as an accelerator opening sensor) 3 and a vehicle speed measuring means for measuring the vehicle speed V (hereinafter referred to as a vehicle speed measuring means).
  • fuel flow measuring means (Referred to as a vehicle speed sensor) 4 and the fuel flow rate for measuring the fuel flow rate Fw Measuring means (hereinafter, fuel flow measuring means is referred to as a fuel meter) 5, engine load measuring means for measuring engine load L (hereinafter, engine load measuring means is engine load sensor t, 6), and onboard control Consists of means 10 and
  • the in-vehicle control means 10 includes an interface 9, a control unit 11, a monitor 12 as a display means, an in-vehicle database 7 as a storage means, a wireless antenna 13, and power. It is configured.
  • the interface 9 and the in-vehicle database 7 are connected by the line L1, and the in-vehicle database 7 and the control unit 11 are connected by the line L2, and the control unit 11 and the monitor 1 are connected.
  • control unit 11 and the interface 9 are connected to each other by the line L3 and the line L4.
  • Each vehicle signal of the engine load L is stored in the in-vehicle database 7 through the interface 9 and the line L1.
  • the control unit 11 selects and extracts all or all of the vehicle signals from the in-vehicle database 7 via the line L2 as appropriate.
  • the management side equipment U2 described later is the power to send and receive data wirelessly.
  • the vehicle data is taken out from the in-vehicle database 7 by the memory card 15 and recorded in the memory card 15. It is also possible to send the vehicle data to the management side.
  • the management-side equipment U2 outputs the evaluation result by the management-side control means (hereinafter, the management-side control means is referred to as a fuel efficiency data analysis personal computer 20) and the fuel efficiency data analysis personal computer 20.
  • the printer 22 is an output means that outputs the data and the keyboard 24 is an input means that accompanies the control unit 20.
  • the fuel efficiency data analysis personal computer 20 receives the vehicle data via the network N and the wireless antenna 23, and the measured engine speed N, accelerator opening oc, vehicle speed V, fuel flow rate Fw, engine From the load, the total vehicle mass m and fuel Fuel consumption Q is calculated, and the fuel consumption when the average operation is performed by the method described later and the fuel consumption according to the target operation method are compared, and the fuel consumption that has been achieved by the appropriate operation method or saving Constructed to evaluate the amount! RU
  • the fuel efficiency data analysis personal computer 20 performs from the start to the end of travel, in the illustrated example, the start acceleration region El, the steady travel region E2, the deceleration region E3, and the idle travel region E4. It is classified into four areas.
  • the parameters related to the fuel consumption Q are "start acceleration shift up engine speed N 1" P 1, "start acceleration accelerator opening al” P2, Set the travel engine speed ⁇ 2 '' ⁇ 3, ⁇ Vehicle speed (V) 2 Z travel distance '' ⁇ 4, ⁇ Deceleration coasting ratio '' ⁇ 5, ⁇ Idle traveling vehicle speed '' ⁇ 6, and set the parameters ⁇ 1 to ⁇ 6 and the average driving method Based on the correlation with the fuel consumption ratio ⁇ (correlation line F in Fig. 24) when 100% is set, the fuel consumption ratio is determined for each of the plurality of regions ⁇ 1 to ⁇ 4, and the determined fuel consumption It is configured to evaluate based on the quantity ratio ⁇ !
  • the parameters P1 to P6 are easily associated with the manner of operation, and the accuracy of each fuel consumption Q calculated based on these parameters is improved.
  • each operation parameter is processed by processing such a lot of operation data close to the normal distribution.
  • the average value of the frequency distribution of parameters P1 to P6 and the degree of variation can be grasped.
  • the vehicle has been improved year by year. It can be a database that matches the performance of the improved vehicle 1.
  • the fuel consumption rate j in actual driving is obtained by the same method, it is 105% in the illustrated example.
  • the quantity of fuel consumption evaluation is the average driving method.
  • the percentage of fuel consumption when% is expressed as ⁇ !
  • the fuel consumption amount Gj in actual operation is obtained by integrating the fuel flow rate signal from the fuel meter 5 or an engine control unit (not shown).
  • Ga Gj X ⁇ & /
  • Fuel consumption in the target driving method Gt is the fuel consumption in the actual operation. Multiply the amount Gj by the fuel consumption rate t for the target driving method, and then divide it by the fuel consumption rate j for the actual driving method.
  • Fuel consumption that can be saved that is, the difference between the fuel consumption in the actual operation and the fuel consumption in the target operation ⁇ G is calculated from the fuel consumption Gj in the actual operation. Calculate by reducing the fuel consumption Gt in the target driving method.
  • the fuel consumption in the target driving method is obtained by subtracting the total of each fuel consumption factor that can be saved from the actual fuel consumption.
  • the target fuel efficiency is obtained by dividing the mileage by the fuel consumption in the target driving method.
  • the target fuel efficiency can be obtained with high accuracy.
  • Fig. 25 is a correlation diagram showing the relationship between the driving method and the fuel consumption rate in the fixed volume state
  • Fig. 26 shows the relationship between the driving method and the fuel consumption rate in the empty state. It is a correlation diagram showing the relationship.
  • the ratio of fuel consumption is 103% in actual driving compared to the average driving method, and the ratio of fuel consumption is 92% in the target driving method.
  • the ratio of fuel consumption is 105% in actual operation, and the ratio of fuel consumption is 90% in the target driving method, and the difference to the average driving method increases.
  • Fig. 27 the fixed volume and the total vehicle mass of empty vehicles are known, and the fuel consumption ratio in actual operation is also determined as 105% and 103%, respectively, according to Figs. 25 and 26. Aj point of product and Bj point of empty car are obtained. If Aj point and Bj point are connected by straight line FF and the position of the total mass of the vehicle during actual operation is selected on that line, the fuel consumption ratio 104% is read when the average driving method at that time is 100% I can do it.
  • Fig. 28 the fixed volume and the total vehicle mass of the empty vehicle are known, and the fuel consumption ratio in the target driving method is also determined as 90% and 92%, respectively, according to Figs. 25 and 26.
  • the fixed point At point and the empty Bt point are obtained. If the At point and Bt point are connected by a straight line FF and the position of the total vehicle mass in the target driving method on that line is selected, the fuel consumption rate when the average driving method at that time is 100% 91 % Can be read.
  • the total vehicle mass m can be obtained, for example, by the following method.
  • the driving force of the vehicle is the gear ratio of the power transmission system (transmission, differential) and the mechanical efficiency of each transmission system, assuming that the engine load (L) is, for example, the engine torque. It is obtained by knowing the tire radius and the friction coefficient of the tire.
  • the acceleration ⁇ can be obtained from the vehicle speed V obtained by the vehicle speed sensor 4.
  • step S1 operation data (engine speed N, accelerator position, vehicle speed)
  • step S2 the instantaneous accelerator opening is displayed on the monitor 12 of the vehicle-mounted control means 10, and the instantaneous fuel consumption is further displayed (step S3).
  • Fig. 30 shows the display (monitor) screen Mdl during travel.
  • the achievement level display M15 indicating the ratio of the achievement level of fuel consumption and the saving amount display M16 indicating the fuel saving amount are formed.
  • step S4 the control unit 11 of the in-vehicle control means 10 determines whether or not the vehicle is stopped. If the vehicle is stopped (YES in step S2), the process proceeds to the next step S5. If the vehicle is not stopped (NO in step S2), the control is restored.
  • step S5 after calculating the operating fuel consumption, travel distance, and fuel consumption from the vehicle data, the process proceeds to step S6, and the total vehicle mass m in operation is calculated by the method described above.
  • step S7 for each parameter (P1 to P6) of the driving method, the fuel consumption ratio of the actual driving method is calculated when the fuel consumption of the average driving method is 100%. To do.
  • step S8 for each parameter (P1 to P6) of the driving method, the fuel consumption ratio of the target driving method when the fuel consumption of the average driving method is assumed to be 100%. Is calculated.
  • step S9 the process is divided into the travel regions (E1; start acceleration region, E2: steady travel region, E3: deceleration region, E4: idle travel region).
  • step SI 1 an evaluation of fuel-saving driving in the steady travel region E2 is calculated, and step S
  • the fuel-saving driving evaluation in the idle driving region E4 is calculated in step S13.
  • axle opening display (accelerator opening is zero) Mi l
  • instantaneous fuel consumption display M12 instantaneous fuel consumption display M12
  • advice content "Let's use coasting driving” Ma3 Is displayed.
  • step S15 (1) average fuel consumption and fuel consumption (total of factors for each driving method) are calculated.
  • step S16 (2) target fuel consumption and fuel consumption (total of parameters for each driving method) are calculated.
  • step S17 the actual operation fuel consumption and fuel consumption are compared with the calculation results of (1) and (2) to calculate driving evaluation (add evaluation).
  • FIG. 34 and FIG. 35 are display screens Msl and Ms2 displayed for each stop, respectively.
  • the screen force S (from FIG. 34 to FIG. 35 or from FIG. 35 to FIG. 34) is switched to each other by pressing the panel switch Sw in the upper left corner of the screen.
  • Fig. 34 the accelerator opening display M21, shift-up engine speed M22, steady running engine speed M23, coasting utilization level M24, and traveling vehicle speed M25 are shown as percentage bar graphs with the target achievement rate set at 100%. /!
  • Fig. 35 shows the points of fuel saving, and the advice content “Let's suppress the depression of the accelerator” Ma4, the average axle opening display M31 with the target value and the fuel consumption display M32 are digitally displayed. is doing. In addition, the transition of operation evaluation M33 is displayed in bar graphs every 10 km up to 5 Okm!
  • step S18 various data on the fuel consumption obtained in step S17, and
  • the printer is summarized as a report in a predetermined format, and the printer
  • Fig. 36 is a fuel-saving driving diagnosis report R output as a summary of the fuel-saving driving evaluation.
  • the report R in Figure 36 includes a radar chart R1, a comprehensive evaluation column R2 that covers fuel consumption, a fuel saving advice column R3, R4, a fuel savings display column R5, and a general summary column R6. It is
  • Radar chart R1 is accelerator operation rl, upshift operation r2, traveling vehicle speed r3, engine speed r4, brake operation r5, traveling vehicle speed r6 on highway, brake operation r7 on highway, highway
  • the 8 items of vehicle speed fluctuation r8 in Fig. 8 are the evaluation items, and in the example shown, a 10-level evaluation is performed. 10 is (good) and 0 is (bad).
  • Fuel saving advice column In R3 and R4, R3 displays, for example, the level of the traveling vehicle speed, the effect on fuel saving, and further measures for fuel saving.
  • the secret measure for further fuel saving is displayed.
  • the fuel saving amount display column R5 the fuel saving amount and the target fuel saving amount are compared with each other for each operation parameter, and are shown as a bar graph as an actual quantity.
  • General summary column R6 displays a general summary on the driving method.
  • comparison data D between the target value dl of accelerator opening for start acceleration and actual operation (driving operation) d2 can be output.
  • Evaluation of fuel consumption is displayed in real time by the on-vehicle display means (monitor 12), so fuel-saving driving can be learned through OJT (On The Job Training).
  • the method of improving the specific operation method and the cost of improving the fuel consumption obtained by the improvement method are quantitatively or averaged. Compared with driving methods and target driving methods, guidance can be provided.
  • the driver's efforts can be reflected in the driver's evaluation by knowing how much the driver is actually fuel-saving driving by using a quantitative value called fuel saving.
  • driving guidance can be provided in a database.
  • the level considered as an average can be made variable.
  • the target level can be made variable.
  • the engine rotation sensor 2, the accelerator opening sensor 3, the vehicle speed sensor 4, and the fuel flow meter 5, which are detection means for each parameter, are respectively provided in an in-vehicle database 7 using dedicated circuits. It is embodiment connected to.
  • the accelerator signal, the fuel flow rate signal, the vehicle speed signal, and the engine speed signal are collected in advance by the in-vehicle communication network “In-vehicle LAN” as digital signals to the LAN device 8 for communication.
  • In-vehicle database 7 by cable W It is configured to be stored. Except for these configurations, the operation and effects are substantially the same as those of the fifth embodiment shown in FIGS. 20 to 37, and the subsequent description is omitted.
  • FIG. 1 is a block diagram showing a configuration of a fuel consumption evaluation system according to a first embodiment of the present invention.
  • FIG. 2 is a characteristic diagram in which the traveling region is divided into four regions and the evaluation parameters are associated with the traveling distance (traveling process) in implementing the present invention.
  • FIG. 3 is an explanatory diagram for explaining the magnitude of vehicle speed as the magnitude of kinetic energy.
  • FIG. 4 is a frequency distribution diagram showing a frequency distribution of evaluation parameters in the present invention.
  • FIG. 5 is a correlation diagram showing the relationship between each evaluation parameter and fuel consumption per unit mileage.
  • FIG. 6 An explanatory diagram summarizing how to calculate fuel consumption in a table.
  • FIG. 7 is a flowchart showing an evaluation procedure of the present invention.
  • FIG. 8 is a block diagram showing a configuration of a fuel consumption evaluation system according to a second embodiment of the present invention.
  • FIG. 9 is a block diagram showing a configuration of a fuel consumption evaluation system according to a third embodiment of the present invention.
  • FIG. 10 is a characteristic diagram in which the traveling region is divided into four regions and the evaluation parameters are associated with the traveling distance (traveling process) in carrying out the third embodiment of the present invention.
  • FIG. 11 is a frequency distribution diagram showing a frequency distribution of evaluation parameters in the third embodiment of the present invention.
  • FIG. 12 is a correlation diagram showing the relationship between each evaluation parameter and the fuel consumption ratio ⁇ in any driving method when the average driving method is 100%.
  • FIG. 13 A correlation diagram showing the relationship between each evaluation parameter and the fuel consumption ratio in an arbitrary driving method in a fixed volume state when the average driving method is 100%.
  • FIG. 14 is a correlation diagram showing the relationship between each evaluation parameter and the fuel consumption ratio in an arbitrary driving method in an empty state when the average driving method is 100%.
  • FIG. 15 Correlation diagram for determining the fuel consumption rate in the actual driving method for an arbitrary gross vehicle mass.
  • ⁇ 17 A control flowchart for explaining the fuel consumption evaluation method in the first embodiment.
  • ⁇ 18 Radar chart showing a part of the fuel-saving driving diagnosis report output as a summary of fuel-saving driving evaluation.
  • FIG. 19 is a block diagram showing the overall configuration of the fourth embodiment.
  • ⁇ 20 Block diagram showing the configuration of the fuel consumption evaluation system according to the fifth embodiment of the present invention.
  • ⁇ 21 Block diagram showing the configuration of the vehicle control means of the fifth embodiment.
  • FIG. 22 is a characteristic diagram in which the travel region is divided into four regions and the evaluation parameters are associated with the travel distance (travel process) in carrying out the fifth embodiment of the present invention.
  • FIG. 24 is a correlation diagram showing the relationship between each evaluation parameter and the fuel consumption ratio ⁇ in an arbitrary driving method when the average driving method is 100%.
  • FIG. 28 Correlation diagram for determining the fuel consumption rate in the target way of operation for any total vehicle mass.
  • FIG. 29 is a control flowchart for explaining a fuel consumption evaluation method in the fifth embodiment.
  • FIG. 30 A diagram showing a display screen during traveling according to the fifth and sixth embodiments.
  • FIG. 31 is a diagram showing a real-time information display screen during traveling according to the fifth and sixth embodiments.
  • FIG. 32 A diagram showing another display screen of real-time information related to traveling according to the fifth and sixth embodiments.
  • FIG. 33 A view showing another display screen of real-time information relating to traveling according to the fifth and sixth embodiments.
  • FIG. 34 is a diagram showing a display screen when the vehicle is stopped according to the fifth and sixth embodiments.
  • FIG. 35 is a diagram showing another display screen when the vehicle is stopped according to the fifth and sixth embodiments.
  • Fuel saving driving diagnosis report R output as a summary of fuel saving driving evaluation related to the fifth and sixth embodiments.
  • FIG. 37 Comparison data between the target value of the accelerator opening for start acceleration and actual operation (driving operation) output as an evaluation of a single item related to the fifth and sixth embodiments.
  • FIG. 38 is a block diagram showing the overall configuration of a sixth embodiment.
  • Cargo vehicle (first and second embodiments)
  • Z vehicle (third to sixth embodiments)
  • Accelerator position measurement means Z Accelerator position sensor (first to sixth embodiments)
  • Vehicle speed measurement means Z vehicle speed sensor (first to sixth embodiments)
  • Fuel flow measurement means Z fuel flow meter (first to sixth embodiments)
  • Vehicle-mounted storage means Z vehicle-mounted database (above, third to sixth embodiments)
  • Input means Z keyboard (above, first and second embodiments)

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Description

明 細 書
燃料消費量評価システム
技術分野
[0001] 本発明は、走行距離当たりの燃料消費量 (以下燃費という)等の車両の運転状態を 評価するためのシステム、及び空車、積車における車両総質量の差の大きな、例え ば、貨物自動車や、バスなどの燃料消費量に関わる車両の運転状態を評価するた めのシステムに関する。
背景技術
[0002] 運転者の運転技術の改善を促し、運転操作の改善により燃費を向上させる技術が 公開されている (例えば特許文献 1参照)。
[0003] 然るに、上記技術では、燃費を悪化させる運転の判定方法として、(一)加速度、 ( 二)減速度、(三)車速、(四)シフトアップが可能にも拘らずシフトアップをしない走行
、(五)空吹かし、の五つのパラメータによって判定していた。
このうち(一)〜 (三)は、所定値を超えた場合には「燃費を悪化させる運転」と判定 していた。そのような方法では、判定値を超えさえしなければ、「燃費を悪化させる運 転」と判定しない。しかし、現実的には各々の項目で、その程度に応じて省燃費運転 を評価するべきである。
また、(三)の車速に関して、発進力も停止までの走行距離の長短を考慮することな ぐ単純に車速の大小のみで判定することは不適切であり、評価結果が必ずしも実態 を反映するものではな 、と言う問題を抱えて 、た。
[0004] そうした問題点に対処するため、本発明者らは、平均的な運転の仕方に対して、燃 料を節約する運転をして 、るの力 それとも燃料を無駄に消費するような運転をして いるのかを定量的に求め、その求めたデータを基に、ドライバ及び Z又は運転管理 者に対して具体的な省燃費運転の指導を可能とする燃料消費量評価システムを提 供してきた。
かかる技術は、運転の仕方に対して、単位距離当りの燃料消費量を関係付けてい た。然るに、実際の道路は勾配があったり、交通の流れもその時々で異なり、実際の 燃料消費量に影響を与えてしまう。そのため、同じような運転の仕方をしていても、前 もって関連付けた単位距離当りの燃料消費量との関係もずれ易い。
さらに、燃料消費量は、積荷、或いは乗客を含めた車両総質量の大小によって左 右される力 これら、勾配や、車両総質量の大小の影響は、反映されないものであつ た。
そして、それらの技術は、本来ドライバに対して、省燃費運転を促すことが第 1の目的 であるにもかかわらず、その様にドライバに対して、リアルタイムで、省燃費運転を促 すことの出来る手段が規定されて 、な 、。
[0005] その他に、車両力 取得した運行データに基づいて、運転者及び管理者の双方に 対して異なる分析を行い、各々の立場で行える双方に適した異なる改善案を提案す る運転情報提供システムが提案されて ヽる (例えば、特許文献 2参照)。
然るに、その運転情報システムにおいて、リアルタイムで省燃費運転を促すことの 出来る手段にっ 、ては言及されて 、な 、。
特許文献 1 :特開 2002— 362185号公報
特許文献 2 :特開 2003— 16572号公報
発明の開示
発明が解決しょうとする課題
[0006] 本発明は上述した従来技術の問題点に鑑みて提案するものであり、平均的な運転 の仕方に対して、燃料を節約する運転をしているの力 それとも燃料を無駄に消費す るような運転をしているのかを定量的に求め、その求めたデータを基に、ドライバ及び
Z又は運転管理者に対して具体的な省燃費運転の指導を可能とする燃料消費量評 価システムの提供、及び省燃費運転の目標値を立て、車両総質量の変化をも考慮し 、勾配や交通の流れの影響をも受けることなぐその求めたデータを基に、ドライバ及 び Z又は運転管理者に対して具体的な省燃費運転の指導を可能とし、とりわけドライ バに対しては、リアルタイムで係る省燃費運転を喚起 ·指導出来る燃料消費量評価シ ステムの提供を目的として!/、る。
課題を解決するための手段
[0007] 本発明の燃料消費量評価システムは、貨物自動車(1)のエンジン回転数 (N)を計 測するエンジン回転数計測手段(2)と、アクセル開度( α )を計測するアクセル開度 計測手段 (3)と、車速 (V)を計測する車速計測手段 (4)と、燃料流量 (Fw)を計測す る燃料流量計測手段 (5)と、計測されたエンジン回転数 (N)、アクセル開度(ひ)、車 速 (V)、及び燃料流量 (Fw)から貨物自動車 ( 1)の燃料消費量 (Q)を評価する制御 手段(10)とを有し、該制御手段(10)は記憶手段(11)を備え、且つ、走行開始から 停止までを複数の領域 (E1 ;発進加速領域、 E2 ;定常走行領域、 E3 ;減速領域、 E4 ;アイドル走行領域)に分類し、該複数の領域 (E1〜E4)の各々について燃料消費 に関連するパラメータ(「発進加速シフトアップエンジン回転数 N1及び発進加速ァク セル開度 a l」Pl、「定常走行エンジン回転数 Ν2」Ρ2、「減速惰行割合」 Ρ3、「アイド ル走行車速 V4」P4)を設定し、前記パラメータ (Pl、 P2、 P4)と燃料消費量 (単位走 行距離当りの燃料消費量 q)との相関関係(図 5の相関線 F)に基づいて前記複数の 領域 (E1〜E4)毎の燃料消費量 (Q)を決定し、その決定された燃料消費量 (Q)に 基づ 、て評価を行なう様に構成されて 、ることを特徴として 、る(請求項 1)。
[0008] 前記複数の領域 (E1〜E4)は、比較的低速力もアクセル開度(ひ)を増加させると 共に車速 (V)或いは移動平均車速 (Vm)が上昇する領域 (発進加速領域 E1)と、ァ クセル開度( ex )を減少させる領域 (減速領域 E3)と、アクセル開度( oc )が比較的小 さく且つエンジン回転数 (N)が比較的低 、領域 (アイドル走行領域 E4)と、上述した 3つの領域 (El、 E3、 E4)の何れにも該当しない定常走行領域 (E2)とを含んでいる (請求項 2)。
[0009] また、本発明の燃料消費量評価システムは、前記比較的低速からアクセル開度( oc )を増加すると共に車速 (V)或いは移動平均車速 (Vm)が上昇する領域 (発進加速 領域 E1)における前記パラメータ (P1)はギヤシフトの際のエンジン回転数 (シフトァ ップエンジン回転数 N1)とアクセル開度( a 1)であり、前記アクセル開度( a )を減少 させる領域 (減速領域 E3)における前記パラメータ(P3)は、アクセルとブレーキの何 れも踏んで 、な 、で走行 (惰行)した距離 (A)とブレーキを踏んで走行 (減速走行)し た距離(B)との和(A+ B)におけるアクセルとブレーキの何れも踏んで!/、な!/、で走行 した距離 (A)が占める割合 (惰行割合 P3)であり、前記アクセル開度( ex )が比較的 小さく且つエンジン回転数 (N)が比較的低い領域 (アイドル走行領域 E4)における 前記パラメータ(P4)は車速 (アイドル走行車速 V4)であり、前記上述した 3つの領域 の何れにも該当しない定常走行領域 (E2)における前記パラメータ (P2)はエンジン 回転数 (定常走行エンジン回転数 N2)である(請求項 3)。
[0010] 前記定常走行領域 (E2)は、一定距離以上を所定車速以上で走行する高速走行 領域 (E21)と、それに該当しない領域 (E22)とに分類され、該高速走行領域 (E21) の前記パラメータ(P21)はエンジン回転数 (N)、車速 (V)、ブレーキ前後の加速の ために使用した燃料量相当量である(請求項 4)。
[0011] 前記複数の領域が、発進から停止までの距離が所定距離以下の領域 (E5)と、そ れに該当しない領域とに分類され、該所定距離以下の領域 (E5)における前記パラ メータ P5は車速の 2乗を走行距離で除算した数値「 (車速 V) 2Z走行距離 S」である( 請求項 5)。
[0012] また、本発明の燃料消費量評価システムは、前記比較的低速からアクセル開度( oc )を増加させると共に車速 (V)或 ヽは移動平均車速 (Vm)が上昇する領域 (発進カロ 速領域 E1)、前記アクセル開度( ex )が比較的小さく且つエンジン回転数 (N)が比較 的低い領域 (アイドル走行領域 E4)、前記定常走行領域 (E2)では、前記記憶手段( 11)に記憶されたデータから前記パラメータ(「発進加速シフトアップエンジン回転数 N1及び発進加速アクセル開度 α 1」Ρ1、「定常走行エンジン回転数 Ν2」Ρ2、「アイド ル走行車速 V4」 P4、発進カゝら停止までの距離が所定距離以下の領域では「(車速 V ) 2Z走行距離 S」 P5)と燃料消費量 (単位走行距離当りの燃料消費量 q)との相関関 係(図 5の相関線 F)を統計的に求めている(請求項 6)。
[0013] また、本発明の燃料消費量評価システムは、アクセル開度( oc )を減少させる領域( 減速領域 E3)では、燃料消費量 (Q)は、当該領域 (E3)における走行距離 (S)と、ァ クセルとブレーキの何れも踏んで 、な 、で走行 (惰行)した距離 (A)と、燃費(当該領 域における走行距離に対する燃料消費量; q)とに基づいて決定される (請求項 7)。
[0014] 前記制御手段(10)は、決定された燃料消費量 (Q)を、記憶手段(11)に記憶され たデータから得られた平均値 (Qm)と比較する様に構成されて ヽる (請求項 8)。
[0015] 前記制御手段(10)は、決定された燃料消費量 (Q)を目標値と比較する様に構成 されている(請求項 9)。 [0016] また、本発明の燃料消費量評価システムは、決定された燃料消費量 (Q)が不正確 となる走行状態時のデータを無視する様に構成されて ヽる(請求項 10)。
ここで、不正確となる走行状態とは、後述する例えば登坂、降坂、或いはアクセルの ON、 OFFの繰り返し運転などの特殊な走行状態である。
[0017] 更に、本発明の燃料消費量評価システムは、出力手段 (例えばディスプレイ 13、プ リンタ 14等)を有し、決定された燃料消費量 (Q)や、平均値或いは目標値に基づい た評価が出力される様に構成されて 、る(請求項 11)。
[0018] 本発明の燃料消費量評価システムは、車両(1)のエンジン回転数 (N)を計測する エンジン回転数計測手段 (2)と、アクセル開度( a )を計測するアクセル開度計測手 段 (3)と、車速 (V)を計測する車速計測手段 (4)と、燃料流量 (Fw)を計測する燃料 流量計測手段 (5)と、エンジン負荷 (L)を計測するエンジン負荷計測手段 (6)と、計 測されたエンジン回転数 (N)、アクセル開度( α )、車速 (V)、燃料流量 (Fw)及びェ ンジン負荷 (L)から車両 (1)の燃料消費量 (Q)及び車両質量 (m)を演算する制御手 段(20)とを有し、該制御手段(20)は記憶手段 (車載データベース 7)を備え、且つ、 走行開始力 停止までを複数の領域 (E1〜E4)に分類し、該複数の領域 (E1〜E4 )の各々について燃料消費に関連するパラメータ(「発進加速シフトアップエンジン回 転数 N1」P1、「発進加速アクセル開度 a l」P2、「定常走行エンジン回転数 Ν2」Ρ3 、「車速 (V) 2,走行距離」 Ρ4、「減速惰行割合」 Ρ5、 「アイドル走行車速」 Ρ6)を設定 し、前記パラメータ (Ρ1〜Ρ6)と平均的な運転をした場合に対する燃料消費量割合( λ )との相関関係に基づいて、実際の運転をした場合の、平均的な運転をした場合 に対する燃料消費量割合及び、目標とする運転をした場合の、平均的な運転をした 場合に対する燃料消費量割合を求め、該求めた燃料消費量割合に基づいて評価を 行なう様に構成されて!ヽる (請求項 12)。
[0019] 前記複数の領域 (Ε1〜Ε4)は、比較的低速力もアクセル開度(ひ)を増加させると 共に車速 (V)或いは移動平均車速が上昇する領域 (発進加速領域 E1)と、アクセル 開度 )を減少させる領域 (減速領域 Ε3)と、アクセル開度( a )が比較的小さく且 つエンジン回転数 (Ν)が比較的低 、領域 (アイドル走行領域 Ε4)と、上述した 3つの 領域 (El、 Ε3、 Ε4)の何れにも該当しない定常走行領域 (Ε2)とを含んでいる(請求 項 13)。
[0020] また、本発明の燃料消費量評価システムは、前記比較的低速からアクセル開度( oc )を増加すると共に車速 (V)或いは移動平均車速が上昇する領域 (発進加速領域 E 1)における前記パラメータ (Pl、 P2)はギヤシフトの際のエンジン回転数 (シフトアツ プエンジン回転数 Nl ; P1)とアクセル開度( α 1 ; P2)であり、前記アクセル開度( α ) を減少させる領域 (減速領域 Ε3)における前記パラメータ (減速惰行割合; Ρ5)は、ァ クセルとブレーキの何れも踏んで 、な 、で走行 (惰行)した距離 (Α)とブレーキを踏 んで走行 (減速走行)した距離 (Β)との和 (Α+ Β)におけるアクセルとブレーキの何れ も踏んで!/、な 、で走行した距離 (Α)が占める割合であり、前記アクセル開度(ひ)が 比較的小さく且つエンジン回転数 (Ν)が比較的低い領域 (アイドル走行領域 Ε4)に おける前記パラメータ (Ρ6)は車速であり、前記上述した 3つの領域の何れにも該当 しな 、定常走行領域 (Ε2)における前記パラメータ (Ρ3)はエンジン回転数 (定常走 行エンジン回転数 Ν2)である(請求項 14)。
また、発進停止間における燃料消費に関するパラメータは、車速の二乗を走行距 離で除した値、すなわち「 (車速) 2Ζ走行距離」であるのが好まし 、。
[0021] 前記定常走行領域 (Ε2)は、一定距離以上を所定車速以上で走行する高速走行 領域と、それに該当しない領域とに分類され、データ採取される(請求項 15)。
[0022] 実走行時の燃料消費量を求めるに当たり、前記複数の領域毎 (Ε1〜Ε4)に前記燃 料流量計測手段(5)からの情報を積算して求め、その求めた各領域 (Ε1〜Ε4)の積 算値を発進力も停止までの間に渡って合計して求める(請求項 16)。
[0023] 前記パラメータ (Ρ1〜Ρ6)の全てにおいて、実際の車両総質量 (m)を、計測された 車速 (V)及び当該車両の仕様力も求め、その車両質量 (m)の影響を考慮して燃料 消費量に対する評価を与える (請求項 17)。
[0024] 出力手段 (26)を有し、実際の運転の、平均的な運転をした場合に対する燃料消費 量割合及び、目標とする運転をした場合の、平均的な運転をした場合に対する燃料 消費量割合を求め、該求めた燃料消費量割合に基づいた評価が出力される様に構 成されている(請求項 18)。
[0025] 本発明の燃料消費量評価システムは、車両(1)のエンジン回転数 (N)を計測する エンジン回転数計測手段 (2)と、アクセル開度( o )を計測するアクセル開度計測手 段 (3)と、車速 (V)を計測する車速計測手段 (4)と、燃料流量 (Fw)を計測する燃料 流量計測手段 (5)と、エンジン負荷 (L)を計測するエンジン負荷計測手段 (6)と、計 測されたエンジン回転数 (N)、アクセル開度( α )、車速 (V)、燃料流量 (Fw)及びェ ンジン負荷 (L)の各データを記憶する記憶手段 (車載データベース 7)と、前記各デー タから車両 ( 1)の燃料消費量 (Q)及び車両質量 (m)を演算する制御手段 (20)と、 車両(1)に搭載された表示手段 (モニタ 12)とを有し、前記制御手段 (20)は走行開始 から停止までを複数の領域 (E1〜E4)に分類し、該複数の領域 (E1〜E4)の各々に っ 、て燃料消費に関連するパラメータ(「発進加速シフトアップエンジン回転数 N 1」 P 1、「発進加速アクセル開度 a l」P2、「定常走行エンジン回転数 Ν2」Ρ3、「車速 (V) 2Ζ走行距離」 Ρ4、「減速惰行割合」 Ρ5、 「アイドル走行車速」 Ρ6)を設定し、前記パ ラメータ (Ρ1〜Ρ6)と平均的な運転をした場合に対する燃料消費量割合 ( λ )との相 関関係に基づいて、実際の運転の、平均的な運転をした場合に対する燃料消費量 割合 ( λ )及び、目標とする運転をした場合の、平均的な運転をした場合に対する燃 料消費量割合 ( λ )を求め、該求めた燃料消費量割合 ( λ )に基づ ヽて評価を行な!/ヽ、 その評価結果を前記表示手段 (モニタ 12)に表示する様に構成されている(請求項 1 9)。
[0026] 前記複数の領域 (Ε1〜Ε4)は、比較的低速力もアクセル開度(ひ)を増加させると 共に車速 (V)或いは移動平均車速が上昇する領域 (発進加速領域 E1)と、アクセル 開度 )を減少させる領域 (減速領域 Ε3)と、アクセル開度( a )が比較的小さく且 つエンジン回転数 (Ν)が比較的低 、領域 (アイドル走行領域 Ε4)と、上述した 3つの 領域 (El、 Ε3、 Ε4)の何れにも該当しない定常走行領域 (Ε2)とを含んでいる(請求 項 20)。
[0027] また、本発明の燃料消費量評価システムは、前記比較的低速からアクセル開度( oc )を増加すると共に車速 (V)或いは移動平均車速が上昇する領域 (発進加速領域 Ε 1)における前記パラメータ (Pl、 Ρ2)はギヤシフトの際のエンジン回転数 (シフトアツ プエンジン回転数 Nl ; Ρ1)とアクセル開度( α 1 ; Ρ2)であり、前記アクセル開度( α ) を減少させる領域 (減速領域 Ε3)における前記パラメータ (減速惰行割合; Ρ5)は、ァ クセルとブレーキの何れも踏んで 、な 、で走行 (惰行)した距離 (A)とブレーキを踏 んで走行 (減速走行)した距離 (B)との和 (A + B)におけるアクセルとブレーキの何れ も踏んで!/、な 、で走行した距離 (A)が占める割合であり、前記アクセル開度(ひ)が 比較的小さく且つエンジン回転数 (N)が比較的低い領域 (アイドル走行領域 E4)に おける前記パラメータ (P6)は車速であり、前記上述した 3つの領域の何れにも該当 しな 、定常走行領域 (E2)における前記パラメータ (P3)はエンジン回転数 (定常走 行エンジン回転数 N2)である(請求項 21)。
また、発進停止間における燃料消費に関するパラメータは、車速の二乗を走行距離 で除した値、すなわち「 (車速) 2Z走行距離」であるのが好まし 、。
[0028] 前記定常走行領域 (E2)は、一定距離以上を所定車速以上で走行する高速走行 領域と、それに該当しない領域とに分類され、データ採取される(請求項 22)。
[0029] 実走行時の燃料消費量を求めるに当たり、前記複数の領域毎 (E1〜E4)に前記燃 料流量計測手段(5)からの情報を積算して求め、その求めた各領域 (E1〜E4)の積 算値を発進から停止までの間に渡って合計して求める(請求項 23)。
[0030] 前記パラメータ (P1〜P6)の全てにおいて、実際の車両総質量 (m)を、計測された 車速 (V)及び当該車両 (1)の仕様力も求め、その車両質量 (m)の影響を考慮して燃 料消費量に対する評価を与える (請求項 24)。
[0031] 出力手段 (22)を有し、実際の運転の、平均的な運転をした場合に対する燃料消費 量割合及び、目標とする運転をした場合の、平均的な運転をした場合に対する燃料 消費量割合を求め、該求めた燃料消費量割合に基づいた評価が出力される様に構 成されている(請求項 25)。
発明の効果
[0032] 請求項 1〜請求項 11に記載の構成及び評価方法を具備する本発明の燃料消費 量評価システムによれば、記録された運行データを、走行開始カゝら停止までを複数 の領域 (E1 ;発進加速領域、 E2 ;定常走行領域、 E3 ;減速領域、 E4 ;アイドル走行 領域)に分類し (図 2を参照)、該複数の領域の各々について燃料消費に関連するパ ラメータ(「発進加速シフトアップエンジン回転数 N1及び発進加速アクセル開度 a 1」 Pl、「定常走行エンジン回転数 N2」P2、「減速惰行割合」 P3、 「アイドル走行車速 V 4」P4、或いは「(車速 V)2Z走行距離 S」P5)を設定し(図 4を参照)、それらのパラメ ータと燃料消費量 (単位走行距離当りの燃料消費量 q)との相関関係(図 5の相関線 F)に基づいて前記複数の領域 (E1〜E4)毎の燃料消費量 (Q1〜Q4)を決定し、決 定された燃料消費量 (Q)に基づいて評価を行なう様にシステムが構成されており、 前記パラメータ(P1〜P5)は、運転の仕方と容易に関連付けられ、これらのパラメ一 タに基づいて算出される燃料消費量 (Q)の精度を向上させる。
[0033] 各パラメータ (P1〜P5)に関して、運行データの頻度分布を取ると、正規分布に近 く(図 4を参照)、その様な数多くの運行データを処理することにより、各パラメータ(P 1〜P5)の頻度分布の平均的な値や、ばらつきの程度を把握でき、その様なデータ をデータベース(11)にカ卩えて出来る新たなデータベースの精度を向上させるととも に、改良された車両(1)の性能にマッチしたデータベースとすることが出来る。
[0034] 減速惰行割合 (P3)を除く各パラメータ (Pl、 P2、 P4、 P5)と各領域 (E1〜E5)の 単位距離あたりの燃料消費量 (q)とは、相関(図 5の相関線 F)がある。そこで各パラメ ータの頻度分布の平均(図 4参照)と、パラメータと単位距離あたりの燃料消費量 (q) の相関関係(図 5の相関線 から、平均的な単位距離当りの燃料消費量 (q)を求め ることが出来る。この値に対して、各領域の走行距離 (S)を乗ずると、それぞれの走 行領域毎の燃料消費量の平均値を求めることが出来る。更に、求めた走行領域毎の 燃料消費量の平均値に必要に応じて補正係数 (K)を乗ずることによって、より適切な 燃料消費量を求めることが出来る。この手法で求めたそれぞれの領域毎の燃料消費 量の平均値 (Qm)と、実際の運行データから求めた燃料消費量 (Q)を比較すること により、平均的な運行に対して、どの程度燃料を節約できたか、或いは、どの程度無 駄にしたかを定量的に求めることが出来る(図 6参照)。そして、ドライバの運転の仕 方と関連付けることも出来る。
[0035] 減速惰行割合 (P3)に関しては、車両の有する運動エネルギを有効に活用して、必 要最小限のブレーキを除き、ブレーキを掛けず運動エネルギを有効に使うことで燃費 は向上する。
本発明では、以下に示す式 1によって、平均的な惰行の活用に対してどの程度節 約できた力 (計算結果が負の場合)、或いは、どの程度無駄にした力 (計算結果が正 の場合)を定量的に求めることが出来る。
A Q = SdX ( j8 - y ) /100q …(式 1)
ここで、 A Q :減速領域 (E3)で燃料消費量の平均値 (Qm)に対する燃料節約量 [ 単位: L] (負の値の場合)、(或いは無駄量:正の場合)
Sd:減速領域での走行距離 [単位: km]
平均的な減速惰行割合 [単位 :%]
γ :実運行での減速惰行割合 [単位:%]
q:単位走行距離あたりの燃料消費量 [単位: kmZL]
尚、式 1において、平均的な減速惰行割合に替えて、目標の減速惰行割合を用い れば、目標に対して燃料消費量を節約したのか、或いは無駄にしたのかを求めること が出来る。
[0036] 更に、頻度分布の標準偏差等を参考にして、各パラメータの目標値を平均 + (又は
-) 0. Ο σ (標準偏差)と決めることにより、それぞれのパラメータ毎に単位距離当りの 目標燃料消費量を求めることが出来る。更に、これらの目標値と実際の運行データと を比較することによって、ドライバの運転の仕方及び消費した燃料消費量が目標に 対してどの程度優れて!/、る力、或いは劣って 、るかを定量的に把握することが出来る
[0037] 上述したように、平均値 (Qm)、或いは目標値に対してどの程度の運転の仕方なの 力 或いは燃料消費量なのかを定量的に把握出来るため、ドライバ及び Z又は運行 管理者に渡されるレポートにおいて、具体的な運転の仕方の改善方法や、その改善 方法によって得られる燃料消費量の改善代を定量的に指導 (アドバイス)することが 出来る。
又、実運行データの各パラメータから求めた燃料消費量と、燃料消費量の平均値 及び目標値の合計を比較することによって、平均値及び目標値に対してどの程度燃 料を節約したの力、或いはどの程度無駄にしたのかを総合的に評価することが出来 る。
[0038] 尚、例えば、各運送会社の実情に合わせるために、平均と見做す水準を可変とす ることも出来る。同様に、目標の水準を可変とすることも出来る。 [0039] 減速領域における減速走行距離から、下り坂 (降坂)及び高速からの減速を除くこと により、ドライバの運転の仕方の影響をより適切に反映した解析を行うことが出来る。 ここで、「下り坂(降坂)」の判定はアクセル開度が所定値以下で、エンジン回転数が 所定値以上において、各変速ギヤ比に応じた所定値以上の加速度が生じた場合を「 下り坂 (降坂)」と判定する。その様に判定した走行域を減速走行距離及び惰行距離 力 除外することにより、「下り坂 (降坂)」を含んだ減速領域においても、ドライバの運 転の仕方による影響を適切に反映した解析を行うことができる。
[0040] 減速領域の減速惰行割合 (P3)を求める際に、意図的にアクセルの ON、 OFFを( 周期的に)繰り返すと減速惰行割合 (P3)が高くなり、「省燃費運転をした」との誤った 判定を下すことになる。その様な誤った判定を避けるために、アクセルの ON、 OFF を周期的に作動している力否かを判定し、その部分については、減速距離から排除 して計算するように構成されており、減速惰行割合を適切に判定出来る。
[0041] また、定常走行領域における定常走行エンジン回転数を求める際に、上り坂 (登坂 )を除くことにより、ドライバの運転の仕方の影響をより適切に反映した解析を行うこと が出来る。
ここで、「上り坂 (登坂)」の判定は、アクセル開度が所定値以上で、各変速ギヤに応 じた所定値以下の加速度の場合に、「上り坂 (登坂)」と判定する。そのように判定した 走行域の定常走行エンジン回転数の算出から除くことにより、「上り坂 (登坂)」を含ん だ定常走行領域においても、ドライバの運転の仕方の影響を適切に反映した解析を 行うことができる。
[0042] 高速走行領域 (E21)において省燃費運転の評価を行うため、(一)高速走行ェン ジン回転数、(二)高速走行車速、(三)無駄なブレーキ、の三つを評価パラメータと する。
(一)、(二)については、単位距離当りの燃料消費量 (q)と相関があるので、上述し た処理によって評価出来る。(三)については、ブレーキ前後に加速のために使用し た燃料消費量を求める。この燃料消費量から通常走行しても消費する燃料消費量を 差し引くことにより、余計に使用した燃料消費量を求めることが出来る。
その様にして求めた燃料消費量と平均的な走行でブレーキを掛けて余計に使用し た燃料消費量とを比較して、上回った分に関しては、無駄な燃料消費量と判定する ことが可能である。
[0043] 停車中の長時間のアイドリング運転で、燃料を無駄にすることに関してもアドバイス 及び管理が出来る様に、アイドリングでの停車時間、燃料消費量を求めることが出来 る。その様にすることにより、ドライバの省エネ走行に対する意識を高めるとともに、当 該運送業者の企業イメージアップにも貢献する。
[0044] 請求項 1〜請求項 11に記載の燃料消費量評価システムの作用'効果を要約し、効 果として纏めると、
(一) 運転の仕方を具体的にどの様に改善すると、どの程度燃料消費量を節約で きるかが分かるので、ドライバの省エネ運転の励みになる。
(二) 運行管理者にとっては、ドライバが実際にどの程度省燃費運転をしていたか を、燃料消費量と言う定量値で把握でき、ドライバの努力をドライバの評価に反映で きる。又、運転の指導についても、データベースで具体的に行うことが出来る。
(三) 以上により、燃料消費量を大きく節約出来、経費節減と地球環境の保全に貢 献出来るとともに、企業イメージのアップにも繋がる。
[0045] 請求項 12〜請求項 18に記載の構成及び評価方法を具備する本発明の燃料消費 量評価システムによれば、記録された運行データを、走行開始カゝら停止までを複数 の走行領域 (E1 ;発進加速領域、 E2 ;定常走行領域、 E3 ;減速領域、 E4 ;アイドル 走行領域)に分類し (図 10を参照)、該複数の領域の各々について燃料消費に関連 するパラメータ(「発進加速シフトアップエンジン回転数 N 1」 P 1、「発進加速アクセル 開度 a l」P2、「定常走行エンジン回転数 Ν2」Ρ3、「車速 (V)2Z走行距離」 Ρ4、「減 速惰行割合」 Ρ5、 「アイドル走行車速」 Ρ6)を設定し、前記パラメータ (Ρ1〜Ρ6)と平 均の運転の仕方を 100%とした場合の任意の運転による燃料消費量割合( λ )との 相関関係に基づいて、実際の運転をした場合の、燃料消費量割合及び、目標とする 運転をした場合の、燃料消費量割合を求め、さらに、実際の車両総質量によって、そ の求めた燃料消費量割合を補正するため、燃料消費量に対する評価が精度良く行 われる。
[0046] 燃料消費量に対する評価が絶対量のみならず、前記各パラメータ毎に平均的な運 転の仕方及び目標運転と比較しているので、評価が身近なものとして捕らえられ、燃 費改善 (省エネ運転の実行)に現実的な対応策が打てる。
ここで、以下の方法によって目標燃費及び節約可能な燃料消費量を求めることが 出来る。
先ず、前記各走行領域 (E1〜E4)毎、各パラメータ (P1〜P6)において、
(1) 燃料メータ(5)、或いは、図示しないエンジンコントロールュ-ッ
トからの燃料流量信号を積算することにより、実際の運行での燃料消費量 (Gj)を求 める。
(2) 平均的な運転の仕方での燃料消費量 (Ga)は、前記実際の運行での 燃料消費量 (Gj)に、実際の運転の仕方の燃料消費割合( λ )に対する平均的な運 転の仕方での燃料消費量割合( λ a= 100%)を乗じた後、実際の運転の仕方での 燃料消費量割合( λ j)で徐して求める。
Ga = Gj X λ &/
(3) 目標とする運転の仕方での燃料消費量 (Gt)は、前記実際の運行で の燃料消費量 (Gj)に、目標の運転の仕方の燃料消費量割合( λ t)を乗じた後、実 際の運転の仕方の燃料消費割合(え j)で除して求める。
Gt=Gj X l t/ lj
(4) 節約可能な燃料消費量、即ち、実際の運行での運転の仕方の燃料消費 量と目標とする運転での燃料消費量の差( Δ G)は、実際の運行での燃料消費量 (Gj )から目標とする運転の仕方での燃料消費量 (Gt)を減じて求める。
A G = Gj -Gt
次に、前記各走行領域 (各運転の仕方)についての演算結果を合計し、一走行 (発 進停止間)又は、一運行について、以下を求める。即ち、
(5) (1)〜 (4)で運転の仕方の各パラメータについて節約出来る燃料消費量を個 々に求め、それらを合計することにより、一走行 (発進停止間)又は、一運行での節約 可能な燃料消費量を求めることが出来る。尚、減速領域についても、減速惰行割合 から求めた節約可能な燃料消費量を前記合計に加える。
(6) 目標の運転の仕方での燃料消費量は、実際の燃料消費量から節約可能な燃 料消費量の各要因の合計を減じことによって求められる。
(7) 目標燃費は、走行距離を前記目標の運転の仕方での燃料消費量で除すこと によって求められる。
力べして、目標燃費は精度良く求めることが出来る。
[0048] 前記目標とする運転の仕方における「目標」は、例えば、図 11に示すように、
頻度分布の標準偏差等を参考にして、頻度分布の平均から標準偏差を引いた値と することが出来る。
[0049] 上述してきた燃料消費量に関する各データは、前記制御手段 (20)から前記出力 手段(22)に出力され、各パラメータ (P1〜P6)における目標値に対してどの程度の 運転の仕方なのか、或いは燃料消費量なの力を定量的に把握出来るため、ドライバ 及び Z又は運行管理者に渡される出力データ(レポート)において、具体的な運転の 仕方の改善方法や、その改善方法によって得られる燃料消費量の改善代を定量的 に指導 (アドバイス)することが出来る。
又、実運行データの各パラメータ (P1〜P6)から求めた燃料消費量と、燃料消費量 の平均値及び目標値の合計を比較することによって、平均値及び目標値に対してど の程度燃料を節約したの力 或 、はどの程度無駄にしたのかを総合的に評価するこ とが出来る。
[0050] 尚、例えば、各運送会社の実情に合わせるために、平均と見做す水準を可変とす ることも出来る。同様に、目標の水準を可変とすることも出来る。
[0051] 減速領域の減速惰行割合 (パラメータ P5に関連)を求める際に、意図的にアクセル の ON、 OFFを (周期的に)繰り返すと減速惰行割合 (P5)が高くなり、「省燃費運転 をした」との誤った判定を下すことになる。その様な誤った判定を避けるために、ァク セルの ON、 OFFを周期的に作動しているか否かを判定し、その部分については、 減速距離から排除して計算するように構成されており、減速惰行割合を適切に判定 出来る。
[0052] 停車中の長時間のアイドリング運転 (パラメータ P6に関連)で、燃料を無駄にするこ とに関してもアドバイス及び管理が出来る様に、アイドリングでの停車時間、燃料消費 量を求めることが出来る。その様にすることにより、ドライバの省エネ走行に対する意 識を高めるとともに、当該運送業者の企業イメージアップにも貢献する。
[0053] 請求項 12〜請求項 18に記載の燃料消費量評価システムの作用'効果を要約し、 効果として纏めると、
(一) 運転の仕方を具体的にどの様に改善すると、平均的な運転に対して、どの 程度燃料消費量を節約できるかが分力るので、ドライバの省エネ運転の励みになる。
(二) 運行管理者にとっては、ドライバが実際に平均的な運転に対して、どの程度 省燃費運転をしていたかを、燃料消費量割合と言う比較値で把握でき、ドライバの努 力をドライバの評価に反映できる。又、運転の指導についても、データベースで具体 的に行うことが出来る。
(三) 車両総質量の変化をも考慮しており、勾配や交通の流れの影響をも受けるこ となぐ精度良く燃料消費量に関する評価が出来る。
(四) 以上により、燃料消費量を大きく節約出来、経費節減と地球環境の保全に貢 献出来るとともに、企業イメージのアップにも繋がる。
[0054] 請求項 19〜請求項 25に記載の構成及び評価方法を具備する本発明の燃料消費 量評価システムによれば、記録された運行データを、走行開始カゝら停止までを複数 の走行領域 (E1 ;発進加速領域、 E2 ;定常走行領域、 E3 ;減速領域、 E4 ;アイドル 走行領域)に分類し (図 22を参照)、該複数の領域の各々について燃料消費に関連 するパラメータ(「発進加速シフトアップエンジン回転数 N 1」 P 1、「発進加速アクセル 開度 a l」P2、「定常走行エンジン回転数 Ν2」Ρ3、「車速 (V)2Z走行距離」 Ρ4、「減 速惰行割合」 Ρ5、 「アイドル走行車速」 Ρ6)を設定し、前記パラメータ (Ρ1〜Ρ6)と平 均の運転の仕方を 100%とした場合の任意の運転による燃料消費量割合( λ )との 相関関係に基づいて、実際の運転をした場合の、燃料消費量割合及び、目標とする 運転をした場合の、燃料消費量割合を求め、さらに、実際の車両総質量によって、そ の求めた燃料消費量割合を補正するため、燃料消費量に対する評価が精度良く行 われる。
[0055] 燃料消費量に関する評価は、車載の表示手段 (モニタ 12)によって、リアルタイムで 表示されるため、省燃費運転が OJT (On The Job Training)で習得出来る。
[0056] 燃料消費量に対する評価が絶対量のみならず、前記各パラメータ毎に平均的な運 転の仕方及び目標運転と比較しているので、評価が身近なものとして捕らえられ、燃 費改善 (省エネ運転の実行)に現実的な対応策が、即時に打てる。
ここで、以下の方法によって目標燃費及び節約可能な燃料消費量を求めることが 出来る。
先ず、前記各走行領域 (E1〜E4)毎、各パラメータ (P1〜P6)において、
(1) 燃料メータ(5)、或いは、図示しないエンジンコントロールュ-ッ
トからの燃料流量信号を積算することにより、実際の運行での燃料消費量 (Gj)を求 める。
(2) 平均的な運転の仕方での燃料消費量 (Ga)は、前記実際の運行での 燃料消費量 (Gj)に、実際の運転の仕方の燃料消費割合( λ )に対する平均的な運 転の仕方での燃料消費量割合( λ a= 100%)を乗じた後、実際の運転の仕方での 燃料消費量割合( λ j)で除して求める。
Ga = Gj X λ &/
(3) 目標とする運転の仕方での燃料消費量 (Gt)は、前記実際の運行で の燃料消費量 (Gj)に、目標の運転の仕方の燃料消費量割合( λ t)を乗じた後、実 際の運転の仕方の燃料消費割合(え j)で除して求める。
Gt=Gj X l t/ lj
(4) 節約可能な燃料消費量、即ち、実際の運行での運転の仕方の燃料消費 量と目標とする運転での燃料消費量の差( Δ G)は、実際の運行での燃料消費量 (Gj )から目標とする運転の仕方での燃料消費量 (Gt)を減じて求める。
A G = Gj -Gt
次に、前記各走行領域 (各運転の仕方)についての演算結果を合計し、一走行( 発進停止間)又は、一運行について、以下を求める。即ち、
(5) (1)〜 (4)で運転の仕方の各パラメータについて節約出来る燃料消費量を個 々に求め、それらを合計することにより、一走行 (発進停止間)又は、一運行での節約 可能な燃料消費量を求めることが出来る。尚、減速領域についても、減速惰行割合 から求めた節約可能な燃料消費量を前記合計に加える。
(6) 目標の運転の仕方での燃料消費量は、実際の燃料消費量から節約可能な燃 料消費量の各要因の合計を減じことによって求められる。
(7) 目標燃費は、走行距離を前記目標の運転の仕方での燃料消費量で除すこと によって求められる。
力べして、目標燃費は精度良く求めることが出来る。
[0058] 前記目標とする運転の仕方における「目標」は、例えば、図 23に示すように、
頻度分布の標準偏差等を参考にして、頻度分布の平均から標準偏差を引いた値と することが出来る。
[0059] 上述してきた燃料消費量に関する各データは、前記制御手段 (20)から前記出力 手段(22)に出力され、各パラメータ (P1〜P6)における目標値に対してどの程度の 運転の仕方なのか、或いは燃料消費量なの力を定量的に把握出来るため、ドライバ 及び Z又は運行管理者に渡される出力データ(レポート)において、具体的な運転の 仕方の改善方法や、その改善方法によって得られる燃料消費量の改善代を定量的 に指導 (アドバイス)することが出来る。
又、実運行データの各パラメータ (P1〜P6)から求めた燃料消費量と、燃料消費量 の平均値及び目標値の合計を比較することによって、平均値及び目標値に対してど の程度燃料を節約したの力 或 、はどの程度無駄にしたのかを総合的に評価するこ とが出来る。
以上のことは、運行中に、車両 (1)内において、リアルタイムでモニタ 12に表示され るため、省燃費運転に対する教育効果が、極めて高い。
[0060] 尚、例えば、各運送会社の実情に合わせるために、平均と見做す水準を可変とす ることも出来る。同様に、目標の水準を可変とすることも出来る。
[0061] 減速領域の減速惰行割合 (パラメータ P5に関連)を求める際に、意図的にアクセル の ON、 OFFを (周期的に)繰り返すと減速惰行割合 (P5)が高くなり、「省燃費運転 をした」との誤った判定を下すことになる。その様な誤った判定を避けるために、ァク セルの ON、 OFFを周期的に作動しているか否かを判定し、その部分については、 減速距離から排除して計算するように構成されており、減速惰行割合を適切に判定 出来る。
[0062] 停車中の長時間のアイドリング運転 (パラメータ P6に関連)で、燃料を無駄にするこ とに関してもアドバイス及び管理が出来る様に、アイドリングでの停車時間、燃料消費 量を求めることが出来る。その様にすることにより、ドライバの省エネ走行に対する意 識を高めるとともに、当該運送業者の企業イメージアップにも貢献する。
[0063] 請求項 19〜請求項 25に記載の燃料消費量評価システムの作用'効果を要約し、 効果として纏めると、
(一) 運転の仕方を具体的にどの様に改善すると、平均的な運転に対して、どの 程度燃料消費量を節約できるかが分力るので、ドライバの省エネ運転の励みになる。
(二) 運行管理者にとっては、ドライバが実際に平均的な運転に対して、どの程度 省燃費運転をしていたかを、燃料消費量割合と言う比較値で把握でき、ドライバの努 力をドライバの評価に反映できる。又、運転の指導についても、データベースで具体 的に行うことが出来る。
(三) 車両総質量の変化をも考慮しており、勾配や交通の流れの影響をも受けるこ となぐ精度良く燃料消費量に関する評価が出来る。
(四) (一)〜 (四)まで、全てリアルタイムで車載モニタ 12に表示されるため、省燃費 運転に対するドライバへの教育効果はきわめて高 、。
(五) 以上により、燃料消費量を大きく節約出来、経費節減と地球環境の保全に貢 献出来るとともに、企業イメージのアップにも繋がる。
発明を実施するための最良の形態
[0064] 以下、添付図面を参照して、本発明の実施形態について説明する。
[0065] 先ず、図 1〜図 7を参照して第 1実施形態を説明する。
[0066] 図 1において、当該燃料消費量評価システムの第 1実施形態は、貨物自動車 1のェ ンジン回転数 Nを計測するエンジン回転数計測手段 (以降、エンジン回転数計測手 段をエンジン回転センサという) 2と、アクセル開度 ocを計測するアクセル開度計測手 段(以降、アクセル開度計測手段をアクセル開度センサという) 3と、車速 Vを計測す る車速計測手段 (以降、車速計測手段を車速センサという) 4と、燃料流量 Fwを計測 する燃料流量計測手段 (以降、燃料流量計測手段を燃料メータという) 5と、計測され たエンジン回転数 N、アクセル開度 oc、車速 V、燃料流量 Fwから貨物自動車 1の燃 料消費量 Qを評価する制御手段 (以降、制御手段をコントロールユニットと言う) 10と によって構成されている。
[0067] 前記コントロールユニット 10は評価対象となる車両 1に搭載された記憶手段(以降、 記憶手段をデータベースと言う) 11、例えば営業所に備えられたコンピュータ本体 12 とディスプレイ 13と入力手段 14とプリンタ 15、及びドライバ等が携帯出来るメモリカー ド 16を備えている。
前記コントロールユニット 10は、図 2に示すように、走行開始力 停止までを、図示 の例では、発進加速領域 El、定常走行領域 E2、減速領域 E3、アイドル走行領域 E 4の 4つの領域に分類し、その 4つの領域 E1〜E4の各々について燃料消費量 Qに 関連するパラメータである「発進加速シフトアップエンジン回転数 N1及びアクセル開 度《1」P1、「定常走行エンジン回転数 Ν2」Ρ2、「減速惰行割合」 Ρ3、 「アイドル走行 車速 V4」P4を設定し、それらのパラメータ P1〜P4と燃費 (単位走行距離あたりの燃 料消費量) qとの相関関係(図 5の相関線 F)に基づ 、て前記複数の領域 E 1〜E4毎 の燃料消費量 Q1〜Q4を決定し、決定された燃料消費量 Q1〜Q4に基づいて評価 を行なう様に構成されて ヽる。
[0068] 又、発進'停止による走行距離があまり長くない場合、発進して停止するまでの車 速が高ければブレーキによって熱として捨てられるエネルギの割合が大きくなる。そこ で、所定の距離以下では「(車速 V) 2Z走行距離 S」を燃費評価のパラメータ P5とす る。
ここで、上記パラメータ「(車速 V)2Z走行距離 S」P5の意味するところは、図 3の、 走行距離 Sに対する車速 Vの 2乗の関係を示した特性図にお ヽて、特性線 aの平均 的な加速'減速で走行した場合に対して、特性線 bは、車速を必要以上に上げると大 きなエネルギを必要とし、更に減速時にそのエネルギをブレーキの熱として捨ててし まい、エネルギを無駄にしている様子を示している。即ち、 a線と b線とで囲まれた領 域力 平均的な加速 *減速に対する無駄なエネルギを示して 、る。
一方、特性線 cは、例えば加速時には必要最小限のエネルギしか投入しないので、 a線と c線で囲まれた領域分エネルギを節約して ヽることを概念的にイメージした図で ある。
走行距離 Sで車速 Vの 2乗を除算するのは、各々のケースが必ずしも同一の距離を 走行するわけではないので、単位距離当りで比較して、比較の公正を期している。
[0069] 前記パラメータ P1〜P5は、運転の仕方と容易に関連付けられ、これらのパラメータ に基づいて算出される各燃料消費量 Qの精度を向上させている。
[0070] ここで、各パラメータ P1〜P5に関して、運行データの頻度分布を取ると、図 4に示 すように、正規分布に近ぐその様な数多くの運行データを処理することにより、各パ ラメータ P1〜P5の頻度分布の平均的な値や、ばらつきの程度を把握できる。
そのようなデータをコントロールユニット 10に備えたデータベース 11に加えて出来 る新たなデータベースの精度を向上させるとともに、車両は年々改良されており、そ のような改良された車両 1の性能にマッチしたデータベースとすることが出来る。
[0071] 減速惰行割合 P3を除く各パラメータ「発進加速シフトアップエンジン回転数 N1及 びアクセル開度 α 1」Ρ1、「定常走行エンジン回転数 Ν2」Ρ2、「アイドル走行車速 V4 」 Ρ4、或 、は「 (車速 V) 2Ζ走行距離 S」 P5と各領域 (El〜)の燃費 (単位距離あたり の燃料消費量 q)とは相関がある。
そこで各パラメータ Pl、 P2、 P4、 P5の頻度分布の平均(図 4参照)と、パラメータと 燃費 (単位距離当りの燃料消費量 q)との相関関係(図 5の相関線 F)から、平均的な 燃費 (単位距離当りの燃料消費量 q) [LZkm]を求めることが出来る。
[0072] 図 6 (表 1 :燃料消費量の求め方の欄外)の式に示すように、この値 qに対して各領 域の走行距離 Sを乗ずると、それぞれの走行領域 (E1〜E5)毎の平均的な燃料消 費量 (Q ;Q1〜)を求めることが出来る。
即ち、燃料消費量 Qの算定式は、
Q = S X q (式 2) (場合によつてこの Qの値に補正係数 Kを乗ずる)
ここで、
Q :燃料節約量 [単位: L]
S :走行距離 [単位: km]
q:運行燃費 [単位: km/L] (図 5によって求めた単位走行距離当りの燃料消費量 を用いる)
燃料消費量 Qの算定例として、例えば実運行で定常走行距離 2000kmを走破し、 その時の定常走行エンジン回転数 Nが l lOOrpmの場合を以下に示す。 定常走行エンジン回転数が l lOOrpmの運行燃費 qを図 5より求めて、例えば、 q = 0. 25L/km
そこで、
Q = 2000[km] X O. 25 [L/km] = 500[L]
したがって、図 6の平均的な走行(表の中段)に対して、 100L (500— 400)燃料を 無駄にしたことが判明する。
[0073] 更に、求めたそれぞれの走行領域 E毎の平均的な燃料消費量 Qに必要に応じて( 例えば、或る営業所の月間目標のための)補正係数を乗ずることによって、より営業 実態に即した適切な燃料消費量を求めることが出来る。
この手法で求めたそれぞれの領域毎の平均的な燃料消費量 Qmと、実際の運行デ 一タカも求めた燃料消費量 Qとを比較することにより、平均的な運行に対して、どの 程度燃料を節約できたか、或いは、どの程度無駄にしたかを定量的に求めることが 出来る。そして、ドライバの運転の仕方と関連付けることも出来る。
[0074] 一方、減速惰行割合 P3 (図 2を再度参照)に関しては、車両 (貨物自動車) 1の有す る運動エネルギを有効に活用して、必要最小限のブレーキを除き、ブレーキを掛け ず運動エネルギを有効に使うことで燃費は向上する。
本発明では、以下に示す式 1によって、平均的な惰行の活用に対してどの程度節 約できた力 (計算結果が負の場合)、或いは、どの程度無駄にした力 (計算結果が正 の場合)を定量的に求めることが出来る。
A Q = SdX ( j8 - y ) /100q …(式 1)
ここで、 Δ Q:減速領域での燃料消費量の平均値 Qmに対する燃料節約量 [単位: L] (負の値の場合)、(或いは無駄量:正の場合)
Sd:減速領域 E3での走行距離 [単位: km]
β:平均的な減速惰行割合 [単位:%]
Ύ:実運行での減速惰行割合 [単位:%]
q:単位走行距離当りの燃料消費量 [単位: km/L]
尚、上述したように、式 1において、平均的な減速惰行割合に替えて、減速惰行割 合の目標値を用いれば、目標値に対して燃料消費量を節約したのか、或いは無駄 にしたのかを求めることが出来る。
[0075] 更に、図 4に示す様な頻度分布の標準偏差等を参考にして、各パラメータの目標 値を平均 + (又は一) 0. Ο σ (標準偏差)と決めることにより、それぞれのパラメータ毎 に単位距離当りの目標燃料消費量 qを求めることが出来る。更に、これらの目標値と 実際の運行データを比較することによって、ドライバの運転の仕方及び燃料消費量 が目標値に対してどの程度優れている力、或いは劣っているかを定量的に把握する ことが出来る。
[0076] 上述したように、燃料消費量の平均値、或いは目標値に対してどの程度の運転の 仕方なのか、燃料消費量なの力を定量的に把握出来るため、ドライバ及び Z又は運 行管理者に渡されるレポートにおいて、具体的な運転の仕方の改善方法や、その改 善方法によって得られる燃料消費量の改善代を定量的に指導 (アドバイス)すること が出来る。
又、実運行データの各パラメータから決定された燃料消費量 Qと、平均及び目標の 燃料消費量の合計を比較することによって、燃料消費量の平均値及び目標値に対し てどの程度燃料を節約したの力、或いはどの程度無駄にしたのかを総合的に評価す ることが出来る。
[0077] 尚、例えば、各運送会社の実情に合わせるために、平均と見做す水準を可変にす ることも出来る。同様に、目標の水準を可変とすることも出来る。
[0078] 減速領域 E3における減速走行距離から、下り坂 (降坂)及び高速力 の減速を除く ことにより、ドライバの運転の仕方の影響をより適切に反映した解析を行うことが出来 る。
ここで、「下り坂(降坂)」の判定はアクセル開度センサ(図 1の符号 3)によって検出 されたアクセル開度 α (図 2参照)が所定値以下で、エンジン回転数 Νが所定値以上 の場合において、各変速ギヤ比に応じた所定値以上の加速度が生じた場合を、「下 り坂 (降坂)」と判定する。そのように判定した走行域を減速走行距離及び惰行距離 力 除外することにより、「下り坂 (降坂)」を含んだ減速領域においても、ドライバの運 転の仕方の影響を適切に反映した解析を行うことができる。
[0079] ここで、図 2に示すように、惰行距離を Α、制動 (ブレーキ)距離を Βとした場合、 ΑΖ (A+B)で表される (減速領域 E3の)減速惰行割合 P3を求める際に、意図的 (周期 的)にアクセルの ON、 OFFを繰り返すと減速惰行割合が高くなり、「省燃費運転をし た」との誤った判定を下すことになる。
その様な誤った判定を避けるために、アクセルの ON、 OFFを周期的に作動してい る力否かを判定し、その部分については、減速距離力 排除して計算するように構成 されており、減速惰行割合を適切に判定出来る。
[0080] 又、定常走行領域 E2における定常走行エンジン回転数 N2を求める際に、上り坂( 登坂)を除くことにより、ドライバの運転の仕方の影響をより適切に反映した解析を行う ことが出来る。
ここで、「上り坂 (登坂)」の判定は、アクセル開度 αが所定値以上で、各変速ギヤに 応じた所定値以下の加速度の場合に、「上り坂 (登坂)」と判定する。そのように判定 した走行域の定常走行エンジン回転数の算出から除くことにより、「上り坂 (登坂)」を 含んだ定常走行領域においても、ドライバの運転の仕方の影響を適切に反映した解 析を行うことができる。
[0081] 高速走行領域 E21 (図 2の定常走行領域 Ε2の或る部分)において省燃費運転の 評価を行うため、
(一)高速走行エンジン回転数、
(二)高速走行車速、
(三)無駄なブレーキ、の三つを評価パラメータとする。
(一)、(二)については、単位距離当りの燃料消費量 qと相関があるので、上述した 処理によって評価出来る。
(三)については、ブレーキ前後に加速のために使用した燃料消費量を求める。こ の燃料消費量力 通常走行しても消費する燃料消費量を差し引くことにより、余計に 使用した燃料消費量を求めることが出来る。
[0082] 又、停車中の長時間のアイドリングで、燃料を無駄にすることに関してもアドバイス 及び管理が出来るように、アイドリングでの停車時間、燃料消費量を求めることが出 来る。そのようにすることにより、ドライバの省エネ走行に対する意識を高めるとともに 、当該運送業者の企業イメージアップにも貢献する。 [0083] 次に、図 7を参照して、第 1実施形態の燃料消費量評価システムの評価の手順 (プ ログラム)について説明する。
[0084] 先ず、プログラムを立ち上げ、それまでに車載のデータベース 11に記録された運 行データを、例えばメモリカード 16によって読込む (ステップ Sl)。そして、そのメモリ カード 16にコピーされたデータは営業所のコンピュータ 12にメモリカード 16を差し込 み所定の操作で入力され、当該コンピュータ 12は運行燃料消費量 Q、運行距離 S、 燃費 qの演算を行う(ステップ S 2)。
[0085] 次に、各走行領域 (発進加速領域 El、定常走行領域 E2、減速領域 E3、アイドル 走行領域 E4)に区分け処理が行われ (ステップ S3)、発進加速領域 E1での省燃費 運転の評価演算 (ステップ S4)、定常走行領域 E2での省燃費運転の評価演算 (ステ ップ S5)、減速領域 E3での省燃費運転の評価演算 (ステップ S6)、アイドル走行領 域 E4での省燃費運転の評価演算 (ステップ S7)、発進停止区間での省燃費運転の 評価演算 (ステップ S8)が順次行われる。
[0086] 次に、平均的な燃料消費量 Qm、燃費 (距離当たりの消費量) qの演算が行われ (ス テツプ S9)、引き続き、燃料消費量、燃費の目標値の演算が行われる (ステップ S10)
[0087] 次のステップ S11では、運行燃料消費量 Q、燃費 qとステップ S9、ステップ S10で演 算した目標値との比較、及び運転評価が行われる。そして、最後に以上の結果を運 転アドバイスレポートとして作成して (ステップ S 12)全ての制御 (評価工程)が完了す る。
[0088] 上述したような構成及び評価方法を具備した第 1実施形態の燃料評価システム〖こ よれば、
(1) 運転の仕方を具体的にどのように改善すると、どの程度燃料消費量を節約で きるかが分かるので、ドライバの省エネ運転の励みになる。
(2) 運行管理者にとっては、ドライバが実際にどの程度省燃費運転をしていたか を、燃料節約量と言う定量値で把握でき、ドライバの努力をドライバの評価に反映で きる。また、運転の指導についても、データベースで具体的に行うことが出来る。
(3) 以上により、燃料消費量を大きく節約出来、経費節減と地球環境の保全に貢 献するとともに、企業イメージのアップにも繋がる。
[0089] 次に図 8を参照して、第 2実施形態を説明する。
前記図 1〜図 7の第 1実施形態は、各パラメータの検出手段であるエンジン回転セ ンサ 2、アクセル開度センサ 3、車速センサ 4、燃料流量計 5は夫々専用の回路によつ て車載のデータベース 11に接続された実施形態である。
それに対して、図 8の第 2実施形態は、予め、アクセル信号、燃料流量信号車速信 号、エンジン回転数信号が車内通信ネットワーク「車内 LAN」によって LAN中継器 6 にデジタル信号として集められ、 2本のワイヤ(通信ケーブル) Wによって車載のデー タベース 11に記憶されるように構成されている。これらの構成を除いては、作用効果 を含め、図 1〜図 7の第 1実施形態と実質的に同様であり、以降の説明は省略する。
[0090] 次に、図 9〜図 18を参照して第 3実施形態を説明する。
[0091] 図 9において、当該燃料消費量評価システムの第 1実施形態は、車両側の装備 U1 と管理側の装備 U2と、車両側の装備 U1で収録したデータを管理側の装備 U2に移 送する移送手段であるメモリカード 15とによって構成されている。
ここで、管理側とは、例えば、当該車両を所有する運送会社の車両管理部門等を指 す。
[0092] 前記車両側の装備 U1は、車両(図示の例では貨物自動車) 1のエンジン回転数 N を計測するエンジン回転数計測手段 (以降、エンジン回転数計測手段をエンジン回 転センサという) 2と、アクセル開度 αを計測するアクセル開度計測手段(以降、ァク セル開度計測手段をアクセル開度センサという) 3と、車速 Vを計測する車速計測手 段 (以降、車速計測手段を車速センサという) 4と、燃料流量 Fwを計測する燃料流量 計測手段 (以降、燃料流量計測手段を燃料メータという) 5と、エンジンの負荷 Lを計 測するエンジン負荷計測手段 (以降、エンジン負荷計測手段をエンジン負荷センサ という) 6と、計測されたエンジン回転数 N、アクセル開度 a、車速 V、燃料流量 Fw、 エンジン負荷 Lを車両信号として記憶する車載用記憶手段 (以降、車載用記憶手段 を車載データベースと 、う) 7とによって構成されて 、る。
[0093] 一方、管理側の装備 U2は、前記車両データが、メモリカード 15を介して入力され、 車両データである、計測されたエンジン回転数 N、アクセル開度 α、車速 V、燃料流 量 Fw、エンジン負荷 から、当該車両 1の運行時の車両総質量を求め、燃料消費量 Qを評価する制御手段 (コントロールユニット;燃費データ解析用パソコン) 20と、該コ ントロールユニット 20によって、前記評価結果を出力する出力手段であるプリンタ 22 と、コントロールユニット 20に付帯する入力手段であるキーボード 24とによって構成さ れている。
[0094] 前記コントロールユニット 20は、図 10に示すように、走行開始力も停止までを、図示 の例では、発進加速領域 El、定常走行領域 E2、減速領域 E3、アイドル走行領域 E 4の 4つの領域に分類する。
そして、分類した 4つの領域 E1〜E4の各々について燃料消費量 Qに関連するパラ メータである「発進加速シフトアップエンジン回転数 N 1」 P 1、「発進加速アクセル開 度 a l」P2、「定常走行エンジン回転数 Ν2」Ρ3、「車速 (V)2Z走行距離」 Ρ4、「減速 惰行割合」 Ρ5、 「アイドル走行車速」 Ρ6を設定し、それらのパラメータ Ρ1〜Ρ6と平均 の運転の仕方を 100%とした場合の燃料消費量割合えとの相関関係(図 12の相関 線 F)に基づいて前記複数の領域 Ε1〜Ε4毎の燃料消費量割合えを決定し、決定さ れた燃料消費量割合 λに基づ ヽて評価を行なう様に構成されて!ヽる。
[0095] 又、発進'停止による走行距離があまり長くない場合、発進して停止するまでの車 速が高ければブレーキによって熱として捨てられるエネルギの割合が大きくなる。そこ で、所定の距離以下ではブレーキによって熱として捨てられるエネルギの大きさを示 す「(車速 V) 2Ζ走行距離 S」を燃費評価のノ ラメータ P4 (図示せず)とし、この P4を 評価することで、省エネ運転の励行をドライバーに喚起する。
[0096] 前記パラメータ P1〜P6は、運転の仕方と容易に関連付けられ、これらのパラメータ に基づいて算出される各燃料消費量 Qの精度を向上させている。
[0097] ここで、各パラメータ P1〜P6に関して、運行データの頻度分布を取ると、図 11に示 すように、正規分布に近ぐその様な数多くの運行データを処理することにより、各パ ラメータ P1〜P6の頻度分布の平均的な値や、ばらつきの程度を把握できる。
そのようなデータを逐次コントロールユニット 20に備えた図示しないデータベースに 加えて出来る新たなデータベースの精度を向上させるとともに、車両は年々改良され ており、そのような改良された車両 1の性能にマッチしたデータベースとすることが出 来る。
[0098] 減速惰行割合 P5を除く各パラメータ「発進加速シフトアップエンジン回転数 Nl」 P1 、「発進加速アクセル開度 a l」P2、「定常走行エンジン回転数 Ν2」Ρ3、「車速 (V) 2 Ζ走行距離」 Ρ4、 「アイドル走行車速」 Ρ6と、各領域 (Ε1〜Ε4)の平均の運転を 100 %とした場合の燃料消費量割合えとは相関がある。
そこで各パラメータ Ρ1〜Ρ4、 Ρ6の頻度分布の平均(図 11参照)と、パラメータと燃 費消費量割合えとの相関関係(図 12の相関線 F)から、実際の運行での運転の仕方 (評価対象である実運行時)での燃料消費量割合 λ Xを求めることが出来る。
[0099] さらに、図 11の頻度グラフにおいて、「目標」 =「平均—標準偏差」とおけば、当該 パラメータ(Ρ1〜Ρ4、 Ρ6の内の何れか)の図 12の横軸上の「目標」に該当する位置 Ntを見出し、 Ntから垂線を立ち上げ、近似式 (F線)との交点 Ftカゝら縦軸の燃料消 費量割合えの目盛りえ t (図示では 90%)を読込めばその値が、平均の運転の仕方 を 100%とした場合の燃料消費量割合 λである。
同様の方法で、実走行の場合の燃料消費量割合 jを求めれば、図示の例では、 105%となる。
即ち、実走行では、平均の運転の仕方に対しても好ましくない値となっており、対目 標に至っては、相当の努力を要することがうかがえる。
[0100] 上述した方法では、燃料消費量に関する評価の数量は平均の運転の仕方を 100
%とした場合の燃料消費量割合 λとして表して!/、るが、勿論、具体的な目標燃費及 び節約可能な燃料消費量も算出することが可能である。
以下に、具体的な目標燃費及び節約可能な燃料消費量の算出方法を示す。
先ず、前記各走行領域 (Ε1〜Ε4)毎、各パラメータ (Ρ1〜Ρ6)において、
(1) 燃料メータ 5、或いは、図示しないエンジンコントロールユニットから の燃料流量信号を積算することにより、実際の運行での燃料消費量 Gjを求める。
(2) 平均的な運転の仕方での燃料消費量 Gaは、前記実際の運行での燃料消費 量 Gjに、実際の運転の仕方の燃料消費割合 λに対する平均的な運転の仕方での 燃料消費量割合 λ a ( = 100%)を乗じた後、実際の運転の仕方での燃料消費量割 合え jで徐して求める。 Ga=Gj X l a/ lj
(3) 目標とする運転の仕方での燃料消費量 Gtは、前記実際の運行での燃料消 費量 Gjに、目標の運転の仕方の燃料消費量割合 tを乗じた後、実際の運転の仕 方の燃料消費割合 λ jで除して求める。
Gt=Gj X l t/ lj
(4) 節約可能な燃料消費量、即ち、実際の運行での運転の仕方の燃料消費量と 目標とする運転での燃料消費量の差 Δ Gは、実際の運行での燃料消費量 Gjから目 標とする運転の仕方での燃料消費量 Gtを減じて求める。
A G = Gj -Gt
次に、前記各走行領域 (各運転の仕方)についての演算結果を合計し、一走行( 発進停止間)又は、一運行について、以下を求める。即ち、
(5) (1)〜 (4)で運転の仕方の各パラメータについて節約出来る燃料消費量を個 々に求め、それらを合計することにより、一走行 (発進停止間)又は、一運行での節約 可能な燃料消費量を求めることが出来る。尚、減速領域についても、減速惰行割合 から求めた節約可能な燃料消費量を前記合計に加える。
(6) 目標の運転の仕方での燃料消費量は、実際の燃料消費量から節約可能な燃 料消費量の各要因の合計を減じことによって求められる。
(7) 目標燃費は、走行距離を前記目標の運転の仕方での燃料消費量で除すこと によって求められる。
力べして、目標燃費は精度良く求めることが出来る。
[0101] 上述の方法は、比較のベースとされる平均の運転の仕方と実走行 (実運行)におけ る運転の仕方にぉ 、て、車両総質量が等 、場合に成り立つ。
然るに、商用車、とりわけ、貨物トラック等においては、定積状態と空車状態では、 その車両総質量は大きく異なる。そして、燃料消費量も車両総質量の大きさの違い によって大きく左右される。
[0102] 図 13は、定積状態における運転の仕方と燃料消費量の割合との関係を示した相 関図であり、図 14は、空車状態における運転の仕方と燃料消費量の割合との関係を 示した相関図である。 図 14の空車状態では、平均の運転の仕方に対して実運行では燃料消費量の割合 は 103%、目標とする運転の仕方では燃料消費量の割合は 92%となっているのに 対して、図 13の定積状態では、実運行では燃料消費量の割合は 105%、目標とする 運転の仕方では燃料消費量の割合は 90%と平均の運転の仕方に対する差が拡大 している。
[0103] ここで、車両総質量の大きさと、平均の運転の仕方を 100%とした場合の任意の運 転の仕方による燃料消費量割合えとは、相関関係がある。その相関を近似式で表し 、グラフ上で示したものが、図 15の、実際の運行での運転の仕方における燃料消費 量割合の値を求める相関線 FFであり、図 16の目標の運転の仕方での燃料消費量 割合の値を求める相関線 FFである。
[0104] 図 15において、定積及び空車の車両総質量は既知であり、実際の運行における 燃料消費量割合も図 13及び図 14によって、それぞれ 105%、 103%と求められてお り、定積の Aj点、空車の Bj点が求まる。 Aj点と Bj点とを直線 FFで結びその直線上の 実運行時の車両総質量の位置を選べば、その時の平均の運転の仕方を 100%とし た場合の燃料消費量割合 104%を読み取ることが出来る。
[0105] 図 16において、定積及び空車の車両総質量は既知であり、目標の運転の仕方で の燃料消費量割合も図 13及び図 14によって、それぞれ 90%、 92%と求められてお り、定積の At点、空車の Bt点が求まる。 At点と Bt点とを直線 FFで結びその直線上 の目標の運転の仕方での車両総質量の位置を選べば、その時の平均の運転の仕方 を 100%とした場合の燃料消費量割合 91%を読み取ることが出来る。
[0106] 図 15及び図 16を用いることによって、空車から定積状態まで、如何なる車両総質 量においても、正確な燃料消費量に関する評価を行うことが可能となる。
[0107] 尚、車両総質量 mは、例えば、以下の方法によって求めることが出来る。
(1) エンジン負荷センサ 6からのエンジン負荷(L)を求める。
(2) 車両の駆動力(タイヤの回転力)は、エンジン負荷 (L)を、例えば、エンジント ルクとすれば、動力伝達系(トランスミッション、ディファレンシャル)のギヤ比、及び各 伝達系の機械効率、タイヤ半径及びタイヤの摩擦係数等を知ることによって求まる。
(3) 加速度 aは、車速センサ 4で求めた車両速度 Vから求めることが出来る。 (4) 以上によって求めた駆動力 F及び加速度 aを式「m=FZ a」に代入して、車 両総質量 mを求める。
[0108] 次に、図 17のフローチャート及び図 9の構成を参照して、車両総質量を考慮した燃 料消費量の評価方法を以下に説明する。
尚、図 17のフローを実施するに当り、車載データベース 7と管理側 U2のコントロー ルユニット (解析用パソコン) 20は、無線通信で送 ·受信が可能に構成されており、車 両の計測された車載データベースに収録された各種データは、即時にコントロール ユニット 20に入力されるものとする。
[0109] 先ず、ステップ S1にお 、て運行データ(エンジン回転数 N、アクセル開度ひ、車速 V、燃料流量 Fw及びエンジン負荷 L)を読込む。ステップ S2に進み、車載データべ ース 7、或いは、管理側のコントロールユニット 20は車両が停止しているか否かを判 断する。停車してれば (ステップ S2の YES)、次のステップ S3に進み、停車していな ければ (ステップ S 2の NO)、制御は元に戻る。
[0110] ステップ S3では、前記車両データから運行燃料消費量、走行距離、燃料消費量を 演算した後、ステップ S4に進み、前述した方法で運行中の車両総質量 mを演算する
[0111] ステップ S5では、運転の仕方の各パラメータ(P1〜P6)について、平均的な運転 の仕方の燃料消費量を 100%とした場合の実際の運転の仕方の燃料消費量割合え を演算する。
[0112] 次にステップ S6では、運転の仕方の各パラメータ(P1〜P6)について、平均的な 運転の仕方の燃料消費量を 100%とした場合の目標の運転の仕方の燃料消費量割 合えを演算する。
[0113] ステップ S7に進み、前記走行領域 (E1;発進加速領域、 E2 ;定常走行領域、 E3 ; 減速領域、 E4 ;アイドル走行領域)に区分け処理を行う。
[0114] 次のステップ S8では、発進加速領域 E1における省燃費運転の評価を演算する。
ステップ S9では、定常走行領域 E2における省燃費運転の評価を演算する。ステップ
S 10では、減速領域 E3における省燃費運転の評価を演算する。ステップ S 11では、 アイドル走行領域 E4における省燃費運転の評価を演算する。 [0115] 次のステップ S12では、 E1〜E4の、即ち、発進から停止までの区間における省燃 費運転の評価を演算する。
[0116] ステップ S13では、(1)平均的な燃料消費量、燃費 (各運転の仕方の要因の合計) を演算する。また、ステップ S14では、(2)目標の燃料消費量、燃費 (各運転の仕方 のパラメータの合計)を演算する。
[0117] ステップ S15に進み、実際の運行燃料消費量、燃費と(1)、(2)の演算結果とを比 較し、運転評価を演算する (評価を加える)。
[0118] ステップ S16では、ステップ S15で得られた燃料消費量に関する種々のデータ、及 び運転の評価に関して、例えば、所定の書式にリポートとして纏められ、前記プリンタ 22に出力して、ドライバ及び車両運行管理者に提示される。
そして、再びステップ S1に戻り、ステップ S1以降を繰り返す。
[0119] 図 18は、省燃費運転評価のまとめとして出力された省燃費運転診断リポートの一 部を示したレーダーチャートである。図 18によれば、一般道においては、省燃費を実 現するため概ね良好な運転を心がけている力 高速道路においては、使用エンジン 回転域、ブレーキ操作、走行速度の全てのパラメータに亙り、かなり改善の余地があ ることを示して ヽる。
尚、図示はしないが、当該リポートには、選択的に、実燃料消費量、平均の運転の 仕方に対しての燃料節約量及びその時点での節約された金額等も出力することが出 来る。
[0120] この手法で求めたそれぞれの領域毎の、平均的な運行に対して、どの程度燃料を 節約できたか、或いは、どの程度無駄にした力を定量的に精度良く求めることが出来 る。そして、ドライバの運転の仕方と関連付けることも出来る。
[0121] 上述したように、第 3実施形態によれば、平均的な運転の仕方を 100%とした場合 の、実際の運行での燃料消費量割合を求め、平均的な運転の仕方、或いは目標と する運転の仕方に対して、どの程度燃料を節約できたか、或いは、どの程度無駄に したかを定量的に精度良く把握出来る。
そのため、ドライバ及び Z又は運行管理者に渡されるレポートにおいて、具体的な 運転の仕方の改善方法や、その改善方法によって得られる燃料消費量の改善代を 定量的に、或いは、平均的な運転の仕方及び目標とする運転の仕方と比較して、指 導 (アドバイス)することが出来る。
[0122] また、運転の仕方を具体的にどのように改善すると、どの程度燃料消費量を節約で きるかが分かるので、ドライバの省エネ運転の励みになる。
[0123] 運行管理者にとっては、ドライバが実際にどの程度省燃費運転をしていたかを、燃料 節約量と言う定量値で把握でき、ドライバの努力をドライバの評価に反映できる。また 、運転の指導についても、データベースで具体的に行うことが出来る。
[0124] 尚、例えば、各運送会社の実情に合わせるために、平均と見做す水準を可変にす ることも出来る。同様に、目標の水準を可変とすることも出来る。
[0125] 次に図 19を参照して、第 4実施形態を説明する。
前記図 9〜図 18の第 3実施形態は、各パラメータの検出手段であるエンジン回転 センサ 2、アクセル開度センサ 3、車速センサ 4、燃料流量計 5は夫々専用の回路によ つて車載データベース 7に接続された実施形態である。
それに対して、図 19の第 2実施形態は、予め、アクセル信号、燃料流量信号車速 信号、エンジン回転数信号が車内通信ネットワーク「車内 LAN」によって LAN中 ϋ 器 8にデジタル信号として集められ、通信ケーブル Wによって車載データベース 7に 記憶されるように構成されている。これらの構成を除いては、作用効果を含め、図 9〜 図 18の第 3実施形態と実質的に同様であり、以降の説明は省略する。
[0126] 次に、図 20〜図 29を参照して第 5実施形態を説明する。
[0127] 図 20において、当該燃料消費量評価システムの第 5実施形態は、車両(1)側の装 備 U1と、管理側の装備 U2とによって構成されている。
ここで、管理側とは、例えば、当該車両を所有する運送会社の車両管理部門等を指 す。
[0128] 前記車両側の装備 U1は、車両(図示の例では貨物自動車) 1のエンジン回転数 Ν を計測するエンジン回転数計測手段 (以降、エンジン回転数計測手段をエンジン回 転センサという) 2と、アクセル開度 αを計測するアクセル開度計測手段(以降、ァク セル開度計測手段をアクセル開度センサという) 3と、車速 Vを計測する車速計測手 段 (以降、車速計測手段を車速センサという) 4と、燃料流量 Fwを計測する燃料流量 計測手段 (以降、燃料流量計測手段を燃料メータという) 5と、エンジンの負荷 Lを計 測するエンジン負荷計測手段 (以降、エンジン負荷計測手段をエンジン負荷センサ t 、う) 6と、車載用制御手段 10とによって構成されて 、る。
[0129] 前記車載用制御手段 10は、図 21に示すように、インタフェース 9と、コントロールュ ニット 11と、表示手段であるモニタ 12と、記憶手段である車載データベース 7と無線 アンテナ 13と、力 構成されている。
[0130] 前記インタフェース 9と車載データベース 7とはライン L1によって、車載データべ一 ス 7とコントロールユニット 11とはライン L2によって、コントロールユニット 11とモニタ 1
2とはライン L3によって、コントロールユニット 11とインタフェース 9とはライン L4によつ て夫々接続されている。
[0131] そして、前記計測されたエンジン回転数 N、アクセル開度 oc、車速 V、燃料流量 Fw
、エンジン負荷 Lの各車両信号は、インタフェース 9、ライン L1を介してー且車載デー タベースに 7記憶される。
コントロールユニット 11は、車載データベース 7から適宜ライン L2を介して前記車両 信号の全て、或いはそのうちの何れ力複数を選択'抽出し、ライン L4、インタフェース
9、無線アンテナ 13及び、外部のネットワーク Nを介して、後述する管理側の装備 U2 にデータを送信するように構成されて!ヽる。
本実施形態では、後述する管理側の装備 U2とは、第 1には無線によってデータの 授受を行っている力、メモリカード 15によって車載データベース 7から車両データを 取り出し、そのメモリカード 15に収録された車両データを管理側に送ることも可能で ある。
[0132] 一方、管理側の装備 U2は、管理側制御手段 (以降、管理側制御手段を燃費デー タ解析用パソコンと言う) 20と、該燃費データ解析用パソコン 20によって、前記評価 結果を出力する出力手段であるプリンタ 22と、コントロールユニット 20に付帯する入 力手段であるキーボード 24とによって構成されている。
[0133] 前記燃費データ解析用パソコン 20は、前記ネットワーク N及び無線アンテナ 23によ つて前記車両データを受信し、計測されたエンジン回転数 N、アクセル開度 oc、車速 V、燃料流量 Fw、エンジン負荷 から、当該車両 1の運行時の車両総質量 m及び燃 料消費量 Qを求め、後述する方法によって平均的な運転をした時の燃料消費量及 び、目標とする運転の仕方による燃料消費量とを比較して適正な運転方法や節約で きた燃料の量等につ!、ての評価を行うように構成されて!、る。
[0134] 前記燃費データ解析用パソコン 20は、図 22に示すように、走行開始から停止まで を、図示の例では、発進加速領域 El、定常走行領域 E2、減速領域 E3、アイドル走 行領域 E4の 4つの領域に分類する。
そして、分類した 4つの領域 E1〜E4の各々について燃料消費量 Qに関連するパラ メータである「発進加速シフトアップエンジン回転数 N 1」 P 1、「発進加速アクセル開 度 a l」P2、「定常走行エンジン回転数 Ν2」Ρ3、「車速 (V)2Z走行距離」 Ρ4、「減速 惰行割合」 Ρ5、 「アイドル走行車速」 Ρ6を設定し、それらのパラメータ Ρ1〜Ρ6と平均 の運転の仕方を 100%とした場合の燃料消費量割合 λとの相関関係(図 24の相関 線 F)に基づいて前記複数の領域 Ε1〜Ε4毎の燃料消費量割合えを決定し、決定さ れた燃料消費量割合 λに基づ ヽて評価を行なう様に構成されて!ヽる。
[0135] 又、発進'停止による走行距離があまり長くない場合、発進して停止するまでの車 速が高ければブレーキによって熱として捨てられるエネルギの割合が大きくなる。そこ で、所定の距離以下ではブレーキによって熱として捨てられるエネルギの大きさを示 す「(車速 V) 2Ζ走行距離 S」を燃費評価のノ ラメータ P4 (図示せず)とし、この P4を 評価することで、省エネ運転の励行をドライバに喚起する。
[0136] 前記パラメータ P1〜P6は、運転の仕方と容易に関連付けられ、これらのパラメータ に基づいて算出される各燃料消費量 Qの精度を向上させている。
[0137] ここで、各パラメータ P1〜P6に関して、運行データの頻度分布を取ると、図 23に示 すように、正規分布に近ぐその様な数多くの運行データを処理することにより、各パ ラメータ P1〜P6の頻度分布の平均的な値や、ばらつきの程度を把握できる。
そのようなデータを逐次燃費データ解析用パソコン 20に備えた図示しないデータ ベース、或いは車載データベース 7に加えて出来る新たなデータベースの精度を向 上させるとともに、車両は年々改良されており、そのような改良された車両 1の性能に マッチしたデータベースとすることが出来る。
[0138] 減速惰行割合 P5を除く各パラメータ「発進加速シフトアップエンジン回転数 Nl」 P1 、「発進加速アクセル開度 a l」P2、「定常走行エンジン回転数 Ν2」Ρ3、「車速 (V) 2 Ζ走行距離」 Ρ4、 「アイドル走行車速」 Ρ6と、各領域 (Ε1〜Ε4)の平均の運転を 100 %とした場合の燃料消費量割合えとは相関がある。
そこで各パラメータ Ρ1〜Ρ4、 Ρ6の頻度分布の平均(図 23参照)と、パラメータと燃 費消費量割合えとの相関関係(図 24の相関線 F)から、実際の運行での運転の仕方 (評価対象である実運行時)での燃料消費量割合 λ Xを求めることが出来る。
[0139] さらに、図 23の頻度グラフにおいて、「目標」 =「平均—標準偏差」とおけば、当該 パラメータ(Ρ1〜Ρ4、 Ρ6の内の何れか)の図 24の横軸上の「目標」に該当する位置 Ntを見出し、 Ntから垂線を立ち上げ、近似式 (F線)との交点 Ftカゝら縦軸の燃料消 費量割合えの目盛りえ t (図示では 90%)を読込めばその値が、平均の運転の仕方 を 100%とした場合の燃料消費量割合 λである。
同様の方法で、実走行の場合の燃料消費量割合 jを求めれば、図示の例では、 105%となる。
即ち、実走行では、平均の運転の仕方に対しても好ましくない値となっており、対目 標に至っては、相当の努力を要することがうかがえる。
[0140] 上述した方法では、燃料消費量に関する評価の数量は平均の運転の仕方を 100
%とした場合の燃料消費量割合 λとして表して!/、るが、勿論、具体的な目標燃費及 び節約可能な燃料消費量も算出することが可能である。
以下に、具体的な目標燃費及び節約可能な燃料消費量の算出方法を示す。 先ず、前記各走行領域 (Ε1〜Ε4)毎、各パラメータ (Ρ1〜Ρ6)において、
(1)燃料メータ 5、或いは、図示しないエンジンコントロールユニットから の燃料流量信号を積算することにより、実際の運行での燃料消費量 Gjを求める。
(2)平均的な運転の仕方での燃料消費量 Gaは、前記実際の運行での燃料消費 量 Gjに、実際の運転の仕方の燃料消費割合 λに対する平均的な運転の仕方での 燃料消費量割合 λ a ( = 100%)を乗じた後、実際の運転の仕方での燃料消費量割 合え jで除して求める。
Ga = Gj X λ &/
(3) 目標とする運転の仕方での燃料消費量 Gtは、前記実際の運行での燃料消費 量 Gjに、目標の運転の仕方の燃料消費量割合 tを乗じた後、実際の運転の仕方 の燃料消費割合え jで除して求める。
Gt=Gj X l t/ lj
(4)節約可能な燃料消費量、即ち、実際の運行での運転の仕方の燃料消費量と 目標とする運転での燃料消費量の差 Δ Gは、実際の運行での燃料消費量 Gjから目 標とする運転の仕方での燃料消費量 Gtを減じて求める。
A G = Gj -Gt
次に、前記各走行領域 (各運転の仕方)についての演算結果を合計し、一走行( 発進停止間)又は、一運行について、以下を求める。即ち、
(5) (1)〜 (4)で運転の仕方の各パラメータについて節約出来る燃料消費量を個 々に求め、それらを合計することにより、一走行 (発進停止間)又は、一運行での節約 可能な燃料消費量を求めることが出来る。尚、減速領域についても、減速惰行割合 から求めた節約可能な燃料消費量を前記合計に加える。
(6) 目標の運転の仕方での燃料消費量は、実際の燃料消費量から節約可能な燃 料消費量の各要因の合計を減じことによって求められる。
(7) 目標燃費は、走行距離を前記目標の運転の仕方での燃料消費量で除すこと によって求められる。
力べして、目標燃費は精度良く求めることが出来る。
[0141] 上述の方法は、比較のベースとされる平均の運転の仕方と実走行 (実運行)におけ る運転の仕方にぉ 、て、車両総質量が等 、場合に成り立つ。
然るに、商用車、とりわけ、貨物トラック等においては、定積状態と空車状態では、 その車両総質量は大きく異なる。そして、燃料消費量も車両総質量の大きさの違い によって大きく左右される。
[0142] 図 25は、定積状態における運転の仕方と燃料消費量の割合との関係を示した相 関図であり、図 26は、空車状態における運転の仕方と燃料消費量の割合との関係を 示した相関図である。
図 26の空車状態では、平均の運転の仕方に対して実運行では燃料消費量の割合 は 103%、目標とする運転の仕方では燃料消費量の割合は 92%となっているのに 対して、図 25の定積状態では、実運行では燃料消費量の割合は 105%、目標とする 運転の仕方では燃料消費量の割合は 90%と平均の運転の仕方に対する差が拡大 している。
[0143] ここで、車両総質量の大きさと、平均の運転の仕方を 100%とした場合の任意の運 転の仕方による燃料消費量割合えとは、相関関係がある。その相関を近似式で表し 、グラフ上で示したものが、図 27の、実際の運行での運転の仕方における燃料消費 量割合の値を求める相関線 FFであり、図 28の目標の運転の仕方での燃料消費量 割合の値を求める相関線 FFである。
[0144] 図 27において、定積及び空車の車両総質量は既知であり、実際の運行における 燃料消費量割合も図 25及び図 26によって、それぞれ 105%、 103%と求められてお り、定積の Aj点、空車の Bj点が求まる。 Aj点と Bj点とを直線 FFで結びその直線上の 実運行時の車両総質量の位置を選べば、その時の平均の運転の仕方を 100%とし た場合の燃料消費量割合 104%を読み取ることが出来る。
[0145] 図 28において、定積及び空車の車両総質量は既知であり、目標の運転の仕方で の燃料消費量割合も図 25及び図 26によって、それぞれ 90%、 92%と求められてお り、定積の At点、空車の Bt点が求まる。 At点と Bt点とを直線 FFで結びその直線上 の目標の運転の仕方での車両総質量の位置を選べば、その時の平均の運転の仕方 を 100%とした場合の燃料消費量割合 91%を読み取ることが出来る。
[0146] 図 27及び図 28を用いることによって、空車から定積状態まで、如何なる車両総質 量においても、正確な燃料消費量に関する評価を行うことが可能となる。
[0147] 尚、車両総質量 mは、例えば、以下の方法によって求めることが出来る。
(1) エンジン負荷センサ 6からのエンジン負荷(L)を求める。
(2)車両の駆動力(タイヤの回転力)は、エンジン負荷 (L)を、例えば、エンジント ルクとすれば、動力伝達系(トランスミッション、ディファレンシャル)のギヤ比、及び各 伝達系の機械効率、タイヤ半径及びタイヤの摩擦係数等を知ることによって求まる。
(3)加速度 αは、車速センサ 4で求めた車両速度 Vから求めることが出来る。
(4)以上によって求めた駆動力 F及び加速度 aを式「m=FZ a」に代入して、車 両総質量 mを求めることが出来る。 [0148] 次に、図 29のフローチャート及び図 20の構成を参照して、車両総質量を考慮した 燃料消費量の評価方法を以下に説明する。
[0149] 先ず、ステップ S1にお 、て運行データ(エンジン回転数 N、アクセル開度ひ、車速
V、燃料流量 Fw及びエンジン負荷 L)を読込む。
[0150] ステップ S2に進み、瞬間アクセル開度を車載用制御手段 10のモニタ 12に表示し、 更に瞬間燃費を表示する (ステップ S3)。
図 30は、走行中の表示 (モニタ)画面 Mdlを示したもので、アクセル開度表示 Mi l と、瞬間燃費表示 M12と、現在燃費表示 M13と、 目標燃費表示 14と、 目標燃費に 対する現在燃費の達成度の割合を示した達成度表示 M15と、燃料の節約量を示し た節約量表示 M16とが成されて 、る。
[0151] 次のステップ S4では、車載用制御手段 10のコントロールユニット 11は車両が停止 しているか否かを判断する。停車していれば (ステップ S2の YES)、次のステップ S5 に進み、停車していなければ (ステップ S2の NO)、制御は元に戻る。
[0152] ステップ S5では、前記車両データから運行燃料消費量、走行距離、燃料消費量を 演算した後、ステップ S6に進み、前述した方法で運行中の車両総質量 mを演算する
[0153] ステップ S7では、運転の仕方の各パラメータ(P1〜P6)について、平均的な運転 の仕方の燃料消費量を 100%とした場合の実際の運転の仕方の燃料消費量割合え を演算する。
[0154] 次にステップ S8では、運転の仕方の各パラメータ(P1〜P6)について、平均的な 運転の仕方の燃料消費量を 100%とした場合の目標の運転の仕方の燃料消費量割 合えを演算する。
[0155] ステップ S9に進み、前記走行領域 (E1;発進加速領域、 E2 ;定常走行領域、 E3 ; 減速領域、 E4 ;アイドル走行領域)に区分け処理を行う。
[0156] 次のステップ S 10では、発進加速領域 E1における省燃費運転の評価を演算する。
走行中のリアルタイムアドバイスの表示 Md2として、図 31では、アクスル開度表示
Mi lと、瞬間燃費表示 M12と、アドバイス内容「アクセルを踏み過ぎです」 Maiを表 示している。 あるいは、別の走行中のリアルタイムアドバイスの表示 Md3として、図 32では、ァク セル開度表示 Mi lと、瞬間燃費表示 M12と、シフトアップの際にエンジン回転数が 上がり切って!/ヽな 、ので、アドバイス内容「シフトアップをしましょう」 Ma2を表示して!/ヽ る。
[0157] ステップ SI 1で、定常走行領域 E2における省燃費運転の評価を演算し、ステップ S
12で、減速領域 E3における省燃費運転の評価を演算した後、ステップ S13で、アイ ドル走行領域 E4における省燃費運転の評価を演算する。
この時の走行中のリアルタイムアドバイスの表示 Md4として、図 33では、アクスル開 度表示 (アクセル開度はゼロ) Mi lと、瞬間燃費表示 M12と、アドバイス内容「惰行走 行を活用しましょう」 Ma3を表示して 、る。
[0158] 次のステップ S 14では、 E1〜E4の、即ち、発進から停止までの区間における省燃 費運転の評価を演算する。
[0159] ステップ S15では、(1)平均的な燃料消費量、燃費 (各運転の仕方の要因の合計) を演算する。また、ステップ S16では、(2)目標の燃料消費量、燃費 (各運転の仕方 のパラメータの合計)を演算する。
ステップ S17に進み、実際の運行燃料消費量、燃費と(1)、(2)の演算結果とを比 較し、運転評価を演算する (評価を加える)。
[0160] 図 34及び図 35は、夫々停車毎に表示される表示画面 Msl、 Ms2である。
図 34と図 35とは、ともに画面左上方隅のパネルスィッチ部 Swを押すことによって、 互いに画面力 S (図 34から図 35に、或は、図 35から図 34に)切換わる。
図 34では、アクセル開度表示 M21、シフトアップエンジン回転数 M22、定常走行 エンジン回転数 M23、惰行の活用程度 M24、走行車速 M25が、夫々目標達成率 を 100%とした百分率の棒グラフで示されて!/、る。
図 35では、燃料節約のポイントを示しており、アドバイス内容「アクセルの踏み込み を抑えましょう」 Ma4と、 目標値を併記した平均アクスル開度表示 M31、及び燃料消 費量表示 M32をデジタルで表示している。更に、運転評価の推移 M33を 10km毎 5 Okmまで棒グラフで表示して!/、る。
[0161] ステップ S18では、ステップ S17で得られた燃料消費量に関する種々のデータ、及 び運転の評価に関して、例えば、所定の書式にリポートとして纏められ、前記プリンタ
22に出力して、ドライバ及び車両運行管理者に提示される。
そして、再びステップ S1に戻り、ステップ S1以降を繰り返す。
[0162] 図 36は、省燃費運転評価のまとめとして出力された省燃費運転診断リポート Rであ る。
図 36のリポート Rには、レーダーチャート R1と、燃料消費にカゝかる総合評価欄 R2と 、省燃費のアドバイス欄 R3、 R4と、燃料節約量表示欄 R5と、総合まとめ欄 R6とが設 けられている。
[0163] レーダーチャート R1は、アクセル操作 rl、シフトアップ操作 r2、走行車速 r3、ェン ジン回転数 r4、ブレーキ操作 r5、高速道における走行車速 r6、高速道におけるブレ ーキ操作 r7、高速道における車速変動 r8の 8項目を評価項目とし、図示の例では 10 段階評価を行う。 10が (良い)、 0が (悪い)である。
[0164] 燃料消費にかかる総合評価欄 R2は、推定標準燃料消費量と燃料節約量と節約量 を金額に換算した値とを、一般道、高速自動車道と、その合計値として表にまとめて いる。
[0165] 省燃費のアドバイス欄 R3、 R4の内、 R3では、例えば、走行車速に関して、運行し てきた車速の程度と、省燃費に及ぼす影響、更なる省燃費への秘策等が表示される
R4では、例えば、発進加速時におけるアクセル操作の良否や、燃費に及ぼす影響
、更なる省燃費への秘策等が表示される。
[0166] 燃料節約量表示欄 R5では、各運転操作パラメータ毎に、燃料節約量と目標燃料 節約量とが比較して実数量として棒グラフで示されている。
[0167] 総合まとめ欄 R6では、運転方法に関する総合的な纏めが表示される。
[0168] 尚、単項目の評価として、例えば、図 37に示すように、発進加速のアクセル開度の 目標値 dlと実運行 (運転操作) d2との比較データ Dを出力することも出来る。
[0169] 上述したように、第 5実施形態によれば、それぞれの領域毎の、平均的な運行に対 して、どの程度燃料を節約できたか、或いは、どの程度無駄にした力を定量的に精 度良く求めることが出来る。そして、ドライバの運転の仕方と関連付けることも出来る。 [0170] また、平均的な運転の仕方を 100%とした場合の、実際の運行での燃料消費量割 合を求め、平均的な運転の仕方、或いは目標とする運転の仕方に対して、どの程度 燃料を節約できたか、或いは、どの程度無駄にしたかを定量的に精度良く把握出来 る。
[0171] 燃料消費量に関する評価は、車載の表示手段 (モニタ 12)によって、リアルタイムで 表示されるため、省燃費運転が OJT (On The Job Training)で習得出来る。
[0172] ドライバ及び Z又は運行管理者に渡されるレポートにおいて、具体的な運転の仕 方の改善方法や、その改善方法によって得られる燃料消費量の改善代を定量的に、 或いは、平均的な運転の仕方及び目標とする運転の仕方と比較して、指導 (アドバイ ス)することが出来る。
[0173] また、運転の仕方を具体的にどのように改善すると、どの程度燃料消費量を節約で きるかがリアルタイムでモニタ 12に表示されるので、ドライバの省エネ運転の励みに なる。
[0174] 燃料消費量に対する評価が絶対量のみならず、前記各パラメータ毎に平均的な運 転の仕方及び目標運転と比較しているので、評価が身近なものとして捕らえられ、燃 費改善 (省エネ運転の実行)に現実的な対応策が、即時に打てる。
[0175] 運行管理者にとっては、ドライバが実際にどの程度省燃費運転をしていたかを、燃 料節約量と言う定量値で把握でき、ドライバの努力をドライバの評価に反映できる。ま た、運転の指導についても、データベースで具体的に行うことが出来る。
[0176] 尚、例えば、各運送会社の実情に合わせるために、平均と見做す水準を可変にす ることも出来る。同様に、目標の水準を可変とすることも出来る。
[0177] 次に図 38を参照して、第 6実施形態を説明する。
前記図 20〜図 37の第 5実施形態は、各パラメータの検出手段であるエンジン回転 センサ 2、アクセル開度センサ 3、車速センサ 4、燃料流量計 5は夫々専用の回路によ つて車載データベース 7に接続された実施形態である。
それに対して、図 38の第 6実施形態は、予め、アクセル信号、燃料流量信号車速 信号、エンジン回転数信号が車内通信ネットワーク「車内 LAN」によって LAN中 ϋ 器 8にデジタル信号として集められ、通信ケーブル Wによって車載データベース 7に 記憶されるように構成されている。これらの構成を除いては、作用効果を含め、図 20 〜図 37の第 5実施形態と実質的に同様であり、以降の説明は省略する。
[0178] 図示の実施形態はあくまでも例示であり、本発明の技術的範囲を限定するもので はないことを付記する。
図面の簡単な説明
[0179] [図 1]本発明の第 1実施形態に係る燃料消費評価システムの構成を示すブロック図。
[図 2]本発明を実施する上で、走行領域を 4つの領域の区分けし、各評価パラメータ と走行距離 (走行過程)を関連付けた特性図。
[図 3]車速の大きさを運動エネルギの大きさとして説明する説明図。
[図 4]本発明における評価パラメータの度数分布を示した頻度分布図。
[図 5]各評価パラメータと単位走行距離当りの燃料消費量との関係を示した相関図。
[図 6]燃料消費量の求め方を表に纏めた説明図。
[図 7]本発明の評価手順を示したフローチャート。
[図 8]本発明の第 2実施形態に係る燃料消費評価システムの構成を示すブロック図。
[図 9]本発明の第 3実施形態に係る燃料消費評価システムの構成を示すブロック図。
[図 10]本発明の第 3実施形態を実施する上で、走行領域を 4つの領域の区分けし、 各評価パラメータと走行距離 (走行過程)を関連付けた特性図。
[図 11]本発明の第 3実施形態における評価パラメータの度数分布を示した頻度分布 図。
[図 12]各評価パラメータと平均の運転の仕方を 100%とした場合の任意の運転の仕 方における燃料消費量割合 λとの関係を示した相関図。
[図 13]各評価パラメータと平均の運転の仕方を 100%とした場合の定積状態での任 意の運転の仕方における燃料消費量割合えとの関係を示した相関図。
[図 14]各評価パラメータと平均の運転の仕方を 100%とした場合の空車状態での任 意の運転の仕方における燃料消費量割合えとの関係を示した相関図。
[図 15]任意の車両総質量において、実際の運行での運転の仕方における燃料消費 量割合を求める相関図。
[図 16]任意の車両総質量において、目標の運行の仕方での燃料消費量割合を求め る相関図。
圆 17]第 1実施形態における燃料消費量評価方法を説明する制御フローチャート。 圆 18]省燃費運転評価のまとめとして出力された省燃費運転診断リポートの一部を 示したレーダーチャート。
[図 19]第 4実施形態の全体構成を示すブロック図。
圆 20]本発明の第 5実施形態に係る燃料消費評価システムの構成を示すブロック図 圆 21]第 5実施形態の車両用制御手段の構成を示すブロック図。
[図 22]本発明の第 5実施形態を実施する上で、走行領域を 4つの領域の区分けし、 各評価パラメータと走行距離 (走行過程)を関連付けた特性図。
圆 23]本発明の第 5実施形態における評価パラメータの度数分布を示した頻度分布 図。
[図 24]各評価パラメータと平均の運転の仕方を 100%とした場合の任意の運転の仕 方における燃料消費量割合 λとの関係を示した相関図。
圆 25]各評価パラメータと平均の運転の仕方を 100%とした場合の定積状態での任 意の運転の仕方における燃料消費量割合えとの関係を示した相関図。
圆 26]各評価パラメータと平均の運転の仕方を 100%とした場合の空車状態での任 意の運転の仕方における燃料消費量割合えとの関係を示した相関図。
圆 27]任意の車両総質量において、実際の運行での運転の仕方における燃料消費 量割合を求める相関図。
[図 28]任意の車両総質量にお 、て、目標の運行の仕方での燃料消費量割合を求め る相関図。
[図 29]第 5実施形態における燃料消費量評価方法を説明する制御フローチャート。 圆 30]第 5、第 6実施形態に関わる走行中の表示画面を示した図。
圆 31]第 5、第 6実施形態に関わる走行中のリアルタイムの情報の表示画面を示した 図。
圆 32]第 5、第 6実施形態に関わる走行中のリアルタイムの情報の他の表示画面を示 した図。 [図 33]第 5、第 6実施形態に関わる走行中のリアルタイムの情報の別の表示画面を示 した図。
[図 34]第 5、第 6実施形態に関わる停車中の表示画面を示した図。
[図 35]第 5、第 6実施形態に関わる停車中の他の表示画面を示した図。
[図 36]第 5、第 6実施形態に関わる省燃費運転評価のまとめとして出力された省燃費 運転診断リポート R。
[図 37]第 5、第 6実施形態に関わる単項目の評価として出力された、発進加速のァク セル開度の目標値と実運行 (運転操作)との比較データ。
[図 38]第 6実施形態の全体構成を示すブロック図。
符号の説明
1···貨物自動車 (第 1、第 2実施形態) Z車両 (第 3〜第 6実施形態)
2· · 'エンジン回転数計測手段 Zエンジン回転センサ(以上、第 1〜第 6実施形態)
3·· 'アクセル開度計測手段 Zアクセル開度センサ (以上、第 1〜第 6実施形態)
4· ··車速計測手段 Z車速センサ (以上、第 1〜第 6実施形態)
5··,燃料流量計測手段 Z燃料流量計 (以上、第 1〜第 6実施形態)
6·· 'エンジン負荷計測手段 Zエンジン負荷センサ(以上、第 3〜第 6実施形態)
7· ··車載用記憶手段 Z車載データベース (以上、第 3〜第 6実施形態)
8·· 'LAN中継器 (第 3〜第 6実施形態)
9·· 'インタフェース (第 5、第 6実施形態)
10···制御手段 Zコントロールユニット(以上、第 1、第 2実施形態)、又は、車載用制 御手段 (第 5、第 6実施形態)
11···データベース (第 1、第 2実施形態)、又はコントロールユニット (第 5、第 6実施 形態)
12···パーソナルコンピュータ (第 第 2実施形態)、又は、表示手段 Zモニタ(以上 、第 5、第 6実施形態)
13···入力手段 Zキーボード (以上、第 1、第 2実施形態)
14·· 'プリンタ (第 1、第 2実施形態)
15·· 'メモリカード (第 1〜第 6実施形態) 20···制御手段 Zコントロールユニット(以上、第 3、第 4実施形態)、又は、制御手段
Z燃費データ解析用パソコン (以上、第 5、第 6実施形態)
22·· 'プリンタ (第 3〜第 6実施形態)
24·· '入力手段 Zキーボード (以上、第 3〜第 6実施形態)

Claims

請求の範囲
[1] 貨物自動車のエンジン回転数を計測するエンジン回転数計測手段と、アクセル開 度を計測するアクセル開度計測手段と、車速を計測する車速計測手段と、燃料流量 を計測する燃料流量計測手段と、計測されたエンジン回転数、アクセル開度、車速、 及び燃料流量から貨物自動車の燃料消費量を評価する制御手段とを有し、該制御 手段は記憶手段を備え、且つ、走行開始から停止までを複数の領域に分類し、該複 数の領域の各々について燃料消費に関連するパラメータを設定し、前記パラメータと 燃料消費量との相関関係に基づいて前記複数の領域毎の燃料消費量を決定し、そ の決定された燃料消費量に基づ 、て評価を行なう様に構成されて 、ることを特徴と する燃料消費量評価システム。
[2] 前記複数の領域は、比較的低速力 アクセル開度を増加させると共に車速或いは 移動平均車速が上昇する領域と、アクセル開度を減少させる領域と、アクセル開度が 比較的小さく且つエンジン回転数が比較的低い領域と、上述した 3つの領域の何れ にも該当しな ヽ定常走行領域とを含んで ヽる請求項 1の燃料消費量評価システム。
[3] 前記比較的低速からアクセル開度を増加すると共に車速或!、は移動平均車速が 上昇する領域における前記パラメータはギヤシフトの際のエンジン回転数とアクセル 開度であり、前記アクセル開度を減少させる領域における前記パラメータは、ァクセ ルとブレーキの何れも踏んで ヽな 、で走行した距離とブレーキを踏んで走行した距 離との和におけるアクセルとブレーキの何れも踏んで ヽな 、で走行した距離が占める 割合であり、前記アクセル開度が比較的小さく且つエンジン回転数が比較的低い領 域における前記パラメータは車速であり、上述した 3つの領域の何れにも該当しない 前記定常走行領域における前記パラメータはエンジン回転数である請求項 2の燃料 消費量評価システム。
[4] 前記定常走行領域は、一定距離以上を所定車速以上で走行する高速走行領域と 、それに該当しない領域とに分類され、該高速走行領域の前記パラメータはエンジン 回転数、車速、ブレーキ前後の加速のために使用した燃料量相当量である請求項 1 〜3の何れか 1項の燃料消費量評価システム。
[5] 前記複数の領域が、発進から停止までの距離が所定距離以下の領域と、それに該 当しない領域とに分類され、該所定距離以下の領域における前記パラメータは車速 の 2乗を走行距離で除算した数値である請求項 1の燃料消費量評価システム。
[6] 前記比較的低速力 アクセル開度を増加させると共に車速或いは移動平均車速が 上昇する領域、前記アクセル開度が比較的小さく且つエンジン回転数が比較的低い 領域、前記定常走行領域では、前記記憶手段に記憶されたデータから前記パラメ一 タと燃料消費量との相関関係を統計的に求めている請求項 1〜4の何れ力 1項の燃 料消費量評価システム。
[7] 前記アクセル開度を減少する領域では、燃料消費量は、当該領域における走行距 離と、アクセルとブレーキの何れも踏んでいないで走行した距離と、燃費とに基づい て決定される請求項 1〜5の何れか 1項の燃料消費量評価システム。
[8] 前記制御手段は、決定された燃料消費量を記憶手段に記憶されたデータから得ら れた平均値と比較する様に構成されている請求項 1〜7の何れか 1項の燃料消費量 評価システム。
[9] 前記制御手段は、決定された燃料消費量を目標値と比較する様に構成されて!、る 請求項 1〜8の何れか 1項の燃料消費量評価システム。
[10] 決定された燃料消費量が不正確となる走行状態時のデータを無視する様に構成さ れている請求項 1〜9の何れか 1項の燃料消費量評価システム。
[11] 出力手段を有し、決定された燃料消費量や、平均値或いは目標値に基づいた評 価が出力される様に構成されている請求項 1〜10の何れか 1項の燃料消費量評価 システム。
[12] 車両のエンジン回転数を計測するエンジン回転数計測手段と、アクセル開度を計 測するアクセル開度計測手段と、車速を計測する車速計測手段と、燃料流量を計測 する燃料流量計測手段と、エンジン負荷を計測するエンジン負荷計測手段と、計測 されたエンジン回転数、アクセル開度、車速、燃料流量及びエンジン負荷カゝら車両 の燃料消費量及び車両質量を演算する制御手段とを有し、該制御手段は記憶手段 を備え、且つ、走行開始から停止までを複数の領域に分類し、該複数の領域の各々 について燃料消費に関連するパラメータを設定し、前記パラメータと平均的な運転を した場合に対する燃料消費量割合との相関関係に基づいて、実際の運転の、平均 的な運転をした場合に対する燃料消費量割合及び、目標とする運転をした場合の、 平均的な運転をした場合に対する燃料消費量割合を求め、該求めた燃料消費量割 合に基づ 1ヽて評価を行なう様に構成されて ヽることを特徴とする燃料消費量評価シ ステム。
[13] 前記複数の領域は、比較的低速力 アクセル開度を増加させると共に車速或いは 移動平均車速が上昇する領域と、アクセル開度を減少させる領域と、アクセル開度が 比較的小さく且つエンジン回転数が比較的低い領域と、上述した 3つの領域の何れ にも該当しない定常走行領域とを含んでいる請求項 12の燃料消費量評価システム。
[14] 前記比較的低速力 アクセル開度を増加すると共に車速或 、は移動平均車速が 上昇する領域における前記パラメータはギヤシフトの際のエンジン回転数とアクセル 開度であり、前記アクセル開度を減少させる領域における前記パラメータは、ァクセ ルとブレーキの何れも踏んで ヽな 、で走行した距離とブレーキを踏んで走行した距 離との和におけるアクセルとブレーキの何れも踏んで ヽな 、で走行した距離が占める 割合であり、前記アクセル開度が比較的小さく且つエンジン回転数が比較的低い領 域における前記パラメータは車速であり、前記上述した 3つの領域の何れにも該当し ない定常走行領域における前記パラメータはエンジン回転数である請求項 13の燃 料消費量評価システム。
[15] 前記定常走行領域は、一定距離以上を所定車速以上で走行する高速走行領域と 、それに該当しない領域とに分類され、データ採取される請求項 12〜14の何れか 1 項の燃料消費量評価システム。
[16] 実走行時の燃料消費量を求めるに当たり、前記複数の領域毎に前記燃料流量計 測手段力 の情報を積算して求め、その求めた各領域の積算値を発進力 停止まで の間に渡って合計して求める請求項 12〜 15の何れか 1項の燃料消費量評価システ ム。
[17] 前記パラメータの全てにおいて、実際の車両総質量を計測された車速及び当該車 両の仕様力 求め、その車両質量の影響を考慮して燃料消費量に対する評価を与 える請求項 12〜16の何れか 1項の燃料消費量評価システム。
[18] 出力手段を有し、実際の運転の、平均的な運転をした場合に対する燃料消費量割 合及び、目標とする運転をした場合の、平均的な運転をした場合に対する燃料消費 量割合を求め、該求めた燃料消費量割合に基づいた評価が出力される様に構成さ れている請求項 12〜 17の何れか 1項の燃料消費量評価システム。
[19] 車両のエンジン回転数を計測するエンジン回転数計測手段と、アクセル開度を計 測するアクセル開度計測手段と、車速を計測する車速計測手段と、燃料流量を計測 する燃料流量計測手段と、エンジン負荷を計測するエンジン負荷計測手段と、計測 されたエンジン回転数、アクセル開度、車速、燃料流量及びエンジン負荷の各デー タを記憶する記憶手段と、前記各データから車両の燃料消費量及び車両質量を演 算する制御手段と、車両に搭載された表示手段とを有し、前記制御手段は走行開始 力 停止までを複数の領域に分類し、該複数の領域の各々について燃料消費に関 連するパラメータを設定し、前記パラメータと平均的な運転をした場合に対する燃料 消費量割合との相関関係に基づいて、実際の運転の、平均的な運転をした場合に 対する燃料消費量割合及び、目標とする運転をした場合の、平均的な運転をした場 合に対する燃料消費量割合を求め、該求めた燃料消費量割合に基づいて評価を行 ない、その評価結果を前記表示手段に表示する様に構成されていることを特徴とす る燃料消費量評価システム。
[20] 前記複数の領域は、比較的低速力 アクセル開度を増加させると共に車速或いは 移動平均車速が上昇する領域と、アクセル開度を減少させる領域と、アクセル開度が 比較的小さく且つエンジン回転数が比較的低い領域と、上述した 3つの領域の何れ にも該当しない定常走行領域とを含んでいる請求項 19の燃料消費量評価システム。
[21] 前記比較的低速からアクセル開度を増加すると共に車速或!、は移動平均車速が 上昇する領域における前記パラメータはギヤシフトの際のエンジン回転数とアクセル 開度であり、前記アクセル開度を減少させる領域における前記パラメータは、ァクセ ルとブレーキの何れも踏んで ヽな 、で走行した距離とブレーキを踏んで走行した距 離との和におけるアクセルとブレーキの何れも踏んで ヽな 、で走行した距離が占める 割合であり、前記アクセル開度が比較的小さく且つエンジン回転数が比較的低い領 域における前記パラメータは車速であり、前記上述した 3つの領域の何れにも該当し ない定常走行領域における前記パラメータはエンジン回転数である請求項 20の燃 料消費量評価システム。
[22] 前記定常走行領域は、一定距離以上を所定車速以上で走行する高速走行領域と 、それに該当しない領域とに分類され、データ採取される請求項 19〜21の何れか 1 項の燃料消費量評価システム。
[23] 実走行時の燃料消費量を求めるに当たり、前記複数の領域毎に前記燃料流量計 測手段力 の情報を積算して求め、その求めた各領域の積算値を発進力 停止まで の間に渡って合計して求める請求項 19〜22の何れか 1項の燃料消費量評価システ ム。
[24] 前記パラメータの全てにおいて、実際の車両総質量を、計測された車速及び当該 車両の仕様力 求め、その車両質量の影響を考慮して燃料消費量に対する評価を 与える請求項 19〜23の何れか 1項の燃料消費量評価システム。
[25] 出力手段を有し、実際の運転の、平均的な運転をした場合に対する燃料消費量割 合及び、目標とする運転をした場合の、平均的な運転をした場合に対する燃料消費 量割合を求め、該求めた燃料消費量割合に基づいた評価が出力される様に構成さ れている請求項 19〜24の何れか 1項の燃料消費量評価システム。
PCT/JP2005/013176 2004-08-18 2005-07-15 燃料消費量評価システム WO2006018944A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2005800270480A CN101002012B (zh) 2004-08-18 2005-07-15 燃料消耗量评价系统
EP05766350A EP1780393B1 (en) 2004-08-18 2005-07-15 Fuel consumption evaluation system
US11/659,809 US7454962B2 (en) 2004-08-18 2005-07-15 Fuel consumption evaluation system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-238134 2004-08-18
JP2004238134A JP4353475B2 (ja) 2004-08-18 2004-08-18 燃料消費量評価システム
JP2004238139A JP4353476B2 (ja) 2004-08-18 2004-08-18 燃料消費量評価システム
JP2004-238139 2004-08-18

Publications (1)

Publication Number Publication Date
WO2006018944A1 true WO2006018944A1 (ja) 2006-02-23

Family

ID=35907336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/013176 WO2006018944A1 (ja) 2004-08-18 2005-07-15 燃料消費量評価システム

Country Status (3)

Country Link
US (1) US7454962B2 (ja)
EP (1) EP1780393B1 (ja)
WO (1) WO2006018944A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8068974B2 (en) 2007-09-10 2011-11-29 GM Global Technology Operations LLC Methods and systems for determining driver efficiency and operating modes in a hybrid vehicle
JP2012001185A (ja) * 2010-06-21 2012-01-05 Toyota Motor Corp 燃費情報提供装置、電子制御ユニット、燃費情報提供方法
WO2013153733A1 (ja) * 2012-04-12 2013-10-17 日産自動車株式会社 車両用情報提供装置、および車両用情報提供システム
US8660784B2 (en) * 2007-09-10 2014-02-25 GM Global Technology Operations LLC Methods and systems for determining driver efficiency in a vehicle
CN113128863A (zh) * 2021-04-16 2021-07-16 长春工业大学 一种基于持续时间的不良驾驶行为评价方法

Families Citing this family (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10056008B1 (en) 2006-06-20 2018-08-21 Zonar Systems, Inc. Using telematics data including position data and vehicle analytics to train drivers to improve efficiency of vehicle use
US8868288B2 (en) 2006-11-09 2014-10-21 Smartdrive Systems, Inc. Vehicle exception event management systems
JP4319218B2 (ja) * 2006-12-27 2009-08-26 富士通テン株式会社 減速走行評価装置
JP4556947B2 (ja) * 2006-12-27 2010-10-06 トヨタ自動車株式会社 省燃費運転支援装置
US20080312862A1 (en) * 2007-06-12 2008-12-18 Ford Global Technologies Llc Method and system for determining a fuel usage of a first vehicle and a comparator vehicle
DE102007035426A1 (de) * 2007-07-28 2009-01-29 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Kraftfahrzeug, Anzeigeeinrichtung und Betriebsverfahren
JP4687698B2 (ja) * 2007-09-06 2011-05-25 トヨタ自動車株式会社 省燃費運転支援装置
GB2452579B (en) * 2007-11-08 2009-09-30 Jason Robert Bunn Vehicle control system
DE102007054738A1 (de) * 2007-11-16 2009-05-20 Continental Teves Ag & Co. Ohg Kraftfahrzeugenergiesparassistenzsystem
GB2459846A (en) * 2008-05-06 2009-11-11 Airmax Group Plc Driver training
US8116971B2 (en) * 2008-06-26 2012-02-14 Microsoft Corporation Training a driver of a vehicle to achieve improved fuel economy
US9804012B2 (en) * 2008-06-30 2017-10-31 Rohm Co., Ltd. Vehicle traveling information recording device
JP4906808B2 (ja) * 2008-07-31 2012-03-28 トヨタ自動車株式会社 省燃費運転診断装置、省燃費運転診断システム、車両の走行制御装置及び省燃費運転診断方法
JP4689708B2 (ja) * 2008-07-31 2011-05-25 富士通テン株式会社 省燃費運転診断装置、原動機の制御装置及び省燃費運転診断方法
JP5198969B2 (ja) * 2008-08-01 2013-05-15 株式会社デンソー 運転診断情報提供装置、及び運転診断情報提供システム
JP4955625B2 (ja) * 2008-08-01 2012-06-20 株式会社デンソー 運転アドバイス提供装置、運転診断装置
JP4519187B2 (ja) 2008-09-29 2010-08-04 本田技研工業株式会社 燃費向上のための運転操作技術の向上を促進するための装置
JP5243910B2 (ja) * 2008-09-29 2013-07-24 本田技研工業株式会社 燃費向上のための運転操作を運転者に指導するための装置
JP4954173B2 (ja) * 2008-09-30 2012-06-13 本田技研工業株式会社 燃費向上のための運転操作を運転者に指導するための装置
JP5152865B2 (ja) * 2008-12-22 2013-02-27 Udトラックス株式会社 省燃費運転評価システム
JP2010152475A (ja) * 2008-12-24 2010-07-08 Toshiba Corp 情報処理装置および省エネ効果表示方法
US8255294B2 (en) * 2009-02-06 2012-08-28 Commercial Fuel Systems, Inc. Method and system that monitors supply of physical consumables relative to consumption specifications
US7908911B2 (en) * 2009-02-11 2011-03-22 Illinois Tool Works Inc. Fuel usage monitoring system for a service pack
DE102009037875A1 (de) 2009-08-18 2011-02-24 Volkswagen Ag Verfahren zum Betrieb eines Kraftfahrzeuges mit Verbrennungsmotor
DE102009050056A1 (de) 2009-10-21 2011-05-05 Volkswagen Ag Verfahren zum Anzeigen von Informationen in einem Fahrzeug und Informationssystem dazu
WO2011057359A1 (en) 2009-11-13 2011-05-19 Greendrive Pty. Ltd. Methods for determining exhaust emissions and efficiency of a vehicle and a display
US20110125691A1 (en) * 2009-11-24 2011-05-26 Searete Llc, A Limited Liability Corporation Of The State Of Delaware System and method for output of comparison of physical entities of a received selection and associated with a social network
US20110125692A1 (en) * 2009-11-24 2011-05-26 Searete Llc, A Limited Liability Corporation Of The State Of Delaware System and method for physical attribute status comparison of physical entities including physical entities associated with a social network and selected based on location information
US8856228B2 (en) * 2009-11-24 2014-10-07 The Invention Science Fund I, Llc System and method for comparison of physical entity attribute effects on physical environments through in part social networking service input
US20110191257A1 (en) * 2009-11-24 2011-08-04 Searete Llc, A Limited Liability Corporation Of The State Of Delaware System and method for output of comparison of physical entities of a received selection and associated with a social network
US20110125688A1 (en) * 2009-11-24 2011-05-26 Searete Llc, A Limited Liability Corporation Of The State Of Delaware System and method for output of assessment of physical entity attribute effects on physical environments through in part social networking service input
US20110125689A1 (en) * 2009-11-24 2011-05-26 Searete Llc, A Limited Liability Corporation Of The State Of Delaware System and method for physical attribute status comparison of physical entities including physical entities associated with a social network and selected based on location information
US20110125660A1 (en) * 2009-11-24 2011-05-26 Searete Llc, A Limited Liability Corporation Of The State Of Delaware System and method for assessment of physical entity attribute effects on physical environments through in part social networking service input
US20110125693A1 (en) * 2009-11-24 2011-05-26 Searete Llc, A Limited Liability Corporation Of The State Of Delaware System and method for output of physical entity comparison associated wih a social network and selected based on location information
US20110125840A1 (en) * 2009-11-24 2011-05-26 Searete Llc, A Limited Liability Corporation Of The State Of Delaware System and method for assessment of physical entity attribute effects on physical environments through in part social networking service input
US20110125842A1 (en) * 2009-11-24 2011-05-26 Searete Llc, A Limited Liability Corporation Of The State Of Delaware System and method for comparison of physical entity attribute effects on physical environments through in part social networking service input
US20110125690A1 (en) * 2009-11-24 2011-05-26 Searete Llc, A Limited Liability Corporation Of The State Of Delaware System and method for output of physical entity comparison associated with a social network and selected based on location information
US20110126125A1 (en) * 2009-11-24 2011-05-26 Searete Llc, A Limited Liability Corporation Of The State Of Delaware System and method for receiving selection of physical entities associated with a social network for comparison of physical attribute status
US20110125659A1 (en) * 2009-11-24 2011-05-26 Searete Llc, A Limited Liability Corporation Of The State Of Delaware System and method for output of assessment of physical entity attribute effects on physical environments through in part social networking service input
US20110126124A1 (en) * 2009-11-24 2011-05-26 Searete Llc, A Limited Liability Corporation Of The State Of Delaware System and method for receiving selection of physical entities associated with a social network for comparison of physical attribute status
US8793064B2 (en) * 2009-12-10 2014-07-29 International Business Machines Corporation Vehicle fuel efficiency optimization based on vehicle usage patterns
US8463521B2 (en) * 2009-12-23 2013-06-11 Honda Motor Co., Ltd. Vehicle driver coaching system and method
AU2011208621B2 (en) * 2010-01-22 2014-12-04 Shell Internationale Research Maatschappij B.V. Fuel management system and method
US8296048B2 (en) * 2010-03-12 2012-10-23 Nissan North America, Inc. Vehicle information system
US8340925B2 (en) 2010-06-10 2012-12-25 Webtech Wireless Inc. Vehicle fuel consumption calculator
US20120065871A1 (en) * 2010-06-23 2012-03-15 Massachusetts Institute Of Technology System and method for providing road condition and congestion monitoring
US8566010B2 (en) 2010-06-23 2013-10-22 Massachusetts Institute Of Technology System and method for providing road condition and congestion monitoring using smart messages
WO2012009479A1 (en) * 2010-07-13 2012-01-19 Telenav, Inc. Navigation system with ecological route based destination guidance mechanism and method of operation thereof
JP5516209B2 (ja) * 2010-08-06 2014-06-11 アイシン・エィ・ダブリュ株式会社 ナビゲーション装置、ナビゲーション方法、及びナビゲーションプログラム
US8406971B2 (en) 2010-09-03 2013-03-26 Paccar Inc. Speed control management systems and methods
DE102010041537B4 (de) * 2010-09-28 2021-04-15 Bayerische Motoren Werke Aktiengesellschaft Fahrerassistenzsystem zur Unterstützung des Fahrers zum verbrauchskontrollierten Fahren
DE102010041544B4 (de) 2010-09-28 2023-05-04 Bayerische Motoren Werke Aktiengesellschaft Fahrerassistenzsystem zur Unterstützung des Fahrers zum verbrauchskontrollierten Fahren
ES2384755B1 (es) * 2010-11-08 2013-05-20 Crambo, S.A. Método para la determinación del rango de eficiencia en la conducción de un vehículo automóvil.
JP5782252B2 (ja) * 2010-12-01 2015-09-24 現代自動車株式会社Hyundaimotor Company 車両ドライバの燃費ランキング方法及びシステム
US10431020B2 (en) 2010-12-02 2019-10-01 Zonar Systems, Inc. Method and apparatus for implementing a vehicle inspection waiver program
US8914184B2 (en) 2012-04-01 2014-12-16 Zonar Systems, Inc. Method and apparatus for matching vehicle ECU programming to current vehicle operating conditions
US9527515B2 (en) 2011-12-23 2016-12-27 Zonar Systems, Inc. Vehicle performance based on analysis of drive data
MX2013006455A (es) 2010-12-07 2013-10-25 Vnomics Corp Sistema y metodo para medir y reducir el desperdicio de combustible del vehiculo.
US8731736B2 (en) 2011-02-22 2014-05-20 Honda Motor Co., Ltd. System and method for reducing driving skill atrophy
GB201105830D0 (en) * 2011-04-06 2011-05-18 Lysanda Ltd Mass estimation model
US20170242443A1 (en) 2015-11-02 2017-08-24 Peloton Technology, Inc. Gap measurement for vehicle convoying
US8744666B2 (en) 2011-07-06 2014-06-03 Peloton Technology, Inc. Systems and methods for semi-autonomous vehicular convoys
US10520581B2 (en) 2011-07-06 2019-12-31 Peloton Technology, Inc. Sensor fusion for autonomous or partially autonomous vehicle control
SE535927C2 (sv) * 2011-07-14 2013-02-19 Scania Cv Ab Förfarande och anordning för bestämning av energiförbrukning vid fordon
JP2013040575A (ja) * 2011-08-12 2013-02-28 Denso Corp 省燃費運転評価システム及び省燃費運転評価システム用プログラム
US20130131968A1 (en) * 2011-11-23 2013-05-23 Mitchell Scott Wills Transportation scheduling system and method
US20130143181A1 (en) * 2011-12-05 2013-06-06 Ford Global Technologies, Llc In-vehicle training system for teaching fuel economy
US8738262B2 (en) 2011-12-30 2014-05-27 Ford Global Technologies, Llc Driving behavior feedback interface
US8682557B2 (en) 2011-12-30 2014-03-25 Ford Global Technologies, Llc Driving behavior feedback interface
DE102012008688B4 (de) * 2012-04-28 2020-08-13 Audi Ag Verfahren zum Bestimmen eines zu erwartenden Verbrauchswertes eine Kraftwagens
US9050935B2 (en) * 2012-09-26 2015-06-09 Ford Global Technologies, Llc Assessment of driving behavior of a driver of a motor vehicle
SE536699C2 (sv) * 2012-10-17 2014-06-03 Scania Cv Ab Systematiskt val av fordonsspecifikation
US9026348B2 (en) 2012-12-21 2015-05-05 Honda Motor Co., Ltd. System and method for brake coaching
SE541130C2 (sv) * 2013-02-13 2019-04-16 Scania Cv Ab Förfarande och system för att fastställa en energianvändning vid framförande av ett fordon
US20180210463A1 (en) 2013-03-15 2018-07-26 Peloton Technology, Inc. System and method for implementing pre-cognition braking and/or avoiding or mitigation risks among platooning vehicles
US11294396B2 (en) 2013-03-15 2022-04-05 Peloton Technology, Inc. System and method for implementing pre-cognition braking and/or avoiding or mitigation risks among platooning vehicles
US9610955B2 (en) 2013-11-11 2017-04-04 Smartdrive Systems, Inc. Vehicle fuel consumption monitor and feedback systems
US11279357B2 (en) * 2013-12-25 2022-03-22 Denso Corporation Vehicle diagnosis system and method
US9327730B2 (en) * 2014-02-17 2016-05-03 Ford Global Technologies, Llc Method to use GPS to optimize stopping distance to improve fuel economy
US8892310B1 (en) 2014-02-21 2014-11-18 Smartdrive Systems, Inc. System and method to detect execution of driving maneuvers
US10632941B2 (en) 2014-06-02 2020-04-28 Vnomics Corporation Systems and methods for measuring and reducing vehicle fuel waste
US11069257B2 (en) 2014-11-13 2021-07-20 Smartdrive Systems, Inc. System and method for detecting a vehicle event and generating review criteria
GB201420988D0 (en) 2014-11-26 2015-01-07 Tomtom Telematics Bv Apparatus and method for vehicle economy improvement
DE102015005043A1 (de) * 2015-04-21 2016-10-27 Man Diesel & Turbo Se Verfahren und Steuerungseinrichtung zur Bestimmung eines Gasverbrauchs eines mit Gas betriebenen Motors
CN105069860B (zh) * 2015-07-29 2019-09-10 厦门雅迅网络股份有限公司 一种车辆油耗的统计方法
KR101755846B1 (ko) * 2015-09-21 2017-07-07 현대자동차주식회사 전기차의 에코코스팅 연비향상률 표시방법 및 장치
WO2017095425A1 (en) 2015-12-03 2017-06-08 Allison Transmission, Inc. System and method to control the operation of a transmission using engine patterns
WO2017095426A1 (en) 2015-12-03 2017-06-08 Allison Transmission, Inc. System and method to control the operation of a transmission using engine fuel consumption data
JP7005526B2 (ja) 2016-05-31 2022-01-21 ぺロトン テクノロジー インコーポレイテッド 隊列走行コントローラの状態マシン
EP3500940A4 (en) 2016-08-22 2020-03-18 Peloton Technology, Inc. AUTOMATED CONNECTED VEHICLE CONTROL SYSTEM ARCHITECTURE
US10416043B2 (en) * 2017-06-23 2019-09-17 Paccar Inc Speed optimality analysis for evaluating the optimality of a powertrain
US10371077B2 (en) 2017-08-04 2019-08-06 Paccar Inc Systems and methods to regulate dynamic settings for engine speed control management
SE541123C2 (en) * 2017-08-08 2019-04-16 Scania Cv Ab Method and control arrangement for determining vehicle behavior for different masses of the vehicle
JP7040307B2 (ja) * 2018-06-13 2022-03-23 トヨタ自動車株式会社 運転評価装置、運転評価方法、及び、運転評価プログラムを記録した記録媒体
US10967817B2 (en) * 2019-04-25 2021-04-06 Hyundai Motor Company Vehicle and method of providing fuel consumption information thereof
US11775846B2 (en) 2020-12-15 2023-10-03 Toyota Motor Engineering & Manufacturing North America, Inc. System and method for determining variations in estimated vehicle range
CN113109056B (zh) * 2021-03-01 2023-04-25 东风汽车集团股份有限公司 一种车辆油门起步动力加速性评价方法及装置
CN115290333A (zh) * 2022-07-26 2022-11-04 中国第一汽车股份有限公司 一种发动机怠速启停测试方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61155628A (ja) * 1984-12-28 1986-07-15 Isuzu Motors Ltd タイミング検出装置
JP2001349764A (ja) * 2000-06-06 2001-12-21 Eko Creatures:Kk 車輌の燃料消費率評価装置及び車輌の燃料消費率評価システム並びにこのシステムが記録された記録媒体
JP2003106182A (ja) * 2001-10-01 2003-04-09 Isuzu Motors Ltd 車両運行燃費評価装置および方法
JP2003106209A (ja) * 2001-10-01 2003-04-09 Isuzu Motors Ltd 車両運行燃費評価装置および方法
JP2003328845A (ja) * 2002-05-10 2003-11-19 Isuzu Motors Ltd 省燃費運転評価装置および方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1484577A (en) * 1974-08-10 1977-09-01 Plessey Co Ltd Method of and apparatus for measuring the distance per amount of fuel consumed by a vehicle
US4150431A (en) * 1977-10-19 1979-04-17 Cummins Engine Company, Inc. Fuel consumption rate indicating system for a vehicle
JPS61155629A (ja) 1984-12-27 1986-07-15 Isuzu Motors Ltd 車両の運行管理装置
EP0683382A3 (en) * 1994-05-20 1996-08-14 Ford Motor Co Method and system for calculating effective fuel economy.
US6092021A (en) * 1997-12-01 2000-07-18 Freightliner Corporation Fuel use efficiency system for a vehicle for assisting the driver to improve fuel economy
JP3528707B2 (ja) 1999-10-05 2004-05-24 日産自動車株式会社 車両の燃費計測装置
JP3642745B2 (ja) 2001-06-05 2005-04-27 ミヤマ株式会社 車両運転状態評価システム
JP3818092B2 (ja) 2001-06-29 2006-09-06 いすゞ自動車株式会社 運転情報提供システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61155628A (ja) * 1984-12-28 1986-07-15 Isuzu Motors Ltd タイミング検出装置
JP2001349764A (ja) * 2000-06-06 2001-12-21 Eko Creatures:Kk 車輌の燃料消費率評価装置及び車輌の燃料消費率評価システム並びにこのシステムが記録された記録媒体
JP2003106182A (ja) * 2001-10-01 2003-04-09 Isuzu Motors Ltd 車両運行燃費評価装置および方法
JP2003106209A (ja) * 2001-10-01 2003-04-09 Isuzu Motors Ltd 車両運行燃費評価装置および方法
JP2003328845A (ja) * 2002-05-10 2003-11-19 Isuzu Motors Ltd 省燃費運転評価装置および方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1780393A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8068974B2 (en) 2007-09-10 2011-11-29 GM Global Technology Operations LLC Methods and systems for determining driver efficiency and operating modes in a hybrid vehicle
US8660784B2 (en) * 2007-09-10 2014-02-25 GM Global Technology Operations LLC Methods and systems for determining driver efficiency in a vehicle
JP2012001185A (ja) * 2010-06-21 2012-01-05 Toyota Motor Corp 燃費情報提供装置、電子制御ユニット、燃費情報提供方法
WO2013153733A1 (ja) * 2012-04-12 2013-10-17 日産自動車株式会社 車両用情報提供装置、および車両用情報提供システム
JP5822020B2 (ja) * 2012-04-12 2015-11-24 日産自動車株式会社 車両用情報提供装置、および車両用情報提供システム
CN113128863A (zh) * 2021-04-16 2021-07-16 长春工业大学 一种基于持续时间的不良驾驶行为评价方法

Also Published As

Publication number Publication date
US20070256481A1 (en) 2007-11-08
US7454962B2 (en) 2008-11-25
EP1780393B1 (en) 2011-11-16
EP1780393A4 (en) 2010-11-03
EP1780393A1 (en) 2007-05-02

Similar Documents

Publication Publication Date Title
WO2006018944A1 (ja) 燃料消費量評価システム
JP4353476B2 (ja) 燃料消費量評価システム
JP4353475B2 (ja) 燃料消費量評価システム
RU2566951C2 (ru) Устройство и способ управления подачей топлива
CN103717470B (zh) 旨在燃料节约的机动车辆驾驶方式评价
US8630792B2 (en) Vehicle fuel cost-per-time display
JP6424229B2 (ja) 車両運転手フィードバックシステム、そのシステムを備えた車両、車両運転手フィードバックを提供するための方法、コンピュータプログラム、コンピュータ可読媒体及び制御装置
CN102463937B (zh) 维护车辆消耗品的系统和方法
US9517773B2 (en) Fuel consumption analysis in a vehicle
CN104198005B (zh) 汽车多工况路试油耗模拟计算检测方法
US20070143002A1 (en) System for evaluating and improving driving performance and fuel efficiency
US20130041621A1 (en) Vehicle speed, fuel, and revenue optimizer
JP2011508699A (ja) ハイブリッド車両の燃料消費の管理方法及び同方法に適合する車両
CN102745199B (zh) 用于计算车辆瞬时燃料经济性的系统和方法
CN111563312A (zh) 一种重型商用车燃料消耗量模拟计算系统
JP4438990B2 (ja) 燃料消費量評価システム
JP2009074482A (ja) 省燃費運転評価システム
JP2006077665A (ja) 省燃費運転評価システム
CN115817506A (zh) 一种车辆载重状态识别方法、装置、电子设备以及存储介质
JP4748618B2 (ja) 燃料消費量評価システム
CN116279201A (zh) 一种智能座舱系统和一种汽车
JP2019112989A (ja) 車両の燃費推定装置
CN102046944A (zh) 省油驾驶诊断装置、车载系统、驱动控制装置及省油驾驶诊断程序
GB2579558A (en) System and method for providing an indication of driving performance
GB2579559A (en) System and method for providing an indication of driving performance

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005766350

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11659809

Country of ref document: US

Ref document number: 200580027048.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005766350

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11659809

Country of ref document: US