WO2006016506A1 - 改質パウダー、当該改質パウダーを含有した液状組成物、成形体、及び改質パウダーの製造方法 - Google Patents

改質パウダー、当該改質パウダーを含有した液状組成物、成形体、及び改質パウダーの製造方法 Download PDF

Info

Publication number
WO2006016506A1
WO2006016506A1 PCT/JP2005/014182 JP2005014182W WO2006016506A1 WO 2006016506 A1 WO2006016506 A1 WO 2006016506A1 JP 2005014182 W JP2005014182 W JP 2005014182W WO 2006016506 A1 WO2006016506 A1 WO 2006016506A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
modified powder
silk
less
pulverization
Prior art date
Application number
PCT/JP2005/014182
Other languages
English (en)
French (fr)
Inventor
Shigeru Oyama
Original Assignee
Idemitsu Technofine Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Technofine Co., Ltd. filed Critical Idemitsu Technofine Co., Ltd.
Priority to JP2006531508A priority Critical patent/JP5106855B2/ja
Priority to EP05768596A priority patent/EP1792930B1/en
Priority to KR1020077003157A priority patent/KR101238538B1/ko
Priority to CA 2576261 priority patent/CA2576261C/en
Priority to US11/573,515 priority patent/US7888430B2/en
Priority to CN2005800269799A priority patent/CN101014646B/zh
Priority to KR1020127026882A priority patent/KR101318162B1/ko
Publication of WO2006016506A1 publication Critical patent/WO2006016506A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C17/00Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls
    • B02C17/10Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls with one or a few disintegrating members arranged in the container
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/122Pulverisation by spraying
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/04Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08L27/06Homopolymers or copolymers of vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L89/00Compositions of proteins; Compositions of derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2389/00Characterised by the use of proteins; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2401/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2401/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00

Definitions

  • Modified powder liquid composition containing the modified powder, molded product, and method for producing modified powder
  • the present invention relates to a modified powder, a liquid composition containing the modified powder, a molded product, and a method for producing the modified powder.
  • the modified material is pulverized into a modified powder.
  • silk powder such as silk fiber mouth-in powder (silk fiber mouth-in powder) is used.
  • silk powder By adding such silk powder, it is possible to impart a silk-specific texture and various properties such as ink acceptance performance and moisture absorption / release properties to the product.
  • a product for example, artificial skin containing silk hive mouth-in powder produced by containing silk hive mouth-in powder in a synthetic resin is known.
  • silk powder is a water-based or solvent-based liquid medium constituting synthetic resin, ink, paint, or the like.
  • thermoplastic resin and in liquid media such as solvent-based and water-based media
  • silk fiproin powder by applying chemical treatment, heating / pressurizing treatment, etc. to silk hive mouth-in which is the raw material silk that has a strong control of properties.
  • the dispersibility of the obtained silk fiber mouth-in powder was not sufficient, and there was a problem when the texture unique to silk could not be maintained. Therefore, in recent years, the sil Consideration has been focused on controlling the average particle size of the powder.
  • the silk hive inlet When the silk hive inlet is pulverized with a ball mill, to produce a powder with an average particle size of 10 ⁇ m or less, it is necessary to sequentially change the ball mill to one with a larger diameter and one with a smaller diameter. However, there was a problem that the powder was very long and the powder could be colored.
  • the silk hive mouth-in when the silk hive mouth-in is pulverized with a jet mill, the shape of the pulverized product becomes fibrous, so the viscosity increases when mixed with a solvent-based resin, which is difficult to mix. was there.
  • the silk fiber mouth-in powder obtained by such a single mechanical pulverization is not uniform in size, the silk fiber mouth-in powder having a uniform size is obtained. There was a problem that it could not be obtained.
  • the silk hive mouth-in is pulverized by a multi-stage pulverizing means to obtain an average particle size of 10
  • a production method for obtaining fine silk fibroin powder of m or less for example, Patent Document 1.
  • a ball mill is used as the second stage grinding means
  • the grinding treatment time is 20 hours or less
  • a jet mill is used as the third stage grinding means
  • j8 is used during or after the grinding process.
  • polysaccharide powder (powdered polysaccharide) typified by cellulose powder made from pulp is used as the modified powder.
  • various properties such as ink acceptance performance and moisture absorption / release properties are given to the product, and various improved products are obtained.
  • cosmetics, health foods, various synthetic resin products Used in various fields such as fillers.
  • cellulose powder is a water-based or solvent-based resin constituting a synthetic resin, ink, paint, or the like.
  • cellulose powder is a water-based or solvent-based resin constituting a synthetic resin, ink, paint, or the like.
  • thermoplastic resin and in liquid media such as solvent and water. Therefore, it is necessary to control its properties, and in particular, studies have been conducted focusing on the control of the average particle size of the polysaccharide powder.
  • a means for obtaining a polysaccharide powder suitable for the modifier for example, a first pulverization step of pulverizing a polysaccharide or the like in a rolling ball mill or the like in 20 hours or less is performed. Then, a method for producing a polysaccharide powder that performs a second pulverization step of pulverizing the pulverized product of the first pulverization step using a jet mill has been provided (for example, Patent Document 2).
  • Patent Document 1 JP-A-6-339924 ([Claim 1], [0012])
  • Patent Document 2 Japanese Patent Application Laid-Open No. 9 99251 (Claim 1, [0023])
  • Siliconk powder is a force achieved by controlling the average particle size to 10 m or less.
  • the viscosity increases.
  • the characteristics of the fine powder of silk hive mouth-in may not be fully exhibited.
  • spray coating does not form good droplets, resulting in poor appearance of the coated surface, which is sufficient in the writing acceptance ink field.
  • the ink absorption performance was poor, another problem occurred!
  • the gravure coating method is mainly used. The force leveling property is poor and a good coated surface cannot be obtained, and improvement has been demanded.
  • the organic powder obtained by the method disclosed in Patent Document 2 is achieved by controlling the particle size to 10 ⁇ m or less.
  • the viscosity increases, and especially when it is applied in combination with other fillers such as inks and surface treatment agents, the polysaccharide powder is the same. In some cases, it was not possible to sufficiently exhibit the various characteristics provided by. Karo and blended If the viscosity of the resin solution, etc. is too high, good droplets will not be formed in the case of spray coating, and the appearance of the painted surface will be adversely affected, and sufficient ink absorption performance will not be demonstrated in the writing ink field. It was happening. For example, in the field of surface treatment such as paint, the Daravia coating method is mainly used. The force leveling property is poor and a good coated surface cannot be obtained, and improvement has been demanded.
  • the object of the present invention is excellent in dispersibility in a resin solution used as a base material for a resinous material for molding, an aqueous or solvent-based liquid composition constituting an ink or paint, and the like.
  • An object of the present invention is to provide a polysaccharide powder that can be contained in an amount, a liquid composition containing the polysaccharide powder, a molded product, and a method for producing the polysaccharide powder.
  • the object of the present invention is excellent in dispersibility in the resin solution used as a base material for the resin material for molding and the water-based and solvent-based liquid compositions constituting the ink and paint.
  • An object of the present invention is to provide a modified powder that can be contained in an amount, a liquid composition containing the modified powder, a molded body, and a method for producing the modified powder.
  • the modified powder of the present invention is a powder (silk powder) obtained by dry pulverizing a silk raw material, with an average particle size of 10 m or less, an oil absorption of 130 mlZlOOg or less, and a particle gauge according to JIS K5400. It is characterized by a particle size of 80 ⁇ m or less according to the degree of dispersion evaluation.
  • Such a modified powder of the present invention has a silk texture unique to silk and is used as a base material for a liquid composition constituting a resin material or a paint for molding. Dispersibility in a solution is excellent, and such a liquid composition or molded product can be contained in a high content.
  • the modified powder of the present invention is added to the ink, since it can be contained in the ink base material at a high content, it has a silk-specific texture. At the same time, it is possible to provide ink with excellent ink receiving performance.
  • the silk raw material is a silk hive mouth-in, whereby a silk hive mouth-in powder having the above-described effects can be suitably obtained.
  • the modified powder of the present invention has an oil absorption of 60 to LOOmlZg, and a particle size of 20 to 70 ⁇ m as measured by a dispersion gauge with a particle gauge in accordance with ⁇ cJIS K5400. If there is, it is preferable because the above-mentioned effect is more surely achieved.
  • a liquid composition containing the modified powder of the present invention, a resin material containing the modified powder of the present invention, and a molded body made of Z or elastomer, are modified noda of silk origin. 1 can be suitably dispersed and contained at a high concentration, so that the effect of the modified powder of the present invention, for example, an ink when blended in an ink while having a texture unique to silk (silk) is provided.
  • the texture of the leather is improved, and when it is added to the urethane layer of synthetic leather, it gives a touch and moisture absorption similar to natural leather. It is possible to provide a liquid composition or a molded body that can efficiently exhibit such various characteristics.
  • the modified powder of the present invention is a powder obtained by dry-pulverizing polysaccharides (first polysaccharide powder), and has an average particle size of 10 ⁇ m or less and an ink viscosity of less than 15 Pa's.
  • the dispersibility of the liquid composition constituting the resin material or paint for molding into the resin solution serving as a base material is excellent, and such a liquid composition or It can be contained at a high content with respect to the molded body.
  • the polysaccharide powder of the present invention when added to the ink, it can be contained in the ink base material at a high content, so that an ink excellent in ink receiving performance can be provided. .
  • the modified powder of the present invention is a powder obtained by pulverizing a polysaccharide (second polysaccharide powder), having an average particle size of 10 m or less and an oil absorption of 85 mlZlOOg or less. It is characterized by that.
  • the second polysaccharide powder is similar to the first polysaccharide powder described above by making the oil absorption amount in a specific range instead of the ink viscosity as compared with the first polysaccharide powder described above. You can enjoy the effect.
  • the modified powder of the present invention may have an ink viscosity of less than 15 Pa's (first polysaccharide powder) and an oil absorption of 85 mlZlOOg or less (second polysaccharide powder).
  • the polysaccharide described above also has a cellulose strength.
  • the type of polysaccharide to be pulverized is specified, it is possible to provide a cellulose powder that exhibits the above-described effects.
  • the liquid composition containing the modified powder of the present invention, the resin material containing the modified powder of the present invention, and a molded article that also has Z or elastomer strength are modified nodules derived from polysaccharides. Can be suitably dispersed and contained at a high concentration, so that the effects of the modified powder of the present invention, for example, the ink receiving performance when blended with ink, and the leather surface treatment agent are blended.
  • the texture of the leather is improved, and when it is blended in the urethane layer of synthetic leather, it can give a touch and moisture absorption similar to those of natural leather.
  • a liquid composition or a molded body that can be exhibited can be provided.
  • the method for producing the modified powder of the present invention uses a dry mechanical pulverization means for the modified material in accordance with the modified powder production method in which the modified material is pulverized to obtain the modified powder.
  • the pulverization time in the first pulverization step is 40 hours or more.
  • the material to be crushed (silk raw material such as silk fib-in or polysaccharide such as cellulose) that is to be crushed.
  • the obtained pulverized product is further pulverized into a fine powder having an average particle size of 10 ⁇ m or less using a jet mill in the second pulverization step, so that the pulverized product collides with the pulverized product and the jet mill. It is possible to cause sufficient collision with the wall surface.
  • the modified powder pulverized into a desired shape and size can be obtained efficiently.
  • the conditions suitable for the modified powder made from the silk of the present invention described above, that is, the oil absorption and JIS K5400 Modified powders with a desired particle size (particle size by particle gauge) based on the evaluation of dispersion with a compliant particle gauge (oil absorption: 130 mlZlOOg or less, particle size by particle gauge: 80 ⁇ m or less) are simple and efficient. Can get to.
  • the pulverization time in the first pulverization step is 40 hours or more, conditions suitable for the modified powder made from the polysaccharide of the present invention described above, that is, the oil absorption amount and the ink viscosity are sufficient.
  • a polysaccharide powder having a desired range (ink viscosity: less than 15 Pa's, oil absorption: 85 mlZlOOg or less) can be obtained simply and efficiently.
  • a ball mill is employed as a dry mechanical pulverization means, impact force, compression force, shear force, etc. can be efficiently applied to the silk raw material to be pulverized. Can do.
  • a rolling ball mill is used as the ball mill, it is preferable because mass production of the modified powder is possible, and coloring of the powder can be prevented, and a finely modified powder can be suitably obtained. ,.
  • the average particle diameter or average fiber length of the silk raw material to be pulverized is 100 ⁇ m to 5 mm. .
  • the average particle diameter (fiber length in the case of a fibrous form) of the silk fiber mouth-in to be crushed is within a specific range! Therefore, the pulverization process can be easily performed, and the obtained silk powder can be easily controlled to have an average particle size of 10 m or less.
  • the second pulverization step is performed during the first pulverization step and after Z or the first pulverization step. It is preferable to perform ⁇ -treatment before.
  • ⁇ -formation (silk hive mouth-in or the like is made into a predetermined processing liquid during the first pulverization process in the two-stage pulverization process or before the second pulverization process after the first pulverization process. So that the crystallinity of the resulting silk powder is improved and the oil absorption is reduced. , And can be uniformly dispersed in an aqueous rosin solution or the like.
  • a polysaccharide is used as a modifier raw material, and the average particle size of the pulverized polysaccharide is 20 ⁇ m to 2 mm.
  • the pulverization process can be carried out easily, and the obtained polysaccharide powder can be obtained with an average particle size of 10 Control to m or less can be easily performed.
  • the modified powder of the present embodiment is a silk powder obtained by using a predetermined silk raw material as a modifier raw material and dry pulverizing it.
  • silk hive mouth-in As the silk raw material to be pulverized, silk hive mouth-in is used, and in particular, a material containing 80% by weight, preferably 90% by weight or more of silk hive mouth-in may be used.
  • silk hive mouth-in (simply called “hive mouth-in” t) is a fibrous protein that is the main component of silk, and raw silk is scoured with warm water (or warm water containing enzymes). Thus, it can be easily obtained by removing sericin.
  • the shape of the silk raw material such as the silk hive-in is not particularly limited, but a coarse powder can be used.
  • the average particle size or the average fiber length is preferably 100 ⁇ m to 5 mm, particularly preferably 100 ⁇ m to 2 mm. If the average particle diameter or the average fiber length is 100 m to 5 mm, the pulverization process can be easily performed, and the obtained silk powder can be easily controlled to an average particle diameter of 10 m or less. .
  • a coarse silk fiber mouth-in as a silk raw material
  • raw silk is immersed in warm water (or warm water containing an enzyme) and scoured to remove sericin. Then, the obtained silk protein mouth-in of the fibrous protein is coarsely powdered with an average particle diameter or average fiber length of 100 ⁇ m to 5 mm using predetermined pulverization means (for example, a rotary blade mill or a cutter blade mill). You can use this as a silk raw material as a silk-five mouth-in.
  • the scouring is performed so that the silk fiber mouth-in is contained by 80% by mass, preferably 90% by mass or more.
  • the silk powder of the present invention is obtained by pulverizing such silk raw materials to have an average particle size of 10 ⁇ m. It is preferable that the distance is 2 to 8 m. If the average particle size of the silk powder is larger than 10 m, the coating film may be uneven or the surface may remain rough when used as a leather surface treatment. It is no longer suitable for use as a remodeling material.
  • the oil absorption is greater than 130mlZl00g, the viscosity of the ink or paint containing silk powder is high, making it difficult to apply the paint to the coated body. It becomes difficult to contain at a high content.
  • the oil absorption is less than 60mlZl00g, the viscosity of the water-based or solvent-based resinous materials such as inks and paints will become unnecessarily small. There are cases where troubles such as to do.
  • the oil absorption of silk powder may be a value measured according to JIS K5101, for example.
  • the silk powder of the present invention has a particle size (hereinafter, simply referred to as "particle size by a particle gauge") of 80 ⁇ m or less based on a dispersion degree evaluation with a particle gauge in accordance with JIS K5400.
  • the particle diameter is preferably 20 to 70 / ⁇ ⁇ . If the forceful particle size is larger than 80 m, the coating film (normally about lO / z m) will be uneven, and the appearance will be poor. In addition, when used for the surface treatment of leather or the like, the rough feeling of the surface becomes strong and the feeling of use may be impaired.
  • the particle size is smaller than 20 m, the resin is likely to agglomerate when mixed with an ink base material or a paint base material, which may make handling difficult.
  • the silk powder of the present invention has an average particle size of 10 ⁇ m or less, an oil absorption of 130 mlZlOOg or less, and a particle size of 80 m as measured by a dispersibility evaluation using a particle gauge according to JIS K5400. Since it is in the following specific range, the resin material and paint for molding process The dispersibility of the liquid composition constituting the resin in the resin solution serving as a base material is improved, and it is possible to provide a silk powder that can be blended with such a liquid composition or molded body at a high content. .
  • the silk powder of the present invention satisfies the essential requirements of the particle diameter based on the above-described average particle diameter, oil absorption, and dispersibility evaluation with a particle gauge, and the moisture content in the silk powder is 3 wt% or less. In particular, it is preferable to make it 2 wt% or less. By doing so, when forming the resin composition containing the silk powder of the present invention by coating, the foaming phenomenon (defect phenomenon) due to moisture contained in the composition can be suppressed. .
  • a paste-like compound obtained by mixing a resin powder such as butyl resin resin (PVC) and a plasticizer is coated on a release paper using a coating device such as a knife coater.
  • the sol paste is swollen with a plasticizer by primary heating to gel the sol paste and melted by secondary heating to form a film.
  • a similar coating system such as a comma coater can be used for the coating apparatus.
  • the film-forming method by coating is different from the calender film-forming method and the extrusion film-forming method, and it is difficult to use a material having high hygroscopic properties such as silk powder with a heat degassing process.
  • the practical value of powder is high.
  • the silk powder of the present invention is added to various products such as plastic molded articles, synthetic leather, paints, inks, fibers, nonwoven fabrics, woven and knitted fabrics, fiber treatment agents, rubbers, etc., it is made dispersible. By virtue of its excellent properties, it can be incorporated at a high content of these, and it absorbs and absorbs moisture in the unique texture of silk powder. Various properties such as these can be efficiently imparted, and a product with improved properties can be easily obtained.
  • the silk powder of the present invention is excellent in dispersibility even in aqueous or solvent-based liquid substrates, the effect is maximized when applied to these liquid substrates.
  • silk powder even when silk powder is added to the ink, it can be contained in the ink base material at a high content. Provide ink with excellent ink acceptance performance and good tackiness.
  • the silk raw material may be prepared by pulverization using a known pulverization means.
  • the pulverization is carried out by a two-stage pulverization process, for example, a first pulverization process and a second pulverization process described below.
  • the modifier raw material (silk raw material in the present embodiment) is pulverized using a dry mechanical pulverization means.
  • a dry mechanical pulverization means for example, various ball mills such as a rolling ball mill, a vibration ball mill, and a planetary ball mill, and known pulverization means such as a tube mill, a rod mill, and a fine pulverization hammer mill can be used.
  • a rolling ball mill that preferably uses a ball mill. If a ball mill is used as a dry mechanical pulverizing means, impact force, compressive force, shear force, etc. can be efficiently applied to the silk to be pulverized. Furthermore, if a rolling ball mill is adopted as the ball mill, it is possible to prevent the coloring of the powder because the mass production of silk powder is possible, and it is possible to suitably obtain a fine-grained silk powder.
  • the mashing time is preferably 40 hours or more, and preferably 40 to 70 hours. If the pulverization time is shorter than 40 hours, the oil absorption of the resulting silk powder and the particle diameter due to the particle gauge increase, and these are within the desired ranges (oil absorption: 130 mlZlOOg or less, particle diameter by the particle gauge: m or less. ) Silk powder may be difficult to obtain. On the other hand, by setting the grinding treatment time to a relatively long time of 40 hours or more, the surface roughness of the silk raw material to be ground, the wettability of the surface to oil, the crystallinity of the surface, etc. are changed.
  • the oil absorption amount becomes small, and the oil absorption amount can be suitably controlled within the above-described range.
  • the treatment time by a dry mechanical pulverization means such as a ball mill may be increased (40 hours or more), but if the pulverization treatment time is too long, The pulverized pulverized product may agglomerate, and conversely, the average particle size may increase, and the oil absorption and ink viscosity may increase.
  • the pulverizability in the jet mill in the second pulverization step may be reduced.
  • the pulverization time should be about 40 to 70 hours, and if it is within the power range, discoloration of the obtained silk powder can be suppressed (whiteness can be maintained at 80 or more), In addition, silk powder is highly productive and can maintain its state.
  • the particle size of the silk powder obtained after the completion of the second pulverization step is more than 80 m as measured by the degree of dispersion with a particle gauge. As a result, it is difficult to contain the ink or paint in a high concentration, or even if it can be contained in the ink or paint, a rough feeling remains on the surface on which the ink or paint is applied. Will occur.
  • the pulverization time may be about 40 to 70 hours.
  • the pulverized product obtained in the first pulverization step is further pulverized by a jet mill (also called a jet pulverizer).
  • a jet mill also called a jet pulverizer.
  • a conventionally known jet mill such as a nozzle suction type (vertical type or horizontal type), a nozzle internal suction type, a collision wall type, a jet airflow collision type, a fluidized bed type, or a composite type is used. can do.
  • various conditions such as air pressure, supply amount, and air volume of the jet mill used in the second pulverization step may be determined according to the type of silk raw material to be pulverized and the specifications of the silk powder to be obtained.
  • the jet mill used in the second pulverization step is equipped with a device having a classification capability such as a cyclone or an airflow classifier in a closed circuit to classify relatively large powder particles. If it is removed, silk powder with a uniform particle size can be obtained efficiently. The maximum particle size and the average particle size can be kept small.
  • a device having a classification capability such as a cyclone or an airflow classifier in a closed circuit to classify relatively large powder particles. If it is removed, silk powder with a uniform particle size can be obtained efficiently. The maximum particle size and the average particle size can be kept small.
  • the first pulverization step it is preferable to pulverize the silk raw material to be powdered so that the average particle diameter is approximately 12 to 30 m.
  • the pulverized product of the first pulverization step is pulverized until the average particle size becomes a fine powder of about 10 m or less, preferably a fine powder of 8 ⁇ m or less. Get.
  • the maximum particle size of the resulting silk powder is not particularly limited, but is preferably about 32 m or less, more preferably about 24 m or less.
  • the silk raw material can be pulverized into fine particles having an average particle size of 10 ⁇ m or less, which is suitable for use as a modifier.
  • the pulverization time in the first pulverization process is set to 40 hours or more, so that the oil absorption amount and particle diameter by the particle gauge are within a desired range (oil absorption amount).
  • Silk powder of 130mlZlOOg or less, particle diameter by particle gauge: 80m or less can be obtained easily and efficiently.
  • this silk powder is incorporated into a solvent-based resin or water-based resin.
  • it can be easily added as a modifier to various products whose viscosity is difficult to increase.
  • the silk raw material to be crushed is crushed by impact, compression and shear by a rolling ball mill or the like in the first pulverization step, and self-collision and by a jet mill in the second pulverization step. Since pulverization by collision with the pulverizer wall surface is performed, silk powder having a uniform shape and size that cannot be obtained by any one pulverization step can be easily obtained. Since the silk raw material is powdered only by mechanical grinding means such as a rolling ball mill or jet mill, there is no need for chemical treatment, and the original characteristics of silk (texture, etc.) ) Can be maintained, and a silk powder having a desired shape and size can be obtained by a simple process, and the manufacturing cost can be reduced.
  • the rolling ball mill used in the first pulverization process has a relatively large average particle size! /, And is suitable for pulverization of the material to be crushed, and the jet mill used in the second pulverization process has an average particle diameter. Since it is suitable for pulverizing a relatively small object to be pulverized, the pulverization process is performed in this order, so that the raw material of the silk can be efficiently crushed and has a desired shape and size. Silk powder can be obtained quickly and easily.
  • the crystallinity of the resulting silk powder is improved and the oil absorption is reduced.
  • the crystallinity of 70% or more of the natural fiber enables the silk powder to be uniformly dispersed in a solvent-based resin solution, a water-based resin solution, or the like when manufacturing a product. .
  • This ⁇ -treatment is a treatment for increasing the proportion of ⁇ structure by immersing silk fiber mouth-in or the like in a predetermined treatment liquid.
  • the organic solvent that may be used include an organic solvent and a neutral salt aqueous solution include alcohols such as methanol and ethanol, acetone, and the like.
  • Specific examples include sodium chloride salt, potassium chloride, sodium sulfate, ammonium sulfate, sodium nitrate and the like.
  • this / 3 treatment is performed at least once in the process of either the first pulverization process or the second pulverization process described above, or more than twice as necessary. You may go up. In particular, it is preferable to carry out together during the first pulverization step or after the first pulverization step and before the second pulverization step.
  • the silk powder of the present invention can be used as a liquid composition by being contained in a predetermined liquid substrate.
  • the silk powder of the present invention has an average particle size of 10 m or less, an oil absorption of 130 mlZlOOg or less, and a particle size by a particle gauge of 80 ⁇ m or less.
  • the dispersibility with respect to the liquid composition becomes good, and the liquid composition can be contained at a high content.
  • liquid compositions include paints, Ink, surface treatment agent, fiber treatment agent, various cosmetics, and the like.
  • the content of the silk powder with respect to the liquid substrate is not particularly limited, but can be as high as about 40 to 70% by mass.
  • the liquid composition is ink, it can be contained in the ink base material at a high content, so that it is possible to provide an ink excellent in ink receiving performance and the like.
  • the silk powder of the present invention may be contained in a resin material or an elastomer to form a molded body having a desired shape.
  • a resin material and an elastomer containing silk powder thermoplastic resin (polysulfur resin such as poly salt resin resin, polyolefin resin such as polypropylene and polyethylene, polystyrene, acrylic resin) , Polyester-based resins such as polyethylene terephthalate, polyamide-based resins), thermosetting resins (alkyd resins, amino resins, epoxy resins, polyurethane resins, phenol resins, etc.), epoxy resins UV curable resin such as polyester resin and urethane resin, and various thermoplastic elastomers.
  • the silk powder of the present invention has a specific average particle diameter and an oil absorption amount and the like within a specific range. As a result, the silk powder can be contained in the molded body at a content as high as the content of the liquid substrate.
  • examples of the molded body from which these elastomers are also capable of being used include synthetic leather, leather, building materials, floor materials, wall materials, and the like.
  • a conventionally known molding method without particular limitation may be used.
  • the above-described aspect shows one aspect of the present invention, and the present invention is not limited to the above-described embodiment, and can achieve the objects and effects of the present invention. Needless to say, it is included in the contents of the present invention. Further, the specific structure, shape and the like when carrying out the present invention are within the range where the object and effect of the present invention can be achieved, and there is no problem with other structures and shapes.
  • the force exemplified by the silk hive mouth-in as an example of the silk raw material to be crushed is not limited to these, and other silk raw materials may be used.
  • various known ball mills such as a rolling ball mill, a vibration ball mill, and a planetary ball mill, and known grinding means such as a tube mill, a rod mill, and a fine grinding hammer mill are used. Although mentioned, it is not limited to these, You may make it use another dry-type mechanical grinding
  • the modified powder of the present embodiment is a polysaccharide powder obtained by using a polysaccharide as a modifier raw material and dry pulverizing it.
  • polysaccharide to be pulverized examples include cellulose, chitin, chitosan and the like, and it is particularly preferable to use cellulose.
  • the shape of these polysaccharides is not particularly limited, but it is preferable to use a coarse powder.
  • the average particle size is 20 m to 2 mm is preferred and 20 to 500 m is particularly preferred. If the average particle size is 20 / z m to 2 mm, the pulverization process can be easily performed, and the obtained polysaccharide powder can be easily controlled to an average particle size of 10 m or less.
  • the polysaccharide powder of the present invention it is preferable to pulverize these polysaccharides so that the average particle size is 10 ⁇ m or less, and 2 to 8 / ⁇ ⁇ . If the average particle size of the polysaccharide powder is larger than 10 m, the coating film may be uneven, or the surface may remain rough when used as a leather surface treatment. It is no longer suitable for use as a reforming material.
  • the ink viscosity is less than Sl5Pa's and preferably less than lOPa's. If the ink viscosity is 15 Pa's or higher, the viscosity of inks and paints containing polysaccharide powder is high, making it difficult to apply the paint to the coated material. In contrast to these, it becomes difficult to contain at a high content.
  • the ink viscosity of the polysaccharide powder may be measured in accordance with the contents shown in (Measurement of ink viscosity) in [Test 3] described later.
  • the average particle size described above is reduced, and the oil absorption is preferably 85 mlZlOOg or less and preferably 80 mlZl00g or less. If the oil absorption is greater than 85 ml / 100 g, the viscosity of the ink or paint blended with polysaccharide powder is high, as in the case where the ink viscosity is high. In view of practicality as a coating material, it becomes difficult to contain these at a high content.
  • the oil absorption amount of the polysaccharide powder may be a value measured according to JIS K5101, for example.
  • Such a polysaccharide powder of the present invention has an average particle size of 10 m or less, an ink viscosity of less than 15 Pa's, or an oil absorption of 85 mlZlOOg or less as a specific range. , The dispersibility of the liquid composition constituting the resin material for molding and the liquid composition constituting the base material of the liquid composition becomes good, and the liquid composition and the molded body have a high content.
  • a blendable polysaccharide powder can be provided.
  • the polysaccharide powder of the present invention is added to various products such as plastic molded articles, synthetic leather, paints, inks, fibers, nonwoven fabrics, woven and knitted fabrics, fiber treatment agents, rubbers, etc., it is dispersible. It can be incorporated into these at a high content, and effectively imparts various properties such as moisture absorption and release properties, good tackiness and antistatic properties of polysaccharide powder. Products with improved properties can be easily obtained.
  • the polysaccharide powder of the present invention is excellent in dispersibility even with respect to aqueous and solvent-based liquid substrates, and therefore, when applied to these liquid substrates, the effect is maximized.
  • polysaccharide powder even when polysaccharide powder is added to the ink, it can be contained in the ink base material at a high content, so that an ink excellent in ink receiving performance is provided. .
  • the polysaccharide powder of the present invention has an ink viscosity of less than 15 Pa's and an oil absorption of 85 mlZlOOg or less.
  • the polysaccharide powder having such an ink viscosity and an oil absorption is preferably , Dispersibility to dispersibility in water-based and solvent-based resin materials such as inks and paints is further improved, and it is preferable to contain these in a high content Can be implemented.
  • a polysaccharide powder having such an average particle size, oil absorption and ink viscosity it is prepared by pulverizing the above-mentioned polysaccharide as a raw material using a known pulverizing means.
  • a two-stage pulverization process that includes the following first pulverization process and second pulverization process.
  • the modifier raw material (polysaccharide raw material in the present embodiment) is pulverized using a dry mechanical pulverization means.
  • a dry mechanical pulverization means for example, various ball mills such as a rolling ball mill, a vibration ball mill, and a planetary ball mill, and known pulverization means such as a tube mill, a rod mill, and a fine pulverization hammer mill can be used.
  • a rolling ball mill for which it is preferable to use a ball mill.
  • a ball mill is used as the dry mechanical pulverizing means, impact force, compressive force, shearing force, etc. can be efficiently applied to the polysaccharide to be pulverized.
  • a rolling ball mill is used as the ball mill, it is possible to produce a polysaccharide powder in addition to mass production, and it is possible to prevent coloring of the powder, and to obtain a fine particulate polysaccharide powder.
  • the pulverization time is preferably 40 hours or longer, and preferably 60 to 90 hours. If the pulverization time is shorter than 40 hours, the oil absorption and ink viscosity of the resulting polysaccharide powder will increase, and these will be in the desired ranges (ink viscosity: less than 15 Pa's, oil absorption: 85 mlZlOOg or less). It may be difficult to obtain sugar powder.
  • the grinding time by setting the grinding time to a relatively long time of 40 hours or more, the surface roughness of the polysaccharide to be ground, the wettability of the surface to oil, the crystallinity of the surface, etc. are changed. As a result, the oil absorption amount and the ink viscosity are reduced, and can be controlled within the above-described ranges.
  • the processing time by a dry mechanical pulverization means such as a ball mill may be increased (40 hours or more) as described above, but the pulverization processing time is much longer. Then, the pulverized pulverized product may agglomerate, and conversely, the average particle size becomes large. In other words, the oil absorption and ink viscosity may increase on the contrary. Therefore, the powder mashing time should be about 60 to 90 hours, and if it is within the power range, discoloration of the resulting polysaccharide powder can be suppressed, and the polysaccharide productivity is high. Preferable, because you can maintain.
  • the pulverized product obtained in the first pulverization step is further pulverized by a jet mill (also called a jet pulverizer).
  • a jet mill also called a jet pulverizer.
  • a conventionally known jet mill such as a nozzle suction type (vertical type or horizontal type), a nozzle internal suction type, a collision wall type, a jet airflow collision type, a fluidized bed type, or a composite type is used. can do.
  • the conditions such as the air pressure, supply amount, and air volume of the jet mill used in the second pulverization process may be determined according to the type of polysaccharide to be pulverized and the specifications of the polysaccharide powder to be obtained. .
  • the jet mill used in the second pulverization step is provided with a device having a classification capability such as a cyclone or an airflow classifier in a closed circuit, and classifies powder particles having a relatively large particle size. If removed, a polysaccharide powder having a uniform particle size can be obtained efficiently, and the maximum particle size and the average particle size can be kept small.
  • a device having a classification capability such as a cyclone or an airflow classifier in a closed circuit
  • the first pulverization step it is preferable to pulverize the polysaccharide to be powdered so that the average particle diameter is approximately 10 to 20 ⁇ m, approximately 10 to 15 m. It is particularly preferable to grind so that In the second pulverization step, the pulverized product of the first pulverization step is pulverized until the average particle size becomes a fine powder of 10 / z m or less.
  • the maximum particle size of the obtained polysaccharide powder is not particularly limited, but is preferably about 32 m / z m or less, more preferably about 24 m or less.
  • the polysaccharide can be pulverized into fine particles having an average particle size of 10 ⁇ m or less, which is suitable for use as a modifier.
  • the pulverization time in the first pulverization process is set to 40 hours or longer, so that the oil absorption and ink viscosity are within the desired ranges (ink viscosity: 15 Pa's Less than, oil absorption: 85mlZlOOg or less) can be obtained easily and efficiently.
  • polysaccharide powder does not contain fibrous materials, so it can be easily used as a modifier for various products that are difficult to increase in viscosity even if this polysaccharide powder is added to solvent-based resin. Can be contained.
  • the polysaccharide to be pulverized is pulverized by impact, compression and shear by a rolling ball mill or the like in the first pulverization process, and self-impact by the jet mill in the second pulverization process.
  • the powder is pulverized by collision with the wall of the pulverizer, a polysaccharide powder having a uniform shape and size that cannot be obtained by only one pulverization step can be easily obtained.
  • the polysaccharide is pulverized only by mechanical pulverization means such as a rolling ball mill or a jet mill, it is not necessary to perform chemical treatment, the original characteristics of the polysaccharide can be maintained, and a simple process can be used.
  • a polysaccharide powder of the shape and size can be obtained, and the production cost can be reduced. Furthermore, the rolling ball mill used in the first pulverization process has a relatively large average particle size. ⁇ It is suitable for pulverizing the material to be ground. The jet mill used in the second pulverization process has a relatively small average particle diameter. Since it is suitable for pulverization of the material to be pulverized, the polysaccharide can be efficiently pulverized by setting the pulverization step in this order, and the polysaccharide having a desired shape and size can be obtained. The powder can be obtained quickly and easily.
  • the polysaccharide powder of the present invention can be used as a liquid composition by containing it in a predetermined liquid substrate.
  • the polysaccharide powder of the present invention has an average particle size of 10 / zm or less and a predetermined ink viscosity (less than 15 Pa, s) or oil absorption (85 mlZlOOg or less). It is preferable that the viscosity of ink, paint, and the like be high, since the coating property of the paint to the coated body is also good and it can be contained at a high content in a liquid substrate such as paint.
  • the liquid composition include paints, inks, surface treatment agents, fiber treatment agents, and various cosmetic products.
  • the content of the polysaccharide powder with respect to the liquid base material is not particularly limited, but if it is the same liquid base material, it can be blended more than the conventional polysaccharide powder. It is possible to impart excellent properties such as the above to the base material in a higher effect state.
  • the polysaccharide powder of the present invention may be contained in a resin material or cocoon lastomer to form a molded body having a desired shape.
  • resin material and elastomer containing the polysaccharide powder thermoplastic resin (polysulfur resin such as polysalt resin resin, polyolefin resin such as polypropylene and polyethylene, polystyrene, acrylic resin) Fats, polyester-based resins such as polyethylene terephthalate, polyamide-based resins), thermosetting resins (alkyd resins, amino resins, epoxy resins, polyurethane resins, phenol resins, etc.), epoxy resins
  • the ultraviolet curable resin such as fat, polyester-based resin, and urethane-based resin include various thermoplastic elastomers.
  • the polysaccharide powder of the present invention has a specific average particle diameter, and also has a specific range of ink viscosity and oil absorption. Therefore, the polysaccharide powder is formed into a molded body having a predetermined shape made of a resin material or an elastomer. Also, the dispersibility is good, and the polysaccharide powder can be contained in the molded body at the same high content as the content of the liquid substrate.
  • examples of the molded body obtained from these resinous elastomers include synthetic leather, leather, building materials, floor materials, wall materials, and the like.
  • a conventionally known molding method without particular limitation may be used.
  • the aspect described above shows one aspect of the present invention, and the present invention is not limited to the above-described embodiment, and is a category that can achieve the object and effect of the present invention. Needless to say, it is included in the contents of the present invention. Further, the specific structure, shape and the like when carrying out the present invention are within the range where the object and effect of the present invention can be achieved, and there is no problem with other structures and shapes.
  • cellulose, chitin, or chitosan is exemplified as a polysaccharide to be pulverized, but the invention is not limited thereto, and other polysaccharides may be used.
  • various known ball mills such as a rolling ball mill, a vibration ball mill, and a planetary ball mill, and known grinding means such as a tube mill, a rod mill, and a fine grinding hammer mill are used. Although mentioned, it is not limited to these, You may make it use another dry-type mechanical grinding
  • Examples 1 to 6 below relate to the silk powder based on the first embodiment described above.
  • the raw silk was dipped in hot water to completely remove sericin, and a silk fiber mouth-in raw silk was obtained.
  • the silk fiber mouth-in raw silk was cut into short fibers with an average fiber length of about 2 mm using a cutter blade mill (VM-32: manufactured by Orient Co., Ltd.).
  • the pulverized material of the silk hive mouth obtained in (1) into a 200 ml stainless steel container, then pour methanol, and immerse the pulverized material in methanol at room temperature for 1 hour to make the pulverized product into ⁇ form. Went. After the ⁇ -treatment, the pulverized product of the container force silk fiber mouth-in was taken out and dried.
  • the crushed silk fiber mouth-in that has been ⁇ -treated in (2) is mixed with a jet mill (single track jet).
  • a jet mill single track jet
  • the air pressure 0. 7 MPa
  • the feed rate 2KgZhr the feed rate 2KgZhr
  • air volume 2 the feed rate 2KgZhr
  • silk powder silk powder (silk Fuiburoi emissions of the present invention Powder).
  • Example 1 A silk powder (silk hive mouth-in powder) of the present invention was obtained using the same method as in Example 1, except that j8 conversion was performed.
  • Example 1 except that the pulverization time in the first pulverization step was changed from 48 hours to 80 hours, the silk powder of the present invention (silk fiber mouth) was used in the same manner as in Example 1. In powder). The resulting silk powder was slightly colored.
  • Example 1 silk powder (silk fiber) was used in the same manner as in Example 1, except that the pulverization time of the first pulverization step was changed from 48 hours to 30 hours and the supply amount was changed from 2 kgZhr to lkgZhr. Mouth in powder) was obtained.
  • Table 1 shows production conditions in the two pulverization steps of Examples 1 to 3 and Comparative Example 1.
  • the maximum particle size and the average particle size were measured using a laser rotating particle size analyzer (SK LASERPRO 7000S: manufactured by Seishin Enterprise Co., Ltd., dispersion medium ethanol, dispersion condition ultrasonic 60 seconds).
  • SK LASERPRO 7000S manufactured by Seishin Enterprise Co., Ltd., dispersion medium ethanol, dispersion condition ultrasonic 60 seconds.
  • the tap density was measured with 500 taps, and this was taken as the bulk density.
  • the amount of dripped ama-oil was converted to the amount per lOOg of silk powder to obtain the oil absorption.
  • the dispersion was evaluated with a particle gauge, and the particle size was measured.
  • the silk powders obtained in Examples 1 to 3 in which the pulverization time by the ball mill in the first pulverization process is 40 hours or more have an average particle size of 10 ⁇ m or less and the oil absorption was 130 mlZlOOg or less.
  • the particle size by the particle gauge was 80 ⁇ m or less.
  • the silk powder obtained in Examples 1 to 3 has such properties as the oil absorption and particle gauge. It is excellent in dispersibility with respect to the resin solution used as the base material of the liquid composition constituting the resin material or paint, and can be contained in a high content.
  • Example 1 in which the / 3 treatment was performed after the first pulverization step and Example 2 in which the treatment was not performed, the oil absorption amount of the silk powder obtained in Example 1 was compared.
  • the smaller one 89mlZlOOg
  • Example 3 in which the pulverization treatment time in the first pulverization step was set to 80 hours and the ⁇ pulverization treatment was performed after the first pulverization step was the silk powder obtained in Example 1 and Example 2.
  • the appearance was slightly colored, but the oil absorption was small, and the particle diameter by the particle gauge was also very different.
  • the silk powder obtained in Comparative Example 1 in which the treatment time in the first pulverization process is shorter than 40 hours has an average particle size of 10 m or less, but has an oil absorption larger than 130 mlZlOOg (170 ml / 100g), and some of the particles were fibrous, and the particle diameter by the particle gauge exceeded 100 / zm. Therefore, for example, when it is added to water-based or solvent-based resin materials, it is expected that it will be difficult to increase the content because the dispersibility is not good.
  • the resin composition containing the silk powder of the present invention is formed into a film by coating, in order to suppress the foaming phenomenon (defect phenomenon) due to moisture contained in the composition, the moisture content It is desirable to adjust.
  • the moisture content of the silk powder of Example 1 described above was 7.5 wt%.
  • the silk powder of Example 1 was adjusted to a moisture content of 1. Owt% with a vibrating vacuum fluidized dryer (120 ° C, 150 minutes in vacuum). In order to confirm the moisture content, an infrared moisture meter was used, and the value obtained at 150 ° C. for 20 minutes was used.
  • a composition containing this powder and represented by Formula 1 in Table 3 below was stirred for 15 minutes using a dispersing stirrer to obtain a paste PVC compound. This was filtered through a 150 m mesh with a pressure filter, and then treated with a vacuum defoamer for 40 minutes to degas the bubbles in the system.
  • a silk powder-blended PVC film of the present invention was obtained in the same manner as in Example 4 except that the blend of the composition was changed to Blend 2 in Table 3 in Example 4.
  • Table 3 shows Formulations 1 and 2 of the two compositions in Example 4 and Example 5.
  • a PVC film-containing PVC film of the present invention was obtained in the same manner as in Example 5 except that the moisture content of the silk powder was adjusted to 2.7 wt% in Example 5.
  • a silk powder-containing PVC film of the present invention was obtained in the same manner as in Example 5 except that the moisture content of the silk powder was left unchanged in Example 1 (7.5 wt%) in Example 5. It was.
  • the silk powder-containing PVC film obtained in Examples 4 to 6 and Reference Example 1 was evaluated for foaming.
  • the amount of bubbles contained in the film was observed with a loupe. The results are shown in Table 4.
  • the pulverized material obtained in (1) was pulverized using a jet mill (STJ-200: manufactured by Seishin Enterprise Co., Ltd.) under the conditions of air pressure of 0.7 MPa and supply amount of 2. OkgZhr.
  • An inventive polysaccharide powder (cellulose powder) was obtained.
  • Example 1 the polysaccharide powder of the present invention was obtained in the same manner as in Example 1 except that the pulverization time in the first pulverization step was changed from 60 hours to 80 hours.
  • Example 1 using the same method as in Example 1 except that the pulverization time of the first pulverization step was changed from 60 hours to 20 hours and the supply amount was changed from 2. OkgZhr to 1.4 kgZhr. A polysaccharide powder was obtained.
  • Example 1 using the same method as in Example 1 except that the pulverization time of the first pulverization step was changed from 60 hours to 40 hours and the supply amount was changed from 2. OkgZhr to 1. OkgZhr. A polysaccharide powder was obtained.
  • Table 5 shows production conditions in these two grinding steps of Example 7, Example 8, Comparative Example 2, and Comparative Example 3.
  • Cellulose which is a polysaccharide to be crushed (refined pulp KC Flock W-400: manufactured by Nippon Paper Industries Co., Ltd.), has an average particle size of 25 ⁇ 1 .
  • the input amount was 150 kg for both the example and the comparative example.
  • the maximum particle size and the average particle size were measured using a laser rotary particle size analyzer (SK LASERPRO 7000S: manufactured by Seishin Enterprise Co., Ltd., dispersion medium ethanol, dispersion condition ultrasonic 60 seconds).
  • SK LASERPRO 7000S manufactured by Seishin Enterprise Co., Ltd., dispersion medium ethanol, dispersion condition ultrasonic 60 seconds.
  • the tap density of the polysaccharide powder was measured with a tap count of 500, and this was taken as the bulk density.
  • the amount of dripped linseed oil is converted into the amount per polysaccharide powder lOOg and absorbed.
  • the amount of oil was used.
  • this dispersion was stirred with a commercially available stirrer at a rotation speed of 600 to 800 rpm for 3 minutes or more to confirm that no polysaccharide powder remained on the bottom or end of the beaker. Covered with a wrap. This dispersion was allowed to stand in a bath adjusted to 25 ° C. for 15 minutes to obtain a measurement sample.
  • Ink viscosity [mPa ⁇ s] 20000 X (numerical value X [mPa-s]) / 100
  • the oil absorption was less than S10 / zm, the oil absorption and the ink viscosity were small, and the oil absorption was 85 mlZlOOg or less, and the ink viscosity was less than 15 Pa's.
  • the polysaccharide powders obtained in Example 7 and Example 8 have such properties as oil absorption and ink viscosity in addition to the average particle size, and thus constitute a resin material and a paint for molding. It is excellent in dispersibility with respect to the resin solution used as the base material of the liquid composition, and can be contained at a high content.
  • the polysaccharide powders obtained in Comparative Example 3 and Comparative Example 4 in which the treatment time in the first pulverization process is shorter than 40 hours have an average particle size of 10 m or less, but the oil absorption amount and The viscosity increased greatly. Therefore, for example, when added to water-based or solvent-based mortar materials, etc., it is expected that it will be difficult to contain a high content because the dispersibility is not good.
  • the modified powder of the present invention is used in the field of automobile interior parts such as automobile seat sheet fabrics and interior paints, the field of furniture parts such as fabrics and exterior paints such as sofas and chairs, DVD (Dig ital Video Disc). It can be advantageously used in various fields such as IT (abbreviation of information technology) media field such as surface ink, ink jet printer media), and fiber field such as treatment agents for synthetic fibers and natural fibers.
  • IT abbreviation of information technology
  • media field such as surface ink, ink jet printer media
  • fiber field such as treatment agents for synthetic fibers and natural fibers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Paints Or Removers (AREA)

Abstract

 改質パウダーは、平均粒径が10μm以下、吸油量が130ml/100g以下、JIS K5400に準拠した粒ゲージでの分散度評価による粒子径が80μm以下であるシルクパウダーあるいは平均粒径が10μm以下、インキ粘度が15Pa・s未満あるいは吸油量が85ml/100g以下の多糖類パウダーである。このような改質パウダーは、改質材原料をボールミル等の乾式機械的粉砕手段を用いて粉砕して粉砕物を得る第1の粉砕工程と、得られた粉砕物をジェットミルで平均粒径が10μm以下の微粉末に粉砕する第2の粉砕工程とを備え、第1の粉砕工程における粉砕処理時間が40時間以上とするようにして得ることができる。

Description

明 細 書
改質パウダー、当該改質パウダーを含有した液状組成物、成形体、及び 改質パウダーの製造方法
技術分野
[0001] 本発明は、改質パウダー、当該改質パウダーを含有した液状組成物、成形体、及 び改質パウダーの製造方法に関する。
背景技術
[0002] 従来、塗料、インキ、繊維処理剤、ゴム、プラスチック成形品、合成皮革、繊維など の様々な製品において、特定の改質材を添加することにより、各種特性を向上させる ことが行われている。
このような改質材を製品に添加するために、改質材の原料を粉砕し、改質パウダー としたものが用いられて 、る。
このような改質パウダーとして、絹フイブ口インの粉末 (絹フイブ口イン粉末)などのシ ルクパウダー(粉末状のシルク(絹))が利用されて 、る。このようなシルクパウダーを 添加することにより、製品に絹 (シルク)特有の風合いや、インキ受理性能や吸放湿性 などの各種特性を付与ことができる。このような製品としては、例えば、絹フイブ口イン パウダーを合成樹脂中に含有することにより製造される絹フイブ口イン粉末含有人工 皮革などが知られている。
[0003] このようなシルクパウダーを得るための手段としては、種々の製造方法が提案され ていたが、例えば、シルクパウダーを合成樹脂や、インキ、塗料等を構成する水系、 溶剤系の液状媒体に配合した組成物を産業用途として製品化する場合には、熱可 塑性榭脂への分散性や、溶剤系や水系などの液状媒体への分散性が重要とされて いるためその性状を制御する必要があった。一方、力かる性状の制御をすベぐ原料 シルクとなる絹フイブ口インに対して化学的処理や加熱 ·加圧処理等を施して絹フィ プロインの粉末を得る手段が行われて 、たが、得られた絹フイブ口インの粉末の分散 性は十分でなぐまた、絹(シルク)特有の風合い等を維持することができないといつ た問題が生じていた。よって、近年では、ミル等の粉砕処理手段により、得られるシル クパウダーの平均粒径を制御することに着目して、検討が進められていた。
[0004] 絹フイブ口インなどのシルクパウダーを得るための手段としては、ボールミルゃジエツ トミルを用いる手段が知られて 、る。
し力し、絹フイブ口インをボールミルで粉砕する場合、平均粒径 10 μ m以下のパゥ ダーを製造するには、ボールミルを大径のもの力 小径のものへ順次変える必要が あり、粉砕時間が非常に長くなるうえ、パウダーが着色しまうおそれもあるといった問 題があった。
また、絹フイブ口インをジェットミルで粉砕する場合、粉砕物の形状が繊維状となつ てしまうため、溶剤系榭脂ゃ水系樹脂に配合すると粘度が上昇してしまい、配合しに くいという問題があった。このように、このような単一の機械的粉砕のみで得られた絹 フイブ口インの粉末は、粒子の大きさが不揃いであるため、均一な大きさを有する絹フ イブ口インの粉末が得られな 、と 、う問題があった。
[0005] これに対して、改質材に適した絹フイブ口インの粉末を得るための手段として、例え ば、絹フイブ口インを多段階の粉砕手段で粉砕して、平均粒径が 10 m以下の絹フ イブロイン微粉末を得る製造方法が提供されていた (例えば、特許文献 1)。この製造 方法では、第 2段階目の粉砕手段としてボールミルを用いて粉砕処理時間を 20時間 以下とし、第 3段目の粉砕手段としてジェットミルを用い、また、粉砕処理中ないしそ の後において j8化処理を実施することにより、絹フイブ口インの微粉末を得るものであ つた o
[0006] 一方、改質パウダーとして、パルプを原料にしたセルロースパウダーに代表される 多糖類パウダー (粉末状の多糖類)が利用されている。このような多糖類パウダーを 添加することにより、製品にインキ受理性能や吸放湿性などの各種特性を付与させ、 向上させた各種製品を得ており、例えば、化粧品や健康食品、各種合成樹脂製品の 充填材等の様々な分野で使用されて 1ヽる。
[0007] このような多糖類パウダーを得るための手段としては、種々の製造方法が提案され ていたが、例えば、セルロースパウダーを合成樹脂や、インキ、塗料等を構成する水 系、溶剤系の液状媒体に配合した組成物を産業用途として製品化する場合には、熱 可塑性榭脂への分散性や、溶剤系や水系などの液状媒体への分散性が重要とされ ているためその性状を制御する必要があり、特に、多糖類パウダーの平均粒径の制 御に着目して、検討が進められていた。
[0008] セルロース等の多糖類パウダーを得るための手段としては、ボールミルやジェットミ ルを用いる手段が知られている。し力しながら、このようなセルロース等の粉砕におい ても、前述したシルクパウダーを得るための粉砕と同様な問題があった。
[0009] これに対して、改質材に適した多糖類パウダーを得るための手段として、例えば、 多糖類などを転動ボールミル等を用いて 20時間以下で粉砕する第 1の粉砕工程を 行い、次いで、この第 1の粉砕工程の粉砕物をジェットミルを用いて粉砕する第 2の粉 砕工程を行う多糖類パウダーの製造方法が提供されて ヽた (例えば、特許文献 2)。
[0010] 特許文献 1 :特開平 6— 339924号公報([請求項 1] , [0012])
特許文献 2:特開平 9 99251号公報( [請求項 1] , [0023] )
発明の開示
発明が解決しょうとする課題
[0011] し力しながら、特許文献 1に開示された方法により得られた絹フイブ口インの微粉末
(シルクパウダー)は、平均粒径を 10 m以下に制御することで達成している力 この 微粉末を榭脂溶液に対して高 、割合で配合した場合にあっては、粘度の上昇を生じ てしまい、特にインキや表面処理剤など他のフィラーとの組み合わせにより適用され る場合にあっては、絹フイブ口インの微粉末が備えた諸特性を十分に発揮することが できない場合があった。力 tlえて、配合した榭脂溶液等の粘度が高すぎると、スプレー 塗装の場合は良好な液滴が形成されずに塗装面の外観が悪カゝつたり、筆記受理ィ ンキ分野では十分なインキ吸収性能がでな 、と 、つた問題が生じて!/、た。例えば、 塗料等の表面処理分野では主にグラビアコート法などが用いられている力 レベリン グ性が悪ィ匕して良好なコート面を得ることができず、改善が求められていた。
[0012] 一方、特許文献 2に開示された方法により得られた有機系粉体は、粒径を 10 μ m 以下に制御することで達成して 、るが、多糖類パウダーを榭脂溶液に対して高 、割 合で配合した場合にあっては、粘度の上昇を生じてしまい、特にインキや表面処理 剤など他のフィラーとの組み合わせにより適用される場合にあっては、多糖類パウダ 一の備えた諸特性を十分に発揮することができない場合があった。カロえて、配合した 榭脂溶液等の粘度が高すぎると、スプレー塗装の場合は良好な液滴が形成されず 塗装面の外観が悪力つたり、筆記受理インキ分野では十分なインキ吸収性能を発揮 できないといった問題が生じていた。例えば、塗料等の表面処理分野では主にダラ ビアコート法などが用いられている力 レべリング性が悪ィ匕して良好なコート面を得る ことができず、改善が求められていた。
[0013] 従って、本発明の目的は、成形加工用の榭脂材料や、インキや塗料等を構成する 水系、溶剤系の液状組成物の基材となる榭脂溶液に対する分散性に優れ、高い含 有量で含有させることが可能な多糖類パウダー、当該多糖類パウダーを含有した液 状組成物、成形体、及び多糖類パウダーの製造方法を提供することにある。
[0014] 従って、本発明の目的は、成形加工用の榭脂材料や、インキや塗料等を構成する 水系、溶剤系の液状組成物の基材となる榭脂溶液に対する分散性に優れ、高い含 有量で含有させることが可能な改質パウダー、当該改質パウダーを含有した液状組 成物、成形体、及び改質パウダーの製造方法を提供することにある。
課題を解決するための手段
[0015] 本発明の改質パウダーは、シルク原料を乾式粉砕してなるパウダー(シルクパウダ 一)であって、平均粒径が 10 m以下、吸油量が 130mlZlOOg以下、 JIS K5400 に準拠した粒ゲージでの分散度評価による粒子径が 80 μ m以下であることを特徴と する。
[0016] このような本発明の改質パウダーは、絹(シルク)特有の風合 ヽを有し、成形加工用 の榭脂材料や塗料等を構成する液状組成物の基材となる榭脂溶液に対する分散性 が優れたものとなり、このような液状組成物や成形体に対して高!、含有量で含有させ ることがでさる。
よって、例えば、本発明の改質パウダーをインキに対して添加した場合にあっても、 インキ基材に高 、含有量で含有させることができるため、絹(シルク)特有の風合 、を 備えるとともに、インキ受理性能に優れたインキを提供できる。
[0017] なお、本発明の改質パウダーは、前記シルク原料が絹フイブ口インとすることが好ま しぐこれにより、前記した効果を奏する絹フイブ口インパウダーを好適に得ることがで きる。 [0018] また、本発明の改質パウダーは、前記した吸油量が 60〜: LOOmlZgであり、前記し ^cJIS K5400に準拠した粒ゲージでの分散度評価による粒子径が 20〜70 μ mで あれば、前記した効果がより確実に奏されることとなるので好まし 、。
[0019] そして、本発明の改質パウダーを含有した液状組成物や、本発明の改質パウダー を含有した榭脂材料及び Zまたはエラストマ一力ゝらなる成形体は、シルク起源の改質 ノウダ一を好適に分散し、高い濃度で含有することができるため、本発明の改質バウ ダ一の奏する効果、例えば、絹(シルク)特有の風合いを備えつつ、インキに配合し た場合のインキ受理性能や、レザーの表面処理剤として配合させた場合、レザーの 風合いが改善され、また、合成皮革のウレタン層に配合した場合には、天然皮革に 似た触感、吸湿性を付与することができ、このような諸特性を効率よく発揮できる液状 組成物や成形体を提供することができる。
[0020] 本発明の改質パウダーは、多糖類を乾式粉砕してなるパウダー (第 1の多糖類バウ ダー)であって、平均粒径が 10 μ m以下、インキ粘度が 15Pa's未満であることを特 徴とする。
[0021] このような本発明では、成形加工用の榭脂材料や塗料等を構成する液状組成物の 基材となる榭脂溶液に対する分散性が優れたものとなり、このような液状組成物や成 形体に対して高 、含有量で含有させることができる。
よって、例えば、本発明の多糖類パウダーをインキに対して添加した場合にあって も、インキ基材に高い含有量で含有させることができるため、インキ受理性能に優れ たインキを提供できることとなる。
[0022] また、本発明の改質パウダーは、多糖類を粉砕してなるパウダー (第 2の多糖類パ ウダ一)であって、平均粒径が 10 m以下、吸油量が 85mlZlOOg以下であることを 特徴とする。ここで、第 2の多糖類パウダーは、前述した第 1の多糖類パウダーと比較 してインキ粘度の代わりに吸油量を特定の範囲にすることにより、前記した第 1の多 糖類パウダーと同様な効果を享受することができる。
[0023] なお、本発明の改質パウダーは、インキ粘度が 15Pa's未満 (第 1の多糖類パウダ 一)であり、かつ、吸油量が 85mlZlOOg以下 (第 2の多糖類パウダー)としてもよぐ このような両者の条件を兼ね備えた構成とすることにより、前記した効果を最大限に 発揮することができる。
[0024] 本発明の改質パウダーは、前記した多糖類がセルロース力もなることが好ましい。
かかる本発明によれば、粉砕対象とする多糖類の種類を特定のものとして ヽるので 、前記した効果を奏するセルロースパウダーを提供することが可能となる。
[0025] また、本発明の改質パウダーを含有した液状組成物や、本発明の改質パウダーを 含有した榭脂材料及び Zまたはエラストマ一力もなる成形体は、多糖類起源の改質 ノウダ一を好適に分散し、高い濃度で含有することができるため、本発明の改質バウ ダ一の奏する効果、例えば、インキに配合した場合のインキ受理性能や、レザーの表 面処理剤として配合させた場合、レザーの風合いが改善され、また、合成皮革のウレ タン層に配合した場合には、天然皮革に似た触感、吸湿性を付与することができ、こ のような諸特性を効率よく発揮できる液状組成物や成形体を提供することができる。
[0026] 本発明の改質パウダーの製造方法は、改質材原料を粉砕して改質パウダーを得る 改質パウダーの製造方法にぉ 、て、改質材原料を乾式機械的粉砕手段を用いて粉 砕して粉砕物を得る第 1の粉砕工程と、第 1の粉砕工程で得られた粉砕物をジェットミ ルで平均粒径が 10 m以下の微粉末に粉砕する第 2の粉砕工程とを備え、前記第 1の粉砕工程における粉砕処理時間が 40時間以上であることを特徴とする。
[0027] このような本発明の改質パウダーの製造方法では、第 1の粉砕工程で、被粉砕物で ある改質材原料 (絹フイブ口インなどのシルク原料あるいはセルロース等の多糖類)に 対して十分に衝撃力、圧縮力および剪断力を与えることが可能となる。また、得られ た粉砕物を第 2の粉砕工程でジェットミルを用いて更に平均粒径が 10 μ m以下の微 粉末に粉砕することにより、粉砕物同士の衝突および被粉砕物と、ジェットミル壁面と の衝突を十分に行わせることが可能となる。これらにより、所望の形状および大きさに 粉砕された改質パウダーを効率的に得ることができる。
[0028] カロえて、第 1の粉砕工程における粉砕処理時間を 40時間以上として 、るので、前 述した本発明のシルクを原料とする改質パウダーに好適な条件、つまり吸油量や JIS K5400に準拠した粒ゲージでの分散度評価による粒子径 (粒ゲージによる粒子径 )が所望の範囲(吸油量: 130mlZlOOg以下、粒ゲージによる粒子径: 80 μ m以下 )の改質パウダーを簡便かつ効率的に得ることができる。 [0029] また、第 1の粉砕工程における粉砕処理時間を 40時間以上として 、るので、前述し た本発明の多糖類を原料とする改質パウダーに好適な条件、つまり吸油量やインキ 粘度が所望の範囲 (インキ粘度: 15Pa' s未満、吸油量: 85mlZlOOg以下)の多糖 類パウダーを簡便かつ効率的に得ることができる。
[0030] 本発明の改質パウダーの製造方法では、前記乾式粉砕処理としてボールミルを用 、ることが好まし!/、。
ボールミルとしては、転動ボールミルを採用することが特に好ま ヽ。
カゝかる本発明によれば、乾式機械的粉砕手段として、ボールミルを採用しているの で、被粉砕物であるシルク原料に対して衝撃力、圧縮力、剪断力などを効率よく付与 することができる。
更に、ボールミルとして転動ボールミルを用いれば、改質パウダーの大量生産が可 能であることに加え、パウダーへの着色を防止でき、微粒子状の改質パウダーを好適 に得ることができるので好まし 、。
[0031] 本発明の改質パウダーの製造方法では、改質材原料としてシルク原料を用い、粉 砕される前記シルク原料の平均粒径または平均繊維長が 100 μ m〜5mmであること が好ましい。
かかる本発明によれば、粉砕対象となる絹フイブ口インなどの平均粒径 (繊維状の 場合は繊維長)を特定の範囲として!ヽるので、粉砕処理を簡便に実施することが可能 となるとともに、得られるシルクパウダーを平均粒径 10 m以下に制御することを容 易に行うことができる。
[0032] 本発明の改質パウダーの製造方法では、改質材原料としてシルク原料を用いる場 合、前記第 1の粉砕工程中及び Zまたは前記第 1の粉砕工程後前記第 2の粉砕ェ 程前に β化処理を行うことが好ましい。
この本発明によれば、 2段階の粉砕工程における第 1の粉砕工程中や、第 1の粉砕 工程後第 2の粉砕工程前に β化処理 (絹フイブ口イン等を所定の処理用液体に浸漬 させ、 j8構造の割合を増大させるための処理)を行うようにしているので、得られるシ ルクパウダーの結晶化度が向上し、吸油量も小さくなるため、シルクパウダーを溶剤 系榭脂溶液、水系榭脂溶液等に均一に分散させることができるようになる。 [0033] 本発明の改質パウダーの製造方法では、改質材原料として多糖類を用い、粉砕さ れる前記多糖類の平均粒径が 20 μ m〜2mmであることが好ましい。
かかる本発明によれば、粉砕対象となる多糖類の平均粒径を特定の範囲として ヽ るので、粉砕処理を簡便に実施することが可能となり、また、得られる多糖類パウダー を平均粒径 10 m以下に制御することを容易に行うことができる。
発明を実施するための最良の形態
[0034] 〔第 1実施形態〕
本実施形態の改質パウダーは、改質材原料として所定のシルク原料を用い、これを 乾式粉砕することにより得られるシルクパウダーである。
粉砕対象となるシルク原料としては、絹フイブ口インを使用し、特に、絹フイブ口イン を 80質量%、好ましくは 90質量%以上含むものを使用すればよい。ここで、絹フイブ 口イン (単に「フイブ口イン」 t 、う場合もある)は、絹の主成分である繊維状タンパク質 であり、生糸を温水 (または酵素を含む温水)を用いて精練して、セリシンを除去する ことにより簡便に得ることができる。
[0035] これらの絹フイブ口イン等のシルク原料の形状は、特に制限はな 、が、粗粉体状の ものを使用することができる。粗粉体状のものを使用する場合にあっては、平均粒径 または平均繊維長が 100 μ m〜5mmであることが好ましぐ 100 μ m〜2mmである ことが特に好ましい。平均粒径または平均繊維長が 100 m〜5mmであれば、粉砕 処理を簡便に実施することが可能となり、また、得られるシルクパウダーを平均粒径 1 0 m以下に制御することが容易となる。
[0036] なお、シルク原料として粗粉体状の絹フイブ口インを使用する場合にあっては、例え ば、生糸を温水 (または酵素を含む温水)に浸漬させて精練してセリシンを除去し、得 られた繊維状タンパク質の絹フイブ口インを所定の粉砕手段 (例えば、回転羽式ミル やカッター羽式ミルなど)で、平均粒径または平均繊維長が 100 μ m〜5mmの粗粉 体状の絹フイブ口インとして、これをシルク原料として使用すればよ 、。
なお、この精練に際しては、絹フイブ口インが 80質量%、好ましくは 90質量%以上 含まれるように精練することが好ま 、。
[0037] 本発明のシルクパウダーは、このようなシルク原料を粉砕して、平均粒径が 10 μ m 以下となるようにし、 2〜8 mとなるようにすることが好ましい。シルクパウダーの平均 粒径が 10 mより大きいと、塗膜に凹凸ができたり、レザーの表面処理として使用し た場合には、表面にザラザラ感が残ってしまう場合があるため、インキや塗料等の改 質材としての利用に適さなくなる。
[0038] 本発明のシルクパウダーにあっては、前記した平均粒径に加え、吸油量が 130ml /lOOg以下であり、 60〜: L00ml/100gであること力 S好ましく、 80〜: L00ml/100g であることが特に好ましい。吸油量が 130mlZl00gより大きいと、シルクパウダーを 含有するインキや塗料などの粘度が高 、ため、被塗布体への塗料の塗布がしにくく なり、塗料としての実用性を考慮すると、これらに対して高い含有量で含有させること が困難となる。一方、吸油量が 60mlZl00gより小さいと、インキや塗料などの水系、 溶剤系榭脂材料に含有させた場合に、それらの粘度が必要以上に小さくなりすぎて しまい、例えば、別途増粘剤を添加するなどといった手間が生じる場合がある。
なお、シルクパウダーの吸油量は、例えば、 JIS K5101に準拠して測定した値を 用いればよい。
[0039] かつ、本発明のシルクパウダーは、 JIS K5400に準拠した粒ゲージでの分散度評 価による粒子径 (以下、単に「粒ゲージによる粒子径」とする場合がある)が 80 μ m以 下であり、当該粒子径が 20〜70 /ζ πιであることが好ましい。力かる粒子径が 80 m より大きいと、塗膜 (通常は厚みが lO /z m程度)に対して凹凸を作ってしまって、外観 不良となりやすくなる。また、レザー等の表面処理に用いた場合には、表面のざらざ ら感が強くなつてしまい、使用感を損なう場合がある。
一方、粒子径が 20 mより小さいと、榭脂ゃインキ基材、塗料基材に混合する際に 凝集しやすくなるため、取り扱いが困難となる場合がある。
[0040] なお、力かる粒ゲージによる粒子径を制御することにより、パウダー(粉体)中の微 量の大きな粒子の存在も排除することができ、平均粒径の特定では制御しきれな 、と ころまでの粒子径を制御することが可能となる。
[0041] 本発明のシルクパウダーは、平均粒径を 10 μ m以下とするとともに、吸油量が 130 mlZlOOg以下、かつ、 JIS K5400に準拠した粒ゲージでの分散度評価による粒 子径が 80 m以下と特定の範囲としているため、成形加工用の榭脂材料や塗料等 を構成する液状組成物の基材となる榭脂溶液に対する分散性が良好となり、このよう な液状組成物や成形体に対して高い含有量で配合可能なシルクパウダーを提供す ることがでさる。
[0042] また、本発明のシルクパウダーは、前述した平均粒径、吸油量、粒ゲージでの分散 度評価による粒子径の必須要件を満たすとともに、シルクパウダー中の含水分率を 3 wt%以下にすることが好ましぐ特に 2wt%以下にすることが好ましい。このようにす ることで、本発明のシルクパウダーを含有する榭脂組成物をコーティングにより製膜 する際に、前記組成物中に含まれる水分による発泡現象 (不良現象)を抑制すること ができる。
[0043] なお、コーティングによる製膜方法は、塩化ビュル榭脂 (PVC)等の榭脂パウダーと 可塑剤とを混合したペースト状のコンパウンドを、ナイフコータ等のコーティング装置 を用いて離型紙上へコーティングし、一次加熱で榭脂パウダーを可塑剤により膨潤さ せてゾルペーストをゲルイ匕させ、二次加熱で溶融して製膜する製法である。コーティ ング装置には、前述のナイフコーティングの他にコンマコータ等の類似のコーティン グ方式も使用可能である。
一般に、コーティングによる製膜方法は、カレンダ製膜方法や押出製膜法と異はな り加熱脱気工程がなぐシルクパウダーのように吸湿性に富む材料を使用しにくいた め、本発明のシルクパウダーの実用的な価値は高 、と 、える。
[0044] 従って、本発明のシルクパウダーを、プラスチック成形品、合成皮革、塗料、インキ 、繊維、不織布、織編物、繊維処理剤、ゴムなどの各種製品に添加する場合にも、分 散性に優れた特性を生力して、これらに対して高い含有量で含有させることができ、 シルクパウダーの備える絹(シルク)独特の風合いにカ卩えて、吸放湿性ゃ良タツチ性 、帯電防止性などの各種特性を効率よく付与することができ、これらの特性が向上さ せた製品を簡便に得ることができる。
[0045] また、特に、本発明のシルクパウダーは、水系や溶剤系の液状基材に対しても分散 性が優れるため、これらの液状基材に対して適用した場合に効果を最大限に発揮さ せることができ、例えば、シルクパウダーをインキに対して添加した場合にあっても、ィ ンキ基材に高 、含有量で含有させることができるため、絹(シルク)特有の風合 、を 持たせながら、インキ受理性能、良タツチ性に優れたインキを提供する。
[0046] なお、このような効果は、シルクパウダーの吸油量を 60〜100mlZgとして、 JIS K 5400に準拠した粒ゲージでの分散度評価による粒子径を 20〜70 μ mとすることに よって、より確実に発揮されることになる。
[0047] そして、このような平均粒径、吸油量及び粒ゲージによる粒子径を備えたシルクパ ウダ一を得るには、シルク原料を、公知の粉砕手段を用いて粉砕することにより調製 すればよいが、例えば、下記に示す第 1の粉砕工程及び第 2の粉砕工程カゝらなる、 2 段階の粉砕工程により粉砕することが好ましい。
[0048] [第 1の粉砕工程]
第 1の粉砕工程においては、改質材原料 (本実施形態ではシルク原料)を、乾式機 械的粉砕手段を用いて粉砕処理する。この乾式機械的粉砕手段としては、例えば、 転動ボールミル、振動ボールミル、遊星ボールミル等の各種ボールミルや、チューブ ミル、ロッドミル、微粉砕用ハンマーミル等の公知の粉砕手段を使用することができる
[0049] 本発明にあっては、この中でも、ボールミルを使用することが好ましぐ転動ボールミ ルを使用することが特に好ましい。乾式機械的粉砕手段として、ボールミルを採用す れば、被粉砕物である絹 (シルク)に対して衝撃力、圧縮力、剪断力などを効率よく付 与することができる。更に、ボールミルとして転動ボールミルを採用すれば、シルクパ ウダ一の大量生産が可能であることにカ卩え、パウダーへの着色を防止でき、微粒子 状のシルクパウダーを好適に得ることができる。
[0050] ここで、第 1の粉碎工程にあっては、粉碎処理時間を 40時間以上として、 40-70 時間とすることが好ましい。粉砕処理時間が 40時間より短いと、得られるシルクパウダ 一の吸油量や粒ゲージによる粒子径が大きくなつてしまい、これらが所望の範囲(吸 油量: 130mlZlOOg以下、粒ゲージによる粒子径: m以下)のシルクパウダー を得ることが困難となってしまう場合がある。一方、粉砕処理時間を 40時間以上と比 較的長い時間とすることにより、粉砕されるシルク原料の表面の凹凸や、表面の油へ の濡れ性、表面の結晶化度等が変化して、その結果、吸油量が小さくなり、前記した 範囲に吸油量を好適に制御することができる。 [0051] 一方、吸油量を低くするには、このようにボールミル等の乾式機械的粉砕手段によ る処理時間を長く(40時間以上と)すればよいが、粉砕処理時間をあまり長くすると、 粉砕された粉砕物が凝集してしまうことがあり、逆に平均粒径が大きくなつてしまって 、吸油量やインキ粘度が却って大きくなつてしまう場合がある。また、第 2の粉砕工程 におけるジェットミルでの粉砕性も低下する場合がある。従って、粉砕処理時間は、 4 0〜70時間程度とすればよぐまた、力かる範囲内であれば、得られるシルクパウダ 一の変色を抑えることができ(白色度として 80以上を維持でき)、また、シルクパウダ 一の生産性も高 、状態を維持することができるので好ま 、。
[0052] また、第 1の粉砕工程での処理時間が 40時間より短いと、第 2の粉砕工程終了後 に得られるシルクパウダーの、粒ゲージでの分散度評価による粒子径が 80 mを超 えてしまう場合が多ぐこの結果、インキや塗料に高濃度で含有させることが難しくな つたり、仮に含有させることができた場合でも、このインキや塗料を塗布した面にザラ ザラ感が残ってしまうという問題が発生してしまう。
一方、第 1の粉砕工程での時間が長すぎる場合、例えば 70時間を超えると、粉砕 物が凝集して 2次粒子を形成し、却って、粒ゲージによる粒子径が 80 mを超えてし まう場合がある。このような点を考慮しても、粉砕処理時間は、 40〜70時間程度とす ればよい。
[0053] [第 2の粉砕工程]
第 2の粉砕工程にぉ 、ては、第 1の粉砕工程で得られた粉砕物をジェットミル (ジェ ット粉砕機とも呼ばれる)で更に粉砕処理する。カゝかるジェットミルとしては、ノズル吸 込み型 (縦型、横型)、ノズル内吸込み型、衝突壁型、ジ ット気流衝突型、流動層型 、複合型などの従来公知のジェットミルを使用することができる。
なお、第 2の粉砕工程で使用するジェットミルのエアー圧力や供給量、及び風量等 の諸条件は、粉砕するシルク原料の種類や、得られるシルクパウダーの仕様に応じ て決定すればよい。
[0054] また、第 2の粉砕工程で用いるジェットミルには、サイクロンや気流式分級装置など の分級能力を備えた装置を閉回路で設置して、比較的粒度の大きい粉体粒子を分 級し、除去するようにすれば、均一な粒径のシルクパウダーを効率よく得ることができ 、最大粒径や平均粒径を小さく抑えることができる。
[0055] ここで、第 1の粉砕工程では、粉体対象となるシルク原料を、その平均粒径が概ね 1 2〜30 m程度となるように粉砕することが好ましい。そして、第 2の粉砕工程では、 第 1の粉砕工程の粉砕物を、その平均粒径が概ね 10 m以下の微粉末、好ましくは 8 μ m以下の微粉末となるまで粉砕して、シルクパウダーを得る。
なお、得られるシルクパウダーの最大粒径は、特に制限はないが、概ね 32 m以 下程度とすることが好ましぐ 24 m以下程度とすることがより好ましい。
[0056] このような 2段階の粉砕工程により粉砕処理を行うようにすれば、シルク原料を平均 粒径 10 μ m以下の細か 、粒子に粉砕できるようになり、改質材としての利用に適した 大きさのシルクパウダーが容易に得られることとなるほか、第 1の粉砕工程における粉 砕処理時間を 40時間以上として 、るので、吸油量や粒ゲージによる粒子径が所望 の範囲(吸油量: 130mlZlOOg以下、粒ゲージによる粒子径: 80 m以下)のシル クパウダーを簡便かつ効率的に得ることができる。また、シルク原料の形状が粒状に 粉砕されるようになり、得られるシルクパウダーは、繊維状のものを極力含まないよう になるため、このシルクパウダーを溶剤系榭脂ゃ水系樹脂に含有させても粘度が上 昇しにくぐ各種製品に対して改質材として簡単に含有させることができる。
[0057] また、粉砕対象であるシルク原料に対して、第 1の粉砕工程では転動ボールミル等 により衝撃、圧縮および剪断による粉砕を施し、第 2の粉砕工程ではジェットミルによ り自己衝突および粉砕機壁面との衝突による粉砕とを施しているため、いずれか一 つの粉砕工程では得られないような均一な形状および大きさを有するシルクパウダー が簡便に得ることができる。カロえて、転動ボールミルやジェットミル等の機械的粉砕手 段のみでシルク原料の粉末ィ匕を行うため、化学的処理を施す必要がなくなり、絹(シ ルク)本来の特性 (風合 、など)を維持できるとともに、簡単な工程で所望の形状およ び大きさのシルクパウダーが得られるようになり、製造コストの低減が可能となる。更 には、第 1の粉砕工程で用いる転動ボールミル等は平均粒径の比較的大き!/、被粉 砕物の粉砕に適しており、第 2の粉砕工程で用いるジェットミルは平均粒径の比較的 小さい被粉砕物の粉砕に適しているため、粉砕工程をこのような順序とすることで、シ ルク原料の粉砕を効率よく行うことができるようになり、所望の形状および大きさを有 するシルクパウダーが迅速かつ容易に得られるようになる。
[0058] そして、第 1の粉砕工程で転動ボールミル等を用いることにより、被粉砕物に対して 十分に衝撃力、圧縮力および剪断力を与えることが可能となり、第 2の粉砕工程でジ エツトミルを用いることにより、粉枠物同士の衝突および粉枠物とジェットミル壁面との 衝突を十分に促すことが可能となる。これらにより、所望の形状および大きさに粉砕さ れたシルクパウダーを簡便かつ確実に得ることができる
[0059] [ β化処理]
また、粉砕工程においては、 j8化処理を行うようにすれば、得られるシルクパウダー の結晶化度が向上し、吸油量も小さくなる。そして、好ましくは天然繊維の 70%以上 の結晶化度とすることにより、製品を製造する際、シルクパウダーを溶剤系榭脂溶液 、水系榭脂溶液等に均一に分散させることができるようになる。この結果、絹(シルク) 特有の風合いを維持しながら、吸放湿性、透湿性及びタツチ感に優れ、更には帯電 防止性能にも優れた製品を好適に得ることができる。
[0060] この β化処理とは、絹フイブ口イン等を所定の処理用液体に浸漬させ、 β構造の割 合を増大させるための処理である。ここで、処理用液体としては、有機溶媒や中性塩 水溶液を使用すればよぐ有機溶媒の具体例は、メタノール、エタノール等のアルコ ール類、アセトン等が挙げられ、中性塩水溶液の具体例は、塩ィ匕ナトリウム、塩化カリ ゥム、硫酸ナトリウム、硫酸アンモニゥム、硝酸ナトリウム等が挙げられる。
[0061] また、この /3化処理は、前記した第 1の粉砕工程、第 2の粉砕工程のいずれかのェ 程において、あるいはその後において少なくとも 1回行えばよぐ必要に応じて 2回以 上行ってもよい。特に、第 1の粉砕工程中に一緒に行うか、第 1の粉砕工程後第 2の 粉砕工程前に行うことが好ましい。
[0062] [製品形態]
本発明のシルクパウダーは、所定の液状の基材に含有させて液状組成物として使 用することができる。本発明のシルクパウダーは、平均粒径が 10 m以下であるとと もに、吸油量が 130mlZlOOg以下、粒ゲージによる粒子径が 80 μ m以下であるた め、水系や溶剤系の液状組成物に対する分散性が良好となり、当該液状組成物に 対して高い含有量で含有させることができる。液状組成物としては、例えば、塗料、ィ ンキ、表面処理剤、繊維処理剤、各種化粧品などが挙げられる。液状の基材に対す るシルクパウダーの含有量は、特に制限はないが、 40〜70質量%程度といった高い 含有量とすることも可能となる。例えば、液状組成物がインキである場合には、インキ 基材に高 、含有量で含有させることができるため、インキ受理性能等に優れたインキ を提供できることとなる。
[0063] また、本発明のシルクパウダーは、榭脂材料やエラストマ一に対して含有させて所 望の形状の成形体とするようにしてもよい。ここで、シルクパウダーを含有させる榭脂 材料やエラストマ一としては、熱可塑性榭脂(ポリ塩ィ匕ビュル等のポリビュル系榭脂、 ポリプロピレン、ポリエチレン等のポリオレフイン系榭脂、ポリスチレン、アクリル系榭脂 、ポリエチレンテレフタレート等のポリエステル系榭脂、ポリアミド系榭脂など)、熱硬 化性榭脂 (アルキッド榭脂、アミノ榭脂、エポキシ榭脂、ポリウレタン榭脂、フエノール 榭脂など)、エポキシ系榭脂、ポリエステル系榭脂、ウレタン系榭脂等の紫外線硬化 性榭脂ゃ各種熱可塑性エラストマ一などが挙げられる。本発明のシルクパウダーは、 前記したように、特定の平均粒径であるとともに、吸油量等も特定範囲としているため 、榭脂材料やエラストマ一力 なる所定形状の成形体に対しても分散性が良好となり 、シルクパウダーを当該成形体に対しても、前記した液状の基材に対する含有量と同 様な高 、含有量で含有させることができる。
[0064] また、これらの榭脂ゃエラストマ一力も得られた成形体としては、例えば、合成皮 革、レザー、建材、床材、壁材等が挙げられる。そして、これらの成形体を得る手段と しては、特に制限なぐ従来公知の成形方法を使用すればよい。
[0065] なお、以上説明した態様は、本発明の一態様を示したものであって、本発明は、前 記した実施形態に限定されるものではなぐ本発明の目的及び効果を達成できる範 囲内での変形や改良力 本発明の内容に含まれるものであることはいうまでもない。 また、本発明を実施する際における具体的な構造及び形状等は、本発明の目的及 び効果を達成できる範囲内にお 、て、他の構造や形状等としても問題はな 、。
[0066] 例えば、前記した実施形態では、粉砕対象となるシルク原料として、絹フイブ口イン を例として挙げた力 これらには限定されず、他のシルク原料を使用するようにしても よい。 また、第 1の粉砕工程で適用される乾式機械的粉砕手段として、転動ボールミル、 振動ボールミル、遊星ボールミル等の各種ボールミルや、チューブミル、ロッドミル、 微粉砕用ハンマーミル等の公知の粉砕手段を挙げたが、これらには限定されず、他 の乾式機械的粉砕手段を使用するようにしてもよい。
その他、本発明の実施における具体的な構造及び形状等は、本発明の目的を達 成できる範囲で他の構造等としてもょ 、。
[0067] 〔第 2実施形態〕
本実施形態の改質パウダーは、改質材原料として多糖類を用い、これを乾式粉砕 することにより得られる多糖類パウダーである。
粉砕対象となる多糖類としては、例えば、セルロース、キチン、キトサン等が挙げら れ、特にセルロースを使用することが好ましい。
これらの多糖類の形状は、特に制限はないが、粗粉体状のものを使用することが好 ましぐまた、粗粉体状のものを使用する場合にあっては、平均粒径が 20 m〜 2m mであることが好ましぐ 20 m〜500 mであることが特に好ましい。平均粒径が 2 0 /z m〜2mmであれば、粉砕処理を簡便に実施することが可能となり、また、得られ る多糖類パウダーを平均粒径 10 m以下に制御することが容易となる。
[0068] 本発明の多糖類パウダーは、これらの多糖類を粉砕して、平均粒径が 10 μ m以下 となるようにし、 2〜8 /ζ πιとなるようにすることが好ましい。多糖類パウダーの平均粒 径が 10 mより大きいと、塗膜に凹凸ができたり、レザーの表面処理として使用した 場合には、表面にザラザラ感が残ってしまう場合があるため、インキや塗料等の改質 材としての利用に適さなくなる。
[0069] 本発明の第 1の多糖類パウダーにあっては、前記した平均粒径に加え、インキ粘度 力 Sl5Pa' s未満であり、 lOPa' s未満であることが好ましい。インキ粘度が 15Pa' s以 上であると、多糖類パウダーを含有したインキや塗料等の粘度が高いため、被塗布 体への塗料の塗布がしにくくなり、塗料としての実用性を考慮すると、これらに対して 高い含有量で含有させることが困難となる。
[0070] なお、多糖類パウダーのインキ粘度は、後記する [試験 3]の(インキ粘度の測定) に示した内容に準拠して測定すればよい。 [0071] また、本発明の第 2の多糖類パウダーにあっては、前記した平均粒径にカロえ、吸油 量が 85mlZlOOg以下であり、 80mlZl00g以下であることが好ましい。吸油量が 8 5ml/100gより大きいと、前記したインキ粘度が大きい場合と同様に、多糖類パウダ 一を配合したインキや塗料等の粘度が高 ヽため、被塗布体への塗料の塗布がしにく くなり、塗料としての実用性を考慮すると、これらに対して高い含有量で含有させるこ とが困難となる。
なお、多糖類パウダーの吸油量は、例えば、 JIS K5101に準拠して測定した値を 用いればよい。
[0072] このような本発明の多糖類パウダーは、平均粒径を 10 m以下とするとともに、イン キ粘度を 15Pa' s未満、ある 、は吸油量が 85mlZlOOg以下と特定の範囲として ヽ るため、成形加工用の榭脂材料や塗料等を構成する液状組成物の基材となる榭脂 溶液に対する分散性が良好となり、このような液状組成物や成形体に対して高 、含 有量で配合可能な多糖類パウダーを提供することができる。
[0073] 従って、本発明の多糖類パウダーを、プラスチック成形品、合成皮革、塗料、インキ 、繊維、不織布、織編物、繊維処理剤、ゴムなどの各種製品に添加する場合にも、分 散性に優れた特性を生力して、これらに対して高い含有量で含有させることができ、 多糖類パウダーの備える吸放湿性ゃ良タツチ性、帯電防止性などの各種特性を効 率よく付与することができ、これらの特性が向上させた製品を簡便に得ることができる
[0074] また、特に、本発明の多糖類パウダーは、水系や溶剤系の液状基材に対しても分 散性が優れるため、これらの液状基材に対して適用した場合に効果を最大限に発揮 させることができ、例えば、多糖類パウダーをインキに対して添加した場合にあっても 、インキ基材に高い含有量で含有させることができるため、インキ受理性能に優れた インキを提供する。
[0075] なお、本発明の多糖類パウダーは、インキ粘度が 15Pa's未満であり、かつ、吸油 量が 85mlZlOOg以下とすることが好ましぐこのようなインキ粘度及び吸油量を備え た多糖類パウダーは、インキや塗料等の水系、溶剤系榭脂材料への分散性への分 散性がより一層優れたものとなり、これらに対して高い含有量で含有させることが好適 に実施することができる。
[0076] そして、このような平均粒径、吸油量及びインキ粘度を備えた多糖類パウダーを得 るには、原料となる前記した多糖類を、公知の粉砕手段を用いて粉砕することにより 調製すればよいが、例えば、下記に示す第 1の粉砕工程及び第 2の粉砕工程力ゝらな る、 2段階の粉砕工程により粉砕することが好ましい。
[0077] [第 1の粉砕工程]
第 1の粉砕工程においては、改質材原料 (本実施形態では多糖類原料)を、乾式 機械的粉砕手段を用いて粉砕処理する。この乾式機械的粉砕手段としては、例えば 、転動ボールミル、振動ボールミル、遊星ボールミル等の各種ボールミルや、チュー ブミル、ロッドミル、微粉砕用ハンマーミル等の公知の粉砕手段を使用することができ る。
[0078] 本発明にあっては、この中でも、ボールミルを使用することが好ましぐ転動ボールミ ルを使用することが特に好ましい。乾式機械的粉砕手段として、ボールミルを採用す れば、被粉砕物である多糖類に対して衝撃力、圧縮力、剪断力などを効率よく付与 することができる。更に、ボールミルとして転動ボールミルを採用すれば、多糖類パゥ ダ一の大量生産が可能であることに加え、パウダーへの着色を防止でき、微粒子状 の多糖類パウダーを好適に得ることができる。
[0079] ここで、第 1の粉砕工程にあっては、粉砕処理時間を 40時間以上として、 60〜90 時間とすることが好ましい。粉砕処理時間が 40時間より短いと、得られる多糖類バウ ダ一の吸油量やインキ粘度が大きくなつてしま 、、これらが所望の範囲 (インキ粘度: 15Pa's未満、吸油量: 85mlZlOOg以下)の多糖類パウダーを得ることが困難とな つてしまう場合がある。一方、粉砕処理時間を 40時間以上と比較的長い時間とするこ とにより、粉砕される多糖類の表面の凹凸や、表面の油への濡れ性、表面の結晶化 度等が変化して、その結果、吸油量、インキ粘度が小さくなり、前記した範囲に制御 することができる。
[0080] 一方、吸油量やインキ粘度を低くするには、このようにボールミル等の乾式機械的 粉砕手段による処理時間を長く(40時間以上と)すればよいが、粉砕処理時間をあま り長くすると、粉砕された粉砕物が凝集してしまうことがあり、逆に平均粒径が大きくな つてしまって、吸油量やインキ粘度が却って大きくなつてしまう場合がある。従って、 粉碎処理時間は、 60〜90時間程度とすればよぐまた、力かる範囲内であれば、得 られる多糖類パウダーの変色を抑えることができ、また、多糖類の生産性も高い状態 を維持することができるので好まし 、。
[0081] [第 2の粉砕工程]
第 2の粉砕工程にぉ 、ては、第 1の粉砕工程で得られた粉砕物をジェットミル (ジェ ット粉砕機とも呼ばれる)で更に粉砕処理する。カゝかるジェットミルとしては、ノズル吸 込み型 (縦型、横型)、ノズル内吸込み型、衝突壁型、ジ ット気流衝突型、流動層型 、複合型などの従来公知のジェットミルを使用することができる。
なお、第 2の粉砕工程で使用するジェットミルのエアー圧力や供給量、及び風量等 の諸条件は、粉砕する多糖類の種類や、得られる多糖類パウダーの仕様に応じて決 定すればよい。
[0082] また、第 2の粉砕工程で用いるジェットミルには、サイクロンや気流式分級装置など の分級能力を備えた装置を閉回路で設置して、比較的粒度の大きい粉体粒子を分 級し、除去するようにすれば、均一な粒径の多糖類パウダーを効率よく得ることがで き、最大粒径や平均粒径を小さく抑えることができる。
[0083] ここで、第 1の粉砕工程では、粉体対象となる多糖類を、その平均粒径が概ね 10〜 20 μ m程度となるように粉砕することが好ましぐ 10〜15 m程度になるように粉砕 することが特に好ましい。そして、第 2の粉砕工程では、第 1の粉砕工程の粉砕物を、 その平均粒径が 10 /z m以下の微粉末になるまで粉砕するようにする。
なお、得られる多糖類パウダーの最大粒径は、特に制限はないが、概ね 32 /z m以 下程度とすることが好ましぐ 24 m以下程度とすることがより好ましい。
[0084] このような 2段階の粉砕工程により粉砕処理を行うようにすれば、多糖類を平均粒径 10 μ m以下の細か 、粒子に粉砕できるようになり、改質材としての利用に適した大き さの多糖類パウダーが容易に得られることとなるほか、第 1の粉砕工程における粉砕 処理時間を 40時間以上としているので、吸油量やインキ粘度が所望の範囲 (インキ 粘度: 15Pa' s未満、吸油量: 85mlZlOOg以下)の多糖類パウダーを簡便かつ効率 的に得ることができる。また、多糖類の形状が粒状に粉砕されるようになり、得られる 多糖類パウダーは、繊維状のものを含まないようになるため、この多糖類パウダーを 溶剤系榭脂ゃ水系樹脂に含有させても粘度が上昇しにくぐ各種製品に対して改質 材として簡単に含有させることができる。
[0085] また、粉砕対象である多糖類に対して、第 1の粉砕工程では転動ボールミル等によ り衝撃、圧縮および剪断による粉砕を施し、第 2の粉砕工程ではジェットミルにより自 己衝突および粉砕機壁面との衝突による粉砕とを施して 、るため、 、ずれか一つの 粉砕工程では得られないような均一な形状および大きさを有する多糖類パウダーが 簡便に得ることができる。カロえて、転動ボールミルやジェットミル等の機械的粉砕手段 のみで多糖類の粉末化を行うため、化学的処理を施す必要がなくなり、多糖類本来 の特性を維持できるとともに、簡単な工程で所望の形状および大きさの多糖類パウダ 一が得られるようになり、製造コストの低減が可能となる。更には、第 1の粉砕工程で 用いる転動ボールミル等は平均粒径の比較的大き ヽ被粉砕物の粉砕に適しており、 第 2の粉砕工程で用いるジェットミルは平均粒径の比較的小さ 、被粉砕物の粉砕に 適しているため、粉砕工程をこのような順序とすることで、多糖類の粉砕を効率よく行 うことができるようになり、所望の形状および大きさを有する多糖類パウダーが迅速か つ容易に得られるようになる。
[0086] そして、第 1の粉砕工程で転動ボールミル等を用いることにより、被粉砕物に対して 十分に衝撃力、圧縮力および剪断力を与えることが可能となり、第 2の粉砕工程でジ エツトミルを用いることにより、粉枠物同士の衝突および粉枠物とジェットミル壁面との 衝突を十分に促すことが可能となる。これらにより、所望の形状および大きさに粉砕さ れた多糖類パウダーを簡便かつ確実に得ることができる
[0087] [製品形態]
本発明の多糖類パウダーは、所定の液状の基材に含有させて液状組成物として使 用することができる。本発明の多糖類パウダーは、平均粒径が 10 /z m以下であるとと もに、所定のインキ粘度(15Pa, s未満)や吸油量 (85mlZlOOg以下)であるため、 多糖類パウダーを配合したインキや塗料等の粘度も高くなることはなぐ被塗布体へ の塗料の塗布性も良好で、塗料等の液状の基材に対して高 ヽ含有量で含有させる ことができるため好ましい。 ここで、液状組成物としては、例えば、塗料、インキ、表面処理剤、繊維処理剤、各 種ィ匕粧品などが挙げられる。液状の基材に対する多糖類パウダーの含有量は、特に 制限はないが、同じ液状の基材であれば、従来の多糖類パウダーより多く配合でき、 多糖類パウダーが有する吸放湿性、筆記受理性などの優れた諸特性を、基材に対し て効果をより高い状態で付与することができる。
[0088] また、本発明の多糖類パウダーは、榭脂材料やヱラストマーに対して含有させて所 望の形状の成形体とするようにしてもよい。ここで、多糖類パウダーを含有させる榭脂 材料やエラストマ一としては、熱可塑性榭脂(ポリ塩ィ匕ビュル等のポリビュル系榭脂、 ポリプロピレン、ポリエチレン等のポリオレフイン系榭脂、ポリスチレン、アクリル系榭脂 、ポリエチレンテレフタレート等のポリエステル系榭脂、ポリアミド系榭脂など)、熱硬 化性榭脂 (アルキッド榭脂、アミノ榭脂、エポキシ榭脂、ポリウレタン榭脂、フエノール 榭脂など)、エポキシ系榭脂、ポリエステル系榭脂、ウレタン系榭脂等の紫外線硬化 性榭脂ゃ各種熱可塑性エラストマ一などが挙げられる。本発明の多糖類パウダーは 、前記したように、特定の平均粒径であるとともに、インキ粘度や吸油量も特定範囲と しているため、榭脂材料やエラストマ一からなる所定形状の成形体に対しても分散性 が良好となり、多糖類パウダーを当該成形体に対しても、前記した液状の基材に対 する含有量と同様な高 、含有量で含有させることができる
[0089] また、これらの榭脂ゃエラストマ一から得られた成形体としては、例えば、合成皮革 、レザー、建材、床材、壁材等が挙げられる。そして、これらの成形体を得る手段とし ては、特に制限なぐ従来公知の成形方法を使用すればよい。
[0090] なお、以上説明した態様は、本発明の一態様を示したものであって、本発明は、前 記した実施形態に限定されるものではなぐ本発明の目的及び効果を達成できる範 囲内での変形や改良力 本発明の内容に含まれるものであることはいうまでもない。 また、本発明を実施する際における具体的な構造及び形状等は、本発明の目的及 び効果を達成できる範囲内にお 、て、他の構造や形状等としても問題はな 、。
[0091] 例えば、前記した実施形態では、粉砕対象となる多糖類としてセルロース、キチン またはキトサンを例として挙げたが、これらには限定されず、他の多糖類を使用するよ うにしてもよい。 また、第 1の粉砕工程で適用される乾式機械的粉砕手段として、転動ボールミル、 振動ボールミル、遊星ボールミル等の各種ボールミルや、チューブミル、ロッドミル、 微粉砕用ハンマーミル等の公知の粉砕手段を挙げたが、これらには限定されず、他 の乾式機械的粉砕手段を使用するようにしてもよい。
その他、本発明の実施における具体的な構造及び形状等は、本発明の目的を達 成できる範囲で他の構造等としてもょ 、。
実施例
[0092] 以下、実施例及び比較例を挙げて、本発明をより具体的に説明するが、本発明は 実施例等の内容に何ら限定されるものではない。
[0093] 以下の実施例 1〜実施例 6は、前述した第 1実施形態に基づくシルクパウダーに関 するものである。
[実施例 1]
シルクパウダーの製造(1)
(1)ボールミルによる第 1の粉砕工程:
原料生糸を湯に浸漬してセリシンを完全に除去して、絹フイブ口インの生糸とした。 この絹フイブ口インの生糸をカッター羽式ミル (VM— 32:オリエント (株)製)で、平均 繊維長が約 2mmの短繊維とした。
[0094] この短繊維状の絹フイブ口イン 70kgをシルク原料として、乾式機械的粉砕手段であ る転動ボールミル (マキノ (株)製、容量 2. 2m3)を用いて、ボール量を 1. 2t、粉砕処 理時間を 48時間として、絹フイブ口インの粉砕物を得た。なお、ボールはセラミック製 のものを用いた。
[0095] (2) |8化処理工程:
(1)で得られた絹フイブ口インの粉砕物を、 200ml容のステンレス製容器に入れ、 次いでメタノールを注ぎ、室温でメタノール内に粉砕物を 1時間浸漬させて、粉砕物 の β化処理を行った。 β化処理後、容器力 絹フイブ口インの粉砕物を取り出し、乾 燥させた。
[0096] (3)ジェットミルによる第 2の粉砕工程:
(2)で β化処理された絹フイブ口インの粉砕物を、ジェットミル(シングルトラックジェ ットミル:(株)セイシン企業製)を用いて、エアー圧力を 0. 7MPa、供給量を 2kgZhr 、風量を 2. 8m3Z分の条件で粉砕処理して、本発明のシルクパウダー(絹フイブロイ ンパウダー)を得た。
[0097] [実施例 2]
シルクパウダーの製造(2)
実施例 1において、 (2) j8化処理を行ゎなカ た以外は、実施例 1と同様な方法を 用いて、本発明のシルクパウダー(絹フイブ口インパウダー)を得た。
[0098] [実施例 3]
シルクパウダーの製造(3)
実施例 1にお 、て、第 1の粉砕工程の粉砕処理時間を 48時間から 80時間と変更し た以外は、実施例 1と同様な方法を用いて、本発明のシルクパウダー(絹フイブ口イン パウダー)を得た。なお、得られたシルクパウダーには、若干ではあるが着色が認めら れた。
[0099] [比較例 1]
シルクパウダーの製造 (4)
実施例 1において、第 1の粉砕工程の粉砕処理時間を 48時間から 30時間、供給 量を 2kgZhrから lkgZhrと変更した以外は、実施例 1と同様な方法を用いて、シル クパウダー(絹フイブ口インパウダー)を得た。
[0100] また、これら実施例 1〜3及び比較例 1の 2つの粉砕工程における製造条件を表 1 に示した。
[0101] (製造条件 )
[表 1] 粉砕工程等 仕様 単位 実施例 1 実施例 2実施例 3比較例 1
3
ミル容積 m 2. 2 2. 2 2. 2 2. 2 第 1の粉砕工程
ボール量 t 1. 2 1. 2 1. 2 1. 2
(ボールミル)
粉碎処理時間 時間 48 48 80 30
)3化処理 処理時間 時間 1 なし 1 1
エア一圧力 MPa 0. 7 0. 7 0. 7 0. 7 第 2の粉砕工程
(ジヱットミル〕 供給量 kg/hr 2 2 2 1
風量 m3/分 2. 8 2. 8 2. 8 2. 8 [0102] [試験 1]
前記した実施例及び比較例で得られたシルクパウダーにつ 、て、下記の方法で粒 径、力さ密度、吸油量、及び粒ゲージによる粒子径を測定して、比較 '評価した。結 果を表 2に示した。
[0103] (粒径の測定)
レーザー回転式粒度分析計 (SK LASERPRO 7000S: (株)セイシン企業製、 分散媒 エタノール、分散条件 超音波 60秒)を用いて、最大粒径及び平均粒径を 測定した。
[0104] (力さ密度の測定)
マルチテスター(MT— 100 (株)セイシン企業製)を用いて、タップ回数を 500回 としてタップ密度を測定して、これをかさ密度とした。
[0105] (吸油量の測定)
JIS K5101に準拠して測定した。すなわち、実施例または比較例で得られたシル クパウダーを 5g計り取って 100ml容の容器に入れ、ピペットでアマ-油を 4〜5滴ず つシルクパウダーの中央部に滴下して、滴下ごとに全体を金属ヘラで十分に練り合 わせた。
[0106] このような滴下 練り合わせを繰り返し、前回がパテ状になったら、アマ-油を 1滴 ずつ滴下して、表面の練りの状態が螺旋状を描くようになった状態 (表面に光沢が出 た状態)を終点として、滴下したアマ-油の量 (ml)を秤量した。
そして、滴下したアマ-油の量をシルクパウダー lOOg当たりの量に換算して、吸油 量とした。
[0107] (粒ゲージによる粒子径の測定)
JIS K5400に準拠して、粒ゲージでの分散度評価を実施して、粒子径を測定した
[0108] (測定結果)
[表 2] 項目 単位 実施例 1 実施例 2実施例 3比較例 1 平均粒径 μ m 5. 6 6. 2 5. 8 6. 8 粒径
最大粒径 m 32 32 32 77 豈 1=0= タップ密度 g/ml 0. 50 0. 48 0. 52 0. 41 吸油量 ml/100g 89 128 85 170 粒ゲージによる粒子径 μ ra 45 40 42 >100 (注)
(注)繊維長 100 μ mの繊維状のものが多数存在
[0109] 表 2の結果からわ力るように、第 1の粉砕工程におけるボールミルによる粉砕時間が 40時間以上である実施例 1〜実施例 3で得られたシルクパウダーは、平均粒径が 10 μ m以下であり、かつ、吸油量が 130mlZlOOg以下であった。カロえて、粒ゲージに よる粒子径も 80 μ m以下であった。
[0110] このように、実施例 1〜実施例 3で得られたシルクパウダーは、平均粒径に加えて、 吸油量や粒ゲージによる粒子径カ Sこのような性状であるので、成形加工用の榭脂材 料や塗料等を構成する液状組成物の基材となる樹脂溶液に対する分散性に優れ、 高 、含有量で含有させることができる。
[0111] なお、第 1の粉砕工程の後に /3化処理を行った実施例 1と、 化処理を行わなかつ た実施例 2を比較すると、実施例 1で得られたシルクパウダーの吸油量の方が小さく( 89mlZlOOg)、 j8化処理を実施することにより結晶化度が向上し、吸油量を小さく 抑えることができることが確認できた。
[0112] また、第 1の粉砕工程の粉砕処理時間を 80時間として、第 1の粉砕工程の後に β 化処理を行った実施例 3は、実施例 1及び実施例 2で得られたシルクパウダーと比較 すると、外観的に若干の着色が認められたものの、吸油量が小さぐまた、粒ゲージ による粒子径も大差な力つた。
[0113] 一方、第 1の粉砕工程における処理時間が 40時間より短い比較例 1により得られた シルクパウダーは、平均粒径が 10 m以下となるものの、吸油量が 130mlZlOOgよ り大きく(170ml/100g)、かつ、粒子が繊維状となるものもあり、粒ゲージによる粒 子径も 100 /z mを超えていた。従って、例えば、水系や溶剤系の榭脂材料等に添加 した場合にあっては、分散性が良好でないため、含有量を高くして含有させることが 困難となるものと予想される。 [0114] ところで、本発明のシルクパウダーを含有する榭脂組成物をコーティングにより製膜 する際には、組成物中に含まれる水分による発泡現象 (不良現象)を抑制するために 、含水分率を調整することが望ましい。
[実施例 4]
シルクパウダーを含有する組成物のコーティングによる製膜(1)
前述した実施例 1のシルクパウダーの含水分率は 7. 5wt%であった。この実施例 1 のシルクパウダーを、振動真空流動乾燥機 (真空状態で 120°C、 150分)で含水分 率 1. Owt%に調整した。なお、含水分率の確認には赤外線水分計を使用し、 150 °C、 20分の条件で得られた値を用いた。
[0115] このパウダーを含有し、下記表 3の配合 1で示される組成物を、分散用攪拌機を用 いて 15分間攪拌し、ペースト PVCコンパウンドを得た。これを加圧フィルタにより目開 き 150 mのメッシュで濾過した後、真空脱泡機で 40分間処理し、系内の泡を脱気 した。
[0116] これをナイフコータにより離型紙上にコーティングした後、 150°Cの加熱炉でゲルイ匕 させ、 190°Cの加熱炉で溶融させて、 200 m厚のシルクパウダー配合 PVCフィル ムを得た。
[0117] [実施例 5]
シルクパウダーを含有する組成物のコーティングによる製膜 (2)
実施例 4において、組成物の配合を表 3の配合 2にした以外は、実施例 4と同様な 方法を用いて、本発明のシルクパウダー配合 PVCフィルムを得た。
[0118] これら実施例 4,実施例 5における 2つの組成物の配合 1,配合 2を表 3に示す。
[0119] [表 3]
Figure imgf000027_0001
[0120] [実施例 6] シルクパウダーを含有する組成物のコーティングによる製膜 (3)
実施例 5において、シルクパウダーの含水分率を 2. 7wt%に調整した以外は、実 施例 5と同様な方法を用いて、本発明のシルクパウダー配合 PVCフィルムを得た。
[0121] [参考例 1]
シルクパウダーを含有する組成物のコーティングによる製膜 (4)
実施例 5において、シルクパウダーの含水分率を実施例 1のまま(7. 5wt%)にした 以外は、実施例 5と同様な方法を用いて、本発明のシルクパウダー配合 PVCフィル ムを得た。
[0122] [試験 2]
前記した実施例 4〜実施例 6及び参考例 1で得られたシルクパウダー配合 PVCフィ ルムについて、発泡の有無を評価した。なお、評価に当たっては、 200 m厚のフィ ルムを加熱延伸し裏側から光を透過させたときに、フィルム中に含有する気泡の量を ルーペで観察した。結果を表 4に示す。
[0123] [表 4]
Figure imgf000028_0001
[0124] 以下の実施例 7,実施例 8は、前述した第 2実施形態に基づく多糖類パウダーに関 するものである。
[実施例 7]
多糖類パウダーの製造 ( 1)
( 1)第 1の粉砕工程:
多糖類原料としてセルロース (精製パルプ)(KCフロック W— 400 :日本製紙 (株) 製、平均粒径 25 μ m) 150kgを、乾式機械的粉砕手段である転動ボールミル (マキ ノ (株)製、容量 2. 2m3)を用いて、ボール量を 1. 2t、粉砕処理時間を 60時間として 、多糖類 (セルロース)の粉砕物を得た。 [0125] (2)第 2の粉砕工程:
(1)で得られた粉砕物を、ジヱットミル (STJ— 200: (株)セイシン企業製)を用いて 、エアー圧力を 0. 7MPa、供給量を 2. OkgZhrの条件で粉砕処理して、本発明の 多糖類パウダー(セルロース粉体)を得た。
[0126] [実施例 8]
多糖類パウダーの製造 (2)
実施例 1において、第 1の粉砕工程の粉砕処理時間を 60時間から 80時間に変更 した以外は、実施例 1と同様な方法を用いて、本発明の多糖類パウダーを得た。
[0127] [比較例 2]
多糖類パウダーの製造 (3)
実施例 1において、第 1の粉砕工程の粉砕処理時間を 60時間から 20時間に、また 、供給量を 2. OkgZhrから 1. 4kgZhrに変更した以外は、実施例 1と同様な方法を 用いて、多糖類パウダーを得た。
[0128] [比較例 3]
多糖類パウダーの製造 (4)
実施例 1において、第 1の粉砕工程の粉砕処理時間を 60時間から 40時間に、また 、供給量を 2. OkgZhrから 1. OkgZhrに変更した以外は、実施例 1と同様な方法を 用いて、多糖類パウダーを得た。
[0129] また、これら実施例 7,実施例 8及び比較例 2,比較例 3の 2つの粉砕工程における 製造条件を表 5に示した。
[0130] (製造条件 )
[表 5] 粉砕工程 仕様 単位 実施例 7実施例 8比較例 2比較例 3
3
ミル容積 m 2. 2 2. 2 2. 2 2. 2 第 1の粉砕工程
ボール量
(ボールミル) t 1. 2 1. 2 1. 2 1. 2 粉碎処理時間 時間 60 80 20 40 第 2の粉砕工程 エアー圧力 MPa 0. 7 0. 7 0. 7 0. 7 (ジェットミル) 供給量 kg/hr 2. 0 2. 0 1. 4 1. 0
※粉砕対象の多糖類であるセルロース(精製パルプ KCフロック W- 400 :日本 製紙 (株)製)は、平均粒径 25 μ Π1である。また、投入量は実施例、比較例とも 150kgとした。
[0131] [試験 3]
前記した実施例及び比較例で得られた多糖類パウダーについて、下記の方法で 粒径、カゝさ密度、吸油量、及びインキ粘度を測定して、比較 '評価した。結果を表 6に 示した。
[0132] (粒径の測定)
レーザー回転式粒度分析計(SK LASERPRO 7000S: (株)セイシン企業製、 分散媒 エタノール、分散条件 超音波 60秒)を用いて、最大粒径及び平均粒径を 測定した。
[0133] (力さ密度の測定)
マルチテスター MT— 100 ( (株)セイシン企業製)を用いて、タップ回数を 500とし て多糖類パウダーのタップ密度を測定して、これをかさ密度とした。
[0134] (吸油量の測定)
JIS K5101に準拠して測定した。すなわち、実施例または比較例で得られた多糖 類パウダーを 5g計り取って 100ml容の容器に入れ、ピペットでアマ-油を 4〜5滴ず つ多糖類パウダーの中央部に滴下して、滴下ごとに全体を金属ヘラで十分に練り合 わせた。
[0135] このような滴下 練り合わせを繰り返し、前回がパテ状になったら、アマ二油を 1滴 ずつ滴下して、表面の練りの状態が螺旋状を描くようになった状態 (表面に光沢が出 た状態)を終点として、滴下したアマ-油の量 (ml)を秤量した。
そして、滴下したアマ二油の量を多糖類パウダー lOOg当たりの量に換算して、吸 油量とした。
[0136] (インキ粘度の測定)
(1)測定試料の調製:
200mlビーカーに UV硬化性インキベースを攪拌後、 93gを計り取って入れ、ビー カー内でこのインキベースを攪拌しながら、実施例及び比較例で得られた多糖類パ ウダ一 57gをビーカー内に徐々に投入して、多糖類パウダーの分散液 150gを調製 した。
[0137] 次に、この分散液を市販の攪拌機で、回転数を 600〜800rpmとして 3分以上攪拌 して、ビーカーの底や端に多糖類パウダーが残っていないことを確認した後、ビーカ 一をラップで蓋をした。この分散液を 25°Cに調温された浴中に 15分間静置して、測 定試料とした。
[0138] (2)粘度測定:
(A)前記した(1)により調製された測定試料 120gを 100mlの容器に入れて、 B型 粘度計(5号ローター使用、回転数 20rpm)にセットした。
まず、 B型粘度計のローターを回転させ、クランプのロックを外し、 1分間安定させる 。 1分間経過したら、クランプをロックして、回転を静止させ、数値を確認した。
[0139] (B)クランプのロックを解除し、 5秒後にローターを再度回転させる(回転数 20rp m) 0ローターの回転開始 25秒後にクランプをロックさせ、回転を停止させ、このとき の数値 [mPa · s]を確認した。
[0140] この(B)の操作を 5回行 ヽ、数値が安定して!/ヽることを確認し、 5回それぞれで確認 した数値 (数値 X[mPa' s]とする)について、次式により粘度 [mPa' s]を算出した。
インキ粘度 [mPa · s] = 20000 X (数値 X[mPa - s]) /100
そして、 5回分の平均値を求めた後、単位が [Pa' s]となるように換算して(1000で 除して)、インキ粘度 [Pa · s]とした。
[0141] (測定結果)
[表 6] 項目 単 実施例 7実施例 8比較例 2比較例 3 平均粒径 μ m 6. 3 5. 8 5. 6 5. 4 粒径
最大粒径 μ m 32 32 32 32 嵩密度 タップ密度 g/ml 0. 63 0. 59 0. 56 0. 56 吸油量 ml/lOOg 77 75 89 86 インキ粘度 Pa - s 8. 9 7. 8 19. 9 15. 0
[0142] 表 6の結果からわ力るように、第 1の粉砕工程におけるボールミルによる粉砕時間が 40時間以上である実施例 7及び実施例 8で得られた多糖類パウダーは、平均粒径 力 S lO /z m以下であり、かつ、吸油量及びインキ粘度も小さぐ吸油量は 85mlZ lOOg 以下、インキ粘度も 15Pa ' s未満であった。実施例 7及び実施例 8で得られた多糖類 パウダーは、平均粒径に加えて、吸油量やインキ粘度がこのような性状であるので、 成形加工用の榭脂材料や塗料等を構成する液状組成物の基材となる榭脂溶液に対 する分散性に優れ、高!、含有量で含有させることができる。
[0143] 一方、第 1の粉砕工程における処理時間が 40時間より短い比較例 3や比較例 4に より得られた多糖類パウダーは、平均粒径が 10 m以下となるものの、吸油量やイン キ粘度が大きカゝつた。従って、例えば、水系や溶剤系の榭脂材料等に添加した場合 にあっては、分散性が良好でないため、含有量を高く含有させることが困難となるも のと予想される。
産業上の利用可能性
[0144] 本発明の改質パウダーは、自動車の座席シート生地、内装用塗料等の自動車内 装部品分野、ソファーや椅子等の生地や外装塗料等の家具用部品分野、 DVD (Dig ital Video Discの略)用表面インキ、インクジェットプリンター用メディア)等の IT (Infor mation Technologyの略)メディア分野、合成繊維や天然繊維用処理剤等の繊維分 野などの各分野において有利に使用できる。

Claims

請求の範囲
[1] 改質材原料を乾式粉砕してなる改質パウダーであって、
前記改質材原料がシルク原料であり、平均粒径が 10 m以下、吸油量が 130ml ZlOOg以下、 JIS K5400に準拠した粒ゲージでの分散度評価による粒子径が 80 μ m以下であることを特徴とする改質パウダー。
[2] 請求項 1に記載の改質パウダーにお!、て、
前記シルク原料が絹フイブ口インであることを特徴とする改質パウダー。
[3] 請求項 1または請求項 2に記載の改質パウダーにおいて、
前記吸油量が 60〜: LOOmlZgであり、
前言 6JIS K5400に準拠した粒ゲージでの分散度評価による粒子径が 20〜70 μ mであることを特徴とする改質パウダー。
[4] 改質材原料を乾式粉砕してなる改質パウダーであって、
前記改質材原料が多糖類であり、平均粒径が 10 m以下、インキ粘度が 15Pa's 未満であることを特徴とする改質パウダー。
[5] 改質材原料を粉砕してなる改質パウダーであって、
前記改質材原料が多糖類であり、平均粒径が 10 m以下、吸油量が 85mlZl00 g以下であることを特徴とする改質パウダー。
[6] 請求項 4または請求項 5に記載の改質パウダーにお 、て、
インキ粘度が 15Pa's未満であり、かつ、吸油量が 85mlZl00g以下であることを 特徴とする改質パウダー。
[7] 請求項 4な 、し請求項 6の何れかに記載の改質パウダーにお 、て、
前記多糖類がセルロース力もなることを特徴とする改質パウダー。
[8] 請求項 1な!ヽし請求項 7の何れかに記載の改質パウダーを含有することを特徴とす る液状組成物。
[9] 請求項 1ないし請求項 7の何れかに記載の改質パウダーを含有した榭脂材料及び
Zまたはエラストマ一力もなることを特徴とする成形体。
[10] 改質材原料を粉砕して改質パウダーを得る改質パウダーの製造方法において、 改質材原料を乾式機械的粉砕手段を用いて粉砕して粉砕物を得る第 1の粉砕ェ 程と、
第 1の粉砕工程で得られた粉砕物をジェットミルで平均粒径が 10 μ m以下の微粉 末に粉砕する第 2の粉砕工程とを備え、
前記第 1の粉砕工程における粉砕処理時間が 40時間以上であることを特徴とする 改質パウダーの製造方法。
[11] 請求項 10に記載の改質パウダーの製造方法において、
前記乾式機械的粉砕手段としてボールミルを用いることを特徴とする改質パウダー の製造方法。
[12] 請求項 10または請求項 11に記載の改質パウダーの製造方法にぉ 、て、
前記改質材原料としてシルク原料を用い、粉砕される前記シルク原料の平均粒径 または平均繊維長が 100 μ m〜5mmであることを特徴とする改質パウダーの製造方 法。
[13] 請求項 12に記載の改質パウダーの製造方法において、
前記第 1の粉砕工程中及びまたは前記第 1の粉砕工程後前記第 2の粉砕工程前 に β化処理を行うことを特徴とする改質パウダーの製造方法。
[14] 請求項 10または請求項 11に記載の改質パウダーの製造方法にぉ 、て、
前記改質材原料として多糖類を用い、粉砕される前記多糖類の平均粒径が 20 μ m〜 2mmであり、
前記乾式機械的粉砕手段が、ボールミルであることを特徴とする改質パウダーの製 造方法。
PCT/JP2005/014182 2004-08-10 2005-08-03 改質パウダー、当該改質パウダーを含有した液状組成物、成形体、及び改質パウダーの製造方法 WO2006016506A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2006531508A JP5106855B2 (ja) 2004-08-10 2005-08-03 改質パウダー、当該改質パウダーを含有した液状組成物、成形体、及び改質パウダーの製造方法
EP05768596A EP1792930B1 (en) 2004-08-10 2005-08-03 Modified powder, fluid composition containing said modified powder, formed article, and method for producing modified powder
KR1020077003157A KR101238538B1 (ko) 2004-08-10 2005-08-03 개질 파우더, 당해 개질 파우더를 함유한 액상 조성물,성형체, 및 개질 파우더의 제조 방법
CA 2576261 CA2576261C (en) 2004-08-10 2005-08-03 Modified powder, fluid composition containing said modified powder, formed article, and method for producing modified powder
US11/573,515 US7888430B2 (en) 2004-08-10 2005-08-03 Modified powder, fluid composition containing said modified powder, formed article, and method for producing modified powder
CN2005800269799A CN101014646B (zh) 2004-08-10 2005-08-03 改性粉末、含有该改性粉末的液态组合物、成形体及改性粉末的制造方法
KR1020127026882A KR101318162B1 (ko) 2004-08-10 2005-08-03 개질 파우더, 당해 개질 파우더를 함유한 액상 조성물, 성형체, 및 개질 파우더의 제조 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004233839 2004-08-10
JP2004-233838 2004-08-10
JP2004233838 2004-08-10
JP2004-233839 2004-08-10

Publications (1)

Publication Number Publication Date
WO2006016506A1 true WO2006016506A1 (ja) 2006-02-16

Family

ID=35839278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/014182 WO2006016506A1 (ja) 2004-08-10 2005-08-03 改質パウダー、当該改質パウダーを含有した液状組成物、成形体、及び改質パウダーの製造方法

Country Status (9)

Country Link
US (1) US7888430B2 (ja)
EP (1) EP1792930B1 (ja)
JP (1) JP5106855B2 (ja)
KR (2) KR101318162B1 (ja)
CN (2) CN102050963B (ja)
CA (1) CA2576261C (ja)
MY (1) MY140991A (ja)
TW (1) TWI337893B (ja)
WO (1) WO2006016506A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015108103A (ja) * 2013-12-06 2015-06-11 豊田合成株式会社 樹脂成形体
JP2017197730A (ja) * 2016-04-20 2017-11-02 国立大学法人室蘭工業大学 成形体の製造方法および成形体
KR102353345B1 (ko) * 2021-04-29 2022-01-19 최윤출 실크 피브로인 분말의 제조방법
JP7541647B2 (ja) 2018-07-18 2024-08-29 エボルブド バイ ネイチャー, インコーポレイテッド シルクコーティングされたレザー及び製品、並びにこれらを製造する方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4308290B2 (ja) * 2007-02-13 2009-08-05 日本製紙株式会社 感熱記録体
KR20090110322A (ko) * 2007-02-16 2009-10-21 가오 가부시키가이샤 비결정화 셀룰로오스의 제조 방법
ATE518661T1 (de) * 2007-03-29 2011-08-15 Jujo Paper Co Ltd Thermisches aufzeichnungsmaterial
CN101687424B (zh) * 2007-05-10 2013-08-07 日本制纸株式会社 热敏记录体
KR101504991B1 (ko) 2007-08-21 2015-03-23 닛폰세이시가부시키가이샤 감열 기록체
CN101842246B (zh) * 2007-08-29 2012-07-04 日本制纸株式会社 热敏记录介质
WO2010110209A1 (ja) 2009-03-24 2010-09-30 日本製紙株式会社 感熱記録体
CN102802960A (zh) 2009-06-05 2012-11-28 日本制纸株式会社 感热记录体
JPWO2011114780A1 (ja) 2010-03-15 2013-06-27 日本製紙株式会社 感熱記録体
CN102549049B (zh) 2010-07-28 2014-12-10 陶氏环球技术有限责任公司 干磨多糖衍生物的方法
CN106543481A (zh) * 2016-11-25 2017-03-29 江苏爱西施科技服务咨询股份有限公司 一种蚕丝复合薄膜及其制备方法
CN108727870A (zh) * 2017-04-14 2018-11-02 恩平市立新纳米新材料科技有限公司 一种粉体处理改性方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06339924A (ja) 1993-06-02 1994-12-13 Idemitsu Petrochem Co Ltd 絹フィブロイン超微粉末の製造法
JPH0999251A (ja) * 1995-10-04 1997-04-15 Idemitsu Petrochem Co Ltd 有機系粉末の製造方法および有機系粉末
US5718954A (en) * 1993-05-24 1998-02-17 Idemitsu Petrochemical Co., Ltd. Substance including natural organic substance fine powder

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0146720B1 (ko) * 1989-05-26 1998-08-01 챨스 씨. 펠로우스 미정질 셀룰로즈 및 갈락토만난 검을 포함하는 수성 식품용 지방-유사 증량제
JP3373039B2 (ja) 1994-04-22 2003-02-04 出光石油化学株式会社 絹フィブロイン超微粉末含有インキ
JP3135203B2 (ja) * 1995-06-26 2001-02-13 ティーディーケイ株式会社 異方性六方晶Baフェライト焼結磁石の製造方法
JP4472146B2 (ja) 2000-10-02 2010-06-02 バンドー化学株式会社 導電性ローラ
DE10291720T5 (de) * 2001-05-30 2004-08-05 Sumitomo Special Metals Co., Ltd. Verfahren zur Herstellung eines gesinterten Presslings für einen Seltenerdmetall-Magneten
JP3841722B2 (ja) 2001-05-30 2006-11-01 株式会社Neomax 希土類磁石用焼結体の製造方法
JP4699673B2 (ja) * 2002-01-24 2011-06-15 太陽化学株式会社 フライ食品用品質改良剤及びフライ食品の製造方法
WO2005013293A1 (ja) * 2003-07-31 2005-02-10 Tdk Corporation フェライト磁性材料及び六方晶w型フェライト磁性材料の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5718954A (en) * 1993-05-24 1998-02-17 Idemitsu Petrochemical Co., Ltd. Substance including natural organic substance fine powder
JPH06339924A (ja) 1993-06-02 1994-12-13 Idemitsu Petrochem Co Ltd 絹フィブロイン超微粉末の製造法
JPH0999251A (ja) * 1995-10-04 1997-04-15 Idemitsu Petrochem Co Ltd 有機系粉末の製造方法および有機系粉末

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1792930A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015108103A (ja) * 2013-12-06 2015-06-11 豊田合成株式会社 樹脂成形体
JP2017197730A (ja) * 2016-04-20 2017-11-02 国立大学法人室蘭工業大学 成形体の製造方法および成形体
JP7541647B2 (ja) 2018-07-18 2024-08-29 エボルブド バイ ネイチャー, インコーポレイテッド シルクコーティングされたレザー及び製品、並びにこれらを製造する方法
KR102353345B1 (ko) * 2021-04-29 2022-01-19 최윤출 실크 피브로인 분말의 제조방법

Also Published As

Publication number Publication date
CN101014646B (zh) 2011-01-12
EP1792930B1 (en) 2013-02-13
JPWO2006016506A1 (ja) 2008-05-01
EP1792930A4 (en) 2010-11-24
KR20070055498A (ko) 2007-05-30
KR20120132550A (ko) 2012-12-05
CN101014646A (zh) 2007-08-08
US20080214786A1 (en) 2008-09-04
CN102050963A (zh) 2011-05-11
JP5106855B2 (ja) 2012-12-26
EP1792930A1 (en) 2007-06-06
US7888430B2 (en) 2011-02-15
CA2576261A1 (en) 2006-02-16
CA2576261C (en) 2012-12-04
MY140991A (en) 2010-02-12
TWI337893B (en) 2011-03-01
KR101238538B1 (ko) 2013-02-28
KR101318162B1 (ko) 2013-10-23
TW200616715A (en) 2006-06-01
CN102050963B (zh) 2014-03-12

Similar Documents

Publication Publication Date Title
WO2006016506A1 (ja) 改質パウダー、当該改質パウダーを含有した液状組成物、成形体、及び改質パウダーの製造方法
JP6147941B1 (ja) 建築用コーティング剤組成物
JP4405938B2 (ja) 原料ミックス粉末組成物およびその製造法
CN104583295B (zh) 用于制造具有改性的填料颗粒的填充聚合物材料的方法
JPH09502417A (ja) 中空ボロシリケート微小球及び製造方法
CN109476867A (zh) 作为发泡剂的官能化的微粒碳酸氢盐、含有其的可发泡聚合物组合物及其在制造热塑性发泡聚合物中的用途
JP2002363443A (ja) 表面処理無機フィラー及びこれを配合した樹脂組成物
JP2003192992A (ja) 塗料用艶消し剤、およびエネルギー線硬化型塗料用組成物
KR20150035988A (ko) 코팅된 충전제 입자의 제조 방법
JP3131076B2 (ja) 塗料艶消し剤及びその製造方法
JP4384276B2 (ja) 光触媒木質合成材組成物及びその製造方法,及び前記光触媒木質合成材組成物を用いた光触媒木質合成成形体,並びに光触媒木質合成発泡成形体
JPH07102113A (ja) 水に容易に分散する複合体
JP5409365B2 (ja) ポリウレタン微粒子の製造方法及びポリウレタン微粒子
CN109399685A (zh) 一种纳米碳酸钙的改性方法
JP2673913B2 (ja) 微細木粉の成形方法
JP2017144614A (ja) 樹脂材料強化材の製造方法、繊維強化樹脂材料の製造方法、及び樹脂材料強化材
KR100901711B1 (ko) 원적외선방사도료용 조성물, 그를 포함하는 원적외선방사도료 및 그 제조방법
CN106752097A (zh) 一种具有良好生物相容性的改性碳酸钙粉体及其制备方法
JP3334977B2 (ja) 紫外線吸収剤の製造方法
JPH02646A (ja) 粉末成形用発泡性塩化ビニル系樹脂組成物およびその製造方法
JP2024007070A (ja) スラッシュ成形用熱可塑性樹脂組成物粒子の製造方法
JP3044309B2 (ja) 樹脂に配合して用いられるゼラチン粒及びその製造方法
JPH09249459A (ja) セラミックと樹脂との複合材料の製造方法およびセラミック焼結体の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2576261

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 11573515

Country of ref document: US

Ref document number: 1020077003157

Country of ref document: KR

Ref document number: 200580026979.9

Country of ref document: CN

Ref document number: 2006531508

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 539/KOLNP/2007

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2005768596

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005768596

Country of ref document: EP