WO2006011503A1 - 高ヤング率鋼板、それを用いた溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板、および高ヤング率鋼管、並びにそれらの製造方法 - Google Patents

高ヤング率鋼板、それを用いた溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板、および高ヤング率鋼管、並びにそれらの製造方法 Download PDF

Info

Publication number
WO2006011503A1
WO2006011503A1 PCT/JP2005/013717 JP2005013717W WO2006011503A1 WO 2006011503 A1 WO2006011503 A1 WO 2006011503A1 JP 2005013717 W JP2005013717 W JP 2005013717W WO 2006011503 A1 WO2006011503 A1 WO 2006011503A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
modulus
high young
rolling
hot
Prior art date
Application number
PCT/JP2005/013717
Other languages
English (en)
French (fr)
Inventor
Natsuko Sugiura
Naoki Yoshinaga
Shunji Hiwatashi
Manabu Takahashi
Koji Hanya
Nobuyoshi Uno
Ryoichi Kanno
Akihiro Miyasaka
Takehide Senuma
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004218132A external-priority patent/JP4445339B2/ja
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to US11/572,693 priority Critical patent/US8057913B2/en
Priority to EP05767035.8A priority patent/EP1806421B1/en
Priority to ES05767035.8T priority patent/ES2523760T3/es
Priority to CA2575241A priority patent/CA2575241C/en
Publication of WO2006011503A1 publication Critical patent/WO2006011503A1/ja
Priority to US13/245,295 priority patent/US8802241B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/261After-treatment in a gas atmosphere, e.g. inert or reducing atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/1266O, S, or organic compound in metal component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • Y10T428/12792Zn-base component
    • Y10T428/12799Next to Fe-base component [e.g., galvanized]

Definitions

  • High Young modulus steel sheet hot dip galvanized steel sheet, alloyed hot dip galvanized steel sheet, high Young modulus steel pipe using the same, and method for producing them
  • the present invention relates to a high Young's modulus steel plate, a hot dip galvanized steel plate, an alloyed hot dip galvanized steel plate, a high Young's modulus steel pipe using the same, and a method for producing them.
  • This application is Japanese Patent Application No. 2004-218132 filed on 27th July 2004, Japanese Patent Application No. 2004-330578 filed on 15th November 2004, filed on 27th January 2005.
  • the Japanese Patent Application No. 2005-019942 and the Japanese Patent Application No. 2005-207043 filed on July 15, 2005 are claimed to have priority, the contents of which are incorporated herein by reference.
  • Patent Documents 1 to 9 etc. all perform rolling in the TD direction by performing rolling in the ⁇ + y phase region.
  • Patent Document 10 discloses that the TD method is obtained by rolling the surface layer below the Ar transformation point.
  • Patent Document 11 increases both Young's moduli by rolling in a width direction perpendicular to the rolling in addition to rolling in a certain direction.
  • changing the rolling direction in the middle is not practical because it significantly impedes productivity.
  • Patent Document 12 discloses a technique related to a cold-rolled steel sheet having a high Young's modulus, which also has a high Young's modulus in the TD direction, but does not necessarily have a high Young's modulus in the RD direction.
  • Patent Document 13 discloses a technique for improving Young's modulus by adding Mo, Nb, and B in combination. The force shown Since the hot rolling conditions are completely different, the Young's modulus in the TD direction is high, but the RD direction That ’s not it.
  • the steels having high Young's modulus in the rolling direction (RD) and the width direction (TD) are all steels that have conventionally been called high Young's modulus steel plates.
  • the maximum width of the steel sheet is about 2 m.
  • the direction of maximum Young's modulus is the longitudinal direction of the member, the length cannot be made larger than the width. Therefore, a steel plate having a high hang ratio in the rolling direction has been desired for long members.
  • the production method had a problem in productivity because it was premised on hot rolling in the ⁇ + ⁇ region where the rolling reaction force was likely to fluctuate.
  • shape freezing becomes a major problem when processing steel sheets into parts for automobiles and building materials.
  • a springback phenomenon occurs in which the steel sheet tries to return to its original shape, and there is a problem that a desired shape cannot be obtained. It was. Since this phenomenon becomes apparent as the strength increases, it becomes an obstacle to the application of high-strength steel sheets to members.
  • Patent Document 1 Japanese Patent Laid-Open No. 59-83721
  • Patent Document 2 JP-A-5-263191
  • Patent Document 3 Japanese Patent Application Laid-Open No. 8-283842
  • Patent Document 4 Japanese Patent Laid-Open No. 8-311541
  • Patent Document 5 JP-A-9 53118
  • Patent Document 6 Japanese Patent Laid-Open No. 4-136120
  • Patent Document 7 Japanese Patent Laid-Open No. 4-141519
  • Patent Document 8 Japanese Patent Laid-Open No. 4-147916
  • Patent Document 9 JP-A-4-293719
  • Patent Document 10 JP-A-4 143216
  • Patent Document 11 Japanese Patent Laid-Open No. 4 147917
  • Patent Document 12 JP-A-5-255804
  • Patent Document 13 Japanese Patent Application Laid-Open No. 08-1311541
  • the present invention has been made in view of the above circumstances, and has a high Young's modulus steel plate excellent in the yang ratio in the rolling direction (RD direction), a hot-dip galvanized steel plate using the same, and alloying
  • An object of the present invention is to provide a hot-dip galvanized steel sheet, a high Young's modulus steel pipe, and a method for producing them.
  • a steel sheet with a high Young's modulus in the rolling direction can be obtained by developing a predetermined texture near the surface of a steel containing a predetermined amount of Si, Mn, P, S, Mo, B, Al, N, Nb, and Ti. It was a successful invention.
  • the steel sheet obtained by the present invention has a particularly high Yang rate of 240 GPa or more near the surface, so that the bending rigidity is remarkably improved, for example, the shape freezing property is remarkably improved.
  • the reason for the increased degree of shape freezing failure such as springback with increasing strength is that the amount of return when the load applied during press deformation is unloaded is large. Therefore, if the Young's modulus is increased, the return amount can be suppressed and the springback can be reduced.
  • deformation behavior in the vicinity of the surface layer with a large bending moment has a significant effect on the shape freezing property. Therefore, significant improvement is possible by increasing the Young's modulus of the surface layer alone.
  • the present invention is a completely new steel plate and a method for producing the same that have been constructed based on such a concept and new knowledge, and the gist thereof is as follows.
  • the thickness of one or both of ⁇ 110 ⁇ ⁇ 223> and ⁇ 110 ⁇ ⁇ 111> in the 1Z8 layer thickness is 10 or more
  • a high Young's modulus steel sheet characterized by a Young's modulus in the rolling direction exceeding 230 GPa.
  • the pole density of ⁇ 112 ⁇ ⁇ 110> in the 1Z2 layer thickness is 6 or more
  • the high Young's modulus steel sheet according to (1) is 6 or more
  • the high Young's modulus steel plate according to (1) which contains 0% by mass.
  • the high Young's modulus steel plate according to (1) characterized by containing 0.001 to 4.0% by mass of one or more of Ni, Cu and Cr in total.
  • a hot dip galvanized steel sheet comprising the high Young modulus steel sheet according to (1) and a hot dip galvanizing applied to the high Young modulus steel sheet.
  • An alloyed hot-dip galvanized steel sheet comprising the high Young's modulus steel sheet according to (1) and an alloyed molten zinc galvanized steel applied to the high Young's modulus steel sheet.
  • the hot rolling process is performed by rolling so that the friction coefficient between the rolling roll and the steel sheet is more than 0.2 and the total rolling reduction is 50% or more at an Ar transformation point or higher. ° C or higher
  • a method for producing a high Young's modulus steel sheet characterized in that it is carried out under conditions for terminating hot rolling at a lower temperature.
  • the method further comprises the step of annealing the hot-rolled steel sheet after the hot rolling at a maximum reached temperature of 500 ° C or higher and 950 ° C or lower in a continuous annealing line or box annealing.
  • the method further includes: subjecting the hot-rolled steel sheet after the hot rolling to cold rolling at a reduction rate of less than 60%, and annealing after the cold rolling process.
  • the method includes the steps of producing a high Young's modulus steel sheet annealed by the method for producing a high Young's modulus steel sheet according to (14), and subjecting the high Young's modulus steel sheet to hot dip galvanization.
  • a method for producing a hot-dip galvanized steel sheet is
  • a high Young's modulus steel plate is produced by the method for producing a high Young's modulus steel plate described in (11).
  • the balance consists of Fe and inevitable impurities
  • the pole density of ⁇ 110 ⁇ ⁇ 223> and Z or ⁇ 110 ⁇ ⁇ 111> in a 1Z8 layer of plate thickness is 10 or more
  • a high Young's modulus steel sheet characterized by a Young's modulus in the rolling direction exceeding 230 GPa.
  • the high Young's modulus steel plate according to (22), wherein the pole density of ⁇ 110 ⁇ 001> in the 1Z8 layer of the plate thickness is 3 or less.
  • a hot dip galvanized steel sheet comprising the high Young modulus steel sheet according to (22) and a hot dip galvanizing applied to the high Young modulus steel sheet.
  • the friction coefficient between the rolling roll and the steel sheet is more than 0.2
  • the effective strain ⁇ * calculated by the following formula [1] is 0.4 or more
  • the total rolling reduction is 50% or more.
  • n is the number of rolling hot rolling stands
  • is the strain applied at the j-th stand
  • is the strain captured at the ⁇ -th stand
  • t is i to i + l
  • the method further comprises a step of annealing the hot-rolled steel sheet after completion of the hot rolling at a maximum temperature of 500 ° C to 950 ° C in a continuous annealing line or box annealing.
  • the method further includes: subjecting the hot-rolled steel sheet after the hot rolling to cold rolling at a reduction rate of less than 60%, and annealing after the cold rolling step. (36) The method for producing a high Young's modulus steel sheet according to (36).
  • the method includes a step of manufacturing a high Young's modulus steel plate annealed by the method of manufacturing a high Young's modulus steel plate according to (39), and a step of subjecting the high Young's modulus steel plate to hot dip galvanization.
  • (45) A step of producing a hot dip galvanized steel sheet by the method for producing a hot dip galvanized steel sheet according to (44), and a heat treatment of 450 to 600 ° C for 10 seconds or longer on the hot dip galvanized steel sheet. And a method for producing an alloyed hot-dip galvanized steel sheet.
  • the slab having the composition described in (11) or (36) described above by using the slab having the composition described in (11) or (36) described above, a pruned and textured structure is developed near the surface layer in the low temperature ⁇ region. It becomes possible. Furthermore, by hot rolling under the conditions described above, the texture described in (1) or (22) described above can be obtained, and in particular, a steel sheet having an excellent Young's modulus in the rolling direction (RD direction) can be obtained. it can.
  • FIG. 1 is a cross-sectional view showing a test piece used in a hat bending test.
  • the steel plate of the first embodiment is in mass%, C: 0.0005-0.30%, Si: 2.5% or less, Mn: 2.7 to 5.0%, P: 0.15% Below, S: 0.001% or less, Mo: 0.15 ⁇ : L 5%, B: 0.0006-0.01%, A1: 0.15% or less, the balance being Fe and inevitable impurities It consists of.
  • the pole density of ⁇ 110 ⁇ 223> and ⁇ 110 ⁇ ⁇ 111>, one or both of them is 10 or more. Young's modulus in the rolling direction is over 230 GPa.
  • C is an element that increases the tensile strength at low cost
  • the amount added is the target strength. It is adjusted according to the level.
  • the lower limit is set to 0.005 mass%.
  • the upper limit is made 0.30% by mass.
  • Si is effective for obtaining a structure containing martensite, bainite, and residual ⁇ .
  • the amount added is adjusted according to the target strength level. If the added amount exceeds 2.5% by mass, the press formability may be deteriorated or the chemical conversion processability may be deteriorated. For this reason, the upper limit is set to 2.5 mass%.
  • Si is preferably set to 1.2% by mass or less.
  • a lower limit is not particularly provided, but if it is 0.001% by mass or less, the production cost is increased, so that more than 0.001% by mass is a practical lower limit.
  • Mn is important for the present invention. In other words, it is an essential element to obtain high! Young's modulus.
  • the Young's modulus in the rolling direction can be developed by developing a shear texture near the surface of the steel sheet in the low temperature ⁇ region. Mn stabilizes the ⁇ phase and expands the ⁇ region to low temperatures, facilitating ⁇ region low temperature rolling.
  • Mn itself may have an advantageous effect on the pruning and formation of the combined tissue near the surface layer. From these viewpoints, Mn is added at least 2.7% by mass. On the other hand, if it exceeds 5.0% by mass, the strength becomes so high that the ductility is lowered or the adhesion of zinc plating is hindered. Therefore, the upper limit is 5.0% by mass. Preferably, it is 2.9 to 4.0% by mass.
  • P is known as an element that increases the strength at a low cost, and when it is necessary to increase the strength, P is more actively added. P also has the effect of making the hot-rolled structure fine and improving workability. However, if the added amount exceeds 0.15% by mass, the fatigue strength after spot welding becomes poor, or the yield strength increases too much, causing surface shape defects during pressing. In addition, the alloying reaction becomes extremely slow during continuous hot-dip galvanizing, and productivity is reduced. Secondary workability is also degraded. Therefore, the upper limit is made 0.15% by mass.
  • S If S exceeds 0.005 mass%, it causes hot cracking and deteriorates workability.
  • the upper limit is 0.015% by mass.
  • Mo and B are important in the present invention.
  • the addition of these elements makes it possible to increase the Young's modulus in the rolling direction for the first time.
  • the reason for this is not necessarily clear, but it is considered that the crystal rotation due to the shear deformation caused by the friction between the steel sheet and the hot-rolled roll changes due to the effect of the composite additive of Mn, Mo, and B.
  • a very sharp texture is formed in the range from the thickness layer of the hot-rolled sheet to the vicinity of the 1Z4 layer, and the Young's modulus in the rolling direction is increased.
  • the lower limit of Mo and B amount are each 0.15 mass 0/0, and 0.0006 mass%. This is because the effect of improving the Young's modulus described above becomes small if the addition is less than this amount. On the other hand, even if Mo and B are added in excess of 1.5% by mass and 0.01% by mass, respectively, the Young's modulus improvement effect is saturated and the cost is increased, so 1.5% by mass and 0.01% by mass Is the upper limit of each.
  • the amount of C is preferably set to 0.015% by mass or more.
  • A1 may be used as a deoxidation preparation agent. However, since A1 significantly increases the transformation point and rolling in the low temperature ⁇ region becomes difficult, the upper limit is made 0.15% by mass.
  • the steel sheet of the present embodiment preferably further contains Ti and Nb in addition to the above composition.
  • Ti and Nb have the effect of further enhancing the Young's modulus by promoting the effects of Mn, Mo and B described above. In addition, it is effective for improving workability, increasing strength, and further miniaturizing and homogenizing the structure. However, if the added amount is less than 0.001% by mass, the effect is not manifested. On the other hand, the effect tends to be saturated even if added more than 0.20% by mass. And Preferably it is 0.015-0.09 mass%.
  • Ca in addition useful as a deoxidizing element, since the effect to form the control of sulfides, may be added in 0. 0005-0. 01 range of mass 0/0. Because it is less than 0.0005 mass 0/0 effects mosquitoes ⁇ E deteriorates when adequate and Nag 0.01 wt% super addition in this range.
  • One or more of Sn, Co, Zn, W, Zr, Mg, and REM may be contained in a total amount of 0.001 to 1% by mass in the steel plate containing these as a main component.
  • the REM indicates a rare earth metal element, Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dv, Ho, Er, Tm, Yb, Lu force One or more selected from these.
  • the solid solution N decreases, but it is preferable to set the content to 0.01% by mass or less.
  • Ni, Cu, and Cr are elements that are advantageous for performing low temperature ⁇ region rolling, and therefore one or more of these elements are added in the range of 0.001 to 4.0 mass% in total. May be. If the amount is less than 0.001% by mass, a remarkable effect cannot be obtained, and if it exceeds 4.0% by mass, the workability deteriorates.
  • is a ⁇ -stable ⁇ element, it is an advantageous element for performing low-temperature ⁇ region rolling. Therefore, it may be added up to 0.02% by mass. The reason why 0.02% by mass is made the practical upper limit is that addition beyond this is difficult in production.
  • the amount of solid solution soot and solid solution C is preferably 0.0005 to 0.004 mass%, respectively.
  • the amount of solid solution soot and solid solution C is the value obtained by subtracting the amount of C, N existing as a compound such as total C, strength of Fe, Al, Nb, Ti, B (determining the chemical analysis power of the extraction residue). It can also be requested. Further, it may be obtained by an internal friction method or FIM (Field Ion Microscopy).
  • solute C and N are less than 0.0005% by mass, sufficient effects cannot be obtained. Even if it exceeds 0.004 mass%, the BH property tends to saturate, so the upper limit is 0.004 mass%.
  • the pole density of ⁇ 110 ⁇ ⁇ 223> and Z or ⁇ 110 ⁇ ⁇ 111> in the 1Z8 layer is 10 or more. This makes it possible to increase the Young's modulus in the rolling direction. When the pole density is less than 10, it is difficult to make the Young's modulus in the rolling direction over 230 GPa.
  • the pole density is preferably 14 or more, more preferably 20 or more.
  • a sample for X-ray diffraction is prepared as follows.
  • the steel plate is polished to a predetermined position in the thickness direction by mechanical polishing or chemical polishing. After this polished surface is finished to a mirror surface by puffing, the distortion is removed by electrolytic polishing or chemical polishing, and at the same time, the plate thickness is adjusted so that the 1Z8 layer or 1Z2 layer described later becomes the measurement surface.
  • the 1Z8 layer when the thickness of the steel sheet is t, the polished surface that appears when the steel sheet surface is polished with a polishing amount equivalent to the thickness of tZ8 is used as the measurement surface. Note that it is difficult to accurately use the 1Z8 or 1Z2 layer thickness as the measurement surface, so that the measurement surface should be in the range of 3% to + 3% with respect to the thickness of the target layer.
  • the measurement may be performed in a place where there is no segregation band in the range of 3Z8 to 5Z8.
  • X-ray measurement is difficult, a statistically sufficient number of measurements are performed using the EBSP and ECP methods.
  • ⁇ hkl ⁇ uvw> means that when an X-ray sample is taken by the above method, the crystal orientation perpendicular to the plate surface is hkl> and the longitudinal direction of the steel plate is uvw>.
  • the plane intensity ratio (X-ray random intensity ratio) in each direction is preferably ⁇ 1 10>: 5 or more, and 112>: 2 or more.
  • the thickness of the 1Z2 layer is preferably 11 2>: 4 or more and ⁇ 332>: 1.5 or more.
  • the above-mentioned limitation on the pole density is satisfactory for at least a plate thickness of 1 Z8 layer, but it is preferable to hold not only the 1Z8 layer but also a wide range from the plate thickness surface layer to the 1Z4 layer. Further, ⁇ 110 ⁇ ⁇ 001> and ⁇ 110 ⁇ ⁇ 110> are scarcely present in the 1Z8 layer thickness, and their pole density is less than 1.5, more preferably less than 1.0. In a conventional steel plate, this orientation exists to some extent on the surface layer, so the Young's modulus in the rolling direction could not be increased.
  • the Young's modulus in the TD direction increases because 111> orientation accumulates in the width direction perpendicular to the rolling direction (hereinafter also referred to as the TD direction). If this pole density is less than 6, it is difficult to make the Young's modulus in the TD direction exceed 230 GPa, so this is the lower limit.
  • the pole density is preferably 8 or more, more preferably 10 or more.
  • the density is preferably 3 or more because a slight contribution can be expected to the Young's modulus in the rolling direction.
  • the crystal orientations described above are both more than 2.5 ° and within + 2.5 °. Variation is acceptable.
  • the Young's modulus in both the rolling direction and the TD direction can simultaneously exceed 230 GPa.
  • the Young's modulus in the rolling direction of the steel sheet of the first embodiment is more than 230 GPa.
  • This Young's modulus is measured by the transverse resonance method at room temperature in accordance with Japanese Industrial Standard JISZ2280 “Method for measuring high-temperature Young's modulus of metallic materials”. That is, in a state of buoyancy without fixing the sample, a vibration is applied to this sample from an external transmitter, and the primary resonance frequency of the transverse resonance of the sample is measured by gradually changing the frequency of the transmitter.
  • the Young's modulus is calculated from the following formula [3].
  • E Dynamic Young's modulus (NZm 2 ) 1: Specimen length (m), h: Specimen thickness (m), m: Mass (kg), w: Specimen width ( m), f: primary resonance frequency of the transverse resonance method (sec-,.
  • the BH content of the steel sheet is preferably 5 MPa or more. That is, when the movable dislocation is fixed by the coating baking process, the measured Young's modulus is improved. If the amount of BH is less than 5MPa, the effect is insufficient, and even if it exceeds 200MPa, no significant effect is observed. Therefore, the range of BH amount is 5 to 200 MPa. The amount of BH is more preferably 30 to 10 OMPa. The BH amount is the flow stress when a steel sheet is pulled 2%, ⁇ (MPa), and the steel sheet is pulled 2%.
  • hot-rolled steel sheet and the cold-rolled steel sheet described above may be subjected to A1-type plating or various types of electric plating.
  • hot-rolled steel sheets, cold-rolled steel sheets, and steel sheets with various types of plating applied thereto can be subjected to surface treatments such as organic coatings, inorganic coatings and various paints according to the purpose.
  • the slab to be used for this hot rolling includes a step of heating the slab to a temperature of 950 ° C or higher and subjecting it to hot rolling to form a hot rolled steel sheet. That is, it may be manufactured by a continuous forging slab or a thin slab caster. It is also suitable for processes such as continuous forging-direct rolling (CC-DR), in which hot rolling is performed immediately after forging.
  • CC-DR continuous forging-direct rolling
  • the hot rolling heating temperature should be 950 ° C or higher. This is because the hot rolling finishing temperature described later is the Ar transformation point.
  • Hot-roll so that the total rolling reduction for each pass at 800 ° C or less is 50% or more.
  • the friction coefficient between the rolling roll and the steel sheet is set to more than 0.2. This is an indispensable condition for developing surface pruning and joint texture and increasing the Young's modulus in the rolling direction.
  • the total rolling reduction is preferably 70% or more, more preferably 100% or more.
  • the finishing temperature of hot rolling is not less than the Ar transformation point and not more than 750 ° C. Below the Ar transformation point, pressure Unfavorable Young's modulus in the direction of elongation ⁇ 110 ⁇ 001> Texture develops. If the finishing temperature is higher than 750 ° C, it is difficult to develop a preferred shear texture in the rolling direction from the thickness surface layer to the vicinity of the 1Z4 thickness.
  • winding temperature after hot rolling is not particularly limited, but winding at 400 to 600 ° C may improve the Young's modulus, so winding in this range is preferable!
  • the different peripheral speed ratio in the present invention represents a percentage obtained by dividing the peripheral speed difference of the upper and lower rolling rolls by the peripheral speed of the low peripheral speed side roll. Further, the different peripheral speed rolling of the present invention does not affect the Young's modulus improvement effect even if the deviation of the upper and lower roll peripheral speeds is large.
  • the work roll diameter is 700 mm or less, preferably 600 mm or less, and more preferably 500 mm or less.
  • the lower limit of the work roll diameter is not specified, but if it is less than 300 mm, it will be difficult to control the feed plate.
  • the upper limit of the number of passes that use small-diameter rolls is not specified. 1S As mentioned above, the finishing hot rolling pass is usually up to about 8 passes.
  • the hot-rolled steel sheet thus manufactured is pickled, it is preferable to perform a heat treatment (annealing) in which the maximum temperature reached is in the range of 500 to 950 ° C. This further improves the Young's modulus in the rolling direction.
  • annealing a heat treatment in which the maximum temperature reached is in the range of 500 to 950 ° C.
  • This further improves the Young's modulus in the rolling direction.
  • the reason for this is not clear, but it is presumed that the dislocations introduced by the transformation after hot rolling are due to rearrangement by heat treatment.
  • the effect is not significant when the maximum temperature is less than 500 ° C, but when it exceeds 950 ° C, ⁇ ⁇ ⁇ transformation occurs, resulting in the same or weak texture accumulation, and the Young's modulus also tends to deteriorate. .
  • the lower and upper limits are 500 ° C and 950 ° C, respectively.
  • the range of the maximum temperature reached is preferably 650 ° C or higher and 850 ° C or lower.
  • This heat treatment method is not particularly limited, and can be performed by a normal continuous annealing line or box annealing, a continuous molten zinc plating line described later, and the like.
  • the hot-rolled steel sheet may be subjected to cold rolling and heat treatment (annealing)!
  • the cold rolling rate is less than 60%. This is because when the cold rolling ratio is 60% or more, the aggregate structure formed on the hot rolled steel sheet and increasing the Young's modulus changes greatly, and the Young's modulus in the rolling direction is lowered.
  • Heat treatment is performed after the end of cold rolling.
  • the maximum temperature for this heat treatment is in the range of 500-950 ° C. If it is less than 500 ° C, the margin for improving Young's modulus is small and the cacheability may be inferior, so 500 ° C is the lower limit.
  • the lower and upper limits are 500 ° C and 950 ° C, respectively.
  • a preferable range of this maximum temperature is 600 ° C or higher and 850 ° C or lower.
  • the structure of the steel sheet obtained by the method for producing a high Young's modulus steel sheet according to the present embodiment may include a mixture of both phases having a main phase of ferrite or bainite. Compounds such as austenite, carbides and nitrides may be present. In other words, it is sufficient to create an organization according to the required characteristics.
  • the steel plate of the second embodiment is in mass%, C: 0.0005-0.30%, Si: 2.5% or less, Mn: 0.1-5.0%, P: 0.15%
  • S 0.001% or less
  • A1 0.15% or less
  • N 0.01% or less
  • Mo 0.005-1.5%
  • Nb 0.005-0.00. 20%
  • Ti 48/1 4 XN (mass%) or more, 0.2% or less
  • B 0.0015 to 1.91 mass% of one or more of 0.0001-0.01% in total, the balance being Fe
  • unavoidable impurity power also becomes.
  • the pole density of ⁇ 110 ⁇ ⁇ 223> and Z or ⁇ 110 ⁇ ⁇ 111> in the 1Z8 layer of thickness is 10 or more.
  • the Young's modulus in the rolling direction is over 230 GPa.
  • C is an element that increases the tensile strength at low cost
  • the amount added is adjusted according to the target strength level. If C is less than 0.0005% by mass, the fatigue properties of the weld zone deteriorate due to difficulty in steelmaking and cost increase. Therefore, the lower limit is set to 0.0005% by mass. On the other hand, if the C content exceeds 0.30% by mass, the formability is deteriorated and the weldability is impaired, so the upper limit is made 0.30% by mass.
  • Si is effective for obtaining a structure containing martensite, bainite, and residual ⁇ , and the amount of addition is a target strength level. Will be adjusted according to. If the added amount exceeds 2.5% by mass, the press formability is deteriorated and the chemical conversion treatment property is deteriorated, so the upper limit is set to 2.5% by mass. When hot dip galvanizing is used, problems such as reduced plating adhesion and reduced productivity due to a delay in the alloying reaction occur. Although there is no particular lower limit, setting it to 0.001% by mass or less is a practical lower limit because the manufacturing cost increases.
  • stabilizes the ⁇ phase and expands the ⁇ region to a low temperature, thus facilitating ⁇ region low temperature rolling.
  • itself may have an advantageous effect on the formation of shear texture near the surface layer.
  • the addition amount of ⁇ is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, and further preferably 1.5% by mass or more.
  • the amount of ⁇ added is preferably 2.9 to 4.0% by mass.
  • soot is known as an element that enhances the strength at a low cost, and when it is necessary to increase the strength, it is more actively added. P also has the effect of making the hot-rolled structure fine and improving workability.
  • the added amount exceeds 0.15% by mass, fatigue after spot welding will occur. The work strength becomes poor and the yield strength increases too much, causing surface defects during pressing.
  • the alloying reaction becomes extremely slow during continuous hot-dip galvanizing, and productivity is reduced.
  • secondary workability deteriorates. Therefore, the upper limit is set to 0.15 mass%.
  • Mo, Nb, Ti and B are important in the present invention. It is possible to increase the Young's modulus in the rolling direction for the first time by adding one or more additives of these elements. The reason for this is not necessarily clear, but recrystallization during hot rolling is suppressed, and the work texture of the ⁇ phase sharpens, resulting in shear deformation due to friction between the steel sheet and the hot rolling roll. Changes also occur in the organization. As a result, a very sharp texture is formed in the range from the thickness surface layer of the hot-rolled sheet to the vicinity of the 1Z4 layer thickness, and the Young's modulus in the rolling direction is increased.
  • Mo, Nb respectively the lower limit of the Ti and B amount 0.005 wt 0/0, 0.005 mass 0/0, 48/14 XN mass 0 I 0.0001 mass 0 I preferably 0.03 mass 0/0 , 0.01 mass 0/0, 0.03 mass. 0.0003 mass 0/0, more preferably ⁇ or 0.1 mass 0/0, 0.03 weight 0/0, 0.05 weight 0/0, which is 0.0006 wt%. This is because if the amount is less than this, the above-described effect of improving the Young's modulus is reduced.
  • the total addition amount of these elements is less than 0.015% by mass, a sufficient Young's modulus improvement effect cannot be obtained, so 0.015% by mass is set as the lower limit of the total addition amount.
  • the total amount is preferably 0.055% by mass or more, and more preferably 0.05% by mass or more.
  • the upper limit of the total additive amount is 1.91% by mass, which is the sum of the upper limit of each additive amount.
  • the texture is sharpened, and in particular, the ⁇ 110 ⁇ ⁇ 00 1> of the surface layer that reduces the Young's modulus is reduced, and the effective Young's modulus is increased. For this reason, a high L-direction Young's modulus is achieved.
  • the C content is preferably set to 0.015% by mass or more.
  • the lower limits of the amounts of Mo, Nb, and B are 0.15 mass%, 0.01 mass%, and 0.0006 mass%, respectively. This is because if the amount is less than this, the above-mentioned effect of improving the Young's modulus is reduced. However, when controlling only the Young's modulus of the surface layer, if Mo is added in an amount of 0.1% by mass or more, the Young's modulus can be sufficiently improved, so this is the lower limit. On the other hand, even if Mo, Nb, and B are added in excess of 1.5% by mass, 0.2% by mass, and 0.01% by mass, the effect of improving Young's modulus is saturated and the cost increases. 5 mass%, 0.2 mass% and 0.01 mass% are the upper limits.
  • the C content is preferably set to 0.015% by mass or more.
  • A1 may be used as a deoxidation preparation agent. However, A1 significantly increases the transformation point and makes rolling in the low temperature ⁇ region difficult, so the upper limit is made 0.15% by mass.
  • the lower limit of A1 is not particularly limited. From the viewpoint of deoxidation, it is preferably 0.01% by mass or more.
  • Soot forms nitride with soot and reduces the recrystallization inhibiting effect of soot, so it is kept to 0.01% by mass or less.
  • This viewpoint power is also desirably 0.005 mass%, more desirably 0.002 mass% or less.
  • the amount of solute C in mass% is preferably 0.0005% to 0.004%.
  • strain aging occurs at room temperature, and the Young's modulus increases. for example
  • the paint baking process after processing increases not only the yield strength of the steel sheet but also the Young's modulus.
  • the amount of solute C can also be determined by subtracting the total amount of C from the amount of C present as a compound such as Fe, Al, Nb, Ti, and B (determining the chemical analysis ability of the extraction residue). It may also be obtained by the internal friction method or FIM (Field Ion Microscopy).
  • solute C is less than 0.0005 mass%, a sufficient effect cannot be obtained. Also, even if it exceeds 0.004 mass%, the BH property tends to saturate, so 0.004 mass is the upper limit.
  • Ca in addition is useful as a deoxidizing element, since the effect to form the control of sulfides, may be added in 0. 0005-0. 01 range of mass 0/0. Because it is less than 0.0005 mass 0/0 effects mosquitoes ⁇ E deteriorates when adequate and Nag 0.01 wt% super addition in this range.
  • it may contain 0.001 to 4.0 mass% in total of one or more of Ni, Cu, and Cr in terms of mass%.
  • the pole density of ⁇ 110 ⁇ 223> and Z or ⁇ 110 ⁇ ⁇ 111> in the 1Z8 layer of the plate thickness is set to 10 or more. This makes it possible to increase the Young's modulus in the rolling direction. When the pole density is less than 10, it is difficult to increase the hang rate in the rolling direction to more than 230 GPa.
  • the pole density is preferably 14 or more, more preferably 20 or more.
  • the method described in the first embodiment is applied to the measurement of the pole density.
  • the above-mentioned limitation regarding the extreme density is satisfied at least for the Z1 layer with a thickness of 1 and it is preferable that the limitation is actually established not only for the 1Z8 layer but also for a wide range from the thickness layer to the 1Z4 layer.
  • 111> orientations accumulate in the width direction (TD direction) perpendicular to the rolling direction (RD direction), and the Young's modulus in the ⁇ D direction increases. If this pole density is less than 6, it is difficult to make the Young's modulus in the TD direction exceed 230 GPa, so this is the lower limit.
  • a preferable range of this extreme density is 8 or more, and a more preferable range is 10 or more.
  • the pole density of ⁇ 332 ⁇ ⁇ 113> in this 1/2 layer thickness is preferably 6 or more, more preferably 8 or more, and even more preferably 10 or more.
  • the pole density in this orientation is more preferably 3 or less, and most preferably 1.5 or less.
  • the plane intensity ratio (X-ray random intensity ratio) in each direction is preferably ⁇ 1 10>: 5 or more, and 112>: 2 or more.
  • the plane intensity ratio X-ray random intensity ratio
  • the Young's modulus of the steel sheet by satisfying the above-mentioned requirements regarding the pole density of the crystal orientation in the 1Z8 and 1Z2 layers, the direction perpendicular to the rolling direction (RD direction) alone is satisfied. In other words, the Young's modulus in the width direction (TD direction) can simultaneously exceed 230 GPa.
  • the method described in the first embodiment is applied to the measurement of Young's modulus.
  • the lower limit of the Young's modulus in the rolling direction in the 1Z8 layer from the surface layer of the plate thickness is preferably 240 GPa. Thereby, a sufficient effect of improving the shape freezing property can be obtained. From this surface layer, the lower limit of the Young's modulus in the rolling direction in the 1Z8 layer is more preferably 245 GPa, most preferably 250 GPa.
  • the upper limit value is not particularly limited, but in order to exceed 300 GPa, it is necessary to add a large amount of other alloy elements, and other characteristics such as workability deteriorate, and the power is practically 300 GPa or less. .
  • the Young's modulus of the surface layer is measured by cutting out a test piece with a thickness of 1Z8 or more from the surface layer and performing the transverse vibration method described above.
  • the surface Young's modulus in the sheet width direction is not particularly specified, but it goes without saying that the surface layer Young's modulus in the sheet width direction is high and the bending rigidity in the width direction is increased. It contains all of Mo, Nb, Ti, and B as described above, and each content is Mo: 0.15 ⁇ : L 5%, Nb: 0.01 ⁇ 0.20%, Ti: 48Z14 XN (mass 0 / 0 ) or more, 0.2% or less, B: 0.006-0.01% of the composition, and the pole of ⁇ 110 ⁇ ⁇ 223> and Z or ⁇ 110 ⁇ ⁇ 111> in 1Z8 layer thickness Density force is S10 or more, and the ⁇ 110 ⁇ ⁇ 001> pole density in the 1Z8 layer of thickness is 3 or less. By using a certain texture, the surface Young's modulus in the width direction exceeds 240 GPa as in the rolling direction.
  • the BH content of the steel sheet is preferably 5 MPa or more. That is, when the movable dislocation is fixed by the coating baking process, the Young's modulus in the rolling direction (RD direction) is improved. If BH is less than 5MPa, the effect is poor, and even if BH exceeds 200MPa, no significant effect is observed. Therefore, the range of BH amount is 5 to 200 MPa. A more preferable range of this BH amount is 30 to: LOOMPa.
  • the BH amount is represented by the formula [4] described in the first embodiment.
  • C 0.0005-0.30%
  • Si 2.5% or less
  • Mn 0.1 to 5.0%
  • P 0.15% or less
  • S 0.15% or less
  • Mo 0.15 or less: L 5%
  • B 0.000 6 to 0.01%
  • Nb 0.01 to 0.20%
  • N 0. 01% or less
  • Ti 48/14 XN (mass%) or more and 0.2% or less, with the remainder consisting of Fe and unavoidable impurities heated to a temperature of 1000 ° C or higher It has a process of rolling to make a hot-rolled steel sheet.
  • the slab used for hot rolling is not particularly limited. That is, it may be manufactured by a continuous forged slab or a thin slab caster. It is also suitable for processes such as continuous forging-direct rolling (CC-DR), in which hot rolling is performed immediately after forging.
  • CC-DR continuous forging-direct rolling
  • the hot rolling heating temperature is set to 1000 ° C or higher.
  • the hot rolling heating temperature shall be 1000 ° C or higher. This is because the hot rolling finishing temperature described later is set to the Ar transformation point or higher.
  • each rolling reduction ratio from the first pass to the n-th pass is R1 (%) to Rn (%). It can be calculated with
  • Rn ⁇ (n ⁇ 1) plate thickness after pass ⁇ plate thickness after n pass ⁇ Z (n ⁇ 1) plate thickness after pass X 100 (%).
  • the effective strain amount ⁇ * is 0.4 or more, preferably 0.5 or more, more preferably 0.6 or more.
  • the total rolling reduction is 50% or more, preferably 70% or more, and more preferably 100% or more.
  • the finishing temperature of this hot rolling is not less than the Ar transformation point and not more than 900 ° C.
  • finishing temperature is less than the Ar transformation point, it is not preferable for the Young's modulus in the rolling direction ⁇ 100 ⁇
  • the finishing temperature of hot rolling is preferably 850 ° C or lower, more preferably 800 ° C or lower.
  • the coiling temperature after hot rolling is not particularly limited, but if it is wound at 400 to 600 ° C, the Young's modulus may be improved.
  • the different peripheral speed ratio in the present invention represents a percentage obtained by dividing the peripheral speed difference of the upper and lower rolling rolls by the peripheral speed of the low peripheral speed side roll. Further, the different peripheral speed rolling of the present invention does not make a difference in the Young's modulus improvement effect even if the deviation between the upper and lower roll peripheral speeds is large.
  • the work roll diameter is 700 mm or less, preferably 600 mm or less, and more preferably 500 mm or less.
  • the lower limit of the work roll diameter is not specified, but if it is less than 300 mm, it will be difficult to control the feed plate.
  • the upper limit of the number of passes that use small-diameter rolls is not specified. 1S As mentioned above, the finishing hot rolling pass is usually up to about 8 passes.
  • the hot-rolled steel sheet manufactured in this way is pickled, it is preferable to perform a heat treatment (annealing) in which the maximum temperature range is 500 to 950 ° C. This further improves the Young's modulus in the rolling direction. The reason for this is not clear, but it is presumed that the dislocations introduced by the transformation after hot rolling are due to rearrangement by heat treatment.
  • the effect is not significant when the maximum temperature is less than 500 ° C, but when it exceeds 950 ° C, ⁇ ⁇ ⁇ transformation occurs, resulting in the same or weak texture accumulation, and the Young's modulus also tends to deteriorate. .
  • the lower and upper limits are 500 ° C and 950 ° C, respectively.
  • the range of the maximum temperature reached is preferably 650 ° C or higher and 850 ° C or lower.
  • the heat treatment method is not particularly limited, and may be performed by a normal continuous annealing line, box annealing, a continuous molten zinc plating line described later, or the like.
  • the hot-rolled steel sheet may be subjected to cold rolling and heat treatment (annealing) after pickling! / ⁇ .
  • the cold rolling rate is less than 60%. This is because if the cold rolling ratio is 60% or more, the texture that increases the Young's modulus formed in the hot-rolled steel sheet changes significantly, and the Young's modulus in the rolling direction decreases.
  • the heat treatment is performed after the end of the cold rolling.
  • the maximum temperature for this heat treatment is in the range of 500-950 ° C. Below 500 ° C, the margin for improving Young's modulus is small, and workability may be inferior, so 500 ° C is the lower limit.
  • the lower and upper limits are 500 ° C and 950 ° C, respectively.
  • a preferable range of this maximum temperature is 600 ° C or higher and 850 ° C or lower.
  • the heating rate to the highest temperature is not particularly limited, but is preferably in the range of 3 to 70 ° CZ seconds. If the heating rate is less than 3 ° CZ seconds, recrystallization proceeds during heating, and the texture that is advantageous for improving the Young's modulus is broken. Even if it exceeds 70 ° CZ seconds, the special material properties do not change V. Therefore, it is desirable to set this value as the upper limit.
  • the structure of the steel sheet obtained by the method for producing a high Young's modulus steel sheet according to the present embodiment may include a mixture of both phases having a main phase of ferrite or bainite. Compounds such as austenite, carbides and nitrides may be present. In other words, it is sufficient to create an organization according to the required characteristics.
  • a hot dip galvanized steel sheet, an alloyed hot dip galvanized steel sheet, a high Young's modulus steel pipe having the high Young's modulus steel sheet of the first and second embodiments described above, and an example of a manufacturing method thereof. Will be explained.
  • the hot dip galvanized steel sheet has the high Young's modulus steel sheet of the first and second embodiments and the hot dip galvanized steel applied to the high Young's modulus steel sheet.
  • This hot-dip galvanized steel sheet is manufactured by hot-dip galvanizing to the hot-rolled steel sheet after annealing obtained in the first and second embodiments or the cold-rolled steel sheet obtained by cold rolling. Is done.
  • the composition of zinc plating is not particularly limited, and Fe, Al, Mn, Cr, Mg, Pb, Sn, Ni, etc. may be added as required.
  • heat treatment and zinc plating may be performed in a continuous molten zinc plating line.
  • the alloyed hot dip galvanized steel sheet has the high Young's modulus steel sheet according to the first and second embodiments and the galvannealed hot dip galvanized steel applied to the high hang ratio steel sheet.
  • This galvannealed steel sheet is manufactured by alloying the galvanized steel sheet. This alloying treatment is performed by heat treatment in the range of 450 to 600 ° C. If it is less than 450 ° C, alloying does not proceed sufficiently, and if it exceeds 600 ° C, alloying proceeds excessively, and the resulting layer becomes brittle. For this reason, problems such as peeling of the nail are induced by processing such as pressing.
  • the alloying time should be 10 seconds or longer. If it is less than 10 seconds, alloying does not proceed sufficiently.
  • a high Young's modulus steel pipe has the high Young's modulus steel sheet of the first and second embodiments, and the high Young's modulus steel sheet is a steel pipe wound in an arbitrary direction.
  • the high Young's modulus steel plate of the first and second embodiments described above is wound into a steel pipe so that the rolling direction is within an angular force of ⁇ 30 ° with respect to the longitudinal direction of the steel pipe. Manufactured by doing. Thereby, a high Young's modulus steel pipe having a high Young's modulus in the longitudinal direction of the steel pipe can be manufactured.
  • Winding in parallel with the rolling direction has the highest Young's modulus, so this angle is preferably as small as possible. From this viewpoint, it is more preferable to wind at an angle of 15 ° or less.
  • the pipe forming method can be any method such as UO pipe, ERW welding, and snail.
  • UO pipe UO pipe
  • ERW welding ERW welding
  • snail snail
  • the above-mentioned high Young's modulus steel pipe may be subjected to A1-type plating or various types of electric plating. Furthermore, surface treatments such as an organic coating, an inorganic coating, and various paints can be performed on the hot-dip galvanized steel sheet, the alloyed hot-dip galvanized steel sheet, and the high Young's modulus steel pipe according to the purpose.
  • surface treatments such as an organic coating, an inorganic coating, and various paints can be performed on the hot-dip galvanized steel sheet, the alloyed hot-dip galvanized steel sheet, and the high Young's modulus steel pipe according to the purpose.
  • the Young's modulus was measured by the above-described lateral resonance method. JIS5 tensile test specimens were collected and evaluated for tensile properties in the TD direction. Tables 3 and 4 show the results of measurement of the texture in the 1Z8 layer thickness. As is clear from this, when the steel having the chemical composition of the present invention was hot-rolled under appropriate conditions, the Young's modulus in the rolling direction could be over 230 GPa.
  • FT is the temperature at the final finishing side of hot rolling
  • CT is the coiling temperature
  • TS is the tensile strength
  • YS is the yield strength
  • E1 is the elongation
  • E (RD) is The Young's modulus in the RD direction
  • E (D) indicates the Young's modulus in the 45 ° direction with respect to the RD direction
  • E (TD) indicates the Young's modulus in the TD direction.
  • E and L were subjected to continuous annealing (held at 700 ° C for 90 seconds), box annealing (held for 6 hours at 700 ° C), and continuous molten zinc plating (maximum temperature reached 750 ° C).
  • the alloy was subjected to an alloying treatment at 500 ° C for 20 seconds after immersion in a zinc plating bath, and the tensile properties and Young's modulus were measured.
  • the present invention is a.
  • the present invention is a.
  • Example 700 550 Box annealing 712 633 20 47 252 195 246 17 12
  • the present invention is a.
  • the steel sheet was heated to 650 ° C in a continuous molten zinc plating line, cooled to about 470 ° C, and then immersed in a 460 ° C molten zinc bath.
  • the average basis weight of zinc was 40 g / m 2 on one side.
  • organic coating and (2) coating were applied to the steel sheet surface as follows, and the tensile properties and Young's modulus were measured.
  • ZM1300AN manufactured by Nihon Parkerizing Co., Ltd. was applied as a chemical conversion treatment on the degreased steel sheet using a roll coater. Then, hot air drying was performed under the condition that the ultimate plate temperature was 60 ° C. The amount of chemical conversion was 50 mgZm 2 in terms of Cr. Furthermore, the primer coating was applied to one side of the chemical-treated steel sheet, and the back coating was applied to the other side using a roll coater. Then, it was dried and cured in an induction heating furnace combined with hot air. The temperature reached at this time was 210 ° C.
  • the top paint was applied on the surface on which the primer paint was applied with a roller force ten-coater. Then, it was dried and cured at an ultimate temperature of 230 ° C in an induction heating furnace combined with hot air.
  • the primer coating was applied to a dry film thickness of 5 ⁇ m using “FL640EU Primer 1” manufactured by Nippon Fine Coatings.
  • the back coating was 5m in dry film thickness using “FL100HQ” manufactured by Nippon Fine Coatings.
  • the top paint was “FL100HQ” manufactured by Nippon Fine Coatings Co., Ltd., and was painted 15 m in dry film thickness.
  • Table 8 shows the measurement results of hot rolling conditions, tensile properties, and Young's modulus. All the hot rolling conditions not shown in Table 8 are the same as in Example 1.
  • the Young's modulus was measured by the above-described lateral resonance method. JIS5 tensile test specimens were collected and evaluated for tensile properties in the TD direction. In addition, the textures in the 1Z8 layer thickness and 7Z16 layer thickness were measured.
  • Table 15 is a table following Table 14
  • Table 17 is a table following Table 16.
  • Table 19 is a table following Table 18.
  • the values in the same row indicate the values for the same sample. This also applies to the following tables in the specification.
  • the underlined values indicate values outside the scope of the present invention. This index is common in the following description of the table.
  • CM CD ID ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ o 00 ⁇ oo CM size ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ o — ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ID ⁇ ⁇ ddd ⁇ 'O d ⁇ dd ⁇ ddd ⁇
  • Table 23 is a table following Table 22.
  • a steel sheet having the chemical composition of the present invention is hot-rolled and cold-rolled under appropriate conditions, and further appropriately heat-treated, thereby producing a cold-rolled steel sheet having an excellent Young's modulus in the RD direction and TD direction. It is possible to obtain. However, when the maximum temperature reached was extremely high, the Young's modulus decreased slightly.
  • the steel sheet was heated to 650 ° C in a continuous hot dip galvanizing line, cooled to about 470 ° C, and then immersed in a 460 ° C molten zinc bath.
  • the average weight of zinc was 40 gZ m 2 on one side on average.
  • organic coating and (2) coating were applied to the steel sheet surface as follows, and tensile properties and Young's modulus were measured.
  • an antifouling treatment solution was prepared, applied to the above steel plate with a roll coater, and dried to reach a surface temperature of the steel plate of 120 ° C. to form a film having a thickness of about 1 ⁇ m.
  • “ZM1300AN” manufactured by Nihon Parkerizing Co., Ltd. was applied as a chemical conversion treatment on the degreased steel sheet using a roll coater, and dried with hot air under conditions such that the ultimate plate temperature was 60 ° C. The amount of chemical conversion was 50 mgZm 2 in terms of Cr.
  • the primer coating was applied to one side of the steel sheet subjected to chemical conversion treatment, the back coating was applied to the other side with a roll coater, and dried and hardened in an induction heating furnace combined with hot air. The ultimate temperature at this time was 210 ° C.
  • the top paint was applied to the surface coated with the primer paint with a roller force ten-coater, and the ultimate temperature was 230 ° C in an induction heating furnace combined with hot air. Dry cured.
  • the primer paint uses “FL640EU primer” manufactured by Japan Fine Coatings. A 5 ⁇ m coating was applied to a dry film thickness. The back coating is made by Nippon Fine Coatings "FL1
  • a dry film thickness of 5 m was applied.
  • “FL100HQ” manufactured by Nippon Fine Coatings Co., Ltd. was used, and the dry film thickness was adjusted to 15 m.
  • Table 25 is a table following Table 24. It is clear from this that steel sheets with a hot dip galvanizing, and those with an organic film or paint on the surface also have good Young's modulus.
  • Table 26 shows the measurement results of hot rolling conditions, tensile properties, and Young's modulus.
  • the hot rolling conditions not shown in Table 26 are all the same as in Example 7.
  • Table 27 is a table following Table 26.
  • Table 29 is a table following Table 28. From these, when the steel having the chemical composition of the present invention is hot-rolled under appropriate conditions, if a roll having a roll diameter of 700 mm or less is used for one pass or more, the formation of a texture in the vicinity of the surface layer is promoted, and the Young's modulus is further increased. improves.
  • the surface Young's modulus was measured by cutting the sample with a surface thickness of 1Z6 and measuring it by the transverse resonance method described above.
  • Tensile properties i Take IS5 tensile test specimens and evaluate them in the width direction.
  • the shape freezing property was evaluated by using a strip-shaped sample of 260mm length x 50mm width x plate thickness, hat width with punch width 78mm, punch shoulder R5mm, die shoulder R4mm and various wrinkle holding thicknesses Then, the shape of the central part of the plate width was measured with a three-dimensional shape measuring device. As shown in Figure 1, the average value on the left and right of the value obtained by subtracting 90 ° from the intersection of the tangent line between point A and point B and the tangent line between point C and point D is the spring 'back amount, point C and point The shape freezing property was evaluated by multiplying the value obtained by averaging the reciprocal of the radius of curvature p [mm] between E on the left and right by 1000 times. The smaller the 1000Z / 0, the better the shape freezing property. Bending was performed so that a broken line was inserted perpendicular to the rolling direction.
  • Table 35 is a table following Table 34
  • Table 37 is a table following Table 36
  • Table 39 is a table following Table 38
  • Table 41 is a table following Table 40.
  • the rolling ratio (1 *) is described as “appropriate” when the total rolling ratio of hot rolling is 50% or more, and “unsuitable” when it is less than 50%.
  • the coefficient of friction (2 *) is indicated as “appropriate” when the average friction coefficient during hot rolling is more than 0.2, and “inappropriate” when the average friction coefficient is less than 0.2.
  • the shape freezing property was described as “good” when the above two conditions were satisfied, and “bad” when not satisfied. These notations are common in the following description of the table.
  • Table 43 is a table following Table 42.
  • Table 45 is a table following Table 44.
  • Cold rolled annealed sheets were manufactured using steel P5 and P8 shown in Tables 30 and 31.
  • Table 46 shows the results of measurement of hot rolling, cold rolling, annealing conditions, tensile properties, Young's modulus, and shape freezing properties. Although described in the table, the production conditions are the same as in Example 13.
  • Table 47 is a table following Table 46.
  • the high Young's modulus steel sheet according to the present invention is used for automobiles, household electrical appliances, buildings, and the like.
  • the high Young's modulus steel sheet according to the present invention is subjected to surface treatment such as hot-rolled steel sheet and cold-rolled steel sheet in a narrow sense without surface treatment, and hot-dip zinc plating, alloyed hot-dip zinc plating, and electroplating for anti-corrosion.
  • surface treatment such as hot-rolled steel sheet and cold-rolled steel sheet in a narrow sense without surface treatment, and hot-dip zinc plating, alloyed hot-dip zinc plating, and electroplating for anti-corrosion.
  • aluminum plating is also included.
  • a steel sheet having an organic film, an inorganic film, a coating or the like on the surface of these hot-rolled steel sheets, cold-rolled steel sheets, and various types of steel sheets, and a steel sheet having a combination of them are also included.
  • the high Young's modulus steel sheet according to the present invention is a steel sheet having a high Young's modulus, it is possible to reduce the thickness of the steel sheet in use compared to the conventional steel sheet. ⁇ becomes possible. Therefore, it can contribute to global environmental conservation.
  • the high Young's modulus steel plate according to the present invention improves the shape freezing property and facilitates the application of the high-strength steel plate to press parts such as automobile members. Furthermore, since the steel sheet according to the present invention is excellent in the collision energy absorption characteristics, it contributes to the improvement of automobile safety.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

 この高ヤング率鋼板の一形態は、質量%で、C:0.0005~0.30%、Si:2.5%以下、Mn:2.7~5.0%、P:0.15%以下、S:0.015%以下、Mo:0.15~1.5%、B:0.0006~0.01%、Al:0.15%以下、残部がFe及び不可避的不純物からなり、板厚の1/8層における{110}<223>と{110}<111>のいずれか一方又は両方の極密度が10以上、圧延方向のヤング率が230GPa超である。高ヤング率鋼板の他の形態は、質量%で、C:0.0005~0.30%、Si:2.5%以下、Mn:0.1~5.0%、P:0.15%以下、S:0.015%以下、Al:0.15%以下、N:0.01%以下、さらにMo:0.005~1.5%、Nb:0.005~0.20%、Ti:(48/14×N)%以上0.2%以下、B:0.0001~0.01%のうち1種または2種以上を合計で0.015~1.91質量%含有し、残部がFe及び不可避的不純物からなり、板厚の1/8層における{110}<223>及び/又は{110}<111>の極密度が10以上、圧延方向のヤング率が230GPa超である。

Description

明 細 書
高ヤング率鋼板、それを用いた溶融亜鉛めつき鋼板、合金化溶融亜鉛め つき鋼板、および高ヤング率鋼管、並びにそれらの製造方法
技術分野
[0001] 本発明は、高ヤング率鋼板、それを用いた溶融亜鉛めつき鋼板、合金化溶融亜鉛 めっき鋼板、および高ヤング率鋼管、並びにそれらの製造方法に関するものである。 本願は、 2004年 7月 27日に出願された日本国特許出願第 2004— 218132、 20 04年 11月 15日に出願された日本国特許出願第 2004— 330578、 2005年 1月 27 日に出願された日本国特許出願第 2005— 019942、 2005年 7月 15日に出願され た日本国特許出願第 2005— 207043に対し優先権を主張し、その内容をここに援 用する。
背景技術
[0002] ヤング率を高める技術についてはこれまでにも多数の報告がある。そのほとんどが 、圧延方向(RD)と、圧延方向(RD)に対して直角な幅方向(TD)のヤング率を高め る技術に関するものである。
特許文献 1〜9などは、いずれも圧延を α + y 相域で行うことによって、 TD方向の
2
ヤング率を高める技術を開示して 、る。
また特許文献 10は、表層に Ar変態点未満での圧延を加えることによって、 TD方
3
向のヤング率を高める技術を開示している。
一方、 TD方向のヤング率と同時に RD方向のヤング率を高める技術に関する開示 もある。すなわち特許文献 11は、一定方向への圧延に加えてそれと直角な幅方向の 圧延を施すことで両方のヤング率を高めるものである。し力しながら、薄板の連続熱 延プロセスにおいては、圧延方向を途中で変化することは生産性を著しく阻害するた め、現実的ではない。
[0003] また、特許文献 12は、ヤング率の高い冷延鋼板に関する技術を開示しているが、こ れも TD方向のヤング率は高いが、 RD方向のヤング率が高いわけではない。
更に、特許文献 13は Mo, Nb, Bを複合添加してヤング率を向上させる技術を開 示している力 熱延条件がまったく異なるため、 TD方向のヤング率は高いが、 RD方
Figure imgf000004_0001
、わけではな 、。
上述の通り、従来にも高ヤング率鋼板と称するものは存在した力 いずれも圧延方 向(RD)と幅方向(TD)のヤング率が高い鋼板であった。ところが鋼板の幅は最大で も 2m程度であり、ヤング率最大の方向を部材の長手方向とする場合には、その長さ を幅以上にすることはできな力つた。したがって、長物部材に対しては圧延方向のャ ング率が高い鋼板が切望されていた。また、製造法についても圧延反力の変動しや すい α + γ域での熱延が前提となっており生産性に問題があった。
また、鋼板を自動車用や建材用の部品に加工する際、形状凍結性が大きな問題と なる。例えば、曲げ加工を行った後、荷重が除荷される際に鋼板が元の形状に戻ろう とするスプリングバック現象が起こるために、所望の形状が得られな 、と 、う問題点が あった。この現象は高強度化に伴い顕在化するため、高強度鋼板を部材に適用する 際の障害となっている。
特許文献 1 :特開昭 59— 83721号公報
特許文献 2:特開平 5 - 263191号公報
特許文献 3:特開平 8 - 283842号公報
特許文献 4:特開平 8— 311541号公報
特許文献 5:特開平 9 53118号公報
特許文献 6:特開平 4 - 136120号公報
特許文献 7:特開平 4— 141519号公報
特許文献 8:特開平 4— 147916号公報
特許文献 9 :特開平 4— 293719号公報
特許文献 10 :特開平 4 143216号公報
特許文献 11 :特開平 4 147917号公報
特許文献 12:特開平 5— 255804号公報
特許文献 13 :特開平 08— 1311541号公報
発明の開示
発明が解決しょうとする課題 [0005] 本発明は、上記の事情に鑑みてなされたものであって、圧延方向(RD方向)のヤン グ率に優れた高ヤング率鋼板、それを用いた溶融亜鉛めつき鋼板、合金化溶融亜鉛 めっき鋼板、および高ヤング率鋼管、並びにそれらの製造方法を提供することを目的 とする。
課題を解決するための手段
[0006] 本発明者らは、上記の目標を達成するために鋭意研究を遂行し、以下に述べるよう な従来にな!ヽ知見を得た。
すなわち、 C, Si, Mn, P, S, Mo, B,および Al、または。, Si, Mn, P, S, Mo, B, Al, N, Nb,および Tiを所定量含有する鋼の表面近傍に所定の集合組織を発達 せしめることによって、圧延方向のヤング率が高い鋼板を発明することに成功したも のである。
[0007] また、本発明によって得られる鋼板は表面近傍では 240GPa以上の特に高 、ヤン グ率が得られることから曲げ剛性が著しく向上し、例えば形状凍結性も著しく改善さ れる。高強度化に伴いスプリングバックなどの形状凍結不良の度合いが大きくなる要 因は、プレス変形の際にかけられた荷重が除荷された際の戻り量が大きいことにある 。したがって、ヤング率を高くすれば、戻り量を抑え、スプリングバックを低減すること が可能になる。カロえて、曲げ変形時には曲げモーメントの大きい表層付近の変形挙 動が形状凍結性に著しい影響を及ぼすことから、表層だけのヤング率を向上させるこ とで、著しい改善が可能である。
[0008] 本発明は、このような思想と新知見に基づいて構築した、従来にない全く新しい鋼 板及びその製造方法であり、その要旨とするところは以下のとおりである。
(1)質量0 /0で、 C : 0. 0005〜0. 30%、 Si: 2. 5%以下、 Mn: 2. 7〜5. 0%、 P : 0. 15%以下、 S : 0. 015%以下、 Mo : 0. 15〜: L 5%、 B : 0. 0006〜0. 01%、 A1: 0 . 15%以下を含有し、残部が Fe及び不可避的不純物からなり、
板厚の 1Z8層における { 110}く 223 >と { 110}く 111 >の!ヽずれか一方又は両 方の極密度が 10以上であり、
圧延方向のヤング率が 230GPa超であることを特徴とする高ヤング率鋼板。
[0009] (2)更に、板厚 1Z2層における { 112}く 110>の極密度が 6以上であることを特徴 とする(1)に記載の高ヤング率鋼板。
(3)更に、 Ti: 0. 001〜0. 20質量0 /o、Nb : 0. 001〜0. 20質量0 /0のうち、 1種また は 2種を含有することを特徴とする(1)に記載の高ヤング率鋼板。
[0010] (4) 2%引張後、 170°C、 20分熱処理を加え再度引張試験を行ったときの上降伏点 カゝら 2%引張時の流量応力を差し引いた値で評価される BH量 (MPa)が 5MPa以上 200MPa以下であることを特徴とする(1)に記載の高ヤング率鋼板。
(5)更に、 Ca : 0. 0005-0. 01質量0 /0を含むことを特徴とする(1)に記載の高ヤン グ率鋼板。
[0011] (6) Sn, Co, Zn, W, Zr, V, Mg, REMの 1種又は 2種以上を合計で 0. 001〜1.
0質量%含むことを特徴とする(1)に記載の高ヤング率鋼板。
(7) Ni, Cu, Crの 1種又は 2種以上を合計で 0. 001-4. 0質量%含むことを特徴と する(1)に記載の高ヤング率鋼板。
[0012] (8) (1)に記載の高ヤング率鋼板と、前記高ヤング率鋼板に施された溶融亜鉛めつ きと、を有することを特徴とする溶融亜鉛めつき鋼板。
(9) (1)に記載の高ヤング率鋼板と、前記高ヤング率鋼板に施された合金化溶融亜 鉛めつきと、を有することを特徴とする合金化溶融亜鉛めつき鋼板。
(10) (1)に記載の高ヤング率鋼板を有し、前記高ヤング率鋼板が任意の方向に卷 かれて 、ることを特徴とする高ヤング率鋼管。
[0013] (11) (1)に記載の高ヤング率鋼板の製造方法であって、
質量0 /0で、 C : 0. 0005〜0. 30%、 Si: 2. 5%以下、 Mn: 2. 7〜5. 0%、 P : 0. 15 %以下、 S : 0. 015%以下、 Mo : 0. 15〜: L 5%、 B : 0. 0006〜0. 01%、 A1: 0. 1 5%以下を含有し、残部が Fe及び不可避的不純物からなるスラブを 950°C以上の温 度に加熱して熱間圧延を施し、熱延鋼板とする工程を有し、
前記熱間圧延の工程は、 800°C以下で、圧延ロールと鋼板との摩擦係数が 0. 2超 、かつ圧下率の合計が 50%以上となるように圧延を行い、 Ar変態点以上 750°C以
3
下の温度で熱間圧延を終了する条件で行なわれることを特徴とする高ヤング率鋼板 の製造方法。
[0014] (12)前記熱間圧延の工程では、異周速率が 1%以上の異周速圧延を少なくとも 1パ ス以上施すことを特徴とする(11)に記載の高ヤング率鋼板の製造方法。
(13)前記熱間圧延の工程では、ロール径が 700mm以下の圧延ロールを少なくとも 1つ以上使用することを特徴とする(11)に記載の高ヤング率鋼板の製造方法。
(14)前記熱間圧延終了後の熱延鋼板を、連続焼鈍ラインまたは箱焼鈍にて最高到 達温度 500°C以上 950°C以下の条件で焼鈍する工程を更に有することを特徴とする (11)に記載の高ヤング率鋼板の製造方法。
[0015] (15)前記熱間圧延終了後の熱延鋼板を、 60%未満の圧下率で冷間圧延を施すェ 程と、前記冷間圧延の工程の後に焼鈍する工程と、を更に含むことを特徴とする(11 )に記載の高ヤング率鋼板の製造方法。
(16)前記熱延鋼板を 60%未満の圧下率で冷間圧延を施す工程と、前記冷間圧延 の工程の後に、最高到達温度 500°C以上 950°C以下の条件で焼鈍する工程と、前 記焼鈍工程の後に 550°C以下まで冷却し、次いで 150〜550°Cにて熱処理を行うェ 程と、を更に有することを特徴とする(11)に記載の高ヤング率鋼板の製造方法。
[0016] (17) (14)に記載の高ヤング率鋼板の製造方法により焼鈍された高ヤング率鋼板を 製造する工程と、前記高ヤング率鋼板に溶融亜鉛めつきを施す工程を有することを 特徴とする溶融亜鉛めつき鋼板の製造方法。
(18) (17)に記載の溶融亜鉛めつき鋼板の製造方法により溶融亜鉛めつき鋼板を製 造する工程と、前記溶融亜鉛めつき鋼板に、 450〜600°Cまでの温度範囲で 10秒 以上の熱処理を行なう工程と、を有することを特徴とする合金化溶融亜鉛めつき鋼板 の製造方法。
(19) (15)に記載の高ヤング率鋼板の製造方法により焼鈍された高ヤング率鋼板を 製造する工程と、前記高ヤング率鋼板に溶融亜鉛めつきを施す工程を有することを 特徴とする溶融亜鉛めつき鋼板の製造方法。
(20) (19)に記載の溶融亜鉛めつき鋼板の製造方法により溶融亜鉛めつき鋼板を製 造する工程と、前記溶融亜鉛めつき鋼板に、 450〜600°Cまでの温度範囲で 10秒 以上の熱処理を行なう工程と、を有することを特徴とする合金化溶融亜鉛めつき鋼板 の製造方法。
(21) (11)に記載の高ヤング率鋼板の製造方法により高ヤング率鋼板を製造するェ 程と、前記高ヤング率鋼板を、任意の方向に巻いて鋼管にすることを特徴とする高ャ ング率鋼管の製造方法。
[0017] (22)質量0 /0で、 C:0.0005〜0.30%、 Si:2.5%以下、 Mn:0.1〜5.0%、 P:0 . 15%以下、 S:0.015%以下、 A1:0.15%以下、 N:0.01%以下を含有し、 さらに、 Mo:0.005〜1.5%、Nb:0.005〜0.20%、 Ti:48/14XN (質量0 /0) 以上、 0.2%以下、 B:0.0001-0.01%のうち 1種または 2種以上を合計で 0.01 5〜1.91質量%含有し、
残部が Fe及び不可避的不純物からなり、
板厚の 1Z8層における {110}く 223>及び Z又は {110}く 111>の極密度が 1 0以上であり、
圧延方向のヤング率が 230GPa超であることを特徴とする高ヤング率鋼板。
[0018] (23)前記 Mo、 Nb、 Ti、 Bを全て含有し、それぞれの含有量が Mo: 0.15〜1.5% 、Nb:0.01〜0.20%、Ti:48Zl4XN (質量0 /0)以上、 0.2%以下、 B:0.0006 〜0.01%であり、
さらに、板厚の 1Z8層における { 110}く 001 >の極密度が 3以下であることを特徴 とする(22)に記載の高ヤング率鋼板。
[0019] (24)前記板厚の 1Z8層における { 110} < 001 >の極密度が 6以下であることを特 徴とする(22)に記載の高ヤング率鋼板。
(25)少なくとも板厚の表層から 1Z8層における圧延方向のヤング率が 240GPa以 上であることを特徴とする(22)に記載の高ヤング率鋼板。
[0020] (26)更に、板厚 1Z2層における {211}く 011 >の極密度が 6以上であることを特徴 とする(22)に記載の高ヤング率鋼板。
(27)更に、板厚 1Z2層における { 332}く 113 >の極密度が 6以上であることを特徴 とする(22)に記載の高ヤング率鋼板。
(28)更に、板厚 1Z2層における { 100}く 011 >の極密度が 6以下であることを特徴 とする(22)に記載の高ヤング率鋼板。
[0021] (29) 2%引張後、 170°C、 20分熱処理を加え再度引張試験を行ったときの上降伏 点から 2%引張時の流量応力を差し引いた値で評価される BH量が 5MPa以上 200 MPa以下であることを特徴とする(22)に記載の高ヤング率鋼板。
[0022] (30)更に、 Ca:0.0005-0.01質量%を含有することを特徴とする(22)に記載の 高ヤング率鋼板。
(31) Sn, Co, Zn, W, Zr, V, Mg, REMの 1種又は 2種以上を合計で 0.001〜1 .0質量%含有することを特徴とする(22)に記載の高ヤング率鋼板。
(32) Ni, Cu, Crの 1種又は 2種以上を合計で 0.001-4.0質量%含有することを 特徴とする(22)に記載の高ヤング率鋼板。
[0023] (33) (22)に記載の高ヤング率鋼板と、前記高ヤング率鋼板に施された溶融亜鉛め つきと、を有することを特徴とする溶融亜鉛めつき鋼板。
(34) (22)に記載の高ヤング率鋼板と、前記高ヤング率鋼板に施された合金化溶融 亜鉛めつきと、を有することを特徴とする合金化溶融亜鉛めつき鋼板。
(35) (22)に記載の高ヤング率鋼板を有し、前記高ヤング率鋼板が任意の方向に卷 かれて 、ることを特徴とする高ヤング率鋼管。
[0024] (36) (22)に記載の高ヤング率鋼板の製造方法であって、
質量0 /0で、 C:0.0005〜0. 30%、 Si: 2. 5%以下、 Mn:0. 1〜5.0%、 P:0. 15 %以下、 S:0.015%以下、 A1:0. 15%以下、 N:0.01%以下を含有し、さらに、 M o:0.005〜1. 5%、Nb:0.005〜0. 20%、 Ti:48,14XN (質量0 /0)以上、 0. 2 %以下、 B:0.0001〜0.01%のうち 1種または 2種以上を合計で 0.015〜1. 91 質量%含有し、残部が Fe及び不可避的不純物からなるスラブを 1000°C以上の温度 に加熱して熱間圧延を施し、熱延鋼板とする工程を有し、
前記熱間圧延の工程は、圧延ロールと鋼板との摩擦係数が 0. 2超、下記式 [1]で 計算される有効ひずみ量 ε *が 0.4以上、かつ圧下率の合計が 50%以上となるよう に圧延を行い、 Ar変態点以上 900°C以下の温度で熱間圧延を終了する条件で行
3
われることを特徴とする高ヤング率鋼板の製造方法。
[0025] [数 1]
+ ε„ ■ ■ · [1]
Figure imgf000009_0001
[0026] ここで、 nは仕上げ熱延の圧延スタンド数、 ε は j番目のスタンドで加えられたひず み、 ε は η番目のスタンドでカ卩えられたひずみ、 tは i〜i+ l番目のスタンド間の走行 時間(秒)、 て iは気体常数 R ( = 1. 987)と i番目のスタンドの圧延温度 T (K)によって 下記式 [2]で計算できる。
τ = 8. 46 X 10"9 X exp {43800/R/T }…… [2]
[0027] (37)前記熱間圧延の工程では、異周速率が 1 %以上の異周速圧延を少なくとも 1パ ス以上施すことを特徴とする(36)に記載の高ヤング率鋼板の製造方法。
(38)前記熱間圧延の工程では、ロール径が 700mm以下の圧延ロールを少なくとも 1つ以上使用することを特徴とする(36)に記載の高ヤング率鋼板の製造方法。
(39)前記熱間圧延終了後の熱延鋼板を、連続焼鈍ラインまたは箱焼鈍にて最高到 達温度 500°C以上 950°C以下の条件で焼鈍する工程を更に有することを特徴とする (36)に記載の高ヤング率鋼板の製造方法。
[0028] (40)前記熱間圧延終了後の熱延鋼板を、 60%未満の圧下率で冷間圧延を施すェ 程と、前記冷間圧延の工程の後に焼鈍する工程と、を更に含むことを特徴とする(36 )に記載の高ヤング率鋼板の製造方法。
(41)前記熱延鋼板を 60%未満の圧下率で冷間圧延を施す工程と、前記冷間圧延 の工程の後に、最高到達温度 500°C以上 950°C以下の条件で焼鈍する工程と、前 記焼鈍工程の後に 550°C以下まで冷却し、次いで 150〜550°Cにて熱処理を行うェ 程と、を更に有することを特徴とする(36)に記載の高ヤング率鋼板の製造方法。
[0029] (42) (39)に記載の高ヤング率鋼板の製造方法により焼鈍された高ヤング率鋼板を 製造する工程と、前記高ヤング率鋼板に溶融亜鉛めつきを施す工程を有することを 特徴とする溶融亜鉛めつき鋼板の製造方法。
(43) (42)に記載の溶融亜鉛めつき鋼板の製造方法により溶融亜鉛めつき鋼板を製 造する工程と、前記溶融亜鉛めつき鋼板に、 450〜600°Cにて 10秒以上の熱処理 を施す工程と、を有することを特徴とする合金化溶融亜鉛めつき鋼板の製造方法。
(44) (40)に記載の高ヤング率鋼板の製造方法により焼鈍された高ヤング率鋼板を 製造する工程と、前記高ヤング率鋼板に溶融亜鉛めつきを施す工程を有することを 特徴とする溶融亜鉛めつき鋼板の製造方法。 (45) (44)に記載の溶融亜鉛めつき鋼板の製造方法により溶融亜鉛めつき鋼板を製 造する工程と、前記溶融亜鉛めつき鋼板に、 450〜600°Cにて 10秒以上の熱処理 を施す工程と、を有することを特徴とする合金化溶融亜鉛めつき鋼板の製造方法。
(46) (36)に記載の高ヤング率鋼板の製造方法により高ヤング率鋼板を製造するェ 程と、前記高ヤング率鋼板を、任意の方向に巻いて鋼管にすることを特徴とする高ャ ング率鋼管の製造方法。
発明の効果
[0030] 本発明の高ヤング率鋼板によれば、上述した(1)または(22)に記載の組成に規定 することによって、低温 γ域にて表層近傍に剪 ,合組織を発達させることが可能と なる。さらに上述した(1)または(22)に記載の集合組織とすることによって、特に圧 延方向(RD方向)において優れたヤング率が達成できる。
本発明の高ヤング率鋼板の製造方法によれば、上述した(11)または(36)に記載 の組成のスラブを用いることによって、低温 γ域にて表層近傍に剪,合組織を発 達させることが可能となる。さらに上述した条件で熱延することによって、上述した(1) または(22)に記載の集合組織とすることが可能となり、特に圧延方向(RD方向)の ヤング率に優れた鋼板を得ることができる。
図面の簡単な説明
[0031] [図 1]図 1は、ハット曲げ試験に用いた試験片を示す断面図である。
発明を実施するための最良の形態
[0032] 本発明において鋼糸且成および製造条件を上述のように限定する理由について、以 下に説明する。
(第 1の実施形態)
第 1の実施形態の鋼板は、質量%で、 C : 0. 0005-0. 30%、 Si: 2. 5%以下、 M n: 2. 7〜5. 0%、P : 0. 15%以下、 S : 0. 015%以下、 Mo : 0. 15〜: L 5%、B : 0. 0006-0. 01%、A1: 0. 15%以下を含有し、残部が Fe及び不可避的不純物からな る。板厚の 1Z8層における { 110}く 223 >と { 110}く 111 >の!、ずれか一方又は 両方の極密度が 10以上である。圧延方向のヤング率が 230GPa超である。
[0033] Cは安価に引張強度を増加させる元素であるので、その添加量は狙いとする強度 レベルに応じて調整される。 Cが 0. 0005質量%未満の場合、製鋼技術上困難でコ ストアップとなるだけでなぐ溶接部の疲労特性が劣化する。このため、下限を 0. 00 05質量%とする。一方、 C量が 0. 30質量%を超える場合、成形性の劣化を招いたり 、溶接性を損なったりする。このため、上限を 0. 30質量%とする。
[0034] Siは固溶体強化元素として強度を増加させる働きがあることの他、マルテンサイトや ベイナイトさらには残留 γ等を含む組織を得るためにも有効である。その添加量は狙 いとする強度レベルに応じて調整される。添加量が 2. 5質量%超となるとプレス成形 性が劣悪となったり、化成処理性の低下を招いたりする。このため、上限を 2. 5質量 %とする。
溶融亜鉛めつきを施す場合には、めっき密着性の低下、合金化反応の遅延による 生産性の低下などの問題が生ずるので、 Siを 1. 2質量%以下とすることが好ましい。 下限は特に設けないが、 0. 001質量%以下とするのは製造コストが高くなるので、 0 . 001質量%超が実質的な下限である。
[0035] Mnは本発明にお!/、て重要である。すなわち高!、ヤング率を得るためには必須の 元素である。本発明に於 ヽては低温 γ域にて鋼板表層近傍に剪断集合組織を発達 させることにより圧延方向のヤング率を発達させることができる。 Mnは γ相を安定ィ匕 し、 γ域を低温まで拡張するので γ域低温圧延を容易にする。また、表層近傍の剪 ,合組織形成に Mn自体が有利に作用して!/ヽる可能性もある。これらの観点から、 Mnは最低でも 2. 7質量%添加する。一方、 5. 0質量%を超えると強度が高くなりす ぎて延性が低下したり、亜鉛めつきの密着性が阻害されたりする。このため 5. 0質量 %を上限とする。好ましくは 2. 9〜4. 0質量%とする。
[0036] Pは Siと同様に安価に強度を高める元素として知られており、強度を増加する必要 がある場合にはさらに積極的に添加する。また Pは熱延組織を微細にし、加工性を向 上する効果も有する。ただし、添加量が 0. 15質量%を超えると、スポット溶接後の疲 労強度が劣悪となったり、降伏強度が増加し過ぎたりしてプレス時に面形状不良を引 き起こす。さらに、連続溶融亜鉛めつき時に合金化反応が極めて遅くなり、生産性が 低下する。また 2次加工性も劣化する。したがってその上限を 0. 15質量%とする。
[0037] Sは、 0. 015質量%超では熱間割れの原因となったり、加工性を劣化させるので、 0. 015質量%を上限とする。
[0038] Moおよび Bは本発明において重要である。これらの元素の添カ卩によって初めて圧 延方向のヤング率を高めることが可能となる。この理由は必ずしも明らかではないが 、 Mnと Mo、 Bとの複合添カ卩の効果によって、鋼板と熱延ロールとの摩擦に起因する 剪断変形による結晶回転が変化するものと考えられる。結果として熱延板の板厚表 層から板厚 1Z4層近傍までの範囲において、非常に先鋭な集合組織が形成され、 圧延方向のヤング率が高くなる。
Moおよび B量の下限は、それぞれ 0. 15質量0 /0、 0. 0006質量%とする。これより 少ない量の添加では上述のヤング率向上効果が小さくなつてしまうからである。一方 、 Mo, Bをそれぞれ 1. 5質量%超、 0. 01質量%超添加してもヤング率の向上効果 は飽和し、コストアップとなるので、 1. 5質量%、 0. 01質量%をそれぞれの上限とす る。
なお、これらの元素の同時添カ卩によるヤング率向上効果は、 Cとの組み合わせによ つてさらに助長される。したがって C量は 0. 015質量%以上とすることが好ましい。
[0039] A1は脱酸調製剤として使用しても良い。ただし A1は変態点を著しく高めるため低温 γ域での圧延が困難となるので、上限を 0. 15質量%とする。
[0040] 本実施形態の鋼板では、前記組成にカ卩えて、さらに Ti, Nbが含有されていることが 好ましい。 Ti, Nbは上記の Mn, Mo, Bの効果を助長してヤング率をさらに高める効 果を有する。また、加工性の向上や高強度化、さらには組織の微細化と均一化に有 効であるので、必要に応じて添加する。し力しその添カ卩量がそれぞれ 0. 001質量% 未満では効果を発現せず、一方、それぞれ 0. 20質量%超添加してもその効果は飽 和する傾向にあるので、これを上限とする。好ましくは 0. 015-0. 09質量%である。
[0041] Caは、脱酸元素として有用であるほか、硫化物の形態制御にも効果を奏するので 、 0. 0005-0. 01質量0 /0の範囲で添加しても良い。 0. 0005質量0 /0未満では効果 が十分でなぐ 0. 01質量%超添加するとカ卩ェ性が劣化するのでこの範囲とする。
[0042] これらを主成分とする鋼板に、 Sn, Co, Zn, W, Zr, Mg, REMの 1種又は 2種以 上を合計で 0. 001〜1質量%含有しても良ぃ。ここで、前記 REMは、希土類金属元 素を示し、 Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dv, Ho, Er, Tm, Yb, Lu力 ら選択される 1種以上である。
し力しながら Zrは ZrNを形成するため固溶 Nが減少するので、 0. 01質量%以下と することが好ましい。
[0043] Ni, Cu, Crは低温 γ域圧延を行うためには有利な元素であるので、これらの 1種 又は 2種以上を合計で 0. 001-4. 0質量%の範囲で添加しても良い。 0. 001質量 %未満では顕著な効果が得られず、 4. 0質量%超添加すると加工性が劣化する。
[0044] Νは γ安定ィ匕元素であるので、低温 γ域圧延を行うためには有利な元素である。し たがって 0. 02質量%まで添加しても良い。 0. 02質量%を実質的な上限とするのは 、これ以上の添加が製造上困難であるためである。
[0045] 固溶 Νおよび固溶 C量はそれぞれ 0. 0005〜0. 004質量%とすることが好ましい。
これらを含有する鋼板が部材として加工されると、常温でも歪時効を生じ、ヤング率 が高くなる。例えば自動車用途に使用した場合に、加工後塗装焼付処理を施すこと で鋼板の降伏強度のみならずヤング率も増加する。
固溶 Νおよび固溶 C量は、全 C, Ν量力 Fe, Al, Nb, Ti, Bなどの化合物として存 在する C, N量 (抽出残查の化学分析力 定量)を差し引いた値力 求めることもでき る。また、内部摩擦法や FIM(Field Ion Microscopy)によって求めても良い。
固溶 Cおよび Nが 0. 0005質量%未満では、十分な効果を得ることができない。ま た、 0. 004質量%を超えても BH性は飽和する傾向にあるので、 0. 004質量%を上 限とする。
[0046] 次に、鋼板の集合組織、ヤング率、 BH量にっ 、て説明する。
第 1の実施形態の鋼板の板厚 1Z8層における { 110}く 223 >及び Z又は { 110} く 111 >の極密度は 10以上である。これによつて圧延方向のヤング率を高めること が可能となる。前記極密度が 10未満の場合、圧延方向のヤング率を 230GPa超とす ることは困難である。前記極密度は、好ましくは 14以上、さらに好ましくは 20以上で ある。
これらの方位の極密度 (X線ランダム強度比)は、 X線回折によって測定される { 110 } , { 100} , {211 } , {310}極点図のうち複数の極点図を基に級数展開法で計算した 3次元集合組織 (ODF)から求めればよい。すなわち、各結晶方位の極密度を求め るには、 3次元集合組織の φ 2=45° 断面における(110) [2— 23]、 (110) [1— 1 1]の強度で代表させる。
[0047] 前記極密度の測定の一例を以下に示す。
X線回折用試料の作製を次のようにして行う。
鋼板を機械研磨や化学研磨などによって板厚方向に所定の位置まで研磨する。こ の研磨面をパフ研磨によって鏡面に仕上げた後、電解研磨やィ匕学研磨によって歪 みを除去すると同時に、板厚 1Z8層または後述する 1Z2層が測定面となるように調 整する。例えば, 1Z8層の場合は、鋼板の板厚を tとするとき、 tZ8の厚み分の研磨 量で鋼板表面を研磨して現れる研磨面を測定面とする。なお、正確に板厚 1Z8層 や 1Z2層を測定面とすることは困難であるので、これら目標とする層を中心として板 厚に対して 3%〜 + 3%の範囲が測定面となるように試料を作製すればよ!、。また 、鋼板の板厚中心層に偏析帯が認められる場合には、板厚の 3Z8〜5Z8の範囲で 偏析帯のない場所について測定すればよい。さらに X線測定が困難な場合には、 E BSP法や ECP法により統計的に十分な数の測定を行う。
上記の {hkl}く uvw>は、上述の方法で X線用試料を採取したとき、板面に垂直な 結晶方位がく hkl >で鋼板の長手方向がく uvw >であることを意味する。
[0048] 鋼板の集合組織に関する特徴は、通常の逆極点図や正極点図だけでは表すこと ができな!/、が、例えば鋼板の板面法線方向の結晶方位を表す逆極点図を板厚の 1 Z8層付近に関して測定した場合、各方位の面強度比 (X線ランダム強度比)は、 < 1 10> : 5以上、く 112>: 2以上になることが好ましい。また、 1Z2層についてはく 11 2> :4以上、 < 332> : 1. 5以上が好ましい。
上記の極密度に関する限定は少なくとも板厚 1 Z8層については満足して 、るが、 1Z8層のみならず、板厚表層から 1Z4層までの広い範囲で成り立つことが好ましい 。さらに板厚 1Z8層において { 110}く 001 >および { 110}く 110>はほとんどなく 、これらの極密度は 1. 5未満、さらに好ましくは 1. 0未満である。従来の鋼板ではこ の方位が表層に、ある程度存在するため、圧延方向のヤング率を高めることができな かった。
[0049] 第 1の実施形態では、さらに、板厚 1Z2層における {112}く 110> (上記 ODFの φ 2=45° 断面における(112) [1— 10])の極密度は 6以上であることが好ましい。 この方位が発達すると圧延方向に対して直角な幅方向(以下、 TD方向とも言う)にく 111 >方位が集積するため TD方向のヤング率が高くなる。この極密度が 6未満では TD方向のヤング率を 230GPa超とするのは困難であるので、これを下限とする。好 ましくは極密度が 8以上、さらに好ましくは 10以上とする。
また、板厚 1Z2層における 54} < 225 >および {332} < 113 > (上記 ODFの 2=45° 断面における(554) [— 2— 25]および(332) [— 1 13])の極密度は、 圧延方向のヤング率には若干の寄与が期待できるので、 3以上であることが好ましい なお、以上で述べた結晶方位は、いずれも 2. 5° 超、 + 2. 5° 以内のばらつき は許容するものである。
[0050] 上述した板厚 1Z8層と 1Z2層における結晶方位の極密度に関する要件を同時に 満たすことによって、圧延方向と TD方向の双方のヤング率を同時に 230GPa超とす ることが可能となる。
[0051] 第 1の実施形態の鋼板の圧延方向のヤング率は、 230GPa超である。このヤング率 の測定は日本工業規格 JISZ2280「金属材料の高温ヤング率測定方法」に準拠した 常温での横共振法にて行う。すなわち、試料を固定せずに浮力した状態で、この試 料に外部の発信器から振動を加え、この発信器の振動数を徐々に変化させて上記 試料の横共振の一次共振振動数を測定し、下記式 [3]よりヤング率を算出する。
E = 0. 946 X (1/h)3 X m/w X f2…… [3]
ここで、 E :動的ヤング率 (NZm2 )、 1:試験片の長さ(m)、 h:試験片の厚さ (m) 、 m:質量 (kg)、 w:試験片の幅 (m)、 f :横共振法の一次共振振動数 (sec— 、で ある。
[0052] 鋼板の BH量は 5MPa以上であることが好ましい。すなわち、塗装焼付処理によつ て可動転位が固着されると実測のヤング率が向上するためである。 BH量が 5MPa未 満ではその効果が乏しぐまた 200MPa超となっても格段の効果が認められない。し たがって、 BH量の範囲を 5〜200MPaとする。この BH量は、より好ましくは 30〜 10 OMPaである。 なお、 BH量とは、鋼板を 2%引張ったときの流動応力を σ (MPa)、鋼板を 2%引
2
張った後、さらに 170°C、 20分の熱処理を施し、再度引張ったときの上降伏点を σ ( MPa)とすれば、下記式 [4]で表される。
ΒΗ= σ σ (MPa) [4]
1 2
[0053] なお、前記した熱延鋼板、冷延鋼板には A1系めつきや各種電気めつきを施しても 構わない。さらに熱延鋼板ゃ冷延鋼板、およびこれらに各種めつきを施した鋼板には 有機皮膜、無機皮膜、各種塗料などの表面処理を目的に応じて行うことができる。
[0054] 次に、第 1の実施形態の鋼板の製造方法について述べる。
第 1の実施形態では、質量%で、 C : 0. 0005-0. 30%、 Si: 2. 5%以下、 Mn: 2 . 7〜5. 0%、 P : 0. 15%以下、 S : 0. 015%以下、 Mo : 0. 15〜: L 5%、 B : 0. 000 6〜0. 01%、A1: 0. 15%以下を含有し、残部が Fe及び不可避的不純物からなるス ラブを 950°C以上の温度に加熱して熱間圧延を施し、熱延鋼板とする工程を有する この熱間圧延に供するスラブは特に限定するものではない。すなわち、連続铸造ス ラブや薄スラブキャスターなどで製造したものであればよい。また、铸造後に直ちに 熱間圧延を行う連続铸造—直接圧延 (CC— DR)のようなプロセスにも適合する。
[0055] 熱延鋼板を最終製品とする場合には、以下のように製造条件を限定する必要があ る。
熱延加熱温度は 950°C以上とする。これは、後述する熱延仕上温度を Ar変態点
3 以上とするために必要な温度である。
800°C以下での各パス毎の圧下率の合計が 50%以上となるように熱延する。このと きの圧延ロールと鋼板との摩擦係数を 0. 2超とする。これは表層の剪 ,合組織を 発達せしめ、圧延方向のヤング率を高めるのに必須の条件である。
圧下率の合計は 70%以上が好ましぐ 100%以上であればより好ましい。圧下率の 合計とは、 nパスの圧延の場合、 1パス目〜nパス目までの各圧下率を R1 (%)〜Rn( %)とすると、 Rl +R2+ · · · · +Rnと定義する。 Rn= { (n— 1)パス後の板厚一 nパス 後の板厚) Z (n— 1)ノ ス後の板厚 X 100 (%)である。
[0056] 熱延の仕上温度は、 Ar変態点以上、 750°C以下とする。 Ar変態点未満では、圧 延方向のヤング率にとって好ましくない { 110}く 001 >集合組織が発達する。また 仕上温度が 750°C超では、圧延方向に好ましい剪断集合組織を板厚表層から板厚 1Z4層付近まで発達させることが困難である。
熱延後の卷取り温度は特に限定しないが、 400〜600°Cで巻き取るとヤング率が 向上する場合があるので、この範囲で巻き取ることが好まし!/、。
[0057] 熱間圧延を実施する際には、圧延ロールの異周速率が 1%以上の異周速圧延を 少なくとも 1パス以上施すことが好ましい。これにより、表層近傍での集合組織形成が 促進されるため、異周速圧延を実施しない場合に比べて、よりヤング率を向上させる ことができる。この観点から異周速率を 1%以上とすることが好ましぐ更に好ましくは 5%以上であり、最も好ましくは 10%以上で異周速圧延を行なうことが望ましい。 異周速率および異周速圧延パス数の上限は特に規定しないが、上記の理由から いずれも大きい方が、大きなヤング率向上効果が得られることは言うまでもない。しか し、 50%以上の異周速率は現状困難であり、仕上熱延パスは通常 8パス程度までで ある。
ここで本発明における異周速率とは、上下圧延ロールの周速差を低周速側ロール の周速で除した値を百分率で表示したものである。また本発明の異周速圧延は、上 下ロール周速の 、ずれが大きくてもヤング率向上効果に差はな 、。
[0058] また、仕上熱延に使用する圧延機にロール径が 700mm以下のワークロールを一 つ以上使用することが好ましい。これにより、表層近傍での集合組織形成が促進され るため、使用しない場合に比べて、よりヤング率を向上させることができる。この観点 から、ワークロール径は 700mm以下とし、望ましくは 600mm以下、さらに望ましくは 500mm以下とする。ワークロール径の下限は特に規定しないが、 300mm以下にな ると通板制御が困難になる。小径ロールを使用するパス数の上限は特に規定しない 1S 前述のように仕上熱延パスは通常 8パス程度までである。
[0059] このようにして製造した熱延鋼板を酸洗後、最高到達温度を 500〜950°Cの範囲と する熱処理 (焼鈍)を行うことが好ましい。これによつて圧延方向のヤング率はより一 層向上する。この理由は定かではないが、熱延後の変態によって導入された転位が 、熱処理によって再配列することによるものと推測される。 最高到達温度が 500°C未満ではその効果が顕著ではなぐ一方、 950°Cを超える と α→γ変態が生じるため、結果として集合組織の集積が同じか弱くなり、ヤング率 も劣化の傾向となる。このため、 500°C、 950°Cをそれぞれ下限および上限とする。 この最高到達温度の範囲は、好ましくは 650°C以上 850°C以下である。この熱処理 の方法は特に限定するものでなぐ通常の連続焼鈍ラインや箱焼鈍、後述する連続 溶融亜鉛めつきラインなどで行えばょ 、。
[0060] 熱延鋼板に冷間圧延および熱処理 (焼鈍)を施しても構わな!/ヽ。冷延率は 60%未 満とする。冷延率を 60%以上とすると、熱延鋼板に形成されたヤング率を高める集 合組織が大きく変化し、圧延方向のヤング率が低下してしまうためである。
[0061] 熱処理は冷延終了後に施す。この熱処理の最高到達温度は 500〜950°Cの範囲 とする。 500°C未満ではヤング率の向上代が小さぐまたカ卩ェ性が劣位となる場合が あるので 500°Cを下限とする。
一方で、熱処理温度を 950°C超とすると →Ί変態が生じるため、結果として集合 組織の集積が同じか弱くなり、ヤング率も劣化の傾向となる。このため、 500°C、 950 °Cをそれぞれ下限および上限とする。この最高到達温度の好ましい範囲は、 600°C 以上 850°C以下である。
[0062] 前記熱処理後にー且 550°C以下、好ましくは 450°C以下まで冷却し、さらに 150〜 550°Cの温度で熱処理を施すことも可能である。これは、固溶 C量の制御やマルテン サイトの焼き戻し、ベイナイト変態の促進等の組織制御など、種々の目的に応じて適 当な条件を選択して行えば良 、。
[0063] 本実施形態の高ヤング率鋼板の製造方法によって得られる鋼板の組織は、フェラ イトまたはべイナイトを主相とする力 両相が混在していても構わないし、これらにマ ルテンサイト、オーステナイト、炭化物、窒化物を初めとする化合物が存在していても 良 、。すなわち要求特性に応じて組織を作り分ければ良 、。
[0064] (第 2の実施形態)
第 2の実施形態の鋼板は、質量%で、 C : 0. 0005-0. 30%、 Si : 2. 5%以下、 M n : 0. 1〜5. 0%、P : 0. 15%以下、 S : 0. 015%以下、 A1: 0. 15%以下、 N : 0. 01 %以下を含有し、さらに、 Mo : 0. 005〜1. 5%、 Nb : 0. 005〜0. 20%、 Ti : 48/1 4 X N (質量%)以上、 0. 2%以下、 B : 0. 0001-0. 01%のうち 1種または 2種以上 を合計で 0. 015〜1. 91質量%含有し、残部が Fe及び不可避的不純物力もなる。 板厚の 1Z8層における { 110}く 223 >及び Z又は { 110}く 111 >の極密度が 10 以上である。圧延方向のヤング率は 230GPa超である。
[0065] ここに、鋼組成を上述のように限定する理由について説明する。
Cは安価に引張強度を増加させる元素であるので、その添加量は狙いとする強度 レベルに応じて調整される。 Cを 0. 0005質量%未満とすると、製鋼技術上困難でコ ストアップとなるだけでなぐ溶接部の疲労特性が劣化するので、下限を 0. 0005質 量%とする。一方、 C量が 0. 30質量%を超えると成形性の劣化を招いたり、溶接性 を損なったりするので、上限を 0. 30質量%とする。
[0066] Siは固溶体強化元素として強度を増加させる働きがあることの他、マルテンサイトや ベイナイトさらには残留 γ等を含む組織を得るためにも有効であり、その添加量は狙 いとする強度レベルに応じて調整される。添加量が 2. 5質量%超となるとプレス成形 性が劣悪となったり、化成処理性の低下を招いたりするので、上限を 2. 5質量%とす る。なお、溶融亜鉛めつきを施す場合には、めっき密着性の低下、合金化反応の遅 延による生産性の低下などの問題が生ずるので 1. 2質量%以下とすることが好まし い。下限は特に設けないが、 0. 001質量%以下とするのは製造コストが高くなるので これが実質的な下限である。
[0067] Μηは γ相を安定ィ匕し、 γ域を低温まで拡張するので γ域低温圧延を容易にする 。また、表層近傍の剪断集合組織形成に Μη自体が有利に作用している可能性もあ る。これらの観点から、 Μηの添加量は 0. 1質量%以上が好ましぐより好ましくは 0. 5質量%以上、更に好ましくは 1. 5質量%以上である。一方、 5. 0質量%を超えると 強度が高くなりすぎて延性が低下したり、亜鉛めつきの密着性が阻害されたりするの で 5. 0質量%を上限とする。これ〖こより、 Μηの添加量は、好ましくは 2. 9〜4. 0質量 %である。
[0068] Ρは Siと同様に安価に強度を高める元素として知られており強度を増加する必要が ある場合にはさらに積極的に添加する。また、 Pは熱延組織を微細にし、加工性を向 上する効果も有する。ただし、添加量が 0. 15質量%を超えると、スポット溶接後の疲 労強度が劣悪となったり、降伏強度が増加し過ぎたりしてプレス時に面形状不良を引 き起こす。さらに、連続溶融亜鉛めつき時に合金化反応が極めて遅くなり、生産性が 低下する。また、 2次加工性も劣化する。したがって、その上限値を 0. 15質量%とす る。
Sは、 0. 015質量%超では熱間割れの原因となったり、加工性を劣化させるので、 0. 015質量%を上限とする。
Mo, Nb, Tiおよび Bは本発明において重要である。これらの元素の 1種又は 2種 以上の添カ卩によって、初めて圧延方向のヤング率を高めることが可能となる。この理 由は必ずしも明らかではないが、熱延中の再結晶が抑制され、 γ相の加工集合組織 が先鋭ィ匕することで、結果的に鋼板と熱延ロールとの摩擦に起因する剪断変形集合 組織にも変化が生じる。これにより熱延板の板厚表層から板厚 1Z4層近傍までの範 囲において、非常に先鋭な集合組織が形成され、圧延方向のヤング率が高くなる。 Mo, Nb, Tiおよび B量の下限はそれぞれ 0. 005質量0 /0, 0. 005質量0 /0, 48/14 X N質量0ん 0. 0001質量0ん望ましくは 0. 03質量0 /0、 0. 01質量0 /0、 0. 03質量 。に 0. 0003質量0 /0、更に望ましく ίま 0. 1質量0 /0、 0. 03質量0 /0、 0. 05質量0 /0、 0. 0006質量%である。これより少ない量の添加では、上述のヤング率向上効果が小さ くなつてしまうからである。
一方 Mo, Nb, Ti, Bをそれぞれ 1. 5質量%超、 0. 2質量%超、 0. 2質量%超、 0 . 01質量%超添カ卩してもヤング率の向上効果は飽和し、コストアップとなるので、 1. 5質量%、 0. 2質量%、 0. 2質量%、 0. 01質量%をそれぞれ Mo, Nb, Ti, Bの添 加量の上限とする。
また、これらの元素の合計の添加量が 0. 015質量%未満では、十分なヤング率向 上効果が得られないことから、 0. 015質量%を合計の添加量の下限とする。この観 点から望ましくは合計で 0. 035質量%以上、更に望ましくは合計で 0. 05質量%以 上添加する。合計添カ卩量の上限はそれぞれの添カ卩量の上限の和である 1. 91質量 %とする。
Mo, Nb, Ti, Bの間には相互作用があり複合添加することで更に集合組織が強く なり、ヤング率が上昇する。このことから、少なくとも 2種以上を複合添加することがより 望ましい。特に Tiは γ高温域で Nと窒化物を形成し、 BNの生成を抑制する。このた め、 Bを添加する場合は、 Tiも 48Z14 X N質量%以上添加することが望ましい。
[0070] また、 Mo, Nb, Ti, Bを全て含有し、それぞれの元素が、いずれも 0. 15質量%, 0 . 01質量%, 48Z14 X N質量%, 0. 0006質量%以上添加されていることが好まし い。この場合、集合組織が先鋭ィ匕し、特にヤング率を低減させる表層の { 110}く 00 1 >が減少し効果的なヤング率上昇がなされる。このため、高い L方向ヤング率が達 成される。
なお、これらの元素の同時添カ卩によるヤング率向上効果は、 Cとの組み合わせによ つてさらに助長される。したがって C量は、 0. 015質量%以上とすることが好ましい。
[0071] Mo, Nbおよび B量の下限は、それぞれ、 0. 15質量%、 0. 01質量%, 0. 0006 質量%とする。これより少ない量の添加では、上述のヤング率向上効果が小さくなつ てしまうからである。ただし、表層のヤング率だけを制御する場合には Moは 0. 1質量 %以上添加されていれば十分ヤング率向上効果が得られるのでこれを下限とする。 一方、 Mo, Nb, Bをそれぞれ 1. 5質量%超、 0. 2質量%超、 0. 01質量%超添カロし てもヤング率の向上効果は飽和し、コストアップとなるので、 1. 5質量%、 0. 2質量% 、 0. 01質量%をそれぞれ上限とする。
なお、これらの元素の同時添カ卩によるヤング率向上効果は、 Cとの組み合わせによ つてさらに助長される。したがって C量は、 0. 015質量%以上とすることが好ましい。
[0072] A1は脱酸調製剤として使用しても良い。ただし A1は変態点を著しく高め、低温 γ域 での圧延が困難となるので、上限を 0. 15質量%とする。 A1の下限は特に限定しない 力 脱酸の観点からは 0. 01質量%以上とすることが好ましい。
Νは Βと窒化物を形成し、 Βの再結晶抑制効果を低減させることから 0. 01質量%以 下に抑える。この観点力も望ましくは 0. 005質量%、更に望ましくは 0. 002質量% 以下とする。 Νの下限は特に設定しないが、 0. 0005質量%未満とすることにはコスト 力 Sかかるば力りでそれほどの効果が得られないこと力 0. 0005質量%以上とするこ とが望ましい。
[0073] 固溶 C量は、質量%で、 0. 0005-0. 004%とすること力 S好ましい。 Cを固溶した 鋼板が部材として加工されると、常温でも歪時効を生じ、ヤング率が高くなる。たとえ ば自動車用途に使用した場合、加工後塗装焼付処理を施すことで鋼板の降伏強度 のみならずヤング率も増加する。固溶 C量は、全 C量力も Fe、 Al、 Nb、 Ti、 Bなどの 化合物として存在する C量 (抽出残查の化学分析力 定量)を差し引いた値力 求め ることもできる。また、内部摩擦法や FIM (Field Ion Microscopy)によって求めても良 い。
固溶 Cが 0. 0005質量%未満では十分な効果を得ることができない。また、 0. 004 質量%を超えても BH性は飽和する傾向にあるので、 0. 004質量を上限とする。
[0074] 第 2の実施形態の鋼板では、前記組成に加えて、さらに、質量質量%で、 Ca : 0. 0 005〜0. 01質量%を含むことが好ましい。
Caは、脱酸元素として有用であるほか、硫化物の形態制御にも効果を奏するので 、 0. 0005-0. 01質量0 /0の範囲で添加しても良い。 0. 0005質量0 /0未満では効果 が十分でなぐ 0. 01質量%超添加するとカ卩ェ性が劣化するのでこの範囲とする。
[0075] また、質量%で、 Sn, Co, Zn, W, Zr, V, Mg, REMの 1種又は 2種以上を合計 で 0. 001〜1. 0質量%含有しても力まわない。特に Wと Vは γ域の再結晶を抑制す る効果があることから、それぞれ 0. 01質量%以上添加することが好ましい。ただし、 Zrは ZrNを形成するため固溶 Νが減少するので、 0. 01質量%以下とすることが好ま しい。
[0076] さらに、質量%で、 Ni, Cu, Crの 1種又は 2種以上を合計で 0. 001〜4. 0質量% 含むこととしてもよい。
Ni, Cu, Cr各々の添カ卩量の合計は、 0. 001質量%未満では顕著な効果が得られ ず、 4. 0質量%超添加するとカ卩ェ性が劣化する。
[0077] 次に、鋼板の集合組織、ヤング率、 BH量にっ 、て説明する。
第 2の実施形態の鋼板の集合組織にっ 、ては、板厚の 1Z8層における { 110}く 2 23 >及び Z又は { 110} < 111 >の極密度を 10以上とする。これによつて圧延方向 のヤング率を高めることが可能となる。前記極密度が 10未満の場合、圧延方向のャ ング率を 230GPa超とすることは困難である。前記極密度は、好ましくは 14以上、さら に好ましくは 20以上である。
これらの方位の極密度 (X線ランダム強度比)は、 X線回折によって測定される { 110 } , { 100} , {211 } , {310}極点図のうち複数の極点図を基に級数展開法で計算した 3 次元集合組織 (ODF)から求めればよい。すなわち、各結晶方位の極密度を求める には、 3次元集合組織の φ 2=45° 断面における(110) [2— 23]、(110) [1— 11] の強度で代表させる。
この極密度の測定は、第 1の実施形態にて記載された方法が適用される。 上記の極密度に関する限定は少なくとも板厚 1 Z8層については満足し、実際には 1Z8層のみならず、板厚表層から 1Z4層までの広い範囲で成り立つことが好ましい
[0078] 第 2の実施形態では、さらに板厚 1Z8層における { 110}く 001 > (上記 ODFの φ 2=45° 断面における(110) [001])方位の極密度を 3以下とすることが好ましい。こ の方位は圧延方向のヤング率を著しく低下させることから、この方位が 3超になると圧 延方向のヤング率が 230GPaを超えることが困難になる。この点を考慮すると、好まし くは 3以下、さらに好ましくは 1. 5未満である。
[0079] 板厚 1Z2層における {211}<011> (上記 ODFの φ 2=45° 断面における(112 ) [1— 10])の極密度は 6以上であることが好ましい。この方位が発達すると、圧延方 向(RD方向)に対して直角な幅方向(TD方向)にく 111 >方位が集積するため、 Τ D方向のヤング率が高くなる。この極密度が 6未満では TD方向のヤング率を 230GP a超とするのは困難であるので、これを下限とする。この極密度の好ましい範囲は 8以 上、さらに好ましい範囲は 10以上である。
[0080] また、板厚 1/2層における {332} < 113 > (上記 ODFの φ 2=45° 断面における
(332) [ 1 - 13])の極密度は圧延方向のヤング率には若干の寄与が期待できる。 したがって、この板厚 1/2層における {332}く 113 >の極密度は 6以上であることが 好ましぐより好ましくは 8以上、更に好ましくは 10以上である。
[0081] 更に、板厚 1Z2層における { 100} < 011 > (上記 ODFの φ 2=45° 断面におけ る(001) [1— 10])の極密度は、 45° 方向のヤング率を著しく低下させることから、 極密度を 6以下にすることが好ましい。この方位の極密度は、更に好ましくは 3以下で あり、最も好ましくは 1. 5以下である。
なお、以上で述べた結晶方位は、いずれも 2. 5° 〜+ 2. 5° の範囲以内のばら つきは許容するものである。
[0082] 鋼板の集合組織に関する特徴は、通常の逆極点図や正極点図だけでは表すこと ができな!/、が、たとえば鋼板の板面法線方向の結晶方位を表す逆極点図を板厚の 1 Z8層付近に関して測定した場合、各方位の面強度比 (X線ランダム強度比)は、 < 1 10> : 5以上、く 112 > : 2以上が好ましい。また、 1Z2層については、く 112> :4 以上、く 332 > : 4以上、く 100 > : 3以下が好ましい。
[0083] 鋼板のヤング率については、上述した板厚 1Z8層と 1Z2層における結晶方位の 極密度に関する要件を同時に満たすことで、圧延方向 (RD方向)だけでなぐ圧延 方向に対して直角の方向、すなわち幅方向(TD方向)のヤング率も同時に 230GPa 超とすることが可能となる。ヤング率の測定は、第 1の実施形態に記載された方法が 適用される。
[0084] 板厚の表層から 1Z8層における圧延方向のヤング率の下限値は 240GPaとするこ とが好ましい。これにより十分な形状凍結性改善効果が得られる。この表層から 1Z8 層における圧延方向のヤング率の下限値は 245GPaであることが更に好まぐ最も好 ましくは 250GPaである。上限値は特に限定しないが、 300GPa超にするためには他 の合金元素を大量に添加する必要があり、また、加工性等の他の特性が劣化するこ と力 、実質上 300GPa以下となる。また、表層のヤング率が 240GPaを超えていて も、その層の厚みが 1Z8厚未満では十分な形状凍結性向上効果が発揮されない。 高ヤング率を有する層の厚みが厚いほど、高い曲げ剛性が得られるのはいうまでもな い。
なお、表層のヤング率の測定は表層から 1Z8以上の厚みで試験片を切り出し、前 述の横振動法にて行う。
板幅方向の表層ヤング率は特に規定しな 、が、板幅方向の表層ヤング率が高 、ほ うが幅方向の曲げ剛性が上がることはいうまでもない。上述のような Mo、 Nb、 Ti、 B を全て含有し、それぞれの含有量が Mo : 0. 15〜: L 5%、Nb : 0. 01〜0. 20%、 Ti :48Z14 X N (質量0 /0)以上、 0. 2%以下、 B : 0. 0006-0. 01%である組成とし、 かつ板厚の 1Z8層における { 110}く 223 >及び Z又は { 110}く 111 >の極密度 力 S10以上であり、さらに板厚の 1Z8層における { 110} < 001 >の極密度が 3以下で ある集合組織とすることによって、幅方向の表層ヤング率も圧延方向と同様に 240G Paを超える。
[0085] 鋼板の BH量は、 5MPa以上であることが好ましい。すなわち、塗装焼付処理によつ て可動転位が固着されると、圧延方向(RD方向)のヤング率が向上するためである。 BHが 5MPa未満では、その効果が乏しぐまた、 BHが 200MPa超となっても格段の 効果が認められない。したがって、 BH量の範囲を 5〜200MPaとする。この BH量の より好ましい範囲は 30〜: LOOMPaである。
BH量は、第 1の実施形態にて記載された式 [4]で表される。
[0086] 次に、第 2の実施形態の鋼板の製造方法について述べる。
第 2の実施形態では、質量%で、 C : 0. 0005-0. 30%、 Si: 2. 5%以下、 Mn: 0 . 1〜5. 0%, P : 0. 15%以下、 S : 0. 015%以下、 Mo : 0. 15〜: L 5%, B : 0. 000 6〜0. 01%、 A1: 0. 15%以下、 Nb : 0. 01〜0. 20%、N : 0. 01%以下, Ti:48/ 14 X N (質量%)以上 0. 2%以下を含有し、残部が Fe及び不可避的不純物からなる スラブを 1000°C以上の温度に加熱して熱間圧延を施し、熱延鋼板とする工程を有 する。
熱間圧延に供するスラブは特に限定するものではない。すなわち、連続铸造スラブ や薄スラブキャスターなどで製造したものであればよい。また、铸造後に直ちに熱間 圧延を行う連続铸造—直接圧延 (CC— DR)のようなプロセスにも適合する。
この熱間圧延の工程では、熱延加熱温度を 1000°C以上とする。熱延加熱温度は 1000°C以上とする。これは、後述する熱延仕上温度を Ar変態点以上とするために
3
必要な温度である。
そして、圧延ロールと鋼板との摩擦係数が 0. 2超、下記式 [5]で計算される有効ひ ずみ量 ε *が 0. 4以上、かつ圧下率の合計が 50%以上の条件で熱間圧延を行う。 以上の条件は表層の剪断集合組織を発達せしめ、圧延方向のヤング率を高めるた めには必須の条件である。
[0087] [数 2] ε* = 〉 εゾ ex
[0088] ここで、 ηは仕上げ熱延の圧延スタンド数、 ε は j番目のスタンドで加えられたひず み、 ε は η番目のスタンドでカ卩えられたひずみ、 tは i〜i+ l番目のスタンド間の走行 時間(秒)、 て iは気体常数 R ( = 1. 987)と i番目のスタンドの圧延温度 T (K)によって 下記式 [6]で計算できる。
τ = 8. 46 X 10"9 X exp{43800/R/T }…… [6]
[0089] また、前記圧下率の合計 RTは、 nパスの圧延の場合、 1パス目〜nパス目までの各 圧下率を R1 (%)〜Rn (%)とすると、下記式 [7]で計算できる。
RT=R1 +R2 +…… +Rn …… [7]
ただし、 Rn= { (n— 1)パス後の板厚— nパス後の板厚 }Z(n— 1)パス後の板厚 X 100 (%)で表すことができる。
[0090] 前記有効ひずみ量 ε *は 0. 4以上であり、好ましくは 0. 5以上であり、より好ましく は 0. 6以上である。前記圧下率の合計は 50%以上であり、好ましくは 70%以上であ り、より好ましくは 100%以上である。
この熱間圧延の仕上温度は、 Ar変態点以上、 900°C以下とする。
3
仕上温度が Ar変態点未満では、圧延方向のヤング率にとって好ましくない { 100}
3
< 011 >集合組織が発達する。また仕上温度が 900°C超では、圧延方向に好ましい 剪 »合組織を板厚表層から板厚 1Z4層付近まで発達させることが困難である。こ の観点力 熱間圧延の仕上温度は、好ましくは 850°C以下、更に好ましくは 800°C 以下である。
熱延後の巻き取り温度は特に限定しないが、 400〜600°Cで巻き取るとヤング率が 向上する場合があるのでこの範囲で巻き取ることが好ましい。
[0091] 熱間圧延を実施する際には,圧延ロールの異周速率が 1%以上の異周速圧延を 少なくとも 1パス以上施すことが好ましい。これにより、表層近傍での集合組織形成が 促進されるため、異周速圧延を実施しない場合に比べて、よりヤング率を向上させる ことができる。この観点から異周速率を 1%以上とすることが好ましぐ更に好ましくは 5%以上であり、最も好ましくは 10%以上でで異周速圧延を行なうことが望ましい。 異周速率および異周速圧延パス数の上限は特に規定しないが、上記の理由から V、ずれも大き!/、方が大きなヤング率向上効果が得られることは言うまでもな 、。し力し 、 50%以上の異周速率は現状困難であり、仕上熱延パスは通常 8パス程度までであ る。
ここで本発明における異周速率とは、上下圧延ロールの周速差を低周速側ロール の周速で除した値を百分率で表示したものである。また、本発明の異周速圧延は、 上下ロール周速の 、ずれが大きくてもヤング率向上効果に差はな 、。
[0092] また、仕上熱延に使用する圧延機にロール径が 700mm以下のワークロールを一 つ以上使用することが好ましい。これにより、表層近傍での集合組織形成が促進され るので、使用しない場合に比べて、よりヤング率を向上させることができる。この観点 から、ワークロール径は 700mm以下とし、望ましくは 600mm以下、さらに望ましくは 500mm以下とする。ワークロール径の下限は特に規定しないが、 300mm以下にな ると通板制御が困難になる。小径ロールを使用するパス数の上限は特に規定しない 1S 前述のように仕上熱延パスは通常 8パス程度までである。
[0093] このようにして製造した熱延鋼板を酸洗後、最高到達温度の範囲を 500〜950°Cと する熱処理 (焼鈍)を行うことが好ましい。これによつて圧延方向のヤング率はより一 層向上する。この理由は定かではないが、熱延後の変態によって導入された転位が 、熱処理によって再配列することによるものと推測される。
最高到達温度が 500°C未満ではその効果が顕著ではなぐ一方、 950°Cを越える と α→γ変態が生じるため、結果として集合組織の集積が同じか弱くなり、ヤング率 も劣化の傾向となる。このため、 500°C、 950°Cをそれぞれ下限および上限とする。 この最高到達温度の範囲は、好ましくは 650°C以上 850°C以下である。 この熱処理の方法は特に限定するものではなぐ通常の連続焼鈍ラインや箱焼鈍、 後述する連続溶融亜鉛めつきラインなどで行えばよい。
[0094] 熱延鋼板に酸洗後、冷延および熱処理 (焼鈍)を施しても構わな!/ヽ。冷延率は 60 %未満とする。冷延率を 60%以上とすると、熱延鋼板に形成されたヤング率を高め る集合組織が大きく変化し、圧延方向のヤング率が低下してしまうためである。 熱処理は冷延終了後に施す。この熱処理の最高到達温度は 500〜950°Cの範囲 とする。 500°C未満ではヤング率の向上代が小さぐまた、加工性が劣位となる場合 があるので、 500°Cを下限とする。一方、熱処理温度を 950°C超とすると、 ο;→γ変 態が生じるため、結果として集合組織の集積が同じか弱くなり、ヤング率も劣化の傾 向となる。このため、 500°C、 950°Cをそれぞれ下限および上限とする。
この最高到達温度の好ましい範囲は、 600°C以上 850°C以下である。
[0095] 最高到達温度への加熱速度は特に限定しないが、 3〜70°CZ秒の範囲とすること が望ましい。加熱速度が 3°CZ秒未満では加熱中に再結晶が進行し、ヤング率向上 に有利な集合組織がくずれてしまう。 70°CZ秒超としても特段材料特性は変化しな V、ことからこの値を上限とするのが望ま 、。
[0096] 前記熱処理後にー且 550°C以下、好ましくは 450°C以下まで冷却し、さらに 150〜 550°Cの温度で熱処理を施すことも可能である。これは、固溶 C量の制御やマルテン サイトの焼き戻し、ベイナイト変態の促進等の組織制御など、種々の目的に応じて適 当な条件を選択して行えば良 、。
[0097] 本実施形態の高ヤング率鋼板の製造方法によって得られる鋼板の組織は、フェラ イトまたはべイナイトを主相とする力 両相が混在していても構わないし、これらにマ ルテンサイト、オーステナイト、炭化物、窒化物を初めとする化合物が存在していても 良 、。すなわち要求特性に応じて組織を作り分ければ良 、。
[0098] (第 3の実施形態)
第 3の実施形態では、前述した第 1, 2の実施形態の高ヤング率鋼板を有する溶融 亜鉛めつき鋼板、合金化溶融亜鉛めつき鋼板、高ヤング率鋼管、およびこれらの製 造方法の一例を説明する。
溶融亜鉛めつき鋼板は、第 1, 2の実施形態の高ヤング率鋼板と、この高ヤング率 鋼板に施された溶融亜鉛めつきと、を有する。この溶融亜鉛めつき鋼板は、前述した 第 1, 2の実施形態にて得られた焼鈍後の熱延鋼板、または冷間圧延して得られた 冷延鋼板に溶融亜鉛めつきすることによって製造される。
亜鉛めつきの組成は特に限定するものではなぐ亜鉛のほか、 Fe、 Al、 Mn、 Cr、 Mg、 Pb、 Sn、 Ni等を必要に応じて添カ卩しても構わない。 なお、冷延後に連続溶融亜鉛めつきラインにて熱処理および亜鉛めつきを行っても 構わない。
[0099] 合金化溶融亜鉛めつき鋼板は、第 1, 2の実施形態の高ヤング率鋼板と、この高ャ ング率鋼板に施された合金化溶融亜鉛めつきと、を有する。この合金化溶融亜鉛め つき鋼板は、前記溶融亜鉛めつき鋼板を合金化処理することによって製造される。 この合金化処理は 450〜600°Cの範囲で熱処理することにより行う。 450°C未満で は、合金化が十分に進行せず、また、 600°C超では、過度に合金化が進行し、めつ き層が脆ィ匕する。このため、プレス等の加工によってめつきが剥離するなどの問題を 誘発する。合金化処理の時間は、 10秒以上とする。 10秒未満では、合金化が十分 に進行しない。合金化溶融亜鉛めつき鋼板を製造する場合、熱延後は必要に応じて 酸洗し、その後インラインまたはオフラインで圧下率 10%以下のスキンパスを施して も良い。
[0100] 高ヤング率鋼管は、第 1, 2の実施形態の高ヤング率鋼板を有し、前記高ヤング率 鋼板が任意の方向に巻かれた鋼管である。例えばこの高ヤング率鋼管は、前述した 第 1, 2の実施形態の高ヤング率鋼板を、圧延方向が鋼管の長手方向との間の角度 力^〜 30° 以内になるように巻いて鋼管にすることによって製造される。これにより鋼 管の長手方向のヤング率が高い高ヤング率鋼管を製造できる。
圧延方向と平行に巻くのが最もヤング率が高くなることから、この角度は出来るだけ 小さいことが好ましい。この観点から、 15° 以下の角度で巻くことが更に好ましい。圧 延方向と鋼管の長手方向の関係が満足されていれば、造管方法は UO管、電縫溶 接、スノィラル等、任意の方法をとることができる。もちろん、ヤング率の高い方向を 鋼管の長手方向に平行な方向に限定する必要はなく、用途に応じて任意の方向に ヤング率の高 、鋼管を製造しても何ら問題はな!/、。
[0101] なお、前記した高ヤング率鋼管には A1系めつきや各種電気めつきを施しても構わな い。さらに、溶融亜鉛めつき鋼板、合金化溶融亜鉛めつき鋼板、高ヤング率鋼管には 、有機皮膜、無機皮膜、各種塗料などの表面処理を目的に応じて行うことができる。 実施例
[0102] 次に本発明を実施例にて説明する。 第 1, 3の実施形態に係る実施例を以下に示す。
(実施例 1)
表 1, 2に示す組成を有する鋼を溶製し、表 3, 4に示す条件で熱間圧延を施した。 このとき加熱温度は全て 1250°Cとした。全 7段力もなる仕上圧延スタンドにおいて最 終の 3段はロールと鋼板との摩擦係数を 0. 21-0. 24の範囲とし、最終 3段の合計 の圧下率を 70%とした。調質圧延圧下率はすべて 0. 3%とした。
ヤング率の測定は上述した横共振法により測定した。 JIS5号引張試験片を採取し て TD方向の引張特性を評価した。また、板厚 1Z8層における集合組織を測定した 結果を表 3, 4に示す。これより明らかなとおり、本発明の化学成分を有する鋼を適 正な条件で熱間圧延した場合には、圧延方向のヤング率を 230GPa超とすることが できた。
ここで、実施例の表中、 FTは熱間圧延の最終仕上出側の温度、 CTは巻き取り温 度、 TSは引張強さ、 YSは降伏強さ、 E1は伸び、 E (RD)は RD方向のヤング率、 E ( D)は、 RD方向に対して 45° 方向のヤング率、 E (TD)は TD方向のヤング率をそれ ぞれ示す。これらの指標は、以後の表の説明において共通する。
[表 1]
/ O ssno900zAV/vu-fssooifcld οε
寸 CD 0) CO CM o LO 卜 寸 00 CD 寸
CM CM CM CO 00 CO CM 00 CM CNJ CO
z 〇 〇 〇 o 〇 〇 o 〇 〇 〇 〇 〇 〇 〇 〇 ο 〇 〇 〇 o 〇 〇 〇 〇 〇 〇
d d 〇 〇' d d d 〇· d ό d d d
CO CO CM 〇 寸 LO 〇 卜 00
< CO IN CO CM CM CO CM 00 CD 00 CO CO CO
〇 〇 〇 〇 〇 〇 〇 o 〇 CO 〇 〇 〇 〇 〇■ d 〇 d o o ό d d d o d d
CM LO 寸 卜 寸 CD 〇 〇 00 卜 00
CM CO 00 CO CM CM CM LO
〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 o 〇 〇 〇 〇 〇 〇 〇 〇 〇 d d 〇 〇' ό d ό 〇· ό d 〇· d ό ό
〇 00 10 CD 卜 〇 in C
〇 〇 〇 〇 o
Q_ 〇 〇 〇 o
〇 〇 〇 〇 〇 〇 〇 〇 〇 δ 〇 〇 〇 〇 〇' ό o ό ό d ό ό ό d 〇■ 〇· d d c 寸 m 寸 (D CO 00 寸 〇 寸 O 〇 CNJ Έ 〇 寸 CO CNJ CO ID 〇 〇 〇 CD
00 寸- 00 CO CO CO O CO CQ CQ 〇'
CNJ 10 σ> 寸 00 OJ 寸
ω 〇 〇 〇 δ 〇 〇 〇 LO o 00 o CNJ 〇 δ
〇· ο' ό ό 〇' o 〇· 〇' 〇· ό 〇' ό d d
〇 寸 (D 卜
寸 寸 CO 寸 〇 〇 CO CNJ 〇 〇 CD
o 〇 〇 〇 〇 L LO LO 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇' 〇 〇' 〇' ό d d 〇· 〇' o o ό o ό
0Q
Ha1 < 〇 UJ LL CD X ― つ _l z
6 OOO' u0s 01
/ O ssno900iAV/v:>d /J/-20sooifcl _ε.
Figure imgf000033_0001
^fi0ΐο3
試料 鋼 FT CT TS YS El E(RD) E(D) {1 10} 備考
No. No. (°C) (°C) (MPa) (MPa) (%) (GPa) (GPa) <1 1 1〉
1 840 500 525 377 29 216 195 228 5 3 比較例
2 A 770 500 568 424 26 225 196 229 9 5 比較例 本発明
3 700 500 607 459 23 234 192 231 13 1 0
4 880 400 491 354 30 220 202 226 5 4 比較例
5 B 700 400 563 495 13 209 190 229 8 5 比較例
6 580 400 722 683 了 198 195 218 2 3 比較例
7 900 550 476 321 32 2 9 208 222 4 3 比較例
8 C 800 550 495 338 30 223 201 225 6 4 比較例
9 700 550 544 504 1 1 190 220 225 4 2 比較例
1 0 800 650 550 41 2 26 223 197 240 8 5 比較例 本発明
1 1 D 740 600 572 429 25 242 194 236 16 15
例 本発明
1 2 680 500 609 460 21 242 189 243 23 19
例 本発明
1 3 730 580 988 746 12 236 192 240 19 14
E 本発明
1 4 700 550 1003 728 1 1 242 195 240 22 16
1 5 550 400 1 1 10 650 13 208 203 237 6 6 比較例
1 6 790 600 925 688 12 2 5 204 230 4 3
ο ω 比較例
1 7 F 710 550 977 651 13 224 199 232 6 4 比較例
1 8 600 400 046 622 14 195 193 229 4 3 比較例
1 9 850 550 910 了 63 14 221 21 1 228 5 3 比較例
2 0 G 760 550 934 779 13 217 212 224 4 3 比較例
2 1 720 550 951 807 13 220 204 222 4 3 比較例
2 2 800 650 1 243 1089 9 228 196 241 8 6 比較例
2 3 H 690 550 1 286 1 101 8 248 191 243 26 本発明
22
例 本発明
2 4 650 500 1355 1 162 7 251 186 245 30 23
例 4]
Figure imgf000035_0001
[0107] (実施例 2)
実施例 1の熱延鋼板のうち Eおよび Lについて、連続焼鈍(700°Cにて 90秒保持) 、箱焼鈍(700°Cにて 6hr保持)および連続溶融亜鉛めつき(最高到達温度を 750°C とし、亜鉛めつき浴に浸漬後 500°Cで 20秒秒間の合金化処理を実施)を施し、引張 特性とヤング率を測定した。
結果を表 5に示す。これから明らかなとおり、本発明の化学成分を有する鋼を適正 な条件で熱延し、さらに適切に熱処理することによってヤング率が向上する。
[0108] [表 5] 鋼 FT CT 熱延後 TS YS BH E(RD) E(D) {110} {110}
備考 No. (°C) (。c) の処理 (MPa) (MPa) (MPa) (GPa) (GPa) く 223〉 く 111> 本発明
43 E 了 00 550 無し 1003 728 11 68 242 195 240 22 16
例 本発明
44 E 700 550 連続焼鈍 980 了 51 11 95 245 196 242 20 17
例 本発明
45 E 700 550 箱焼鈍 943 了了 7 12 56 250 19了 242 16 11
例 liffijTS金化
本発明
46 E 700 550 溶融亜鉛 966 722 12 74 244 196 243 19 15
例 めっき
本発明
4了 し 了 00 550 無し 了了 2 652 16 60 243 192 241 21 18
例 g Lu 本発明
48 し 700 550 連続焼鈍 了 45 614 18 89 248 193 243 19 16
例 本発明 し 700 550 箱焼鈍 712 633 20 47 252 195 246 17 12
例 連続合金化
本発明
50 し 了〇〇 550 溶融亜鉛 了 39 620 19 66 249 195 242 18 15
例 めっき
[0109] (実施例 3)
実施例 1の熱延鋼板のうち Eおよび Lについて、圧下率 30%の冷間圧延後、連続 溶融亜鉛めつき(最高到達温度を種々変化させ、亜鉛めつき浴に浸漬後、 500°Cで 20秒間の合金化処理を実施)を施し、引張特性とヤング率を測定した。
結果を表 6に示す。これから明らかなとおり、本発明の化学成分を有する鋼を適正 な条件で熱延冷延し、さらに適切に熱処理することによって、 RD方向および TD方向 のヤング率に優れた冷延鋼板を得ることが可能である。ただし、最高到達温度が著し く高い場合にはヤング率も僅かではあるが低下した。
[0110] [表 6]
取 f=]
鋼 FT CT 泠延率 ΐ TS YS El BH E(RD) E(D) E(TD) {110} {110}
tst 備考
No. No. (°c) (°c) ( ) (MPa) (MPa) (Mpa) (GPa) (GPa) (GPa) 223〉 <111>
(°C) (%)
51 E 700 550 30 960 1058 784 10 53 231 194 233 11 8 本発明例
52 E 700 550 30 800 1181 695 13 94 237 198 235 14 10 本発明例
53 E 700 550 30 700 964 665 13 69 239 197 237 19 15 本発明例
54 し 700 550 30 970 810 679 15 57 231 199 232 11 7 本発明例
55 し 了 00 550 30 800 774 519 18 71 238 195 240 15 9 本発明例
56 L 700 550 30 700 了 11 536 18 65 240 194 239 16 11 本発明例
[0111] (実施例 4)
実施例 1の熱延鋼板のうち Eおよび Lについて以下の処理を行った。
連続溶融亜鉛めつきラインにて鋼板を 650°Cまで加熱し、約 470°Cまで冷却後、 4 60°Cの溶融亜鉛浴に浸漬した。亜鉛の目付け厚は平均で片面 40g/m2とした。溶 融亜鉛めつきに引き続き、以下のようにして鋼板表面に(1)有機被覆や (2)塗装を施 し、引張特性とヤング率を測定した。
結果を表 7に示す。これから明らかなとおり、溶融亜鉛めつきを施した鋼板、さらに は表面に有機皮膜や塗料を付与したものも良好なヤング率を有することが分力る。
[0112] (1)有機皮膜
榭脂固形分 27. 6mass%、分散液粘度 1400mPa's(25。C)、 pH8. 8、カルボキシ ル基のアンモ-ゥム塩(— COONH )の含量が榭脂固形分全体の 9. 5mass%、力
4
ルポキシル基含量が榭脂固形分全体の 2. 5mass%、分散粒平均直径が約 0. 030 mである水性榭脂に、 4mass%の腐食抑制剤、 12%のコロイダルシリカを添カ卩して 防鲭処理液を作製した。この防鲭処理液を上記の鋼板にロールコータにより塗布し、 鋼板の表面到達温度 120°Cとなるように乾燥し、約 1 μ m厚の皮膜を形成させた。
[0113] (2)塗装
脱脂した上記鋼板上にロールコーターにて化成処理として日本パーカライジング社 製の「ZM1300AN」を塗布した。そして到達板温が 60°Cとなるような条件で熱風乾 燥させた。化成処理の付着量は、 Cr付着量で 50mgZm2とした。更に、化成処理を 施した鋼板の片面にプライマー塗料を、他方の面に裏面塗料を、ロールコーターに てそれぞれ塗装した。そして熱風を併用した誘導加熱炉にて乾燥硬化させた。このと きの到達温度は 210°Cとした。
更にプライマー塗料を塗装した面上にトップ塗料をローラー力一テンコータにて塗 装した。そして熱風を併用した誘導加熱炉にて、到達温度 230°Cにて乾燥硬化させ た。なお、プライマー塗料は日本ファインコーティングス社製の「FL640EUプライマ 一」を用いて乾燥膜厚にして 5 μ m塗装した。裏面塗料は日本ファインコーティングス 社製の「FL100HQ」を用いて、乾燥膜厚で 5 m塗装した。トップ塗料は日本フアイ ンコーティングス社製の「FL100HQ」を用いて、乾燥膜厚で 15 m塗装した。 鋼 FT CT TS YS El E(RD) E(D) E(TD) {110}
表面処理
No. No. (°C) (°C) ( Pa) (MPa) (GPa) (GPa) (GPa) <111> 備考 溶融亜鉛
5了 E 700 550 1010 775 11 237 194 239 18 15 本発明例
めっきのみ
58 E 了 00 550 有機皮膜 1016 763 11 240 196 240 19 14 本発明例
59 E 700 550 塗装 1042 822 10 245 200 243 18 15 本発明例
溶融亜鉛
60 し 700 550 了 81 654 15 238 192 238 16 12 本発明例
めっきのみ
61 し 700 550 有機皮膜 789 679 14 239 194 240 16 11 本発明例
62 し 700 550 塗装 838 707 13 247 203 246 17 12 本発明例
0114 [0115] (実施例 5)
表 1に示した鋼 Eと Lを用いて異周速圧延を行った。周速率は全 7段力もなる仕上 げ圧延スタンドにおいて最終の 3段で変化させた。熱延条件及び引張特性とヤング 率の測定結果を表 8に示す。なお、表 8で表示されていない熱延条件は全て実施例 1と同様である。
これから明らかなとおり、本発明の化学成分を有する鋼を適正な条件で熱延する際 に 1%以上の異周速圧延を 1パス以上加えると、表層近傍での集合組織形成が促進 され、更にヤング率が向上する。
[0116] [表 8]
異周速率( %)
試料 鋼 FT CT TS YS El E(RD) E(D) E(TD) {110} {110}
備考
No. No. (°c) (°C) (MPa) (MPa) (%) (GPa) (GPa) (GPa) <223>く 111>
5 IV I 6ハ。ス 7 I
63 E 700 550 〇 〇 0 1003 728 11 242 195 240 22 16 本発明例
64 E 700 550 〇 0 3 1005 733 11 245 193 240 24 18 本発明例
65 E 700 550 1 2 3 1011 了 29 10 24了 188 242 25 19 本発明例
66 E 700 550 10 5 5 1009 731 12 253 186 246 31 25 本発明例
67 し 700 550 0 0 0 772 652 16 243 192 241 21 18 本発明例
68 し 700 550 3 3 3 773 655 15 245 189 242 24 18 本発明例
69 し 700 550 0 0 10 775 650 15 249 190 244 26 19 本発明例 了 0 L 700 550 0 20 20 772 653 15 256 186 248 31 26 本発明例
[0117] (実施例 6)
表 1に示した鋼 Eと Lを用いて小径ロール圧延を行った。ロール径は全 7段からなる 仕上げ圧延スタンドにおいて最終の三段で変化させた。熱延条件および引張特性と ヤング率の測定結果を表 9に示す。なお、表 9で表示されていない熱延条件は全て 実施例 1と同じである。
これから明らかなとおり、本発明の化学成分を有する鋼を適正な条件で熱延する際 にロール径が 700mm以下のロールを 1パス以上使用すると、表層近傍での集合組 織形成が促進され、更にヤング率が向上する。
[0118] [表 9]
ロール侄 (mm)
鋼 FT CT TS YS El E(D) E(TD) {110} {110}
備考
No. No. (°c) (°c) (MPa) (MPa) (%) (GPa) (GPa) く 223〉 <111>
5 ス
71 E 700 550 800 800 800 1003 728 11 242 195 240 22 16 本発明例
72 E 700 550 800 800 600 1011 736 10 246 190 242 24 19 本発明例
73 E 700 550 600 600 600 1009 725 11 251 187 244 28 21 本発明例
74 E 700 550 500 500 500 998 733 10 255 186 243 33 24 本発明例
75 し 700 550 800 800 800 772 652 16 243 192 241 21 19 本発明例
76 し 700 550 800 800 600 783 658 14 247 189 243 25 17 本発明例
77 し 700 550 600 600 600 779 655 15 250 188 242 2了 20 本発明例
78 し 700 550 500 500 500 768 649 16 253 186 245 30 25 本発明例
[0119] (実施例 7)
次に、第 2, 3の実施形態に係る実施例を以下に示す。
表 10〜 13に示す組成を有する鋼を溶製し、表 14〜 19に示す条件で熱間圧延を 施した。このとき加熱温度は全て 1230°Cとした。全 7段力もなる仕上圧延スタンドに おいて最終の 3段はロールと鋼板との摩擦係数を 0. 21-0. 24の範囲とし、最終 3 段の合計の圧下率を 55%とした。調質圧延圧下率はすべて 0. 3%とした。
ヤング率の測定は上述した横共振法により測定した。 JIS5号引張試験片を採取し て TD方向の引張特性を評価した。また、板厚 1Z8層および板厚 7Z16層における 集合組織を測定した。
結果を表 14〜19に示す。なお、表 15は、表 14に続く表であり、表 17は、表 16に 続く表である。また表 19は表 18に続く表である。表とその表に続く表において、同一 の行に記載された値は同一のサンプルに関する数値を示す。このことは、明細書中、 以後の表においても共通する。また、表中、下線を付された値は、本発明の範囲外 の値であることを示している。この指標は、以後の表の説明において共通する。
表 14〜19からより明らかなとおり、本発明の化学成分を有する鋼を適正な条件で 熱間圧延した場合には、圧延方向のヤング率を 230GPa超とすることができた。
[0120] [表 10]
Figure imgf000046_0001
1]
Figure imgf000047_0001
鋼 Ar3
Nb Ti ΤΪ-48/14ΧΝ Mo+Nb+B+Ti その他
No. (°c) 備考
A 0.015 0.04 0.031 0.2560 756 本発明鋼
B 0.023 0.025 0.014 0. 988 903 比較鋼
C 0.042 0.031 0.017 0.3了 42 Cr: 0.2 641 本発明鋼
D 0.031 0.023 0.008 0.2341 906 比較鋼
E 0.023 0.023 0.01 1 0.2983 820 本発明鋼
F 0.028 0.01 8 0.005 0.4676 V: 0.04 995 比較鋼
G 0.025 0.023 0.010 0.0600 Cu: 0.3 701 本発明鋼
H 0.006 0.000 -0.010 0.0062 922 比較鋼
1 0.006 0.230 0.215 0.2416 876 比較鋼
J 0.000 0.000 -0.01 2 0.0000 840 比較鋼
K 0.044 0.042 0.030 0.4091 688 本発明鋼 し 0.025 0.053 0.042 0.6098 5了 4 本発明鋼
M 0.004 0.004 -0.01 0 0.0088 Ca: 0.003 了 48 比較鋼
N 0.014 0.029 0.021 0.6646 563 本発明鋼
O 0.020 0.015 0.008 0.0358 W: 0.03 643 本発明鋼
P 0.038 0.023 0.015 0.0622 742 本発明鋼
Q 0.095 0.01 9 0.01 1 0.1 1 51 852 本発明鋼
CD oo CO to ID CD 卜 0) 〇 〇 〇 〇 ο 〇 〇 〇 〇 CM CM 〇 00 o o 〇 〇
CO 〇 〇 〇 〇 〇 〇 〇 〇 o 〇 〇 〇 〇 ο 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 ο
6 ό d 〇' d 〇· d d d 〇 ό d ό d ό
CM CD ID 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 ο o 00 〇 oo CM 寸 卜 〇 〇 〇 〇 〇 ο Έ 〇 o — 〇 〇 〇 〇 〇 〇 ID ο ό d d d 〇' O d 〇· d d ό d d d ό
00 00 O LO 〇 CO 寸
CM CM CM CM CM C
Z 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 d d d d 〇· O 〇' 〇· d 〇' 〇· d d o ό
10 CM 寸 00 CO 〇 CO CSJ CD 00
CO CO 寸 寸 CO O CO 寸 ZOO C CO 寸 CD 00
〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 d 6 d ο' d O d ό d d ο' 〇· d d 〇'
CsJ 〇 00 CD LO CM 卜 〇 CM CO CO 寸 寸 CO LO CO CM CD 10 寸 CM 00 ID ω 〇 〇 〇 〇 〇 〇 〇 〇 〇 o 〇 〇 〇 〇 o 〇 〇 〇 〇 〇 〇 〇 〇 〇 o 〇 〇 〇 〇
〇· d d O d O d ό d d d d d ό ο'
00 〇 O OO CO CO 00 〇 CO CO CD (Μ
〇 〇 〇 〇 〇 〇 〇
Q. 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 o 〇 〇 〇 〇 o* d d d d d d d d d d d d O ο· 匚 〇 卜 〇 CM 卜 CO 〇 〇 00 00 CM CO 00 〇
CM in 〇 LO 00, 卜 0) C\J 0 CD 寸 CO 〇' CM' ( * ό CM'
〇 〇 M 〇 〇 CO ( 〇 00 CM 00 〇 ω 00 〇 〇 CD 〇 〇 卜 〇 〇 o 〇 寸 〇 d o d 〇· d o* d d 〇· d d d 〇■ ο· 〇■
CM 00 卜 (D CO 〇 oo 卜 〇 00 ID o O 寸 CO 寸 00 CO 寸 CO 寸 寸 CO CM 寸 O 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 Ο
6 ό d d ό d ό d d d 〇' d O ο' ο' 卜 D > 5 X > N < 〇 Q ID LL 2 < < < < < <
Figure imgf000049_0001
s¾0123l
Figure imgf000050_0001
15] 板厚 1/8層における集合組織 板厚中心層における集合組織 試料 No. 備考
{110}<223> {110K111〉 {110}<001> {211}<011> 32}く 113〉 {100 011>
79 13 13 1 9 10 4 本発明例
80 12 12 1 11 1 3 本発明例
81 6 7 2 5 4 2 比較例
82 6 6 7 4 5 4 比較例
83 7 8 9 6 5 5 比較例
84 16 17 4 11 13 1 本発明例
85 18 18 2 10 11 1 本発明例
86 8 7 8 8 7 5 比較例
8了 8 8 7 7 5 2 比較例
88 7 6 5 6 5 3 比較例
89 12 12 1 8 11 1 本発明例
90 11 12 1 10 10 3 本発明例
91 6 6 5 5 5 6 比較例
92 4 4 5 6 5 5 比較例
93 4 4 3 6 6 6 比較例
94 15 14 0 13 11 1 本発明例
95 11 13 1 10 8 1 本発明例
96 8 8 6 11 8 7 比較例
Ar3 FT CT El E(RD) E(D) E(TD) 試料 No. 鋼 TS YS
No. (。c) (°c) (。c) (MPa) (MPa) (%) (GPa) (GPa) (GPa)
9 7 0.45 860 550 635 502 20 195 198 221
H 922
9 8 0.52 700 550 662 508 18 203 203 21 5
9 9 0.56 850 600 了 20 550 16 21 2 205 217
I 876
1 00 0.28 800 600 了 42 552 15 218 200 221
1 0 1 0.43 780 450 715 521 25 210 202 223
J 840
1 0 2 0.44 91 0 450 698 516 24 21 5 212 218
1 0 3 0.56 750 500 890 688 1 4 247 198 243
1 04 K 688 0.49 850 550 875 670 15 245 203 240
1 0 5 0.3 880 500 865 670 13 206 203 209
1 0 6 0.5 700 550 942 730 12 251 212 240
1 07 し 574 0.5 850 550 925 了 12 10 248 210 240
1 0 8 0.29 830 550 899 689 9 220 195 225
1 0 9 0.51 820 600 860 660 1 1 223 21 1 235
M 了 48
1 1 0 0.37 930 600 851 653 1 210 206 221
1 1 1 0.46 780 500 1 121 889 8 253 201 248
1 1 2 N 563 0.43 850 500 1 101 895 6 250 207 241
1 1 3 0.38 920 500 1098 882 5 225 205 223
板厚 1/8層における集合組織 板厚中心層における集合組織 試料 No. 備考
{110}<223> {110}<111> {110}<001> {211K011> {332K113> {100 011>
97 5 5 4 4 4 2 比較例
98 8 8 10 7 6 8 比較例
99 7 7 6 9 4 7 比較例
100 8 8 6 7 5 8 比較例
101 7 7 5 8 5 8 比較例
102 6 6 4 5 4 5 比較例
103 15 16 5 13 11 4 本発明例
104 15 15 3 13 12 5 本発明例
105 5 5 5 5 3 7 比較例
106 18 19 0 17 15 0 本発明例
107 17 17 0 15 14 0 本発明例
108 9 8 7 7 8 10 比較例
109 9 9 5 10 7 2 比較例
110 5 5 3 8 4 9 比較例
111 21 22 0 15 18 0 本発明例
112 18 18 0 13 15 0 本発明例
113 6 5 2 7 4 6 比較例
試料 o. FT CT TS YS El E(RD) E(D) E(TD) 鋼 No, Ar3
(°C) ε * (°c) (°c) (MPa) (MPa) (%} (GPa) (GPa) (GPa)
1 1 4 O 643 0.42 880 650 892 743 10 233 200 239
1 1 5 P 了 42 0.45 870 600 598 445 22 238 197 235
1 1 6 Q 852 0.5 880 550 了 85 695 18 245 203 241
1 1 7 R 692 0.43 830 550 859 773 12 232 205 239
1 1 8 S 801 0.41 850 500 594 4了 5 25 235 208 235
1 1 9 T 838 0.44 880 600 481 385 30 240 199 240
1 20 u 775 0.49 790 500 696 556 23 243 202 239
1 2 1 V 796 0.56 810 550 719 559 20 241 . 205 239
1 2 2 w 864 0.51 890 600 762 553 21.04 245 208 241
1 2 3 X 777 0.42 830 600 592 474 20 239 193 235
1 2 4 Y 703 0.43 860 500 721 577 17 247 190 242
1 2 5 z 776 0.49 880 550 了了 9 657 15 243 200 243
1 2 6 AA 837 0.44 870 500 463 298 26 239 203 237
1 2 7 AB 819 0.42 840 450 502 402 24 237 201 237
1 2 8 AC 770 0.44 830 550 604 522 25 233 194 239
1 2 9 AD 795 0.52 800 250 562 326 26 237 203 239
1 3 0 AE 731 0.48 820 450 745 596 20 239 208 239
1 3 1 AF 825 0.5 890 550 652 495 15 241 200 23了
s¾¾l012 板厚 1/8層における集合組織 板厚中心層における集合組織
試料 No. 備考
{110}<223> {110}<111〉 {110}<001> {211K011> {332}<113> {100}<011>
114 17 17 6 8 8 5 本発明例
115 15 16 5 11 11 4 本発明例
116 15 16 2 10 13 2 本発明例
117 13 14 6 8 10 6 本発明例
118 18 16 4 9 7 3 本発明例
119 12 12 1 12 9 1 本発明例
120 15 15 2 13 11 4 本発明例
121 16 15 1 10 13 2 本発明例
122 13 14 0 10 15 1 本発明例
123 14 13 1 9 11 3 本発明例
124 18 19 1 12 10 1 本発明例
125 17 16 0 9 8 1 本発明例
126 14 15 3 10 11 2 本発明例
127 13 13 3 8 8 4 本発明例
128 16 16 4 11 11 6 本発明例
129 15 14 3 13 13 5 本発明例
130 11 11 3 1 11 4 本発明例
131 13 13 2 15 14 2 本発明例
[0130] (実施例 8)
表 10, 11における鋼 No. Cおよび Lの組成を有する鋼スラブを溶製し、表 20に示 す条件で熱間圧延を施した。スラブの加熱温度は全て 1230°Cとした。他の圧延条 件については、全 7段力 なる仕上圧延スタンドにおいて最終の 3段はロールと鋼板 との摩擦係数を 0. 21-0. 24の範囲とし、最終の 3段の合計の圧下率を 55%とした 。調質圧延圧下率はすべて 0. 3%とした。また、 Arは表 14, 16の場合と同様とした
3 圧延後、連続焼鈍(700°Cにて 90秒保持)、箱焼鈍(700°Cにて 6hr保持)、連続 溶融亜鉛めつき(最高到達温度を 750°Cとし、亜鉛めつき浴に浸漬後 500°Cで 20秒 間の合金化処理を実施)の何れかの処理を施し、引張特性とヤング率を測定した。 結果を表 20, 21に示す。なお、表 21は,表 20に続く表である。これから明らかなと おり、本発明の化学成分を有する鋼を適正な条件で熱延し、さらに適切に熱処理す ることによって、ヤング率が向上する。
[0131] [表 20]
鋼 FT CT TS YS El BH E(D) E(TD) ε*
No. 熱延後の処理
No. CO CO (MPa) (MPa) ( ) (MPa) (GPa) (GPa)
1 32 C 0.51 870 500 無し 585 489 20 47 245 201 242
1 33 C 0.51 870 500 連続焼鈍 556 442 23 65 243 203 240
1 34 c 0.51 870 500 箱焼飩 530 418 25 48 248 201 243 連続合金化溶融
35 c 0.51 870 500 549 418 22 62 241 201 240 亜鉛めつき
1 36 し 0.5 850 550 無し 925 712 10 62 248 210 240
1 37 し 0.5 850 550 連続焼鈍 898 716 14 79 245 211 242
138 し 0.5 850 550 箱焼鈍 867 694 15 52 251 208 247 連続合金化溶融
1 39 し 0.5 850 550 882 694 12 60 245 208 246 亜鉛めつき
,^ ^違SSS?S, ^†¾¾^υ^¾πHrlo ι i No. o22Qπ
室)〕01339 試料 板厚 1 /8層における集合組織 板厚中心層における集合組織
備考
No.
{110}<223> {110}<111〉 {110}<001> {211}<011> 32}く 113〉 {100}<011>
132 16 1了 〇 11 13 1 本発明例
133 17 16 0 11 10 1 本発明例
134 17 18 〇 13 12 0 本発明例
135 16 16 0 11 11 0 本発明例
136 17 17 0 15 14 〇 本発明例
13了 18 1了 〇 14 13 0 本発明例
138 19 18 0 14 15 〇 本発明例
139 17 19 〇 15 13 0 本発明例
0132 す条件で熱間圧延を施した。スラブの加熱温度は全て 1230°Cとした。他の圧延条 件については、全 7段力 なる仕上圧延スタンドにおいて最終の 3段はロールと鋼板 との摩擦係数を 0. 21-0. 24の範囲とし、最終の 3段の合計の圧下率を 55%とした 。調質圧延圧下率はすべて 0. 3%とした。また、 Arは表 14, 16の場合と同様とした
3 熱間圧延後、冷間圧延を行い、更に連続溶融亜鉛めつき (最高到達温度を種々変 化させ、亜鉛めつき浴に浸漬後 500°Cで 20秒間の合金化処理を実施)を施した。そ して、引張特性とヤング率を測定した。
結果を表 22, 23に示す。なお、表 23は,表 22に続く表である。これから明らかなと おり、本発明の化学成分を有する鋼を適正な条件で熱延冷延し、さらに適切に熱処 理することによって、 RD方向および TD方向のヤング率に優れた冷延鋼板を得ること が可能である。ただし、最高到達温度が著しく高い場合にはヤング率もわずかではあ るが低下した。
[表 22]
取向
鋼 FT CT 冷延率 TS YS El BH E(RD) E(D) E(TD) ε *
No. No. rc) ro (%) ro (MPa) (MPa) (%) (MPa) (GPa) (GPa) (GPa) 4 0 C 0.51 870 500 52 970 61 3 492 17 53 239 21 1 238
1 4 1 C 0.51 870 500 52 830 600 478 20 82 244 203 243
1 4 2 c 0.51 870 500 52 750 589 469 21 65 245 201 203
1 4 3 し 0.5 850 550 30 970 1 008 789 8 62 239 21 1 241
1 4 4 し 0.5 850 550 30 830 976 761 10 78 242 2〇了 238 4 5 し 0.5 850 550 30 750 949 736 1 1 61 240 203 242
試料 板厚 1 /8層における集合組織 板厚中心層における集合組織
No. 備考
{110}<223> {110}<111〉 {110}<001> {211}く 011〉 {332K113> {100 011>
140 15 14 0 10 10 2 本発明例
141 1了 1了 0 11 12 2 本発明例
142 16 1了 1 10 11 1 本発明例
143 13 15 1 13 12 2 本発明例
1 4 16 17 0 15 15 1 本発明例
45 16 15 0 14 15 1 本発明例
^301352 [0136] (実施例 10)
表 10, 11における鋼 No. Cおよび Lの組成を有する鋼スラブを溶製し、表 24に示 す条件で熱間圧延を施した。スラブの加熱温度は全て 1230°Cとした。他の圧延条 件については、全 7段力 なる仕上圧延スタンドにおいて最終の 3段はロールと鋼板 との摩擦係数を 0. 21-0. 24の範囲とし、最終の 3段の合計の圧下率を 55%とした 。調質圧延圧下率はすべて 0. 3%とした。また、 Arは表 14, 16の場合と同様とした
3 熱間圧延後、連続溶融亜鉛めつきラインにて鋼板を 650°Cまで加熱し、約 470°Cま で冷却後、 460°Cの溶融亜鉛浴に浸漬した。亜鉛の目付け厚は平均で片面 40gZ m2とした。溶融亜鉛めつきに引き続き、以下のようにして鋼板表面に(1)有機被覆や (2)塗装を施し、引張特性とヤング率を測定した。
[0137] (1)有機皮膜
榭脂固形ぶん 27. 6mass%、分散液粘度 1400mPa' s (25°C)、 pH8. 8、カルボ キシル基のアンモ-ゥム塩(一 COONH )の含量が榭脂固形分全体の 9. 5質量0 /0
4
カルボキシル基含量が榭脂固形分全体の 2. 5質量%、分散粒平均直径がやく 0. 0 30 mである水性榭脂に 4質量0 /0の腐食抑制剤、 12%のコロイダルシリカを添加し て防鲭処理液を作製し、上記の鋼板にロールコータにより塗布し、鋼板の表面到達 温度 120°Cとなるように乾燥し、約 1 μ m厚の皮膜を形成させた。
[0138] (2)塗装
脱脂した上記鋼板上にロールコーターにて化成処理として日本パーカライジング社 製の「ZM1300AN」を塗布し、到達板温が 60°Cとなるような条件で熱風乾燥させた。 化成処理の付着量は、 Cr付着量で 50mgZm2とした。更に、化成処理を施した鋼板 の片面にプライマー塗料を、他方の面に裏面塗料を、ロールコーターにて塗装し、熱 風を併用した誘導加熱炉にて、乾燥硬化させた。このときの到達温度は 210°Cとした 更にプライマー塗料を塗装した面上にトップ塗料をローラー力一テンコータにて塗 装し、熱風を併用した誘導加熱炉にて、到達温度 230°Cにて乾燥硬化させた。なお、 プライマー塗料は日本ファインコーティングス社製の「FL640EUプライマー」を用いて 乾燥膜厚にして 5 μ m塗装した。裏面塗料は日本ファインコーティングス社製の「FL1
0(^<3」を用いて、乾燥膜厚で 5 m塗装した。トップ塗料は日本ファインコーティング ス社製の「FL100HQ」を用いて、乾燥膜厚で 15 mと相した。
[0139] 結果を表 24, 25に示す。なお、表 25は,表 24に続く表である。これから明らかなと おり、溶融亜鉛めつきを施した鋼板、さらには表面に有機皮膜や塗料を付与したもの も良好なヤング率を有することが分かる。
[0140] [表 24]
鋼 FT CT TS YS El E(RD) E(D) E(TD)
No. 表面処理
No. C) (°C) (MPa) (MPa) (%) (GPa) (GPa) (GPa)
1 46 C 0.51 870 500 溶融亜鉛めつきのみ 559 418 22 243 201 242
1 47 C 0.51 8了0 500 有機皮膜 582 421 22 245 208 243
1 4 8 C 0.51 870 500 塗装 590 421 20 247 206 245
1 4 9 し 0.5 850 550 溶融亜鉛めつきのみ 889 678 10 246 210 240
1 5 0 し 0.5 850 550 有機皮膜 912 687 9 249 210 243
1 5 1 し 0.5 850 550 塗装 932 691 1 1 251 207 245
試料 板厚 1/8層における集合組織 板厚中心層における集合組織
備考
No. {110}<223> {110 111〉 {110}く 001〉 {211}く 011> {332}<113> {1〇〇}<011〉
146 16 1了 〇 11 13 1 本発明例
14了 17 15 〇 13 13 1 本発明例
148 19 16 1 12 14 0 本発明例
149 17 17 〇 15 14 0 本発明例
150 19 18 0 15 14 1 本発明例
151 19 17 0 16 15 0 本発明例
sa0141^ [0142] (実施例 11)
表 10, 11に示した鋼 Cと Lを用いて異周速圧延を行った。周速率は全 7段からなる 仕上げ圧延スタンドにおいて最終の 3段で変化させた。熱延条件および引張特性と ヤング率の測定結果を表 26に示す。なお、表 26で表示されていない熱延条件は全 て実施例 7と同様である。
得られた結果を表 26, 27に示す。なお、表 27は,表 26に続く表である。これらより 明らかな通り、本発明の化学成分を有する鋼を適正な条件で熱延する際に 1%以上 の異周速圧延を 1パス以上加えると、表層近傍での集合組織形成が促進され、更に ヤング率が向上する。
[0143] [表 26]
鋼 No. FT CT 異周速率 (%) TS YS
試料 No. El E(RD) E(D) E (TD)
(°C) (°C) 5ハ。ス 6ハ'ス 7八°ス (MPa) (MPa) (%) (GPa) (GPa) (GPa)
1 52 C 0.51 870 500 0 0 0 585 489 20 245 201 242
1 53 c 0.49 868 500 0 0 3 591 446 20 247 203 242
1 54 c 0.5 872 500 1 2 3 589 445 20 248 202 240
1 55 c 0.51 875 500 10 5 5 597 451 21 251 202 243
1 56 し 0.5 850 550 0 0 0 925 712 10 248 210 240
1 57 し 0.51 853 550 3 3 3 931 721 1 1 250 21 1 242
1 58 し 0.49 855 550 〇 0 10 924 715 1 1 252 21 1 242
1 59 し 0.5 850 550 0 20 20 925 716 1 1 254 209 243
板厚 1/8層における集合組織 板厚中心層における集合組織
試料 No. 備考
{110}く 223〉 {110 111> {110}<001> {211}<011> {332}く 113〉 {100}<011>
152 16 17 0 11 13 1 本発明例
153 17 17 0 10 13 1 本発明例
154 18 16 0 10 14 0 本発明例
155 20 16 1 10 15 0 本発明例
156 17 17 0 15 14 0 本発明例
15了 18 17 0 14 14 0 本発明例
58 20 16 1 15 15 0 本発明例
159 22 16 0 13 16 0 本発明例
§0144 [0145] (実施例 12)
表 10, 11に示した鋼 Cと Lを用いて小径ロール圧延を行った。ロール径は全 7段か らなる仕上げ圧延スタンドにおいて最終の三段で変化させた。熱延条件および引張 特性とヤング率の測定結果を表 28に示す。なお、表 28で表示されていない熱延条 件は全て実施例 7と同じである。
得られた結果を表 28, 29に示す。なお、表 29は,表 28に続く表である。これらより 本発明の化学成分を有する鋼を適正な条件で熱延する際にロール径が 700mm以 下のロールを 1パス以上使用すると、表層近傍での集合組織形成が促進され、更に ヤング率が向上する。
[0146] [表 28]
鋼 FT CT ロール径 (mm) TS YS El E(RD) E(D) E(TD) 試料 No.
No. CO ΓΟ 5 ス 6'、°ス 了ハ。ス (MPa) (MPa) (%) (GPa) (GPa) (GPa)
1 60 C 0.51 870 500 800 800 800 585 489 20 245 201 242
1 61 C 0.51 873 500 800 800 600 583 440 22 246 202 243
1 62 C 0.53 8了〇 500 600 600 600 585 442 20 249 203 243
1 63 C 0.53 867 500 500 500 500 589 445 19 253 203 243
1 64 し 0.5 850 550 800 800 800 925 了 12 10 248 210 243
1 65 し 0.51 855 550 800 800 600 92了 了 18 11 251 210 245
1 66 し 0.52 853 550 600 600 600 931 721 11 253 210 246
1 67 し 0.52 852 550 500 500 500 933 723 10 256 212 243
板厚 1/8層における集合組織 板厚中心層における集合組織
試料 No. 備考
{110}く 223〉 {110}<111> {110}<001> {211}<011> (332 113> {100 011>
160 16 17 0 11 13 1 本発明例
161 18 16 0 10 14 0 本発明例
162 20 16 1 11 15 2 本発明例
163 22 17 1 11 16 0 本発明例
164 17 17 0 15 14 0 本発明例
165 18 18 1 14 15 0 本発明例
166 20 17 0 15 15 0 本発明例
167 23 16 0 13 17 0 本発明例
S314290 [0148] (実施例 13)
表 30〜33に示すま岡材を 1200oC力ら 1270oCにカロ熱し、表 34, 36, 38, 40中に示 した熱延条件で熱延し、 2mm厚の熱延鋼板とした。ここで、焼鈍を行なった熱延鋼 板については、表中、熱延板焼鈍(3 * )の欄に「有り」と記載し、焼鈍を行なわなかつ た熱延鋼板についは、「無し」と記載した。この焼鈍は、 600〜700°C、 60分の条件 で行なった。この表記は、以後の表の説明において共通する。
表層のヤング率の測定は表層力も板厚 1Z6の厚みでサンプルを切り出し、上述し た横共振法により測定した。引張特性 i IS5号引張試験片を採取して幅方向で評 価し 7こ。
[0149] 形状凍結性の評価は、 260mm長さ X 50mm幅 X板厚の短冊状のサンプルを用 い、パンチ幅 78mm、パンチ肩 R5mm、ダイ肩 R4mmにて、種々のしわ押さえ厚で ハット型に成形した後、三次元形状測定装置にて板幅中心部の形状を測定した。図 1に示した様に、点 Aと点 Bの接線と点 Cと点 Dの接線の交点の角度から 90° を引い た値の左右での平均値をスプリング 'バック量、点 Cと点 E間の曲率半径 p [mm]の 逆数を左右で平均化した値を 1000倍したものを壁そり量として形状凍結性を評価し た。 1000Z /0が小さいほど形状凍結性は良好である。なお、曲げは圧延方向に対 して垂直に折れ線が入るように行った。
[0150] 一般に鋼板の強度が上昇すると形状凍結性が劣化することが知られている。本発 明者らが実際の部品成形を行った結果から、上記方法によって測定されたしわ押さ え圧 70kNでのスプリングバック量と 1000Z がそれぞれ鋼板の引張強度 TS[MPa ]に対して(0. 015 XTS-6) (° )以下、(0. 01 XTS- 3) (mm—1)以下となる場合 には、際だって形状凍結性が良好となるために、この二つを同時に満足することを良 好な形状凍結性の条件として評価した。
[0151] 得られた結果を表 34〜41に示す。なお、表 35は,表 34に続く表であり、表 37は, 表 36に続く表である。また、表 39は,表 38に続く表であり、表 41は,表 40に続く表 である。ここで、表中、圧延率(1 * )は、熱間圧延の圧延率の合計が 50%以上の場 合は「適」、 50%未満の場合は「不適」と表記した。また、摩擦係数 (2 * )は、熱間圧 延中の平均摩擦係数が 0. 2超の場合は「適」、 0. 2以下の場合は「不適」と表記した 。形状凍結性は、前記 2つの条件を満たす場合を「良好」とし、満たさない場合を「不 良」と表記した。これらの表記は、以後の表の説明において共通する。
[0152] しわ押さえ圧を増加すると、 1000/ は減少する傾向にある。し力しながら、どのよ うなしわ押さえ圧を選択しても鋼板の形状凍結性の優位性の順位は変化しな 、。従 つて、しわ押さえ圧 70kNでの評価は鋼板の形状凍結性を良く代表して 、る。
[0153] [表 30]
Figure imgf000074_0001
31] 鋼 A r a
Nb Ti ΤΪ-48/14ΧΝ Mo+Nb+Ti+B その他 備考 No. (。c)
P1 0.030 0.018 0.0094 0.249 781 本発明鋼
P2 0.028 0.018 0.0087 0.468 842 本発明鋼
P3 0.018 0.020 0.0114 0.390 818 本発明鋼
P4 0.03 0.031 0.0187 0.493 840 本発明鋼
P5 0.042 0.010 〇.〇〇18 0.233 783 本発明鋼
P6 0.022 0.023 0.0089 0.216 Cr: 0.5 761 本発明鋼
P7 0.021 0.013 0.0024 0.245 778 本発明鋼
P8 0.033 0.021 0.0128 0.356 Ca: 0.0015 了 62 本発明鋼
P9 0.035 0.012 0.0038 0.339 V: 0.02 806 本発明鋼
P10 0.035 0.015 0.0044 0.372 727 本発明鋼
P11 0.022 0.021 0.0138 0.116 782 本発明鋼
P12 0.080 0.000 -0.0075 0.080 774 本発明鋼
P13 0.052 0.000 -0.0113 0.055 819 本発明鋼
P14 0.000 0.000 -0.0096 0.300 826 本発明鋼
P15 0.000 0.000 -0.0075 0.143 804 本発明鋼
Figure imgf000076_0001
33]
Figure imgf000077_0001
鋼 A r 3
Nb Ti TH48/1 XN Mo+Nb+Ti+B その他
No. (°C) 備考
P16 0.040 0.080 0.0714 0.120 W: 0.01 826 本発明鋼
P17 0.000 0.1 10 0.101 1 0.1 10 726 本発明鋼
P 8 0.024 0.015 0.0071 0.120 775 本発明鋼
P1 9 0.033 0.020 0.0125 0.185 739 本発明鋼
C1 0.001 0.009 -0.0030 0.010 804 比較鋼
C2 0.002 0.000 -0.01 1 3 0.009 808 比較鋼
C3 0.040 0.023 0.01 31 0.293 909 比較鋼
C4 0.000 0.005 - 0.0032 0.006 Cu: 0.2 843 比較鋼
C5 0.024 0.021 0 1 07 0.646 981 比較鋼
C6 0.031 0.007 -0.0040 0.368 1031 比較鋼
^¾〔〔511530
圧延
幅方向 方向
摩擦 熱延板 表層 試料 鋼 Ar3 圧延率 FT CT TS E(RD) E(D) E (TD) 表層
ε * 係数 ヤング
No. No. rc) (1 *) C) (MPa (GPa) (GPa) (GPa) ヤング
(2*) rc) 焼鈍
(3*) 率
(GPa)
(GPa)
1 6 8 0.65 適 適 835 500 無し 469 246 205 240 255 255
1 6 9 P1 781 0.5了 適 適 830 600 /·、、し 460 243 206 239 253 256
1 7 0 0.37 適 850 550 SEし 467 21 2 205 235 221 239
1 7 1 0.72 適 860 400 し 500 245 1 99 239 259 263
1 7 2 P2 842 0.59 適 875 600 m I ノ 498 250 200 245 262 257
1 7 3 0.49 不 ί¾ 適 880 600 m I . 503 204 205 21 8 21 8 229
1 7 4 0.67 m jii 840 450 無し 446 242 203 238 253 255
1 7 5 P3 81 8 0.82 870 450 有り 450 241 202 240 254 254
1 7 6 0.48 適 不適 850 450 無し 449 21 3 206 239 225 235
1 7 7 0.52 適 適 860 500 有り 479 246 98 40 256 261
1 了 8 P4 840 0.59 週 875 500 無し 482 239 97 238 248 253
1 7 9 0.5了 適 750 500 無し 485 21 4 200 230 223 223
Figure imgf000079_0001
板厚 1/8層における集合組織 板厚中心層における集合組織
スプリン
形状
試料 No. グパック 反り 備考 凍結性
{110} {110} {110} {211} {100} (。 ) (1000/ρ)
<223> <111> く 001〉 <011> く 011〉
168 13 13 3 10 10 2 0.0 0.4 良 本発明例
169 13 12 2 9 9 1 0.5 0.4 良 本発明例
170 4 5 6 5 3 5 1.4 2.2 不良 比較例
171 13 12 3 11 10 2 0.1 0.7 良 本発明例
172 16 15 3 10 12 3 0.3 0.8 良 本発明例
173 5 4 3 4 3 4- 2.2 3.2 不良 比較例
174 12 12 0 9 10 3 0.1 0.9 良 本発明例
175 13 13 0 8 9 2 0.0 0.9 良 本発明例
176 5 6 4 5 3 5 1.4 1.9 不良 比較例 ω
177 14 15 1 10 10 2 0.0 0.8 良 本発明例
178 12 11 2 9 8 4 0.1 1.5 良 本発明例
179 6 5 6 5 3 5 1.3 2.8 不良 比較例
圧延
幅方向 方向 圧延 摩擦 熱延板 表層 鋼 Ar3 FT CT TS E(RD) E(D) E(TD) 表層 試料 No. ε * 率 係数 焼鈍 ヤング
No. rc) rc) rc) (MPa (GPa) (GPa) (GPa) ヤング
(1*) (2*) (3+)
(GPa)
(GPa)
1 80 0.64 適 適 820 600 無し 590 239 206 237 245 241
1 81 P5 783 0.63 適 880 600 無し 553 248 203 245 259 255
1 82 0.72 適 適 920 600 無し 567 209 200 218 231 253
1 83 0.65 適 適 880 350 mし 632 248 197 243 268 257
1 84 P6 了 88 0.52 適 適 870 500 mし 609 246 195 239 262 263
1 85 0.57 適 適 860 730 ^し 578 216 201 229 225 229
1 86 0.61 適 適 830 450 782 246 203 238 255 255
1 87 P了 778 0.76 適 適 850 250 し 779 247 195 244 262 255
1 88 0.72 適 930 400 おし 749 203 199 213 209 219
1 89 0.59 適 830 350 無し 792 235 200 239 249 238
1 90 0.54
P8 762 週 適 850 500 有り 800 240 205 238 253 255
1 91 0.25 不適 850 400 無し 803 210 203 220 219 220
板厚 1/8層における集合組織 板厚中心層における集合組織
スプリン
試料 No. グバック 反り 備考
{110} {110} {110} {332} {100} (。 ) (1000/p)
<223> <111> <001> く 113〉 <011>
180 11 10 1 9 8 1 1.0 2.1 良 本発明例
181 14 13 3 11 11 0 0.6 1.5 良 本発明例
182 4 5 5 4 3 6 3.0 3.0 不良 比較例
183 14 13 0 10 11 2 0.6 1.9 良 本発明例
184 14 14 1 11 10 4 1.0 1.4 良 本発明例
185 6 5 6 5 4 6 3.4 3.0 不良 比較例 へ
186 14 15 0 〇 10 10 2 4.6 4.0 良 本発明例
187 13 14 2 12 11 3 4.0 3.5 良 本発明倒
188 5 4 2 5 3 7 6.5 5.8 不良 比較例
189 10 11 1 8 9 2 5.1 4.1 良 本発明例
190 11 12 〇 7 8 4 4.4 3.6 本発明例
191 5 5 5 4 4 6 6.8 5.7 不良 比較例
圧延
幅方向 熱延板 方向
鋼 Ar3 圧延率 FT CT TS E(RD) E(D) E(TD) 表層 試料 No. 係数 焼鈍 表層
No. ro ε *
(1*) (MPa (GPa) (GPa) (GPa) ヤング率 (2*) ro ro (3*) ヤング率
(GPa) (GPa)
1 92 0.67 適 適 860 500 無し 980 241 198 236 252 259
1 93 P9 806 0.72 適 適 870 400 mし 997 239 209 235 250 253
1 94 0.71 不壤 適 850 350 し 1029 213 210 219 225 245
1 95 0.47 適 適 780 300 mし 1008 245 211 237 256 260
1 96 P10 727 0.5 適 適 830 350 mし 1102 247 208 237 261 255
1 97 0.52 不適 850 500 mし 904 206 203 230 215 219
1 98 P11 782 0.41 適 840 500 し 498 241 211 236 250 249
1 99 P12 774 0.44 860 550 無し 605.8 240 206 236 253 243
200 P13 819 0.62 830 500 無し 652 239 209 239 249 246
201 P14 826 0.42 適 860 600 し 723 242 196 238 256 247
202 P15 804 0.53 適 850 500 mし 525.7 239 200 236 262 249
203 P16 826 0.56 適 880 550 mし 581.5 237 202 238 246 242
204 P17 726 0.59 800 450 mし 700.5 245 200 23了 253 253
板厚 1/8層における 板厚中心繮における
集合組織 集合組織 スプリング
形伏
試料 No. パック 反り 備考
{110} {110} {110} {211} {100} 凍結性
(。 ) (1000/ )
く 223〉 <111〉 <001> く 011〉 く 011〉
192 12 12 3- 9 9 3 7.9 5.8 良 本発明例
193 11 10 1 10 8 1 8.0 6.4 良 本発明例
194 5 5 4 4 3 5 10.0 7.9 不良 比較例
195 13 12 2 10 10 2 7.8 6.2 良 本発明例
196 14 13 0 11 11 3 8.7 6.8 良 本発明例
197 4 4 3 5 3 5 9.2 6.7 不良 比較例
198 12 12 6 10 9 5 0.5 0.0 良 本発明例
199 13 12 9 8 4 1.9 2.0 良 本発明例 ω
200 11 12 3 9 8 ω 3 2.5 3.0 良 本発明例
201 11 12 2 8 9 2 3.2 3.0 良 本発明例
202 11 10 0 10 8 4 0.9 1.2 良 本発明例
203 15 14 6 9 8 4 1.2 1.8 良 本発明例
204 14 14 5 9 10 1 3.1 3.0 良 本発明例
圧延
幅方向 方向
摩擦 熱延板
鋼 Ar3 圧延率 FT CT TS E(RD) E(D) E(TD) 表層
試料 No. ro 係数 ro ro 焼鈍 ヤング
No. (1 *) (MPa (GPa) (GPa) (GPa) ヤング
(2*) (3*) 率
(GPa)
(GPa)
2 05 P18 775 0.44 適 880 400 無し 621.6 249 199 239 260 255
2 0 6 P19 739 0.48 適 860 500 無し 712.7 243 200 235 256 250
2 0 7 0.65 適 適 880 400 有り 439 204 205 205 210 225
C1 804
2 0 8 0.68 个適 適 850 450 無し 419 196 203 209 205 226
2 0 9 0.78 適 適 840 500 有 <0 439 201 207 205 223 249
C2 808
2 1 〇 0.88 850 750 無し 447 200 205 203 209 231
2 1 1 0.57 適 id 820 600 ffiし 567 208 207 21 9 227 246
C3 909
2 1 2 0.67 適 適 840 500 ffiし 557 212 205 220 225 245
2 1 3 0.95 適 適 850 550 無し 529 199 206 21 8 208 222
C4 843
2 1 4 0.77 適 880 550 有り 549 200 206 223 203 220
2 1 5 0.65 適 870 450 し 780 205 1 99 209 1 98 221
C5 981
2 1 6 0.32 適 適 830 300 し 770 195 200 230 204 219
2 1 7 0.44 id 適 850 300 無し 790 222 205 207 231 237
C6 1031
2 1 8 0.7 不適 800 250 無し 834 1 96 203 220 205 223
S〕〔 〔 41630 室)〕 14
板厚 1 /8層における 板厚中心層における
集合組織 集合組織 スプリング
形状
試料 No. バック 反り 備考
{1 10} {1 10} {100} (。 ) (1000/ ) 凍結性
Figure imgf000085_0001
<1 1 1〉 く 0〇1〉 く 01 1 >
205 15 14 2 12 1 1 2 2.0 2.2 良 本発明例
206 12 13 4 10 9 3 3.4 3.1 良 本発明例
207 4 5 3 5 4 3 1 .5 2.8 不良 比較例
208 8 9 7 4 3 6 2.0 2.8 不良 比較例
209 4 3 4 4 5 5 1.2 1.7 不良 比較例
210 4 5 3 5 3 6 2.5 3.2 不良 比較例
21 1 6 7 5 〇M C 3 5 4 2.9 3.2 不良 比較例
212 5 4 4 5 2 3 2.9 3.0 不良 比較例
21 3 5 6 4 6 3 5 3.4 3.5 不良 比較例
214 7 8 5 4 5 4
O e 4.0 4.3 不良 比較例
215 7 6 6 5 3 5 7.9 6.4 不良 比較例
216 5 4 3 5 3 7 7.7 6.5 不良 比較洌
217 8 7 7 6 4 5 5.8 5.2 不良 比較例
218 5 6 5 3 6 5 8.4 6.5 不良 比較例
表 30, 31に示した鋼 P5と P8を用いて異周速圧延を行った。周速率は全 6段力 な る仕上げ圧延スタンドにおいて最終の 3段で変化させた。熱延条件、引張特性、ヤン グ率の測定結果、及び形状凍結性の評価結果を表 42に示す。表中に記載されてい ない製造条件については実施例 13と同じである。
得られた結果を表 42, 43〖こ示す。なお、表 43は,表 42に続く表である。これから明 らかなとおり、本発明の化学成分を有する鋼を適正な条件で熱延する際に 1%以上 の異周速圧延を 1パス以上加えると、表層近傍でのヤング率が更に向上し、形状凍 結性が良好となる。
[表 42]
圧延 幅方向 圧延 異周速率 (%) 熱延板 方向 表層 鋼 A「3 FT CT TS E(RD) E(D) E(TD)
ε * 焼鈍 表層 ヤング
No. No. ΓΟ rc) rc) (MPa) (GPa) (GPa) (GPa)
(1*) 5 6 7 (3*) ヤング率
ハ'ス ^ス ハ。ス (GPa) (GPa)
21 9 0.65 適 jii 870 500 0 0 0 無し 582 239 205 236 245 247
220 0.67 適 趕 880 500 0 〇 3 有り 590 242 205 238 259 250
P5 783
221 0.67 適 860 500 1 2 3 し 598 244 202 240 252 252
222 0.66 適 適 870 500 10 5 5 mi . 584 248 200 242 266 259
223 0.65 適 適 850 500 0 0 0 無し 了 93 240 195 235 249 248
224 0.65 適 適 860 500 3 3 3 有り 了了 5 241 198 237 25了 249
P8 762
225 0.67 適 適 850 500 0 0 10 m 1 780 243 196 238 255 250
226 0.65 適 850 500 0 20 20 1 789 246 197 240 263 252
板厚 r
ro 1/8層における集合組織 板厚中心層における集合組織 スプリング
試料 ω〇 形状
パック 反り 備考
No.
{1 0} {100} 凍結性
(。 ) (1000/ρ)
く 001〉 <011>
219 13 12 2 9 8 4 1.7 2.1 良 本発明例
220 12 11 1 9 9 3 1.1 1.8 良 本発明例
221 12 13 0 10 10 3 0.6 1.6 本発明例
〇 (
222 14 15 0 11 12 1 0.1 1.3 良 本発明例
223 11 12 2 10 へ一
ω 9 3 5.2 4.1 良 本発明例
CO
224 12 11 0 9 8 2 4.7 3.6 良 本発明例
225 12 13 〇 11 9 2 4.2 3.3 良 本発明例
226 15 14 0 10 10 1 3.9 3 良 本発明例
S¾3 〔1640 [0168] (実施例 15)
表 30, 31に示した鋼 P5と P8を用いて小径ロール圧延を行った。ロール径は全 6段 力 なる仕上げ圧延スタンドにおいて最終の三段で変化させた。熱延条件、引張特 性、ヤング率の測定結果及び形状凍結性の評価結果を表 44に示す。表中に記載さ れて 、な 、製造条件につ!、ては実施例 13と同じである。
得られた結果を表 44, 45に示す。なお、表 45は,表 44に続く表である。これから明 らかなとおり、本発明の化学成分を有する鋼を適正な条件で熱延する際にロール径 が 700mm以下のロールを 1パス以上使用すると、表層近傍でのヤング率が更に向 上し、形状凍結性が向上する。
[0169] [表 44]
Figure imgf000090_0001
Figure imgf000091_0001
¾〕〔〕 〔45 [0171] (実施例 16)
表 30, 31に示した鋼 P5と P8を用いて冷延焼焼鈍板を製造した。表 46に熱延、冷 延、焼鈍条件、引張特性、ヤング率の測定結果及び形状凍結性の評価結果を示す 。表中に記載されて 、な 、製造条件につ 、ては実施例 13と同じである。
得られた結果を表 46, 47に示す。なお、表 47は,表 46に続く表である。これから明 らかな通り、本発明の化学成分を有する鋼を適正な条件で熱延 ·冷延 ·焼鈍を行うと 表層のヤング率が 245GPaを超え、形状凍結性が向上する。
[0172] [表 46]
圧延
幅方向 圧延 擦 取问 方向
鋼 Ar3 FT CT 冷延率 TS E(RD) E(D) E(TD) 表層 rc 率 係数 表層
No. No. ) (°C) rc) (%) ) (GPa) (GPa) (GPa) ヤング率
(1*) (2*) ΓΟ (MPa
ヤング率
(GPa) (GPa)
235 0.65 適 適 850 550 30 800 590 239 205 236 249 247
236 0.68 適 850 550 60 780 585 242 205 238 257 255
237 P5 783 0.72 適 適 860 550 95 800 580 205 195 234 204 223
238 0.53 適 適 8了 0 550 40 960 598 205 210 216 205 210
239 0.59 適 適 8了〇 550 70 450 976 219 200 230 230 225
240 0.55 適 適 840 550 50 770 789 239 96 234 250 253
241 0.68 適 860 550 60 780 820 242 205 237 253 249
P8 了 62
242 0.67 適 適 860 550 90 800 826 205 189 235 218 230
243 0.69 適 850 550 40 980 795 205 205 209 208 216
板厚 1/8層における集合組織 板厚中心層における集合組織 スプリング
形状
試料 No. 八― パック 反り 備考
Γ0
N) {110} {110} {332} {100} 凍結性
(。 ) (1000/ρ)
<111〉 <001> く 113〉 <011>
235 10 11 1 9 8 4 2.6 2.6 良 本発明例
236 11 12 2 9 9 3 2.5 2.5 良 本発明例
237 2 3 0 8 7 11 4.5 4.1 不良 比較例
238 4 4 3 5 6 6 4.5 3.8 不良 比較例
239 5 6 3 6 4 8 * * 不良 比較例
240 12 11 3 9 8 2 5.4 3.5 良 本発明例
241 13 12 1 9 9 6 5.8 3.7 良 本発明例
242 4 4 0 5 3 4 8.5 6.3 不良 比較例
243 1 1 3 5 3 2 7.9 5.8 不良 比較例
〕 S〕 〔47 産業上の利用可能性
[0174] 本発明に係る高ヤング率鋼板は、自動車、家庭電気製品、建築物等に使用される 。また、本発明に係る高ヤング率鋼板は、表面処理をしない狭義の熱延鋼板および 冷延鋼板と、防鲭のために溶融 Znめっき、合金化溶融 Znめっき、電気めつきなどの 表面処理を施した広義の熱延鋼板および冷延鋼板を含む。更に、アルミ系のめっき も含む。さらに、これらの熱延鋼板、冷延鋼板、各種めつき鋼板の表面に有機皮膜、 無機皮膜、塗装などを有する鋼板や、それらを複数組み合わせて有する鋼板も含ま れる。
[0175] 本発明に係る高ヤング率鋼板は、高 、ヤング率を有する鋼板であるため、使用に 当たっては今までの鋼板より板厚を減少させることが可能になり、その結果、軽量ィ匕 が可能になる。従って、地球環境保全に寄与できる。
また、本発明に係る高ヤング率鋼板により、形状凍結性が改善され、自動車用部材 などのプレス部品への高強度鋼板の適用が容易になる。さらに、本発明に係る鋼板 は、衝突エネルギー吸収特性にも優れているので、自動車の安全性の向上にも寄与 する。

Claims

請求の範囲
[I] 質量0 /0で、 C:0.0005〜0.30%, Si: 2.5%以下、 Mn:2.7~5.0%、 P:0.15 %以下、 S:0.015%以下、 Mo:0. 15〜: L 5%、 B:0.0006〜0.01%、 A1:0.1 5%以下を含有し、残部が Fe及び不可避的不純物からなり、
板厚の 1Z8層における { 110}く 223 >と { 110}く 111 >の!ヽずれか一方又は両 方の極密度が 10以上であり、
圧延方向のヤング率が 230GPa超であることを特徴とする高ヤング率鋼板。
[2] 更に、板厚 1Z2層における {112}く 110>の極密度が 6以上であることを特徴と する請求項 1記載の高ヤング率鋼板。
[3] 更に、 Ti:0.001〜0.20質量0 /0、 Nb:0.001〜0.20質量0 /0のうち、 1種または 2 種を含有することを特徴とする請求項 1に記載の高ヤング率鋼板。
[4] 2%引張後、 170°C、 20分熱処理を加え再度引張試験を行ったときの上降伏点か ら 2%引張時の流量応力を差し引いた値で評価される BH量 (MPa)が 5MPa以上 2
OOMPa以下であることを特徴とする請求項 1に記載の高ヤング率鋼板。
[5] 更に、 Ca:0.0005-0.01質量%を含むことを特徴とする請求項 1に記載の高ャ ング率鋼板。
[6] Sn, Co, Zn, W, Zr, V, Mg, REMの 1種又は 2種以上を合計で 0.001〜1.0 質量%含むことを特徴とする請求項 1に記載の高ヤング率鋼板。
[7] Ni, Cu, Crの 1種又は 2種以上を合計で 0.001-4.0質量%含むことを特徴とす る請求項 1に記載の高ヤング率鋼板。
[8] 請求項 1に記載の高ヤング率鋼板と、前記高ヤング率鋼板に施された溶融亜鉛め つきと、を有することを特徴とする溶融亜鉛めつき鋼板。
[9] 請求項 1に記載の高ヤング率鋼板と、前記高ヤング率鋼板に施された合金化溶融 亜鉛めつきと、を有することを特徴とする合金化溶融亜鉛めつき鋼板。
[10] 請求項 1に記載の高ヤング率鋼板を有し、前記高ヤング率鋼板が任意の方向に卷 かれて 、ることを特徴とする高ヤング率鋼管。
[II] 請求項 1に記載の高ヤング率鋼板の製造方法であって、
質量0 /0で、 C:0.0005〜0.30%、 Si: 2.5%以下、 Mn:2.7〜5.0%、 P:0.15 %以下、 S :0. 015%以下、 Mo:0. 15〜: L 5%、 B:0. 0006〜0. 01%、 A1:0. 1 5%以下を含有し、残部が Fe及び不可避的不純物からなるスラブを 950°C以上の温 度に加熱して熱間圧延を施し、熱延鋼板とする工程を有し、
前記熱間圧延の工程は、 800°C以下で、圧延ロールと鋼板との摩擦係数が 0. 2超 、かつ圧下率の合計が 50%以上となるように圧延を行い、 Ar変態点以上 750°C以
3
下の温度で熱間圧延を終了する条件で行なわれることを特徴とする高ヤング率鋼板 の製造方法。
[12] 前記熱間圧延の工程では、異周速率が 1%以上の異周速圧延を少なくとも 1パス 以上施すことを特徴とする請求項 11に記載の高ヤング率鋼板の製造方法。
[13] 前記熱間圧延の工程では、ロール径が 700mm以下の圧延ロールを少なくとも 1つ 以上使用することを特徴とする請求項 11に記載の高ヤング率鋼板の製造方法。
[14] 前記熱間圧延終了後の熱延鋼板を、連続焼鈍ラインまたは箱焼鈍にて最高到達 温度 500°C以上 950°C以下の条件で焼鈍する工程を更に有することを特徴とする請 求項 11に記載の高ヤング率鋼板の製造方法。
[15] 前記熱間圧延終了後の熱延鋼板を、 60%未満の圧下率で冷間圧延を施す工程と
、前記冷間圧延の工程の後に焼鈍する工程と、を更に含むことを特徴とする請求項 1
1に記載の高ヤング率鋼板の製造方法。
[16] 前記熱延鋼板を 60%未満の圧下率で冷間圧延を施す工程と、前記冷間圧延のェ 程の後に、最高到達温度 500°C以上 950°C以下の条件で焼鈍する工程と、前記焼 鈍工程の後に 550°C以下まで冷却し、次いで 150〜550°Cにて熱処理を行う工程と
、を更に有することを特徴とする請求項 11に記載の高ヤング率鋼板の製造方法。
[17] 請求項 14に記載の高ヤング率鋼板の製造方法により焼鈍された高ヤング率鋼板 を製造する工程と、前記高ヤング率鋼板に溶融亜鉛めつきを施す工程を有すること を特徴とする溶融亜鉛めつき鋼板の製造方法。
[18] 請求項 17に記載の溶融亜鉛めつき鋼板の製造方法により溶融亜鉛めつき鋼板を 製造する工程と、前記溶融亜鉛めつき鋼板に、 450〜600°Cまでの温度範囲で 10 秒以上の熱処理を行なう工程と、を有することを特徴とする合金化溶融亜鉛めつき鋼 板の製造方法。
[19] 請求項 15に記載の高ヤング率鋼板の製造方法により焼鈍された高ヤング率鋼板 を製造する工程と、前記高ヤング率鋼板に溶融亜鉛めつきを施す工程を有すること を特徴とする溶融亜鉛めつき鋼板の製造方法。
[20] 請求項 19に記載の溶融亜鉛めつき鋼板の製造方法により溶融亜鉛めつき鋼板を 製造する工程と、前記溶融亜鉛めつき鋼板に、 450〜600°Cまでの温度範囲で 10 秒以上の熱処理を行なう工程と、を有することを特徴とする合金化溶融亜鉛めつき鋼 板の製造方法。
[21] 請求項 11に記載の高ヤング率鋼板の製造方法により高ヤング率鋼板を製造する 工程と、前記高ヤング率鋼板を、任意の方向に巻いて鋼管にすることを特徴とする高 ヤング率鋼管の製造方法。
[22] 質量0 /0で、 C:0.0005〜0.30%、 Si: 2.5%以下、 Mn:0. 1〜5.0%、 P:0.15 %以下、 S:0.015%以下、 A1:0.15%以下、 N:0.01%以下を含有し、
さらに、 Mo:0.005〜1.5%、Nb:0.005〜0.20%、 Ti:48/14XN (質量0 /0) 以上、 0.2%以下、 B:0.0001-0.01%のうち 1種または 2種以上を合計で 0.01 5〜1.91質量%含有し、
残部が Fe及び不可避的不純物からなり、
板厚の 1Z8層における {110}く 223>及び Z又は {110}く 111>の極密度が 1 0以上であり、
圧延方向のヤング率が 230GPa超であることを特徴とする高ヤング率鋼板。
[23] 前記 Mo、 Nb、 Ti、 Bを全て含有し、それぞれの含有量が Mo: 0.15〜: L 5%、 Nb
:0.01〜0.20%、Ti:48Zl4XN (質量0 /0)以上、 0.2%以下、 B:0.0006〜0. 01%であり、
さらに、板厚の 1Z8層における { 110}く 001 >の極密度が 3以下であることを特徴 とする請求項 22に記載の高ヤング率鋼板。
[24] 前記板厚の 1Z8層における { 110}く 001 >の極密度が 6以下であることを特徴と する請求項 22に記載の高ヤング率鋼板。
[25] 少なくとも板厚の表層から 1Z8層における圧延方向のヤング率が 240GPa以上で あることを特徴とする請求項 22に記載の高ヤング率鋼板。
[26] 更に、板厚 1Z2層における {211 }く Oi l >の極密度が 6以上であることを特徴と する請求項 22に記載の高ヤング率鋼板。
[27] 更に、板厚 1Z2層における {332}く 113 >の極密度が 6以上であることを特徴と する請求項 22に記載の高ヤング率鋼板。
[28] 更に、板厚 1Z2層における {100}く 011 >の極密度が 6以下であることを特徴と する請求項 22に記載の高ヤング率鋼板。
[29] 2%引張後、 170°C、 20分熱処理を加え再度引張試験を行ったときの上降伏点か ら 2%引張時の流量応力を差し引 、た値で評価される BH量が 5MPa以上 200MPa 以下であることを特徴とする請求項 22に記載の高ヤング率鋼板。
[30] 更に、 Ca : 0. 0005-0. 01質量%を含有することを特徴とする請求項 22に記載の 高ヤング率鋼板。
[31] Sn, Co, Zn, W, Zr, V, Mg, REMの 1種又は 2種以上を合計で 0. 001〜1. 0 質量%含有することを特徴とする請求項 22に記載の高ヤング率鋼板。
[32] Ni, Cu, Crの 1種又は 2種以上を合計で 0. 001-4. 0質量%含有することを特徴 とする請求項 22に記載の高ヤング率鋼板。
[33] 請求項 22に記載の高ヤング率鋼板と、前記高ヤング率鋼板に施された溶融亜鉛 めっきと、を有することを特徴とする溶融亜鉛めつき鋼板。
[34] 請求項 22に記載の高ヤング率鋼板と、前記高ヤング率鋼板に施された合金化溶 融亜鉛めつきと、を有することを特徴とする合金化溶融亜鉛めつき鋼板。
[35] 請求項 22に記載の高ヤング率鋼板を有し、前記高ヤング率鋼板が任意の方向に 巻かれて!/ヽることを特徴とする高ヤング率鋼管。
[36] 請求項 22に記載の高ヤング率鋼板の製造方法であって、
質量0 /0で、 C : 0. 0005〜0. 30%、 Si: 2. 5%以下、 Mn: 0. 1〜5. 0%、 P : 0. 15 %以下、 S : 0. 015%以下、 A1: 0. 15%以下、 N : 0. 01%以下を含有し、さらに、 M o : 0. 005〜1. 5%、Nb : 0. 005〜0. 20%、 Ti:48,14 X N (質量0 /0)以上、 0. 2 %以下、 B: 0. 0001〜0. 01%のうち 1種または 2種以上を合計で 0. 015〜1. 91 質量%含有し、残部が Fe及び不可避的不純物からなるスラブを 1000°C以上の温度 に加熱して熱間圧延を施し、熱延鋼板とする工程を有し、 前記熱間圧延の工程は、圧延ロールと鋼板との摩擦係数が 0. 2超、下記式 [1]で 計算される有効ひずみ量 ε *が 0. 4以上、かつ圧下率の合計が 50%以上となるよう に圧延を行い、 Ar変態点以上 900°C以下の温度で熱間圧延を終了する条件で行
3
われることを特徴とする高ヤング率鋼板の製造方法。
[数 1]
Figure imgf000100_0001
ここで、 ηは仕上げ熱延の圧延スタンド数、 ε は j番目のスタンドでカ卩えられたひず み、 ε は η番目のスタンドでカ卩えられたひずみ、 t.は i〜i+ l番目のスタンド間の走行 時間(秒)、 て iは気体常数 R ( = 1. 987)と i番目のスタンドの圧延温度 T (K)によって 下記式 [2]で計算できる。
τ = 8. 46 X 10"9 X exp{43800/R/T }…… [2]
[37] 前記熱間圧延の工程では、異周速率が 1%以上の異周速圧延を少なくとも 1パス 以上施すことを特徴とする請求項 36記載の高ヤング率鋼板の製造方法。
[38] 前記熱間圧延の工程では、ロール径が 700mm以下の圧延ロールを少なくとも 1つ 以上使用することを特徴とする請求項 36に記載の高ヤング率鋼板の製造方法。
[39] 前記熱間圧延終了後の熱延鋼板を、連続焼鈍ラインまたは箱焼鈍にて最高到達 温度 500°C以上 950°C以下の条件で焼鈍する工程を更に有することを特徴とする請 求項 36に記載の高ヤング率鋼板の製造方法。
[40] 前記熱間圧延終了後の熱延鋼板を、 60%未満の圧下率で冷間圧延を施す工程と
、前記冷間圧延の工程の後に焼鈍する工程と、を更に含むことを特徴とする請求項 3
6に記載の高ヤング率鋼板の製造方法。
[41] 前記熱延鋼板を 60%未満の圧下率で冷間圧延を施す工程と、前記冷間圧延のェ 程の後に、最高到達温度 500°C以上 950°C以下の条件で焼鈍する工程と、前記焼 鈍工程の後に 550°C以下まで冷却し、次いで 150〜550°Cにて熱処理を行う工程と 、を更に有することを特徴とする請求項 36に記載の高ヤング率鋼板の製造方法。
[42] 請求項 39に記載の高ヤング率鋼板の製造方法により焼鈍された高ヤング率鋼板 を製造する工程と、前記高ヤング率鋼板に溶融亜鉛めつきを施す工程を有すること を特徴とする溶融亜鉛めつき鋼板の製造方法。
[43] 請求項 42に記載の溶融亜鉛めつき鋼板の製造方法により溶融亜鉛めつき鋼板を 製造する工程と、前記溶融亜鉛めつき鋼板に、 450〜600°Cにて 10秒以上の熱処 理を施す工程と、を有することを特徴とする合金化溶融亜鉛めつき鋼板の製造方法。
[44] 請求項 40に記載の高ヤング率鋼板の製造方法により焼鈍された高ヤング率鋼板 を製造する工程と、前記高ヤング率鋼板に溶融亜鉛めつきを施す工程を有すること を特徴とする溶融亜鉛めつき鋼板の製造方法。
[45] 請求項 44に記載の溶融亜鉛めつき鋼板の製造方法により溶融亜鉛めつき鋼板を 製造する工程と、前記溶融亜鉛めつき鋼板に、 450〜600°Cにて 10秒以上の熱処 理を施す工程と、を有することを特徴とする合金化溶融亜鉛めつき鋼板の製造方法。
[46] 請求項 36に記載の高ヤング率鋼板の製造方法により高ヤング率鋼板を製造する 工程と、前記高ヤング率鋼板を、任意の方向に巻いて鋼管にすることを特徴とする高 ヤング率鋼管の製造方法。
PCT/JP2005/013717 2004-01-08 2005-07-27 高ヤング率鋼板、それを用いた溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板、および高ヤング率鋼管、並びにそれらの製造方法 WO2006011503A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US11/572,693 US8057913B2 (en) 2004-07-27 2005-07-27 Steel sheet having high young'S modulus, hot-dip galvanized steel sheet using the same, alloyed hot-dip galvanized steel sheet, steel pipe having high young'S modulus and methods for manufacturing the same
EP05767035.8A EP1806421B1 (en) 2004-07-27 2005-07-27 High young's modulus steel plate, zinc hot dip galvanized steel sheet using the same, alloyed zinc hot dip galvanized steel sheet, high young's modulus steel pipe, and method for production thereof
ES05767035.8T ES2523760T3 (es) 2004-07-27 2005-07-27 Chapa de acero que tiene un alto módulo de Young, chapa de acero galvanizada con zinc por inmersión en caliente usando la misma, chapa de acero galvanizada con zinc por inmersión en caliente y aleada, tubo de acero que tiene un alto módulo de Young, y método para la fabricación de los mismos
CA2575241A CA2575241C (en) 2004-07-27 2005-07-27 Steel sheet having high young's modulus, hot-dip galvanized steel sheet using the same, alloyed hot-dip galvanized steel sheet, steel pipe having high young's modulus, and methodsfor manufacturing these
US13/245,295 US8802241B2 (en) 2004-01-08 2011-09-26 Steel sheet having high young's modulus, hot-dip galvanized steel sheet using the same, alloyed hot-dip galvanized steel sheet, steel pipe having high young's modulus, and methods for manufacturing the same

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2004-218132 2004-07-27
JP2004218132A JP4445339B2 (ja) 2004-01-08 2004-07-27 高ヤング率鋼板およびその製造方法
JP2004330578 2004-11-15
JP2004-330578 2004-11-15
JP2005-019942 2005-01-27
JP2005019942 2005-01-27
JP2005207043 2005-07-15
JP2005-207043 2005-07-15

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/572,693 A-371-Of-International US8057913B2 (en) 2004-07-27 2005-07-27 Steel sheet having high young'S modulus, hot-dip galvanized steel sheet using the same, alloyed hot-dip galvanized steel sheet, steel pipe having high young'S modulus and methods for manufacturing the same
US13/245,295 Division US8802241B2 (en) 2004-01-08 2011-09-26 Steel sheet having high young's modulus, hot-dip galvanized steel sheet using the same, alloyed hot-dip galvanized steel sheet, steel pipe having high young's modulus, and methods for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2006011503A1 true WO2006011503A1 (ja) 2006-02-02

Family

ID=35786253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/013717 WO2006011503A1 (ja) 2004-01-08 2005-07-27 高ヤング率鋼板、それを用いた溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板、および高ヤング率鋼管、並びにそれらの製造方法

Country Status (6)

Country Link
US (2) US8057913B2 (ja)
EP (2) EP2700730A3 (ja)
KR (2) KR100907115B1 (ja)
CA (1) CA2575241C (ja)
ES (1) ES2523760T3 (ja)
WO (1) WO2006011503A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007284776A (ja) * 2006-04-20 2007-11-01 Nippon Steel Corp プレス成形性の良好な高強度高ヤング率鋼板、溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板及び鋼管、並びにそれらの製造方法
JP2007284783A (ja) * 2006-03-20 2007-11-01 Nippon Steel Corp 高強度冷延鋼板及びその製造方法
JP2007291483A (ja) * 2006-04-27 2007-11-08 Nippon Steel Corp 圧延方向ヤング率の高い耐火用鋼板及びその製造方法
JP2009019265A (ja) * 2007-06-12 2009-01-29 Nippon Steel Corp 穴広げ性に優れた高ヤング率鋼板及びその製造方法
JP2009030159A (ja) * 2007-07-04 2009-02-12 Nippon Steel Corp プレス成形性の良好な高強度高ヤング率鋼板、溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板及び鋼管、並びに、それらの製造方法
EP2050835A1 (en) * 2006-08-11 2009-04-22 Nippon Steel Corporation Steel for automobile undercarriage component excelling in fatigue performance and process for manufacturing automobile undercarriage component using the steel
JP2009132988A (ja) * 2007-04-19 2009-06-18 Nippon Steel Corp 低降伏比高ヤング率鋼板、溶融亜鉛メッキ鋼板、合金化溶融亜鉛メッキ鋼板、及び、鋼管、並びに、それらの製造方法
EP2088218A1 (en) * 2006-11-07 2009-08-12 Nippon Steel Corporation High young's modulus steel plate and process for production thereof
US8802241B2 (en) 2004-01-08 2014-08-12 Nippon Steel & Sumitomo Metal Corporation Steel sheet having high young's modulus, hot-dip galvanized steel sheet using the same, alloyed hot-dip galvanized steel sheet, steel pipe having high young's modulus, and methods for manufacturing the same
WO2018083035A1 (de) 2016-11-02 2018-05-11 Salzgitter Flachstahl Gmbh Mittelmanganstahlprodukt zum tieftemperatureinsatz und verfahren zu seiner herstellung
JP2019099846A (ja) * 2017-11-29 2019-06-24 日本製鉄株式会社 熱延鋼板
WO2023063347A1 (ja) * 2021-10-14 2023-04-20 日本製鉄株式会社 熱間圧延鋼板

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100742833B1 (ko) * 2005-12-24 2007-07-25 주식회사 포스코 내식성이 우수한 고 망간 용융도금강판 및 그 제조방법
CN101959622B (zh) * 2008-03-07 2013-03-13 日本碍子株式会社 金属条的连续反复轧制方法
US8405955B2 (en) 2010-03-16 2013-03-26 Corning Incorporated High performance electrodes for EDLCS
MX2013011750A (es) 2011-04-13 2013-11-04 Nippon Steel & Sumitomo Metal Corp Laminas de acero laminadas en frio, de alta resistencia, que tienen deformabilidad local excelente y metodo de fabricacion de las mismas.
PL2698444T3 (pl) 2011-04-13 2017-10-31 Nippon Steel & Sumitomo Metal Corp Blacha stalowa walcowana na gorąco i sposób jej wytwarzania
KR101570593B1 (ko) 2011-04-21 2015-11-19 신닛테츠스미킨 카부시키카이샤 균일 연신율과 구멍 확장성이 우수한 고강도 냉연 강판 및 그 제조 방법
CN103562428B (zh) 2011-05-25 2015-11-25 新日铁住金株式会社 冷轧钢板及其制造方法
MX2014003718A (es) * 2011-09-30 2014-07-14 Nippon Steel & Sumitomo Metal Corp Lamina de acero galvanizado y recocido, de alta resistencia, de alta capacidad de templado por coccion, lamina de acero galvanizado y recocido, aleada, de alta resistencia y metodo para manufacturar la misma.
WO2013061545A1 (ja) 2011-10-24 2013-05-02 Jfeスチール株式会社 加工性に優れた高強度鋼板の製造方法
KR101618489B1 (ko) * 2012-01-13 2016-05-04 신닛테츠스미킨 카부시키카이샤 열연 강판 및 그 제조 방법
JP5982905B2 (ja) * 2012-03-19 2016-08-31 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板の製造方法
WO2014021382A1 (ja) * 2012-07-31 2014-02-06 新日鐵住金株式会社 冷延鋼鈑、電気亜鉛系めっき冷延鋼板、溶融亜鉛めっき冷延鋼板、合金化溶融亜鉛めっき冷延鋼板、及び、それらの製造方法
MX2015011463A (es) 2013-03-04 2016-02-03 Jfe Steel Corp Lamina de acero de alta resistencia y metodo para la produccion de la misma y lamina de acero galvanizada de alta resistencia y metodo para la produccion de la misma.
JP5884196B2 (ja) 2014-02-18 2016-03-15 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板の製造方法
CN107690483A (zh) * 2015-06-03 2018-02-13 德国沙士基达板材有限公司 由镀锌钢制成的变形‑硬化部件,其生产方法以及生产适用于部件变形‑硬化的钢带的方法
DE102015112889A1 (de) * 2015-08-05 2017-02-09 Salzgitter Flachstahl Gmbh Hochfester manganhaltiger Stahl, Verwendung des Stahls für flexibel gewalzte Stahlflachprodukte und Herstellverfahren nebst Stahlflachprodukt hierzu
RU2620233C1 (ru) * 2015-12-21 2017-05-23 федеральное государственное бюджетное образовательное учреждение высшего образования "Алтайский государственный технический университет им. И.И. Ползунова" (АлтГТУ) Инструментальная сталь с интерметаллидным упрочнением
MX2019001760A (es) 2016-08-16 2019-06-17 Nippon Steel & Sumitomo Metal Corp Pieza conformada por prensado en caliente.
WO2018160700A1 (en) * 2017-03-01 2018-09-07 Ak Steel Properties, Inc. Hot-rolled steel with very high strength and method for production
KR102043529B1 (ko) * 2017-12-28 2019-11-11 현대제철 주식회사 코일 폭 제어 방법 및 장치
WO2019174730A1 (de) 2018-03-15 2019-09-19 Thyssenkrupp Steel Europe Ag Unterfahrschutz für ein batteriegehäuse
CN112226596B (zh) * 2020-09-15 2022-04-05 舞阳钢铁有限责任公司 一种减少钢锭成材Cr-Mo钢板板型缺陷的方法
KR20220038915A (ko) 2020-09-21 2022-03-29 주식회사 니프코코리아 자동차용 트레이
CN117443945B (zh) * 2023-12-26 2024-03-19 阳泉市广凯机械制造有限公司 一种热轧薄铸造钢带的制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04314823A (ja) * 1991-03-27 1992-11-06 Nippon Steel Corp 塑性変形能に優れた高ヤング率高張力鋼の製造法
JPH06269808A (ja) * 1993-03-25 1994-09-27 Hitachi Ltd 鋳造熱間圧延連続設備及び鋳造熱間圧延連続設備の運転方法
JP2002363695A (ja) * 2001-06-08 2002-12-18 Nippon Steel Corp 形状凍結性に優れた低降伏比型高強度鋼板とその製造方法
JP2003001312A (ja) * 2001-06-18 2003-01-07 Nippon Steel Corp 厚板鋼鈑の圧延方法
JP2003055739A (ja) * 2001-06-05 2003-02-26 Nippon Steel Corp 形状凍結性に優れたフェライト系薄鋼板

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5983721A (ja) * 1982-11-02 1984-05-15 Nippon Steel Corp 高剛性熱延鋼板の製造法
JPS6415319A (en) 1987-07-08 1989-01-19 Kawasaki Steel Co Production of high tensile steel plate having excellent brittle fracture generation resistance characteristic
JPH04136120A (ja) * 1990-09-26 1992-05-11 Nippon Steel Corp 高ヤング率構造用鋼板の製造方法
JP2583654B2 (ja) * 1990-10-02 1997-02-19 新日本製鐵株式会社 低温靭性に優れた高ヤング率構造用鋼板の製造方法
JP2577130B2 (ja) * 1990-10-05 1997-01-29 新日本製鐵株式会社 低降伏比高曲げ剛性構造用鋼板とその製造方法
JPH0717948B2 (ja) * 1990-10-09 1995-03-01 新日本製鐵株式会社 特定方向のヤング率が高い厚鋼板の製造法
JPH04147917A (ja) * 1990-10-09 1992-05-21 Nippon Steel Corp ヤング率の高い厚鋼板の製造法
JPH04293719A (ja) * 1991-03-22 1992-10-19 Nippon Steel Corp 低温靱性に優れ、ヤング率の高い高強度構造用鋼板の製造法
JPH04301060A (ja) 1991-03-28 1992-10-23 Nippon Steel Corp 耐パウダリング性に優れた焼付硬化性高強度合金化溶融亜鉛めっき鋼板およびその製造方法
JPH05263191A (ja) * 1992-01-24 1993-10-12 Sumitomo Metal Ind Ltd 板幅方向のヤング率の高い熱延鋼板およびその製造方法
JPH05255804A (ja) * 1992-03-11 1993-10-05 Nippon Steel Corp 成形性および剛性の優れた冷延鋼板およびその製造方法
JPH0611503A (ja) 1992-06-25 1994-01-21 Mitsubishi Materials Corp 鋳塊内部割れ検査装置
TW245661B (ja) * 1993-01-29 1995-04-21 Hitachi Seisakusyo Kk
JP3050083B2 (ja) * 1995-04-17 2000-06-05 住友金属工業株式会社 高ヤング率熱延鋼板の製造方法
JP3511272B2 (ja) * 1995-05-18 2004-03-29 住友金属工業株式会社 高ヤング率鋼板の製造方法
JP3578234B2 (ja) * 1995-08-16 2004-10-20 住友金属工業株式会社 高ヤング率熱延鋼板の製造方法
JP3602263B2 (ja) 1996-05-24 2004-12-15 日新製鋼株式会社 深絞り性に優れた高強度溶融亜鉛めっき鋼板の製造方法
KR100543956B1 (ko) * 2000-09-21 2006-01-23 신닛뽄세이테쯔 카부시키카이샤 형상 동결성이 우수한 강판 및 그 제조방법
JP3927384B2 (ja) 2001-02-23 2007-06-06 新日本製鐵株式会社 切り欠き疲労強度に優れる自動車用薄鋼板およびその製造方法
CA2462260C (en) * 2001-10-04 2012-02-07 Nippon Steel Corporation High-strength thin steel sheet drawable and excellent in shape fixation property and method of producing the same
JP3924159B2 (ja) 2001-11-28 2007-06-06 新日本製鐵株式会社 成形加工後の耐遅れ破壊性に優れた高強度薄鋼板及びその製造方法並びに高強度薄鋼板により作成された自動車用強度部品
JP2003253385A (ja) 2002-02-28 2003-09-10 Jfe Steel Kk 高速変形特性および曲げ特性に優れた冷延鋼板およびその製造方法
JP3945367B2 (ja) 2002-10-18 2007-07-18 住友金属工業株式会社 熱延鋼板及びその製造方法
US8084143B2 (en) 2003-09-30 2011-12-27 Nippon Steel Corporation High-yield-ratio and high-strength thin steel sheet superior in weldability and ductility, high-yield-ratio high-strength hot-dip galvanized thin steel sheet, high-yield ratio high-strength hot-dip galvannealed thin steel sheet, and methods of production of same
CA2496212C (en) 2004-02-25 2010-01-12 Jfe Steel Corporation High strength cold rolled steel sheet and method for manufacturing the same
JP4506439B2 (ja) 2004-03-31 2010-07-21 Jfeスチール株式会社 高剛性高強度薄鋼板およびその製造方法
JP4843982B2 (ja) 2004-03-31 2011-12-21 Jfeスチール株式会社 高剛性高強度薄鋼板およびその製造方法
JP4843981B2 (ja) 2004-03-31 2011-12-21 Jfeスチール株式会社 高剛性高強度薄鋼板およびその製造方法
US8057913B2 (en) 2004-07-27 2011-11-15 Nippon Steel Corporation Steel sheet having high young'S modulus, hot-dip galvanized steel sheet using the same, alloyed hot-dip galvanized steel sheet, steel pipe having high young'S modulus and methods for manufacturing the same
CN100372962C (zh) 2005-03-30 2008-03-05 宝山钢铁股份有限公司 屈服强度1100Mpa以上超高强度钢板及其制造方法
JP5058508B2 (ja) 2005-11-01 2012-10-24 新日本製鐵株式会社 低降伏比型高ヤング率鋼板、溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板及び鋼管、並びにそれらの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04314823A (ja) * 1991-03-27 1992-11-06 Nippon Steel Corp 塑性変形能に優れた高ヤング率高張力鋼の製造法
JPH06269808A (ja) * 1993-03-25 1994-09-27 Hitachi Ltd 鋳造熱間圧延連続設備及び鋳造熱間圧延連続設備の運転方法
JP2003055739A (ja) * 2001-06-05 2003-02-26 Nippon Steel Corp 形状凍結性に優れたフェライト系薄鋼板
JP2002363695A (ja) * 2001-06-08 2002-12-18 Nippon Steel Corp 形状凍結性に優れた低降伏比型高強度鋼板とその製造方法
JP2003001312A (ja) * 2001-06-18 2003-01-07 Nippon Steel Corp 厚板鋼鈑の圧延方法

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8802241B2 (en) 2004-01-08 2014-08-12 Nippon Steel & Sumitomo Metal Corporation Steel sheet having high young's modulus, hot-dip galvanized steel sheet using the same, alloyed hot-dip galvanized steel sheet, steel pipe having high young's modulus, and methods for manufacturing the same
JP2007284783A (ja) * 2006-03-20 2007-11-01 Nippon Steel Corp 高強度冷延鋼板及びその製造方法
JP2007284776A (ja) * 2006-04-20 2007-11-01 Nippon Steel Corp プレス成形性の良好な高強度高ヤング率鋼板、溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板及び鋼管、並びにそれらの製造方法
JP2007291483A (ja) * 2006-04-27 2007-11-08 Nippon Steel Corp 圧延方向ヤング率の高い耐火用鋼板及びその製造方法
US8828159B2 (en) 2006-08-11 2014-09-09 Nippon Steel & Sumitomo Metal Corporation Steel material for automobile chassis parts superior in fatigue characteristics and method of production of automobile chassis parts using the same
EP2050835A4 (en) * 2006-08-11 2011-10-12 Nippon Steel Corp STEEL FOR AUTOMOBILE ROLLER COMPONENT HAVING EXCELLENT FATIGUE PERFORMANCE AND METHOD FOR MANUFACTURING AUTOMOBILE RUNNING COMPONENT USING THE STEEL
US8778261B2 (en) 2006-08-11 2014-07-15 Nippon Steel & Sumitomo Metal Corporation Steel material for automobile chassis parts superior in fatigue characteristics and method of production of automobile chassis parts using the same
EP2050835A1 (en) * 2006-08-11 2009-04-22 Nippon Steel Corporation Steel for automobile undercarriage component excelling in fatigue performance and process for manufacturing automobile undercarriage component using the steel
EP2088218A1 (en) * 2006-11-07 2009-08-12 Nippon Steel Corporation High young's modulus steel plate and process for production thereof
EP2088218A4 (en) * 2006-11-07 2013-04-03 Nippon Steel & Sumitomo Metal Corp STEEL PLATE WITH HIGH YOUNGSCHEM ELASTICITY MODULE AND MANUFACTURING METHOD THEREFOR
JP2009132988A (ja) * 2007-04-19 2009-06-18 Nippon Steel Corp 低降伏比高ヤング率鋼板、溶融亜鉛メッキ鋼板、合金化溶融亜鉛メッキ鋼板、及び、鋼管、並びに、それらの製造方法
JP2009019265A (ja) * 2007-06-12 2009-01-29 Nippon Steel Corp 穴広げ性に優れた高ヤング率鋼板及びその製造方法
JP2009030159A (ja) * 2007-07-04 2009-02-12 Nippon Steel Corp プレス成形性の良好な高強度高ヤング率鋼板、溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板及び鋼管、並びに、それらの製造方法
WO2018083035A1 (de) 2016-11-02 2018-05-11 Salzgitter Flachstahl Gmbh Mittelmanganstahlprodukt zum tieftemperatureinsatz und verfahren zu seiner herstellung
US11352679B2 (en) 2016-11-02 2022-06-07 Salzgitter Flachstahl Gmbh Medium-manganese steel product for low-temperature use and method for the production thereof
JP2019099846A (ja) * 2017-11-29 2019-06-24 日本製鉄株式会社 熱延鋼板
JP7047350B2 (ja) 2017-11-29 2022-04-05 日本製鉄株式会社 熱延鋼板
WO2023063347A1 (ja) * 2021-10-14 2023-04-20 日本製鉄株式会社 熱間圧延鋼板

Also Published As

Publication number Publication date
EP1806421A1 (en) 2007-07-11
KR20090031959A (ko) 2009-03-30
US20080008901A1 (en) 2008-01-10
EP2700730A2 (en) 2014-02-26
KR100960167B1 (ko) 2010-05-26
EP2700730A3 (en) 2017-08-09
CA2575241A1 (en) 2006-02-02
US20120077051A1 (en) 2012-03-29
KR100907115B1 (ko) 2009-07-09
EP1806421B1 (en) 2014-10-08
EP1806421A4 (en) 2008-02-27
CA2575241C (en) 2011-07-12
ES2523760T3 (es) 2014-12-01
KR20070040798A (ko) 2007-04-17
US8057913B2 (en) 2011-11-15
US8802241B2 (en) 2014-08-12

Similar Documents

Publication Publication Date Title
WO2006011503A1 (ja) 高ヤング率鋼板、それを用いた溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板、および高ヤング率鋼管、並びにそれらの製造方法
JP4634915B2 (ja) 高ヤング率鋼板、それを用いた溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板、高ヤング率鋼管、高ヤング率溶融亜鉛めっき鋼管、及び高ヤング率合金化溶融亜鉛めっき鋼管、並びにそれらの製造方法
US10190186B2 (en) Method for manufacturing a high-strength galvanized steel sheet having excellent formability and crashworthiness
JP5058508B2 (ja) 低降伏比型高ヤング率鋼板、溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板及び鋼管、並びにそれらの製造方法
KR101949628B1 (ko) 고강도 강판 및 그 제조 방법
JP5834717B2 (ja) 高降伏比を有する溶融亜鉛めっき鋼板およびその製造方法
JP6172404B1 (ja) 高強度薄鋼板およびその製造方法
EP2980245B1 (en) High-strength alloyed molten-zinc-plated steel sheet and method for manufacturing same
WO2013005670A1 (ja) 溶融めっき冷延鋼板およびその製造方法
WO2020184154A1 (ja) 高強度鋼板およびその製造方法
JP5664482B2 (ja) 溶融めっき冷延鋼板
JP4445339B2 (ja) 高ヤング率鋼板およびその製造方法
JP5533144B2 (ja) 溶融めっき冷延鋼板およびその製造方法
JP5533145B2 (ja) 冷延鋼板およびその製造方法
JP5533143B2 (ja) 冷延鋼板およびその製造方法
JP5609793B2 (ja) 溶融めっき冷延鋼板の製造方法
JP5776762B2 (ja) 冷延鋼板およびその製造方法
JP5776763B2 (ja) 溶融めっき冷延鋼板およびその製造方法
JP2014240510A (ja) 溶融亜鉛めっき鋼板および製造方法
JP5776764B2 (ja) 冷延鋼板およびその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020077001720

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2575241

Country of ref document: CA

Ref document number: 11572693

Country of ref document: US

Ref document number: 200580025160.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005767035

Country of ref document: EP

Ref document number: 794/DELNP/2007

Country of ref document: IN

WWP Wipo information: published in national office

Ref document number: 2005767035

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11572693

Country of ref document: US