WO2006006289A1 - スイッチング電源装置および電子装置 - Google Patents

スイッチング電源装置および電子装置 Download PDF

Info

Publication number
WO2006006289A1
WO2006006289A1 PCT/JP2005/007496 JP2005007496W WO2006006289A1 WO 2006006289 A1 WO2006006289 A1 WO 2006006289A1 JP 2005007496 W JP2005007496 W JP 2005007496W WO 2006006289 A1 WO2006006289 A1 WO 2006006289A1
Authority
WO
WIPO (PCT)
Prior art keywords
period
circuit
control circuit
switch element
power supply
Prior art date
Application number
PCT/JP2005/007496
Other languages
English (en)
French (fr)
Inventor
Akio Nishida
Fumi Kitao
Hiroshi Takemura
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Priority to JP2006524538A priority Critical patent/JP4259577B2/ja
Priority to CN2005800005362A priority patent/CN1806382B/zh
Priority to GB0601032A priority patent/GB2420232B/en
Priority to US10/564,025 priority patent/US7433208B2/en
Publication of WO2006006289A1 publication Critical patent/WO2006006289A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/338Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in a self-oscillating arrangement
    • H02M3/3381Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in a self-oscillating arrangement using a single commutation path
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop

Definitions

  • the present invention relates to a switching power supply device and an electronic device including the same.
  • the power of the electronic device is generally used in the RCC switching power supply.
  • the lighter the load the higher the switching frequency.
  • it has the characteristic that switching loss increases, and as it is, it is a power that can be expected to reduce power consumption during light loads such as standby.
  • Patent Document 1 is disclosed as a switching power supply that reduces power consumption at light load in an RCC switching power supply.
  • This switching power supply device is equipped with a circuit that forcibly grounds the control terminal of the first switch element for a certain period of time at a light load, thereby delaying the turn-on of the first switch element so that the switching frequency does not exceed a certain level. It is what I did.
  • Patent Document 2 discloses a switching power supply device that solves this problem.
  • the switching power supply device of Patent Document 2 is provided with a circuit that sets a minimum on-period for the on-period of the first switch element and prevents the on-period from being shortened further.
  • the power supply to the load becomes excessive because the ON period cannot be shortened during standby, The output voltage begins to rise. Therefore, a circuit that controls (extends) the OFF period by detecting that the output voltage has risen slightly is configured to prevent the output voltage from rising and to suppress the switching frequency rise.
  • Patent Document 1 JP-A-7-67335
  • Patent Document 2 JP 2004-80941 A
  • the switching power supply device of Patent Document 2 detects that the output voltage has risen and detects the standby time, and therefore, between the standby output voltage and the rated output voltage. There is a difference. That is, there is a problem that the fluctuation range of the output voltage becomes large.
  • two systems were required: a feedback circuit for on-period control at non-light load and a feedback circuit for off-period control at light load, the gain changed when the system was switched and the load There was a problem that the output voltage fluctuated when the control system was switched during fluctuations.
  • an object of the present invention is to eliminate the above-mentioned two problems by adopting a single feedback circuit without adopting a method for detecting an increase in output voltage, thereby reducing fluctuations in the output voltage.
  • An object of the present invention is to provide a suppressed switching power supply device and an electronic device including the same.
  • a switching power supply device of the present invention provides:
  • Transformer T having primary winding Nl, secondary winding N2 and feedback winding N3, first switch element Q1 connected in series to primary winding N1, and the first A control circuit 4 provided between the control terminal of the switch element Q1 and the feedback feeder N3, a rectifier circuit 2 connected to the secondary feeder N2, and an output output from the rectifier circuit 2
  • a switching power supply comprising an output voltage control circuit 3 that detects voltage and feeds back to the control circuit 4 in one system
  • the control circuit 4 is configured to turn off the first switch element Q 1 in the on state based on a single feed knock signal from the output voltage control circuit 3 at a non-light load.
  • an off period control circuit for controlling the off period of the first switch element Q 1 by delaying the turn on of the first switch element Q 1 based on the feedback signal at light load It is characterized by having 5.
  • the off-period control circuit 5 and the on-period control circuit 6 are provided so as to be connected, and the impedance circuit 8 changes in impedance based on the feedback signal. And the control of the off-period control circuit 5 at light load and the control of the on-period control circuit 6 at non-light load are continuously performed by changing the impedance of the impedance circuit! /
  • the off-period control circuit 5 includes a third switch inserted between the control terminal of the first switch element Q1 and the feedback feeder N3.
  • Switch element Q3, and a fourth switch element Q4 inserted between the control terminal of the third switch element Q3 and the ground
  • the on-period control circuit 6 includes the first switch element Q1.
  • a time constant circuit including a second switching element Q2 inserted between the control terminal and the ground, and a capacitor C3 for applying a control voltage to the second switching element Q2.
  • the impedance circuit 8 includes a first path pi for supplying a current based on the feedback signal to the capacitor C3, and a second path p2 for bypassing to the ground.
  • a minimum on period is set in the on period controlled by the on period control circuit 6, and the on period is set under all input / output conditions. It is characterized by preventing intermittent oscillation by keeping it longer than the minimum ON period.
  • the second path is a circuit that bypasses the current due to the feedback signal only when the first switch element Q1 is in the OFF state. Yes.
  • the off-period control circuit 5 includes a limit circuit 9 that limits the upper limit of the voltage applied to the control terminal of the first switch element Q1. It is characterized by The
  • An electronic device is characterized in that the switching power supply device having any one of the above-described configurations is provided in a power supply circuit section.
  • the on-period control circuit 6 turns off the first switch element Q1 based on the feedback signal from the output voltage control circuit 3 at light load, and the output voltage control circuit 3 from the output voltage control circuit 3 also at non-light load. Based on the feedback signal, the off-period control circuit 5 delays the turn-on of the first switch element Q 1 to control the off-period of Q 1, so that the feedback circuit of the first switch element Q 1 The on period and off period can be controlled. Therefore, the output voltage does not fluctuate when switching the control system when the load fluctuates. In addition, since it is not necessary to detect an increase in the output voltage during standby, the fluctuation range of the output voltage without causing a difference between the output voltage during standby and the output voltage during rating is not increased.
  • the impedance of the impedance circuit that connects between the off period control circuit 5 and the on period control circuit 6 changes, so that the The control of off-period control circuit 5 and the control of on-period control circuit 6 at non-light load are performed continuously, resulting in an increase in ripple and fluctuation of output voltage when switching between on-period control and off-period control. There is nothing.
  • the ON period can be kept above the minimum ON period under all input / output conditions, and at no load In this case, intermittent oscillation can be prevented.
  • the clamp circuit restricts the capacitor voltage that determines the control voltage of the second switch element Q2 to be constant and the OFF period is not limited. Since it is extended, an increase in output voltage can be prevented when there is no load.
  • the bypass circuit binosizes the current due to the feedback so that the charge amount in the ON period and the charge amount in the OFF period of the capacitor C3 are Since each can be changed independently, the degree of freedom in setting the relationship (frequency characteristics) between the load supply power and the switching frequency can be further increased.
  • the limit circuit limits the upper limit of the voltage applied to the control terminal of the first switch element Q1, it can be used over a wide input voltage range.
  • FIG. 1 is a circuit diagram of a switching power supply device according to a first embodiment.
  • FIG. 2 is a voltage waveform diagram of each part of the switching power supply device.
  • FIG. 3 is a circuit diagram of a switching power supply device according to a second embodiment.
  • FIG. 4 is a voltage waveform diagram of each part of the switching power supply device.
  • FIG. 5 is a circuit diagram of a switching power supply device according to a third embodiment.
  • FIG. 6 is a circuit diagram of a switching power supply device according to a fourth embodiment.
  • FIG. 7 is a block diagram illustrating a configuration of a printer according to a fifth embodiment.
  • FIG. 1 is a circuit diagram of the switching power supply.
  • This switching power supply unit includes a transformer T having a primary winding Nl, a secondary winding N2 and a feedback winding N3, a first switch element Q 1 connected in series to the primary winding N1, and Q 1
  • the control circuit 4 provided between the control terminal of the first and the feedback feeder N3, the rectifier circuit 2 connected to the secondary feeder N2, and the control circuit 4 by detecting the output voltage output from the rectifier circuit 2 And an output voltage control circuit 3 for feeding back to the output.
  • the first switch element Q1 is composed of a MOSFET, and a DC power source Vcc as an input power source is applied to a series circuit of the first switch element Q1 and the primary winding N1.
  • the rectifier circuit 2 includes a diode D1 connected in series to the secondary winding N2, and a smoothing capacitor C1 connected between the force sword of the diode D1 and the ground.
  • the secondary circuit consisting of the secondary winding N2, the diode Dl, and the capacitor C1 and the primary circuit with the first switch element Q1 inserted in series constitute the main circuit. I will do it.
  • the output voltage control circuit 3 includes a voltage dividing circuit composed of resistors R2 and R3 between the output terminal Po and the ground Gout.
  • the output voltage control circuit 3 includes a resistor R1, a light-emitting diode PD1 of the photopower bracket PC 1, and a shunt regulator SR.
  • the series circuit is provided.
  • the connection points of resistors R2 and R3 and Chantregi Between the power sword terminal of the urator SR, a negative feedback circuit 7 that also has a series circuit force of a resistor R15 and a capacitor C9 is provided. Also, connect the connection point of resistors R2 and R3 to the reference terminal of shunt regulator SR.
  • the control circuit 4 includes an off period control circuit 5 and an on period control circuit 6.
  • a third switch element Q3 of the off-period control circuit 5 and a capacitor C2 are inserted in series between one end of the feedback winding N3 and the gate of Q1.
  • the series circuit composed of the resistor R13 and the capacitor C10 of the off-period control circuit 5 constitutes a time constant circuit.
  • a series circuit of a resistor R9 and a fourth switch element Q4 is connected between the base of the third switch element Q3 and the input power supply side ground Gin.
  • Resistors R23 and R24 are inserted between the base of the fourth switch element Q4 and the capacitor C10.
  • Capacitor C6 is installed between Q3 base emitters to prevent malfunction caused by noise.
  • a starting resistor R4 is connected between the terminal on the first switch element Q1 side of the capacitor C2 and the input power line.
  • a series circuit of the phototransistor PT1 of the photocoupler PC1 and the resistor R16 is provided between the connection point of the resistors R23 and R24 and the input power supply side ground Gin.
  • a second switch element Q2 is provided between the gate 1 input power supply side ground Gin of Q1 of the ON period control circuit 6. Between the two ends of the feedback feeder N3, there is a time constant circuit with resistors R6, R7 and a capacitor C3. In addition, one end of capacitor C3 and the base of Q2 are connected, and the circuit is configured so that the voltage of C3 is applied between the base emitter of Q2.
  • a diode D4 is connected between the connection point of PT1 and R16 and the base of Q2.
  • resistor R21 for gate protection is connected between the gate and source (Gin) of Q1.
  • the impedance circuit 8 is configured by the phototransistor PT1, resistors R16 and R24, and the diode D4, and the impedance of PT1 is changed by a feedback signal via PD1.
  • the first point of the switching power supply shown in Fig. 1 is that the current of the phototransistor PT1 flows (charges) to the capacitor C3 via the diode D4, and the input power supply side ground via the resistor R16.
  • the circuit was configured to flow to Gin (bypass).
  • the second point is that the circuit is configured such that the on-timing of Q4 is controlled by the impedance circuit 8 and a time constant circuit including resistors R22 and R23 and a capacitor C11.
  • the operation of the switching power supply device shown in FIG. 1 is as follows.
  • the output voltage is made constant by controlling the Q1 off period as described below.
  • the excitation energy of the transformer T (energy accumulated during the on period of Q1) is output to the secondary side.
  • the exciting current in this case, the current flowing through the secondary winding N2 becomes a force
  • a resonance voltage is generated in the feedback winding N3, and Q1 turns on and shifts to the ON period.
  • Q1 cannot be turned on unless Q3 is turned on. Therefore, when the load is light, the turn-on of Q3 becomes the condition for ending the off-period of Q1, and when Q3 is turned on, Q1 is turned on by the charge accumulated in C2 and shifts to the Q1-on period.
  • the time until Q4 is turned on is determined by the impedance of the phototransistor PT1. That is, since the current of the light-emitting diode PD1 of the photopower bra PC1 increases at light loads, the impedance of PT1 decreases and the collector terminal voltage of PT1 decreases.
  • Q4's base-emitter voltage (capacitor C11 voltage) is determined by the time constant circuit consisting of R22, R23, and C11. Therefore, the time until Q4 is turned on by the collector terminal voltage of PT1. Is determined. Therefore, the lower the PT1 collector voltage at light load, the longer the off period of Q1. This is a current discontinuous mode operation.
  • capacitor C3 is charged by the voltage generated on feedback line ⁇ 3. At this time, current flows through the time constant circuit composed of R6, R7, and C3 due to the voltage of the feedback winding ⁇ 3, and the charging voltage of C3 increases. In addition, due to the voltage of capacitor C10, current flows through the parallel circuit of C3 and R7 through the first path pi via PT1 and D4, and the charging voltage of C3 rises.
  • the output voltage is made constant by controlling the ON period of Q1 as in the normal RCC as described below.
  • the current flowing through the path 7) is small, and the amount of charge to the capacitor C3 is small. Moreover, since C3 is charged in the negative direction due to the voltage of the feedback line N3, the Q1 ON period is entered with the C3 potential at a negative potential.
  • FIG. 2 shows voltage waveforms at various parts in FIG. 1 for light loads and heavy loads.
  • (A) is for light load and (B) is for heavy load.
  • V (C11) is the voltage of capacitor C11
  • V (C3) is the voltage of capacitor C3
  • Q4Vbe (On) is the threshold voltage between the base emitters required to turn on switch element Q4
  • Q2Vbe (On) is the threshold voltage between the base emitter and the switch element Q2 required to turn on.
  • C3 is reversely charged through the path C3 ⁇ R6 ⁇ N3 due to the reverse voltage generated on the feedback winding N3.
  • C11 is C11 ⁇ base of Q4 'between collector ⁇ R9 ⁇ Discharged (reverse charged) via C6 ⁇ N3.
  • C10 ⁇ R24 ⁇ R23 ⁇ C11 is charged.
  • the effect of PT1 is low at light load, so the effect is small.
  • C3 is reversely charged through the path C3 ⁇ R6 ⁇ N3 due to the reverse voltage generated by the feedback winding N3.
  • the reverse charging time constant of C3 depends on the impedance of PT1.
  • PT1's collector voltage becomes relatively high because PT1's impedance is relatively high. Therefore, during the period from tO to tl, C11 is hardly discharged, The battery is charged immediately, and Q4 is already on at tl. So Q3 is also on.
  • C3 is charged in the positive direction along the route of N3 ⁇ R6 ⁇ C3. After that, when the voltage of V (C3) reaches Q2Vbe (On) at the timing of to, Q2 turns on and Q1 turns off.
  • Fig. 3 is a circuit diagram of the switching power supply device. Unlike the switching power supply according to the first embodiment shown in FIG. 1, a diode D3 is inserted in series with the resistor R16. Other configurations are the same as those shown in FIG.
  • the capacitor C3 is charged in the positive direction along the path C10 ⁇ R24 ⁇ PT1 ⁇ D4 ⁇ C3.
  • the impedance of PT1 is minimized and the potential of C3 Since Q2 rises quickly, depending on the circuit constant setting, Q2 turns on before Q3 turns on, and even if Q3 turns on after that, the gate of Q1 is not energized, There may be situations where Q1 cannot turn on. If this happens, intermittent oscillation will occur. In such an intermittent oscillation state, the oscillation period becomes longer, and the followability at the time of sudden load change deteriorates.
  • the voltage of the capacitor C3 during the OFF period of Q1 can be clamped to a constant value, and By setting this value low so that Q2 cannot turn on, intermittent oscillation that prevents Q2 from turning on during the Q1 off period can be prevented.
  • the operation of the switching power supply device shown in FIG. 3 (particularly the operation different from the switching power supply device shown in FIG. 1) is as follows.
  • the on-period of Q1 is constant, and the output voltage is made constant by controlling the off-period of Q1.
  • the current flowing through PT1 is divided into a path p2 flowing through R16 and D3 and a path p1 charging C3 through D4.
  • the capacitor C3 is charged by the path p1 through D4, the voltage V (C3) is clamped to a constant voltage by D3, D4, and R16.
  • the forward drop voltage of diode D3 is VF (D3)
  • the drop voltage of resistor R16 is VR16
  • the forward drop voltage of diode D4 is VF (D4)
  • V (C3) CL VF (D3) + VR16 VF (D4)
  • the ON period is constant at light load.
  • V (C3) VF (D3) + VR16- VF (D4)
  • C3 is charged by the voltage generated on the feedback winding N3.
  • the time constant at this time is determined by the R6, R7, and C3 circuits regardless of the impedance of PT1, etc. Since the initial value of the charge of the capacitor C3 and the time constant of the time constant circuit formed by R6, R7, and C3 are constant, the ON period is constant. When the voltage of C3 reaches the ON voltage Vbe (On) of Q2, Q2 turns on and shifts to the Q1 OFF period.
  • Fig. 4 shows the voltage waveforms in each part of Fig. 1 for light and heavy loads.
  • (A) is for light load and (B) is for heavy load.
  • the capacitor C3 Since the voltage V (C3) is clamped to a constant voltage by D3, D4, and R16 during the Ql off period, the initial value of the charge of the capacitor C3 is constant as shown by the point A1. Also, since the time constant of the time constant circuit by R6, R7, C3 is constant, the Q1 ON period is constant.
  • V (C3) does not reach Q2Vbe (On) during the Q1 off period even when there is no load, so Q2 does not turn on.
  • the minimum on-time of Q1 is set and intermittent oscillation can be prevented.
  • FIG. 5 is a circuit diagram of the switching power supply device. This switching power supply device is obtained by adding a switch element Q5 and resistors R17, R18, R19, R20, and D5 to the circuit shown in FIG. This newly added circuit operates as follows.
  • (A) D5 and R17 to R20 detect the on / off state of Q4 and control the on / off state of Q5.
  • Q4 when Q4 is turned on, current flows in the path of R20 ⁇ R19 ⁇ D5 ⁇ Q4, the potential at the connection point of R20 and R19 is lowered, and Q5 is turned off by lowering the base potential of Q5.
  • Q5 turns on when Q4's base potential rises as Q4 turns off.
  • FIG. 6 is a circuit diagram of the switching power supply device.
  • the second embodiment is different from the switching power supply device shown in FIG. 3 in that resistors R25, R26, R27, and switch elements Q8, Q9, Q9, The voltage regulator circuit consisting of the Zener diode D8 is provided.
  • the switch element Q8 and the Zener diode D8 constitute a voltage regulator circuit
  • Q9, R25, and R26 constitute an invert circuit for inverting the voltage signal.
  • Zener diode D8 is a constant voltage regulator (limit circuit) together with switch element Q8.
  • the gate voltage (control voltage) of Q1 is limited so that it does not exceed the specified range. In other words, even if the gate voltage of Q1 is maximum,
  • Vgs (Ql) Vz (D8) -Vbe (Q8)
  • Vgs (Ql) is the gate-source voltage of Ql
  • Vz (D8) is the Zener voltage of Zener diode D8
  • Vbe (Q8) is the forward voltage between the base and emitter of switch element Q8.
  • control voltage of the first switch element Q1 can be prevented from exceeding a predetermined voltage over a wide input voltage range such as a world wide input, and the destructive force of Q1 can also be prevented.
  • FIG. Fig. 7 is a block diagram showing the configuration of the printer.
  • the rectifier circuit 10 receives the power supply voltage of the commercial AC power supply AC, rectifies it, and outputs it to the switching power supply device 1.
  • This switching power supply device 1 is the switching power supply device shown in any one of the first to fourth embodiments.
  • the printer control circuit 11 operates using the DC power supply voltage output from the switching power supply 1 as a power source.
  • the printer control circuit 11 communicates data with the host device via the communication path via the communication unit 12, reads the operation of the operation unit 13, and drives the drive unit 14.
  • the drive unit 14 consumes power during printing, but consumes little power during standby when no printing operation is performed. Since the switching power supply device 1 of the present invention is used, power loss during standby can be reduced and efficiency can be improved.
  • the electronic device of the present invention can be applied to any electronic device that requires a stable DC power source, such as a notebook personal computer and a portable information device, which is not limited to a printer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

 トランス(T)の1次巻線(N1)に直列に第1のスイッチ素子(Q1)を接続し、2次巻線(N2)に整流回路(2)と、出力電圧を検出して制御回路(4)へフィードバックする出力電圧制御回路(3)とを設ける。制御回路(4)には、出力電圧制御回路(3)からのフィードバック信号に基づいてオン状態の(Q1)をターンオフさせるオン期間制御回路(6)と、同じフィードバック信号に基づいて(Q1)のターンオンを遅延させてそのオフ期間を制御するオフ期間制御回路(5)とを設ける。

Description

スイッチング電源装置および電子装置
技術分野
[0001] この発明はスイッチング電源装置およびそれを備えた電子装置に関するものである 背景技術
[0002] 近年、例えばプリンタやファクシミリ等にぉ 、て、印刷動作を行って ヽな 、待機時に 消費電力をなるベく削減することへの要求が高まっている。そのため、プリンタゃファ クシミリの電源回路部に用いられるスイッチング電源装置自体の待機時の消費電力 の低減ィ匕が求められて 、る。
[0003] このような電子装置の電源回路部には、一般に RCC方式のスイッチング電源装置 が用いられている力 このような RCC方式のスイッチング電源装置においては、負荷 が軽くなるほどスイッチング周波数が高くなり、それにともなってスイッチング損失が増 加するという特性をもっていて、そのままでは待機時のような軽負荷時の消費電力の 低減が望めな力 た。
[0004] そこで、 RCC方式のスイッチング電源装置における軽負荷時の電力消費を低減す るようにしたスイッチング電源装置として、例えば特許文献 1が開示されている。このス イッチング電源装置は軽負荷時に第 1のスィッチ素子の制御端子を一定時間強制的 に接地させる回路を備えることによって、第 1のスィッチ素子のターンオンを遅らせて スイッチング周波数が一定以上にならな 、ようにしたものである。
[0005] ところが、このような回路によってスイッチング周波数の上限を定めるようにしたスィ ツチング電源装置においては、軽負荷時にスイッチング周波数を低下させて電力消 費を大幅に削減する効果が小さ 、と 、う問題があった。
[0006] そこでこの問題を解消したスイッチング電源装置が特許文献 2に開示されている。こ の特許文献 2のスイッチング電源装置は、第 1のスィッチ素子のオン期間に最小オン 期間を設定し、それ以上オン期間が短縮できないようにする回路を設けている。この 場合、待機時にはオン期間が短縮できないため負荷への電力供給が過剰となって、 出力電圧が上昇しはじめる。そこで、この出力電圧が若干上昇したことを検出してォ フ期間を制御 (延長)する回路を構成することによって、出力電圧の上昇を防止する とともにスイッチング周波数上昇の抑制を図っている。
特許文献 1 :特開平 7— 67335号公報
特許文献 2 :特開 2004— 80941公報
発明の開示
発明が解決しょうとする課題
[0007] ところが、特許文献 2のスイッチング電源装置においては、出力電圧が上昇したこと を検出して待機時を検知するものであるため、待機時の出力電圧と定格時の出力電 圧の間に差が生じる。すなわち出力電圧の変動幅が大きくなるという問題があった。 また、非軽負荷時におけるオン期間制御のためのフィードバック回路と軽負荷時にお けるオフ期間制御のためのフィードバック回路の 2系統が必要であったため、その系 統の切替時にゲインが変化して負荷変動時の制御系統切替時に出力電圧が変動す るという問題があった。
[0008] そこで、この発明の目的は、出力電圧の上昇を検出する方式を採用せず、またフィ ードバック回路を 1系統とすることによって上述の 2つの問題点を解消し、出力電圧の 変動を抑えたスイッチング電源装置およびそれを備えた電子装置を提供することに ある。
課題を解決するための手段
[0009] 上記目的を達成するために、この発明のスイッチング電源装置は、
(1) 1次卷線 Nl、 2次卷線 N2および帰還卷線 N3を備えたトランス Tと、 1次卷線 N 1に直列に接続された第 1のスィッチ素子 Q1と、該第 1のスィッチ素子 Q1の制御端 子と前記帰還卷線 N3との間に設けられた制御回路 4と、前記 2次卷線 N2に接続さ れた整流回路 2と、該整流回路 2から出力される出力電圧を検出して前記制御回路 4 へ 1系統でフィードバックする出力電圧制御回路 3とを備えたスイッチング電源装置 において、
前記制御回路 4は、非軽負荷時に前記出力電圧制御回路 3からの 1系統のフィード ノ ック信号に基づ 、てオン状態の前記第 1のスィッチ素子 Q 1をターンオフさせるォ ン期間制御回路 6と、軽負荷時に前記フィードバック信号に基づいて前記第 1のスィ ツチ素子 Q 1のターンオンを遅延させて前記第 1のスィッチ素子 Q 1のオフ期間を制 御するオフ期間制御回路 5とを備えたことを特徴としている。
[0010] (2)また、(1)において前記オフ期間制御回路 5と前記オン期間制御回路 6とを接 続するように設けられ、前記フィードバック信号に基づ 、てインピーダンスが変化する インピーダンス回路 8を備え、該インピーダンス回路のインピーダンス変化によって軽 負荷時の前記オフ期間制御回路 5の制御と、非軽負荷時の前記オン期間制御回路 6の制御を連続的に行うようにしたことを特徴として!/、る。
[0011] (3)また、(1)または(2)において、オフ期間制御回路 5は、前記第 1のスィッチ素 子 Q1の制御端子と前記帰還卷線 N3との間に挿入された第 3のスィッチ素子 Q3と、 該第 3のスィッチ素子 Q3の制御端子と接地との間に挿入された第 4のスィッチ素子 Q 4とを備え、前記オン期間制御回路 6は、第 1のスィッチ素子 Q1の制御端子と接地と の間に挿入された第 2のスィッチ素子 Q2と、該第 2のスィッチ素子 Q2へ制御電圧を 与えるコンデンサ C3を含む時定数回路とを備え、
前記インピーダンス回路 8は、前記フィードバック信号による電流を前記コンデンサ C3へ供給する第 1の経路 piと、接地へバイパスする第 2の経路 p2とを備えたことを 特徴としている。
[0012] (4)また、(1)〜(3)の何れかの構成において、オン期間制御回路 6の制御による オン期間に最小オン期間を設定して、すべての入出力条件においてオン期間を最 小オン期間以上に保って間欠発振を防止したことを特徴としている。
[0013] (5)また、(4)において、第 1のスィッチ素子 Q1がオフである時に、第 2のスィッチ素 子 Q2の制御電圧を定めるオン期間制御回路 6内のコンデンサ C3の電圧を一定値 に制限するクランプ回路を前記インピーダンス回路 8に設けたことを特徴としている。
[0014] (6)また、(3)において、第 2の経路を、第 1のスィッチ素子 Q1がオフ状態である場 合にのみ前記フィードバック信号による電流をバイパスする回路としたことを特徴とし ている。
[0015] (7)また、(1)〜(6)において、オフ期間制御回路 5が、第 1のスィッチ素子 Q1の制 御端子に印加される電圧の上限を制限するリミット回路 9を備えたことを特徴としてい る。
[0016] (8)この発明の電子装置は、上記何れかの構成のスイッチング電源装置を電源回 路部に設けたことを特徴としている。
発明の効果
[0017] (1)軽負荷時に出力電圧制御回路 3からのフィードバック信号に基づいてオン期間 制御回路 6が第 1のスィッチ素子 Q1をターンオフさせ、非軽負荷時に同じく出力電 圧制御回路 3からのフィードバック信号に基づいてオフ期間制御回路 5が第 1のスィ ツチ素子 Q 1のターンオンを遅延させて Q 1のオフ期間を制御するので、 1系統のフィ ードバック回路によって第 1のスィッチ素子 Q 1のオン期間とオフ期間を制御すること ができる。そのため、負荷変動時の制御系統切替時に出力電圧が変動することがな い。また、待機時の出力電圧上昇を検出する必要がないため、待機時の出力電圧と 定格時の出力電圧との間に差が生じることがなぐ出力電圧の変動幅が大きくなるこ ともない。
[0018] (2)出力電圧制御回路 3からのフィードバック信号に基づいて、オフ期間制御回路 5と前記オン期間制御回路 6との間を接続するインピーダンス回路のインピーダンス が変化するによって、軽負荷時のオフ期間制御回路 5の制御と、非軽負荷時のオン 期間制御回路 6の制御とが連続的に行われ、オン期間制御とオフ期間制御の切替 時のリップルの増大や出力電圧の変動が生じることがない。
[0019] (3)前記インピーダンス回路がフィードバック信号による電流をオン期間制御回路 6 のコンデンサ C3へ流す第 1の経路 piと、オン期間制御回路 6を通らずに接地へバイ パスする第 2の経路 p2を備えたことにより、接地へバイパスする電流の割合を変える ことによって、軽負荷時のオン期間の設定が可能となり、このことによって負荷供給電 力とスイッチング周波数との関係 (周波数特性)の設定が可能となる。
[0020] (4)前記オン期間制御回路 6の制御によるオン期間に最小オン期間を設定したこと により、すべての入出力条件においてオン期間を最小オン期間以上に保つことがで き、無負荷時においても間欠発振を防止できる。
[0021] (5)第 1のスィッチ素子 Q1がオフ状態であるとき、クランプ回路が第 2のスィッチ素 子 Q2の制御電圧を定めるコンデンサ電圧を一定に制限してオフ期間を制限無しに 延長するので、無負荷時において出力電圧の上昇が防止できる。
[0022] (6)第 1のスィッチ素子 Q1がオフ状態のとき、前記バイパス回路が前記フィードバッ クによる電流をバイノスするようにして、コンデンサ C3のオン期間における充電量と オフ期間における充電量をそれぞれ独立に変更できるようにしたので、負荷供給電 力とスイッチング周波数との関係 (周波数特性)の設定の自由度をさらに高めることが できる。 (7)前記リミット回路が第 1のスィッチ素子 Q1の制御端子に印加される電圧 の上限を制限するので、広い入力電圧範囲にわたって使用可能となる。
[0023] (8)この発明の電子装置によれば、負荷の状態に関わらず負荷への電源電圧変動 が少ないので常に安定な動作が可能となる。
図面の簡単な説明
[0024] [図 1]第 1の実施形態に係るスイッチング電源装置の回路図である。
[図 2]同スイッチング電源装置の各部の電圧波形図である。
[図 3]第 2の実施形態に係るスイッチング電源装置の回路図である。
[図 4]同スイッチング電源装置の各部の電圧波形図である。
[図 5]第 3の実施形態に係るスイッチング電源装置の回路図である。
[図 6]第 4の実施形態に係るスイッチング電源装置の回路図である。
[図 7]第 5の実施形態に係るプリンタの構成を示すブロック図である。
符号の説明
1 - -スイッチング電源装置
2- -整流回路
3- -出力電圧制御回路
4- -制御回路
5- -オフ期間制御回路
6- -オン期間制御回路
7- -負帰還回路
8- -インピーダンス回路
9- -リミット回路
Pl 第 1の経路 p2—第 2の経路
T トランス
N1— 1次卷線
N2— 2次卷線
N3—帰還卷線
Vcc 直流電源
Q1—第 1のスィッチ素子
Gin—入力電源側グランド
SR—シャントレギユレータ
発明を実施するための最良の形態
[0026] [第 1の実施形態]
第 1の実施形態に係るスイッチング電源装置について図 1 ·図 2を参照して説明する 図 1はスイッチング電源装置の回路図である。このスイッチング電源装置は、 1次卷 線 Nl、 2次卷線 N2および帰還卷線 N3を備えたトランス Tと、 1次卷線 N1に直列に 接続した第 1のスィッチ素子 Q 1と、 Q 1の制御端子と帰還卷線 N3との間に設けた制 御回路 4と、 2次卷線 N2に接続した整流回路 2と、整流回路 2から出力される出力電 圧を検出して制御回路 4へフィードバックする出力電圧制御回路 3とを備えている。 第 1のスィッチ素子 Q1は MOSFETからなり、この第 1のスィッチ素子 Q1と 1次卷線 N 1との直列回路に入力電源である直流電源 Vccを印加する。
[0027] 整流回路 2は、 2次卷線 N2に直列接続したダイオード D1とこのダイオード D1の力 ソードとグランドとの間に接続した平滑用コンデンサ C1とから構成している。この 2次 卷線 N2、ダイオード Dl、およびコンデンサ C1からなる 2次側の回路と、上記第 1のス イッチ素子 Q 1が直列に挿入されて 、る 1次側の回路とによって主回路を構成して ヽ る。
[0028] 出力電圧制御回路 3は、出力端子 Poとグランド Goutとの間に抵抗 R2, R3からなる 分圧回路を備え、また抵抗 R1とフォト力ブラ PC 1の発光ダイオード PD1とシャントレ ギユレータ SRとの直列回路を備えている。さらに抵抗 R2, R3の接続点とシャントレギ ユレータ SRの力ソード端子との間に、抵抗 R15とコンデンサ C9の直列回路力もなる 負帰還回路 7を備えている。また抵抗 R2, R3の接続点をシャントレギュレータ SRのリ ファレンス端子に接続して 、る。
[0029] 制御回路 4は、オフ期間制御回路 5とオン期間制御回路 6を備えている。帰還卷線 N3の一端と Q1のゲートとの間には、オフ期間制御回路 5の第 3のスィッチ素子 Q3と コンデンサ C2を直列に挿入している。オフ期間制御回路 5の抵抗 R13とコンデンサ C10による直列回路は時定数回路を構成している。第 3のスィッチ素子 Q3のベース と入力電源側グランド Ginとの間には抵抗 R9と第 4のスィッチ素子 Q4の直列回路を 接続している。この第 4のスィッチ素子 Q4のベースとコンデンサ C10との間に抵抗 R 23, R24を挿入している。また Q4のベースと Ginとの間に抵抗 R22とコンデンサ C 11 を設けて!/、る。 Q3のベース ェミッタ間にはノイズによる誤動作防止用のコンデンサ C6を設けている。上記コンデンサ C2の第 1のスィッチ素子 Q1側の端子と入力電源 ラインとの間には起動用の抵抗 R4を接続して ヽる。
[0030] また、抵抗 R23, R24の接続点と入力電源側グランド Ginとの間にフォトカプラ PC1 のフォトトランジスタ PT1と抵抗 R16の直列回路を設けている。
[0031] オン期間制御回路 6の Q1のゲート一入力電源側グランド Ginとの間には第 2のスィ ツチ素子 Q2を設けている。帰還卷線 N3の両端間には抵抗 R6, R7,コンデンサ C3 力もなる時定数回路を設けている。またコンデンサ C3の一方端と Q2のベースとを接 続して、 C3の電圧が Q2のベースーェミッタ間に印加されるように回路を構成してい る。
[0032] また、 PT1と R16との接続点と Q2のベースとの間にダイオード D4を接続している。
なお、 Q1のゲート一ソース (Gin)間にはゲート保護用の抵抗 R21を接続している。
[0033] 上記フォトトランジスタ PT1、抵抗 R16, R24、およびダイオード D4によってインピ 一ダンス回路 8を構成していて、 PD1を介するフィードバック信号により PT1のインピ 一ダンスが変化する。
図 1に示したスイッチング電源装置の第 1のポイントは、フォトトランジスタ PT1の電 流をダイオード D4を介してコンデンサ C3へ流す(充電する)ととも〖こ、抵抗 R16を介 して入力電源側グランド Ginへも流す (バイパスする)ように回路を構成したことである [0034] 第 2のポイントは、上記インピーダンス回路 8と、抵抗 R22, R23,コンデンサ C11か らなる時定数回路とによって Q4のオンタイミングを制御するように回路を構成した点 である。
[0035] 図 1に示したスイッチング電源装置の動作は次のとおりである。
[0036] [1.1]《軽負荷時》
軽負荷時は、以降に述べるように Q1のオフ期間を制御して出力電圧を定電圧化 する。
[0037] [1.1.1]〔Q1オフ期間〕
〈主回路の動作〉
Q1のオフ期間では、まずトランス Tの励磁エネルギー(Q1のオン期間に蓄積され たエネルギー)が 2次側に出力される。通常の RCCでは励磁電流 (ここでは 2次卷線 N2を流れる電流)力 となると、帰還卷線 N3に共振電圧が発生し、 Q1はターンオン してオン期間へ移行する。しかし、この図 1に示す回路では、 Q3がオンしない限り Q1 はターンオンできない。従って軽負荷時には Q3のターンオンが Q1のオフ期間の終 了条件となり、 Q3のターンオンにより、 C2に蓄積されていた電荷によって Q1がター ンオンして Q1オン期間へ移行する。
[0038] 〈制御回路の動作〉
フォトトランジスタ PT1のインピーダンスによって Q4がターンオンするまでの時間が 決定される。すなわち、軽負荷時にはフォト力ブラ PC1の発光ダイオード PD1の電流 が大きくなるため、 PT1のインピーダンスが低くなり、 PT1のコレクタ端子電圧が低く なる。ここで、 Q4のベース—ェミッタ間電圧(コンデンサ C11の電圧)は、 R22, R23 , C11からなる時定数回路によって決定されるため、 PT1のコレクタ端子電圧によつ て Q4がターンオンするまでの時間が決定される。したがって軽負荷で PT1のコレクタ 電圧が低!、ほど Q 1のオフ期間は長くなる。これは電流不連続モードの動作である。
[0039] [1.1.2]〔Q1オン期間〕
〈主回路の動作〉
Q1がターンオンすると、 Vcc→トランス Tの 1次卷線 Nl→Ql→Ginの経路で電流 が流れ、トランス Tにエネルギーが蓄積される。 Q2がターンオンすれば Q1はターン オフして Q1オフ期間へ移行する。
[0040] 〈制御回路の動作〉
Q 1のオン期間中は帰還卷線 Ν 3に発生した電圧によりコンデンサ C 3が充電される 。この時、帰還卷線 Ν3の電圧により、 R6, R7, C3からなる時定数回路に電流が流 れ、 C3の充電電圧が上昇する。また、コンデンサ C10の電圧により、 PT1と D4を介 する第 1の経路 piで C3, R7の並列回路に電流が流れ、 C3の充電電圧が上昇する
[0041] C3の電圧が Q2のオン電圧 Vbe (on)に達すると、 Q2はターンオンし、 Q1のオフ期 間へ移行する。
[0042] ところで、軽負荷時においては、 Q1がターンオンした時点での C3の電圧は比較的 高い。これは、 PT1のインピーダンスが低く、 Q1のオフ期間中、 C3への充電量が大 きいためである。そのため、短い Q1のオン期間で C3の電圧は Q2の Vbe (on)に達し 、 Q2のターンオンにより Q1はターンオフする。
[0043] [1.2]《重負荷時》
重負荷時すなわち非軽負荷時は、以降に述べるように通常の RCCと同様に Q1の オン期間を制御することによって出力電圧を定電圧化する。
[0044] [1.2.1]〔Q1オフ期間〕
〈主回路の動作〉
Q1のオフ期間では、トランス Tの励磁エネルギーが 2次側に出力される。トランス T の励磁電流が 0になると、帰還卷線 N3に共振電圧が発生する。この時、 Q3はオンし ているため、共振電圧により Q1はターンオンし、 Q1オン期間へ移行する。
[0045] 〈制御回路の動作〉
重負荷時には、フォトカプラ PC1の PD1の電流が小さくなるため、 PT1のインピー ダンスが高ぐ PT1のコレクタ電圧は高くなる。これによりコンデンサ C11の充電時間 が短くなり、 Q4のターンオンタイミングが早まる。そこで、重負荷時にはトランス Tの励 磁電流が 0となるタイミングではすでに Q4がオンするように時定数を設定して 、る。そ のため Q3はオンして ヽて、 Q 1は帰還卷線 N3に共振電圧が発生することによって直 ちにターンオンする。これは、通常の RCCと同様の電流臨界モードの動作である。
[0046] また、 PT1のインピーダンスが高いため、コンデンサ C10から PT1→D4→(C3+R
7)の経路で流れる電流は少なぐコンデンサ C3への充電量は少ない。しかも帰還卷 線 N3の電圧により C3は負方向に充電されるため、 C3の電位が負電位となった状態 で Q1オン期間へ移行する。
[0047] [1.2.2]〔Q1オン期間〕
〈主回路の動作〉
Q1がターンオンすると、 Vcc→Nl→Ql→Ginの経路で電流が流れ、トランス丁に エネルギーが蓄積される。 Q2がターンオンすれば Q1はターンオフする。すなわち Q 1オフ期間へ移行する。
[0048] 〈制御回路の動作〉
Q1オン期間中は、帰還卷線 N3に発生する電圧によって、 R6を介して C3と R7の 並列回路に電流が流れる。また、 C10の電圧により PT1→D4→(C3+R7)の経路 で電流が流れ、 C3が充電される。最初 C3の電位は負電位である力 充電により Q2 のオン電圧 Vbe (on)に達すると、 Q1はターンオフして Q1オフ期間へ移行する。す なわち PT1のインピーダンスによって Q1のオン時間が変化し、定電圧制御が行われ る。
[0049] さて、図 2は軽負荷時と重負荷時について、図 1各部の電圧波形を示している。ここ で (A)は軽負荷時、(B)は重負荷時の場合である。また、図中の V (C11)はコンデン サ C11の電圧、 V(C3)はコンデンサ C3の電圧であり、 Q4Vbe (On)はスィッチ素子 Q4がオンするに要するベースーェミッタ間のしきい値電圧、 Q2Vbe (On)はスィッチ 素子 Q2がオンするに要するベースーェミッタ間のしきい値電圧である。
[0050] 軽負荷時には(A)に示すように、 toのタイミングで V (C3)が Q2Vbe (On)に達する と Q2がオンし、それにともなって Q1がターンオフする。この Q1のオフにより帰還卷線 N3に逆電圧 (フライバック電圧)が発生し、 Q2のコレクタ電位も負電位となる。そのた め Q2のベース コレクタ間が逆通電して、 C3は急速に放電される。
[0051] その後、 to〜tlの期間で、帰還卷線 N3に発生する逆電圧によって、 C3→R6→N 3の経路で C3が逆充電される。また、 C11は C11→Q4のベース'コレクタ間→R9→ C6→N3の経路で放電(逆充電)される。一方、 C10→R24→R23→C11の経路で も C11は充電されている力 軽負荷時は PT1のインピーダンスが低いため、その影 響は小さい。
[0052] tlのタイミングで N3の逆電圧がなくなり、トランス Tの励磁電流が 0になると、 C11の 充放電に関しては、「C10→R24→R23→C11の経路」で CI 1が充電されるのみと なる。このとき、 R24→PT1→R16の経路でも電流が流れるため、 C11の充電時定 数は PT1のインピーダンスによって変化する。すなわち、負荷の大きさによって、 tl 〜t2の図中 Aで示す V (C11)の上昇傾きが変化する。
[0053] 例えば、負荷が小さくなるほど PT1のインピーダンスが小さくなるので、コンデンサ C 11への充電時定数が大きくなつて、上記傾き Aが小さくなる。逆に、負荷が大きくなる ほど PT1のインピーダンスが大きくなるので、コンデンサ C11への充電時定数が小さ くなつて、上記傾き Aが大きくなる。このことにより Q4のオンタイミングが変化して Q3 のオンタイミングすなわち Q1のオンタイミングが変化する。その結果、 Q1のオフ期間 が制御されて定電圧が出力されることになる。このとき、 C3は C10→R24→PT1→D 4→C3の経路で充電され、 V (C3)は上昇する。
[0054] そして、 t2で Q1がターンオンすることにより、 N3→R6→C3の経路で C3が充電さ れ、図に表れているように、 t2〜toの期間で V (C3)は tl〜t2までと比較して急に上 昇する。 toで V (C3)が Q2Vbe (On)に達したとき Q2がオンし、 Q1がターンオフする
[0055] 重負荷時には(B)に示すように、 toのタイミングで V (C3)が Q2Vbe (On)に達する と Q2がオンし、それにともなって Q1がターンオフする。このとき Q1のオフにより帰還 卷線 N3に逆電圧 (フライバック電圧)が発生し、 Q2のコレクタ電位も負電位となる。そ のため Q2のベース コレクタ間が逆通電して、 C3は急速に放電される。
[0056] その後、 to〜tlの期間で、帰還卷線 N3の発生する逆電圧によって、 C3→R6→N 3の経路で C3が逆充電される。また、 C10→R24→PT1→D4→C3の経路で正方 向に充電される経路も存在するので、 C3の逆充電時定数は PT1のインピーダンスに よって左右される。また、重負荷時は PT1のインピーダンスが比較的高くなるため、 P T1のコレクタ電圧が高くなる。従って、 tO〜tlの期間では C11は殆ど放電されず、 すぐに充電され、 tlの時点では既に Q4はオンしている。したがって Q3もオンしてい る。
[0057] このように tlのタイミングで Q4は既にオンしているため、その後、 Q1は帰還卷線 N 3の共振電圧に基づ 、てターンオンする。
[0058] その後、 N3→R6→C3の経路で C3が正方向に充電される。その後、 toのタイミン グで V(C3)の電圧が Q2Vbe (On)に達すると、 Q2がオンして Q1はターンオフする。
[0059] したがって、重負荷時には図 2の(B)に示すようにコンデンサ C3の電圧 V(C3)の 図中 Bで示す傾きが負荷により変化することによって Q1のオン期間(tl〜to)が変化 する。例えば負荷が小さくなるほど PT1のインピーダンスが小さくなるので、第 1の経 路 piを介してのコンデンサ C3への正方向への充電時定数が小さくなり、 Bの傾きが 緩やかになって、 Q1ターンオン時点での V (C3)力 Po2で示すように高くなる。その 結果、 V(C3)が Q2Vbe (On)に達するのが早ぐ Q1のオン期間が短くなる。逆に、 負荷が大きくなるほど PT1のインピーダンスが大きくなるので、第 1の経路 piを介して のコンデンサ C3への正方向への充電時定数が大きくなり、 Bの傾きが急になって、 Q 1ターンオン時点での V(C3)が Polで示すように低くなる。その結果、 V (C3)が Q2 Vbe (On)に達するのが遅くなり、 Q1のオン期間が長くなる。
[0060] このようにして、負荷の大きさに応じて Q1のオン期間が制御されて、定電圧が出力 されること〖こなる。
[0061] なお、出力電圧制御回路 3に負帰還回路 7を設けたため、フォト力ブラ PC1の PD1 に流れる電流が急激に減少することがなぐフォトトランジスタ PT1は常に能動領域で 動作する。そのため出力端子 Poの電圧変化(出力リップル)に依存して PD1がオン' オフすることがなぐスイッチング周波数は、オフ期間制御回路 5とオン期間制御回路 6の回路中の CRの定数によって決定される。
[0062] 上述のように出力電圧の上昇によって軽負荷時 (待機時)と重負荷時 (定格時)の 動作モードを切り替えるのではないため、待機時の出力電圧と定格時の出力電圧と の間に差が生じることがない。また、フィードバック回路が 1系統であるため、オン期間 制御回路 6とオフ期間制御回路 5へのフィードバックを 2系統設けた場合に、その切 替時にゲインが変化することによって出力電圧が変動するといつた不具合が生じるこ ともない。
[0063] [第 2の実施形態]
次に、第 2の実施形態に係るスイッチング電源装置について図 3 ·図 4を参照して説 明する。
図 3はそのスイッチング電源装置の回路図である。図 1に示した第 1の実施形態に 係るスイッチング電源装置と異なり、抵抗 R16に対して直列にダイオード D3を挿入し ている。その他の構成は図 1に示した場合と同じである。
第 1の実施形態では、 Q1オフ期間中に C10→R24→PT1→D4→C3の経路でコ ンデンサ C3が正方向に充電される力 無負荷時には PT1のインピーダンスが最小と なって、 C3の電位が速やかに上昇するため、回路定数の設定によっては Q3がター ンオンするよりも先に Q2がターンオンしてしまい、その後に Q3がオンしても、 Q1のゲ ートに電圧がかからず、 Q1がターンオンできない状況が生じる可能性がある。そうな れば間欠発振状態となってしまう。このような間欠発振状態では発振周期が長くなる ため、負荷急変時の追従性が悪化する。
[0064] この第 2の実施形態では、後述するように抵抗 R16に対して直列にダイオード D3を 挿入したことにより、 Q 1のオフ期間中のコンデンサ C3の電圧を一定値にクランプで き、且つ、この値を Q2がターンオンできないように低く設定することによって、 Q1オフ 期間中に Q2がターンオンすることがなぐ間欠発振が防止できる。
[0065] 図 3に示したスイッチング電源装置の動作 (特に図 1に示したスイッチング電源装置 と異なる動作)は次のとおりである。
[2.1]《軽負荷時》
軽負荷時には Q1のオン期間が一定であり、 Q1のオフ期間を制御することによって 出力電圧を定電圧化する。
[0066] [2.1.1]〔Q1オフ期間〕
〈主回路の動作〉
第 1の実施形態の場合と同様である。すなわち、軽負荷時には Q3のターンオンが Q1のオフ期間の終了条件となり、 Q3のターンオンにより Q1オン期間へ移行する。
[0067] 〈制御回路の動作〉 PT1を流れる電流は、 R16, D3を流れる経路 p2と、 D4を介して C3を充電する経 路 p 1とに分けられる。この D4を介する経路 p 1によってコンデンサ C3は充電されるが 、その電圧 V (C3)は、 D3, D4, R16により一定電圧にクランプされる。ここで、ダイ オード D3の順方向降下電圧を VF(D3)、抵抗 R16の降下電圧を VR16、ダイオード D4の順方向降下電圧を VF(D4)とすれば、
PT1のェミッタ端子電圧は VF(D3) +VR16にクランプされるので、 C3のクランプ電 圧 V (C3) CLは、
V(C3) CL=VF(D3) +VR16 VF(D4)
で表せる。
[0068] [2.1.2]〔Q1オン期間〕
〈主回路の動作〉
第 1の実施形態の場合と同様に Vcc→Nl→Ql→Ginの経路で電流が流れ、トラ ンス Tにエネルギーが蓄積される。 Q2がターンオンすれば Q1はターンオフして Q1 オフ期間へ移行する。
[0069] 〈制御回路の動作〉
軽負荷時にはオン期間が一定となる。
[0070] すなわち、 Q1がターンオンした時点での Q2のベース電圧(C3の電圧 V(C3) )は、 上記クランプ電圧
V(C3) =VF(D3) +VR16— VF(D4)に定まり、その後、帰還卷線 N3に発生した 電圧により C3が充電される。この時の時定数は、 PT1等のインピーダンスとは無関係 に R6, R7, C3の回路により定まる。このようにコンデンサ C3の充電電荷の初期値と R6, R7, C3による時定数回路の時定数が一定であることから、オン期間は一定とな る。そして、 C3の電圧が Q2のオン電圧 Vbe (On)に達すると、 Q2はターンオンし、 Q 1オフ期間へ移行する。
[0071] [2.2]《重負荷時》
重負荷時は第 1の実施形態の場合と同様の動作を行う。
図 4は軽負荷時と重負荷時について図 1各部の電圧波形を示している。 (A)は軽 負荷時、(B)は重負荷時の場合である。軽負荷時には (A)のようにコンデンサ C3の 電圧 V (C3)が Qlオフ期間に、 D3, D4, R16により一定電圧にクランプされるので、 点 A1で示すように、コンデンサ C3の充電電荷の初期値が一定である。また、 R6, R 7, C3による時定数回路の時定数が一定であるので、 Q1オン期間は一定となる。
[0072] このようにコンデンサ C3の電圧を一定値にクランプしたことにより、たとえ無負荷とな つても Q1オフ期間中に V(C3)が Q2Vbe (On)に達することがなぐ Q2がターンオン しないので、 Q1の最小オン時間が定められ、間欠発振が防止できる。
[0073] [第 3の実施形態]
次に、第 3の実施形態に係るスイッチング電源装置について図 5を参照して説明す る。
図 5はスイッチング電源装置の回路図である。このスイッチング電源装置は図 3に示 した回路に対してスィッチ素子 Q5,抵抗 R17, R18, R19, R20, D5を追加したもの である。この新たに追加した回路は次のように動作する。
[0074] (a) D5, R17〜R20は Q4のオン'オフを検出して Q5のオン'オフを制御する。すな わち Q4のオンにより R20→R19→D5→Q4の経路で電流が流れ、 R20と R19の接 続点の電位が低下し Q5のベース電位が低下することによって Q5がオフする。逆に、 Q4のオフにより Q5のベース電位が上昇することによって Q5がオンする。
[0075] (b) D3, D4, R16, Q5は Qlオフ時(Q4オフ時)に、 Q5のオンにより PT1の電流 を D3, R16を介して Ginにバイパスする。一方、 Q1オン時(Q4オン時)に、 Q5のォ フにより、 PT1の電流は D4を介して C3を充電する。
[0076] その他の回路による動作は第 1 ·第 2の実施形態の場合と同様である。
このように、 Q1オン期間における C3の充電量を、 R16の経路によらずに独立に変 更できるため、設定の自由度を高めることができる。
[0077] 例えば、第 1 ·第 2の実施形態で示した図 1 ·図 3の回路において R16を低抵抗とす ると、 PT1を流れる電流の大部分が D3, R16の経路を流れるため、 Q1オン期間の C 3電圧の上昇速度が緩やかになる。この場合、軽負荷時や無負荷時においてオン期 間が長すぎるために間欠発振となる場合が生じる。最悪ケースでは、出力電圧の上 昇が発生する。第 2の実施形態では第 1の実施形態に比べてこの問題は改善されて いるが、仕様によっては発生する。これらに対して、この第 3の実施形態では Q1オン 期間に Q5により D3, R16の経路が遮断されるため、上述の問題は生じない。
[0078] [第 4の実施形態]
次に、第 4の実施形態に係るスイッチング電源装置について図 6を参照して説明す る。
図 6はスイッチング電源装置の回路図である。第 2の実施形態として図 3に示したス イッチング電源装置と異なるのは、図 3に示した Q3, C6, R9による回路部分に代え て、抵抗 R25, R26, R27,スィッチ素子 Q8, Q9,ツエナーダイオード D8からなる電 圧レギユレータ回路を設けた点である。
[0079] ここで、スィッチ素子 Q8とツエナーダイオード D8は電圧レギユレータ回路を構成し ていて、 Q9, R25, R26は電圧信号を反転させるインバート回路を構成している。
[0080] このスイッチング電源装置の場合、第 2の実施形態として図 3に示したスイッチング 電源装置に比べてさらに次のような作用効果を奏する。
[0081] ツエナーダイオード D8は、スィッチ素子 Q8とともに定電圧レギユレータ(リミット回路
)を構成していて、 Q1のゲート電圧 (制御電圧)が所定範囲を超えないように制限す る。すなわち、 Q1のゲート電圧は最大でも、
Vgs (Ql) =Vz (D8) -Vbe (Q8)
に制限される。
[0082] ここで、 Vgs (Ql)は Qlのゲート ソース間電圧、 Vz (D8)はツエナーダイオード D 8のツエナー電圧、 Vbe (Q8)はスィッチ素子 Q8のベースーェミッタ間順方向電圧で ある。
[0083] そのため、ワールドワイド入力のような広い入力電圧範囲にわたって、第 1のスイツ チ素子 Q1の制御電圧が所定電圧を超えるのを防止でき、 Q1を破壊力も防止できる
[0084] [第 5の実施形態]
次に、第 5の実施形態に係る電子装置について図 7を参照して説明する。図 7はプ リンタの構成を示すブロック図である。ここで、整流回路 10は商用交流電源 ACの電 源電圧を入力し、整流してスイッチング電源装置 1へ出力する。このスイッチング電源 装置 1は第 1〜第 4のいずれかの実施形態で示したスイッチング電源装置である。プ リンタ制御回路 11はスイッチング電源装置 1から出力される直流電源電圧を電源とし て動作する。プリンタ制御回路 11は通信部 12により通信路を介してホスト装置との間 でデータの通信を行い、操作部 13の操作を読み取り、駆動部 14を駆動する。
[0085] 駆動部 14は、印刷時には電力を消費するが、印刷動作をしない待機時には殆ど 電力を消費しない。そして、本発明のスイッチング電源装置 1を用いているために、待 機時の電力損失を低減し、効率の向上を図ることができる。
[0086] この発明の電子装置はプリンタに限られるものではなぐノートパソコンや携帯情報 機器など、電圧の安定な直流電源の必要なあらゆる電子装置に適用可能である。

Claims

請求の範囲
[1] 1次卷線 Nl、 2次卷線 N2および帰還卷線 N3を備えたトランス Tと、 1次卷線 NI 直列に接続された第 1のスィッチ素子 Q1と、該第 1のスィッチ素子 Q1の制御端子と 前記帰還卷線 N3との間に設けられた制御回路 4と、前記 2次卷線 N2に接続された 整流回路 2と、該整流回路 2から出力される出力電圧を検出して前記制御回路 4へ 1 系統でフィードバックする出力電圧制御回路 3とを備えたスイッチング電源装置にお いて、
前記制御回路 4は、非軽負荷時に前記出力電圧制御回路 3からの 1系統のフィード ノ ック信号に基づ 、てオン状態の前記第 1のスィッチ素子 Q 1をターンオフさせるォ ン期間制御回路 6と、軽負荷時に前記フィードバック信号に基づいて前記第 1のスィ ツチ素子 Q 1のターンオンを遅延させて前記第 1のスィッチ素子 Q 1のオフ期間を制 御するオフ期間制御回路 5とを備えたことを特徴とするスイッチング電源装置。
[2] 前記オフ期間制御回路 5と前記オン期間制御回路 6とを接続するように設けられ、 前記フィードバック信号に基づいてインピーダンスが変化するインピーダンス回路 8を 備え、該インピーダンス回路のインピーダンス変化によって軽負荷時の前記オフ期間 制御回路 5の制御と、非軽負荷時の前記オン期間制御回路 6の制御を連続的に行う ようにした請求項 1に記載のスイッチング電源装置。
[3] 前記オフ期間制御回路 5は、前記第 1のスィッチ素子 Q1の制御端子と前記帰還卷 線 N3との間に挿入された第 3のスィッチ素子 Q3と、該第 3のスィッチ素子 Q3の制御 端子と接地との間に挿入された第 4のスィッチ素子 Q4とを備え、前記オン期間制御 回路 6は、第 1のスィッチ素子 Q1の制御端子と接地との間に挿入された第 2のスイツ チ素子 Q2と、該第 2のスィッチ素子 Q2へ制御電圧を与えるコンデンサ C3を含む時 定数回路とを備え、
前記インピーダンス回路 8は、前記フィードバック信号による電流を前記コンデンサ C3へ供給する第 1の経路 piと、接地へバイパスする第 2の経路 p2とを備えた請求項 1または 2に記載のスイッチング電源装置。
[4] 前記オン期間制御回路 6の制御による前記オン期間に最小オン期間を設定した請 求項 1〜3のいずれかに記載のスイッチング電源装置。
[5] 前記第 1のスィッチ素子 Qlがオフ状態であるときに、前記第 2のスィッチ素子 Q2の 制御電圧を定める前記オン期間制御回路 6内の前記コンデンサ C3の電圧を一定値 に制限するクランプ回路を前記インピーダンス回路 8に設けた請求項 4に記載のスィ ツチング電源装置。
[6] 前記第 2の経路は前記第 1のスィッチ素子 Q1がオフ状態である場合にのみ、前記 フィードバック信号による電流をバイパスする回路である請求項 3に記載のスィッチ電 源装置。
[7] 前記オフ期間制御回路 5は、前記第 1のスィッチ素子 Q1の制御端子に印加される 電圧の上限を定めるリミット回路 9を備えた請求項 1〜6のいずれかに記載のスィッチ ング電源装置。
[8] 請求項 1〜7のいずれかに記載のスイッチング電源装置を電源回路部に設けた電 子装置。
PCT/JP2005/007496 2004-07-07 2005-04-20 スイッチング電源装置および電子装置 WO2006006289A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006524538A JP4259577B2 (ja) 2004-07-07 2005-04-20 スイッチング電源装置および電子装置
CN2005800005362A CN1806382B (zh) 2004-07-07 2005-04-20 开关电源装置和电子设备
GB0601032A GB2420232B (en) 2004-07-07 2005-04-20 Swithching power supply device and electronic apparatus
US10/564,025 US7433208B2 (en) 2004-07-07 2005-04-20 Switching power supply device and electronic apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-201066 2004-07-07
JP2004201066 2004-07-07

Publications (1)

Publication Number Publication Date
WO2006006289A1 true WO2006006289A1 (ja) 2006-01-19

Family

ID=35783649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/007496 WO2006006289A1 (ja) 2004-07-07 2005-04-20 スイッチング電源装置および電子装置

Country Status (5)

Country Link
US (1) US7433208B2 (ja)
JP (1) JP4259577B2 (ja)
CN (1) CN1806382B (ja)
GB (1) GB2420232B (ja)
WO (1) WO2006006289A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7697307B2 (en) 2006-11-10 2010-04-13 Innocom Technology (Shenzhen) Co., Ltd. Power supply circuit for outputting steady voltage

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7764479B2 (en) * 2007-04-18 2010-07-27 Lutron Electronics Co., Inc. Communication circuit for a digital electronic dimming ballast
KR101239978B1 (ko) * 2007-08-17 2013-03-06 삼성전자주식회사 스위칭 모드 전원공급장치 및 그 전원공급방법
CN101471608A (zh) * 2007-12-29 2009-07-01 群康科技(深圳)有限公司 开关电源电路
JP2011015557A (ja) * 2009-07-02 2011-01-20 Panasonic Corp スイッチング電源装置およびスイッチング電源制御用半導体装置
TWI425754B (zh) * 2010-04-20 2014-02-01 Neoenergy Microelectronics Inc 返馳轉換系統及其回授控制裝置與方法
CN102315785B (zh) * 2010-06-30 2013-08-21 新能微电子股份有限公司 逆向变换系统及其反馈控制装置与方法
US8451630B2 (en) * 2010-07-13 2013-05-28 Power Integrations, Inc. Reset voltage circuit for a forward power converter
JP5683241B2 (ja) * 2010-12-06 2015-03-11 キヤノン株式会社 スイッチング電源装置及び画像形成装置
CN102739057B (zh) * 2011-04-12 2015-05-06 新能微电子股份有限公司 初次级双反馈控制的返驰式电源转换器
JP6075827B2 (ja) * 2012-06-08 2017-02-08 キヤノン株式会社 スイッチング電源装置及び画像形成装置
KR20160011912A (ko) * 2014-07-23 2016-02-02 삼성전자주식회사 전원 공급 장치 및 방법
CN208959336U (zh) 2015-05-28 2019-06-11 飞利浦照明控股有限公司 用于驱动led装置的驱动器电路和led电路
US9966865B2 (en) * 2015-06-30 2018-05-08 Canon Kabushiki Kaisha Power supply apparatus and image forming apparatus
JP6987645B2 (ja) * 2018-01-05 2022-01-05 東芝テック株式会社 電力変換装置及び画像形成装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11313483A (ja) * 1998-04-28 1999-11-09 Murata Mfg Co Ltd スイッチング電源装置
JP2002359974A (ja) * 2001-03-26 2002-12-13 Murata Mfg Co Ltd スイッチング電源装置およびそれを用いた電子装置
JP2002369517A (ja) * 2001-06-07 2002-12-20 Murata Mfg Co Ltd スイッチング電源装置およびそれを用いた電子装置
JP2004080941A (ja) * 2002-08-20 2004-03-11 Murata Mfg Co Ltd スイッチング電源装置およびそれを用いた電子装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3223695B2 (ja) 1993-06-18 2001-10-29 株式会社村田製作所 スイッチング電源装置
JP3465673B2 (ja) * 2000-09-06 2003-11-10 株式会社村田製作所 スイッチング電源装置
JP3712064B2 (ja) * 2002-05-08 2005-11-02 セイコーエプソン株式会社 出力過電流保護回路、及び該出力過電流保護回路を備えた定電圧スイッチング電源回路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11313483A (ja) * 1998-04-28 1999-11-09 Murata Mfg Co Ltd スイッチング電源装置
JP2002359974A (ja) * 2001-03-26 2002-12-13 Murata Mfg Co Ltd スイッチング電源装置およびそれを用いた電子装置
JP2002369517A (ja) * 2001-06-07 2002-12-20 Murata Mfg Co Ltd スイッチング電源装置およびそれを用いた電子装置
JP2004080941A (ja) * 2002-08-20 2004-03-11 Murata Mfg Co Ltd スイッチング電源装置およびそれを用いた電子装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7697307B2 (en) 2006-11-10 2010-04-13 Innocom Technology (Shenzhen) Co., Ltd. Power supply circuit for outputting steady voltage

Also Published As

Publication number Publication date
JPWO2006006289A1 (ja) 2008-04-24
JP4259577B2 (ja) 2009-04-30
GB2420232A (en) 2006-05-17
GB0601032D0 (en) 2006-03-01
CN1806382B (zh) 2011-08-03
US20080049472A1 (en) 2008-02-28
GB2420232B (en) 2007-02-28
US7433208B2 (en) 2008-10-07
CN1806382A (zh) 2006-07-19

Similar Documents

Publication Publication Date Title
WO2006006289A1 (ja) スイッチング電源装置および電子装置
JP3753112B2 (ja) スイッチング電源装置およびそれを用いた電子装置
JP3675389B2 (ja) スイッチング電源装置およびそれを用いた電子装置
US6703793B2 (en) Switching power unit
EP0938184B1 (en) Switching power supply
JP2007006614A (ja) スイッチング電源装置
US20080291709A1 (en) Switching power supply apparatus
GB2387281A (en) Switching power supply unit
EP0935332A2 (en) Self-oscillation switching power supply apparatus
JP5077572B2 (ja) 発光ダイオード点灯装置
JP2006149098A (ja) スイッチング電源装置
US6532159B2 (en) Switching power supply unit
JP4218862B2 (ja) フライバックコンバータの同期整流回路
US7864547B2 (en) Power supply module adapted to power a control circuit of a switching mode power supply
JP2002258687A (ja) 画像形成装置
JP3155715B2 (ja) 自励式スイッチング電源回路
JP2009232509A (ja) スイッチング電源
JP4539272B2 (ja) 電源装置
JP2006094656A (ja) スイッチング電源
JP2008228531A (ja) 電源装置及びその出力制御方法
JP4797710B2 (ja) 同期整流型フォワードコンバータ
JP2007312555A (ja) スイッチング電源回路
JPH11225472A (ja) 電源装置及びそれを含む電子機器
JPH0614541A (ja) 多出力スイッチングレギュレータ
JP2006129582A (ja) スイッチング電源

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580000536.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2006524538

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10564025

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 0601032

Country of ref document: GB

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10564025

Country of ref document: US