WO2006004145A1 - ニッケル水素蓄電池 - Google Patents

ニッケル水素蓄電池 Download PDF

Info

Publication number
WO2006004145A1
WO2006004145A1 PCT/JP2005/012445 JP2005012445W WO2006004145A1 WO 2006004145 A1 WO2006004145 A1 WO 2006004145A1 JP 2005012445 W JP2005012445 W JP 2005012445W WO 2006004145 A1 WO2006004145 A1 WO 2006004145A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
battery
nickel
storage battery
case
Prior art date
Application number
PCT/JP2005/012445
Other languages
English (en)
French (fr)
Inventor
Katsunori Komori
Tomohiro Matsuura
Shinji Hamada
Toyohiko Eto
Yoshiyuki Nakamura
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to DE602005020006T priority Critical patent/DE602005020006D1/de
Priority to US11/629,981 priority patent/US7758994B2/en
Priority to KR1020077002641A priority patent/KR100800533B1/ko
Priority to EP05758113A priority patent/EP1764855B1/en
Publication of WO2006004145A1 publication Critical patent/WO2006004145A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • H01M12/065Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode with plate-like electrodes or stacks of plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/30Nickel accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a nickel metal hydride storage battery. Background art
  • Patent Document 1 JP-A-8-1 4 8 1 3 5
  • Patent Document 2 Japanese Patent Laid-Open No. 8-3 1 3 9 8
  • the capacity of the negative electrode is larger than the capacity of the positive electrode.
  • the discharge capacity of the battery is limited by the capacity of the positive electrode (hereinafter also referred to as positive electrode regulation).
  • positive electrode regulation by using positive electrode regulation, it is possible to suppress an increase in internal pressure during overcharge and overdischarge.
  • the excessive negative electrode capacity that can be charged is called charge reserve, and the excessive negative electrode capacity that can be discharged is called discharge reserve. Disclosure of the invention
  • the hydrogen storage alloy of the negative electrode corrodes with use, and hydrogen is stored in the hydrogen storage alloy as a side reaction.
  • the hydrogen storage capacity of the hydrogen storage alloy gradually increases.
  • the negative electrode discharge reserve increases, while the charge reserve decreases,
  • the internal pressure of the battery is likely to increase during charging. If the battery is used for a long time, the charge reserve disappears.
  • the internal pressure of the battery becomes excessively high due to a large amount of hydrogen gas generated from the negative electrode during full charge, and the safety valve opens.
  • the hydrogen gas in the battery can be discharged to the outside city to suppress over-pressurization.
  • the nickel-metal hydride storage battery with a metal case has a problem that the battery characteristics are remarkably deteriorated due to long-term corrosion of the hydrogen storage alloy.
  • a lifetime of 10 years or more is required, and thus the remarkable deterioration in battery characteristics as described above has been a serious problem.
  • the nickel-metal hydride storage battery has a problem that the battery characteristics are remarkably deteriorated due to the long-term leakage of hydrogen gas.
  • a lifespan of 10 years or more is required. Therefore, the remarkable deterioration in battery characteristics as described above has been a serious problem.
  • the present invention has been made in view of the current situation, and an object of the present invention is to provide a nickel hydride storage battery that can suppress fluctuations in discharge reserve and charge reserve of the negative electrode and suppress deterioration in battery characteristics over a long period of time. And Means for solving the problem
  • the solution is a nickel-metal hydride storage battery comprising a battery body, a case for housing the battery body, and the battery charged to SOC 60% after being charged and discharged.
  • Nickel hydrogen satisfying the relationship of hydrogen leakage rate VI ( ⁇ 1 / h / Ah) and 2 ⁇ V1 ⁇ 14 per unit battery capacity in a reduced-pressure atmosphere of battery temperature 45 ° C and 10 kPa It is a storage battery.
  • the nickel-metal hydride storage battery of the present invention has a hydrogen leakage rate V 1 ( ⁇ 1 ZhZAh) per unit battery capacity of 2 ⁇ V1 ⁇ 14 under a reduced pressure atmosphere of SOC 60%, battery temperature 45 ° C, l O kPa. Satisfy the relationship.
  • V 1 hydrogen leakage rate
  • the hydrogen leak rate V 1 in this range, the amount of hydrogen decrease due to hydrogen gas leaking from the inside of the battery to the outside, and the amount of hydrogen increase in the battery due to corrosion of the hydrogen storage alloy of the negative electrode Can be kept in balance.
  • fluctuations in negative electrode discharge reserve and charge reserve can be suppressed, and deterioration of battery characteristics can be suppressed over a long period of time.
  • the battery body is disposed in the case in order to perform the battery function, and includes, for example, an electrode, a separator, an electrolytic solution, and the like.
  • SOC is each H of S tate Of Ch A rge.
  • the nickel-metal hydride storage battery described above is preferably a nickel-metal hydride storage battery that satisfies the relationship of 3.5 ⁇ V 1 ⁇ 10 with respect to the hydrogen leakage rate VI ( ⁇ 1 / h / Ah).
  • the nickel metal hydride storage battery of the present invention satisfies the relationship of hydrogen leakage rate VI ( ⁇ 1 / h / Ah) force 3.5 ⁇ V1 ⁇ 10.
  • V 1 hydrogen leakage rate
  • Another solution is a nickel metal hydride storage battery comprising: a battery body portion; a case for housing the battery body portion; and a battery temperature of the battery charged to SOC 60% after being charged and discharged.
  • Hydrogen storage battery satisfying the relationship of hydrogen leakage rate per unit cell volume V2 ( ⁇ 1 / h / cm 3), 0.2 ⁇ V2 ⁇ 1. 8 in a reduced pressure atmosphere at 10 ° C and 10 ° C It is.
  • the nickel-metal hydride storage battery of this effort has a hydrogen leakage rate V 2 ( ⁇ l / h / cm 3 ) per unit cell volume under a reduced pressure atmosphere of S.OC 60%, battery temperature 45 ° C, 10 k Pa. , 0. 2 ⁇ V2 ⁇ 1. 8 is satisfied.
  • the hydrogen leak rate V 2 By doing so, it is possible to maintain a balance between the decrease in hydrogen due to hydrogen gas leaking from the inside of the battery to the outside and the increased amount of hydrogen in the battery due to corrosion of the hydrogen storage alloy of the negative electrode. Thereby, fluctuations in the discharge reserve and the charge reserve of the negative electrode can be suppressed, and the deterioration of the battery characteristics can be suppressed over a long period of time.
  • Battery volume refers to the internal volume (volume) of the case.
  • the battery main body is disposed in the case in order to perform the battery function, and includes, for example, an electrode, a separator, an electrolytic solution, and the like.
  • SOC is an abbreviation for S tate O f C ha rge.
  • the nickel-metal hydride storage battery may be a nickel-hydrogen storage battery that satisfies the relationship of 0.4 V2 ⁇ 1.1, wherein the hydrogen leakage rate V 2 (u 1 / h / cm 3).
  • the nickel metal hydride storage battery of the present invention satisfies the relationship of hydrogen leakage rate V2 ( ⁇ 1 / h / cm 3) force S, 0.4 ⁇ V2 ⁇ 1.1.
  • V2 hydrogen leakage rate
  • the case has a metal wall portion made of metal, and an area of a portion of the metal wall portion forming an outer peripheral surface of the case, an outer peripheral surface of the case A nickel-metal hydride storage battery that exceeds 90% of the total area is recommended.
  • the area of the metal wall that forms the outer peripheral surface of the case exceeds 90% of the total area of the outer peripheral surface of the case. As described above, when 90% or more of the case is made of metal, the cooling performance of the battery is improved, and overheating of the battery can be prevented.
  • the hydrogen leakage rate V 1 or V 2 is set to a value within a predetermined range. Therefore, even in the case of the metal-based case as described above, the negative electrode discharge reserve and the This suppresses fluctuations in the battery charge reserve and suppresses deterioration of battery characteristics over a long period of time.
  • the case may be a nickel-metal hydride storage battery made of metal.
  • the case is made of metal. For this reason, the coolability of the battery becomes extremely good, and the excessive temperature rise of the battery can be prevented.
  • the hydrogen leakage rate V 1 or V 2 is set to a value within a predetermined range. Therefore, even in a metal case, the negative electrode discharge reserve and charge The fluctuation of the reserve is suppressed, and the deterioration of the battery characteristics can be suppressed for a long time.
  • any of the above nickel-metal hydride storage batteries may be a nickel-hydrogen storage battery including a hydrogen leakage device that leaks hydrogen gas in the case to the outside of the battery.
  • the nickel-hydrogen storage battery of the present invention has a hydrogen leakage device that leaks hydrogen gas in the case to the outside of the battery. For this reason, the hydrogen leak rate of the entire battery can be adjusted by adjusting the hydrogen leak rate in the hydrogen leak device.
  • the hydrogen leak rate V 1 ( ⁇ 1 // A h) of the entire battery can be appropriately set to 2 ⁇ V 1 ⁇ 14.
  • the hydrogen leak rate V 2 ( ⁇ 1 / h / cm 3) of the entire battery can be properly set to 0.2 ⁇ V 2 ⁇ 1.8. it can. Therefore, fluctuations in the discharge reserve and the charge reserve of the negative electrode can be suppressed, and deterioration of the battery characteristics can be suppressed over a long period.
  • a hydrogen leak device for example, a structure containing hydrogen permeable resin (rubber) Is mentioned.
  • a hydrogen permeable resin (rubber) for example, EP DM
  • this hydrogen leakage device may be provided separately or may be used as a safety valve device.
  • a hydrogen leakage device may be provided separately and the safety valve device may also serve as the hydrogen leakage device.
  • the nickel-metal hydride storage battery includes a safety valve device that discharges the gas in the case and prevents the internal pressure of the case from being excessively increased when the internal pressure of the case exceeds a predetermined value.
  • the device may be a nickel metal hydride storage battery that also serves as the hydrogen leakage device.
  • the safety valve device also serves as a hydrogen leakage device. That is, the safety valve device has a hydrogen leakage function for leaking hydrogen gas in the case to the outside of the battery, in addition to an overpressure prevention function for preventing the internal pressure of the case from being excessively increased. For this reason, the hydrogen leak rate of the entire battery can be adjusted by adjusting the hydrogen leak rate in the safety valve device.
  • the safety valve device also serves as the hydrogen leakage device
  • a mode in which the valve member has a hydrogen leakage function can be cited.
  • a hydrogen permeable member for example, hydrogen permeable rubber
  • hydrogen gas may be leaked to the outside in a form that permeates the valve member.
  • nickel-metal hydride batteries use an alkaline electrolyte
  • a hydrogen-permeable resin (rubber) for example, EPDM
  • the valve member is composed of a plurality of members (for example, a valve member in which a metal member and a rubber member are integrally formed by insert molding), and passes between the constituent members (for example, between the metal member and the rubber member). You may make it leak hydrogen.
  • FIG. 1 is a partially broken perspective view of nickel hydrogen storage batteries 100 to 400 according to Examples 1 to 4.
  • FIG. 1 is a partially broken perspective view of nickel hydrogen storage batteries 100 to 400 according to Examples 1 to 4.
  • FIG. 2 is a diagram showing a nickel metal hydride storage battery 1 0 0 according to Example 1.
  • 3 is a longitudinal sectional view of the vicinity of the valve device 101.
  • FIG. 3 is a view showing the nickel-metal hydride storage battery 200 according to the second embodiment, and is a longitudinal sectional view of the vicinity of the safety valve device 201.
  • FIG. 4 is a top view of the valve member 210 according to the second embodiment.
  • FIG. 5 is a view showing the nickel-metal hydride storage battery 300 according to Example 3, and is a longitudinal sectional view of the vicinity of the safety valve device 301.
  • FIG. 6 is a view showing the Eckel hydrogen storage battery 400 according to the fourth embodiment, and is a longitudinal sectional view of the vicinity of the safety valve device 401.
  • FIG. 7 is a partially broken perspective view of the nickel-hydrogen storage battery 500 according to the fifth embodiment.
  • FIG. 8 is a longitudinal sectional view of the hydrogen leakage device 503 according to the fifth embodiment.
  • FIG. 9 is an exploded perspective view of the —Neckel hydrogen storage battery 600 according to the sixth embodiment.
  • FIG. 10 is a top view of the valve member 610 according to the sixth embodiment.
  • FIG. 11 is a front view of the valve member 6 10.
  • FIG. 12 is a cross-sectional view of the valve member 610, and corresponds to the BB cross-sectional view of FIG. '
  • FIG. 13 is an explanatory diagram for explaining the safety valve device 60 1 of the nickel metal hydride storage battery 600 according to the sixth embodiment, and corresponds to a cross-sectional view taken along line AA in FIG.
  • FIG. 14 is a schematic configuration diagram of the measuring apparatus 1 that measures the amount of hydrogen leakage from the nickel-metal hydride storage battery.
  • FIG. 15 is a view showing a nickel metal hydride storage battery 700 according to Comparative Example 1, and is a longitudinal sectional view of the vicinity of the safety valve device 701.
  • FIG. 15 is a view showing a nickel metal hydride storage battery 700 according to Comparative Example 1, and is a longitudinal sectional view of the vicinity of the safety valve device 701.
  • FIG. 16 is a view showing a nickel metal hydride storage battery 800 according to Comparative Example 2, and is a longitudinal sectional view in the vicinity of the safety valve device 801.
  • the nickel-metal hydride storage battery 100 of Example 1 includes a case 102 having a sealing plate 120 and a battery case 130, a safety valve device 101, and an electrode disposed in the case 102 (battery 130).
  • This is a rectangular sealed nickel-metal hydride storage battery including a plate group 150 and an electrolyte (not shown).
  • the electrode plate group 150 includes a positive electrode 151, a negative electrode 152, and a bag-shaped separator 153. Among these, the positive electrode 151 is inserted into the bag-like separator 153, and the positive electrode 151 and the negative electrode 152 inserted into the separator 153 are alternately stacked. The positive electrode 15 1 and the negative electrode 1 52 are respectively collected and connected to a positive electrode terminal and a negative electrode terminal (not shown).
  • the positive electrode capacity is 6.5 Ah and the negative electrode capacity is 11.0 Ah. Therefore, the nickel metal hydride storage batteries of the embodiments of the present invention (Examples 1 to 4) are all regulated by the positive electrode and have a battery capacity of 6.5 Ah.
  • the positive electrode 151 for example, an electrode plate including an active material containing nickel hydroxide and an active material support such as foamed nickel can be used.
  • the negative electrode 152 for example, an electrode plate containing a hydrogen storage alloy as a negative electrode constituent material can be used.
  • the separator 153 for example, a non-woven fabric made of a synthetic fiber subjected to a hydrophilic treatment can be used. Examples of the electrolyte include a specific gravity of 1.2 to 1.4 including KOH. An aqueous solution of Lucari can be used.
  • the battery case 1 30 is made of metal (specifically, nickel-plated steel plate) and has a rectangular box shape.
  • the sealing plate 120 is made of metal (specifically, a nickel-plated steel plate) and has a substantially rectangular plate shape. As shown in FIG. 2, the sealing plate 120 has a gas discharge hole 12 2 that communicates the inside of the case 10 2 with the outside. As shown in FIG. 2, the sealing plate 1 2 0 is placed on the opening end face 1 3 1 of the battery case 1 30 and welded all around, and the opening 1 3 2 of the battery case 1 3 0 is It is sealed. As a result, the sealing plate 120 and the battery case 130 are joined together without a gap to form a case 1002.
  • Example 1 since the entire case 102 is made of metal (only the metal wall portion), the battery has extremely good cooling performance and can prevent the battery from overheating.
  • the inner dimensions of the case are 4 2 (mm) ⁇ l 5 (mm) ⁇ 85 (mm). That is, the internal volume of the case is 53.6 (cm 3).
  • the safety valve device 100 includes a valve member 110, a valve cap 170, a coil panel 160, a pedestal plate 180, and a safety valve case 140.
  • the pedestal plate 180 is made of metal (specifically, a nickel-plated steel plate) and has an annular plate shape and is fixed on the outer peripheral surface 1 27 of the sealing plate 1 20.
  • the valve cap 1 7 0 is made of metal (specifically, nickel-plated steel plate) and has a substantially annular flange 1 7 1, a cylindrical side wall 1 7 2, and a disk-shaped ceiling 1 7 4 and Among these, a through hole 1 74 b is formed in the ceiling portion 1 74.
  • the valve member 1 1 0 is made of rubber (specifically, EP DM), and has a substantially annular flange 1 1 1, a cylindrical side wall 1 1 2, and a disk-shaped ceiling 1 1 4 And has a shape that fits the inner peripheral surface 1700 b of the valve cap 1700.
  • the valve member 110 is inserted into the valve cap 170 and is disposed on the outer peripheral surface 1227 of the sealing plate 120 at a position inside the pedestal plate 180. In the first embodiment, the thickness of the valve member 110 is set to 0.5 mm.
  • the safety valve case 140 is made of metal (specifically, nickel-plated steel plate) and has a substantially cylindrical shape with a bottom.
  • a through hole 14 4 b having a diameter larger than the outer diameter of the side wall portion 17 2 of the valve cap 170 is formed in the ceiling portion 14 4 of the safety valve case 140.
  • the safety valve case 140 is fixed on the base plate 180.
  • the coil spring 160 has a spiral shape that decreases in diameter as it proceeds downward in FIG.
  • This coil panel 160 has a small-diameter end 1 61 placed on the flange 1 7 1 of the valve cap 17 0, and a large-diameter end 1 6 2 the ceiling 1 of the safety valve case 1 4 0 It is placed in the safety valve case 140 40 in a compressed and deformed state so as to be pressed downward by FIG. As a result, the flange 1 1 1 of the valve cap 1 7 0 and the flange 1 1 1 of the valve member 1 1 1 1 are pressed downward by the coil spring 1 60, so that the flange of the valve cap 1 7 0 Part 1 1 1 1 Sealing surface located at 1 1 1 5 5 Force S, sealing plate 1 2 0
  • a safety valve device 101 discharges the gas (hydrogen gas, etc.) in case 1002 to the outside, and the internal pressure of case 1002 Prevent over-boosting.
  • the valve cap 1700 and the valve cap 1700 are pushed upward in FIG. 2 by the gas in the case 102.
  • the coil panel 160 is further compressed and deformed by this pressing force.
  • the sealing surface 1 1 5 of the valve member 1 1 0 is separated from the outer peripheral surface 1 2 7 of the sealing plate 1 2 0, so that the gas in the case 1 0 2 is discharged to the outside of the valve member 1 1 0.
  • it is discharged out of the battery through the through hole 1 4 4 b formed in the ceiling portion 1 4 4 of the safety valve case 1 4 0. In this way, it is possible to prevent the internal pressure of the case 102 from being excessively increased.
  • the valve member 110 is formed of rubber (EPDM) having a thin wall (wall portion).
  • EPDM rubber
  • the valve member substantially cylindrical with a bottom, a large contact area (permeation area) with the hydrogen gas in the case 102 is secured.
  • the hydrogen gas in the case 100 passes through the wall portion of the valve member 110, and through a slight gap between the valve member 110 and the valve cap 170. It can be leaked out of the battery from the through hole 1 7 4 b of the ceiling portion 1 7 4 of the valve cap 1 7 0.
  • the safety valve device has a hydrogen leakage function that leaks the hydrogen gas in the case 1002 to the outside of the battery in addition to the overpressure prevention function that prevents the overpressure of the internal pressure of the case 1002. .
  • Example 1 In the embodiments of the present invention (Examples 1 to 4), as in Example 1, All valve devices have a hydrogen leakage function that allows hydrogen gas in the case to pass through the valve member and leak out of the battery. For this reason, in Examples 2 to 4, the amount of hydrogen gas in the case 1002 per unit time permeating the valve member by changing the thickness and shape of the force valve member described in detail later (in other words, Then, the hydrogen permeation speed of the valve member can be adjusted. Therefore, in the embodiments of the present invention (Examples 1 to 4), in the safety valve device, the hydrogen leakage rate of the entire battery is adjusted by adjusting the hydrogen leakage rate at which hydrogen gas in the case 102 leaks to the outside of the battery. Can be adjusted.
  • the -Neckel hydrogen storage battery 100 of Example 1 can be manufactured as follows.
  • the positive electrodes 15 1 are inserted into the plurality of separators 15 3 in the form of bags.
  • a plurality of separators 15 3 into which the positive electrodes 15 1 are inserted and a plurality of negative electrodes 1 5 2 are alternately stacked to form a plate group 1 5 0 (see FIG. 1).
  • the positive electrode 15 1 and a positive electrode terminal are connected with a lead wire
  • the negative electrode 15 2 and a negative electrode terminal (not shown) are connected. Connect with lead wires.
  • a sealing plate 1 2 0 prepared separately is placed on the opening end face 1 3 1 of the battery case 1 30 and welded all around to seal the opening 1 3 2 of the battery case 1 3 0 (See Figure 2).
  • the sealing plate 120 and the battery case 130 are integrated with no gap to form the case 1002.
  • an alkaline aqueous solution having a specific gravity of about 1.3 is injected as an electrolytic solution from the gas discharge holes 1 2 2 formed in the sealing plate 120.
  • valve member 1 1 0 is inserted into the valve cap 1 70. Further, the large diameter end portion 16 2 of the coil panel 1 60 is directed to the ceiling portion 1 4 4 side of the safety valve case 1 4 0, and the coil panel 1 6 0 is arranged in the safety valve case 1 4 0.
  • the valve cap 1 7 0 on which the valve member 1 1 0 is inserted is arranged so that the flange portion 1 7 1 of the valve cap 1 70 is brought into contact with the small diameter end portion 1 6 1 of the coil panel 1 60. Place in the safety valve case 1 4 0.
  • the base plate 1 80 is fixed to the flange 1 4 8 of the safety valve case 1 4 0 by laser welding. Thereby, the safety valve device 1 0 1 is completed.
  • the safety valve device 1 0 1 is placed on the outer peripheral surface 1 2 7 of the sealing plate 1 2 0 so that the central axis thereof coincides with the central axis of the gas discharge hole 1 2 2, and the sealing plate is formed by laser welding.
  • 1 2 0 (Case 1 0 2) It sticks to. In this way, the nickel-metal hydride storage battery 100 of Example 1 can be manufactured.
  • the nickel-metal hydride storage battery 200 of the second embodiment is different from the nickel-metal hydride storage battery 100 of the first embodiment in the shape of the valve member, and the other parts are the same.
  • the valve member 210 of the second embodiment is different from the valve member 110 of the first embodiment (see FIG. 2) in the shape of the side wall and the ceiling (see FIGS. 3 and 4).
  • the side wall portion 112 of the valve member 1 10 of the first embodiment has a flat annular outer peripheral surface, but the side wall portion 212 of the valve member 210 of the second embodiment is shown in FIG. As shown, it has a large number of convex portions 21 2 b and flange portions 212 c that are alternately arranged in the circumferential direction, and the outer peripheral surface has an uneven shape.
  • the ceiling portion 214 of the valve member 210 of the second embodiment has convex portions 214 b (of the ceiling portion 214) arranged at three force points at equal intervals in the circumferential direction.
  • a portion where the convex portion 214 b is not disposed is referred to as a thin-walled portion 214 c).
  • the thickness of the concave portion 212c of the side wall portion 212 and the thickness of the thin portion 214c of the ceiling portion 214 are both 0.3 mm. It is thinner than member 1 10 (thickness 0.5 mm). For this reason, the valve member 2 10 of the second embodiment is more easily permeable to hydrogen gas than the valve member 110 of the first embodiment.
  • Such a valve member 210 is inserted into the valve cap 170 as in the first embodiment (see FIG. 3).
  • the side wall portion 21 2 of the valve member 210 has a concavo-convex shape. Therefore, the convex portion 212 b is brought into contact with the inner peripheral surface 1 70 0 b of the valve cap 170, so And a gap D can be provided between the inner peripheral surface 1 70 b of the valve cap 1 70.
  • the convex portion 2 14 b is formed on the ceiling portion 214 of the valve member 210, a gap portion E is formed between the thin portion 214 c of the ceiling portion 214 and the inner peripheral surface 1 70 b of the valve cap 1 70. Can be provided.
  • the hydrogen gas that has permeated through the valve member 210 smoothly passes through the gap D and the gap E, and the valve cap It leaks out of the battery through the through-hole 174b of the ceiling 174 of 170. Therefore, in the -Neckel hydrogen storage battery 200 of the second embodiment, hydrogen gas in the case 102 is more likely to leak out of the battery than in the nickel hydrogen storage battery 100 of the first embodiment. For this reason, in the nickel-metal hydride storage battery 200 of the second embodiment, the hydrogen leakage rate at which hydrogen gas in the case 102 leaks to the outside of the battery is greater than that of the nickel-hydrogen storage battery 100 of the first embodiment.
  • the nickel hydrogen storage battery 300 of the third embodiment is different from the nickel hydrogen storage battery 200 of the second embodiment in the shape of the valve member (specifically, the wall thickness), and the other parts are almost the same. It is.
  • the side wall portion 312 has a large number of convex portions 312 b and concave portions 312 c, and the outer peripheral surface has an uneven shape (fourth) See figure).
  • the ceiling portion 314 of the valve member 310 is similar to the second embodiment in that the three convex portions 314 b (the portion of the ceiling portion 314 where the convex portion 314 b is not disposed is a thin portion 314 c. ) have.
  • the thickness of the concave portion 312c of the side wall portion 312 and the thickness of the thin portion 314c of the ceiling portion 314 are both 0.2 mm. It is thinner than (thickness 0.3 mm). For this reason, the valve member 310 of the third embodiment is more easily permeable to hydrogen gas than the valve member 210 of the second embodiment.
  • valve member 310 is inserted into the valve cap 170, and between the concave portion 212c of the side wall 312 and the inner peripheral surface 170b of the valve cap 170.
  • a gap portion E can be provided between the thin wall portion 314 c of the ceiling portion 314 and the inner peripheral surface 170 b of the valve cap 1 70 (see FIG. 5).
  • the valve member 310 of the third embodiment is thinner than the valve member 210 of the second embodiment. Therefore, in the third embodiment, the gap portion D and the gap portion E are formed in the second embodiment. Can be larger. For this reason, the hydrogen gas that has passed through the valve member 310 passes through the gap portion D and the gap portion E more smoothly, and the through hole 17 of the ceiling portion 1 74 of the valve cap 170 4 Leak out of the battery from b.
  • the hydrogen gas in the case 102 is more easily leaked to the outside of the battery than the nickel hydrogen storage battery 200 of the second embodiment.
  • the nickel hydrogen storage battery 300 of the third embodiment has a hydrogen leakage rate at which the hydrogen gas in the case 1002 leaks to the outside of the battery, compared to the nickel hydrogen storage battery 200 of the second embodiment. growing.
  • the nickel-metal hydride storage battery 400 in Example 4 has a larger safety valve device shape (specifically, the valve member, valve cap, etc.) than the nickel-hydrogen storage battery 300 in Example 3. ) Is different, and the other parts are almost the same.
  • the side wall portion 4 1 2 has a large number of convex portions 4 1 2 b and concave portions 4 1 2 c, and the outer peripheral surface thereof is It has an uneven shape (see Fig. 6).
  • the ceiling portion 4 1 4 of the valve member 4 10 has three convex portions 4 1 4 b (of the ceiling portion 4 1 4, the convex portions 4 1 4 b are arranged in the same manner as in the third embodiment. The part that is not present is the thin-walled part 4 1 4 c).
  • the thickness of the concave portion 4 1 2 c of the side wall portion 4 1 2 and the thickness of the thin portion 4 1 4 c of the ceiling portion 4 1 4 are the same as those of the valve member 3 1 of Example 3. Like 0, both are made as thin as 0.2 mm.
  • the valve member 4 10 of the fourth embodiment has a diameter larger than that of the valve member 3 10 of the third embodiment, so that hydrogen gas and The contact area (transmission area) is increased. For this reason, the valve member 4 10 of the fourth embodiment is more easily permeable to hydrogen gas than the valve member 3 10 of the third embodiment.
  • valve member 4 10 is inserted into the valve cap 4 70, and the concave portion 4 1 2 c of the side wall 4 1 2 and the valve cap 4 7 0
  • a gap D is provided between the peripheral surface 4 7 0 b and a gap E between the thin wall portion 4 1 4 c of the ceiling 4 1 4 and the inner peripheral surface 4 7 0 b of the valve cap 4 7 0 b.
  • the hydrogen gas that has permeated through the valve member 3 10 smoothly passes through the gap portion D and the gap portion E in the same manner as in the third embodiment. From b to outside of battery Leak into the part.
  • the diameter of the valve member 4 10 is larger than that of the valve member 3 10 of Example 3, and the contact area (permeation area) with hydrogen gas is increased.
  • the hydrogen gas in the case 102 is more likely to leak out of the battery than in the nickel hydride storage battery 300 of the third embodiment.
  • the nickel hydrogen storage battery 400 in Example 4 has a higher hydrogen leakage rate at which hydrogen gas in the case 102 leaks outside the battery than the nickel hydrogen storage battery 300 in Example 3. Become.
  • the safety valve devices 100 to 400 have the hydrogen gas in the case 1002 as the valve member 1 1. It has a hydrogen leakage function that allows 0 to 4 1 0 to permeate and leak out of the battery. For this reason, as in Examples 1 to 4, the hydrogen leakage rate in the safety valve device can be adjusted by adjusting the thickness and shape of the valve member. Therefore, in the nickel metal hydride storage battery of the present invention, the hydrogen leakage rate of the entire battery can be adjusted by adjusting the hydrogen leakage rate at which hydrogen gas in the case leaks outside the battery in the safety valve device.
  • This nickel-metal hydride storage battery 700 is different from the nickel-metal hydride storage battery 100 of Example 1 only in the safety valve device, and the other parts are the same.
  • the safety valve device 70 1 of this comparative example 1 is a conventional type safety valve device, and has a valve member 7 10 and a safety valve case 7 40 as shown in FIG.
  • the valve member 7 10 is made of rubber (specifically, EPDM) and has a substantially cylindrical shape.
  • the valve member 7 10 is disposed on the outer peripheral surface 1 2 7 of the sealing plate 1 20 at a position for closing the gas discharge hole 1 2 2 formed in the sealing plate 1 2.
  • the safety valve case 7 4 0 is made of metal (specifically, nickel-plated steel plate) and has a bottomed substantially cylindrical shape having a flange portion 7 4 8. A plurality of rectangular through holes 7 4 2 b are formed in the side wall portion 7 4 2 of the safety valve case 7 4.
  • This safety valve case 7 40 is formed by laser welding in a state where the valve member 7 10 is pressed downward in FIG. It is fixed to the sealing plate 1 2 0 at the position of the flange 7 4 8. As a result, the sealing surface 7 15 of the valve member 7 1 0 is urged against the outer peripheral surface 1 2 7 of the sealing plate 1 2 0 so as to be in close contact with each other, thereby closing the gas outlet hole 1 2 2. Yes.
  • the nickel-metal hydride storage battery 800 is different from the nickel-metal hydride storage battery 100 of Example 1 in the case material and safety valve device, and the other parts are the same.
  • Case 8 0 2 of Comparative Example 2 is formed of a resin (for example, a polymer alloy of P P and P P E).
  • a resin for example, a polymer alloy of P P and P P E.
  • the inner dimensions of the case are 4 2 (mm) x 15 (mm) x 85 (mm). That is, the internal volume of the case is 53.6 (cm 3).
  • the safety valve device 8 0 1 of this comparative example 2 is equivalent to the safety valve device of the nickel metal hydride storage battery disclosed in JP-A 2 0 0 1-1 1 0 3 8 8, as shown in FIG. .
  • the safety valve device 80 1 has a valve case 8 25, a valve body 8 3 1, and a valve lid 8 3 2.
  • the valve case 8 2 5 has a substantially cylindrical shape with a bottom, and a gas exhaust hole 8 2 6 is perforated at the center of the bottom, and a protrusion 8 2 7 is formed around the gas exhaust hole 8 2 6. It is formed.
  • the valve case 8 25 is fitted and welded into a stepped mounting cylinder portion 8 24 formed on the upper wall of the lid 8 20 of the case 8 02.
  • the valve body 8 3 1 includes a seal portion 8 2 8, an elastic portion 8 3 0, and a rigid body portion that supports both members
  • valve body 8 3 1 is inserted and disposed in the valve case 8 25 with the seal portion 8 2 8 abutting against the protruding portion 8 2 7 of the valve case 8 25.
  • the valve lid 8 3 2 has an open port 8 3 3 that can discharge gas and a connection port 8 3 4 that can connect a discharge hose.
  • the valve lid 8 3 2 is fitted into and welded to the upper end opening of the valve case 8 25.
  • the elastic portion 8 30 of the valve body 8 3 1 is elastically pressed downward in FIG. 16 and the seal portion 8 2 8 is brought into pressure contact with the protruding portion 8 2 7 of the valve case 8 25.
  • the gas discharge holes 8 2 6 are closed.
  • the measuring device 1 has a hermetically sealed container 3, a vacuum exhaust pipe 4 connected to the sealed container 3, and an atmosphere opening 5 having an on-off valve 6.
  • a barometer 7, an on-off valve 8, a vacuum pump 9, a switching valve 10, and a hydrogen concentration sensor 11 are arranged in series from the sealed container 3 side.
  • the switching valve 10 includes a state in which the outlet of the vacuum pump 9 is connected to the atmosphere opening 12, a state in which the outlet of the vacuum pump 9 is connected to the hydrogen concentration sensor 11, and a state in which the atmosphere opening 12 is connected to the hydrogen concentration sensor 11. It can be switched to a connected state.
  • an infrared heater is provided in the hermetic container 3 so that the sample S arranged in the hermetic container 3 can be heated and heated. ing.
  • the switching valve 10 of the measuring device 1 is switched to a state where the atmosphere opening 12 and the hydrogen concentration sensor 11 1 communicate with each other, the hydrogen concentration in the atmosphere is measured, and the value is defined as the atmospheric hydrogen concentration b.
  • the sample S for example, the nickel metal hydride storage battery 100
  • the open / close valve 6 of the atmosphere opening 5 is closed.
  • an infrared heater not shown
  • the temperature of sample S placed in sealed container 3 is raised to 45 ° C.
  • the vacuum pump 9 After opening the on-off valve 8 of the vacuum exhaust pipe 4 and switching the switching valve 10 to a state where the outlet of the vacuum pump 9 and the atmosphere opening 12 are in communication with each other, the vacuum pump 9 is operated to close the sealed container. Reduce the pressure in 3 to 10 k Pa.
  • the outlet of the vacuum pump 9 is connected to the hydrogen concentration sensor 11.
  • the gas in the sealed container 3 is taken into the hydrogen concentration sensor 11 1
  • the hydrogen concentration in the sealed container 3 is measured, and the value is taken as the hydrogen concentration c in the container.
  • the hydrogen leakage amount M ( ⁇ 1) from the sample S is calculated based on the difference between the atmospheric hydrogen concentration b and the hydrogen concentration c in the container.
  • hydrogen leak rate VI lZh / Ah) and hydrogen leak rate V2 ( ⁇ l / h / cm 3) are calculated. did.
  • the hydrogen leak rate VI ( ⁇ 1 / h / Ah) is calculated based on the hydrogen leak rate M ( ⁇ 1), and the hydrogen leak rate per hour is calculated at a battery capacity of 6.5 Ah. The value divided by this.
  • the hydrogen leak rate V 2 ( ⁇ 1 / h / cm is calculated based on the hydrogen leak rate M ( ⁇ 1), and the hydrogen leak rate per hour is calculated as the internal volume of the case (specifically, This value is divided by 53.6 cm 3 ) The results are shown in Table 1.
  • the -Neckel hydrogen storage battery 700 of Comparative Example 1 has a hydrogen leakage rate V
  • valve member 710 force S and the gas exhaust hole 122 are closed on the outer peripheral surface 127 of the sealing plate 120 (see FIG. 15). That is, since the valve member 710 has only a size that matches the contact area (permeation area) with the permanent gas in the case 102 and the opening area of the gas discharge hole 122, the hydrogen gas in the case 102 It is thought that it was difficult to penetrate the valve member 710.
  • hydrogen leakage Output speed VI ( ⁇ lZh / Ah) is 2.00, 3.66, 9.15, 13.7, and V2 ( ⁇ 1 / hZcm3) is 0.24, 0.44, 1. 1, 1.7, which is larger than that of the nickel metal hydride battery 700 in Comparative Example 1.
  • the valve members 110 to 410 have a substantially cylindrical shape with a bottom, so that a large contact area (permeation area) with the hydrogen gas in the case 102 is secured. This is probably because of this (see Fig. 2 to Fig. 6).
  • the hydrogen leak rates VI and V2 of the -Neckel hydrogen storage batteries 100 to 400 of Examples 1 to 4 increase in this order. This is probably because the hydrogen gas in the case 102 is likely to leak out of the battery in the order of Examples 1 to 4 for the following reasons.
  • the valve member 110 is disposed in close contact with the valve cap 170 (see FIG. 2).
  • the side wall 212 of the valve member 210 has a four-convex shape, and a gap D is provided between the inner peripheral surface 170b of the valve cap 170 (see FIG. 3).
  • a convex portion 214 b is formed on the ceiling portion 214 of the valve member 210, and a gap portion E is provided between the inner peripheral surface 170 b of the valve cap 170.
  • the hydrogen gas that has permeated through the valve member 210 smoothly leaks from the through hole 1 74 b of the ceiling portion 1 74 of the valve cap 170 to the outside of the battery through the gap portion D and the gap portion E. Therefore, it is considered that the nickel hydrogen storage battery 200 of Example 2 is more likely to leak hydrogen gas in the case 102 to the outside of the battery than the -Neckel hydrogen storage battery 100 of Example 1.
  • Example 3 the thickness of the valve member 310 was made thinner than that of the valve member 2 10 of Example 2, so that the gap D and the gap E could be made larger than those of Example 2. .
  • Example 3 the hydrogen gas permeation rate through which the hydrogen gas permeates through the valve member is increased as compared with Example 2, and the hydrogen gas that has permeated through the valve member 310 is smoother than in Example 2.
  • part D and gap E it is considered that the battery cap leaks from the through hole 1 74 b of the ceiling portion 1 74 of the valve cap 170 to the outside of the battery.
  • the nickel metal hydride storage battery 300 of Example 3 is more likely to leak hydrogen gas in the case 102 to the outside of the battery than the nickel hydride storage battery 200 of Example 2.
  • Example 3 the thickness of the valve member, the size of the gap D, and the size of the gap E are both the same.
  • the diameter of the valve member 410 is larger than that of the valve member 310 of Example 3, and the contact area (permeation area) with water * gas is increased. For this reason, it is considered that the nickel-metal hydride storage battery 400 of Example 4 is more likely to leak hydrogen gas in the case 102 to the outside of the battery than the nickel-metal hydride storage battery 300 of Example 3.
  • a resin such as a polymer alloy of PP and PPE
  • the discharge reserve amount after the discharge test was measured, respectively. .
  • One The potential of the positive electrode 15 1 with respect to the reference electrode becomes 0.5 V Discharge capacity until). Note that the discharge reserve amount of sample S before being left was 2.5 Ah. The results are shown in Table 2.
  • the discharge reserve increased as the period passed, and after 6 months, the discharge reserve increased to 5.6 Ah. I have. In other words, the charge reserve amount has disappeared (the charge reserve amount is 1.1.1 Ah), and the safety valve may be opened when fully charged.
  • the increase in the amount of hydrogen in the battery due to the corrosion of the hydrogen storage alloy in the negative electrode greatly exceeded the decrease in hydrogen due to the hydrogen gas leaking from the inside of the battery to the outside.
  • the discharge reserve amount decreased as the period passed, and after 6 months, the discharge reserve amount disappeared and decreased to 0.5 Ah. Oops.
  • the nickel metal hydride storage battery has reached the state of negative electrode regulation, and the discharge capacity has decreased.
  • the decrease in hydrogen due to hydrogen gas leaking from the inside of the battery to the outside greatly exceeded the increase in hydrogen in the battery due to the corrosion of the hydrogen storage alloy of the negative electrode.
  • Example 1 In contrast, in the nickel metal hydride storage battery 100 of Example 1, the discharge reserve increased as the period passed, but the discharge reserve after 6 months remained at 4.1 Ah. In other words, although the amount of charge reserve has decreased, 0.4 Ah remains.
  • the discharge reserve increased as the period passed, but the discharge reserve after 6 months remained at 3.9 Ah. In other words, the charge reserve amount decreased, but 0.6 Ah remained.
  • the discharge reserve increased as the period passed, but this increase was slight, and the discharge reserve after 6 months was small.
  • the volume was 3.0 Ah. In other words, although the amount of charge reserve has decreased, the amount of decrease has been slight, with 1.5 Ah remaining.
  • the nickel metal hydride storage battery 500 according to Example 5 is provided by adding a hydrogen leakage device 50 3 to the ⁇ Neckel hydrogen storage battery 700 of Comparative Example 1. .
  • a hydrogen leakage device 50 3 is additionally provided in the nickel hydrogen storage battery having the conventional safety valve device 70 1.
  • the sealing plate 5 20 of the fifth embodiment includes an inside and an outside of the case 50 2 as shown in FIG. A communicating gas discharge hole 5 2 2 is formed.
  • FIG. 8 The hydrogen leakage device 50 3 is fixed on the outer peripheral surface 5 27 of the sealing plate 5 20 so as to be adjacent to the safety valve device 70 1 (see FIG. 7). As shown in FIG. 8, this hydrogen leakage device 50 3 has a hydrogen permeable member 51 and a hydrogen leakage case 5 70.
  • the hydrogen leakage case 5 70 is made of metal (specifically, a nickel-plated steel plate) and has a substantially cylindrical shape with a bottom. A through hole 5 74 b is formed in the ceiling portion 5 7 4 of the hydrogen leakage case 5 70.
  • This hydrogen leakage case 5 7 0 is fixed on the outer peripheral surface 5 2 7 of the sealing plate 5 2 0 by laser welding at a position where its central axis coincides with the central axis of the gas discharge hole 5 2 2.
  • the hydrogen permeable member 5 1 0 is made of hydrogen permeable rubber (specifically, EP DM), has a bottomed cylindrical shape, and conforms to the inner peripheral surface 5 7 0 b of the hydrogen leakage case 5 7 0 I am doing.
  • the hydrogen permeable member 5 10 is inserted into the hydrogen leakage case 5 70, and is arranged so that the seal surface 5 15 is in close contact with the outer peripheral surface 5 27 of the sealing plate 5 20.
  • the safety valve device of Examples 1 to 4 Similar to 1 0 1 to 4 0 1, hydrogen gas in case 5 0 2 can be leaked out of the battery. Specifically, the hydrogen gas in the case 50 2 permeates through the wall of the hydrogen permeable member 5 10 and passes between the hydrogen permeable member 5 10 and the hydrogen leak case 5 70. It can be leaked to the outside of the battery from the through hole 5 7 4 b of the 5 7 0 ceiling 5 7 4. Therefore, even in the nickel-metal hydride storage battery 500 of Example 5, the hydrogen leakage rate VI can be adjusted by adjusting the thickness of the hydrogen permeable member 51, the shape of the outer peripheral surface, etc., as in Examples 1-4.
  • the hydrogen leak rate V 2 ( ⁇ 1 / h / cm 3) can be set in the range of o 4 ⁇ V 2 ⁇ 1.1. For this reason, it is possible to suppress deterioration of battery characteristics over a long period of time.
  • the nickel-hydrogen storage battery 600 of the sixth embodiment is different from the first to fourth embodiments in the structure of the safety valve device, and the other parts are almost the same.
  • the nickel-metal hydride storage battery 60 of Example 6 includes a case 6 0 2 having a sealing plate 6 2 0 and a battery case 1 3 0, a valve member 6 1 0, and a retaining plate 6 4 0 and Among these, the sealing plate 6 20 has a recessed wall portion 6 21 that forms a portion S that is recessed from the outer peripheral surface 6 2 7 to the inside of the battery case 1 30.
  • the concave wall portion 6 2 1 has a substantially semicircular cylindrical shape, and as shown in FIG.
  • the concave bottom portion 6 25 has a cross section cut in a direction perpendicular to the direction (left and right direction in FIG. 13) connecting the first concave side wall portion 6 2 3 and the second concave side wall portion 6 2 4. It has a U-shaped (substantially semicircular) shape.
  • the first concave side wall portion 6 2 3 is formed with a gas discharge hole 6 2 2 that penetrates the first concave side wall portion 6 2 3 and communicates the inside and the outside of the case 60 2.
  • Such a sealing plate 6 20 is formed by, for example, pressing a metal plate having a predetermined dimension into a U-shaped (substantially semicircular) cross-sectional shape of the concave bottom portion 6 2 5. 1 Shape (recess S) After the formation, the first concave side wall portion 6 2 3 can be manufactured by drilling the gas discharge hole 6 2 2.
  • the valve member 6 10 is a semi-cylindrical first valve having a first through hole 6 1 2 b made of rubber (specifically, EP DM).
  • a member 6 1 2 a second valve member 6 1 4 made of metal (specifically, nickel-plated steel plate) and having a second through hole 6 1 4 b, and rubber (specifically EP DM)
  • a third valve member 6 1 3 that surrounds the periphery of the second valve member 6 14, and these are integrally molded. That is, the valve member 6 10 of Example 6 is a rubber molded body in which the first valve member 6 1 2 and the third valve member 6 1 3 are formed on the second valve member 6 14 by insert molding. is there.
  • valve member 6 10 is provided in the flange portion S of the sealing plate 6 20.
  • the safety valve device 6 ⁇ 1 is constituted by the valve member 6 1 0, the recessed wall 6 2 1 formed on the sealing plate 6 2 0 and the retaining plate 6 4 0. Is configured.
  • the second valve member 6 1 4 and the first valve member 6 1 2 move in a direction away from the first concave side wall portion 6 2 3 (rightward in FIG. 13), and the sealing surface 6 1 5 Is spaced apart from the first concave side wall portion 6 2 3, and a gap is formed between the sealing surface 6 15 and the first concave side wall portion 6 2 3.
  • the gas inside the case 6 0 2 Can be appropriately discharged to the outside.
  • the valve member 610 contacts the rubber first valve member 612 and the metal second valve member 614, and the rubber third valve member 613 and the metal second valve member 614 Formed in contact with each other.
  • the hydrogen gas in the case 602 can be leaked out of the battery, similarly to the safety valve devices 101 to 401 of the first to fourth embodiments. Specifically, hydrogen gas introduced from the inside of the case 602 into the communication hole 611 of the valve member 610 is converted into a gap between the rubber first valve member 612 and the metal second valve member 614, and rubber.
  • the third valve member 613 and the metal second valve member 614 can be passed through and leaked out of the battery.
  • the hydrogen leakage rate VI ( ⁇ lZh / Ah) can be set in the range of 3.5 ⁇ V1 10.
  • the hydrogen leak rate V 2 ( ⁇ 1 / h / cm 3) can be set in the range of 0.4 V2 ⁇ 1.1. For this reason, deterioration of battery characteristics can be suppressed over a long period of time.
  • the entire case 102, 502, 602 is made of metal (metal wall only), but may be made of metal (metal wall) and resin (resin wall). good.
  • the area of the metal wall portion forming the outer peripheral surface of the case exceeds 90% of the entire area of the outer peripheral surface of the case. This is because if 90% or more of the case is made of metal, the battery has good cooling properties and can prevent overheating of the battery.
  • the through hole 174 b is formed only in the ceiling part 174 of the valve cap 170, but the through hole may be formed also in the side wall part 172.
  • the valve member 110, 210, 310 is transmitted. Since hydrogen gas easily leaks outside the battery, the hydrogen leak rates VI and V 2 can be improved.
  • Example 5 the hydrogen leakage device 50 3 was fixed on the outer peripheral surface 5 2 7 of the sealing plate 5 2 0 so as to be adjacent to the safety valve device 70 1 (see FIG. 7). Any position can be used as long as the position is correct.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

負極の放電リザーブ及び充電リザーブの変動を抑制し、長期間にわたって電池特性の低下を抑制できるニッケル水素蓄電池を提供する。本発明のニッケル水素蓄電池100は、電池本体部(極板群150及び電解液など)と、この電池本体部を収容するケース102と、安全弁装置101とを備えている。安全弁装置101は、有底略筒形状の弁部材110を有している。このニッケル水素蓄電池100では、充放電を行った後SOC60%まで充電した当該電池の、電池温度45℃、10kPaの減圧雰囲気下での単位電池容量あたりの水素漏出速度V1(μl/h/Ah)が、2≦V1≦14の関係を満たしている。

Description

明 細 書 二ッケル水素蓄電池 技術分野
本発明は、 ニッケル水素蓄電池に関する。 背景技術
近年、 ポータブル機器や携帯機器などの電源として、 また、 電気自動車やハイ プリッド自動車などの電源として、 様々なニッケル水素蓄電池が提案されている。 このニッケル水素蓄電池では、 ケース (電槽) として、 樹脂からなる樹脂ケースま たは金属からなる金属ケースが用いられている。 (例えば、特許文献 1, 特許文献 2 参照)。
特許文献 1 :特開平 8—1 4 8 1 3 5号
特許文献 2 :特開平 8— 3 1 3 9 8号
一般に、 ニッケル水素蓄電池では、 負極の容量を正極の容量よりも大きくして いる。 これにより、 電池の放電容量は、 正極の容量によって制限される (以下、 こ れを正極規制ともいう)。 このように、正極規制とすることにより、過充電時及ぴ過 放電時における内圧の上昇を抑制することができる。 なお、 充電可能な過剰な負極 容量は、 充電リザーブと呼ばれ、 放電可能な過剰な負極容量は、 放電リザーブと呼 ばれている。 発明の開示
発明が解決しようとする課題
ところで、 ニッケル水素蓄電池では、 使用に伴い、 負極の水素吸蔵合金が腐食 し、 その副反応として水素吸蔵合金に水素が吸蔵される。 特に、 金属ケースのニッ ケル水素蓄電池では、これに伴い水素吸蔵合金の水素吸蔵量が次第に増加していく。 その結果、 負極の放電リザーブが増加する一方、 充電リザーブが減少してしまい、 充電時に電池の内圧が上昇し易くなる。 使用期間が長期にわたると、 充電リザーブ が消滅してしまい、 その結果、 満充電時などにおいて、 負極から生じた大量の水素 ガス等により電池の内圧が過昇圧となり、 安全弁が開弁してしまう。 これにより、 電池内の水素ガスを外都に排出して過昇圧を抑制することができるが、 排出された 水素ガスは電解液から生じたものであるため、 結果として電解液が減少し、 電池特 性が著しく低下してしまう。 このように、 金属ケースのニッケル水素蓄電池では、 長期的な水素吸蔵合金の腐食に伴い、 電池特性が著しく低下してしまう問題があつ た。 特に、 電気自動車やハイブリッド自動車などの電源として用いる場合には、 1 0年以上の寿命が要求されるため、 上記のような電池特性の著しい低下は深刻な問 題であった。
一方、 樹脂ケースのニッケル水素蓄電池では、 微量の水素ガスが、 樹脂ケース を透過して外部に漏れ続ける。 このように、 水素ガスが外部に漏出すると、 ケース 内の水素分圧平衡を保つべく、 水素漏出量に応じて負極の水素吸蔵合金から水素が 放出される。 これにより、 負極の放電リザーブが減少する。 このため、 使用期間が 長期にわたると、 正極と負極の容量のパランスが悪くなると共に負極の容量が減少 し、放電リザーブが消滅してしまう。その結果、ニッケル水素蓄電池が負極規制(電 池の放電容量が、 負極の容量によって制限されることをいう) となり、 放電容量が 減少してしまう。 このように、 樹脂ケースのニッケル水素蓄電池では、 長期的な水 素ガスの漏出に伴い、 電池特性が著しく低下してしまう問題があった。 特に、 電気 自動車やハイブリッド自動車などの電源として用いる場合には、 1 0年以上の寿命 が要求されるため、 上記のような電池特性の著しい低下は深刻な問題であった。
本発明は、 かかる現状に鑑みてなされたものであって、 負極の放電リザーブ及 ぴ充電リザーブの変動を抑制し、 長期間にわたって電池特性の低下を抑制できる二 ッケル水素蓄電池を提供することを目的とする。 課題を解決するための手段
その解決手段は、 電池本体部と、 上記電池本体部を収容するケースと、 を備え るニッケル水素蓄電池であって、 充放電を行った後 S O C 6 0 %まで充電した当該 電池の、 電池温度 45°C、 10 k P aの減圧雰囲気下での単位電池容量あたりの水 素漏出速度 VI (β 1/h/Ah) 、 2≤V1≤ 14の関係を満たすニッケル水 素蓄電池である。
本発明のニッケル水素蓄電池は、 SOC 60%、 電池温度 45°C、 l O kP a の減圧雰囲気下での単位電池容量あたりの水素漏出速度 V 1 (μ 1 ZhZAh)が、 2≤V1≤ 14の関係を満たす。水素漏出速度 V 1をこのような範囲とすることで、 水素ガスが電池の内部から外部へ漏出することによる水素の減少量と、 負極の水素 吸蔵合金の腐食に伴う電池内の水素の増加量との平衡を保つことができる。 これに より、 負極の放電リザーブ及ぴ充電リザーブの変動を抑制し、 長期間にわたって電 池特性の低下を抑制できる
なお、 電池本体部は、 電池の機能を奏するためにケース内に配置されるもので あり、 例えば、 電極、 セパレータ、 電解液などが含まれる。 また、 SOCは、 S t a t e O f Ch a r g eの H各である。
さらに、 上記のニッケル水素蓄電池であって、 前記水素漏出速度 VI (μ 1 / h/Ah) は、 3. 5≤V 1≤ 10の関係を満たすニッケル水素蓄電池であると良 い。
本発明のニッケル水素蓄電池は、水素漏出速度 VI (μ 1/h/Ah)力 3. 5≤V1≤ 10の関係を満たす。 水素漏出速度 V 1をこのような範囲に限定するこ とで、 負極の放電リザーブ及ぴ充電リザーブの変動を小さくすることができ、 より —層長期間にわたって電池特性の低下を抑制することができる。
他の解決手段は、 電池本体部と、 上記電池本体部を収容するケースと、 を備え るニッケル水素蓄電池であって、 充放電を行った後 SOC 60%まで充電した当該 電池の、 電池温度 45°C、 10 k P aの減圧雰囲気下での単位電池体積あたりの水 素漏出速度 V2 (μ 1 /h/c m 3) 、 0. 2≤V2≤ 1. 8の関係を満たす二 ッケル水素蓄電池である。
本努明のニッケル水素蓄電池は、 S.OC 60%、 電池温度 45°C, 10 k P a の減圧雰囲気下での単位電池体積あたりの水素漏出速度 V 2 (μ l/h/cm 3) 、 0. 2≤V2≤ 1. 8の関係を満たす。 水素漏出速度 V 2をこのような範囲と することで、水素ガスが電池の内部から外部へ漏出することによる水素の減少量と、 負極の水素吸蔵合金の腐食に伴う電池内の水素の增加量との平衡を保つことができ る。 これにより、 負極の放電リザーブ及び充電リザーブの変動を抑制し、 長期間に わたって電池特·生の低下を抑制できる。
なお、 電池体積とは、 ケースの内部体積 (容積) のことを言う。 また、 電池本 体部は、 電池の機能を奏するためにケース内に配置されるものであり、 例えば、 電 極、 セパレータ、 電解液などが含まれる。 また、 SOCは、 S t a t e O f C h a r g eの略である。
さらに、 上記のニッケル水素蓄電池であって、 前記水素漏出速度 V 2 (u 1 / h/c m 3) は、 0. 4 V2≤ 1. 1の関係を満たす二ッケル水素蓄電池である と良い。
本発明のニッケル水素蓄電池は、 水素漏出速度 V2 (μ 1 /h/cm 3) 力 S、 0. 4≤V2≤ 1. 1の関係を満たす。 水素漏出速度 V 2をこのような範囲に限定 することで、負極の放電リザーブ及ぴ充電リザーブの変動を小さくすることができ、 より一層長期間にわたって電池特性の低下を抑制することができる。
さらに、 上記いずれかのニッケル水素蓄電池であって、 前記ケースは、 金属か らなる金属壁部を有し、 上記金属壁部のうち当該ケースの外周面をなす部分の面積 、 当該ケースの外周面全体の面積の 90%を超えてなるニッケル水素蓄電池であ ると良い。
本発明のニッケル水素蓄電池では、 金属壁部のうちケースの外周面をなす部分 の面積が、 ケースの外周面全体の面積の 90%を超えている。 このように、 ケース の 90 %以上を金属で構成することにより、 電池の冷却性が良好となり、 電池の過 昇温を防止することができる。
ところで、 従来、 このような金属主体のケースを備えるニッケル水素蓄電池で は、 ケース内の水素ガスがケースの壁部を透過することが困難であるため、 負極の 水素吸蔵合金の腐食に伴い、 水素吸蔵合金の水素吸蔵量が次第に増加していった。 その結果、 負極の放電リザーブが増加する一方で、 充電リザーブが徐々に減少して ゆき、 電池特性が著しく低下してしまう傾向にあった。 これに対し、 本発明の-ッ ケル水素蓄電池では、 前述のように、 水素漏出速度 V 1または V 2を所定範囲の値 に設定しているため、 上記のような金属主体のケースであっても、 負極の放電リザ 一ブ及ぴ充電リザーブの変動を抑制し、 長期間にわたって電池特性の低下を抑制で さる。
さらに、 上記いずれかのニッケル水素蓄電池であって、 前記ケースは、 金属製 であるニッケル水素蓄電池であると良い。
本発明のニッケル水素蓄電池では、 ケースが金属製である。 このため、 電池の 冷却性が極めて良好となり、 電池の過昇温を防止することができる。
ところで、 従来、 金属ケースを備えるニッケル水素蓄電池では、 特に、 ケース 内の水素ガスがケースの壁部を透過することが困難であるため、 負極の放電リザー ブが増加する一方で、 充電リザーブが減少してゆき、 電池特性が著しく低下してい た。 これに対し、 本発明のニッケル水素蓄電池では、 前述のように、 水素漏出速度 V 1または V 2を所定範囲の値に設定しているため、 金属ケースであっても、 負極 の放電リザーブ及び充電リザーブの変動を抑制し、 長期間にわたって電池特性の低 下を抑制できる。
さらに、 上記いずれかのニッケル水素蓄電池であって、 前記ケース内の水素ガ スを当該電池の外部へ漏出させる水素漏出装置を備えてなる-ッケル水素蓄電池で あると良い。
本発明の二ッケル水素蓄電池は、 ケース内の水素ガスを電池の外部へ漏出させ る水素漏出装置を有している。 このため、 水素漏出装置において水素漏出速度を調 整することで、 電池全体の水素漏出速度を調整することができる。 すなわち、 水素 漏出装置の水素漏出速度を調整することで、 適切に、 電池全体の水素漏出速度 V 1 ( μ 1 / /A h ) を 2≤V 1≤ 1 4とすることができる。 または、 水素漏出装置 の水素漏出速度を調整することで、 適切に、 電池全体の水素漏出速度 V 2 ( μ 1 / h / c m 3) を 0 . 2≤V 2≤ 1 . 8とすることができる。 従って、 負極の放電リ ザーブ及び充電リザーブの変動を抑制し、 長期間にわたって電池特性の低下を抑制 できる。
なお、 水素漏出装置としては、 例えば、 水素透過性樹脂 (ゴム) を含む構造体 が挙げられる。特に、二ッケル水素蓄電池ではアル力リ性電解液を用いているので、 耐アルカリ性の高い水素透過十生樹脂 (ゴム) (例えば、 E P DMなど) を用いるのが 好ましい。 また、 この水素漏出装置は、 別途独立して設けるようにしても良いし、 安全弁装置が兼用するようにしても良い。 または、 水素漏出装置を別途独立して設 けると共に、 安全弁装置についても水素漏出装置を兼ねるようにしても良い。
さらに、 上記のニッケル水素蓄電池であって、 前記ケースの内圧が所定値を超 えると、 上記ケース内のガスを排出して上記ケースの内圧の過昇圧を防止する安全 弁装置を備え、 この安全弁装置は、 前記水素漏出装置を兼ねるニッケル水素蓄電池 であると良い。
本発明のニッケル水素蓄電池では、 安全弁装置が水素漏出装置を兼ねている。 すなわち、安全弁装置が、ケースの内圧の過昇圧を防止する過昇圧防止機能の他に、 ケース内の水素ガスを電池外部へ漏出させる水素漏出機能も有している。このため、 安全弁装置において水素漏出速度を調整することで、 電池全体の水素漏出速度を調 整することができる。
なお、 安全弁装置が水素漏出装置を兼ねる形態としては、 例えば、 弁部材に水 素漏出機能を持たせる形態が挙げられる。 この場合、 弁部材として水素透過性を有 する部材 (例えば、 水素透過性ゴム) を用い、 弁部材を透過する形態で水素ガスを 外部に漏出させるようにすると良い。 特に、 ニッケル水素蓄電池ではアルカリ性電 解液を用いているので、 耐アルカリ性の高い水素透過性樹脂 (ゴム) (例えば、 E P DMなど) を用いるのが好ましい。 あるいは、 弁部材を複数の部材によって構成し (例えば、 インサート成型により、 金属部材とゴム部材とを一体成形した弁部材)、 構成部材の間 (例えば、 金属部材とゴム部材との間) を通って水素が漏出するよう にしても良い。 図面の簡単な説明
第 1図は、 実施例 1〜 4にかかる二ッケル水素蓄電池 1 0 0〜 4 0 0の部分破 断斜視図である。
第 2図は、 実施例 1にかかるニッケル水素蓄電池 1 0 0を示す図であり、 安全 弁装置 101付近の縦断面図である。
第 3図は、 実施例 2にかかるニッケル水素蓄電池 200を示す図であり、 安全 弁装置 201付近の縦断面図である。
第 4図は、 実施例 2にかかる弁部材 210の上面図である。
第 5図は、 実施例 3にかかるニッケル水素蓄電池 300を示す図であり、 安全 弁装置 301付近の縦断面図である。
第 6図は、 実施例 4にかかるエッケル水素蓄電池 400を示す図であり、 安全 弁装置 401付近の縦断面図である。
第 7図は、 実施例 5にかかる二ッケル水素蓄電池 500の部分破断斜視図であ る。
第 8図は、 実施例 5にかかる水素漏出装置 503の縦断面図である。
第 9図は、 実施例 6にかかる-ッケル水素蓄電池 600の分解斜視図である。 第 10図は、 実施例 6にかかる弁部材 610の上面図である。
第 11図は、 弁部材 6 10の正面図である。
第 12図は、 弁部材 610の断面図であり、 第 10図の B— B断面図に相当す る。 '
第 13図は、 実施例 6にかかるニッケル水素蓄電池 600の安全弁装置 60 1 を説明する説明図であり、 第 9図の A— A断面図に相当する。
第 14図は、 ニッケル水素蓄電池の水素漏出量を測定する測定装置 1の概略構 成図である。
第 15図は、 比較例 1にかかるニッケル水素蓄電池 700を示す図であり、 安 全弁装置 701付近の縦断面図である。
第 16図は、 比較例 2にかかるニッケル水素蓄電池 800を示す図であり、 安 全弁装置 801付近の縦断面図である。 符号の説明
100, 200, 300, 400, 500, 600 ニッケル水素蓄電池 101, 201, 301, 401, 501, 601 安全弁装置 102, 502, 602 ケース
1 20, 520, 620 封口板
1 30 電槽
1 50 電池本体部
503 水素漏出装置 発明を実施するための最良の形態
次に、 本発明の実施形態 (実施例 1〜4) について、 図面を参照しつつ説明す る。
実施例 1
実施例 1のニッケル水素蓄電池 100は、 第 1図に示すように、 封口板 120 及び電槽 1 30を備えるケース 102と、 安全弁装置 101と、 ケース 102 (電 槽 130) 内に配置された極板群 150及び電解液 (図示しない) とを備える角形 密閉式ニッケル水素蓄電池である。
極板群 1 50は、 正極 151と負極 152と袋状のセパレータ 153とを備え ている。 このうち、 正極 151は袋状のセパレータ 153内に挿入されており、 セ パレータ 1 53内に挿入された正極 151と、 負極 152とが交互に積層されてい る。 正極 1 5 1及ぴ負極 1 52は、 それぞれ集電されて、 図示しない正極端子及び 負極端子に接続されている。
なお、 本発明の実施形態 (実施例 1〜4) のニッケル水素蓄電池では、 いずれ も、 正極容量を 6. 5 Ah, 負極容量を 1 1. 0 Ahとしている。 従って、 本発明 の実施形態 (実施例 1〜4) のニッケル水素蓄電池は、 いずれも、 正極規制で、 電 池容量を 6. 5Ahとしている。
正極 15 1としては、 例えば、 水酸化ニッケルを含む活物質と、 発泡ニッケル などの活物質支持体とを備える電極板を用いることができる。負極 152としては、 例えば、 水素吸蔵合金を負極構成材として含む電極板を用いることができる。 セパ レータ 153としては、 例えば、 親水化処理された合成繊維からなる不織布を用い ることができる。 電解液としては、 例えば、 KOHを含む比重 1. 2〜1. 4のァ ルカリ水溶液を用いることができる。
電槽 1 3 0は、 金属 (具体的には、 ニッケルめっき鋼板) からなり、 矩形箱形 状を有している。 封口板 1 2 0は、 金属 (具体的には、 ニッケルめっき鋼板) から なり、 矩形略板形状を有している。 封口板 1 2 0には、 第 2図に示すように、 ケー ス 1 0 2の内部と外部とを連通するガス排出孔 1 2 2が形成されている。 この封口 板 1 2 0は、 第 2図に示すように、 電槽 1 3 0の開口端面 1 3 1上に载置されて全 周溶接され、 電槽 1 3 0の開口部 1 3 2を封止している。 これにより、 封口板 1 2 0と電槽 1 3 0とは、 隙間なく一体ィ匕して、 ケース 1 0 2をなしている。 本実施例 1では、 ケース 1 0 2全体を金属 (金属壁部のみ) によって形成しているため、 電 池の冷却性が極めて良好となり、 電池の過昇温を防止することができる。 なお、 本 発明の実施形態 (実施例 1〜4 ) では、 いずれも、 ケースの内寸法を、 4 2 (mm) x l 5 (mm) x 8 5 (mm) としている。 すなわち、 ケースの内部体積を 5 3 . 6 ( c m 3) としている。
安全弁装置 1 0 1は、 第 2図に示すように、 弁部材 1 1 0と弁キャップ 1 7 0 とコイルパネ 1 6 0と台座プレート 1 8 0と安全弁ケース 1 4 0とを有している。 台座プレート 1 8 0は、 金属 (具体的には、 ニッケルめっき鋼板) からなり、 環状 板形状で、封口板 1 2 0の外周面 1 2 7上に固着されている。弁キャップ 1 7 0は、 金属 (具体的には、 ニッケルめっき鋼板) カゝらなり、 略円環状の鍔部 1 7 1と、 円 筒状の側壁部 1 7 2と、 円盤状の天井部 1 7 4とを有している。 このうち、 天井部 1 7 4には、 貫通孔 1 7 4 bが形成されている。 弁部材 1 1 0は、 ゴム (具体的に は、 E P DM) からなり、 略円環状の鍔部 1 1 1と、 円筒状の側壁部 1 1 2と、 円 盤状の天井部 1 1 4とを有し、 弁キャップ 1 7 0の内周面 1 7 0 bに適合する形状 をなしている。 この弁部材 1 1 0は、 弁キャップ 1 7 0内に挿入され、 台座プレー ト 1 8 0の内側の位置で、封口板 1 2 0の外周面 1 2 7上に配置されている。なお、 本実施例 1では、 弁部材 1 1 0の肉厚を 0 . 5 mmとしている。
安全弁ケース 1 4 0は、 金属 (具体的には、 ニッケルめっき鋼板) からなり、 有底略円筒形状を有している。 この安全弁ケース 1 4 0の天井部 1 4 4には、 弁キ ヤップ 1 7 0の側壁部 1 7 2の外径よりも径大の貫通孔 1 4 4 bが形成されている。 この安全弁ケース 1 4 0は、 台座プレート 1 8 0上に固着されている。 コイルバネ 1 6 0は、 第 2図の下方に進むにしたがって径小となる螺旋形状を有している。 こ のコイルパネ 1 6 0は、 径小端部 1 6 1が弁キヤップ 1 7 0の鍔部 1 7 1上に載置 され、 径大端部 1 6 2が安全弁ケース 1 4 0の天井部 1 4 4によって第 2図の下方 に押圧されるようにして、 圧縮変形された状態で安全弁ケース 1 4 0内に配置され ている。 これにより、 弁キャップ 1 7 0の鍔部1 7 1と共に弁部材 1 1 0の鍔部 1 1 1力 コイルバネ 1 6 0によって第 2図の下方に押圧されるので、 弁キャップ 1 7 0の鍔部 1 1 1に位置するシール面 1 1 5力 S、 封口板 1 2 0の外周面 1 2 7に付 勢されて隙間なく密着する。
このような安全弁装置 1 0 1は、 ケース 1 0 2の内圧が所定値を超えると、 ケ ース 1 0 2内のガス (水素ガス等) を外部に排出し、 ケース 1 0 2の内圧の過昇圧 を防止する。 具体的には、 ケース 1 0 2の内圧が上昇して所定値を超えると、 ケー ス 1 0 2内のガスによって弁部材 1 1 0と共に弁キャップ 1 7 0が第 2図の上方に 押圧され、この押圧力によりコイルパネ 1 6 0がさらに圧縮変形する。これにより、 弁部材 1 1 0のシール面 1 1 5が封口板 1 2 0の外周面 1 2 7から離間するので、 ケース 1 0 2内のガスは、 弁部材 1 1 0の外部に排出された後、 安全弁ケース 1 4 0の天井部 1 4 4に形成されている貫通孔 1 4 4 bを通じて電池外部に排出される。 このようにして、 ケース 1 0 2の内圧の過昇圧を防止することができる。
ところで、 本実施例 1の安全弁装置 1 0 1では、 第 2図に示すように、 弁部材 1 1 0を肉厚 (壁部) の薄いゴム (E P DM) によって形成している。 しかも、 弁 部材を有底略円筒形状とすることにより、 ケース 1 0 2内の水素ガスとの接触面積 (透過面積) を大きく確保している。 このようにすることで、 ケース 1 0 2内の水 素ガスを、 弁部材 1 1 0の壁部を透過させ、 弁部材 1 1 0と弁キャップ 1 7 0との 間の僅かな隙間を通じて、 弁キャップ 1 7 0の天井部 1 7 4の貫通孔 1 7 4 bから 電池外部に漏出させることができる。 すなわち、 安全弁装置 1 0 1力 ケース 1 0 2の内圧の過昇圧を防止する過昇圧防止機能の他に、 ケース 1 0 2内の水素ガスを 電池外部へ漏出させる水素漏出機能も有している。
本発明の実施形態 (実施例 1〜4 ) では、 いずれも、 本実施例 1のように、 安 全弁装置が、 ケース内の水素ガスを、 弁部材を透過させて電池外部に漏出させる形 態の水素漏出機能を有している。 このため、 実施例 2〜4については後に詳述する 力 弁部材の肉厚や形状などを変えることにより、 ケース 1 0 2内の水素ガスが単 位時間当たりに弁部材を透過する量 (換言すれば、 弁部材の水素透過速度) を調整 することができる。 従って、 本発明の実施形態 (実施例 1〜4 ) では、 安全弁装置 において、 ケース 1 0 2内の水素ガスが電池外部に漏出する水素漏出速度を調整す ることにより、 電池全体の水素漏出速度を調整することができる。
本実施例 1の-ッケル水素蓄電池 1 0 0は、 次のようにして製造することがで さる。
まず、 袋状とした複数のセパレータ 1 5 3内に、 それぞれ正極 1 5 1を挿入す る。 次いで、 正極 1 5 1が挿入された複数のセパレータ 1 5 3と複数の負極 1 5 2 とを交互に積層し、 極板群 1 5 0を作成する (第 1図参照)。 その後、 この極板群 1 5 0を電槽 1 3 0内に挿入した後、 正極 1 5 1と図示しない正極端子とをリード線 で接続すると共に、 負極 1 5 2と図示しない負極端子とをリード線で接続する。 次 いで、 別途用意した封口板 1 2 0を、 電槽 1 3 0の開口端面 1 3 1上に載置して全 周溶接し、 電槽 1 3 0の開口部 1 3 2を封止する (第 2図参照)。 これにより、封口 板 1 2 0と電槽 1 3 0とは、 隙間なく一体化して、 ケース 1 0 2をなす。 次いで、 封口板 1 2 0に形成されているガス排出孔 1 2 2力ゝら、 電解液として、 比重約 1 . 3のアルカリ水溶液を注液する。
—方、 弁キャップ 1 7 0内に、 弁部材 1 1 0を揷入配置する。 また、 安全弁ケ ース 1 4 0の天井部 1 4 4側にコイルパネ 1 6 0の径大端部 1 6 2を向けて、 安全 弁ケース 1 4 0内にコイルパネ 1 6 0を配置する。 次いで、 弁キャップ 1 7 0の鍔 部 1 7 1をコイルパネ 1 6 0の径小端部 1 6 1に当接させるようにして、 弁部材 1 1 0が挿入配置された弁キャップ 1 7 0を、 安全弁ケース 1 4 0内に配置する。 そ の後、 レーザー溶接により、 台座プレート 1 8 0を、 安全弁ケース 1 4 0の鍔部 1 4 8に固着する。 これにより、 安全弁装置 1 0 1が完成する。 次いで、 この安全弁 装置 1 0 1を、 その中心軸がガス排出孔 1 2 2の中心軸に一致するように封口板 1 2 0の外周面 1 2 7上に載置し、 レーザー溶接により封口板 1 2 0 (ケース 1 0 2 ) に固着する。 このようにして、 本実施例 1のニッケル水素蓄電池 100を製造する ことができる。
実施例 2
次に、 実施例 2にかかるニッケル水素蓄電池 200について、 第 3図及び第 4 図を参照しつつ説明する。 本実施例 2のニッケル水素蓄電池 200は、 実施例 1の ニッケル水素蓄電池 100と比較して、 弁部材の形状が異なり、 その他の部分につ いては同様である。
本実施例 2の弁部材 210は、 実施例 1の弁部材 1 10 (第 2図参照) と比較 して、 側壁部及び天井部の形状が異なる (第 3図, 第 4図参照)。 具体的には、 実施 例 1の弁部材 1 10の側壁部 1 12は、 その外周面を平坦な円環状としていたが、 本実施例 2の弁部材 210の側壁部 212は、 第 4図に示すように、 その周方向に 交互に配置された多数の凸状部 21 2 bと囬状部 212 cとを有し、 その外周面を 凹凸形状としている。
また、 本実施例 2の弁部材 210の天井部 214は、 第 4図に示すように、 そ の周方向に等間隔で 3力所に配置された凸状部 214 b (天井部 2 14のうち、 凸 状部 214 bが配置されていない部分を薄肉部 214 cとする) を有している。 な お、 この弁部材 210では、 側壁部 212の凹状部 212 cの肉厚、 及ぴ天井部 2 14の薄肉部 214 cの肉厚を、 共に 0. 3 mmとしており、 実施例 1の弁部材 1 10 (肉厚 0. 5mm) よりも薄肉としている。 このため、 本実施例 2の弁部材 2 10は、 実施例 1の弁部材 1 10に比して、 水素ガスが透過し易くなつている。
このような弁部材 210は、 実施例 1と同様に、 弁キャップ 1 70内に揷入配 置されている (第 3図参照)。 ところで、 上述のように、弁部材 210の側壁部 21 2を凹凸形状をとしているため、 凸状部 212 bを弁キャップ 1 70の内周面 1 7 0 bに接触させて、 凹状部 212 cと弁キャップ 1 70の内周面 1 70 bとの間に 間隙部 Dを設けることができる。 さらに、 弁部材 210の天井部 214に凸状部 2 14 bを形成しているため、 天井部 214の薄肉部 214 cと弁キャップ 1 70の 内周面 1 70 bとの間に間隙部 Eを設けることができる。 このため、 弁部材 210 を透過した水素ガスは、 間隙部 D及び間隙部 Eを通じて、 スムーズに、 弁キャップ 170の天井部 174の貫通孔 174 bから電池外部に漏出する。 ' 従って、 本実施例 2の-ッケル水素蓄電池 200では、 実施例 1のニッケル水 素蓄電池 100よりも、 ケース 102内の水素ガスが電池外部に漏出し易くなつて いる。 このため、 本実施例 2のニッケル水素蓄電池 200では、 本実施例 1のニッ ケル水素蓄電池 100よりも、 ケース 102内の水素ガスが電池外部に漏出する水 素漏出速度が大きくなる。
実施例 3
次に、 実施例 3にかかるニッケル水素蓄電池 300について、 第 5図を参照し つつ説明する。 本実施例 3の二ッケル水素蓄電池 300は、 実施例 2の二ッケル水 素蓄電池 200と比較して、 弁部材の形状 (具体的には、 肉厚) が異なり、 その他 の部分についてはほぼ同様である。
本実施例 3の弁部材 310は、 実施例 2と同様に、 側壁部 31 2が多数の凸状 部 312 bと凹状部 312 cとを有し、 その外周面を凹凸形状としている (第 4図 参照)。 さらに、 弁部材 310の天井部 314は、 実施例 2と同様に、 3つの凸状部 314 b (天井部 314のうち、 凸状部 314 bが配置されていない部分を薄肉部 314 cとする) を有している。 この弁部材 310では、 側壁部 312の凹状部 3 12 cの肉厚、 及ぴ天井部 314の薄肉部 314 cの肉厚を、 共に 0. 2 mmとし ており、実施例 2の弁部材 210 (肉厚 0. 3 mm) よりもさらに薄肉としている。 このため、 本実施例 3の弁部材 310は、 実施例 2の弁部材 210よりも、 さらに 水素ガスが透過し易くなつている。
このような弁部材 310は、 実施例 2と同様に、 弁キャップ 1 70内に揷入配 置され、 側壁部 312の凹状部 212 cと弁キャップ 170の内周面 1 70 bとの 間に間隙部 Dを設けると共に、 天井部 314の薄肉部 314 cと弁キャップ 1 70 の内周面 170 bとの間に間隙部 Eを設けることができる (第 5図参照)。 なお、上 述のように、 本実施例 3の弁部材 310は、 実施例 2の弁部材 210よりも薄肉で あるため、 本実施例 3では、 間隙部 D及び間隙部 Eを、 実施例 2よりも大きくする ことができる。 このため、 弁部材 310を透過した水素ガスは、 間隙部 D及ぴ間隙 部 Eを通じて、 さらにスムーズに、 弁キャップ 1 70の天井部 1 74の貫通孔 1 7 4 bから電池外部に漏出する。
従って、 本実施例 3の-ッケル水素蓄電池 3 0 0では、 実施例 2のニッケル水 素蓄電池 2 0 0よりも、 ケース 1 0 2内の水素ガスが電池外部に漏出し易くなつて いる。 このため、 本実施例 3のニッケル水素蓄電池 3 0 0では、 本実施例 2のニッ ケル水素蓄電池 2 0 0よりも、 ケース 1 0 2内の水素ガスが電池外部に漏出する水 素漏出速度が大きくなる。
実施例 4
次に、 実施例 4にかかるニッケル水素蓄電池 4 0 0について、 第 6図を参照し つつ説明する。 本実施例 4のニッケル水素蓄電池 4 0 0は、 実施例 3のニッケル水 素蓄電池 3 0 0と比較して、 安全弁装置の形状 (具体的には、 弁部材、 弁キャップ などを径大としている) が異なり、 その他の部分についてはほぼ同様である。
本実施例 4の弁部材 4 1 0は、 実施例 3と同様に、 側壁部 4 1 2が多数の凸状 部 4 1 2 bと凹状部 4 1 2 cとを有し、 その外周面を凹凸形状としている (第 6図 参照)。 さらに、 弁部材 4 1 0の天井部 4 1 4は、 実施例 3と同様に、 3つの凸状部 4 1 4 b (天井部 4 1 4のうち、 凸状部 4 1 4 bが配置されていない部分を薄肉部 4 1 4 cとする) を有している。 この弁部材 4 1 0では、 側壁部 4 1 2の凹状部 4 1 2 cの肉厚、 及び天井部 4 1 4の薄肉部 4 1 4 cの肉厚を、 実施例 3の弁部材 3 1 0と同様に、 共に 0 . 2 mmと薄くしている。 しかも、 本実施例 4の弁部材 4 1 0は、 第 6図と第 5図とを比較するとわかるように、 実施例 3の弁部材 3 1 0より も径大とすることで、 水素ガスとの接触面積 (透過面積) を大きくしている。 この ため、 本実施例 4の弁部材 4 1 0は、 実施例 3の弁部材 3 1 0よりも、 さらに水素 ガスが透過し易くなつている。
このような弁部材 4 1 0は、 実施例 3と同様に、 弁キャップ 4 7 0内に揷入配 置され、 側壁部 4 1 2の凹状部 4 1 2 cと弁キャップ 4 7 0の内周面 4 7 0 bとの 間に間隙部 Dを設けると共に、 天井部 4 1 4の薄肉部 4 1 4 cと弁キャップ 4 7 0 の内周面 4 7 0 bとの間に間隙部 Eを設けることができる(第 6図参照)。このため、 弁部材 3 1 0を透過した水素ガスは、 間隙部 D及び間隙部 Eを通じて、 実施例 3と 同様に、 スムーズに弁キャップ 4 7 0の天井部 4 7 4の貫通孔 4 7 4 bから電池外 部に漏出する。
従って、 本実施例 4のニッケル水素蓄電池 4 0 0では、 弁部材 4 1 0を、 実施 例 3の弁部材 3 1 0よりも径大として水素ガスとの接触面積 (透過面積) を大きく した分、 実施例 3のニッケル水素蓄電池 3 0 0よりも、 ケース 1 0 2内の水素ガス が電池外部に漏出し易くなつている。 このため、 本実施例 4のニッケル水素蓄電池 4 0 0では、 本実施例 3のニッケル水素蓄電池 3 0 0よりも、 ケース 1 0 2内の水 素ガスが電池外部に漏出する水素漏出速度が大きくなる。
以上説明したように、 本発明の実施形態 (実施例 1〜4 ) では、 いずれも、 安 全弁装置 1 0 0〜4 0 0が、 ケース 1 0 2内の水素ガスを、 弁部材 1 1 0〜4 1 0 を透過させて電池外部に漏出させる形態の水素漏出機能を有している。 このため、 実施例 1〜4のように、 弁部材の肉厚や形状などを調整することにより、 安全弁装 置における水素漏出速度を調整することができる。 従って、 本発明のニッケル水素 蓄電池では、 安全弁装置において、 ケース内の水素ガスが電池外部に漏出する水素 漏出速度を調整することにより、電池全体の水素漏出速度を調整することができる。
比較例 1
次に、 比較例 1にかかるニッケル水素蓄電池 7 0 0について、 第 1 5図を参照 しつつ説明する。 このニッケル水素蓄電池 7 0 0は、 実施例 1のニッケル水素蓄電 池 1 0 0と比較して、 安全弁装置のみが異なり、 その他の部分については同様であ る。
本比較例 1の安全弁装置 7 0 1は、 従来タィプの安全弁装置であり、 第 1 5図 に示すように、 弁部材 7 1 0と安全弁ケース 7 4 0とを有している。 弁部材 7 1 0 は、 ゴム (具体的には、 E P DM) からなり、 略円柱形状を有している。 この弁部 材 7 1 0は、 封口板 1 2 0に形成されているガス排出孔 1 2 2を閉塞する位置で、 封口板 1 2 0の外周面 1 2 7上に配置されている。
安全弁ケース 7 4 0は、 金属 (具体的には、 ニッケルめっき鋼板) からなり、 銲部 7 4 8を有する有底略円筒形状をなしている。 この安全弁ケース 7 4 0の側壁 部 7 4 2には、 矩形状の貫通孔 7 4 2 bが複数形成されている。 この安全弁ケース 7 4 0は、弁部材 7 1 0を第 1 5図の下方に押圧した状態で、レーザー溶接により、 鍔部 7 4 8の位置で封口板 1 2 0に固着されている。 これにより、 弁部材 7 1 0の シール面 7 1 5が、 封口板 1 2 0の外周面 1 2 7に付勢されて隙間なく密着して、 ガスお^出孔 1 2 2を閉塞している。
比較例 2
次に、 比較例 2にかかるニッケル水素蓄電池 8 0 0について、 第 1 6図を参照 しつつ説明する。 このニッケル水素蓄電池 8 0 0は、 実施例 1のニッケル水素蓄電 池 1 0 0と比較して、 ケースの材質及び安全弁装置が異なり、 その他の部分につい ては同様である。
本比較例 2のケース 8 0 2は、 樹脂 (例えば、 P Pと P P Eのポリマーァロイ など) によって形成されている。 なお、 本比較例 2においても、 実施例 1〜4と同 様に、 ケースの内寸法を、 4 2 (mm) x 1 5 (mm) x 8 5 (mm) としている。 すなわち、 ケースの内部体積を 5 3 . 6 ( c m 3) としている。
本比較例 2の安全弁装置 8 0 1は、 第 1 6図に示すように、 特開 2 0 0 1— 1 1 0 3 8 8に開示されているニッケル水素蓄電池の安全弁装置と同等品である。 具 体的には、 この安全弁装置 8 0 1は、 弁ケース 8 2 5と弁体 8 3 1と弁蓋 8 3 2と を有している。 弁ケース 8 2 5は、 有底略円筒形状で、 その底部の中央にはガス排 出孔 8 2 6が穿孔されており、 このガス排出孔 8 2 6の周囲には突起部 8 2 7が形 成されている。 この弁ケース 8 2 5は、 ケース 8 0 2の蓋体 8 2 0の上壁に形成さ れている段付装着筒部 8 2 4内に嵌合され、 溶着されている。
弁体 8 3 1は、 シール部 8 2 8と、 弾性部 8 3 0と、 両部材を支持する剛体部
8 2 9とを有している。 この弁体 8 3 1は、 シール部 8 2 8を弁ケース 8 2 5の突 起部 8 2 7に当接させて、弁ケース 8 2 5内に挿入配置されている。弁蓋 8 3 2は、 ガスを排出可能とする開放口 8 3 3と、 排出ホースを接続可能とする接続口 8 3 4 とを有している。 この弁蓋 8 3 2は、 弁ケース 8 2 5の上端開口部に嵌合され、 溶 着されている。 これにより、 弁体 8 3 1の弾性部 8 3 0を第 1 6図の下方に弾性的 に押圧すると共に、シール部 8 2 8を弁ケース 8 2 5の突起部 8 2 7に圧接させて、 ガス排出孔 8 2 6を閉塞している。
(水素漏出量の測定) 実施例 1〜 4のニッケル水素蓄電池 100〜 400及び比較例 1〜2のニッケ ル水素蓄電池 700, 800の 6種類のサンプル Sについて、 それぞれ、 水素漏出 量を測定した。 この 6種類のサンプル Sについては、 予め、 充放電を行うことによ り活性化させており、いずれも、 SOC (S t a t e O f Ch a r g e) 60% まで充電した状態としている。このような 6種類のサンプル Sについて、それぞれ、 特開 2001— 236986に開示されている測定装置を用いて、 水素漏出量の測 定を行った。 なお、 6種類のサンプル Sでは、 いずれも、 SOC 100%=6. 5 Ahである。
測定装置 1は、 第 14図に示すように、 密閉容器 3と、 これに接続される真空 排気管 4、及び開閉弁 6を備える大気開放口 5とを有している。真空排気管 4には、 密閉容器 3側から順に、 気圧計 7、 開閉弁 8、 真空ポンプ 9、 切替弁 10、 及び水 素濃度センサ 11が直列に配設されている。 切替弁 10は、 真空ポンプ 9の出口を 大気開放口 12と接続した状態と、 真空ポンプ 9の出口を水素濃度センサ 1 1に接 続した状態と、 大気開放口 12を水素濃度センサ 1 1に接続した状態とに切替え可 能に構成されている。 また、 図示していないが、 密閉容器 3内には、 赤外線ヒータ が配設されており、'密閉容器 3内に配置されたサンプル Sを加熱して昇温させるこ とができるように構成されている。
次に、 この測定装置 1を用いた水素漏出量の測定方法について、 詳細に説明す る。
まず、 測定装置 1の切替弁 10を、 大気開放口 12と水素濃度センサ 1 1とが 連通する状態に切替え、 大気中の水素濃度を測定し、 その値を大気水素濃度 bとす る。 次に、 充放電終了後のサンプル S (例えば、 ニッケル水素蓄電池 100) を、 密閉容器 3内に配置した後、 大気開放口 5の開閉弁 6を閉じる。 そして、 図示しな い赤外線ヒータを用いて、 密閉容器 3内に配置したサンプル Sを 45°Cまで昇温さ せる。 そして、 真空排気管 4の開閉弁 8を開き、 切替弁 1 0を真空ポンプ 9の出口 と大気開放口 12とが違通する状態に切替えた後、 真空ポンプ 9を作動させて、 密 閉容器 3内を 10 k P aまで減圧する。
次いで、 15分間、 密閉容器 3内を 1 0 k P aに保持した後、 切替弁 1 0を切 替えて、真空ポンプ 9の出口を水素濃度センサ 1 1に接続した状態とする。そして、 密閉容器 3内のガスを水素濃度センサ 1 1内に取り入れて、 密閉容器 3内の水素濃 度を測定し、 その値を容器内水素濃度 cとする。 次いで、 大気水素濃度 bと容器内 水素濃度 cとの差に基づいて、サンプル Sからの水素漏出量 M (μ 1)を算出する。 このようにして取得した、 6種類のサンプル Sの水素漏出量 Μ (μ 1)に基づいて、 水素漏出速度 VI lZh/Ah)、 及び水素漏出速度 V2 (μ l/h/c m 3) を算出した。
具体的には、 水素漏出速度 VI (μ 1/h/Ah) は、 水素漏出量 M (μ 1) に基づいて 1時間当たりの水素漏出量を算出し、 これを電池容量 6. 5 Ahで除し た値である。 また、 水素漏出速度 V 2 (μ 1 /h/cm は、 水素漏出量 M (μ 1) に基づいて 1時間当たりの水素漏出量を算出し、 これをケースの内部体積 (具 体的には、 53. 6 cm3) で除した値である。 この結果を表 1に示す。
[表 1]
Figure imgf000020_0001
表 1に示すように、 比較例 1の-ッケル水素蓄電池 700は、 水素漏出速度 V
1 (μ 1 /h/Ah) = 0. 97, V 2 (μ 1 /h/c m 3) =0. 1 2となり、 6種類のサンプルのうち最も小さな値となった。 これは、 弁部材 710力 S、 ガス排 出孔 122を閉塞するように、 封口板 120の外周面 127上に配置されているた めと考えられる (第 15図参照)。 すなわち、 弁部材 710について、 ケース 102 内の永素ガスとの接触面積 (透過面積) 、 ガス排出孔 1 22の開口面積と一致す る大きさしか確保されていないため、 ケース 102内の水素ガスが弁部材 710を 透過し難かったと考えられる。
これに対し、 実施例 1〜4のニッケル水素蓄電池 100〜400では、 水素漏 出速度 VI (μ lZh/Ah) がそれぞれ、 2. 00, 3. 66, 9. 1 5, 13. 7となり、 V 2 (μ 1 /hZcm3) がそれぞれ 0. 24, 0. 44, 1. 1, 1. 7となり、 比較例 1のニッケル水素蓄電池 700に比して、 大きな値となつた。 こ れは、 実施例 1〜4では、 弁部材 1 10〜410を有底略円筒形状とすることによ り、 ケース 102内の水素ガスとの接触面積 (透過面積) を大きく確保しているた めと考えられる (第 2図〜第 6図参照)。
さらに、 実施例 1〜 4の-ッケル水素蓄電池 100〜 400は、 この順に、 水 素漏出速度 VI, V 2が大きくなつている。 これは、 次のような理由により、 実施 例 1〜4の順に、 ケース 102内の水素ガスが電池外部に漏出し易くなつているた めと考えられる。
まず、 実施例 1のニッケル水素蓄電池 1 0· 0と実施例 2のニッケル水素蓄電池
200とを比較する。 実施例 1では、 弁部材 1 10が弁キヤップ 1 70に密着して 配置されている (第 2図参照)。 これに対し、 実施例 2では、 弁部材 210の側壁部 212を四凸形状として、 弁キャップ 170の内周面 170 bとの間に間隙部 Dを 設けている (第 3図参照)。 さらに、弁部材 210の天井部 214に凸状部 214 b を形成して、 弁キャップ 1 70の内周面 1 70 bとの間に間隙部 Eを設けている。 このため、 弁部材 210を透過した水素ガスは、 間隙部 D及び間隙部 Eを通じて、 スムーズに、 弁キャップ 1 70の天井部 1 74の貫通孔 1 74 bから電池外部に漏 出すると考えられる。 従って、 実施例 2のニッケル水素蓄電池 200のほうが、 実 施例 1の-ッケル水素蓄電池 100よりも、 ケース 102内の水素ガスが電池外部 に漏出し易くなつていると考えられる。
次に、 実施例 2のニッケル水素蓄電池 200と実施例 3のニッケル水素蓄電池
300とを比較する。 実施例 3では、 弁部材 310の肉厚を、 実施例 2の弁部材 2 10よりも薄肉としたことにより、 間隙部 D及び間隙部 Eを、 実施例 2よりも大き くすることができた。 これにより、 実施例 3では、 実施例 2よりも、 水素ガスが弁 部材を透過する水素ガス透過速度が増大すると共に、 弁部材 310を透過した水素 ガスは、 実施例 2よりもスムーズに、 間隙部 D及ぴ間隙部 Eを通じて、 弁キャップ 1 70の天井部 1 74の貫通孔 1 74 bから電池外部に漏出すると考えられる。 以 上より、 実施例 3のニッケル水素蓄電池 300のほうが、 実施例 2のニッケル水素 蓄電池 200よりも、 ケース 102内の水素ガスが電池外部に漏出し易くなつてい ると考えられる。
次に、 実施例 3のニッケル水素蓄電池 300と実施例 4のニッケル水素蓄電池 400とを比較する。 実施例 3と実施例 4とでは、 弁部材の肉厚、 間隙部 D及ぴ間 隙部 Eの大きさは共に同一である。 しかしながら、実施例 4では、弁部材 410を、 実施例 3の弁部材 310よりも径大として水 *ガスとの接触面積 (透過面積) を大 きくしている。 このため、 実施例 4のニッケル水素蓄電池 400のほうが、 実施例 3のニッケル水素蓄電池 300よりも、 ケース 102内の水素ガスが電池外部に漏 出し易くなつていると考えられる。
また、 表 1に示すように、 比較例 2の二ッケル水素蓄電池 800は、 水素漏出 速度 VI (μ 1 /h/Ah) = 1 8. 3, V 2 (μ 1 /h/cm 3) =2. 2とな り、 6種類のサンプルのうち最も大きな値となった。 これは、 比較例 2のニッケル 水素蓄電池 800は、 他のサンプル Sと異なり、 ケース 802が樹脂 (PPと PP Eのポリマーァロイなど) によって形成されているためと考えられる。 すなわち、 P Pと P P Eのポリマーァロイなどの樹脂は、金属に比して水素透過性が高いため、 ケース 802内の水素ガスが、 ケース 802を透過して外部に漏出してしまったと 考えられる。
(放電リザーブ量の測定)
次に、 実施例 1〜 4のニッケル水素蓄電池 100〜 400及ぴ比較例 1〜 2の ニッケル水素蓄電池 700, 800の 6種類のサンプル Sについて、 それぞれ、 放 置試験後の放電リザーブ量を測定した。 具体的には、 まず、 6種類のサンプル Sを それぞれ 2つずつ用意し、 6種類のサンプル Sからなる組を 2組用意する。そして、 それぞれのサンプル Sを SOC 80%まで充電した後、 祖目の 6種類のサンプル Sは 3ヶ月間、 2組目の 6種類のサンプル Sは 6ヶ月間、 65 °Cの恒温槽內に放置 した。 なお、 恒温槽内の温度を 65 °Cと比較的高温としたのは、 負極の水素吸蔵合 金の腐食を促進させると共に、 水素漏出量を増加させるためである。 また、 この放 置試験では、 電池の深放電を防止するため (電池電圧が IVを下回り劣化するのを 防止するため) に、 1ヶ月ごとに、 電池を完全放電 (S OC 0%) した後、 S OC 8 0%まで再充電している。
次いで、 3ヶ月間または 6ヶ月間、 6 5 °Cの恒温槽内に放置したサンプル Sに ついて、 それぞれ、 電池電圧が 1 Vになるまで放電した。 その後、 各サンプル Sに ついて、 電池上部に孔を空け、 この孔から電解液を補充して電解液が過剰に存在す る状態とした。 次いで、 ケース内の電解液中に、 図示しない H gZH g O参照極を 浸漬させ、 放電容量を測定しながら過放電させた。 ここで、 放電リザーブ量は、 次 式に基づいて算出した。 (放電リザーブ量) == (参照極の電位に対する負極 1 5 2の 電位が一 0. 7 Vになるまでの放電容量) 一 (参照極に対する正極 1 5 1の電位が 一 0. 5 Vになるまでの放電容量)。なお、放置前のサンプル Sの放電リザーブ量は、 いずれも、 2. 5 Ahであった。 この結果を表 2に示す。
[表 2]
Figure imgf000023_0001
表 2に示すように、 比較例 1のニッケル水素蓄電池 7 0 0では、 期間が経過す るにしたがって放電リザーブ量が増加し、 6ヶ月後には、 放電リザーブ量が 5. 6 Ahにまで増加してしまった。 換言すれば、 充電リザーブ量が消滅してしまい (充 電リザーブ量は、 一 1. 1 Ah)、満充電時に安全弁が開弁してしまう虞のある状態 に至ってしまった。 これは、 比較例 1のニッケル水素蓄電池 7 0 0では、 水素漏出 速度 V I (μ 1 /h/Ah) = 0. 9 7, V 2 (μ 1 / h / c m 3) = 0. 1 2と したことにより、 負極の水素吸蔵合金の腐食に伴う電池内の水素の増加量が、 水素 ガスが電池の内部から外部へ漏出することによる水素の減少量を大きく上回ってし まったためと考えられる。 この結果より、 水素漏出速度 V I (μ 1 /h/Ah) = 0. 9 7, V2 (μ 1 /h/c m 3) = 0. 1 2では、 水素ガスの漏出量が過少の ため、 長期間にわたつて電池特性の低下を抑制することが困難であると言える。 なお、充電リザーブ量は、次式に基づいて算出することができる。 (充電リザー ブ量) = (負極容量) 一 (正極容量) 一 (放電リザーブ量)。 従って、 本比較例 1の 6ヶ月後の充電リザーブ量は、 1 1一 6. 5-5. 6=- 1. 1 (Ah) として算 出できる。
反対に、 比較例 2のニッケル水素蓄電池 800では、 期間が経過するにしたが つて放電リザーブ量が減少し、 6ヶ月後には、 放電リザーブ量が消滅し、 一0. 5 Ahにまで減少してしまった。 すなわち、 ニッケル水素蓄電池が負極規制の状態に 至り、 放電容量が減少してしまった。 これは、 比較例 2のニッケル水素蓄電池 80 0では、 水素漏出速度 VI (μ 1 /h/Ah) =18. 3, V2 (μ 1 /h/cm 3) =2. 2としたことにより、 水素ガスが電池の内部から外部へ漏出することによ る水素の減少量が、 負極の水素吸蔵合金の腐食に伴う電池内の水素の増加量を大き く上回ってしまったためと考えられる。 この結果より、 水素漏出速度 VI (μ 1 / h/Ah) = 18. 3, V 2 (μ 1 /h/cm 3) = 2. 2では、 水素ガスの漏出 量が過剰のため、 長期間にわたって電池特性の低下を抑制することが困難であると 言える。
これに対し、 実施例 1のニッケル水素蓄電池 100では、 期間が経過するにし たがって放電リザーブ量が増加したものの、 6ヶ月後の放電リザーブ量は、 4. 1 Ahに留まった。 換言すれば、 充電リザーブ量は減少したものの、 0. 4 Ah残存 している。 なお、 本実施例 1の 6ヶ月後の充電リザーブ量は、 1 1— 6. 5-4. 1 = 0. 4 (Ah) として算出した。
また、 実施例 2のニッケル水素蓄電池 200でも、 期間が経過するにしたがつ て放電リザーブ量が増加したものの、 6ヶ月後の放電リザーブ量は、 3. 9 Ahに 留まった。 換言すれば、 充電リザーブ量は減少したものの、 0. 6 Ah残存してい る。 なお、本実施例 2の 6ヶ月後の充電リザーブ量は、 1 1一 6. 5-3. 9 = 0. 6 (Ah) として算出した。
また、 実施例 3のニッケル水素蓄電池 300でも、 期間が経過するにしたがつ て放電リザ一プ量は増加したが、 この増加量は僅かであり、 6ヶ月後の放電リザ一 ブ量は 3. 0 Ahであった。 換言すれば、 充電リザーブ量は減少したものの、 減少 量は僅かであり、 1. 5 Ah残存している。 なお、 本実施例 3の 6ヶ月後の充電リ ザーブ量は、 1 1— 6. 5 - 3. 0 = 1. 5 (Ah) として算出した。
また、 実施例 4のニッケル水素蓄電池 4 0 0では、 実施例 1〜 3とは反対に、 期間が経過するにしたがって放電リザーブ量は減少したものの、 6ヶ月後の放電リ ザーブ量は、 1. 5 Ah残存した。 なお、 本実施例 4の 6ヶ月後の充電リザーブ量 は、 1 1一 6. 5— 1. 5 = 3. 0 (Ah) となる。
以上説明したように、実施例 1〜 4のエツケル水素蓄電池 1 0 0〜 4 0 0では、 いずれも、 負極の放電リザーブ及び充電リザーブの変動を抑制することができた。 これは、 水素漏出速度 V I (; u lZhZAh) を 2≤V 1≤ 1 4の関係を満たすよ うに設定 (具体的には、 V 1 = 2. 0 0, 3. 6 6, 9. 1 5, 1 3. 7) したた めと考えられる。 あるいは、 水素漏出速度 V 2 ( 1 /h/ c m 3) を 0. 2≤V 2≤ 1. 8の関係を満たすように設定 (具体的には、 V 2 = 0. 24, 0. 44, 1. 1 , 1. 7) したためと考えられる。 すなわち、 水素漏出速度 V I, V 2を、 このような範囲に設定したことにより、 負極の水素吸蔵合金の腐食に伴う電池内の 水素の増加量と、 水素ガスが電池の内部から外部へ漏出することによる水素の減少 量との平衡を保つことができたと考えられる。
従って、 ニッケル水素蓄電池において、 水素漏出速度 V I (μ 1 /h/Ah) を 2 V 1≤ 1 4の関係を満たすように設定することにより、 長期間にわたって電 池特性の低下を抑制できると言える。 あるいは、 水素漏出速度 V 2 (μ l /h/ c m 3) を 0. 2≤V 2≤ 1. 8の関係を満たすように設定することにより、 長期間 にわたつて電池特性の低下を抑制できると言える。
特に、 実施例 2 , 3のニッケル水素蓄電池 2 0 0, 3 0 0では、 負極の放電リ ザ一ブ及ぴ充電リザーブの変動を小さくすることができた。 これは、 水素漏出速度 V I 1 ZhZAh) を 3. 5≤V 1≤ 1 0の関係を満たすように設定 (具体的 には、 V l = 3. 6 6, 9. 1 5) したためと考えられる。 あるいは、 水素漏出速 度 V 2 (μ 1 /h/cm3) を 0. 4≤V 2≤ 1. 1の関係を満たすように設定 (具 体的には、 V 2 = 0. 44, 1. 1) したためと考えられる。 従って、 ニッケル水素蓄電池において、 水素漏出速度 V I ( μ 1 / h /A h ) を 3 . 0の関係を満たすように設定することにより、 より一層長期間 にわたつて電池特性の低下を抑制できると言える。あるいは、水素漏出速度 V 2 ( μ 1 / h / c m 3) を 0 . 4≤V 2≤1 . 1の関係を満たすように設定することによ り、 より一層長期間にわたって電池特性の低下を抑制できると言える。
実施例 5
次に、 実施例 5にかかるニッケル水素蓄電池 5 0 0について、 第 7図, 第 8図 を参照しつつ説明する。 本実施例 5のニッケル水素蓄電池 5 0 0は、 第 7図に示す ように、 比較例 1の-ッケル水素蓄電池 7 0 0に対し、 水素漏出装置 5 0 3を追加 して設けたものである。 すなわち、 従来型の安全弁装置 7 0 1を備えるニッケル水 素蓄電池に、 別途、 水素漏出装置 5 0 3を追加して設けている。 なお、 本実施例 5 の封口板 5 2 0には、 ガス排出孔 1 2 2 (第 1 5図参照) に加えて、 第 8図に示す ように、 ケース 5 0 2の内部と外部とを連通するガス排出孔 5 2 2が形成されてい る。
ここで、第 7図,第 8図を参照しつつ、水素漏出装置 5 0 3について説明する。 水素漏出装置 5 0 3は、 安全弁装置 7 0 1と隣り合うように、 封口板 5 2 0の外周 面 5 2 7上に固着されている (第 7図参照)。 この水素漏出装置 5 0 3は、第 8図に 示すように、 水素透過部材 5 1 0と水素漏出ケース 5 7 0とを有している。
水素漏出ケース 5 7 0は、金属(具体的には、ニッケルめっき鋼板)からなり、 有底略円筒形状を有している。 この水素漏出ケース 5 7 0の天井部 5 7 4には、 貫 通孔 5 7 4 bが形成されている。 この水素漏出ケース 5 7 0は、 その中心軸がガス 排出孔 5 2 2の中心軸と一致する位置で、 レーザー溶接により、 封口板 5 2 0の外 周面 5 2 7上に固着されている。 水素透過部材 5 1 0は、 水素透過性ゴム (具体的 には、 E P DM) からなり、 有底円筒形状を有し、 水素漏出ケース 5 7 0の内周面 5 7 0 bに適合する形状をなしている。 この水素透過部材 5 1 0は、 水素漏出ケー ス 5 7 0内に挿入され、 シール面 5 1 5が封口板 5 2 0の外周面 5 2 7に密着する ように配置されている。
このような形態の水素漏出装置 5 0 3においても、 実施例 1〜4の安全弁装置 1 0 1〜4 0 1と同様に、 ケース 5 0 2内の水素ガスを電池外部へ漏出させること ができる。 具体的には、 ケース 5 0 2内の水素ガスを、 水素透過部材 5 1 0の壁部 を透過させ、 水素透過部材 5 1 0と水素漏出ケース 5 7 0との間を通じて、 水素漏 出ケース 5 7 0の天井部 5 7 4の貫通孔 5 7 4 bから電池外部に漏出させることが できる。 従って、 本実施例 5のニッケル水素蓄電池 5 0 0でも、 実施例 1〜 4のよ うに、 水素透過部材 5 1 0の肉厚や外周面の形状等を調整することにより、 水素漏 出速度 V I ( 1 / h /A h ) を 3 . 5≤V 1≤ 1 0の範囲に設定することができ る。 あるいは、 水素漏出速度 V 2 ( μ 1 / h / c m 3) を o . 4≤V 2≤ 1 . 1の 範囲に設定することができる。 このため、 長期間にわたつて電池特性の低下を抑制 することができる。
実施例 6
次に、 実施例 6にかかるニッケル水素蓄電池 6 0 0について、 第 9図〜第 1 3 図を参照しつつ説明する。 本実施例 6の二ッケル水素蓄電池 6 0 0は、 実施例 1〜 4と比較して、 安全弁装置の構造が異なり、 その他の部分についてはほぼ同様であ る。
本実施例 6のニッケル水素蓄電池 6 0 0は、 第 9図に示すように、 封口板 6 2 0及び電槽 1 3 0を備えるケース 6 0 2と、 弁部材 6 1 0と、 抜け止め板 6 4 0と を有している。 このうち、 封口板 6 2 0は、 その外周面 6 2 7より電槽 1 3 0の内 側に凹んだ 部 Sをなす凹壁部 6 2 1を有している。 この凹壁部 6 2 1は、 略半円 筒形状で、 第 1 3図に示すように、 凹壁部 6 2 1の底をなす凹底部 6 2 5と、 凹底 部 6 2 5と外周面 6 2 7とをつなぐ第 1凹側壁部 6 2 3と、 凹底部 6 2 5と外周面 6 2 7とをつなぎ第 1凹側壁部 6 2 3に対向する第 2側壁部 6 2 4とを有している。
このうち、 凹底部 6 2 5は、 第 1凹側壁部 6 2 3と第 2凹側壁部 6 2 4とを結 ぶ方向 (第 1 3図において左右方向) に直交する方向に切断した断面が U字状 (略 半円状) となる形状を有している。 また、 第 1凹側壁部 6 2 3には、 自身を貫通し てケース 6 0 2の内部と外部とを連通するガス排出孔 6 2 2が形成されている。 こ のような封口板 6 2 0は、例えば、所定寸法の金属板をプレス成型することにより、 凹底部 6 2 5の断面形状を U字状 (略半円状) とした凹壁部 6 2 1 (凹部 S ) を形 成した後、 第 1凹側壁部 6 2 3にガス排出孔 6 2 2を穿孔して製造することができ る。
弁部材 6 1 0は、 第 1 0図〜第 1 2図に示すように、 ゴム (具体的には、 E P DM) からなる半円柱形状で第 1貫通孔 6 1 2 bを有する第 1弁部材 6 1 2と、 金 属 (具体的には、 ニッケルめっき鋼板) からなり第 2貫通孔 6 1 4 bを有する第 2 弁部材 6 1 4と、 ゴム (具体的には、 E P DM) からなる半円柱形状で第 2弁部材 6 1 4の周囲を包囲する第 3弁部材 6 1 3とを有し、これらが一体成型されている。 すなわち、 本実施例 6の弁部材 6 1 0は、 第 2弁部材 6 1 4に、 インサート成型に より第 1弁部材 6 1 2と第 3弁部材 6 1 3を成形した、 ゴム成形体である。
この弁部材 6 1 0は、 第 1 3図に示すように、 封口板 6 2 0の囬部 S内に、 第
1 3図において左右方向に圧縮されて配置されている。 このとき、 第 1弁部材 6 1 2の第 1貫通孔 6 1 2 bと、 第 2弁部材 6 1 4の第 2貫通孔 6 1 4 bとは、 ガス排 出孔 6 2 2と連通する連通穴 6 1 1をなす。 なお、 抜け止め板 6 4 0は、 封口板 6 2 0の外周面 6 2 7上に固接 (溶接) されている。 このため、 弁部材 6 1 0力 S、 凹 部 S内から脱落してしまう虞がない。
本実施例 6のニッケル水素蓄電池 6 0 0では、 弁部材 6 1 0と、 封口板 6 2 0 に形成された凹壁部 6 2 1及び抜け止め板 6 4 0とによって、 安全弁装置 6◦ 1を 構成している。
ここで、 安全弁装置 6 0 1の開弁動作について説明する。 ケース 6 0 2の内圧 が所定のィ直よりも低いときには、 弁部材 6 1 0の連通穴 6 1 1内にガス (水素ガス など) を配置させつつ、 環状のシール面 6 1 5を、 第 1凹側壁部 6 2 3のうちガス 排出孔 6 2 2の周囲に位置する孔周囲部 6 2 3 bに密着させている。 一方、 ケース 6 0 2の内圧が上昇して所定の値を超えた場合には、ゴム製の第 3弁部材 6 1 3力 ケース 6 0 2及び連通穴 6 1 1の内部のガスにより押圧されて、 第 1 3図において 右方向に弾性的に圧縮変形する。 これにより、 第 2弁部材 6 1 4及び第 1弁部材 6 1 2が、 第 1凹側壁部 6 2 3から離間する方向 (第 1 3図において右方向) に移動 し、 シール面 6 1 5が第 1凹側壁部 6 2 3から離間して、 シール面 6 1 5と第 1凹 側壁部 6 2 3との間に間隙が形成される。 これにより、 ケース 6 0 2の内部のガス を、 適切に、 外部へ排出することができる。
ところで、 弁部材 610は、 ゴム製の第 1弁部材 612と金属製の第 2弁部材 614とを接触させて、 及びゴム製の第 3弁部材 613と金属製の第 2弁部材 61 4とを接触させて形成されている。 このような弁部材 610を備える安全弁装置 6 01においても、 実施例 1〜4の安全弁装置 101〜401と同様に、 ケース 60 2内の水素ガスを電池外部へ漏出させることができる。 具体的には、 ケース 602 内から弁部材 610の連通穴 611内に導入された水素ガスを、 ゴム製の第 1弁部 材 612と金属製の第 2弁部材 614との隙間、 及びゴム製の第 3弁部材 613と 金属製の第 2弁部材 614との隙間を通過させて、 電池外部に漏出させることがで きる。
従って、 本実施例 6のニッケル水素蓄電池 600でも、 第 1弁部材 612と第 2弁部材 614との隙間(密着性)、及び第 3弁部材 613と第 2弁部材 614との 隙間 (密着性) を調整することにより、水素漏出速度 VI (μ lZh/Ah) を 3. 5≤V1 10の範囲に設定することができる。 あるいは、 水素漏出速度 V 2 (μ 1 /h/cm 3) を 0. 4 V2≤1. 1の範囲に設定することができる。 このた め、 長期間にわたって電池特性の低下を抑制することができる。
以上において、 本発明を実施例 1〜 6に即して説明したが、 本発明は上記実施 例に限定されるものではなく、 その要旨を逸脱しない範囲で、 適宜変更して適用で きることはいうまでもない。
例えば、 実施例:!〜 6では、 ケース 102, 502, 602の全体を金属 (金 属壁部のみ) によって形成したが、 金属 (金属壁部) と樹脂 (樹脂壁部) とによつ て形成するようにしても良い。 但し、 金属壁部のうちケースの外周面をなす部分の 面積が、 ケースの外周面全体の面積の 90%を超えているのが好ましい。 ケースの 90 %以上を金属で構成することにより、 電池の冷却性が良好となり、 電池の過昇 温を防止することができるからである。
また、 実施例 1〜 3では、 弁キャップ 170の天井部 174にのみ貫通孔 17 4 bを形成したが、 側壁部 172にも貫通孔を形成するようにしても良い。 側壁部 172にも貫通孔を形成することにより、 弁部材 110, 210, 310を透過し た水素ガスが電池外部に漏出し易くなるので、 水素漏出速度 V I, V 2を向上させ ることができる。
また、 実施例 5では、 水素漏出装置 5 0 3を、 安全弁装置 7 0 1と隣り合うよ うに、 封口板 5 2 0の外周面 5 2 7上に固着した (第 7図参照) 力 取付可能な位 置であれば、 いずれの位置に設けても良い。

Claims

請 求 の 範 囲
1. 電池本体部と、
上記電池本体部を収容するケースと、
を備えるニッケル水素蓄電池であって、
充放電を行った後 S OC 6 0%まで充電した当該電池の、 電池温度 4 5°C、 1 0 k P aの減圧雰囲気下での単位電池容量あたりの水素漏出速度 V 1 (μ 1 /h/A h) 2≤V 1≤ 1 4の関係を満たす
ニッケル水素蓄電池。
2. 請求項 1に記載の二ッケル水素蓄電池であって、
前記水素漏出速度 V 1 (μ 1 /h/Ah) は、 3. 5≤V 1≤ 1 0の関係を満た す
二ッケル水素蓄電池。
3. 電池本体部と、
上記電池本体部を収容するケースと、
を備えるニッケル水素蓄電池であって、
充放電を行った後 SOC 6 0%まで充電した当該電池の、 電池温度 4 5°C、 1 0 k P aの減圧雰囲気下での単位電池体積あたりの水素漏出速度 V 2 (μ 1 /h/c m 3) 力 0. 2≤V 2≤ 1. 8の関係を満たす
ニッケル水素蓄電池。
4. 請求項 3に記載のニッケル水素蓄電池であって、
前記水素漏出速度 V 2 (μ 1 /h/c m 3) は、 0. 4≤V 2≤ 1. 1の関係を 満たす
ニッケル水素蓄電池。
5. 請求項 1〜請求項 4のいずれか一項に記載のニッケル水素蓄電池であって、 前記ケースは、
金属からなる金属壁部を有し、 .
上記金属壁部のうち当該ケースの外周面をなす部分の面積が、 当該ケースの外 周面全体の面積の 9 0%を超えてなる ッケル水素蓄電池。
6 . 請求項 1〜請求項 5のいずれか一項に記載の二ッケル水素蓄電池であって、 前記ケースは、 金属製である
二ッケル水素蓄電池。
7 . 請求項 1〜請求項 6のいずれか一項に記載のニッケル水素蓄電池であって、 前記ケース内の水素ガスを当該電池の外部へ漏出させる水素漏出装置を備えてな る
二ッケル水素蓄電池。
8 . 請求項 7に記載の二ッケル水素蓄電池であって、
前記ケースの内圧が所定値を超えると、 上記ケース内のガスを排出して上記ケー スの内圧の過昇圧を防止する安全弁装置を備え、
この安全弁装置は、 前記水素漏出装置を兼ねる
ニッケル水素蓄電池。
PCT/JP2005/012445 2004-07-02 2005-06-29 ニッケル水素蓄電池 WO2006004145A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE602005020006T DE602005020006D1 (de) 2004-07-02 2005-06-29 Nickel-metallhydrid speicherbatterie
US11/629,981 US7758994B2 (en) 2004-07-02 2005-06-29 Nickel metal hydride storage battery with a safety valve for relieving excess gas pressure in the battery when the safety valve is open, the safety valve having a hydrogen-permeable valve member for allowing hydrogen-gas leakage therethrough when the safety valve is closed
KR1020077002641A KR100800533B1 (ko) 2004-07-02 2005-06-29 니켈수소축전지
EP05758113A EP1764855B1 (en) 2004-07-02 2005-06-29 Nickel-metal hydride storage battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-196777 2004-07-02
JP2004196777A JP5034156B2 (ja) 2004-07-02 2004-07-02 ニッケル水素蓄電池

Publications (1)

Publication Number Publication Date
WO2006004145A1 true WO2006004145A1 (ja) 2006-01-12

Family

ID=35782945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/012445 WO2006004145A1 (ja) 2004-07-02 2005-06-29 ニッケル水素蓄電池

Country Status (7)

Country Link
US (1) US7758994B2 (ja)
EP (1) EP1764855B1 (ja)
JP (1) JP5034156B2 (ja)
KR (1) KR100800533B1 (ja)
CN (1) CN100524930C (ja)
DE (1) DE602005020006D1 (ja)
WO (1) WO2006004145A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5228274B2 (ja) * 2005-12-27 2013-07-03 トヨタ自動車株式会社 ニッケル水素蓄電池
JP5269538B2 (ja) * 2008-09-30 2013-08-21 株式会社東芝 バッテリのガス排気構造
KR101075284B1 (ko) * 2008-12-05 2011-10-19 삼성에스디아이 주식회사 이차전지
KR101231676B1 (ko) * 2011-01-28 2013-02-08 주식회사 이엠따블유에너지 공기 금속 이차 전지 유닛 및 이를 포함하는 공기 금속 이차 전지 모듈
JP5572731B1 (ja) * 2013-03-22 2014-08-13 プライムアースEvエナジー株式会社 ニッケル水素蓄電池の調整方法
CN112952243B (zh) 2020-11-16 2023-03-28 江苏时代新能源科技有限公司 端盖组件、电池单体及排气方法、电池及用电装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0118609A1 (en) 1982-12-21 1984-09-19 Union Carbide Corporation Safety valve with a rupturable membrane for a galvanic cell
JPH05325930A (ja) 1992-05-20 1993-12-10 Hitachi Maxell Ltd アルカリ蓄電池用安全弁装置
JPH0831398A (ja) 1994-07-13 1996-02-02 Matsushita Electric Ind Co Ltd 蓄電池用安全弁とそれを用いた密閉形アルカリ蓄電池
JPH08148135A (ja) 1994-11-18 1996-06-07 Toshiba Battery Co Ltd 防爆機能付電池
JPH09283106A (ja) * 1996-04-10 1997-10-31 Honda Motor Co Ltd バッテリの排気ガス制御システム
US5912090A (en) 1996-03-08 1999-06-15 Hitachi Maxell, Ltd. Nickel-hydrogen stacked battery pack
JPH11339747A (ja) * 1998-05-29 1999-12-10 Honda Motor Co Ltd バッテリのガス排出装置
JP2004039582A (ja) * 2002-07-08 2004-02-05 Toyota Motor Corp 集合電池

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59160955A (ja) * 1984-02-21 1984-09-11 Matsushita Electric Ind Co Ltd 防爆式密閉形アルカリ蓄電池
US4581304A (en) * 1984-11-14 1986-04-08 Union Carbide Corporation Thermoformed film member vent for galvanic cells
JPH0715812B2 (ja) * 1989-04-27 1995-02-22 新神戸電機株式会社 密閉形鉛蓄電池
JP2826173B2 (ja) * 1990-06-01 1998-11-18 東芝電池株式会社 密閉形アルカリ蓄電池の安全弁装置
JP3049854B2 (ja) * 1991-07-05 2000-06-05 日本電池株式会社 密閉形電池
JPH05190164A (ja) * 1992-01-14 1993-07-30 Hitachi Maxell Ltd 密閉形アルカリ蓄電池
JPH05205716A (ja) * 1992-01-29 1993-08-13 Hitachi Maxell Ltd 密閉形アルカリ蓄電池
US5264301A (en) * 1992-04-14 1993-11-23 Globe-Union Inc. Metal oxide-hydrogen battery incorporating a mechanism for maintaining a constant pressure in the battery
US5472802A (en) * 1993-10-25 1995-12-05 Ovonic Battery Company, Inc. Sealed hydride batteries, including a new lid-terminal seal and electrode tab collecting comb
US5501917A (en) * 1994-01-28 1996-03-26 Hong; Kuochih Hydrogen storage material and nickel hydride batteries using same
JP3527594B2 (ja) * 1995-11-16 2004-05-17 松下電器産業株式会社 アルカリ蓄電池およびその製造法
EP0793283B1 (en) * 1996-02-28 2002-07-24 Matsushita Electric Industrial Co., Ltd. Sealed battery
DE29714031U1 (de) * 1997-08-06 1997-10-23 Busak & Shamban Gmbh & Co Dichtungsventil
JP2974989B2 (ja) * 1997-10-02 1999-11-10 三桜工業株式会社 電池の安全弁
US6969567B1 (en) * 1998-08-23 2005-11-29 Texaco Ovonic Battery Systems, Llc Multi-cell battery
JP2000100407A (ja) * 1998-09-25 2000-04-07 Japan Storage Battery Co Ltd 円筒型電池
JP4559567B2 (ja) * 1999-10-08 2010-10-06 パナソニック株式会社 密閉型蓄電池
JP4671462B2 (ja) * 2000-02-22 2011-04-20 パナソニック株式会社 ニッケル水素二次電池の気密検査方法
JP3712995B2 (ja) * 2002-06-26 2005-11-02 松下電器産業株式会社 アルカリ蓄電池の製造方法
JP3987445B2 (ja) * 2003-03-14 2007-10-10 松下電器産業株式会社 ニッケル・水素蓄電池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0118609A1 (en) 1982-12-21 1984-09-19 Union Carbide Corporation Safety valve with a rupturable membrane for a galvanic cell
JPH05325930A (ja) 1992-05-20 1993-12-10 Hitachi Maxell Ltd アルカリ蓄電池用安全弁装置
JPH0831398A (ja) 1994-07-13 1996-02-02 Matsushita Electric Ind Co Ltd 蓄電池用安全弁とそれを用いた密閉形アルカリ蓄電池
JPH08148135A (ja) 1994-11-18 1996-06-07 Toshiba Battery Co Ltd 防爆機能付電池
US5912090A (en) 1996-03-08 1999-06-15 Hitachi Maxell, Ltd. Nickel-hydrogen stacked battery pack
JPH09283106A (ja) * 1996-04-10 1997-10-31 Honda Motor Co Ltd バッテリの排気ガス制御システム
JPH11339747A (ja) * 1998-05-29 1999-12-10 Honda Motor Co Ltd バッテリのガス排出装置
JP2004039582A (ja) * 2002-07-08 2004-02-05 Toyota Motor Corp 集合電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1764855A4 *

Also Published As

Publication number Publication date
EP1764855A4 (en) 2007-10-03
KR100800533B1 (ko) 2008-02-04
JP2006019171A (ja) 2006-01-19
JP5034156B2 (ja) 2012-09-26
EP1764855A1 (en) 2007-03-21
CN1977416A (zh) 2007-06-06
US20080096096A1 (en) 2008-04-24
EP1764855B1 (en) 2010-03-17
CN100524930C (zh) 2009-08-05
US7758994B2 (en) 2010-07-20
DE602005020006D1 (de) 2010-04-29
KR20070033456A (ko) 2007-03-26

Similar Documents

Publication Publication Date Title
US9397325B2 (en) Safety vent and electrochemical device
WO2006004143A1 (ja) ニッケル水素蓄電池
KR100814778B1 (ko) 2차전지의 배기장치
KR101695857B1 (ko) 리버시블 연료전지 및 리버시블 연료전지 시스템
JP5064805B2 (ja) 制御弁式鉛蓄電池
WO2006004145A1 (ja) ニッケル水素蓄電池
US9425448B2 (en) Sealed battery and safety valve
JP5572731B1 (ja) ニッケル水素蓄電池の調整方法
JP5228274B2 (ja) ニッケル水素蓄電池
JP5147151B2 (ja) 制御弁式鉛蓄電池
JP5047659B2 (ja) ニッケル水素蓄電池の調整方法
JP2004178909A (ja) 密閉式二次電池
US7452629B2 (en) Nickel metal hydride storage battery
JP2016091824A (ja) 電池の製造方法およびアルカリ蓄電池
JP4797319B2 (ja) 密閉型アルカリ蓄電池
JP4639641B2 (ja) 密閉型アルカリ蓄電池
JP2000285883A (ja) 密閉型蓄電池
JP5620875B2 (ja) 電池
JP2021009823A (ja) 制御弁式鉛蓄電池
JP2003017036A (ja) 電槽化成用注液装置および電槽化成方法
JP2014082432A5 (ja)
JPH07254430A (ja) 密閉型ニッケル−水素蓄電池
JPH08162076A (ja) 角形電池
JPH08180845A (ja) 角形電池

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005758113

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11629981

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580021776.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077002641

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005758113

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020077002641

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 11629981

Country of ref document: US