WO2006001395A1 - エポキシ樹脂、エポキシ樹脂組成物及びその硬化物 - Google Patents

エポキシ樹脂、エポキシ樹脂組成物及びその硬化物 Download PDF

Info

Publication number
WO2006001395A1
WO2006001395A1 PCT/JP2005/011670 JP2005011670W WO2006001395A1 WO 2006001395 A1 WO2006001395 A1 WO 2006001395A1 JP 2005011670 W JP2005011670 W JP 2005011670W WO 2006001395 A1 WO2006001395 A1 WO 2006001395A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
component
phenol
parts
group
Prior art date
Application number
PCT/JP2005/011670
Other languages
English (en)
French (fr)
Inventor
Masataka Nakanishi
Yasumasa Akatsuka
Katsuhiko Oshimi
Ryutaro Tanaka
Original Assignee
Nippon Kayaku Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Kabushiki Kaisha filed Critical Nippon Kayaku Kabushiki Kaisha
Priority to US11/629,313 priority Critical patent/US20080021173A1/en
Priority to KR1020067027673A priority patent/KR20070034534A/ko
Priority to TW094121119A priority patent/TWI369368B/zh
Priority to CA002570409A priority patent/CA2570409A1/en
Priority to EP05753292A priority patent/EP1760101A1/en
Priority to JP2006528643A priority patent/JP5284586B2/ja
Publication of WO2006001395A1 publication Critical patent/WO2006001395A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/04Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
    • C08G59/06Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols
    • C08G59/08Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols from phenol-aldehyde condensates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins

Definitions

  • the present invention relates to an electrical / electronic component insulating material typified by high-reliability semiconductor encapsulation, and various electrical / electronic devices including a laminated board (printed wiring board) and CFRP (carbon fiber reinforced plastic).
  • the present invention relates to an epoxy resin useful for a wide range of applications such as materials, molding materials, casting materials, laminate materials, paints, adhesives, resists, and optical materials, an epoxy resin composition containing the same, and a cured product thereof.
  • Epoxy resin is generally cured with various curing agents, resulting in a cured product having excellent mechanical properties, water resistance, chemical resistance, heat resistance, electrical properties, and the like. It is used in a wide range of fields such as laminates, molding materials and casting materials.
  • Epoxy resins generally used are liquids at room temperature and those having a soft point of about 50 to 100 ° C.
  • epoxy resins and their cured products in the above fields have further improved various properties such as high purity, heat resistance, moisture resistance, adhesion, low dielectric properties, fast curing properties, flame retardancy, and high toughness.
  • high purity, heat resistance, moisture resistance, adhesion, low dielectric properties, fast curing properties, flame retardancy, and high toughness There is a need for improvement.
  • there is a strong demand for higher heat resistance, moisture resistance, and toughness due to the advancement of fields of use such as the electrical and electronics industry, automobiles, and aerospace.
  • a problem in using epoxy resin is its storage stability.
  • there are two methods of using epoxy resin a two-part type that is stored separately from the curing agent and mixed at the time of use, and a one-part type that is stored in a state mixed with the curing agent from the beginning.
  • the one-pack type is more advantageous in terms of workability.
  • the epoxy resin and the curing agent react gradually during storage, and the liquid composition has viscosity and the solid composition has fluidity. The problem that has changed is pointed out.
  • cured products having high heat resistance tend to have low moisture resistance as a compensation.
  • an epoxy resin a crystalline tetrafunctional epoxy resin, for example, an epoxy resin obtained by glycidylation of 1,1,2,2-tetrakis (4-hydroxyphenol) ethane has been reported (Patent Document 1). ).
  • This epoxy resin has a melting point close to 180 ° C, and the epoxy resin composition containing this epoxy resin has excellent storage stability with little change over time even when left at 80 ° C for a long time, and its cured product. It has been reported that its heat resistance is high, but its physical properties such as adhesion and toughness are not sufficient.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-43533
  • the present invention relates to an epoxy resin having a high heat resistance in the cured product, and provides an epoxy resin having improved adhesion and toughness compared to conventional high heat-resistant epoxy resins. For the purpose.
  • the present inventors completed the present invention as a result of intensive studies to develop an epoxy resin having the above-mentioned characteristics.
  • each R independently represents a hydrogen atom, a hydrocarbon group having 1 to 15 carbon atoms or a trifluoromethyl group.
  • component (b) is phenol aralkyl resin
  • component (b) is a biphenyl type phenol aralkyl resin
  • component (a) is 65 to 95% by weight and component (b) is 35 to 5% by weight with respect to the total amount of component (a) and component (b) is epino and lohydrin.
  • An epoxy resin composition comprising the epoxy resin according to any one of the above (1) to (6) and a compound having an ethylenically unsaturated group,
  • the epoxy resin of the present invention has superior heat resistance in cured products as compared with a highly heat-resistant epoxy resin obtained by glycidylation of phenol resin, which is a conventional condensate of darioxal and phenol. It is an epoxy resin with improved brittleness and water resistance. In addition, compared with ordinary epoxy resin, the glass transition point is improved and the coefficient of linear expansion is greatly reduced. Therefore, it can be said that the epoxy resin is excellent in heat resistance. Furthermore, the epoxy resin of the present invention can be made into a crystalline form, and the epoxy resin of the present invention can be thermally stabilized by dispersing it in a thermosetting resin composition or a light / thermosetting resin composition. An epoxy resin composition having excellent properties can be obtained. Therefore, the epoxy resin composition of the present invention is extremely useful for a wide range of applications such as electrical / electronic materials, molding materials, casting materials, laminated materials, paints, adhesives, resists, optical materials and the like.
  • the crystalline epoxy resin of the present invention is a phenol condensate obtained by condensing darioxal and phenols, and the content of the compound of the formula (1) is 80% (according to gel permeation chromatography). Area%: High-performance liquid chromatography (274 nm) is preferred when more accurate measurement is desired) More than this, preferably 95% or more Phenolic condensates (a) and phenols other than (a), or It can be obtained by reacting the mixture of (b) with epihalohydrin and glycidyl.
  • the mixing ratio of component (a) and component (b) is not particularly limited.
  • the proportion force of component (a) in the mixture of component (a) and component (b) may be 60% by weight or more depending on the case, but usually 65% by weight or more 70% by weight or more is more preferable. 75% by weight or more is very preferable, especially 80% by weight (unless otherwise indicated,% is shown) and most preferable. Therefore, component (b) is 35% or less, preferably 25% or less, more preferably 20% or less, based on the total amount of component (a) and component (b).
  • the upper limit of component (a) is not limited as long as the effect of the present invention is achieved, but it is usually 98% or less, more preferably 95% or less, still more preferably 92% or less, and the lower limit of component (b). Is the remaining force of component (a), preferably 2% or more, more preferably 5% or more, and even more preferably 8% or more.
  • component (a) may be 5% or more, preferably 10% or more, more preferably 15% or more, and the upper limit is the same as described above.
  • the lower limit of component (b) is the same as above, but the upper limit is, for example, 95% or less, more preferably 90% or less, and even more preferably 85% or less.
  • each R independently represents a hydrogen atom, a halogen atom, a hydrocarbon group having 115 carbon atoms, or a trifluoromethyl group.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the hydrocarbon group having 1 15 carbon atoms includes methyl group, ethyl group, n-propyl group, isopropyl group, cyclopropyl group, n-butyl group, sec-butyl group, tert-butyl group, isobutyl group, cyclohexane.
  • aryl groups include a phenol group, a naphthyl group, and a tolyl group.
  • R is not particularly limited, but the ortho position or the meta position of the hydroxyl group is independently taken.
  • a method for synthesizing component (a) methods shown in Japanese Patent No. 2897850 and Japanese Patent No. 3381819 can be employed.
  • the phenols other than (a) or the phenolic resin (b) is not particularly limited as long as it is a compound having a phenolic hydroxyl group.
  • bisphenols bisphenolanol A, bisphenolanol F, Bisphenolol S, biphenol, bisphenolanol AD, etc.
  • phenols phenol, alkyl-substituted phenol, aromatic-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, alkyl-substituted dihydroxybenzene, dihydroxynaphthalene, etc.
  • various aldehydes (formaldehyde, acetate aldehyde)
  • component (b) is phenol aralkyl rosin.
  • phenol aralkyl resins include a resin having a molecular structure bonded to phenols via an aromatic ring-carbon bond, an isopropylidene group, or an ethylidene group, specifically, a biphenyl type phenol.
  • each R is independently a hydrogen atom, a hydrocarbon group having 1 to 15 carbon atoms, a trifluoromethyl group
  • Ar is a phenyl group, a biphenyl group, a fluoro group, or a naphthyl group.
  • M represents an integer of 1 to 4
  • n represents an integer of 1 to 10, and the average number of repetitions is usually 0.5 to 4.5, preferably 1.0 to 3.0
  • the compound of the formula (2) includes a phenol corresponding to the formula (2) and the following formula:
  • X represents halogen, alkoxy, hydroxy
  • Ar represents the same group as in the above formula (2)
  • bis for example, bishalogenomethyl of phenyl, biphenyl, fluorenyl or naphthyl And bisalkoxymethyl, bishydroxymethyl, etc.
  • the substitution position on the aryl group of the two substituted methyl groups is not particularly limited, but a substitution at the 4,4′-position on the aryl group, that is, a 4,4′-bis form is preferable.
  • the halogen include fluorine, chlorine, bromine and iodine.
  • the alkoxy group is not particularly limited as long as the above reaction is not hindered, and usually includes an alkoxy group of about C1 to C4.
  • each R independently represents a hydrogen atom, a hydrocarbon group having 1 to 15 carbon atoms or a trifluoromethyl group.
  • the hydrocarbon group having 1 to 15 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, cyclopropyl group, n-butyl group, sec-butyl group, tert butyl group, isobutyl group, cyclobutyl group, n Pentyl, isopentyl, neopentyl, tert pentyl, cyclopentyl, n-hexyl, isohexyl, cyclohexyl, n-heptyl, cycloheptyl, n-octyl And a chain or cyclic alkyl group such as a cyclooctyl group, an aryl group or an aryl group.
  • aryl groups include phenyl, naphthyl, and tolyl groups.
  • a hydrogen atom, a methyl group, an aryl group or a tert butyl group is preferable, and a hydrogen atom is particularly preferable.
  • the substitution position of R is not particularly limited, but relative to the hydroxyl group The ortho or meta position is preferred.
  • n represents an average value of 0 to 10, usually 0.5 to 4.5, preferably 1 to 3, and preferably 0 to 3.0 in some cases.
  • Phenoral aralkyl rosin is also available on the market. Specifically, Mitsui Chemicals XLC series, Meiwa Kasei MEH-7851, Dainippon Ink & Chemicals CZ-236K, CZ-25 6A, CZ — 256C etc. It can also be synthesized by a conventional method or a method described in JP-A-63-238129. However, it is not limited to these. These may be used alone or in combination of two or more.
  • the epoxy resin of the present invention comprises a mixture of component (a) and component (b) in the presence of an alkali metal hydroxide, and epihalohydrin such as epip mouth mohydrin, epichlorohydrin, and epipyhydrin. Can be obtained by glycidyl cocoon.
  • the content of the compound of the formula (1) is preferably 80% (area% by gel permeation chromatography) or more, more preferably 90% or more, and still more preferably 95 It is preferable to use a high purity phenol condensate of at least% as a raw material.
  • the component (a) and the component (b) are separately glycidylated and mixed into an epoxy resin mixture, the formula (1) in the component (a) As the proportion of the compound increases, the component (a) becomes more difficult to remove the solvent from the component (a), which tends to precipitate crystals when the reaction solvent is distilled off after the glycidylation reaction.
  • the component (b) by mixing the component (b) and then glycidyl soaking, such a phenomenon can be removed smoothly and the epoxy resin of the present invention can be produced.
  • the above advantages are also significant.
  • the alkali metal hydroxide in the form of a solid or an aqueous solution thereof. Preferably it is a solid.
  • the alkali metal hydroxide aqueous solution is continuously added to the reaction system, and water and epihalohydrin are distilled off continuously under reduced pressure or atmospheric pressure, and the distillate is separated.
  • a method may be used in which the brine is removed and the epihalohydrin is continuously returned to the reaction system.
  • the amount of alkali metal hydroxide used is usually 0.5 to 2.5 mol, preferably 0.9 to 2.5 mol, based on 1 mol of hydroxyl group in the mixture of component (a) and component (b). .
  • a quaternary ammonium salt may be added as a catalyst. it can.
  • the quaternary ammonium salt include CI-C4 alkyl ammonium halides which may have a phenol group as a substituent, such as tetramethyl ammonium chloride, tetramethyl ammonium chloride, trimethylbenzyl ammonium chloride, and the like.
  • Etc. The amount of the quaternary ammonium salt used is usually 0.1 to 15 parts by weight, preferably 0.2 to part by weight of LO (hereinafter specifically noted) per 1 equivalent of hydroxyl group in the mixture of component ( a ) and component (b). Unless otherwise indicated, parts represent parts by weight).
  • the amount of epino and rhohydrin to be used is usually 0.5 to 20 mol, preferably 0.7 to 12 mol, per 1 mol of hydroxyl group in the mixture of component (a) and component (b). In some cases, it may be about 0.7 to 10 moles.
  • epichlorohydrin is industrially easy to use.
  • the reaction may be carried out in a solvent in order to improve the fluidity of the mixture of the component (a) and the component (b).
  • the solvent that can be used include alcohols and aprotic polar solvents.
  • alcohols include alcohols such as methanol, ethanol, isopropyl alcohol, and n-butanol tert-butanol, preferably C1-C4 alcohol, more preferably C1-C3 alcohol.
  • aprotic polar solvent examples include dimethyl sulfone, dimethyl sulfoxide, tetrahydrofuran, dioxane and the like.
  • the amount used is usually 2 to 50% by weight, preferably 4 to 30% by weight, based on the amount of epino and rhohydrin.
  • the amount of Rohidorin usually 5 to the amount of Rohidorin: LOO weight 0/0, is preferably 10 to 80 wt% (hereinafter, unless otherwise specified,% represents weight%) .
  • the reaction temperature is usually 30 to 90 ° C, preferably 35 to 80 ° C, and the temperature may be constant or may be changed with time.
  • the reaction time is usually 0.5 to: LO time, preferably 1 to 8 hours.
  • reaction solution (A) After completion of the reaction, it is preferable to remove the salt produced by the reaction solution. Removal of the salt from the reaction solution can be usually performed by washing the reaction solution with water. In some cases, the reaction solution may be cooled to room temperature to precipitate a salt, and then the salt may be removed by filtration. Part of the used solvent is also removed during the washing process. The salt thus obtained was removed For convenience, the reaction solution is referred to as reaction solution (A).
  • reaction solution (A) Powerful reaction product is taken out with no particular limitation, but it is preferably carried out by the following method (1) or (2).
  • the reaction product if the amount of component (a) is small, for example, 75% or less, further 70% or less, more certainly 60%, relative to the total amount of component (a) and component (b).
  • the reaction product is taken out in the form of grease when it is below.
  • the amount of component (a) is large, for example, 75% or more, further 80% or more, etc., it can be taken out in the form of a greave according to the purpose. It can also be taken out as a crystalline powder.
  • the reaction product is taken out as a residue by directly distilling the epihalohydrin, solvent, etc. from the reaction solution (A), and the reaction product containing a small amount of component (a) is obtained. It can be used when crystallization is difficult, or when the reaction product can be crystallized, but need to be taken out as crystals.
  • reaction solution (A) is washed with water or without washing with water, epino, rhohydrin, solvent and the like are removed under heating and reduced pressure.
  • the recovered epoxy resin is dissolved in a solvent such as toluene or methylisobutyl ketone, and alkali metal hydroxide such as sodium hydroxide or potassium hydroxide is dissolved.
  • the reaction can be carried out by adding an aqueous solution of the substance to ensure ring closure.
  • the amount of the alkali metal hydroxide used is usually 0.01 to 0.3 mol, preferably 0.05 to 0.2 mol, based on 1 mol of the hydroxyl group of the phenol resin used in the epoxy resin.
  • the reaction temperature is usually 50 to 120 ° C, and the reaction time is usually 0.5 to 2 hours.
  • the produced salt is removed by filtration, washing with water, etc., and then the solvent is removed from the oil layer to obtain the greave-like epoxy resin of the present invention.
  • the solvent can be distilled off in accordance with the distillation of the unreacted epino, rhohydrin, solvent, etc., which is usually preferably carried out under a caro heat and reduced pressure.
  • the target epoxy resin is crystallized from the reaction solution (A) .
  • the amount of component (a) is large, for example, the component (a) and component (b) a) 70% or more
  • the reaction product can be taken out in crystalline form.
  • the melting point of the crystalline epoxy resin obtained in the present invention cannot be generally specified depending on the kind and blending amount of the component (b), but is approximately 80 to 170 ° C, preferably 110 to 170 ° C, more preferably 120 to It is a crystal of 165 ° C. When high melting point crystals are required, those having a melting point of 140-170 ° C are preferred.
  • the term “poor solvent” means a solvent having an epoxy resin of the present invention having a solubility of 5% or less, preferably 1% or less, at 25 ° C.
  • reaction solution (A) may also be added after the excess epino, lohydrin, etc. are distilled off or without distillation, and a water-soluble polar solvent is added to the reaction solution (A). Epic halohydrin and the like are removed, concentrated and cooled, and then an epoxy resin crystal is precipitated with water.
  • Step 1 Add water-soluble polar solvent and remove excess epino and lohydrin
  • reaction solution (A) may be added to the reaction solution (A) by adding a water-soluble polar solvent without distilling off or carrying out a part of the excess epihalohydrin or the like. Let's say. If necessary, before or after the addition of the solvent, preferably with heating under reduced pressure Concentrate to concentration.
  • the concentration of the resin in the reaction solution is about 40 to 90% by weight, more preferably 50 to 80% by weight at ° C.
  • water-soluble polar solvent examples include aprotic polar solvents such as dimethyl sulfoxide, N, N'-dimethylformamide, N-methylpyrrolidone, acetone, diglyme, and triglyme, methanol, ethanol, isopropanol, n-butanol, and t-butanol. And alcohols such as ethylene glycol and propylene glycol and propylene glycol and monomethylol ether. In this step, together with the water-soluble polar solvent described above, other solvents can be used together as necessary.
  • aprotic polar solvents such as dimethyl sulfoxide, N, N'-dimethylformamide, N-methylpyrrolidone, acetone, diglyme, and triglyme, methanol, ethanol, isopropanol, n-butanol, and t-butanol.
  • alcohols such as ethylene glycol and propylene glycol and propylene glyco
  • Solvents that can be used in combination include ester-based organic solvents such as ethyl acetate, butyl acetate, and butyl lactate, preferably C1-C4 organic acids, more preferably C1-C4 alcohol esters of C2-C3 organic acids, methyl isobutyl ketone, methyl
  • Examples include ketone organic solvents such as ethyl ketone, methyl isobutyl ketone and cyclohexanone, and aromatic organic solvents such as toluene and xylene.
  • ester-based organic solvents such as ethyl acetate, butyl acetate, and butyl lactate
  • C1-C4 organic acids more preferably C1-C4 alcohol esters of C2-C3 organic acids
  • methyl isobutyl ketone methyl
  • Examples include ketone organic solvents such as ethyl ketone, methyl isobutyl ketone and cyclohexan
  • the amount of the water-soluble polar solvent used is 20 to 500% by weight, preferably 50 to 300% by weight, based on the theoretical yield. When another solvent is used in combination, it may be used in an appropriate amount as necessary.
  • the water-soluble polar solvent a high boiling point solvent (HBS) is preferable.
  • the high boiling point solvent means a solvent having a higher boiling point than that of epino or rhohydrin used in excess as a raw material, and is preferably 30 ° C or higher than the boiling point of epino or lohydrin used as a raw material.
  • epichlorohydrin boiling point 116 ° C
  • a solvent having a boiling point 30 ° C or higher is preferably used, and N-methylpyrrolidone (202.
  • Amide compounds such as dimethylformamide (boiling point 153 ° C), dimethylacetamide (boiling point 165.5 ° C), diglyme (162 ° C), triglyme (216 ° C), tetraglyme (275 ° C) And ethers such as C), ketones such as anone, and dimethyl sulfoxide (boiling point 189 ° C.).
  • HBS dimethylformamide
  • dimethylacetamide bisoiling point 165.5 ° C
  • triglyme 216 ° C
  • tetraglyme 275 ° C
  • ethers such as C
  • ketones such as anone
  • dimethyl sulfoxide (boiling point 189 ° C.).
  • the range of heating and decompression varies depending on the solvent used-the range cannot generally be specified, but the degree of decompression is usually about 0. OlMPa to about 1.
  • IMPa about 50 to 140 ° C, preferably 50 to 110 °.
  • epihalohydrin be removed as much as possible at this point in time because it is not preferable that the epihalohydrin remains in the product.
  • Precipitation of crystals of the reaction product obtained in the above can be carried out by adding water to the obtained solution.
  • the amount of water added is not a problem even if it is large, it is preferably about 50 to 150% of the amount of water-soluble polar solvent used from the viewpoint of waste liquid treatment.
  • the temperature of the water used is 0 to 70 ° C, preferably 15 to 50 ° C. Care must be taken as too hot water can cause fusion of dispersed crystals.
  • the particle shape can be adjusted by the temperature of the water.
  • the average particle size is usually about 5 to 300 microns. It is possible to adjust the particle size to 500 microns or more by changing the combination of the temperature of water and the water-soluble polar solvent used. Considering filterability and drying properties, it is preferable to adjust to about 20 to 250 micron.
  • the desired epoxy resin crystals are removed by filtration. At this time, in order to further increase the purity, it is preferable to wash with an organic solvent such as methanol and ethanol, and further with water.
  • the desired epoxy rosin crystal powder can be obtained by drying the obtained crystals.
  • Step 1 Crystal precipitation in a poor solvent
  • the reaction solution (A) may be added with a poor solvent, preferably a solvent that azeotropes with the used epino or rhohydrin (hereinafter also simply referred to as an azeotropic solvent) to precipitate crystals.
  • a poor solvent preferably a solvent that azeotropes with the used epino or rhohydrin (hereinafter also simply referred to as an azeotropic solvent) to precipitate crystals.
  • a part of the epino, rhohydrin and the like that have excessive reaction liquid power may be distilled off to increase the concentration of the epoxy resin so that crystals are easily precipitated.
  • a part of the epoxy resin may be precipitated as crystals in the reaction solution. Distilling off excess epihalohydrin or the like is preferably carried out under reduced pressure and, if necessary, with heating.
  • the conditions at this time are not particularly limited, but the degree of decompression is 0. OlMPa to 1 0. IMPa is preferred.
  • the temperature at that time is 40 ° C or higher, 140 ° C or lower, especially 100 ° C or lower. preferable.
  • the concentration of the epoxy resin after the distillation is preferably 40 to 90%, more preferably 50 to 80%.
  • the crystalline epoxy resin of the present invention is difficult to dissolve and is not particularly limited.
  • water, methanol, ethanol, isopropanol, n- Alcohols such as butanol, t-butanol, ethylene glycol, propylene glycol, propylene glycol monomethyl ether, water, and ester organic solvents such as ethyl acetate, butyl acetate, butyl lactate, acetone, methyl ethyl
  • ester organic solvents such as ethyl acetate, butyl acetate, butyl lactate, acetone, methyl ethyl
  • ketone-based organic solvents such as ketone and methylisobutyl ketone. These can be used alone or in combination.
  • the crystallization in step 1 may be performed with a solvent other than the above.
  • Solvents that can be used in combination are shown below, but some of them overlap with the above poor solvents because the solubility in the solvent varies depending on the epoxy resin skeleton.
  • Aprotic polar solvent dimethyl sulfoxide, N, N, dimethylformamide, tetrahydrofuran, N-methylpyrrolidone, diglyme, triglyme, etc.
  • Ester organic solvents Ethyl acetate, butyl acetate, butyl lactate, etc.
  • Ketone-based organic solvents methyl isobutyl ketone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, etc.
  • Aromatic organic solvents toluene, xylene, etc.
  • the amount of the poor solvent to be added is 20 to 500% by weight, preferably 50 to 300% by weight, based on the theoretical yield.
  • the amount used is preferred, as it does not adversely affect the yield of crystals precipitated in the poor solvent.
  • a solvent that azeotropes with epihalohydrin is preferable. That is, water, alcohols, and aromatic solvents. These azeotropic solvents can be found in, for example, Pocket Book, Organic Synthetic Chemistry Association Ohm Co.
  • Step 2 Distill off the solvents
  • the solvent is preferably distilled off under reduced pressure by heating, and the temperature is not particularly limited as long as it does not melt the precipitated epoxy resin crystal.
  • a temperature that is 10 ° C. or more lower than the melting point of the epoxy resin is preferable.
  • the degree of decompression is preferably ⁇ 0. OlMPa to 1 ⁇ 0. IMPa.
  • the drying temperature is not particularly limited as long as it is a temperature at which the crystals do not melt and can be dried, and preferably the temperature obtained by subtracting 100 ° C from the melting point of the obtained crystalline epoxy resin to the crystalline epoxy resin.
  • the temperature is in the range of 10 ° C minus the melting point.
  • the drying time is usually 1 hour to 36 hours, more preferably 2 to 24 hours.
  • the resin-like or crystalline epoxy resin obtained as described above can be used as an epoxy resin composition containing a curing agent together with other epoxy resins as necessary.
  • a cured product having heat resistance can be obtained from the epoxy resin composition, and it can be used for various applications described later.
  • the epoxy resin of the present invention preferably crystalline epoxy resin, may be used together with a photopolymerization initiator and a compound having an ethylenically unsaturated group to form a photosensitive resin composition. I can do it.
  • the epoxy resin composition of the present invention will be described.
  • the epoxy resin of the present invention can be used alone or in combination with other epoxy resins.
  • the mixing ratio of each epoxy resin can be arbitrarily changed.
  • other epoxy resins can be changed in the range of about 0 to 500 parts, usually about 0 to 300 parts.
  • 100 parts of the epoxy resin of the present invention is about 10 to 200 parts, preferably about 20 to 150 parts, more preferably about 30 to 120 parts of other epoxy resins. Can be used in a range.
  • the ratio of the epoxy resin of the present invention in the epoxy resin composition of the present invention can be widely used, for example, 1 to 98%, preferably about 3 to 95%, and about 5 to 90%.
  • the remainder is a curing agent and other additives that are added as necessary, such as other epoxy resins, solvents, and other additives.
  • Phenols aromatic substituted phenols, naphthols, alkyl-substituted naphthols, dihydroxybenzenes, alkyl-substituted dihydroxybenzenes, dihydroxynaphthalene, etc.
  • aldehydes formaldehyde, acetoaldehyde, alkyl aldehydes, benzaldehydes, alkyl-substituted benzaldehydes, hydroxybenzaldehydes
  • Naphthaldehyde glutaraldehyde, phthalaldehyde, crotonaldehyde, cinnamaldehyde, etc.
  • phenols and various gen compounds Polymers with dicyclopentagen, terpenes, burcyclohexene, norbornagen, burnorbornene, tetrahydroindene, dibutenebenzene, divinyl biphenyl, diisopropyl bi
  • the epoxy resin used in combination is preferably a crystalline epoxy resin having a soft point of 90 ° C or higher! /, which has a melting point. Even if two or more types are used together, it does not work.
  • bixylenol-type or biphenol-type crystalline epoxy resin or a mixture thereof such as YX-4000 manufactured by Japan Epoxy Resin Co., Ltd. or CER-3000 manufactured by Nippon Kayaku Co., Ltd.
  • the epoxy resin composition of the present invention contains a curing agent.
  • the curing agent include the following curing agents (a) to (e) such as an amine compound, an acid anhydride compound, an amide compound, and a phenol compound.
  • amine compounds include diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, and isophoronediamine.
  • acid anhydride compounds include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, hexahydrophthalic anhydride. Acid, methylhexahydrophthalic anhydride, etc.
  • amide-based compounds include dicyandiamide or polyamide resin synthesized from dimer of linolenic acid and ethylenediamine,
  • (d) phenolic compounds examples include:
  • phenols eg, phenol, alkyl-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, dihydroxynaphthalene, etc.
  • aldehydes formaldehyde, acetoaldehyde, benzaldehyde, p-hydroxybenzaldehyde, o-hydroxybenzaldehyde, Furfural, etc.
  • ketones p-hydroxyacetophenone, o-hydroxyacetophenone, etc.
  • phenolic resins obtained by condensation with gens such as dicyclopentagen, tricyclopentagen, etc.
  • the amount of the curing agent used is 0.5 to 2.0 equivalent force relative to 1 equivalent of epoxy group of epoxy resin, and 0.6 to 1 5 equivalents are particularly preferred.
  • the epoxy resin composition of the present invention may also contain a curing accelerator.
  • curing accelerators that can be used include imidazoles such as 2-methylimidazole, 2-ethylimidazole, 2-phenolimidazole, 2-ethyl-4-methylimidazole, 2- (dimethylaminomethyl) phenol, triethylenediethylene.
  • the amount used is 0.01 to 15 parts by weight based on 100 parts by weight of the epoxy resin, if necessary.
  • the epoxy resin composition of the present invention may be added with various compounding agents such as an inorganic filler, a silane coupling agent, a release agent, and a pigment, and various thermosetting resins as necessary.
  • inorganic fillers include crystalline silica, fused silica, alumina, zircon, calcium silicate, calcium carbonate, silicon carbide, silicon nitride, boron nitride, zircoyu, fosterite, steatite, spinel, titer, talc, etc.
  • the force including, but not limited to, powders of the above or beads formed by spheroidizing them. These may be used alone or in combination of two or more.
  • these inorganic fillers are particularly preferable in the epoxy resin composition in terms of heat resistance, moisture resistance, mechanical properties, etc. of the cured product when an epoxy resin composition for a semiconductor encapsulant is obtained. It is preferably used in a proportion of ⁇ 93%.
  • the balance is the epoxy resin of the present invention, a curing agent, and other additives that are added as necessary, and the other additives include other epoxy resins and curing accelerators.
  • the epoxy resin of the present invention is 1 to 19%, preferably about 2 to 18%, more preferably about 3 to 18%.
  • the balance 1 to 9%, preferably 2 to 7% is a curing agent and other additives added as required.
  • the epoxy resin composition of the present invention can be obtained by uniformly mixing the above components, and is preferably used for semiconductor encapsulation.
  • the epoxy resin composition of the present invention can be easily made into a cured product by a method similar to a conventionally known method.
  • the epoxy resin of the present invention and a curing agent, and if necessary, a curing accelerator and an inorganic filler, a compounding agent, and various thermosetting resins can be uniformly used using an extruder, kneader, roll, etc.
  • the epoxy resin composition of the present invention is obtained by thoroughly mixing until it becomes, and the epoxy resin composition is molded by a melt casting method, a transfer molding method, an injection molding method, a compression molding method, etc.
  • the cured product of the present invention can be obtained by heating at a melting point or higher and 2 to LO time.
  • the epoxy resin composition of the present invention can also be a varnish containing a solvent.
  • This varnish is prepared by dissolving or uniformly mixing a composition containing the epoxy resin of the present invention, a curing agent and other additives as required in an organic solvent such as toluene, xylene, acetone, methyl ethyl ketone, methyl isobutyl ketone. It can be obtained by dispersing.
  • the amount of the solvent is usually 10 to 70%, preferably 15 to 65% with respect to the whole varnish.
  • the epoxy resin of the present invention is 10 to 70% in the varnish, preferably about 20 to 50%, and the balance is a curing agent and other additives as required.
  • the varnish of the present invention may be a varnish containing an inorganic filler by further adding an inorganic filler to a solution containing the epoxy resin of the present invention, a curing agent, and if necessary, other additives and a solvent.
  • a prepreg can be obtained by impregnating a base material such as glass fiber, carbon fiber, polyester fiber, polyamide fiber, alumina fiber or paper with the varnish of the present invention obtained as described above, followed by drying by heating.
  • a cured product can also be obtained by hot press molding the pre-preda.
  • a preferred application of the epoxy resin composition of the present invention is a sealant material for a semiconductor device.
  • DIP Dual Inline Package
  • QFP Quad Flat Package
  • BGA Bit Grid Array
  • CSP Chip Size Package
  • SOP Small Outline Package
  • TSOP Thin Small Outline
  • TQFP inink-and-flat package
  • the epoxy resin of the present invention is excellent in light transmittance with little coloring, it can be used for an optical semiconductor sealing device. In this optical semiconductor field, it can be suitably used for sealing optical semiconductor elements (semiconductor chips) such as light emitting diodes (LEDs), phototransistors, CCDs (charge coupled devices), and EPROMs such as UV-EPROMs.
  • LEDs light emitting diodes
  • CCDs charge coupled devices
  • EPROMs such as UV-EPROMs.
  • photocurable resin composition (photosensitive resin composition) containing the epoxy resin of the present invention, preferably a photothermosetting resin composition, will be described.
  • the epoxy resin of the present invention can be used as a curing agent for improving the reliability of a photosensitive resin composition, preferably a photothermosetting resin composition.
  • the epoxy resin of the present invention is preferably a crystalline epoxy resin.
  • the photosensitive resin composition of the present invention contains at least the epoxy resin of the present invention and a compound having an ethylenically unsaturated group and has little heat denaturation and the like, and has a high performance semiconductor sealing agent and the like.
  • the preferred photosensitive resin composition is the epoxy resin of the present invention.
  • the photosensitive resin composition is obtained by uniformly mixing the aqueous alkali solution soluble resin (A), the crosslinking agent (B), the photopolymerization initiator (C) and the epoxy resin of the present invention by a conventional method. I can do it.
  • the photosensitive resin composition may contain the inorganic filler or the like as necessary.
  • a thermosetting catalyst is included.
  • the photosensitive resin composition contains the epoxy resin of the present invention, a photopolymerization initiator and a compound having an ethylenically unsaturated group.
  • the content of each component is 20 to 80% of the epoxy resin of the present invention, 10 to 70% of the photopolymerization initiator and 10% of the compound having an ethylenically unsaturated group, based on the total of the three components. ⁇ 70%.
  • the photosensitive resin composition is a photosensitive resin containing the epoxy resin of the present invention, an aqueous alkali-soluble resin (A), a crosslinking agent (B), and a photopolymerization initiator (C). It is a composition.
  • the content ratio of each of these four parties is 5 to 60%, preferably 5 to 40%, more preferably 10 to 30% of the epoxy resin of the present invention based on the total of these four parties.
  • Alkaline aqueous solution soluble resin (A) 35-80%, preferably 40-75%, crosslinking agent (B) 3-30%, preferably 5-20%, photopolymerization initiator 2-30%, preferably In the range of 4 to 15%, the total of the four is 100%.
  • the composition may further contain an inorganic filler, a solvent and the like.
  • the photosensitive resin composition contains a thermosetting catalyst in addition to the above four components.
  • the thermosetting catalyst is in a proportion of 0.3 to 5%, preferably 0.5 to 3% with respect to the total of the above four components.
  • the content of the epoxy resin of the present invention is usually 1 to 50% by weight, preferably 2 to 30% by weight.
  • the epoxy resin used in the photosensitive resin composition of the present invention is preferably in the crystalline form, and particularly preferably has a melting point of 140 ° C to 170 ° C.
  • the photopolymerization initiator will be described in the section of the photopolymerization initiator (C) described later.
  • the compound having an ethylenically unsaturated group is not particularly limited, but a compound having a (meth) acrylic group (meaning an acrylic group or a methacrylic group) is preferred. These compounds are disclosed in Japanese Patent Application Laid-Open No. 2004-155916 and the like as aqueous alkali soluble resins and crosslinking agents, and are known.
  • the term “(meth) acryl” means acryl or methacryl)
  • Aqueous alkali-soluble soluble fat (A) Aqueous alkali-soluble soluble fat (A);
  • Any coagulant that can be dissolved and removed with an aqueous alkaline solution can be used without particular limitation, and any conventionally known aqueous alkaline solution-soluble coagulant can be used.
  • an epoxy carboxylate compound obtained by reacting an epoxy compound ( a ) having two or more epoxy groups in the molecule with a monocarboxylic acid compound (b) having an ethylenically unsaturated group in the molecule.
  • KAYARAD CCR-1159H KAYARAD PCR-1169H
  • KAYARAD TCR-1310H KAYARAD ZFR-11401H
  • KAYARAD ZAR-1395H all manufactured by Nippon Gyaku Co., Ltd.
  • cross-linking agent (B) [0052] cross-linking agent (B);
  • the (meth) acrylate having the (meth) acrylic group and other functional groups is preferred, which is preferably a polyfunctional compound having an ethylenically unsaturated group.
  • Specific examples include KAYARAD HX-220, KAYARAD HX-620, KAYA RAD DPHA, KAYARAD DPCA-60 (V, deviation is made by Nippon Kayaku Co., Ltd.).
  • any conventionally known photopolymerization initiator known in the art can be used.
  • examples include benzoins, acetophenones, anthraquinones, thixanthones, ketals, benzophenones, and phosphine oxides.
  • KAYACURE DETX-S manufactured by Nippon Gyaku Co., Ltd.
  • Irgacure 907 Irga Specialty Chemical
  • various additives such as fillers such as talc, barium sulfate, aluminum hydroxide, aluminum oxide, silica, clay, preferably inorganic fillers, aerosols, etc.
  • Thixotropic agent coloring agent such as phthalocyanine blue, phthalocyanine green, titanium oxide, silicone, fluorine-based leveling agent or antifoaming agent; polymerization inhibitor such as hydroquinone, rhodium, idroquinone monomethyl ether, etc. It can be added for the purpose of improving various performances.
  • the amount of the filler used is more preferably the photosensitive resin composition including the above four (epoxy resin of the present invention, alkaline aqueous solution-soluble resin (A), crosslinking agent (B), photopolymerization initiator (C)). In the product, it is about 0 to 100%, preferably about 0 to 60% with respect to the total of these four parties.
  • the photosensitive resin composition of the present invention may contain a solvent if necessary.
  • solvents include, for example, ketones such as acetone, ethylmethyl ketone, and cyclohexanone, aromatic hydrocarbons such as benzene, toluene, xylene, and tetramethylbenzene, and ethylene glycolo-resin methylenoateol.
  • Glycol ethers such as ethyleneglycol lectino enoate, dipropylene glycol dimethyl ether, dipropylene glycol dimethyl ether, triethylene glycol dimethyl ether, triethylene glycol dimethyl ether, ethyl acetate, butyl acetate, methyl solvate acetate Ethyl cellosolve acetate, butylcetosolve acetate, carbitol acetate, propylene glycol monomethyl ether acetate, dialkyl glutarate, dialkyl succinate,
  • esters such as dialkyl phosphates, cyclic esters such as ⁇ -butyrolatatone
  • petroleum solvents such as petroleum ether, petroleum naphtha, hydrogenated petroleum naphtha, and solvent naphtha, which may be used alone. 2 or more types may be used in combination.
  • the amount of the solvent used is more preferably the photosensitive resin composition including the above four (epoxy resin of the present invention, aqueous alkaline resin soluble resin ( ⁇ ), crosslinking agent ( ⁇ ), photopolymerization initiator (C))). In this respect, it is 0 to 50%, preferably 0 to 20%, based on the total of these four persons.
  • the epoxy resin composition of the present invention is useful as a resist material such as an insulating material between layers of electronic components, an optical waveguide connecting optical components, a solder resist for printed circuit boards, a coverlay, etc. It can also be used as a color filter, printing ink, sealant, paint, coating agent, adhesive, etc.
  • the photosensitive resin composition of the present invention can be cured by irradiation with energy rays such as ultraviolet rays and by a heating operation. Curing by irradiation with energy rays such as ultraviolet rays can be performed by a conventional method.
  • an ultraviolet ray generator such as a low pressure mercury lamp, a high pressure mercury lamp, an ultra high pressure mercury lamp, a xenon lamp, an ultraviolet light emitting laser (excimer laser, etc.) may be used.
  • the cured product of the present invention can be obtained by further irradiating with ultraviolet rays as necessary, followed by heat treatment usually at a temperature of 100 to 20 ° C, preferably 140 to 180 ° C.
  • the cured product of the epoxy resin composition of the present invention includes, for example, a resist film, an interlayer insulating material for a build-up method, an optical waveguide such as a printed wiring board, an optoelectronic substrate and an optical substrate. Used for materials. Specific articles using these include, for example, computers, home appliances, and portable devices.
  • a printed wiring board is produced using, for example, a photothermosetting photosensitive resin composition
  • a screen printing method a spray method
  • a mouthpiece is applied to the printed wiring board.
  • the photosensitive resin composition of the present invention is applied at a film thickness of 0.5 to 160 / ⁇ ⁇ by a method such as a coat coating method, an electrostatic coating method, or a curtain coating method, and the coating film is usually 50 to 110 ° C, Preferably, the coating film is formed by drying at 60 to 100 ° C.
  • the high Engineering Nerugi clear distinction such as an ultraviolet ray was irradiated at normal 10 ⁇ 2000MiZcm 2 medium strong directly or indirectly to the coating film through a photo mask formed with exposure patterns, such as negative film, described later unexposed portions Development is performed using a developer, for example, by spraying, rocking immersion, brushing, scraping, or the like.
  • further UV irradiation is performed, and then heat treatment is usually performed at a temperature of 100 to 200 ° C, preferably 140 to 180 ° C, so that it has excellent gold plating properties, heat resistance, solvent resistance,
  • a printed wiring board having a permanent protective film that satisfies various properties such as acid resistance, adhesion, and flexibility can be obtained.
  • Examples of the alkaline aqueous solution used in the development include potassium hydroxide, sodium hydroxide, sodium carbonate, potassium carbonate, sodium bicarbonate, potassium bicarbonate, sodium phosphate, potassium phosphate, and the like.
  • Inorganic alkaline aqueous solutions such as tetramethylammonium humide, tetraethylammonium hydride, tetraptylammoum hydride oxide, monoethanolamine, diethanolamine, triethanolamine, etc.
  • An alkaline aqueous solution can be used.
  • TEP-DF biphenyl type phenol aralkyl resin
  • the crystal was sufficiently washed with 200 parts of methanol and further 200 parts of water, and dried, whereby the epoxy resin (EP2) of the present invention (epoxy equivalent 179 gZeq. Melting point 161 ° C) was white to light yellow powdery crystal. As a result, 140 parts were obtained.
  • Example 2 the amount of use of the condensate of Darioquizal and phenol (TEP—DF Asahi Organic Materials Co., Ltd.) is 80 parts, and the amount of bi-type phenol alcohol slag is used.
  • the epoxy resin of the present invention (EP3) was prepared in the same manner as in Example 2, except that 20 parts of epichlorohydrin was used in an amount of 425 parts and flaky sodium hydroxide was used in an amount of 35 parts. ) (Epoxy equivalent 182 gZeq. Melting point 149 ° C.) was obtained as white to pale yellow powdery crystals.
  • Example 2 the use amount of the condensate of Darioquizal and phenol (TEP—DF Asahi Organic Materials Co., Ltd.) was 90 parts, and biphenol type phenol aralkyl resin was added to phenol and p-key.
  • a phenol-type phenol aralkyl resin that is a condensate with silenol (Ar in formula (2) is a phenol group, R is a hydrogen atom, n l.
  • Example 5 [0066] In Example 2, the amount of Darioxar and phenol condensate (TEP—DF Asahi Organic Materials Co., Ltd.) used was 90 parts, and biphenol type phenol aralkyl resin was added to phenol novolac ( ( Maywa Kasei Kogyo Co., Ltd., softening point: 83 ° C, hydroxyl group equivalent: 106 gZeq.), 455 parts of epichlorohydrin and 40 parts of flaky sodium hydroxide were used. Thus, 147 parts of the epoxy resin (EP5) of the present invention (epoxy equivalent 172 g / eq. Melting point 159 ° C.) was obtained as white powdery crystals.
  • TEP5 Darioxar and phenol condensate
  • Example 2 the use amount of the condensate of Darioquizal and phenol (TEP—DF Asahi Organic Materials Co., Ltd.) was 90 parts, biphenol type phenol aralkyl resin was added to bisphenol F,
  • the epoxy resin (EP6) of the present invention (epoxy equivalent 172 g / eq) was obtained in the same manner as in Example 2 except that 460 parts of epichlorohydrin and 40 parts of flaky sodium hydroxide were used. 144 parts were obtained as white powdery crystals.
  • Example 2 the amount of the condensate of Darioquizal and phenol (TEP—DF Asahi Organic Materials Co., Ltd.) used was 90 parts, biphenol type phenol aralkyl resin was added to bisphenol S,
  • the epoxy resin (EP7) of the present invention (epoxy equivalent 179 g / eq) was used in the same manner as Example 2 except that 455 parts of epichlorohydrin and 39 parts of flaky sodium hydroxide were used. 144 parts were obtained as white powdery crystals.
  • a nitrogen gas purge was applied to the flask equipped with a thermometer, dropping funnel, condenser, and stirrer. While adding 99.5 parts of a condensate of glyoxal and phenol, 460 parts of epichlorohydrin, and 100 parts of methanol, the mixture was heated to about 70 ° C with stirring and dissolved. Next, 40 parts of flaky sodium hydroxide was added in portions over 90 minutes, and then further reacted at reflux temperature for 1 hour.
  • the epoxy resin (EP1) obtained in Example 1 (Example 8) or the epoxy resin (EP8) (Comparative Example 3) obtained in Comparative Example 1 was used as the epoxy resin, and phenol nopolac as a curing agent. (Soft softening point 83 ° C, hydroxyl group equivalent 106gZeq), using triphenylphosphine (TPP) as a curing accelerator at the weight ratio shown in the ⁇ Composition composition '' column of Table 1, transfer molding Thus, a resin molded body was prepared and cured at 160 ° C. for 2 hours and further at 180 ° C. for 8 hours.
  • TPP triphenylphosphine
  • Table 1 shows the results of measuring the physical properties of the cured product thus obtained.
  • the physical property values were measured by the following methods.
  • TMA Glass transition temperature
  • K1C The method described in JIS K-6911.
  • Epoxy resin (E P 8) 1 0 0 Phenolic nopolac 5 9 6 3 T P P 1. 0 1. 0
  • Example 8 Comparative example 3 Glass transition point (° C) 1 9 0 1 9 8 Water absorption (%) 1. 2 1. 9
  • Example 10 Comparative Example 5 Glass transition point (° C) 1 99 205
  • the epoxy resin composition containing the crystalline epoxy resin of the present invention has high storage stability.
  • the resulting cured epoxy resin is greatly improved in toughness and adhesion compared to the conventional tetrafunctional epoxy resin.
  • the cured product of the epoxy resin composition containing the crystalline epoxy resin of the present invention includes insulating materials for electrical / electronic parts, laminated boards (printed wiring boards, etc.), various composite materials including CFRP, and adhesives. It is extremely useful when used in paints, resist materials, etc.
  • Example 2 Using the epoxy resin obtained in Example 2 (EP2) (Example 11) or the epoxy resin (EP9) obtained in Comparative Example 2 (Comparative Example 6), mixing at the blending ratio shown in Table 4, 3 It knead
  • This was applied to a printed circuit board of about 10 cm square by a screen printing method so that the dry film thickness was 15 to 25 m, and the coating film was dried with a hot air dryer at 80 ° C. for 30 minutes.
  • ultraviolet rays were irradiated through a mask on which a circuit pattern was drawn using an ultraviolet ray exposure apparatus (Oak Manufacturing Co., Ltd., model HMW-680GW).
  • Tackiness Absorbent cotton was rubbed onto the dried film applied to the substrate, and the tackiness of the film was evaluated.
  • Thermal stability The developability was evaluated when the drying time at 80 ° C was 30, 40, and 50 minutes, and the following evaluation criteria were used. At the time of development, the ink was completely removed, and the evaluation was performed based on the time when the development was possible.
  • photosensitivity the coating film after drying, are brought into close contact with 21 step tablet (manufactured by Kodak) for irradiating exposed to ultraviolet rays of the integrated light quantity 500miZcm 2. Next, develop with a 1% sodium carbonate solution for 60 seconds at a spray pressure of 2. OkgZcm 2 , and check the number of coating layers remaining without development.
  • Adhesion 100 mm lmm grids were made on the test piece, and a peeling test (JIS K 5600-5-6) was performed using a cellophane tape (R), and the resist mass in close contact with the test piece was evaluated. The following criteria were used to describe the results.
  • Heat resistance A rosin flux was applied to the test piece and immersed in a solder bath at 260 ° C for 5 seconds. This was one cycle and repeated three cycles. After being allowed to cool to room temperature, a peeling test with Cellotape TM was performed and evaluated according to the following criteria.
  • Example 2 the condensate of Darioquizal and phenol (TEP—DF Asahi Organic Materials Co., Ltd.) was used in an amount of 80 parts, and biphenol type phenol aralkyl resin was added to orthocresol novolak (soft). (Equipment point 81 ° C) The same procedure as in Example 2 was repeated except that 20 parts, 455 parts of epichlorohydrin, and 38 parts of flaky sodium hydroxide were used. 137 parts of fat (epoxy equivalent 180gZeq. Melting point 145 ° C) were obtained as white powdery crystals.
  • Example 2 70 parts of the condensate of Darioquizal and phenol (TEP—DF Asahi Organic Materials Co., Ltd.) was used, and biphenol type phenol aralkyl resin was mixed with meta and para This was the same as in Example 2 except that 30 parts of Zornovolak (EP5000 manufactured by Asahi Organic Materials Co., Ltd.), 455 parts of epichlorohydrin, and 35 parts of flaky sodium hydroxide were used. 137 parts of the inventive epoxy resin (epoxy equivalent 189 g / eq. Melting point 162 ° C.) were obtained as white powdery crystals.
  • Example 14 [0091] Condensation of Darioxar and phenol (TEP-DF; manufactured by Asahi Organic Materials Co., Ltd.) 20 parts, bisphenol F80 parts, Epiclor, while purging a flask equipped with a thermometer, a cooler, and a stirrer with nitrogen gas purge 429 parts of hydrin and 40 parts of methanol were charged and dissolved. The mixture was further heated to 70 ° C., and 40 parts of flaky sodium hydroxide was added in portions over 90 minutes, followed by further reaction at 70 ° C. for 60 minutes.
  • TEP-DF manufactured by Asahi Organic Materials Co., Ltd.
  • the product is washed once with 150 parts of water to remove the generated salt and the like, and then excess epichlorohydrin and the like are removed from the oil layer under heating and reduced pressure.
  • the residue is converted to 450 parts of methyl isobutyl ketone. Dissolved. After this solution was heated to 70 ° C., 7 parts of a 30% aqueous sodium hydroxide solution was added and allowed to react for 1 hour. Subsequently, washing with water was carried out until the washing solution became neutral, and methyl isobutyl ketone was distilled off from the oil layer under heating and reduced pressure to obtain 145 parts of epoxy resin.
  • the epoxy equivalent was 163 g / eq., A liquid epoxy resin.
  • the viscosity at 25 ° C was 129 Pa's (E-type viscometer).
  • Bisphenol F-type epoxy resin (epoxy equivalent 164gZeq., Viscosity at 25 ° C 3 590mPa-s Nippon Kayaku product name RE-404S) and tetrakisphenol type epoxy resin (epoxy equivalent 167gZeq. Melting point 173 ° C Nippon Kayaku GTR-1800) was mixed at a ratio of 8: 2 and melted to form liquid epoxy resin.
  • the viscosity at 25 ° C was 198 Pa ⁇ s (E-type viscometer).
  • the ratio of the tetrakisphenol ethane type epoxy resin and the bisphenol F type epoxy resin is 2: 8.
  • the viscosity of the epoxy resin of the present invention is compared to that of a simple mixture (the bisphenol F type epoxy resin used in this comparative example is a low viscosity liquid epoxy resin).
  • the viscosity is very low.
  • the temperature and the degree of pressure reduction were gradually increased, and finally the temperature was adjusted to about 80 ° C. and about ⁇ 0.0 MPa, and the solvent was distilled off until no solvent efflux was observed.
  • the conditions were further tightened to about 120 ° C. and about ⁇ 0.095 MPa, and the drying process was performed for 12 hours. In this way, 149 parts of the desired crystalline epoxy resin was obtained.
  • the epoxy equivalent of the obtained epoxy resin is 169gZeq. Its melting point is 165 ° C.
  • the cured product of the epoxy resin of the present invention exhibits heat resistance equivalent to that of a cured product of epoxy resin obtained by glycidylation of conventional tetrakisphenol ethane, and also has improved brittleness and water resistance.
  • a thermosetting resin composition containing a crystalline epoxy resin of the present invention or a cured film formed of a light / thermosetting resin composition is more adhesive than conventional ones. It is extremely useful for a wide range of applications such as electrical and electronic materials, molding materials, casting materials, layer materials, paints, adhesives, resists, and optical materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Resins (AREA)

Description

エポキシ樹脂、エポキシ樹脂組成物及びその硬化物
技術分野
[0001] 本発明は高信頼性半導体封止用に代表される電気 ·電子部品絶縁材料用、及び積 層板 (プリント配線板)や CFRP (炭素繊維強化プラスチック)を始めとする各種電気 · 電子材料、成型材料、注型材料、積層材料、塗料、接着剤、レジスト、光学材料など の広範囲の用途に有用なエポキシ榭脂、これを含むエポキシ榭脂組成物及びその 硬化物に関するものである。
背景技術
[0002] エポキシ榭脂は種々の硬化剤で硬化させることにより、一般的に機械的性質、耐水 性、耐薬品性、耐熱性、電気的性質などに優れた硬化物となり、接着剤、塗料、積層 板、成形材料、注型材料などの幅広い分野に利用されている。
エポキシ榭脂としては常温で液状のものや軟ィ匕点 50〜100°C程度のものが一般 的に用いられている。近年前記分野のエポキシ榭脂やその硬化物においては、高純 度化を始め耐熱性、耐湿性、密着性、低誘電性、速硬化性、難燃性、高靭性等、諸 特性の一層の向上が求められている。中でも電気'電子産業、自動車、宇宙航空分 野等の利用分野の高度化により、より一層の耐熱性、耐湿性、高靭性が強く要請さ れている。
[0003] さらにエポキシ榭脂を使用する上での問題点として、その貯蔵安定性が挙げられる 。すなわち、エポキシ榭脂の使用方法としては硬化剤等と別々に保管しておき、使用 時に混合する二液型と、はじめから硬化剤などと混合した状態で保管する一液型が ある。一液型のほうが作業性の面では有利である力 貯蔵時にエポキシ榭脂と硬化 剤が徐々に反応してしまい、液状組成物の場合は粘度が、固形組成物の場合は流 動性などが変化してしまう t 、つた問題が指摘されて 、る。
また近年その硬化条件の簡便さ、作業性から感光性榭脂組成物が多く使用される ようになつている。しかしながら単純に光で硬化させるだけではその耐湿性、耐熱性 の低さから電気 ·電子材料に求められる高度な信頼性を達成できず、近年特に光'熱 硬化性榭脂が注目されている。例えばソルダーレジストゃ穴埋めインキ、オーバーコ ート、各種接着剤等の分野においてはその成分にエポキシ榭脂を添加し、光で一次 硬化させた後、さらに加熱して二次硬化させることを特徴とするエポキシ榭脂組成物 が使用されてきている。このような分野においては二次硬化までのエポキシ榭脂の保 存安定性が重要となる。このようなことからも結晶性エポキシ榭脂が注目されて 、る。
[0004] また、一般的に耐熱性の高い硬化物はその代償として耐湿性が低くなる傾向にあ る。 このようなエポキシ榭脂として結晶'性 4官能エポキシ榭脂、例えば 1, 1, 2, 2- テトラキス (4ーヒドロキシフエ-ル)エタンをグリシジルイ匕したエポキシ榭脂が報告され ている(特許文献 1)。このエポキシ榭脂は 180°C近い融点を有し、これを含有するェ ポキシ榭脂組成物は、 80°Cで長時間放置しても経時変化がほとんどなぐ貯蔵安定 性に優れ、その硬化物の耐熱性が高いことが報告されているがその密着性、靭性等 の諸物性にっ 、ては十分でな 、。
[0005] 特許文献 1 :特開 2004— 43533号公報
発明の開示
発明が解決しょうとする課題
[0006] 本発明はその硬化物において高い耐熱性を有するエポキシ榭脂に関するものであ り、従来の高耐熱性エポキシ榭脂に比べ、密着性ゃ靭性において改善されたェポキ シ榭脂を提供することを目的とする。
課題を解決するための手段
[0007] 本発明者らは前記のような特性を持つエポキシ榭脂を開発すべく鋭意研究の結果 、本発明を完成した。
即ち、本発明は、
(1) (a)フエノール類とダリオキサールの縮合物であって、式(1)
[化 1]
Figure imgf000005_0001
(式中、 Rはそれぞれ独立して水素原子、炭素数 1〜15の炭化水素基またはトリフル ォロメチル基を表す。)で表される化合物を 80% (ゲルパーミエーシヨンクロマトグラフ ィ一による面積0 /0)以上含有するフエノール類縮合物と (b) (a)以外のフエノール類、 あるいはフエノール榭脂の混合物をグリシジルイ匕して得られるエポキシ榭脂、
(2)成分 (b)がフエノールァラルキル榭脂である上記(1)に記載のエポキシ榭脂、
(3)形状が結晶粉末であることを特徴とする上記(1)又は(2)の 、ずれか一項に記 載のエポキシ榭脂、
(4)融点が 80〜170°Cである上記(3)に記載のエポキシ榭脂、
(5)成分 (a)と成分 (b)の混合物全体に対して、成分 (b)が占める割合が 25重量% 以下である上記(1)〜 (4) V、ずれか一項に記載のエポキシ榭脂、
(6)成分 (b)がビフエ-ル型フエノールァラルキル榭脂である上記(1)〜(5)の!、ず れカ 1項に記載のエポキシ榭脂、
(7)上記(1)に記載の成分 (a)と成分 (b)の混合物をェピノ、ロヒドリンでグリシジルイ匕 することを特徴とするエポキシ榭脂の製造法、
(8)成分 (a)と成分 (b)の合計量に対して、成分 (a)が 65〜95重量%であり、成分 (b )が 35〜5重量%である混合物をェピノ、ロヒドリンでグリシジルイ匕し、得られた反応液 から、エポキシ榭脂結晶を析出させることを特徴とする上記(7)に記載のエポキシ榭 脂の製造法、
(9)エポキシ榭脂結晶の析出のために、水を添加することを特徴とする上記(8)に記 載のエポキシ榭脂の製造法、
(10)エポキシ榭脂結晶を析出させて得られる結晶分散溶液から、該分散液中に含 まれる溶剤類を留去し、エポキシ榭脂結晶を得ることを特徴とする上記 (7)〜(9)の V、ずれか一項に記載のエポキシ榭脂の製造法、
(11)上記(1)〜(6)の 、ずれか 1項に記載のエポキシ榭脂及び硬化剤を含有するこ とを特徴とするエポキシ榭脂組成物、
(12)上記(11)に記載のエポキシ榭脂組成物を硬化した硬化物、
(13)上記(1)〜(6)のいずれか 1項に記載のエポキシ榭脂及びエチレン性不飽和 基を有する化合物を含有することを特徴とするエポキシ榭脂組成物、
(14)成分 (a)と成分 (b)の混合物全体に対して、成分 (b)が占める割合が 35重量% 以下である上記(1)〜 (4) V、ずれか一項に記載のエポキシ榭脂、
に関する。
発明の効果
[0008] 本発明のエポキシ榭脂は、従来のダリオキザールとフエノールの縮合物であるフエ ノール榭脂をグリシジル化して得られる高耐熱性のエポキシ榭脂と比較し、その硬化 物において優れた耐熱性示し、もろさ、耐水性の改善されたエポキシ榭脂である。ま た、通常のエポキシ榭脂と比較すると、ガラス転移点が向上し、その線膨張率が大幅 に低下していることから、耐熱性に優れるエポキシ榭脂であると言える。さらに本発明 のエポキシ榭脂は結晶状とすることも可能であり、本発明のエポキシ榭脂を熱硬化性 榭脂組成物、あるいは光 ·熱硬化性榭脂組成物に分散させることで熱安定性に優れ たエポキシ榭脂組成物を得ることができる。従って、本発明のエポキシ榭脂組成物は 電気'電子材料、成型材料、注型材料、積層材料、塗料、接着剤、レジスト、光学材 料などの広範囲の用途にきわめて有用である。
発明を実施するための最良の形態
[0009] 本発明の結晶性エポキシ榭脂は、ダリオキザールとフエノール類を縮合してなるフ エノール類縮合物であって前記式(1)の化合物の含有割合が 80% (ゲルパーミエ一 シヨンクロマトグラフィーによる面積%:より正確に測定したい時には高速液体クロマト グラフィー(274nm)が好ましい)以上、好ましくは 95%以上であるフエノール類縮合 物(a)と(a)以外のフエノール類、ある 、はフエノール榭脂(b)の混合物とェピハロヒド リンとを反応させ、グリシジルイ匕して得ることができる。 本発明にお 、て成分 (a)と成分 (b)の混合比は特に限定されな 、。好ま 、態様の 一つとして、該混合物のグリシジルイ匕物を結晶として得る場合が挙げられる。この場 合、成分 (a)と成分 (b)の混合物中(両者の合計量に対する割合)で成分 (a)が占め る割合力 場合により 60重量%以上あればよいが、通常 65重量%以上が好ましぐ 7 0重量%以上はより好ましい。 75重量%以上は非常に好ましぐ特に 80重量%(以 下特に断らない限り、重量%を示す)以上が最も好ましい。従って、成分 (b)は、成分 (a)と成分 (b)の合計量に対して、 35%以下、好ましくは 25%以下、より好ましくは 20 %以下である。
成分 (a)の上限は、本発明の効果が達成される限り、限定されないが、通常 98%以 下、より好ましくは 95%以下、更に好ましくは 92%以下であり、成分 (b)の下限は成 分 (a)の残部となる力 好ましくは 2%以上、より好ましくは 5%以上であり、更に好まし くは 8%以上である。
また、該混合物のグリシジルイ匕物を結晶として得る必要がない場合には、成分 (a)と 成分 (b)の両者の合計量に対する各成分の割合はより幅広く変更することができ、例 えば成分 (a)は場合により、 5%以上であればよぐ好ましくは 10%以上であればよく 、より好ましくは 15%以上であり、上限は前記した同じである。成分 (b)は下限は上記 と同じであるが、上限は例えば 95%以下、より好ましくは 90%以下であり、更に好ま しくは 85%以下である。
成分 (a)中の一般式(1)において Rはそれぞれ独立して水素原子、ハロゲン原子、 炭素数 1 15の炭化水素基、トリフルォロメチル基を示す。ここでハロゲン原子として はフッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。また、炭素数 1 1 5の炭化水素基としてはメチル基、ェチル基、 n—プロピル基、イソプロピル基、シクロ プロピル基、 n—ブチル基、 sec—ブチル基、 tert—ブチル基、イソブチル基、シクロ ブチル基、 n—ペンチル基、イソペンチル基、ネオペンチル基、 tert—ペンチル基、 シクロペンチル基、 n キシル基、イソへキシル基、シクロへキシル基、 n プチ ル基、シクロへプチル基、 n—ォクチル基、シクロォクチル基等の鎖状アルキル基ま たは環状アルキル基、ァリル基またはァリール基等が挙げられる。またァリール基とし てはフエ-ル基、ナフチル基、トルィル基等が挙げられる。このうち水素原子、メチル 基、ァリル基または tert—ブチル基が好ましい。 Rの置換位置は特に限定されないが 、水酸基のオルト位またはメタ位をそれぞれ独立してとる。本発明においては式(1) において Rが水素原子である 1, 1, 2, 2—テトラキス(4ーヒドロキシフエ-ル)ェタン を用いることが好ましい。成分 (a)の合成法としては、特許 2897850号公報や特許 3 381819号公報に示される方法を採用することができる。
[0011] 本発明において(a)以外のフエノール類、あるいはフエノール榭脂(b)はフエノール 水酸基を有する化合物であれば特に限定はされず、具体的にはビスフ ノール類 ( ビスフエノーノレ A、ビスフエノーノレ F、ビスフエノーノレ S、ビフエノール、ビスフエノーノレ A D等)、フエノール類(フエノール、アルキル置換フエノール、芳香族置換フエノール、 ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、アルキル置換ジヒドロキ シベンゼン、ジヒドロキシナフタレン等)と各種アルデヒド(ホルムアルデヒド、ァセトァ ルデヒド、アルキルアルデヒド、ベンズアルデヒド、アルキル置換べンズアルデヒド、ヒ ドロキシベンズアルデヒド、ナフトアルデヒド、グルタルアルデヒド、フタルアルデヒド、 クロトンアルデヒド、シンナムアルデヒド等)との重縮合物、フエノール類と各種ジェン 化合物(ジシクロペンタジェン、テルペン類、ビュルシクロへキセン、ノルボルナジェ ン、ビュルノルボルネン、テトラヒドロインデン、ジビュルベンゼン、ジビ-ルビフエニル 、ジイソプロべ-ルビフエ-ル、ブタジエン、イソプレン等)との重合物、フエノール類と ケトン類(アセトン、メチルェチルケトン、メチルイソブチルケトン、ァセトフエノン、ベン ゾフエノン等)との重縮合物、フエノールァラルキル榭脂、ビスフエノール類と各種アル デヒドの重縮合物、等が挙げられ、複数のフ ノール性水酸基を有するものが好まし く、より好ましくはビスフエノール類及びフエノールァラルキル榭脂である。
[0012] (b)の成分として特に好まし 、のはフエノールァラルキル榭脂である。フエノールァ ラルキル榭脂としては例えば芳香環カ^チレン結合、イソプロピリデン基、又はェチリ デン基を介してフ ノール類と結合している分子構造を有する榭脂、具体的にはビフ ェ-ル型フエノールァラルキル榭脂、フエ-ル型フエノールァラルキル榭脂、フルォレ -ル型フエノールァラルキル榭脂、ナフタレン型フエノールァラルキル榭脂等が挙げ られ、下記式(2)で表される化合物が好ましい。
[0013] [化 2]
Figure imgf000009_0001
(式中、複数ある Rはそれぞれ独立して水素原子、炭素数 1〜15の炭化水素基、トリ フルォロメチル基、 Arはフエ-ル基、ビフエ-ル基、フルォレ -ル基、ナフチル基で あり、 mは 1〜4の整数、 nは 1〜10の整数を表し、繰り返し数の平均は通常 0. 5〜4 . 5、好ましくは 1. 0〜3. 0)
式(2)の化合物は、式(2)に対応するフ ノール類と下記式
X- CH2- Ar- CH2- X
(式中、 Xはハロゲン、アルコキシ、ヒドロキシ、 Arは前記式(2)と同じ基を示す) で表されるビス置換メチルァリル、例えばフエ-ル、ビフエ-ル、フルォレニル又はナ フチルのビスハロゲノメチル体、ビスアルコキシメチル体、ビスヒドロキシメチル体等( 以下単にビス体ともいう)とそれぞれ縮合することで得ることができる。 2つの置換メチ ル基のァリル基上の置換位置は特に限定されないが、ァリル基上の 4, 4'位に置換 したもの、即ち 4, 4' ビス体が好ましい。ハロゲンとしてはフッ素、塩素、臭素、ヨウ 素等が挙げられる。アルコキシ基としては、上記反応に支障がない限り特に制限はな いが、通常 C1〜C4程度のアルコキシ基が挙げられる。
一般式 (2)において Rはそれぞれ独立して水素原子、炭素数 1〜15の炭化水素基 またはトリフルォロメチル基を示す。炭素数 1〜15の炭化水素基としてはメチル基、 ェチル基、 n—プロピル基、イソプロピル基、シクロプロピル基、 n—ブチル基、 sec— ブチル基、 tert ブチル基、イソブチル基、シクロブチル基、 n ペンチル基、イソべ ンチル基、ネオペンチル基、 tert ペンチル基、シクロペンチル基、 n—へキシル基 、イソへキシル基、シクロへキシル基、 n—へプチル基、シクロへプチル基、 n—ォクチ ル基、シクロォクチル基等の鎖状または環状のアルキル基、ァリル基またはァリール 基等が挙げられる。またァリール基としてはフエニル基、ナフチル基、トルィル基等が 挙げられる。このうち水素原子、メチル基、ァリル基または tert ブチル基が好ましく 、特に水素原子が好ましい。 Rの置換位置は特に限定されないが、水酸基に対して オルト位またはメタ位が好ましい。 nは平均値で 0〜 10を示し、通常 0. 5〜4. 5、好ま しくは 1〜3、場合により 0〜3. 0が好ましい。
フエノールァラルキル榭脂は市販品も入手可能で、具体的には三井ィ匕学製 XLCシ リーズ、明和化成製 MEH— 7851、大日本インク化学工業製 CZ— 236K、 CZ— 25 6A、 CZ— 256C等を挙げることができる。また、常法や特開昭 63— 238129記載の 方法等により合成することも出来る。しかしこれらに限定されるものではない。これらは 単独で用いてもよぐ 2種以上を用いてもよい。
[0015] 本発明のエポキシ榭脂は成分 (a)と成分 (b)の混合物を、アルカリ金属水酸化物の 存在下に、ェピブ口モヒドリン、ェピクロロヒドリン、ェピョ一ドヒドリン等のェピハロヒドリ ンでグリシジルイ匕して得ることができる。本発明のエポキシ榭脂の製造には、好ましく は前記式(1)の化合物の含有割合が 80% (ゲルパーミエーシヨンクロマトグラフィー による面積%)以上、より好ましくは 90%以上、更に好ましくは 95%以上である高純 度フ ノール類縮合物を原料として使用するのが好ましい。本発明者らの知見によれ ば、成分 (a)と成分 (b)をそれぞれ別途にグリシジル化し、それらを混合しエポキシ榭 脂混合物とする場合、成分 (a)の中の式(1)の化合物の割合が高くなるにつれて、成 分 (a)はそのグリシジル化反応後、反応溶剤等を留去する際に、結晶が析出する傾 向が高ぐ成分 (a)からの溶媒除去等に支障を生ずるが、本発明においては、成分( b)を混合した後グリシジルイ匕することにより、そのような現象はなぐ溶媒等の除去も スムースに行うことができ、本発明のエポキシ榭脂は製造上のメリットも大きいもので ある。
[0016] 本発明のエポキシ榭脂を得る反応において、アルカリ金属水酸化物は固形物のま までもまた、その水溶液でも、何れでも使用できる。好ましくは固形物である。水溶液 を使用する場合は該アルカリ金属水酸化物の水溶液を連続的に反応系内に添加す ると共に減圧下、または常圧下連続的に水及びェピハロヒドリンを留出させ、該留出 分を分液し水は除去しェピハロヒドリンは反応系内に連続的に戻す方法でもよい。ァ ルカリ金属水酸化物の使用量は成分 (a)と成分 (b)の混合物の水酸基 1モルに対し て通常 0. 5〜2. 5モル、好ましくは 0. 9〜2. 5モルである。
[0017] また、反応の進行を容易にするため 4級アンモ-ゥム塩を触媒として添加することが できる。該 4級アンモ-ゥム塩としてはテトラメチルアンモ -ゥムクロライド、テトラメチル アンモ-ゥムブロマイド、トリメチルベンジルアンモ -ゥムクロライド等の、フエ-ル基を 置換基として有してもよい CI—C4アルキルアンモ-ゥムハライド等が挙げられる。 4 級アンモニゥム塩の使用量としては成分 (a)と成分 (b)の混合物の水酸基 1当量に対 し通常 0. 1〜15重量部、好ましくは 0. 2〜: LO重量部(以下特に断らない限り、部は 重量部を表す)である。
[0018] ェピノ、ロヒドリンの使用量は成分 (a)と成分 (b)の混合物の水酸基 1モルに対し通常 0. 5〜20モル、好ましくは 0. 7〜12モルである。また、場合により 0. 7〜10モル程 度でもよい。使用するェピノ、ロヒドリンとしては工業的にはェピクロロヒドリンが使用し やすい。
[0019] 本発明のエポキシ榭脂を得る反応において、成分 (a)と成分 (b)の混合物の流動 性を高めるために溶剤中で反応させてもよい。使用できる溶剤としては、アルコール 類又は非プロトン性極性溶媒などが挙げられる。アルコール類としてはメタノール、ェ タノール、イソプロピルアルコール、 n—ブタノール tert-ブタノールなどのアルコール 類、好ましくは C1—C4アルコール、より好ましくは C1— C3アルコールが挙げられる
。また、非プロトン性極性溶媒としてはジメチルスルホン、ジメチルスルホキシド、テトラ ヒドロフラン、ジォキサン等の溶媒などが挙げられる。
[0020] アルコール類を使用する場合、その使用量はェピノ、ロヒドリンの量に対し通常 2〜5 0重量%、好ましくは 4〜30重量%である。また非プロトン性極性溶媒を用いる場合 はェピノ、ロヒドリンの量に対し通常 5〜: LOO重量0 /0、好ましくは 10〜80重量% (以下 特に断らない限り、%は重量%を表す)である。
[0021] 反応温度は通常 30〜90°C、好ましくは 35〜80°Cであり、温度は一定であっても、 経時的に変化させてもよい。反応時間は通常 0. 5〜: LO時間、好ましくは 1〜8時間で ある。
反応終了後、反応液力 生成した塩を取り除くのが好ましい。反応液からの塩の除 去は、通常反応液を水洗することにより行うことができる。また、場合により、反応液を 室温まで冷却し、塩を析出させた後、ろ過により塩を取り除いてもよい。なお、水洗等 の工程では使用した溶剤の一部も除去される。このようにして得られる塩を除去した 反応液を便宜上反応液 (A)とする。
[0022] 反応液 (A)力もの反応生成物の取り出しは、特に限定されないが、下記(1)又は(2 )の方法のようにして行うのが好ましい。
反応生成物は、成分 (a)の配合量が少な 、場合、例えば成分 (a)と成分 (b)の合計 量に対して、 75%以下、さらには 70%以下、より確実には 60%以下程度になると反 応生成物は榭脂状で取り出される。成分 (a)の配合量が多い場合、例えば、 75%以 上、さらには 80%以上等の場合は、目的に応じて、榭脂状で取り出すこともできれば 、また、晶析工程を行い、結晶粉末として取り出すこともできる。
[0023] 反応生成物の取り出し法(1) (榭脂状での取り出し)
この方法は、上記反応液 (A)から、直接ェピハロヒドリンや溶媒等を留去することに より、残查として反応生成物を取り出すもので、成分 (a)の配合量が少なぐ反応生成 物の結晶化が困難な場合、又は反応生成物の結晶化が可能であっても、結晶として 取り出す必要のな ヽ場合などに用いることができる。
上記反応液 (A)を水洗後、または水洗無しに加熱減圧下でェピノ、ロヒドリンや溶媒 等を除去する。また更に加水分解性ハロゲンの少な ヽエポキシ榭脂とするために、 回収したエポキシ榭脂をトルエン、メチルイソプチルケトンなどの溶剤に溶解し、水酸 化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物の水溶液を加えて反応を 行い、閉環を確実なものにすることも出来る。この場合アルカリ金属水酸化物の使用 量はエポキシィ匕に使用したフエノール榭脂の水酸基 1モルに対して通常 0. 01〜0. 3モル、好ましくは 0. 05-0. 2モルである。反応温度は通常 50〜120°C、反応時間 は通常 0. 5〜2時間である。
[0024] 反応終了後、生成した塩を濾過、水洗などにより除去し、次いで油層から溶剤を留 去することにより本発明の榭脂状のエポキシ榭脂が得られる。溶剤の留去は通常カロ 熱減圧下に行うのが好ましぐ前記未反応のェピノ、ロヒドリンや溶媒等の留去に準じ て行うことができる。
[0025] 反応生成物の取り出し法 (2) (結晶状での取り出し)
前記反応液 (A)から目的とするエポキシ榭脂を晶析させるもので、成分 (a)の配合量 が多い場合、例えば成分 (a)と成分 (b)の合計量に対して、成分 (a)を 70%以上、さ らには 75%以上、より確実には 80%以上用いた時、反応生成物を結晶状で取り出 すことができる。
晶析方法としては、特に限定はなぐ例えば反応混合物をいつたん濃縮した後、溶 剤を用いて再結晶を行う、あるいは貧溶剤を加え、再沈殿を行うなど種々のそれ自体 公知の手法が採用可能である力 下記する方法を採用するのが好ましい。
[0026] グリシジル化反応終了後の反応混合物力 本発明の結晶性エポキシ榭脂を晶析さ せる好ましい方法としては、水溶性極性溶剤を先に添加し、その後該エポキシ榭脂 をあまり溶解しない貧溶媒、好ましくは水で結晶を析出させ、濾過により結晶を得る方 法 (2— 1)及び貧溶媒で結晶を析出させ、溶媒の全留去により結晶を得る方法 (2— 2)に大きく分けることができる。濾過に適した粒度の結晶を得るためには前者の 2— 1の方法が好ましいが、 2— 2の方法が好ましい場合もあるので、事情に応じて適宜 選択するのが好ましい。
本発明で得られる結晶状エポキシ榭脂の融点は成分 (b)の種類や配合量等により 一概に言えないが、おおよそ 80〜170°C、好ましくは 110〜170°C、更に好ましくは 120〜165°Cの結晶である。高融点結晶を必要とするときには 140〜170°Cの融点 を有するものが好ましい。
なお、本発明において貧溶媒といった場合、本発明のエポキシ榭脂が 25°Cにおい て、該溶媒に対する溶解度が 5%以下、好ましくは 1%以下の溶媒を意味する。
[0027] 結晶での取出し方法 2— 1
(水溶性極性溶剤と水で結晶を析出後濾過分離する方法)
必要に応じて該反応液 (A)力も過剰なェピノ、ロヒドリン等を留去した後、若しくは留 去すること無しに、反応液 (A)に、水溶性極性溶剤を加え、必要に応じて過剰なェピ ハロヒドリン等の除去、濃縮、冷却を行い、次いで水で、エポキシ榭脂結晶を析出さ ·¾:るものである。
工程 1:水溶性極性溶剤の添加及び過剰ェピノ、ロヒドリンの除去
まず、必要に応じて反応液 (A)力も過剰なェピハロヒドリン等の一部の留去を行 ヽ 若しくは行うこと無しに、反応液 (A)に、水溶性極性溶剤を加えて溶液又は懸濁液と する。必要に応じて、該溶剤の添加後若しくは添加前、好ましくは加熱減圧下、過剰
Figure imgf000014_0001
、濃度に濃縮する。
なお、水溶性極性溶剤の添加の前に、あら力じめ過剰なェピノ、ロヒドリン等の一部 の留去を行う場合は、好ましくは減圧下に、 40〜140°C、好ましくは 50〜110°Cで、 反応液における榭脂濃度が 40〜90重量%程度、より好ましくは 50〜80重量%にな るように行うのが好ましい。
上記用いられる水溶性極性溶剤としてはジメチルスルホキシド、 N, N'—ジメチル ホルムアミド、 N—メチルピロリドン、アセトン、ジグライム、トリグライム等の非プロトン性 極性溶剤、メタノール、エタノール、イソプロパノール、 n—ブタノール、 tーブタノール 、エチレングリコーノレ、プロピレングリコール、プロピレングリコーノレモノメチノレエーテ ル、等のアルコール類、が挙げられる。本工程では前記に示した水溶性極性溶剤と 共に、必要に応じて他の溶剤についても併用が可能である。併用可能な溶剤として は酢酸ェチル、酢酸ブチル、乳酸ブチル等のエステル系の有機溶剤、好ましくは C1 〜C4有機酸、より好ましくは C2〜C3有機酸の C1〜C4アルコールエステル、メチル イソブチルケトン、メチルェチルケトン、メチルイソブチルケトン、シクロへキサノン等の ケトン系有機溶剤、トルエン、キシレン等の芳香族系有機溶剤が挙げられる。通常は 特に併用する必要がないときはこれらの溶剤を併用せずに行うのが好ましい。
水溶性極性溶剤の使用量は、理論収量に対し、 20〜500重量%、好ましくは 50〜 300重量%である。他の溶媒を併用するときは、必要に応じて、適宜必要量におい て併用すればよい。
水溶性極性溶剤としては、高沸点溶剤 (HBS)が好ましい。本発明において高沸点 溶剤とは原料として過剰に使用したェピノ、ロヒドリンより高沸点の溶剤を意味し、原料 として使用するェピノ、ロヒドリンの沸点より 30°C以上高いものが好ましい。具体例とし ては、ェピノ、ロヒドリンとしてェピクロロヒドリン (沸点 116°C)を使用した場合、これより も 30°C以上沸点の高い溶剤が好適に用いられ、 N—メチルピロリドン(202. 5°C)、 ジメチルホルムアミド (沸点 153°C)、ジメチルァセトアミド(沸点 165. 5°C)等のアミド 化合物、ジグライム(162°C)、トリグライム(216°C)、テトラグライム(275°C)等のエー テル類、アノン等のケトン類、ジメチルスルホキシド (沸点 189°C)等が挙げられる。 H BSを使用した場合、 HBSを添加後、加熱減圧下、過剰に存在する若しくは残存す るェピクロロヒドリンを留去することで、製品化した際の結晶に含まれるェピクロロヒドリ ン量を確実に減量できる。 加熱減圧の条件は使用する溶剤により異なるのでー概 には範囲を特定できないが、通常は減圧度は 0. OlMPa〜一 0. IMPa程度で、 50〜140°C程度、好ましくは 50〜110°C程度に加熱し、ェピノヽロヒドリンを留去する のが好ましい。より具体的には、例えばェピノ、ロヒドリンとしてェピクロロヒドリン、 HBS としてジメチルスルホキシドを使用した場合、 50〜100°Cに加熱し、減圧度は— 0. 0 IMPa〜一 0. IMPa程度とするのがよい。特にェピハロヒドリンが生成物に残ること は環境への影響力も好ましくなぐこの時点でできる限りェピハロヒドリンを除去するこ とが好ましい。
[0029] 工程 2 :結晶の析出
上記で得られた溶液力 の反応生成物の結晶の析出は、上記得られた溶液に水を 添カロすること〖こより行うことができる。
水の添加時期は、通常上記で得られた溶液を、適宜放冷等により、冷却しながら、 又は冷却した後、添加するのが好ましい。
また、水の添加量は、多くても支障はないが、廃液処理等の観点から、水溶性極性 溶剤の使用量に対して、 50〜 150%程度が好ま 、。
また使用する水の温度は 0〜70°C、好ましくは 15〜50°Cである。あまりに高温の水 は分散した結晶の融着を招きかねな 、ので注意が必要である。またこの水の温度等 によって粒形を調節することができる。通常平均粒子径は 5〜300ミクロン程度である 力 水の温度と使用する水溶性極性溶剤の組合せ等を変えることで 500ミクロン以上 の粒形に調節することも可能である。ろ過性、乾燥性のことを考慮すると 20〜250ミク ロン程度に調節することが好ましい。
[0030] 工程 3 :結晶の分離
上記工程 2で得られた結晶分散水溶液より、ろ過によって目的とするエポキシ榭脂 の結晶を取り出す。このとき、より純度を上げるために、メタノール、エタノール等の有 機溶剤、さらには水で洗浄することは好ましい。得られた結晶を乾燥することで目的と するエポキシ榭脂結晶粉末を得ることができる。
[0031] 結晶での取出し方法 2— 2 (貧溶媒で結晶を析出させ、溶媒の留去、乾燥により分離する方法) 反応液 (A)から貧溶媒での晶析を行うことにより得られる結晶分散液から溶剤類を 全て留去、乾燥し、エポキシ榭脂結晶を得るものである。
[0032] 工程 1 :貧溶媒での結晶の析出
前記反応液 (A)に、貧溶剤、好ましくは使用したェピノ、ロヒドリンと共沸する溶媒( 以下単に共沸溶媒ともいう)を添加して結晶を析出させればよい。貧溶剤の添力卩に先 だって、反応液力も過剰なェピノ、ロヒドリン等を一部留去し、エポキシ榭脂濃度を高 め、結晶が析出し易くしておいてもよい。この場合、エポキシ榭脂の一部が結晶とし て反応液中に析出し、てもかまわない。過剰なェピハロヒドリン等の留去は減圧下で 、必要に応じて加熱下で行うことが好ましい。このときの条件としては特に限定されな いが、減圧度は 0. OlMPa〜一 0. IMPaが好ましぐそのときの温度は 40°C以上 で、 140°C以下、特に 100°C以下が好ましい。該留去後のエポキシ榭脂濃度として は榭脂濃度 40〜90%が好ましぐ好ましくは 50〜80%である。
[0033] 本発明で貧溶剤と ヽつた場合、本発明の結晶性エポキシ榭脂の溶解しにく!/ヽ溶剤 を意味し、特に限定されないが、例えば水、メタノール、エタノール、イソプロパノール 、 n—ブタノール、 tーブタノール、エチレングリコーノレ、プロピレングリコール、プロピ レングリコールモノメチルエーテル、等のアルコール類、および水、さらには酢酸ェチ ル、酢酸ブチル、乳酸ブチル等のエステル系の有機溶剤や、アセトン、メチルェチル ケトン、メチルイソプチルケトン等のケトン系有機溶剤が挙げられる。これらは単独で 用いても併用しても力まわな 、。
[0034] また工程 1における晶析は上記以外の溶剤を併用することもできる。以下に併用可 能な溶剤を示すが、エポキシ榭脂骨格により、溶剤への溶解性が異なることから一部 、上記貧溶剤と重複する溶剤も例に挙げる。
非プロトン性極性溶剤;ジメチルスルホキシド、 N, N,ージメチルホルムアミド、テトラヒ ドロフラン、 N—メチルピロリドン、ジグライム、トリグライム等、
エステル系の有機溶剤;酢酸ェチル、酢酸ブチル、乳酸ブチル等
ケトン系有機溶剤;メチルイソブチルケトン、メチルェチルケトン、メチルイソブチルケト ン、シクロへキサノン等 芳香族系有機溶剤;トルエン、キシレン等
が挙げられる。
添加する貧溶媒の使用量としては理論収量に対し、 20〜500重量%、好ましくは 5 0〜300重量%である。
貧溶媒以外の溶媒を併用する場合、その使用量は貧溶媒での結晶の析出収量等に 悪影響を与えな 、範囲が好ま U、。
[0035] また上記に挙げた貧溶剤、および併用可能な溶剤の中で好適なものはェピハロヒド リンと共沸する溶剤である。すなわち、水、アルコール類、芳香族系溶剤である。これ らの共沸溶媒は例えば ポケットブック 有機合成化学協会編 オーム社 346— 34
7ページなどを参照することで知ることが出来る。このような溶剤としては特に水の使 用が好ましい。
[0036] 工程 2 :溶剤類を留去
上記工程 1で得られた結晶分散溶液カゝら溶剤類を留去する工程である。 溶剤の留去は加熱減圧下で行うことが好ましぐその温度は析出したエポキシ榭脂結 晶の溶融しな 、温度であれば特に制限はな 、。例えば該エポキシ榭脂の融点より 1 0°C以上低い温度が好ましい。また、その減圧度は—0. OlMPa〜一 0. IMPaが好 ましい。
[0037] 全溶剤のうち 90〜99. 99重量%の溶剤の留去が終了した時点で乾燥に移る。乾 燥温度は結晶の溶融しな 、温度で、かつ乾燥できる温度であれば特に限定はな 、 力 好ましくは得られる結晶エポキシ榭脂の融点から 100°C引いた温度〜該結晶ェ ポキシ榭脂の融点から 10°C引いた温度の範囲内である。燥時間としては通常、 1時 間〜 36時間が好ましぐさらに好ましくは 2〜24時間である。
[0038] 上記で得られた榭脂状又は結晶状のエポキシ榭脂は、必要に応じて他のエポキシ 榭脂と共に、硬化剤を含むエポキシ榭脂組成物として、使用することができる。該ェ ポキシ榭脂組成物からは耐熱性のある硬化物を得ることが出来、後記する種々の用 途に使用することが出来る。また、本発明のエポキシ榭脂、好ましくは結晶状のェポ キシ榭脂は、光重合開始剤及びエチレン性不飽和基を有する化合物と共に用いら れて、感光性榭脂組成物とすることも出来る。 以下、本発明のエポキシ榭脂組成物につ 、て説明する。
本発明のエポキシ榭脂組成物において、本発明のエポキシ榭脂は単独で、または 他のエポキシ榭脂と併用して使用することができる。併用する場合、各エポキシ榭脂 の混合比は任意に変える事が可能である。例えば本発明のエポキシ榭脂 100部に 対して、その他のエポキシ榭脂 0〜500部程度、通常は 0〜300部程度の範囲で変 えることが出来る。併用する場合の 1例としては本発明のエポキシ榭脂 100部に対し て、その他のエポキシ榭脂 10〜200部程度、好ましくは 20〜 150部程度、より好まし くは 30〜 120部程度の範囲で使用することが出来る。
本発明のエポキシ榭脂組成物中における本発明のエポキシ榭脂の割合は幅広く 使用することが可能であり、例えば 1〜98%、好ましくは 3〜95%程度、 5〜90%程 度の範囲で変更でき、残部が硬化剤及びその他必要に応じて添加される添加物、例 えばその他のエポキシ榭脂、溶媒及びその他の添加剤等である。
本発明のエポキシ榭脂と併用されうる他のエポキシ榭脂の具体例としては、ビスフ ェノール類(ビスフエノール A、ビスフエノーノレ F、ビスフエノーノレ S、ビフエノール、ビス フエノール AD等)、フエノール類(フエノール、アルキル置換フエノール、芳香族置換 フエノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、アルキル置 換ジヒドロキシベンゼン、ジヒドロキシナフタレン等)と各種アルデヒド(ホルムアルデヒ ド、ァセトアルデヒド、アルキルアルデヒド、ベンズアルデヒド、アルキル置換べンズァ ルデヒド、ヒドロキシベンズアルデヒド、ナフトアルデヒド、グルタルアルデヒド、フタルァ ルデヒド、クロトンアルデヒド、シンナムアルデヒド等)との重縮合物、フエノール類と各 種ジェン化合物(ジシクロペンタジェン、テルペン類、ビュルシクロへキセン、ノルボ ルナジェン、ビュルノルボルネン、テトラヒドロインデン、ジビュルベンゼン、ジビニル ビフエ-ル、ジイソプロべ-ルビフエ-ル、ブタジエン、イソプレン等)との重合物、フエ ノール類とケトン類(アセトン、メチルェチルケトン、メチルイソブチルケトン、ァセトフエ ノン、ベンゾフエノン等)との重縮合物、フエノール類と芳香族ジメタノール類(ベンゼ ンジメタノール、 α , a , α ' , a '—ベンゼンジメタノール、ビフエ-ルジメタノール、 a , α , α ' , α,ービフヱ-ルジメタノール等)との重縮合物、フエノール類と芳香族 ジクロロメチル類( α , α,一ジクロロキシレン、ビスクロロメチルビフエ-ル等)との重 縮合物、ビスフエノール類と各種アルデヒドの重縮合物、アルコール類等をグリシジ ルイ匕したグリシジルエーテル系エポキシ榭脂、脂環式エポキシ榭脂、グリシジルアミ ン系エポキシ榭脂、グリシジルエステル系エポキシ榭脂等が挙げられる力 通常用い られるエポキシ榭脂であればこれらに限定されるものではな 、。これらは単独で用い てもよく、 2種以上を用いてもよい。
特に本発明の結晶状エポキシ榭脂に併用する場合、併用するエポキシ榭脂として は、結晶性のエポキシ榭脂で 90°C以上の軟ィ匕点ある!/、は融点を有するものが好まし ぐ 2種類以上を併用しても力まわない。具体的にはジャパンエポキシレジン (株)製 の YX— 4000、 日本化薬 (株)製の CER— 3000 (何れも商品名 )等のビキシレノール 型もしくはビフエノール型結晶エポキシ榭脂またはそれらの混合物;ビスフエノール S 型結晶エポキシ榭脂;ビスフエノールフルオレン型結晶エポキシ榭脂;ハイドロキノン 型結晶エポキシ榭脂;日産化学工業 (株)製の TEPIC (商品名)等の複素環式結晶 エポキシ榭脂等が挙げられる。し力しながらこれらに限定されるものではない。これら は単独で用いてもよぐ 2種以上を用いてもよい。
本発明のエポキシ榭脂組成物は、硬化剤を含有する。硬化剤としては、例えばアミ ン系化合物、酸無水物系化合物、アミド系化合物、フ ノール系化合物など下記 (a) 〜(e)の硬化剤が挙げられる。
(a)アミン系化合物としては例えばジァミノジフエ-ルメタン、ジエチレントリァミン、トリ エチレンテトラミン、ジアミノジフエニルスルホン、イソホロンジアミン等、
(b)酸無水物系化合物としては例えば無水フタル酸、無水トリメリット酸、無水ピロメリ ット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、 無水メチルナジック酸、へキサヒドロ無水フタル酸、メチルへキサヒドロ無水フタル酸 等、
(c)アミド系化合物としては例えばジシアンジアミド、若しくはリノレン酸の 2量体とェチ レンジァミンより合成されるポリアミド榭脂等、
(d)フ ノール系化合物としては例えば、
(i)多価フエノール類(ビスフエノール A、ビスフエノール F、ビスフエノール S、フルォレ ンビスフエノール、テルペンジフエノール、 4, 4'ージヒドロキシビフエニル、 2, 2'—ジ ヒドロキシビフエ-ル、 3, 3 ' , 5, 5,一テトラメチル一(1, 1,一ビフエ-ル)一 4, 4,一 ジオール、ハイドロキノン、レゾルシン、ナフタレンジオール、トリスー(4ーヒドロキシフ ェ -ル)メタン、 1, 1, 2, 2—テトラキス(4 ヒドロキシフエ-ル)ェタン等)、
(ii)フエノール類(例えば、フエノール、アルキル置換フエノール、ナフトール、アルキ ル置換ナフトール、ジヒドロキシベンゼン、ジヒドロキシナフタレン等)とアルデヒド類( ホルムアルデヒド、ァセトアルデヒド、ベンズアルデヒド、 p ヒドロキシベンズアルデヒ ド、 o ヒドロキシベンズアルデヒド、フルフラール等)、若しくはケトン類 (p ヒドロキシ ァセトフエノン、 o ヒドロキシァセトフエノン等)、若しくはジシクロペンタジェン、トリシ クロペンタジェン等のジェン類等との縮合により得られるフエノール榭脂、
(iii)上記フエノール類と置換ビフエ-ル類(4, 4,—ビス(クロルメチル) 1, 1,ービ フエ-ル、 4, 4,—ビス(メトキシメチル)—1, 1,—ビフエ-ル等)、若しくは置換フエ- ル類 { 1 , 4 ビス (クロロメチル)ベンゼン、 1, 4 ビス(メトキシメチル)ベンゼン、 1, 4 ビス (ヒドロキシメチル)ベンゼン等)等との重縮合により得られるフエノール榭脂、
(iv)上記フエノール類及び Z又は上記フエノール榭脂の変性物、
(V)テトラブロモビスフヱノール A、臭素化フエノール榭脂等のハロゲン化フエノール 類、
(e)その他イミダゾール類、 BF -アミン錯体、グァ-ジン誘導体、
3
これらは単独で用いてもよぐ 2種以上を用いてもょ 、。
[0041] 本発明のエポキシ榭脂組成物において硬化剤の使用量は、エポキシ榭脂のェポ キシ基 1当量に対して 0. 5〜2. 0当量力 子ましく、 0. 6〜1. 5当量が特に好ましい。
[0042] また本発明のエポキシ榭脂組成物には硬化促進剤を含有させることもできる。用い うる硬化促進剤としては、例えば、 2—メチルイミダゾール、 2—ェチルイミダゾール、 2 フエ-ルイミダゾール、 2 ェチルー 4ーメチルイミダゾール等のイミダゾール類、 2 —(ジメチルアミノメチル)フエノール、トリエチレンジァミン、トリエタノールァミン、 1, 8 ージァザビシクロ(5, 4, 0)ゥンデセン 7等の第 3級ァミン類、トリフエ-ルホスフィン 、ジフエ-ルホスフィン、トリブチルホスフィン等の有機ホスフィン類、ォクチル酸スズな どの金属化合物、テトラフエ-ルホスホ-ゥム'テトラフエ-ルポレート、テトラフエ-ル ホスホ-ゥム .ェチルトリフエ-ルポレート等のテトラ置換ホスホ-ゥム 'テトラ置換ボレ ート、 2 ェチルー 4 メチルイミダゾール'テトラフエ-ルポレート、 N メチルモルホ リン'テトラフエ-ルポレート等のテトラフェニルボロン塩などが挙げられる。硬化促進 剤を使用する場合の使用量はエポキシ榭脂 100重量部に対して 0. 01〜 15重量部 が必要に応じ用いられる。
[0043] 更に、本発明のエポキシ榭脂組成物には、必要に応じて無機充填剤ゃシランカツ プリング剤、離型剤、顔料等の種々の配合剤、各種熱硬化性榭脂を添加することが できる。無機充填材としては、結晶シリカ、溶融シリカ、アルミナ、ジルコン、珪酸カル シゥム、炭酸カルシウム、炭化ケィ素、窒化ケィ素、窒化ホウ素、ジルコユア、フォステ ライト、ステアタイト、スピネル、チタ-ァ、タルク等の粉体またはこれらを球形化したビ ーズ等が挙げられる力 これらに限定されるものではない。これらは単独で用いてもよ ぐ 2種以上を用いてもよい。
[0044] これら無機充填剤は、特に半導体封止材用のエポキシ榭脂組成物を得る場合、硬 化物の耐熱性、耐湿性、力学的性質などの面から、エポキシ榭脂組成物中で 80〜9 3%を占める割合で使用するのが好ましい。この場合、残部は本発明のエポキシ榭 脂、硬化剤及びその他の必要に応じて添加される添加剤であり、添加剤としてはそ の他のエポキシ榭脂及び、硬化促進剤等である。本発明のエポキシ榭脂は 1ないし 1 9%、好ましくは 2〜18%程度、更に好ましくは 3〜18%程度である。残部 1〜9%、 好ましくは 2〜7%が硬化剤及び必要に応じて添加されるその他の添加剤である。
[0045] 本発明のエポキシ榭脂組成物は、上記各成分を均一に混合することにより得られ、 好ま 、用途は半導体封止用である。本発明のエポキシ榭脂組成物は従来知られ ている方法と同様の方法で容易にその硬化物とすることが出来る。例えば、本発明の エポキシ榭脂と硬化剤、並びに必要により硬化促進剤及び無機充填剤、配合剤、各 種熱硬化性榭脂とを必要に応じて押出機、ニーダ、ロール等を用いて均一になるま で充分に混合して本発明のエポキシ榭脂組成物を得、そのエポキシ榭脂組成物を 溶融注型法あるいはトランスファー成型法やインジェクション成型法、圧縮成型法な どによって成型し、更にその融点以上で 2〜: LO時間に加熱することにより本発明の硬 化物を得ることが出来る。
[0046] また、本発明のエポキシ榭脂組成物は溶剤を含むワニスとすることもできる。本発明 のワニスは、本発明エポキシ榭脂、硬化剤及び必要に応じてその他の添加剤を含む 組成物をトルエン、キシレン、アセトン、メチルェチルケトン、メチルイソブチルケトン等 の有機溶剤に溶解又は均一〖こ分散させることにより得ることが出来る。溶剤の量はヮ ニス全体に対し通常 10〜70%、好ましくは 15〜65%である。本発明エポキシ榭脂 はワニス中に 10〜70%、好ましくは 20〜50%程度であり、残部が硬化剤及び必要 に応じてその他の添加剤である。本発明のワニスは、本発明エポキシ榭脂、硬化剤、 必要に応じてその他の添加剤及び溶剤を含む溶液に、更に無機充填剤を加えて、 無機充填剤を含むワニスとしてもよい。上記のようにして得られる本発明のワニスをガ ラス繊維、カーボン繊維、ポリエステル繊維、ポリアミド繊維、アルミナ繊維、紙などの 基材に含浸させ加熱乾燥することによりプリプレダを得ることが出来る。該プリプレダ を熱プレス成型して硬化物を得ることも出来る。
[0047] 本発明のエポキシ榭脂組成物の好ましい用途として半導体装置の封止剤材が挙 げられる。半導体装置としては、例えば DIP (デュアルインラインパッケージ)、 QFP ( クヮッドフラットパッケージ)、 BGA (ボールグリッドアレイ)、 CSP (チップサイズパッケ ージ)、 SOP (スモールアウトラインパッケージ)、 TSOP (シンスモールアウトラインパ ッケージ)、 TQFP (シンクヮッドフラットパッケージ)等が挙げられる。また本発明のェ ポキシ榭脂は着色が少なぐ光透過性にすぐれるため、光半導体封止装置へも利用 が可能である。本光半導体分野においては特に発光ダイオード (LED)、フォトトラン ジスタ、 CCD (荷電結合素子)、 UV— EPROMなどの EPROM等の光半導体素子( 半導体チップ)の封止に好適に使用できる。
[0048] 次に本発明のエポキシ榭脂を含有する光硬化性の榭脂組成物 (感光性榭脂組成 物)、好ましくは光'熱硬化性の榭脂組成物につき説明する。
本発明のエポキシ榭脂は、感光性榭脂組成物、好ましくは光 ·熱硬化性榭脂組成 物における信頼性を向上させるための硬化剤として使用することができる。
この場合、本発明のエポキシ榭脂は結晶状のエポキシ榭脂が好まし 、。
[0049] 該本発明の感光性榭脂組成物は、少なくとも本発明のエポキシ榭脂とエチレン性 不飽和基を有する化合物を含有するもので熱変性等が少なく、高性能半導体の封 止剤等として有用である。好ましい該感光性榭脂組成物は、本発明のエポキシ榭脂 、光重合開始剤及びエチレン性不飽和基を有する化合物、更に好ましくは、本発明 のエポキシ榭脂、アルカリ水溶液可溶性榭脂 (A)、架橋剤 (B)、光重合開始剤 (C) を含有する感光性榭脂組成物である。該感光性榭脂組成物は前記アルカリ水溶液 可溶性榭脂 (A)、架橋剤 (B)、光重合開始剤 (C)及び本発明のエポキシ榭脂を常 法により均一に混合することにより得ることが出来る。該感光性榭脂組成物は必要に 応じて前記の無機充填剤等を含有していてもよい。また、好ましい態様においては、 熱硬化触媒を含むものである。
好ま ヽ該感光性榭脂組成物は本発明のエポキシ榭脂、光重合開始剤及びェチ レン性不飽和基を有する化合物を含むものである。この場合の各成分の含有量は、 該 3者の合計に対して、本発明のエポキシ榭脂を 20〜80%、光重合開始剤を 10〜 70%、エチレン性不飽和基を有する化合物 10〜70%である。
より好まし!/ヽ該感光性榭脂組成物は本発明のエポキシ榭脂、アルカリ水溶液可溶 性樹脂 (A)、架橋剤 (B)、光重合開始剤 (C)を含有する感光性樹脂組成物である。 この場合、これらの 4者のそれぞれの含有割合は、これらの 4者の合計に対して、本 発明のエポキシ榭脂を 5〜60%、好ましくは 5〜40%、より好ましくは 10〜30%、ァ ルカリ水溶液可溶性榭脂 (A) 35〜80%、好ましくは 40〜75%、架橋剤(B) 3〜30 %、好ましくは 5〜20%、光重合開始剤を 2〜30%、好ましくは 4〜15%の範囲内で 、 4者の合計が 100%になるようにそれぞれを含有する。該組成物は更に無機充填 剤、溶剤等をを含んでいてもよい。
更に好ま ヽ感光性榭脂組成物は上記 4者に加えて、熱硬化触媒を含有する。 この場合、熱硬化触媒は上記 4者合計に対して、そと割で 0. 3〜5%、好ましくは 0. 5〜3%である。
本発明のエポキシ榭脂組成物において、本発明のエポキシ榭脂の含有量は内割り で通常 1〜50重量%、好ましくは 2〜30重量%である。
以下に、本発明の感光性榭脂組成物について説明する。
該感光性榭脂組成物に使用される本発明のエポキシ榭脂は前記したように結晶状 のものが好ましぐ特に融点が 140°C〜170°Cのものが好ましい。
光重合開始剤にっ 、ては、後記の光重合開始剤 (C)の項で説明する。 エチレン性不飽和基を有する化合物としては、特に限定されないが、(メタ)アクリル 基 (アクリル基又はメタアクリル基を意味する)を有する化合物が好まし 、。これらのィ匕 合物は特開 2004— 155916等に、アルカリ水溶液可溶性榭脂、架橋剤として開示さ れ、公知のものである。なお、本明細書において「(メタ)アクリル」の語はアクリル又は メタアクリルを意味するものとする)
以下に、感光性榭脂組成物の好ま ヽ態様に含まれる前記成分 (A)〜 (C)のそれ ぞれの成分につき具体的に説明する。
[0051] アルカリ水溶液可溶性榭脂 (A) ;
アルカリ水溶液で溶解除去可能な榭脂であれば特に限定なく使用することが出来 、従来公知のアルカリ水溶液可溶性榭脂は何れも使用できる。例えば分子中に 2個 以上のエポキシ基を有するエポキシ化合物(a)と分子中にエチレン性不飽和基を有 するモノカルボン酸ィ匕合物(b)とを反応させて得られるエポキシカルボキシレートイ匕 合物に、多塩基酸無水物(c)を反応させて得られる反応生成物 (カルボキシル基を 有するアルカリ水溶液可溶性榭脂)等であり、例えば、特開 2003— 21898等に詳し く記載されている。具体的には KAYARAD CCR- 1159H, KAYARAD PCR - 1169H, KAYARAD TCR— 1310H、 KAYARAD ZFR— 1401H、 KAYA RAD ZAR— 1395H (いずれも日本ィ匕薬株式会社製)等が挙げられる。
[0052] 架橋剤 (B) ;
従来公知の架橋剤は何れも使用できる。通常エチレン性不飽和基を有する多官能 性化合物が好ましぐ前記 (メタ)アクリル基と他の官能基を有する (メタ)アタリレートが 好ましい。具体的には KAYARAD HX— 220、 KAYARAD HX— 620、 KAYA RAD DPHA、 KAYARAD DPCA— 60 (V、ずれも日本化薬株式会社製)等が挙 げられる。
[0053] 光重合開始剤 (C) ;
従来公知の公知の光重合開始剤は何れも使用できる。例えばべンゾイン類、ァセト フエノン類、アントラキノン類、チォキサントン類、ケタール類、ベンゾフエノン類、ホス フィンオキサイド類等が挙げられ、具体的には KAYACURE DETX- S (日本ィ匕薬株式 会社製)、ィルガキュア 907 (チバスぺシャリティーケミカル)等が挙げられる。 [0054] さらに必要に応じて各種の添加剤、例えば、タルク、硫酸バリウム、水酸化アルミ- ゥム、酸ィ匕アルミニウム、シリカ、クレーなどの充填剤、好ましくは無機充填剤、ァエロ ジルなどのチキソトロピー付与剤;フタロシアニンブルー、フタロシアニングリーン、酸 化チタンなどの着色剤、シリコーン、フッ素系のレべリング剤や消泡剤;ハイドロキノン 、ノ、イドロキノンモノメチルエーテルなどの重合禁止剤などを組成物の諸性能を高め る目的で添加することが出来る。
充填剤の使用量は、前記 4者 (本発明のエポキシ榭脂、アルカリ水溶液可溶性榭脂( A)、架橋剤 (B)、光重合開始剤 (C) )を含むより好ましい感光性榭脂組成物におい て、これらの 4者の合計に対して、 0〜100%、好ましくは 0〜60%程度である。
[0055] 本発明の感光性榭脂組成物は必要に応じて溶剤を含有してもカゝまわない。使用可 能な溶剤としては、例えば、アセトン、ェチルメチルケトン、シクロへキサノン等のケト ン類、ベンゼン、トルエン、キシレン、テトラメチルベンゼン等の芳香族炭化水素類、 エチレングリコーノレジメチノレエーテノレ、エチレングリコーノレジェチノレエーテノレ、ジプロ ピレングリコールジメチルエーテル、ジプロピレングリコールジェチルエーテル、トリエ チレングリコールジメチルエーテル、トリエチレングリコールジェチルエーテル等のグ リコールエーテル類、酢酸ェチル、酢酸ブチル、メチルセ口ソルブアセテート、ェチル セロソルブアセテート、ブチルセ口ソルブアセテート、カルビトールアセテート、プロピ レングリコールモノメチルエーテルアセテート、グルタル酸ジアルキル、コハク酸ジァ ルキル、アジピン酸ジアルキル等のエステル類、 γ —ブチロラタトン等の環状エステ ル類、石油エーテル、石油ナフサ、水添石油ナフサ、ソルベントナフサ等の石油系溶 剤、などが挙げられるがこれらは単独で用いてもよぐ 2種以上併用してもよい。
溶剤の使用量は、前記 4者 (本発明のエポキシ榭脂、アルカリ水溶液可溶性榭脂( Α)、架橋剤 (Β)、光重合開始剤 (C) )を含むより好ましい感光性榭脂組成物におい て、これらの 4者の合計に対して、 0〜50%、好ましくは 0〜20%程度である。
[0056] 本発明のエポキシ榭脂組成物は、電子部品の層間の絶縁材、光部品間を接続す る光導波路やプリント基板用のソルダーレジスト、カバーレイ等のレジスト材料として 有用である他、カラーフィルター、印刷インキ、封止剤、塗料、コーティング剤、接着 剤等としても使用できる。 [0057] 本発明の感光性榭脂組成物は、紫外線等のエネルギー線照射により及び加熱操 作により硬化させることができる。紫外線等のエネルギー線照射による硬化は常法に より行うことができる。例えば紫外線を照射する場合、低圧水銀灯、高圧水銀灯、超 高圧水銀灯、キセノン灯、紫外線発光レーザー(エキシマーレーザー等)等の紫外線 発生装置を用いればよい。その後、必要に応じてさらに紫外線を照射し、次いで通 常 100〜20°C、好ましくは 140〜180°Cの温度で加熱処理をすることで本発明の硬 化物を得ることができる。
[0058] 本発明のエポキシ榭脂組成物の硬化物は、例えばレジスト膜、ビルドアップ工法用 の層間絶縁材ゃ光導波路としてプリント配線板、光電子基板や光基板のような電気' 電子'光基材に利用される。これらを使用した具体的な物品としては、例えば、コンビ ユーター、家電製品、携帯機器等が挙げられる。
[0059] 具体的には例えば光'熱硬化性の感光性榭脂組成物を使用して、プリント配線板 を製造する場合は、まず、プリント配線用基板に、スクリーン印刷法、スプレー法、口 ールコート法、静電塗装法、カーテンコート法等の方法により 0. 5〜160 /ζ πιの膜厚 で本発明の感光性榭脂組成物を塗布し、塗膜を通常 50〜110°C、好ましくは 60〜1 00°Cで乾燥させることにより、塗膜が形成させる。その後、ネガフィルム等の露光パタ ーンを形成したフォトマスクを通して塗膜に直接または間接に紫外線等の高工ネルギ 一線を通常 10〜2000miZcm2程度の強さで照射し、未露光部分を後述する現像 液を用いて、例えばスプレー、揺動浸漬、ブラッシング、スクラッピング等により現像 する。その後、必要に応じてさらに紫外線を照射し、次いで通常 100〜200°C、好ま しくは 140〜180°Cの温度で加熱処理をすることにより、金メッキ性に優れ、耐熱性、 耐溶剤性、耐酸性、密着性、屈曲性等の諸特性を満足する永久保護膜を有するプリ ント配線板が得られる。
[0060] 上記、現像に使用される、アルカリ水溶液としては水酸ィ匕カリウム、水酸ィ匕ナトリウム 、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、リン酸ナトリウ ム、リン酸カリウム等の無機アルカリ水溶液ゃテトラメチルアンモ -ゥムハイド口ォキサ イド、テトラエチルアンモ -ゥムハイド口オキサイド、テトラプチルアンモ -ゥムハイド口 オキサイド、モノエタノールァミン、ジエタノールァミン、トリエタノールァミン等の有機 アルカリ水溶液が使用できる。
[0061] 次に本発明を実施例により更に具体的に説明する力 以下において特に断りのな い限り「部」は重量部であり、「%」は重量%である。なお、軟化点、エポキシ当量は以 下の条件で測定した。
.軟化点
JIS K— 7234に記載された方法で測定した。
•エポキシ当量
JIS K— 7236に記載された方法で測定し、単位は gZeqである。
•融点: DSC法 (外揷点を融点とする)
Seiko Instruments Inc.製 EXSTAR6000
測定試料 2mg〜5mg 昇温速度 10°CZmin.
実施例 1
[0062] 温度計、冷却官、撹拌器を取り付けたフラスコに窒素ガスパージを施しながらダリオ キザールとフエノールの縮合物 (TEP— DF;旭有機材工業製;式( 1)の化合物濃度 98%以上、高速液体クロマトグラフィー (274nm)で検出;ゲルパーミエーシヨンクロ マトグラフィーでは 99%以上;以下同じ) 90部、ビフエ-ル型フエノールァラルキル榭 脂 10部(式(2)の Arがビフ -ル基 (主成分は 4, 4'一体)、 Rは全て水素原子、 n= 1. 41、水酸基当量 204gZeq. ) (カャハード™、 GPH65, 日本化薬 (株)製)、ェピ クロルヒドリン 429部、メタノール 80部を仕込み溶解させた。更に 70°Cに加熱しフレ 一ク状水酸ィ匕ナトリウム 38部を 90分かけて分割添加し、その後、更に 70°Cで 60分 間反応させた。反応終了後、水 135部で二回洗浄した後、得られた有機層から加熱 減圧下過剰のェピクロロヒドリン等を留去することで、本発明のエポキシ榭脂 (EP1) 1 45部(エポキシ当量 179gZeq.軟ィ匕点 181°C)が、ほぼ無色の榭脂状固体として 得られた。
実施例 2
[0063] 温度計、冷却官、撹拌器を取り付けたフラスコに窒素ガスパージを施しながらダリオ キザールとフエノールの縮合物 (TEP— DF ;旭有機材工業製) 90部、ビフエ-ル型 フエノールァラルキル榭脂 10部(式(2)の Arがビフエ-ル基(主成分は 4, 4'一体)、 Rは全て水素原子、 n= l. 41、水酸基当量 204gZeq. )、ェピクロルヒドリン 429部 、メタノール 80部を仕込み溶解させた。更に 70°Cに加熱しフレーク状水酸ィ匕ナトリウ ム 38部を 90分かけて分割添加し、その後、更に 70°Cで 60分間反応させた。反応終 了後、水 135部で二回洗浄を行い生成した塩などを除去した後、ジメチルスルホキシ ド 270咅をカロえ、カロ熱減圧下(約 70°C、 -0. 08MPa〜一 0. 09MPa)、携枠しな力 S ら、 3時間かけて、過剰のェピクロルヒドリン等を留去した。徐々に放冷しながらメタノ ール 150部を加え 15分撹拌した後、つづいて水 300部を徐々に加えた。この溶液を 減圧濾過することで目的とする結晶状エポキシ榭脂が得られた。さらにこの結晶をメ タノール 200部、さらに水 200部で十分洗浄し、乾燥することで本発明のエポキシ榭 脂 (EP2) (エポキシ当量 179gZeq.融点 161°C)が白色〜淡黄色の粉末状結晶 として 140部得られた。
実施例 3
[0064] 実施例 2にお 、てダリオキザールとフエノールの縮合物 (TEP— DF旭有機材工業 製)の使用量を 80部に、ビフヱ-ル型フヱノールァラルキル榭脂の使用量を 20部に 、ェピクロルヒドリンの使用量を 425部、フレーク状水酸ィ匕ナトリウムの使用量を 35部 とした以外は実施例 2と同様にしたところ、本発明のエポキシ榭脂 (EP3) (エポキシ 当量 182gZeq.融点 149°C)が白色〜淡黄色の粉末状結晶として 134部得られ た。
実施例 4
[0065] 実施例 2にお 、てダリオキザールとフエノールの縮合物 (TEP— DF旭有機材工業 製)の使用量を 90部に、ビフエ-ル型フエノールァラルキル榭脂をフエノールと p—キ シレノールとの縮合物であるフエ-ル型フエノールァラルキル榭脂(式(2)の Arがフエ -ル基、 Rは全て水素原子、 n= l. 37、水酸基当量 146gZeq. ) (特開昭 63— 238 129記載の方法に準じて合成)に、ェピクロルヒドリンを 436部、フレーク状水酸化ナ トリウムの使用量を 39部とした以外は実施例 2と同様にしたところ、本発明のエポキシ 榭脂 (EP4) (エポキシ当量 173gZeq.融点 153°C)が白色の粉末状結晶として 14 2部得られた。
実施例 5 [0066] 実施例 2にお 、てダリオキザールとフエノールの縮合物 (TEP— DF旭有機材工業 製)の使用量を 90部に、ビフエ-ル型フエノールァラルキル榭脂をフエノールノボラッ ク(明和化成工業株式会社製 軟化点 83°C、水酸基当量 106gZeq. )に、ェピクロ ルヒドリンを 455部、フレーク状水酸ィ匕ナトリウムの使用量を 40部とした以外は実施例 2と同様にしたところ、本発明のエポキシ榭脂(EP5) (エポキシ当量 172g/eq.融 点 159°C)が白色の粉末状結晶として 147部得られた。
実施例 6
[0067] 実施例 2にお 、てダリオキザールとフエノールの縮合物 (TEP— DF旭有機材工業 製)の使用量を 90部に、ビフエ-ル型フエノールァラルキル榭脂をビスフエノール Fに 、ェピクロルヒドリンを 460部、フレーク状水酸ィ匕ナトリウムの使用量を 40部とした以外 は実施例 2と同様にしたところ、本発明のエポキシ榭脂 (EP6) (エポキシ当量 172g /eq.融点 158°C)が白色の粉末状結晶として 144部得られた。
実施例 7
[0068] 実施例 2にお 、てダリオキザールとフエノールの縮合物 (TEP— DF旭有機材工業 製)の使用量を 90部に、ビフエ-ル型フエノールァラルキル榭脂をビスフエノール Sに 、ェピクロルヒドリンを 455部、フレーク状水酸ィ匕ナトリウムの使用量を 39部とした以外 は実施例 2と同様にしたところ、本発明のエポキシ榭脂 (EP7) (エポキシ当量 179g /eq.融点 160°C)が白色の粉末状結晶として 144部得られた。
[0069] 比較例 1
温度計、冷却官、撹拌器を取り付けたフラスコに窒素ガスパージを施しながらダリオ キザールとフエノールの縮合物 (TEP— DF ;旭有機材工業製) 100部、ェピクロルヒ ドリン 462部、メタノール 80部を仕込み溶解させた。更に 70°Cに加熱しフレーク状水 酸ィ匕ナトリウム 40部を 90分かけて分割添加し、その後、更に 70°Cで 60分間反応さ せた。反応終了後、水 150部で二回洗浄した後、得られた有機層から 200°Cで加熱 減圧下過剰のェピクロロヒドリン等を留去することでエポキシ榭脂 (EP8) 149部(ェポ キシ当量 168gZeq.軟ィ匕点 84°C)が無色の榭脂として得られた。
[0070] 比較例 2
温度計、滴下ロート、冷却管、撹拌器を取り付けたフラスコに窒素ガスパージを施し ながらグリオキザールとフエノールとの縮合物 99. 5部、ェピクロルヒドリン 460部、メタ ノール 100部を仕込み、撹拌下で約 70°Cまで昇温し、溶解させた。次いでフレーク 状水酸ィ匕ナトリウム 40部を 90分かけて分割添加し、その後、更に還流温度で 1時間 反応させた。反応終了後、水 250部を加えて水洗を行い生成した塩などを除去した 後、ジメチルスルホキシド 250部をカ卩え、加熱減圧下(約 70°C、 -0. 08MPa〜一 0 . 09MPa)、撹拌しながら、 3時間かけて、過剰のェピクロルヒドリン等を留去した。残 留溶液を 50°Cに保ちながらメタノール 100部をカ卩ぇ 15分撹拌した後、さらに 70°Cま で昇温し、水 500部を徐々にカ卩えた。室温まで冷却後減圧濾過することで、比較用 のエポキシ榭脂が得られた。さらにこの結晶をメタノール 100部、水 300部の混合溶 液で十分洗浄し、乾燥することでエポキシ榭脂 (EP9) (エポキシ当量 166g/eq. 融点 174°C)が粉末状結晶として 142部得られた。
実施例 8
[0071] (比較例 3を含む)
エポキシ榭脂として実施例 1で得られたエポキシ榭脂 (EP1) (実施例 8)又は比較 例 1で得られたエポキシ榭脂 (EP8) (比較例 3)を使用し、硬化剤としてフエノールノ ポラック (軟ィ匕点 83°C、水酸基当量 106gZeq)、硬化促進剤としてトリフエニルホスフ イン (TPP)を用いて表 1の「配合物の組成」の欄に示す重量比で配合し、トランスファ 一成型により榭脂成形体を調製し、 160°Cで 2時間、更に 180°Cで 8時間で硬化させ た。
[0072] このようにして得られた硬化物の物性を測定した結果を表 1に示す。
尚、物性値の測定は以下の方法で行った。
•ガラス転移温度 (TMA):真空理工 (株)製 TM— 7000
昇温速度 2°C/min.
•吸水率:直径 5cm X厚み 4mmの円盤状の試験片を 100°Cの水中で 72時間煮沸し た後の重量増加率 (%)
•IZOD衝撃試験: JIS K— 6911に記載の方法。
•K1C :JIS K— 6911に記載の方法。
[0073] [表 1] (表 1 )
配合物の組成
実施例 8 比較例 3 エポキシ樹脂 (E P 1 ) 1 0 0
エポキシ樹脂 (E P 8 ) 1 0 0 フエノールノポラック 5 9 6 3 T P P 1. 0 1. 0
硬化物の物性
実施例 8 比較例 3 ガラス転移点 (°C) 1 9 0 1 9 8 吸水率 (%) 1. 2 1. 9
I Z OD衝撃試験 (K J / ) 1 4 1 0 K 1 C (Nmm—1 5) 2 2 1 7
実施例 9
(比較例 4を含む)
エポキシ榭脂として実施例 2で得られたエポキシ榭脂 (EP2) (実施例 9)又はェピコ ート 1031S (ジャパンエポキシレジン製、テトラキスフエノールェタンタイプのエポキシ 榭脂 エポキシ当量 195gZeq.軟ィ匕点 92°C)と NC— 3000(日本ィ匕薬 (株)製、ビ フエ-ル型フエノールァラルキルタイプのエポキシ榭脂、一般式(2)において、 R=H 、八 =ビフエ-ル、 n=l. 75、エポキシ当量 271g/eq.軟化点 53°C)の重量比 9 : 1混合物 (EP10) (比較例 4)、硬化剤としてフエノールノボラック(軟化点 83°C、水 酸基当量 106gZeq;表 1中 PN)、硬化促進剤としてトリフエ-ルホスフィン (TPP)を カルビトールアセテート (表 2中; CA)に均一に分散、あるいは溶解させ、ワニスを調 製した。なお、ワニスの組成比は表 2の「ワニスの組成」の欄に部単位で示した。この ワニスの粘度を混合後 1時間後、および 70度 °Cで 10時間放置した後、 25°Cにおけ る粘度を測定した。結果を表 2の「ワニスの物性」の欄に示す。 [0075] [表 2]
(表 2 )
ヮニスの組成
実施例 9 比較例 4
E P 2 2 0
E P 1 0 2 0
P N 1 0 1 0
T P P 0 . 2 0 . 2
C A 3 0 3 0
つニスの物性
実施例 9 比較例 4 粘度
( 2 5 °Cにおける粘度 Zm P a · s )
1時間後 1 4 1 5 4 6
1 0時間後 1 7 0 1 1 3 7
2 4時間後 3 4 2 測定不能 実施例 10
[0076] (比較例 5を含む)
エポキシ榭脂として実施例 2で得られたエポキシ榭脂 (EP2) (実施例 10)又は比較 例 1で得られたエポキシ榭脂 (EP8) (比較例 5)、硬化剤としてフエノールノボラック( 軟化点 83°C、水酸基当量 106gZeq)、硬化促進剤としてトリフエ-ルホスフィン (TP P)を下記表 3の「配合物の組成の欄」に示される組成で配合し、トランスファー成型に より榭脂成形体を調製し、 160°Cで 2時間、更に 180°Cで 4時間、 200°Cで 1時間か けて硬化させた。この試験片のガラス転移点、および耐衝撃性を試験した結果を表 3 の「硬化物の物性」の欄に示した。
[0077] 尚、物性値の測定は前記同様、またピール強度は以下の方法で行った。 'ピール強度: JIS K— 6911に記載の方法,
[0078] [表 3]
(表 3)
配合物の組成
実施例 1 0 比較例 5 エポキシ樹脂 (Ε Ρ 1) 100
エポキシ樹脂 (Ε Ρ 8) 1 00 フエノールノポラック 59 63
Τ Ρ Ρ 1■ 0 1. 0
硬化物の物性
実施例 10 比較例 5 ガラス転移点 (°C) 1 99 205
I Z OD衝撃試験 (K J Zm) 16 1 1 ピール強度 (Cu, kN/m) 2. —3 1. _9 _
[0079] 以上の結果より、本発明の結晶性エポキシ榭脂を含有するエポキシ榭脂組成物は 、高い保存安定性を有することが確認できた。また得られたエポキシ榭脂の硬化物は 従来の 4官能のエポキシ榭脂に比べ、その靭性、密着性において大きく改善されたも のである。したがって本発明の結晶性エポキシ榭脂を含有するエポキシ榭脂組成物 の硬化物は、電気 ·電子部品用絶縁材料及び積層板 (プリント配線板など)や CFRP を始めとする各種複合材料、接着剤、塗料、レジスト材料等に使用する場合に極め て有用である。
実施例 11
[0080] (比較例 6を含む)
前記実施例 2得られたエポキシ榭脂 (EP2) (実施例 11)又は比較例 2で得られた エポキシ榭脂 (EP9) (比較例 6)を用い、表 4に示す配合割合で混合、 3本ロールミル で混練し、本発明のエポキシ榭脂組成物及び比較用エポキシ榭脂組成物を得た。こ れをスクリーン印刷法により、乾燥膜厚が 15〜25 mの厚さになるように約 10cm角 のプリント基板に塗布し塗膜を 80°Cの熱風乾燥器で 30分乾燥させた。次いで、紫外 線露光装置( (株)オーク製作所、型式 HMW— 680GW)を用い回路パターンの描 画されたマスクを通して紫外線を照射した。その後、 1%炭酸ナトリウム水溶液でスプ レー現像を行い、紫外線未照射部の榭脂を除去した。水洗乾燥した後、プリント基板 を 150°Cの熱風乾燥器で 60分加熱硬化反応させ硬化膜を得た。それらの結果を表 5に示す。なお、試験方法及び評価基準は次のとおりである。
[0081] タック性:基板に塗布した乾燥後の膜に脱脂綿をこすりつけ、膜のタック性を評価し た。
〇· · · ·脱脂綿は張り付かない。
X… ·脱脂綿の糸くずが、膜に張り付く。
[0082] 熱安定性: 80°Cでの乾燥時間を 30、 40、 50分で行った時の現像性を評価し、下 記の評価基準を使用した。現像時、完全にインキが除去され、現像できた時間で評 価を行った。
〇· · · · 60秒以内
Χ · · · · 60秒以上。
[0083] 解像性:乾燥後の塗膜に、 50 μ mのネガパターンを密着させ積算光量 300mjZc m2の紫外線を照射露光する。次に 1%の炭酸ナトリウム水溶液で 60秒間、 2. Okg/ cm2のスプレー圧で現像し、転写パターンを顕微鏡にて観察する。下記の基準を使 用した。
〇 · · · 'パターンエッジが直線で、解像されている。
X · · · '剥離もしくはパターンエッジがぎざぎざである。
[0084] 光感度:乾燥後の塗膜に、ステップタブレット 21段 (コダック社製)を密着させ積算 光量 500miZcm2の紫外線を照射露光する。次に 1%の炭酸ナトリウム水溶液で 60 秒間、 2. OkgZcm2のスプレー圧で現像し、現像されずに残った塗膜の段数を確認 する。
密着性:試験片に lmmの碁盤目を 100ケ作りセロハンテープ (R)によるピーリング 試験 (JIS K 5600-5-6)を行い、試験片へ密着しているレジストのマス数で評価した。 結果の記載は下記の基準を使用した。
Ο··· -100/100 異常なし
△ · · · · 100/100 ただし、角、エッジの部分に剥がれが見られる。
X ....≤99/100
[0085] 耐熱性:試験片にロジン系フラックスを塗布し 260°Cの半田槽に 5秒間浸漬した。こ れを 1サイクルとし、 3サイクル繰り返した。室温まで放冷した後、セロテープ™による ピーリング試験を行い、次の基準で評価した。
〇··· ·塗膜外観に異常がなぐフクレゃ剥離のないもの
△ · · · ·若干フクレゃ剥離のあるもの
X · · · '塗膜にフクレゃ剥離のあるもの
[0086] [表 4]
(表 4)
実施例 1 1 比較例 6 エポキシ樹脂 EP 2 1 1 , . 8
E P 9 1 1. 0 アルカリ水溶液可溶性樹脂
CCR- 1 1 59H * 1 46 . 5 46. 5 架橋剤
D PHA * 2 6 . 1 6. 1 光重合開始剤
ィルガキュア 907 * 3 4 . 5 4. 5
D E TX- S * 4 0 . 9 0. 9 熱硬化触媒
メラミン 0 . 8 0. 8 フィラー
硫酸バリゥム 24 . 2 24. 2 フタロシアニンブル一 0. 45 0. 45 添加剤
B YK- 354 * 5 0. 6 1 0. 39
K S - 66 * 6 1. 2 1 1. 2 1 溶剤
C A 4. 54 4. 54
*1 日本化薬製 :クレゾールノボラック型のアルカリ水溶液可溶性榭脂
*2 日本化薬製 :ジペンタエリスリトールポリアタリレート
*3 Vantico製 :2—メチルー(4 (メチルチオ)フエ-ル) 2 モルホ 日本化薬製 : 2, 4 ジェチルチオキサントン * 5 ビックケミー製:レべリング剤
* 6 信越化学製 :消泡剤
[表 5]
Figure imgf000037_0001
実施例 12
[0089] 実施例 2にお 、てダリオキザールとフエノールの縮合物 (TEP— DF旭有機材工業 製)の使用量を 80部に、ビフエ-ル型フエノールァラルキル榭脂をオルソクレゾール ノボラック(軟ィ匕点 81°C) 20部に、ェピクロルヒドリンを 455部、フレーク状水酸化ナ トリウムの使用量を 38部とした以外は実施例 2と同様にしたところ、本発明のエポキシ 榭脂(エポキシ当量 180gZeq.融点 145°C)が白色の粉末状結晶として 137部得 られた。
実施例 13
[0090] 実施例 2にお 、てダリオキザールとフエノールの縮合物 (TEP— DF旭有機材工業 製)の使用量を 70部に、ビフエ-ル型フエノールァラルキル榭脂をメタ、パラ混合タレ ゾールノボラック(旭有機材工業製 EP5000) 30部に、ェピクロルヒドリンを 455部、 フレーク状水酸ィ匕ナトリウムの使用量を 35部とした以外は実施例 2と同様にしたところ 、本発明のエポキシ榭脂(エポキシ当量 189g/eq.融点 162°C)が白色の粉末状 結晶として 137部得られた。
実施例 14 [0091] 温度計、冷却官、撹拌器を取り付けたフラスコに窒素ガスパージを施しながらダリオ キザールとフエノールの縮合物 (TEP— DF ;旭有機材工業製) 20部、ビスフエノール F80部、ェピクロルヒドリン 429部、メタノール 40部を仕込み溶解させた。更に 70°Cに 加熱しフレーク状水酸ィ匕ナトリウム 40部を 90分かけて分割添加し、その後、更に 70 °Cで 60分間反応させた。反応終了後、水 150部で 1回洗浄を行い生成した塩などを 除去した後、油層から加熱減圧下過剰のェピクロロヒドリン等を除去し、残留物に 45 0部のメチルイソブチルケトンに溶解させた。この溶液を 70度に加温した後、 30%水 酸ィ匕ナトリウム水溶液 7部を添加し、 1時間反応させた。ついで洗浄液が中性になる まで水洗を行い、油層から加熱減圧下、メチルイソプチルケトン等を留去することで エポキシ榭脂が 145部得られた。エポキシ当量は 163g/eq.、の液状のエポキシ榭 脂であった。 25°Cにおける粘度は 129Pa' s (E型粘度計)であった。
[0092] 比較例 7
ビスフエノール F型エポキシ榭脂(エポキシ当量 164gZeq.、 25°Cにおける粘度 3 590mPa- s 日本化薬製 製品名 RE— 404S)とテトラキスフエノールェタン型ェポ キシ榭脂(エポキシ当量 167gZeq.融点 173°C 日本化薬製 GTR— 1800)を 8 : 2の比で混合し、溶融させたところ、液状のエポキシ榭脂となった。 25°Cにおける粘 度は 198Pa · s (E型粘度計)であった。
[0093] 実施例 14、比較例 7で得られたエポキシ榭脂を比較すると、 V、ずれもテトラキスフエ ノールエタン型エポキシ榭脂とビスフエノール F型のエポキシ榭脂の比は 、ずれも 2: 8であるが本発明のエポキシ榭脂はその粘度を比較すると単純に混ぜたものに比べ (本比較例に使用したビスフエノール F型エポキシ榭脂は中でも低粘度な液状ェポキ シ榭脂であるのにもかかわらず)、非常に低粘度であることがわかる。
実施例 15
[0094] (比較例 8を含む)
実施例 14で得られた液状エポキシ榭脂 82部に対し、カャハード A— A (ビス 3 -ェ チル 4—ァミノフエ-ル)メタン 日本化薬株式会社製 アミン系硬化剤) 32部を均一 に混合し本発明のエポキシ榭脂組成物を得した。これを金型に注型し 120°Cで 2時 間、 150°Cで 3時間、 180°Cで 2時間硬化させることにより硬化物の試験片を得た。ま た同様にしてビスフエノール F型エポキシ榭脂 (RE— 304S 日本化薬製エポキシ榭 脂 エポキシ当量 172gZeq. )86部を使用し、いずれもカャハード A— A32部で 組成物を得、同様にして硬化した。得られた硬化物の試験片の DMA (動的粘弾性 測定装置)を用いてガラス転移温度を、 TMA (熱機械測定装置真空理工 (株)製 T M— 7000)を用いてガラス転移温度と線膨張率を測定し、曲げ強度を JIS K-691 1に準じて測定した。結果を下記表 Cに示す。
[0095] [表 6] 表 6
実施例 1 5 比較例 8
DMA ガラス転移点 (で) 1 6 5 1 4 1
TMA ガラス転移点 ( ) 1 3 0 1 1 9 線膨張率 α 1 (p pm) 6 8 7 5
a 2 ( p p m) 1 6 9 1 8 5
曲げ強度 (at 3 0で) (MP a) 1 3 5 1 2 2
(at 1 2 O :) (MP a) 5 6 2 通常のエポキシ榭脂と比較すると、ガラス転移点が向上し、その線膨張率が大幅に 低下して 、ることから、耐熱性に優れるエポキシ榭脂であると言える。
実施例 16
[0096] 温度計、滴下ロート、冷却管、撹拌器を取り付けたフラスコに窒素ガスパージを施し ながらダリオキザールとフエノールとの縮合物 {内 1, 1, 2, 2—テトラキス(4ーヒドロキ シフエ-ル)ェタン含有量 98面積0 /0(HPLC UV274nmで検出) 旭有機材工業 株式会社製 TEP— DF}95部、ビフエニル型フエノールァラルキル榭脂 5部(式(2) の Arがビフヱ-ル基(主成分は 4, 4'一体)、 Rは全て水素原子、 n=l.39 水酸基 当量 202g/eq. 日本化薬株式会社製 カャハード™GPH65)、ェピクロルヒドリン 555部、メタノール 110部を仕込み撹拌下で還流温度まで昇温し、溶解させた。次い でフレーク状水酸ィ匕ナトリウム 40部を 100分かけて分割添加し、その後、更に還流温 度で 1時間反応させた。反応終了後、水 150部を加えて水洗を 2回行い、生成した塩 などを除去することでエポキシ榭脂反応液を得た。徐々に温度、減圧度を上げ、最 終的に約 70°C、約 0. 08MPaとし、榭脂濃度が約 80重量%になるまでェピクロ口 ヒドリン等を留去した。得られた溶液にアセトン 200部を加え、さらに 25°Cのイオン交 換水 170部を加えることで結晶分散溶液を得た。さらに、徐々に温度、減圧度を上げ 、最終的に約 80°C、約— 0. 09MPaになるように調節し、溶剤の流出が見られなくな るまで溶剤を留去した。さらに約 120°C、約— 0. 095MPaまで条件を厳しくし、 12時 間乾燥工程を行った。このようにして目的とする結晶エポキシ榭脂が 149部得られた 。得られたエポキシ榭脂のエポキシ当量は 169gZeq.であり、その融点は 165°Cで めつに。
産業上の利用可能性
本発明のエポキシ榭脂の硬化物は、従来のテトラキスフエノールエタンをグリシジル 化して得られるエポキシ榭脂の硬化物と同等な耐熱性を示すと共に、もろさ、耐水性 等も改善される。また、結晶状の本発明のエポキシ榭脂を配合した熱硬化性榭脂組 成物、あるいは光 ·熱硬化性榭脂組成物で形成した硬化膜は、従来のものに比して 、密着性等の点で優れ、封止剤等として電気'電子材料、成型材料、注型材料、積 層材料、塗料、接着剤、レジスト、光学材料などの広範囲の用途に極めて有用である

Claims

請求の範囲 [1] (a)フエノール類とダリオキサールの縮合物であって、式(1)
[化 1]
Figure imgf000041_0001
(式中、 Rはそれぞれ独立して水素原子、炭素数 1〜15の炭化水素基またはトリフル ォロメチル基を表す。)で表される化合物を 80% (ゲルパーミエーシヨンクロマトグラフ ィ一による面積%)以上含有するフエノール類縮合物と (b) (a)以外のフエノール類、 あるいはフエノール榭脂の混合物をグリシジルイ匕して得られるエポキシ榭脂。
[2] 成分 (b)がフエノールァラルキル榭脂である請求項 1に記載のエポキシ榭脂。
[3] 形状が結晶粉末であることを特徴とする請求項 1又は 2のいずれか一項に記載のェ ポキシ榭脂。
[4] 融点が 80〜 170°Cである請求項 3に記載のエポキシ榭脂。
[5] 成分 (a)と成分 (b)の混合物全体に対して、成分 (b)が占める割合が 25重量%以下 である請求項 1〜4いずれか一項に記載のエポキシ榭脂。
[6] 成分 (b)がビフエ-ル型フエノールァラルキル榭脂である請求項 1〜5の!、ずれか 1 項に記載のエポキシ榭脂。
[7] 請求項 1に記載の成分 (a)と成分 (b)の混合物をェピノ、ロヒドリンでグリシジルイ匕する ことを特徴とするエポキシ榭脂の製造法。
[8] 成分 (a)と成分 (b)の合計量に対して、成分 (a)が 65〜95重量%であり、成分 (b)が 35〜5重量%である混合物をェピノ、ロヒドリンでグリシジルイ匕し、得られた反応液から 、エポキシ榭脂結晶を析出させることを特徴とする請求項 7に記載のエポキシ榭脂の
[9] エポキシ榭脂結晶の析出のために、水を添加することを特徴とする請求項 8に記載 のエポキシ榭脂の製造法。
[10] エポキシ榭脂結晶を析出させて得られる結晶分散溶液から、該分散液中に含まれる 溶剤類を留去し、エポキシ榭脂結晶を得ることを特徴とする請求項項 7〜9の!ヽずれ か一項に記載のエポキシ榭脂の製造法。
[11] 請求項 1〜6のいずれか 1項に記載のエポキシ榭脂及び硬化剤を含有することを特 徴とするエポキシ榭脂組成物。
[12] 請求項 11に記載のエポキシ榭脂組成物を硬化した硬化物。
[13] 請求項 1〜6のいずれか 1項に記載のエポキシ榭脂及びエチレン性不飽和基を有す る化合物を含有することを特徴とするエポキシ榭脂組成物。
[14] 成分 (a)と成分 (b)の混合物全体に対して、成分 (b)が占める割合が 35重量%以下 である請求項 1〜4いずれか一項に記載のエポキシ榭脂。
PCT/JP2005/011670 2004-06-25 2005-06-24 エポキシ樹脂、エポキシ樹脂組成物及びその硬化物 WO2006001395A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US11/629,313 US20080021173A1 (en) 2004-06-25 2005-06-24 Epoxy Resin, Epoxy Resin Composition And Cured Product Thereof
KR1020067027673A KR20070034534A (ko) 2004-06-25 2005-06-24 에폭시 수지, 에폭시 수지 조성물 및 그의 경화물
TW094121119A TWI369368B (en) 2004-06-25 2005-06-24 Epoxy resin, epoxy resin composition and cured object thereof
CA002570409A CA2570409A1 (en) 2004-06-25 2005-06-24 Epoxy resin, epoxy resin composition and cured product thereof
EP05753292A EP1760101A1 (en) 2004-06-25 2005-06-24 Epoxy resin, epoxy resin composition and cured product thereof
JP2006528643A JP5284586B2 (ja) 2004-06-25 2005-06-24 エポキシ樹脂、エポキシ樹脂組成物及びその硬化物

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-188844 2004-06-25
JP2004188841 2004-06-25
JP2004188844 2004-06-25
JP2004-188841 2004-06-25

Publications (1)

Publication Number Publication Date
WO2006001395A1 true WO2006001395A1 (ja) 2006-01-05

Family

ID=35781837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/011670 WO2006001395A1 (ja) 2004-06-25 2005-06-24 エポキシ樹脂、エポキシ樹脂組成物及びその硬化物

Country Status (7)

Country Link
US (1) US20080021173A1 (ja)
EP (1) EP1760101A1 (ja)
JP (1) JP5284586B2 (ja)
KR (1) KR20070034534A (ja)
CA (1) CA2570409A1 (ja)
TW (1) TWI369368B (ja)
WO (1) WO2006001395A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009019114A (ja) * 2007-07-12 2009-01-29 Nitto Denko Corp 半導体封止用エポキシ樹脂組成物およびそれを用いた半導体装置
JP2013507482A (ja) * 2009-10-07 2013-03-04 ダウ グローバル テクノロジーズ エルエルシー 固体エポキシ樹脂中の不純物の減少法
JP2013181124A (ja) * 2012-03-02 2013-09-12 Sumitomo Bakelite Co Ltd 一液型エポキシ樹脂組成物、硬化物、モータ及び発電機
JP2014210859A (ja) * 2013-04-19 2014-11-13 日本化薬株式会社 エポキシ樹脂ワニス、エポキシ樹脂組成物、硬化性シート、プリプレグ、積層板、プリント配線板および半導体装置
WO2015072123A1 (ja) * 2013-11-12 2015-05-21 Jfeケミカル株式会社 フェノール樹脂組成物、エポキシ樹脂組成物およびエポキシ樹脂硬化物
JP2017206690A (ja) * 2016-05-12 2017-11-24 長春人造樹脂廠股▲分▼有限公司 ポリフェノール縮合物及びそのエポキシ樹脂
JP2018003024A (ja) * 2013-11-12 2018-01-11 Jfeケミカル株式会社 エポキシ樹脂硬化物の中間体
US11015818B1 (en) 2020-09-18 2021-05-25 The Gritchie Kitchen Company Limited Table having a heating appliance

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080204418A1 (en) * 2007-02-27 2008-08-28 Adam Cybart Adaptable User Interface and Mechanism for a Portable Electronic Device
JP4349424B2 (ja) * 2007-03-13 2009-10-21 セイコーエプソン株式会社 カラーフィルター用インク、カラーフィルター、画像表示装置、および、電子機器
US8902152B2 (en) * 2007-04-30 2014-12-02 Motorola Mobility Llc Dual sided electrophoretic display
US8077154B2 (en) * 2007-08-13 2011-12-13 Motorola Mobility, Inc. Electrically non-interfering printing for electronic devices having capacitive touch sensors
CN102027400B (zh) * 2008-05-13 2016-03-30 日立化成工业株式会社 光波导的制造方法及光波导
US20140099456A1 (en) * 2012-10-09 2014-04-10 Venkatkrishna Raghavendran Fiber reinforced polymer strengthening system
WO2015063692A1 (en) * 2013-10-31 2015-05-07 Sabic Global Technologies B.V. Process for making axially fluorinated-phthalocyanines and their use in photovoltaic applications
EP4323589A1 (en) * 2021-04-11 2024-02-21 P.R.S Geo Tech Technologies Ltd. Cellular confinement system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63275626A (ja) * 1987-05-08 1988-11-14 Ube Ind Ltd エポキシ樹脂組成物
JPH02219812A (ja) * 1989-02-21 1990-09-03 Hitachi Ltd 熱硬化性樹脂組成物及びそれを用いたコイル、パネル
JPH02238018A (ja) * 1989-03-13 1990-09-20 Yuka Shell Epoxy Kk 封止用エポキシ樹脂組成物
JPH05155978A (ja) * 1991-12-06 1993-06-22 Nippon Kayaku Co Ltd 高純度エポキシ樹脂の製造法
JP2004010877A (ja) * 2002-06-12 2004-01-15 Nippon Kayaku Co Ltd 結晶性エポキシ樹脂、及びその製法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4023594B2 (ja) * 2002-07-09 2007-12-19 日本化薬株式会社 エポキシ樹脂組成物、及びその硬化物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63275626A (ja) * 1987-05-08 1988-11-14 Ube Ind Ltd エポキシ樹脂組成物
JPH02219812A (ja) * 1989-02-21 1990-09-03 Hitachi Ltd 熱硬化性樹脂組成物及びそれを用いたコイル、パネル
JPH02238018A (ja) * 1989-03-13 1990-09-20 Yuka Shell Epoxy Kk 封止用エポキシ樹脂組成物
JPH05155978A (ja) * 1991-12-06 1993-06-22 Nippon Kayaku Co Ltd 高純度エポキシ樹脂の製造法
JP2004010877A (ja) * 2002-06-12 2004-01-15 Nippon Kayaku Co Ltd 結晶性エポキシ樹脂、及びその製法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009019114A (ja) * 2007-07-12 2009-01-29 Nitto Denko Corp 半導体封止用エポキシ樹脂組成物およびそれを用いた半導体装置
JP2013507482A (ja) * 2009-10-07 2013-03-04 ダウ グローバル テクノロジーズ エルエルシー 固体エポキシ樹脂中の不純物の減少法
JP2013181124A (ja) * 2012-03-02 2013-09-12 Sumitomo Bakelite Co Ltd 一液型エポキシ樹脂組成物、硬化物、モータ及び発電機
JP2014210859A (ja) * 2013-04-19 2014-11-13 日本化薬株式会社 エポキシ樹脂ワニス、エポキシ樹脂組成物、硬化性シート、プリプレグ、積層板、プリント配線板および半導体装置
KR101787302B1 (ko) * 2013-11-12 2017-10-18 제이에프이 케미칼 가부시키가이샤 페놀 수지 조성물, 에폭시 수지 조성물 및 에폭시 수지 경화물
JP2015117360A (ja) * 2013-11-12 2015-06-25 Jfeケミカル株式会社 フェノール樹脂組成物、エポキシ樹脂組成物およびエポキシ樹脂硬化物
WO2015072123A1 (ja) * 2013-11-12 2015-05-21 Jfeケミカル株式会社 フェノール樹脂組成物、エポキシ樹脂組成物およびエポキシ樹脂硬化物
JP2018003024A (ja) * 2013-11-12 2018-01-11 Jfeケミカル株式会社 エポキシ樹脂硬化物の中間体
US10351660B2 (en) 2013-11-12 2019-07-16 Jfe Chemical Corporation Phenolic resin composition, epoxy resin composition, and cured epoxy resin
JP2017206690A (ja) * 2016-05-12 2017-11-24 長春人造樹脂廠股▲分▼有限公司 ポリフェノール縮合物及びそのエポキシ樹脂
JP2021138717A (ja) * 2016-05-12 2021-09-16 長春人造樹脂廠股▲分▼有限公司Chang Chun Plastics Co., Ltd. ポリフェノール縮合物及びそのエポキシ樹脂
JP7245867B2 (ja) 2016-05-12 2023-03-24 長春人造樹脂廠股▲分▼有限公司 ポリフェノール縮合物及びそのエポキシ樹脂
JP7385342B2 (ja) 2016-05-12 2023-11-22 長春人造樹脂廠股▲分▼有限公司 ポリフェノール縮合物及びそのエポキシ樹脂
US11015818B1 (en) 2020-09-18 2021-05-25 The Gritchie Kitchen Company Limited Table having a heating appliance

Also Published As

Publication number Publication date
EP1760101A1 (en) 2007-03-07
TWI369368B (en) 2012-08-01
US20080021173A1 (en) 2008-01-24
KR20070034534A (ko) 2007-03-28
JP5284586B2 (ja) 2013-09-11
TW200610773A (en) 2006-04-01
CA2570409A1 (en) 2006-01-05
JPWO2006001395A1 (ja) 2008-04-17

Similar Documents

Publication Publication Date Title
WO2006001395A1 (ja) エポキシ樹脂、エポキシ樹脂組成物及びその硬化物
JP6212227B2 (ja) エポキシ樹脂、エポキシ樹脂組成物、感光性樹脂組成物およびその硬化物
JP6240069B2 (ja) エポキシ樹脂組成物、およびその硬化物、並びに、硬化性樹脂組成物
JP6366504B2 (ja) エポキシ樹脂、エポキシ樹脂組成物および硬化物
JP2010001427A (ja) エポキシ樹脂、エポキシ樹脂組成物、およびその硬化物
JP5127164B2 (ja) 変性エポキシ樹脂、エポキシ樹脂組成物、およびその硬化物
JP2008195843A (ja) フェノール樹脂、エポキシ樹脂、エポキシ樹脂組成物、およびその硬化物
JP5142180B2 (ja) エポキシ樹脂組成物、およびその硬化物
WO2010052877A1 (ja) フェノール樹脂混合物、エポキシ樹脂混合物、エポキシ樹脂組成物、及び硬化物
JP5127160B2 (ja) エポキシ樹脂、硬化性樹脂組成物、およびその硬化物
WO2015119188A1 (ja) エポキシ樹脂、硬化性樹脂組成物およびその硬化物
JP4915895B2 (ja) エポキシ樹脂の製造法
JP6016647B2 (ja) エポキシ樹脂、および硬化性樹脂組成物
JP4915896B2 (ja) エポキシ樹脂の製造法
JP5220488B2 (ja) エポキシ樹脂、エポキシ樹脂組成物、およびその硬化物
JP2008081546A (ja) エポキシ樹脂、エポキシ樹脂組成物及びその硬化物
JP2006213823A (ja) 耐熱性エポキシ樹脂組成物
JP2021031523A (ja) 硬化性樹脂組成物およびその硬化物
JP2010053293A (ja) エポキシ樹脂組成物
JP2011148855A (ja) フェノール樹脂、エポキシ樹脂、エポキシ樹脂組成物、およびその硬化物
JP2005200544A (ja) フェノール樹脂、エポキシ樹脂、エポキシ樹脂組成物及びその硬化物
JP2014141688A (ja) フェノール樹脂、エポキシ樹脂、エポキシ樹脂組成物、およびその硬化物
JP2007045978A (ja) エポキシ樹脂、エポキシ樹脂組成物、およびその硬化物
JP2007284583A (ja) エポキシ樹脂、硬化性樹脂組成物、およびその硬化物
JP2006307013A (ja) 液状エポキシ樹脂、エポキシ樹脂組成物およびその硬化物

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006528643

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005753292

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11629313

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2570409

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 200580020580.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020067027673

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2005753292

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067027673

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 11629313

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2005753292

Country of ref document: EP