WO2005116629A1 - アミノ官能性化合物の分析方法及び装置 - Google Patents

アミノ官能性化合物の分析方法及び装置 Download PDF

Info

Publication number
WO2005116629A1
WO2005116629A1 PCT/JP2005/009618 JP2005009618W WO2005116629A1 WO 2005116629 A1 WO2005116629 A1 WO 2005116629A1 JP 2005009618 W JP2005009618 W JP 2005009618W WO 2005116629 A1 WO2005116629 A1 WO 2005116629A1
Authority
WO
WIPO (PCT)
Prior art keywords
derivative
amino
acid
functional
compound
Prior art date
Application number
PCT/JP2005/009618
Other languages
English (en)
French (fr)
Inventor
Kazutaka Shimbo
Takashi Ohnuki
Hiroshi Miyano
Original Assignee
Ajinomoto Co., Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co., Inc. filed Critical Ajinomoto Co., Inc.
Priority to JP2006513925A priority Critical patent/JP5030586B2/ja
Priority to EP05743616.4A priority patent/EP1750126B1/en
Publication of WO2005116629A1 publication Critical patent/WO2005116629A1/ja
Priority to US11/563,324 priority patent/US7494815B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6806Determination of free amino acids
    • G01N33/6809Determination of free amino acids involving fluorescent derivatizing reagents reacting non-specifically with all amino acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
    • G01N2030/8813Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample biological materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
    • G01N2030/8813Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample biological materials
    • G01N2030/8818Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample biological materials involving amino acids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/14Heterocyclic carbon compound [i.e., O, S, N, Se, Te, as only ring hetero atom]
    • Y10T436/145555Hetero-N
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/24Nuclear magnetic resonance, electron spin resonance or other spin effects or mass spectrometry

Definitions

  • the present invention provides a method for analyzing amino-functional compounds such as amino acids, peptides, and amino acid analogs by liquid chromatography Z mass spectrometry (LCZMS) quickly, simply, and with high sensitivity, and an apparatus therefor. Etc.
  • LCZMS liquid chromatography Z mass spectrometry
  • Amino acids in a living body are useful for identifying diseases such as amino acid metabolism disorders. For example, it is used for diagnosing congenital amino acid metabolism disorders, determining the severity of liver dysfunction and indices for treatment, and ascertaining the condition of patients with poor nutrition.
  • diseases such as amino acid metabolism disorders.
  • it is used for diagnosing congenital amino acid metabolism disorders, determining the severity of liver dysfunction and indices for treatment, and ascertaining the condition of patients with poor nutrition.
  • palin, leucine, and isoleucine are called branched-chain amino acids (BCAAs), and their synthesis is reduced in severe liver diseases such as fulminant hepatitis and liver failure.
  • phenylalanine which is an aromatic amino acid (AAA)
  • AAA aromatic amino acid
  • the ratio of BCAAZAAA which is the ratio of the two, is low, and the degree reflects the severity of liver disease.
  • the BCAAZAAA ratio is generally called the Fischer ratio (Fischer ratio), and has been conventionally used for determining the severity of liver disease (for example, see Non-Patent Document 1). It is known that in diabetics, pheninolealanine, tyrosine, isoleucine, leucine, and parin increase and alanine decreases (for example, see Non-Patent Document 2).
  • an amino acid analyzer based on post-column derivatization is often used.
  • ninhydrin color development is usually performed after amino acids are separated by a cation exchange column, but the disadvantage is that the analysis time is long.
  • the analysis time of the standard analysis method for about 20 types of amino acids of protein hydrolyzate has been reduced to about 20 minutes by devising the separation column and the flow rate of the buffer solution. 1).
  • an amino acid analysis method based on a precolumn derivatization reaction is also being actively studied.
  • amino acid analogs in living organisms that are not only protein constituent amino acids.
  • Typical examples are taurine, O-phosphoethanolamine, hydroxyproline, methionine sulfoxide, sarcosine, a -aminoadipic acid, citrulline, a-amino-n-butyric acid, pipecolic acid, homocystin, homocitrulline, and aroisoleucine.
  • amino-functional conjugates amino acids and amino acid analogs (collectively called amino-functional conjugates) by a cation exchange column and performs ninhydrin coloring
  • the analysis time of the 41 components of these amino-functional compounds is at least 60 minutes, and that of the 53 components is 148 minutes.
  • Such a long analysis time is one of the major factors hindering the study of the physiological function of amino acids. Even if new findings linking amino acids to health and disease are discovered, such information cannot be used effectively with such processing capabilities.
  • Patent Document 1 JP-A-2002-243715
  • Patent Document 2 International Publication No. 03Z069328 pamphlet
  • Patent Document 3 JP 2002-71660 A
  • Non-Patent Document 1 Fischer JE and five others, "Surgery" July 1976, Vol. 80, p. 77-91
  • Non-Patent Document 2 Furigsch (Felig P) and three others, ⁇ Diabetes '', 1970, October, Vol. 19, p. 727-728
  • the present invention provides various kinds of amino acids and their derivatives contained in living bodies, and amino acids
  • An object of the present invention is to provide a method and an apparatus for analyzing an amino-functional conjugate containing a similar substance extremely quickly, conveniently and with high sensitivity as compared with the conventional method.
  • the present inventors have made various improvements and optimizations of a method for analyzing an amino-functional compound by LCZMS. That is, a plurality of amino-functional conjugates, which are difficult to separate and detect due to the same mass in mass spectrometry, are separated and eluted in advance by liquid chromatography, and subsequently, analyzed by mass spectrometry.
  • the present inventors have found that various kinds of amino-functional conjugates can be analyzed very quickly, easily and with high sensitivity by separation and detection, thereby completing the present invention.
  • the present invention provides a method for reacting an amino-functional conjugate in a sample containing the amino-functional conjugate with a derivatizing reagent to provide an amino-functional compound represented by the following general formula (I):
  • a step of generating a compound derivative a step of eluting the amino-functional compound derivative by liquid chromatography using a stepwise concentration gradient elution means, and a step of eluted with the amino-functional compound derivative eluted by the liquid chromatography
  • a method for analyzing amino-functional conjugates which comprises the step of detecting the amino-functional compounds by mass spectrometry.
  • Ar represents a hydrocarbon which may have a substituent, or a substituent containing an aromatic carbon ring or a heterocyclic ring
  • R represents a hydrogen atom or an alkyl which may have a substituent.
  • a saturated or unsaturated alkyl group which may have a substituent or
  • an amino-functional compound in a sample is reacted with a derivative to produce an amino-functional compound derivative represented by the above general formula (I).
  • the method of the present invention about 40 types of typical biological amino-functional conjugates can be analyzed in a short time, for example, within 10 minutes. The analysis time can be significantly reduced. In the past, simultaneous analysis of amino acids with the same mass, such as leucine and isoleucine, was difficult by mass spectrometry alone. According to the method of the present invention, more than 100 amino functional groups containing these biological amino acids It is possible to analyze the conjugated product simultaneously and in a very short time.
  • FIG. 1 shows a typical reaction formula for producing an amino-functional compound derivative in the method of the present invention.
  • FIG. 2 shows a typical example of a stepwise concentration gradient elution pattern of liquid chromatography in the method of the present invention.
  • FIG. 3 is a configuration diagram of an analyzer for an amino-functional conjugate according to one embodiment of the present invention.
  • FIG. 4 (a) is a chromatogram showing the results of analyzing 40 kinds of amino-functional conjugates in Example 2 of Analysis: Analysis Example 1.
  • FIG. 4 (b) is a chromatogram showing the results of analyzing 40 kinds of amino-functional conjugates in Example 2 of Analysis: Analysis Example 1.
  • FIG. 4 (c) is a chromatogram showing the results of analyzing 40 kinds of amino-functional conjugates in Example 2: Analysis Example 1.
  • FIG. 5 (a) is a chromatogram showing the results of analyzing 40 kinds of amino-functional conjugates in Example 3: Analysis Example 2.
  • FIG. 5 (b) is a chromatogram showing the results of analyzing 40 kinds of amino-functional conjugates in Example 3: Analysis Example 2.
  • Example 3 In Example 2, 40 kinds of amino-functional conjugates were analyzed. It is a chromatogram showing a result.
  • Example 4 is a chromatogram showing the results of analyzing 39 kinds of amino-functional conjugates in Analysis Example 3.
  • Example 4 is a chromatogram showing the results of analyzing 39 kinds of amino-functional conjugates in Analysis Example 3.
  • Example 4 is a chromatogram showing the results of analyzing 39 kinds of amino-functional conjugates in Analysis Example 3.
  • Example 5 A chromatogram showing the results of analyzing 39 kinds of amino-functional conjugates in Analysis Example 4.
  • Example 5 A chromatogram showing the results of analyzing 39 kinds of amino-functional conjugates in Analysis Example 4.
  • Example 5 A chromatogram showing the results of analyzing 39 kinds of amino-functional conjugates in Analysis Example 4.
  • Example 6 A chromatogram showing the results of analyzing 39 kinds of amino-functional conjugates in Analysis Example 5.
  • Example 6 A chromatogram showing the results of analyzing 39 kinds of amino-functional conjugates in Analysis Example 5.
  • Example 6 A chromatogram showing the results of analyzing 39 kinds of amino-functional conjugates in Analysis Example 5.
  • Example 7 of Example This is a chromatogram showing the result of analyzing 17 types of aminofunctional conjugates in Analysis Example 6.
  • FIG. 10 (a) is a chromatogram showing the results of analyzing 106 types of amino-functional compounds in Example 9 of Analysis: Analysis example 7.
  • FIG. 10 (b) is a chromatogram showing the results of analyzing 106 kinds of amino-functional compounds in Example 9 of Analysis: Analysis example 7.
  • FIG. 10 (c) is a chromatogram showing the results of analyzing 106 types of amino-functional compounds in Example 9: Analysis example 7.
  • Example 9 In analysis example 7, 106 kinds of amino-functional compounds were analyzed. 5 is a chromatogram showing the results.
  • FIG. 10 (e) is a chromatogram showing the result of analyzing 106 kinds of amino-functional compounds in Example 9 of Analysis: Analysis example 7.
  • FIG. 11 (a) is a chromatogram showing the result of analyzing 38 kinds of amino-functional compounds in Example 10 of Analysis: Analysis Example 8.
  • FIG. 11 (b) is a chromatogram showing the result of analyzing 38 kinds of amino-functional compounds in Example 10 of Analysis: Analysis Example 8.
  • FIG. 11 (c) is a chromatogram showing the result of analyzing 38 kinds of amino-functional compounds in Example 10 of Analysis: Analysis Example 8.
  • FIG. 12 (a) is a chromatogram showing the result of analyzing 39 kinds of amino-functional compounds in Example 12 of Analysis: Analysis Example 9.
  • FIG. 12 (b) is a chromatogram showing the result of analyzing 39 kinds of amino-functional compounds in Example 12 of Analysis: Analysis Example 9.
  • FIG. 12 (c) is a chromatogram showing the result of analyzing 39 kinds of amino-functional compounds in Example 12 of Analysis: Analysis Example 9.
  • amino-functional conjugate means a compound having a primary amine and Z or a secondary amine in a molecule (which may be in the form of a salt).
  • the amine ⁇ secondary amine may be one or more.
  • the amino-functional compound present in the sample may be one kind or a mixture of plural kinds.
  • amines primary Amines, secondary amines, etc.
  • amino acids amino acids, peptides, proteins, polyamines and the like, and specifically include those shown in Table 1 below.
  • a plurality of such compounds may be contained. Examples thereof include a mixture of a plurality of amino acids, a mixture of one or more amino acids and one or more peptides, and a mixture of one or more amino acids and one or more amines.
  • derivatizing reagent refers to a reagent capable of reacting with the amino-functional conjugate to produce an amino-functional conjugate derivative represented by the following general formula (I). [0018] [Formula 2]
  • Ai ⁇ represents a hydrocarbon which may have a substituent, or a substituent containing an aromatic carbon ring or a heterocyclic ring, and R represents a hydrogen atom or a substituent.
  • R represents a hydrogen atom or a substituent.
  • the bond between Ar and the nitrogen atom is not only when a carbocyclic or heterocyclic ring showing aromaticity is directly bonded to the nitrogen atom, but also when the nitrogen is It may be bonded to an atom, or the nitrogen atom may constitute a part of a carbocyclic or heterocyclic ring.
  • Examples of the structure of such an amino-functional derivative compound include, for example:
  • R represents an alkyl group having at least a carboxyl group as a substituent.
  • the non-functional compound contains various compounds other than amino acids, in which case R is
  • alkyl group which may have a substituent other than a xyl group, for example, a hydroxyl group, a sulfonic acid group, a phenyl group and the like.
  • the amino-functional conjugate derivative is a compound represented by the following general formula (II).
  • Ar represents a carbocyclic compound residue or a heterocyclic compound residue showing aromaticity
  • Y represents an oxygen atom, a sulfur atom, a secondary amine, a tertiary amine, or an optionally substituted methylene group
  • R represents a hydrogen atom or a substituent
  • the amino-functional conjugate is a phenylcarbamylamino-functional compound, a 3-pyridylcarbamylamino-functional conjugate, a phenylthiocarbamylamino-functional ⁇ ⁇ ⁇ , 3-pyridyl thiol rubamyl amino-functional ⁇ ⁇ , P-trimethylammo-dimethyl-rubamylamino-functional compound or p-dimethylammo-dimethyl-rubamylamino-functional compound.
  • the derivatizing reagent is represented by the following general formula ( ⁇ ) or (IV). Examples include a sothiocyanate aromatic compound, a substituted succinate aromatic compound, a substituted succinimidyl carbamate aromatic compound, a substituted rubamoyl halide aromatic compound, or a substituted carbamoylalkoxy aromatic compound.
  • Ar represents a carbocyclic compound residue or a heterocyclic compound residue exhibiting aromaticity
  • X represents an oxygen atom or a sulfur atom
  • Y represents an oxygen atom
  • a sulfur atom Represents a teramine, a tertiary amine or a methylene group which may have a substituent.
  • Ar bonded to the nitrogen atom of the olebamate group is a carbocyclic compound showing an aromatic attribute
  • the atom and the nitrogen atom of the olebamate group are bonded, and the olebamate conjugate may be in the form of a salt.
  • Ar has a substituent as a carbocyclic compound residue.
  • a naphthyl group (1 and 2-naphthyl group), an anthryl group (11, 2 and 5 anthryl group), etc., which may be substituted, and a substituent as a heterocyclic compound residue.
  • Pyridyl groups (2-, 3- and 4-pyridyl groups), virazyl groups, quinolyl groups (2-8-quinolyl groups), ataridyl groups (1-4- and 9-ataridyl groups), and cumaryl groups (5 to 8-cumaryl group) and the like.
  • the group can have one or more substituents on the aromatic ring.
  • substituents examples include an alkyl group having 1 to 5 carbon atoms, an aromatic group such as a naphthyl group and a phenyl group, a halogen atom such as a chlorine atom, a bromine atom, a fluorine atom and an iodine atom, a carboxyl group, a hydroxyl group, and a nitro group.
  • a polar substituent particularly a substituent which is easily ionized in a solution.
  • Ar include the following groups:
  • the alkyl groups of the above-mentioned dialkylamino group and trialkylammonium group can each independently represent an alkyl group having 1 to 5 carbon atoms.
  • the method for preparing these derivatization reagents and the method for labeling amino acids using them are described in detail in Patent Document 2 described above, and are incorporated herein by reference.
  • the reaction conditions are the general conditions for labeling with such a reagent (Iwaki, K., Yoshida, S "Nimura, N” Kinoshita, T., Takeda, K., and Ogura, H. Chromatographia 23 899 (1987)), but it is preferable to use a solution obtained by dissolving the amino-functional conjugate in a suitable organic solvent except alcohols in an environment having a pH value of about 8 to 10. Conditions such as heating to about 60 ° C. after mixing with the derivatization reagent can be suitably employed.
  • the amount of the amino-functional compound is considered, and 10 to: about L000-fold molar equivalent (equivalent), preferably about 100 to 1000-fold molar equivalent (equivalent) to enable labeling for all amino groups and imino groups.
  • An amino-functional conjugate for example, an amino acid
  • an amino-functional conjugate can be converted into an amino-functional conjugate by a reaction as shown in FIG.
  • Fig. 1 (a) when amino acids are reacted with different derivatizing reagents, Fe-N-hydroxysuccinimidyl diluvate (PAHS) or phenyl isocyanate (PIC)
  • PAHS Fe-N-hydroxysuccinimidyl diluvate
  • PIC phenyl isocyanate
  • the amino acids are combined with 3-aminopyridyl-N-hydroxysuccimidyl diluvate (APDS) or pyridyl isocyanate (PvIC).
  • APDS 3-aminopyridyl-N-hydroxysuccimidyl diluvate
  • PvIC pyridyl isocyanate
  • the method of the present invention is characterized in that the structure of the amino-functional compound derivative resulting from the derivatization reaction is the structure represented by the above general formula (I) or ( ⁇ ), A method of performing a reaction using any derivatizing reagent as long as it has a structure is also included in the scope of the present invention.
  • Liquid chromatography in the analytical method of the present invention is a separation technique based on chromatography using a liquid as a mobile phase, and is a high-speed liquid that can be operated under pressure by selecting a stationary phase column. It is used for various purposes as chromatography (HPLC). Separation mechanisms are classified into various mechanisms, such as partitioning, adsorption, ion exchange, and size exclusion, but the most frequently used columns are separated by partitioning on a reversed-phase stationary phase, and the sample is less polar. It is retained on the stationary phase and eluted by the mobile phase with polarity.
  • the "stepwise concentration gradient elution means (stepwise gradient)" is to change the polarity or the salt strength of the mobile phase in a stepwise manner. This means changing the ratio as shown in FIG. In Fig. 2, the ratio of the organic solvent contained in the eluent changes stepwise with the elapse of the analysis time, but from a state without a concentration gradient or a state with a gentle concentration gradient, it has a sharper concentration gradient than that Non-linear change to state.
  • the ratio of the organic solvent is changed at least two times, more preferably three times or more, so that efficient separation can be performed.
  • the optimum stepwise gradient differs depending on the type of the amino-functional compound derivative to be analyzed and the type of the organic solvent used.
  • the same effect as in the present invention can be obtained by increasing the elution time even when a linear concentration gradient elution means (linear gradient method) is used.
  • various solvents can be appropriately selected in accordance with the type of the column such as the packing material and the size of the column.For example, in the case of HPLC using a reversed-phase column, formic acid or acid is used as the acid.
  • the pH is adjusted to 2.5 to 7 with a 5 to 50 mM aqueous solution of formic acid, acetic acid, ammonium formate, or ammonium acetate. It is preferable to use a solution adjusted to 5, and as the organic solvent, acetonitrile, methanol, ethanol, and a mixed solution thereof with water.
  • the difference in elution time between the tyramine derivative, cysteamine derivative, putrescine derivative, cystamine derivative and 2-phenylethylamine derivative, which has the longest elution time, is 3 to 20 minutes , More preferably 3 to: It can be set between LO minutes.
  • the mass spectrometry method used in the present invention is characterized in that the amino-functional conjugate eluted by the liquid chromatography is subjected to electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI), and sonication.
  • Positive ions are present by methods such as spray ionization (SSI)! / Is a method of ionizing into negative ions and measuring in the gas phase.
  • the generated ions are applied to a mass separator such as a quadrupole type, an ion trap type, a time-of-flight type, and a magnetic field type, and are separated based on a mass-to-charge ratio.
  • MSZMS mass separation devices in series
  • a triple quadrupole device after measuring the mass of the amino-functional compound derivative at the first quadrupole, only the amino-functional compound derivative of interest is measured at the second quadrupole. It is sent to the quadrupole where it is fragmented by collision-induced dissociation (CID), and the mass of the fragment can be measured with very high sensitivity at the third quadrupole.
  • CID collision-induced dissociation
  • n Monitoring (SRM) method the first mass analyzer detects ions of a reactant of the amino-functional conjugate and the labeling reagent, and the second mass analyzer detects fragment ions derived from the reagent. Highly sensitive and highly sensitive analysis can be achieved.
  • the derivatization reagents used in such a method include p-dimethylamino-allyl-N-hydroxysuccinimidyl-caprate (DAHS) and 3-aminopyridyl-N-hydroxys-succinimidyl-caprate (APDS). ), P-Trimethylammo-dimethyl-N-hydroxysuccinimidyl-rubbamate iodide (TAHS), Aminovirazyl N-hydroxysuccinimidyl-rubbamate, 6-Aminoquinolyl-N-hydroxysuccinimide carnomate (AQC ), 9-aminoacridyl N-hydroxysuccinimide carbamate and the like.
  • DAHS p-dimethylamino-allyl-N-hydroxysuccinimidyl-caprate
  • APDS 3-aminopyridyl-N-hydroxys-succinimidyl-caprate
  • TAHS P-Tri
  • a highly selective and highly sensitive amino acid separation can be achieved by detecting the ion of the reactant with the second mass analyzer to detect the ion derived from the amino acid whose structure derived from the reagent skeleton is -Eutral loss.
  • the derivative reagent used in such a method include 1-naphthylamino-N-hydroxysuccinimidyl olebamate (NAHS).
  • the mass spectrometry used in the present invention is not particularly limited, but some preferred examples will be described.
  • a compound having a target mass can be detected with high accuracy by monitoring only a specific mZz ratio that has been preliminarily selected.
  • the first mass analyzer (such as Q1) is specified.
  • the ions in this range are dissociated by, for example, collision-induced dissociation in Q2.
  • a precursor ion (parent ion) that generates a specific fragment ion is recorded.
  • the target ion is selected by a first mass analyzer (such as Ql), this ion is dissociated in a collision cell, and a specific fragment ion (such as Q3) is used by a second mass analyzer (such as Q3).
  • a first mass analyzer such as Ql
  • Q3 a specific fragment ion
  • Q3 a specific fragment ion
  • a first mass analyzer eg, Q1
  • ions in this range are dissociated by, for example, collision-induced dissociation at Q2.
  • the second mass analyzer Q3, etc.
  • a scanning method that detects all precursor ions (parent ions) from which a specific neutral molecule is desorbed is adopted.
  • Mass spectrometry is widely used as an extremely selective detection method because it can detect ions caused by the mass of the substance to be analyzed.
  • a derivatization reagent that causes regular cleavage of an analyte, a more selective detection method for an amino-functional compound can be obtained.
  • a highly ionic derivatization reagent is designed, highly sensitive analysis of an amino-functional conjugate can be achieved.
  • the detection limit of amino acids differs depending on the type of amino acid.
  • an SRM mode is selected using a force quadrupole mass spectrometer, for example, an API365 type detector (Applied Biosystems), ⁇ -trimethylammo-puma About 2 to 40 fmol with -ryl N-hydroxysuccinimidyl potash iodide (TAHS), about 3 to 2000 fmol with p-dimethylaminoaryl-N-hydroxysuccinimidyl potash ibatide (DAHS), 3 Aminoviridyl-N-hydroxysuccinimidyl sorbate (APDS): 3-180 fmol, 6-aminoquinolyl-N-hydroxysuccinimide carbamate (AQC): 2-200 fmol, surpassing general fluorescent labeling reagents It is confirmed that it can be done.
  • TAHS N-hydroxysuccinimidyl potash iodide
  • DAHS p-dimethylaminoary
  • 6-aminoquinolyl-N-hydroxysuccinimide carbamate is commercially available as a fluorescent labeling reagent. Its detection limit is reported to be several hundred fmol. In the SRM measurement, a sensitivity improvement of up to 100 times is seen, which is equivalent to the fluorescence method.
  • the detection by the method of the present invention is performed with ions caused by the mass of the derivatized and labeled amino-functional compound
  • other compounds such as a labeling reagent, a hydrolyzate of the labeling reagent, and the like may be used.
  • the accuracy of measurement can be improved by using an amino-functional conjugate containing a stable isotope.
  • a stable isotope having a low natural abundance such as 13 C, (D), 15 N, and 180 , or an amino-functional compound containing a radioisotope is used as an internal standard.
  • the concentration in the sample, and the analysis conditions By selecting the optimal internal standard substance according to the type of the amino-functional compound to be analyzed, the concentration in the sample, and the analysis conditions, the quantification accuracy is dramatically improved.
  • the detection step by the mass spectrometry comprises the following steps:
  • an amino-functional conjugate derivative having the same mass is shown, and according to the method of the present invention, these derivatives are included in these groups.
  • the conditions of the elution step can be set so that each of the amino-functional compound derivatives can be separated and detected. Therefore, these are simultaneously analyzed using a sample containing various kinds of amino-functional conjugates. It becomes possible. Therefore, the method of the present invention may use a sample containing all of these amino-functional conjugates, but it includes at least two or more amino-functional conjugates in which the power of leucine, isoleucine and norleucine is also selected.
  • the method includes a method of simultaneously analyzing a plurality of these amino-functional derivatives using a sample.
  • the analysis device of the present invention includes, for example, as shown in FIG. 3, components (parts) necessary for performing the above-described analysis method of the present invention.
  • these components include, at least, a reaction part 10 for reacting the amino-functional compound in the sample with the derivatization reagent, and elution by liquid chromatography of the amino-functional conjugate compound derivative generated in the reaction part 10.
  • the elution section 20 includes a separation column 21 And an elution system for supplying an eluate having a stepwise concentration gradient to the column, for example, a pump 23a (23b) for sending the eluate 24a (24b) to the column. Multiple pumps (23a, 23b) can be used to create a concentration gradient in the eluate. Further, the chromatography section 20 includes an injection valve 22 for introducing the amino-functional conjugate derivative generated in the reaction section 10.
  • the amino-functional conjugate derivative eluted from the chromatography unit 20 is first ionized in the mass spectrometry unit 30.
  • the most commonly used techniques for ionizing proteins and peptides are electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI), and matrix-assisted laser desorption ionization (MALDI).
  • ESI electrospray ionization
  • APCI atmospheric pressure chemical ionization
  • MALDI matrix-assisted laser desorption ionization
  • the force of the device of the present invention such as sonic spray ionization method (SSI), etc.
  • SSI sonic spray ionization method
  • a method for ionizing an amino-functional conjugate compound derivative contained in an eluate from liquid chromatography is as follows. It is preferable to use the ESI method. Many systems with efficient heat transfer and gasification methods for ionization are used.
  • the mass spectrometry unit 30 separates the ions within the mass-to-charge ratio (m / z) selected from the ionized sample.
  • the mass spectrometer plays an important role in the sensitivity and resolution of analytical data, the accuracy of mass, and the abundance of information obtained from mass spectral data.
  • ion separation methods magnetic, electric, ion trap, time of flight (TOF), quadrupole, and Fourier. It is a conversion cyclotron type. These have advantages and disadvantages, respectively.
  • a force that can be used alone or in combination with each other is usually used in a quadrupole mass spectrometry unit in ionization by ESI.
  • the analyzer of the present invention can automatically connect the above-mentioned respective constituent elements (units), and can automate from the reaction section 10 to the mass analysis section 30.
  • a unit for storing a sample such as plasma in a 96-well plate is added. From this, a predetermined amount of sample is collected by an automatic sampling device, transferred to the reaction section 10, and further derivatized amino functional groups.
  • the sex conjugate can be automatically injected into the chromatographic section 20 using an autosampler or the like of liquid chromatography. This enables extremely high-throughput prayer.
  • the separation column in reversed-phase HPLC uses a CAPCELL PAK AQ inner diameter of 2. Omm, a length of 5 Omm, a particle diameter of 3 m (Shiseido), a flow rate of 0.3 mLZmin, and gradient conditions as follows.
  • Time (ratio of mobile phase B) 0 min to 0.25 min (3%), 0.25 min to 1 min (3% Et 15 0/0), 1 component force et 1.75 minutes (15 0/0), 1.75 component force et 2.35 minutes (15 0/0 Power et 34 0/0), 2.35 min 5 Minutes (34% to 35%), 5.01 minutes to 5.1 minutes (50% to 70%), 5.1 minutes to 5.7 minutes (70%), 5.71 minutes to 12 minutes (3%).
  • the gradient pattern representing the methanol concentration is shown in FIG.
  • FIG. 4 shows the results of the analysis.
  • the TIC Total Ion Chromatogram
  • the extracted ion chromatogram shows a pattern in which these 40 compounds were separated and detected.
  • the patterns in which the respective amino-functional conjugates were detected alone or as a mixture of several types are shown below them. As is evident from FIG. 4, it is important to be able to separate and detect each of the 40 amino-functional conjugates in about 9 minutes.
  • a reverse column HPLC uses a CAPCELL PAK AQ separation column with an inner diameter of 2. Omm, a length of 5 Omm, a particle diameter of 3 m (Shiseido), a flow rate of 0.3 mLZmin, and gradient conditions as follows.
  • Time (ratio of mobile phase B) 0 min 0.25 min (3%), 0.25 min 1 min (3% to 15 0/0), 1 component force et 1.75 minutes (15 0/0) , 1.75 component force et 2. 35 min (15 0/0 power et 34 0/0), (35% to 34%) 35 minutes to 5 minutes 2. from 5.01 minutes to 5.1 minutes (50% 70%), 5.1 minutes to 5.7 minutes (70%), 5.71 minutes 12 minutes (3%).
  • FIG. 5 shows the result of the analysis. Also in this analysis example, it can be seen that each of the 40 kinds of amino-functional conjugates can be separated and detected in about 9 minutes similarly to the above-mentioned analysis example 1.
  • FIG. 6 shows the result of the analysis. Also in this analysis example, it can be seen that each of the 39 kinds of amino-functional conjugates can be separated and detected in about 8 minutes similarly to the above analysis examples 1 and 2.
  • FIG. 7 shows the result of the analysis.
  • each of the 39 kinds of amino-functional conjugates can be separated and detected in about 8 minutes in the same manner as in the above analysis examples 1 to 3.
  • the separation column in the reverse phase HPLC uses a SuperODS inner diameter of 2. Omm, a length of 50 mm, a particle diameter of 2 / ⁇ ( ⁇ 030 ⁇ ), a flow rate of 0.4 mLZmin, and the following gradient conditions.
  • Time (ratio of mobile phase B) 0 min 0.01 min (13%), 0.01 min 2 min (60%), 2.5 min force et 4.5 minutes (100 0/0), 4.51 Bunkara 10 minutes (13 0/0).
  • FIG. 8 shows the result of the analysis.
  • this analysis example about 6 minutes as in the above analysis examples 1-4 It can be seen that each of the 39 kinds of amino-functional conjugates can be detected separately.
  • 17 kinds of amino acid derivatives (leucine derivative, isoleucine derivative, norleucine derivative, sarcosine derivative, ⁇ -alanine derivative, prepared by the reaction conditions described in Alanine derivative, ⁇ ⁇ ⁇ amino- ⁇ -butyric acid derivative, ⁇ -aminoisobutyric acid derivative, ⁇ -amino ⁇ -butyric acid derivative, ⁇ -aminoisobutyric acid derivative, j8-amino- ⁇ -butyric acid derivative, 1-methylhistidine derivative, 3-methylhistidine derivative, homoserine Derivatives, threonine derivatives, palin derivatives, and norparin derivatives) were separated by reverse phase HPLC and detected in Selected Reaction Monitoring (positive mode).
  • the column for reverse phase HPLC uses a CAPCELL PAK AQ with an inner diameter of 2. Omm, a length of 50 mm, and a particle size of 3 m (Shiseido).
  • the flow rate is 0.3 mLZmin and the gradient conditions are as follows.
  • Time (ratio of mobile phase B) 0 minute force is also 0.5 minute (13%), 0.51 minute to 4 minutes (50%), 4.01 minute to 6 minutes (80%), 6.01 minute to 12 minutes (13% %).
  • FIG. 9 shows the results. As shown in the respective charts of FIG. 9, the fact that a plurality of amino-functional conjugates having the same mass number, for example, a sarcosine derivative, a ⁇ -alanine derivative, and an alanine derivative can be separated and detected.
  • a 0.2-borate buffer ( ⁇ 8.8) was added to 20 ⁇ L of a standard mixed solution of the amino-functional conjugate.
  • a solution of 3 aminoviridyl 1-hydroxysuccinimidyl olebamate reagent (10 mg of the derivatizing reagent dissolved in 1 mL of acetonitrile for LCZMS) with 20 / z L added.
  • the resulting mixture was heated at 55 ° C for 10 minutes. After the heating, the resulting mixture of the amino-functional compound derivatives was separated by reversed-phase liquid chromatography and introduced into a mass spectrometer. At this time, the obtained mixture of the amino-functional compound derivatives is neutralized with 100 L of a 0.1% aqueous formic acid solution, and diluted with 300 ⁇ L of mobile phase A of liquid chromatography.
  • the derivatized product of a mixture of 106 amino-functional conjugates prepared by the reaction conditions described in Example 8 above with 3-aminopyridyl-N-hydroxysuccinimidyl sorbate (APDS) was separated by reverse phase HPLC. And detected in Selected Reaction Monitoring (positive mode).
  • the separation column used in the reverse phase HPLC was InertsilC8-3, having an inner diameter of 2.1 mm, a length of 50 mm, and a particle system of 3 m (GL Science).
  • the flow rate was 0.3 mL / min, and the gradient conditions were as follows.
  • Time (ratio of mobile phase B) 0 to 1.25 minutes (4%), 1.25 to 1.26 minutes (4% to 15%), 1.26 to 5 minutes (15% to 20%), 5 min 5.5 min (20 0/0 power et 50 0/0), 5.5 component force et 6.5 minutes (50 0/0 power et 95 0/0), 6.5 component force et 6.75 Minutes (95%), 6.76 minutes to 12 minutes (4%).
  • FIG. 10 shows the result of the analysis. As shown in FIG. 10, it is important to be able to separate and detect each of the 106 amino-functional compounds in about 9 minutes.
  • Time (Ratio of mobile phase B) 0 to 1.25 minutes (4%), 1.25 to 1.25 minutes (4% to 15%), 1.26 to 5 minutes (15% to 20%), 5 min 5.5 min (20 0/0 power et 50 0/0), 5.5 component force et 5.51 minutes (50 0/0 power et 95 0/0), 5.51 component force et 6.5 min (95 0/0), 6.51 to 12 minutes (4%).
  • FIG. 11 shows the result of the analysis. As shown in FIG. 11, it is important to be able to separate and detect each of the 38 kinds of amino-functional conjugates in about 8 minutes.
  • Example 11 Specific Procedure 3 for Derivatization of Amino Functional Compound>
  • a 0.2-borate buffer ⁇ 8.8 was added to 20 ⁇ L of a standard mixed solution of the amino-functional conjugate.
  • 3-aminopyridyl 1-hydroxysuccinimidyl olebamate reagent solution 10 mg of the derivatization reagent dissolved in 1 mL of acetonitrile for LCZMS
  • the resulting mixture was heated at 55 ° C for 10 minutes.
  • the resulting mixture of the amino-functional compound derivatives was separated by reversed-phase liquid chromatography and introduced into a mass spectrometer. At that time, the obtained amino-functional compound derivative mixture is neutralized with 100 L of a 0.1% aqueous formic acid solution, and then diluted by adding 300 ⁇ L of mobile phase A of liquid chromatography.
  • Derivatized product of a mixture of 39 amino-functional conjugates prepared by the reaction conditions described in Example 11 above using 3-aminopyridyl-N-hydroxysuccinimidyl sorbate (APDS) was separated by reverse phase HPLC. And detected in Selected Reaction Monitoring (positive mode).
  • the separation column used in the reverse phase HPLC was an Atlantis dC18 with an inner diameter of 2.1 mm, a length of 100 mm, and a particle system of 3 m (Waters).
  • the flow rate was 0.3 mL / min, and the gradient conditions were as follows.
  • Time (ratio of mobile phase B) 0 min 0.5 min (0%), 0.5 mowed 2.25 (0 0/0 Power et 12 0/0), 2.25 mowed 2.26 (12 0/0 power et 18 0/0), 2.26 mosquito et 5.5 minutes (18 0/0 power et 22 0/0), 5.5 component force et 6 minutes (22 0/0 power et al 50 0 / 0 ), 6 minutes power 6.25 minutes (50% to 90%), 6.25 minutes to 6.5 minutes (90%), 6.51 minutes to 12 minutes (0%).
  • FIG. 12 shows the result of the analysis. As shown in FIG. 12, it is important to be able to separate and detect each of the 39 amino-functional compounds in about 10 minutes.
  • 100 or more amino-functional conjugates containing biological amino acids can be analyzed in a very short time, for example, within 10 minutes. It is useful in the fields of food, medicine, medical and analytical instruments related to.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Urology & Nephrology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Hematology (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

 生体内に含まれる多種類のアミノ酸及びその誘導体、並びにアミノ酸類似物質を含むアミノ官能性化合物を、従来法よりも極めて迅速、簡便且つ高感度に分析する方法及び装置を提供する。アミノ官能性化合物と誘導体化試薬とを反応させて下記一般式(I)で示されるアミノ官能性化合物誘導体を生成せしめ、前記アミノ官能性化合物誘導体を段階的な濃度勾配溶出手段を用いる液体クロマトグラフィーにより溶出する。続いて、前記液体クロマトグラフィーにより溶出されたアミノ官能性化合物誘導体を質量分析法により検出する。  [化1]  式中、Ar1は置換基を有してもよい炭化水素、又は芳香族性を示す炭素環若しくは複素環を含む置換基を表し、R1は水素原子、置換基を有していてもよいアルキル基又は環を形成する炭素原子を表し、R2は置換基を有していてもよいアルキル基を表し、Ar1とR1、又はR1とR2は一緒になって環を形成してもよい。

Description

明 細 書
ァミノ官能性化合物の分析方法及び装置
技術分野
[0001] 本発明は、アミノ酸、ペプチド、及びアミノ酸類似物質等のアミノ官能性化合物を、 液体クロマトグラフィー Z質量分析法 (LCZMS)により迅速、簡便且つ高感度に分 析する方法、及びそのための装置等に関する。
背景技術
[0002] 生体内のアミノ酸は、アミノ酸代謝異常症等の疾患の鑑別に有用である。例えば、 先天的アミノ酸代謝異常症の診断、肝機能不全の重症度判定や治療の指標、及び 栄養状態不良の患者の病態把握などに用いられる。最も有名な例としては、パリン、 ロイシン、イソロイシンは分岐鎖アミノ酸 (BCAA)と呼ばれ、劇症肝炎や肝不全など の重症肝疾患において合成が低下する。一方、芳香族アミノ酸 (AAA)であるフエ- ルァラニンは主として肝臓で代謝を受けるため、代謝が阻害されると血中濃度が上昇 する。この結果、両者の比である BCAAZAAA比は低値となり、その程度は肝疾患 の重症度を反映する。 BCAAZAAA比は一般にフィッシャー比(Fischer比)と呼ば れ、従来から肝疾患の重症度の判定に用いられてきた (例えば、非特許文献 1参照) 。また、糖尿病ではフエニノレアラニン、チロシン、イソロイシン、ロイシン、パリンが上昇 し、ァラニンが減少することが知られている (例えば、非特許文献 2参照)。
[0003] アミノ酸の分析法については、ポストカラム誘導体化を原理とするアミノ酸分析計を 用いる場合が多い。この方法は、通常、陽イオン交換カラムによりアミノ酸を分離した 後、ニンヒドリン発色を行なうが、分析時間が長いことが短所である。最近の研究では 、分離カラムや緩衝液の流速等を工夫することにより、タンパク質加水分解物アミノ酸 約 20種類を対象とした標準分析法の分析時間は約 20分となっている (例えば、特許 文献 1参照)。一方、プレカラム誘導体化反応に基づくアミノ酸分析法もさかんに研究 されている。タンパク質構成アミノ酸であれば、フエ二ルイソチオシァネートを試薬とす るプレカラム誘導体化法により、約 4. 5分で分析が可能である。また、本発明者らに よって開発された分析試薬を用いる LC— MS法では、 20種類のアミノ酸を 2. 8分で 分析可能であることが示されているが (例えば、特許文献 2参照)、この例では口イシ ンとイソロイシンは分離せず、それぞれを同時に分析することはできな 、。
[0004] 生体内には、タンパク質構成アミノ酸だけでなぐ数多くのアミノ酸類似物質が存在 する。代表的なものに、タウリン、 O ホスホエタノールァミン、ヒドロキシプロリン、メチ ォニンスルホキシド、ザルコシン、 a—ァミノアジピン酸、シトルリン、 a—アミノー n— 酪酸、ピペコリン酸、ホモシスティン、ホモシトルリン、ァロイソロイシン、サッカロピン、 シスタチォニン、アルギ-ノコハク酸、システィン一ホモシスティン、 13—了ラニン、ァ ミノレブリン酸、 j8—ァミノイソ酪酸(j8— AiBA)、 γ ァミノ一 n—酪酸(GABA)、ホ モシスチン(Hcys2)、アルギ-ノコハク酸アンヒドライド、ヒドロキシリジン、アミノエチ ルシスティン、オル二チン、 1 メチルヒスチジン、 3 メチルヒルチジンなどであり、生 体液に含まれるこれらのアミノ酸類似物質には、様々な生理機能が発見或いは解明 されつつある。陽イオン交換カラムによりアミノ酸及びアミノ酸類似物質 (これらを総称 してアミノ官能性ィ匕合物と呼ぶ。)を分離し、ニンヒドリン発色を行なうポストカラム誘導 体化を原理とする分析法によれば、これらァミノ官能性化合物 41成分の分析時間は 最短でも 60分であり、また、 53成分では 148分である。(例えば、特許文献 3参照。 ) このような分析時間の長さは、アミノ酸の生理機能研究を妨げる大きな要因の一つと なっている。また、アミノ酸と健康や疾病を関連付ける新たな知見が発見されたとして も、このような処理能力では、その情報を有効に使うことはできない。
[0005] 特許文献 1 :特開 2002— 243715号公報
特許文献 2:国際公開第 03Z069328号パンフレット
特許文献 3:特開 2002— 71660号公報
非特許文献 1:フィッシャー (Fischer JE)外 5名、「サージャリー (Surgery)」 1976年 7月、 第 80卷、 p. 77 - 91
非特許文献 2 :フ ーリツヒ (Felig P)外 3名、「糖尿病 (Diabetes)」1970年、 10月、第 19 卷、 p. 727 - 728
発明の開示
発明が解決しょうとする課題
[0006] 本発明は、生体内に含まれる多種類のアミノ酸及びその誘導体、並びにアミノ酸類 似物質を含むアミノ官能性ィ匕合物を、従来法よりも極めて迅速、簡便且つ高感度に 分析する方法及び装置を提供することを目的とする。
課題を解決するための手段
[0007] 上記課題を解決するために、本発明者らは LCZMS法によるアミノ官能性ィ匕合物 の分析方法について種々の改良及び最適化を行った。すなわち、質量分析法にお いて質量が同一であるために分離して検出することが困難な複数のァミノ官能性ィ匕 合物を液体クロマトグラフィーによって予め分離、溶出し、続いて質量分析法により分 離、検出することによって極めて迅速、簡便且つ高感度に多種類のアミノ官能性ィ匕 合物を同時に分析できることを見出して本発明を完成するに至った。
[0008] 従って、本発明は、ァミノ官能性ィ匕合物を含む試料中のアミノ官能性ィ匕合物と誘導 体化試薬とを反応させて下記一般式 (I)で示されるァミノ官能性化合物誘導体を生 成せしめる工程、前記アミノ官能性化合物誘導体を段階的な濃度勾配溶出手段を 用いる液体クロマトグラフィーにより溶出する工程、及び前記液体クロマトグラフィーに より溶出されたァミノ官能性ィ匕合物誘導体を質量分析法により検出する工程を含むこ とを特徴とするアミノ官能性ィ匕合物の分析方法を提供する。
[0009] [化 1]
Ar \ z ( D
(式中、 Arは置換基を有してもよい炭化水素、又は芳香族性を示す炭素環若しくは 複素環を含む置換基を表し、 Rは水素原子、置換基を有していてもよいアルキル基 又は置換基を有していてもよい飽和又は不飽和のアルキル基を表し、 R
2は置換基を 有していてもよいアルキル基を表し、 Arと R、又は Rと Rは一緒になつて環を形成
1 1 1 2
してちよい。 )
[0010] また、本発明の異なる視点において、試料中のアミノ官能性ィ匕合物と誘導体ィ匕試 薬とを反応させて上記一般式 (I)で示されるァミノ官能性化合物誘導体を生成させる 反応部と、前記アミノ官能性化合物誘導体を溶出するクロマトグラフ部と、前記クロマ トグラフ部からの溶出液に含まれるァミノ官能性化合物誘導体を検出する質量分析 部とを備えることを特徴とするアミノ官能性ィ匕合物の分析装置が提供される。
[0011] 本発明の他の好ましい実施形態は、以下の発明を実施するための最良の形態に おいて詳細に示される。 発明の効果
[0012] 本発明の方法によれば、代表的な生体アミノ官能性ィ匕合物約 40種類を短時間で、 例えば、 10分以内で分析することができ、従来のアミノ酸分析計に比べて分析時間 を著しく短縮することができる。従来は、ロイシンやイソロイシンのような質量の同じアミ ノ酸については質量分析法のみでは同時分析は困難であった力 本発明の方法に より、これらの生体アミノ酸を含む 100種類以上のァミノ官能性ィ匕合物を同時に、且 つ極めて短時間に分析することが可能となる。
図面の簡単な説明
[0013] [図 1]本発明の方法において、ァミノ官能性化合物誘導体を生成する典型的な反応 式を示す。
[図 2]本発明の方法において、液体クロマトグラフィーの段階的な濃度勾配溶出バタ ーンの典型的な例を示す。
[図 3]本発明の 1つの実施形態に係るアミノ官能性ィ匕合物の分析装置の構成図であ る。
[図 4(a)]実施例の例 2:分析例 1にお ヽて、 40種類のァミノ官能性ィ匕合物を分析した 結果を示すクロマトグラムである。
[図 4(b)]実施例の例 2:分析例 1にお 、て、 40種類のァミノ官能性ィ匕合物を分析した 結果を示すクロマトグラムである。
[図 4(c)]実施例の例 2:分析例 1にお ヽて、 40種類のァミノ官能性ィ匕合物を分析した 結果を示すクロマトグラムである。
[図 5(a)]実施例の例 3:分析例 2にお ヽて、 40種類のァミノ官能性ィ匕合物を分析した 結果を示すクロマトグラムである。
[図 5(b)]実施例の例 3:分析例 2にお ヽて、 40種類のァミノ官能性ィ匕合物を分析した 結果を示すクロマトグラムである。
[図 5(c)]実施例の例 3:分析例 2にお ヽて、 40種類のァミノ官能性ィ匕合物を分析した 結果を示すクロマトグラムである。
圆 6(a)]実施例の例 4:分析例 3にお ヽて、 39種類のァミノ官能性ィ匕合物を分析した 結果を示すクロマトグラムである。
圆 6(b)]実施例の例 4:分析例 3にお ヽて、 39種類のァミノ官能性ィ匕合物を分析した 結果を示すクロマトグラムである。
圆 6(c)]実施例の例 4:分析例 3にお ヽて、 39種類のァミノ官能性ィ匕合物を分析した 結果を示すクロマトグラムである。
圆 7(a)]実施例の例 5:分析例 4にお ヽて、 39種類のァミノ官能性ィ匕合物を分析した 結果を示すクロマトグラムである。
圆 7(b)]実施例の例 5:分析例 4にお ヽて、 39種類のァミノ官能性ィ匕合物を分析した 結果を示すクロマトグラムである。
圆 7(c)]実施例の例 5:分析例 4にお ヽて、 39種類のァミノ官能性ィ匕合物を分析した 結果を示すクロマトグラムである。
圆 8(a)]実施例の例 6:分析例 5にお ヽて、 39種類のァミノ官能性ィ匕合物を分析した 結果を示すクロマトグラムである。
圆 8(b)]実施例の例 6:分析例 5にお ヽて、 39種類のァミノ官能性ィ匕合物を分析した 結果を示すクロマトグラムである。
圆 8(c)]実施例の例 6:分析例 5にお ヽて、 39種類のァミノ官能性ィ匕合物を分析した 結果を示すクロマトグラムである。
圆 9]実施例の例 7 :分析例 6において、 17種類のァミノ官能性ィ匕合物を分析した結 果を示すクロマトグラムである。
[図 10(a)]実施例の例 9 :分析例 7において、 106種類のァミノ官能性化合物を分析し た結果を示すクロマトグラムである。
[図 10(b)]実施例の例 9 :分析例 7において、 106種類のァミノ官能性化合物を分析し た結果を示すクロマトグラムである。
[図 10(c)]実施例の例 9 :分析例 7において、 106種類のァミノ官能性化合物を分析し た結果を示すクロマトグラムである。
[図 10(d)]実施例の例 9 :分析例 7において、 106種類のァミノ官能性化合物を分析し た結果を示すクロマトグラムである。
[図 10(e)]実施例の例 9 :分析例 7において、 106種類のァミノ官能性化合物を分析し た結果を示すクロマトグラムである。
[図 11(a)]実施例の例 10 :分析例 8において、 38種類のァミノ官能性化合物を分析し た結果を示すクロマトグラムである。
[図 11(b)]実施例の例 10 :分析例 8において、 38種類のァミノ官能性化合物を分析し た結果を示すクロマトグラムである。
[図 11(c)]実施例の例 10 :分析例 8において、 38種類のァミノ官能性化合物を分析し た結果を示すクロマトグラムである。
[図 12(a)]実施例の例 12 :分析例 9において、 39種類のァミノ官能性化合物を分析し た結果を示すクロマトグラムである。
[図 12(b)]実施例の例 12 :分析例 9において、 39種類のァミノ官能性化合物を分析し た結果を示すクロマトグラムである。
[図 12(c)]実施例の例 12 :分析例 9において、 39種類のァミノ官能性化合物を分析し た結果を示すクロマトグラムである。
符号の説明
[0014] 10 反応部
20 クロマトグラフ咅
21 分離カラム
22 インジェクションバルブ
23a, 23b ポンプ
24a、 24b 溶離液
発明を実施するための最良の形態
[0015] (定義)
本発明において、「ァミノ官能性ィ匕合物」とは、分子内に第 1級ァミン及び Z又は第 2級ァミンを有する化合物 (塩の形態でもよい。)を意味し、これらの第 1級アミンゃ第 2級ァミンは 1個でも複数でもよい。また、試料中に存在するァミノ官能性ィ匕合物は 1 種でも複数種の混合物でもよい。当該アミノ官能性ィ匕合物としては、アミン類 (第 1級 ァミン、第 2級ァミン等)、アミノ酸、ペプチド、タンパク質、ポリアミン等を挙げることが でき、具体的には、下記の表 1に示したものが含まれる。このような化合物を複数種含 んでいてもよい。例えば、アミノ酸の複数種混合物、アミノ酸 1種以上とペプチド 1種 以上の混合物、アミノ酸 1種以上とァミン 1種以上の混合物等を挙げることができる。
[表 1]
Figure imgf000009_0001
「誘導体化試薬」とは、上記アミノ官能性ィ匕合物と反応させて下記一般式 (I)で示さ れるァミノ官能性ィ匕合物誘導体を生成することができる試薬をいう。 [0018] [化 2]
Figure imgf000010_0001
(式中、 Ai^は置換基を有してもよい炭化水素、又は芳香族性を示す炭素環若しくは 複素環を含む置換基を表し、 Rは水素原子、置換基を有していてもよいアルキル基 又は環を形成する炭素原子を表し、 Rは置換基を有していてもよいアルキル基を表
2
し、 Arと R、又は Rと Rは一緒になつて環を形成してもよい。 ) o上記式 (I)において
1 1 1 2
、 Arと窒素原子との結合は、芳香族性を示す炭素環又は複素環が直接窒素原子に 結合する場合のほか、カルボ-ル基(一 CO )やアミド基( NHCO )等を介して 窒素原子と結合してもよぐ或いは当該窒素原子が炭素環又は複素環の一部を構成 してもよい。このようなァミノ官能性ィ匕合物誘導体の構造としては、例えば:
[0019] [化 3]
Figure imgf000010_0002
[0020] [化 4]
Figure imgf000010_0003
[0021] [化 5] H
Figure imgf000011_0001
を例示することができる。上記一般式 (I)における は水素原子又は上記 (B)の化合 物の場合には、環を形成する炭素原子となる場合がある。ァミノ官能性ィ匕合物がアミ ノ酸の場合、 Rは置換基として少なくともカルボキシル基を有するアルキル基を意味
2
する。当該アミノ酸がプロリンの場合は Rと Rは一緒になつて環を形成している。アミ
1 2
ノ官能性ィ匕合物にはアミノ酸以外の種々の化合物を含み、この場合には Rはカルボ
2 キシル基以外の置換基、例えば、水酸基、スルホン酸基、フエ二ル基等を有していて もよいアルキル基である。
[0022] 本発明の好ま 、実施形態にぉ 、て、上記アミノ官能性ィ匕合物誘導体は、下記一 般式 (II)で示される化合物である。
[0023] [化 6]
Figure imgf000011_0002
( I I )
(式中、 Arは芳香族性を示す炭素環化合物残基又は複素環化合物残基を表し、 X
2
は酸素原子又は硫黄原子を表し、 Yは酸素原子、硫黄原子、第 2級ァミン、第 3級ァ ミン、又は置換基を有していてもよいメチレン基を表し、 Rは水素原子、置換基を有 していてもよいアルキル基又は環を形成する炭素原子を表し、 Rは置換基を有して
2
いてもよいアルキル基を表し、 Rと Rは一緒になつて環を形成してもよい。 )
1 2
[0024] 従って、一つの実施形態において、上記アミノ官能性ィ匕合物誘導体は、フエ二ルカ ルバミルアミノ官能性化合物、 3—ピリジルカルバミルアミノ官能性ィ匕合物、フエニル チォカルバミルアミノ官能性ィ匕合物、 3—ピリジルチオ力ルバミルアミノ官能性ィ匕合物 、 p—トリメチルアンモ-ゥムァ-リル力ルバミルアミノ官能性ィ匕合物、又は p—ジメチ ルアンモ-ゥムァ-リル力ルバミルアミノ官能性化合物である。
[0025] このようなァミノ官能性ィ匕合物誘導体を生成せしめるための誘導体ィ匕試薬としては 種々のものが使用される力 好ましくは下記一般式 (ΠΙ)又は (IV)で示される置^ ソチオシァネート芳香族化合物、置^ソシァネート芳香族化合物、置換スクシンイミ ジルカルバメート芳香族化合物、置換力ルバモイルハライド芳香族化合物、又は置 換カルバモイルアルコキシ芳香族化合物が挙げられる。
[0026] [化 7]
Figure imgf000012_0001
[0027]
Figure imgf000012_0002
(式中、 Arは芳香族性を示す炭素環化合物残基又は複素環化合物残基を表し、 R
2
'はフッ素原子、塩素原子、臭素原子、ヨウ素原子、 N—ヒドロキシスクシンィミジル基 、又はアルコキシ基を表し、 Xは酸素原子又は硫黄原子を表し、 Yは酸素原子、硫黄 原子、第 2級ァミン、第 3級ァミン、又は置換基を有していてもよいメチレン基を表す。 )
[0028] より具体的には、例えば、以下の表 2に示したようなァミノ基と反応性の高い公知の 化合物を用いることができる。
[0029] [表 2]
Figure imgf000013_0001
[0030] 或いは、本発明の特に好ましい実施形態として、本発明者らによって上記特許文 献 2に報告されて ヽる下記一般式 (V)で示される力ルバメート化合物を含有する誘導 体化試薬が挙げられる。
[0031] [化 9]
Figure imgf000014_0001
上記式中、力ルバメート基の窒素原子に結合する Arは芳香属性を示す炭素環化合
2
物又は複素環化合物残基を表し、当該芳香環は一つ以上の置換基を有していても よぐ Ar基と力ルバメート基の窒素原子との結合は Ar基中当該環を構成する炭素
2 2
原子と当該力ルバメート基の窒素原子とが結合し、当該力ルバメートィ匕合物は塩の形 態であってもよい。
当該式 (V)において、 Arに関し、炭素環化合物残基としてそれぞれ置換基を有し
2
ていてもよいフエ-ル基、ナフチル基(1 及び 2—ナフチル基)、アントリル基(1一、 2 及び 5 アントリル基)等を、また、複素環化合物残基としてそれぞれ置換基を有 していてもよいピリジル基(2—、 3—及び 4 ピリジル基)、ビラジル基、キノリル基(2 〜8—キノリル基)、アタリジル基(1〜4—及び 9—アタリジル基)、クマリル基(5〜8— クマリル基)等を挙げることができる。当該基は芳香環に置換基を一つ以上有するこ とができる。置換基として、炭素数 1〜5のアルキル基、ナフチル基、フエ-ル基等の 芳香族基、塩素原子、臭素原子、フッ素原子、ヨウ素原子等のハロゲン原子、カルボ キシル基、水酸基、ニトロ基、ジァゾ基、シァノ基、炭素数 1〜5のアルコキシ基、炭素 数 2〜7のァシル基 (ァセチル基、ベンゾィル基等)、スルホン酸基、リン酸基、グァ- ジル基、ジアルキルアミノ基、トリアルキルアンモ-ゥム基等を挙げることができる。ァ ミノ官能性ィ匕合物を高感度で検出するためには、中でも、極性置換基、特に溶液中 でイオン化し易い置換基を有することが好ましぐ例えばスルホン酸基、リン酸基、グ ァ -ジル基、ジアルキルアミノ基、トリアルキルアンモ-ゥム基等を挙げることができる
Arの具体な例として、下記の基を挙げることができる:
2
フエ-ル基、ナフチル基(1 及び 2 ナフチル基)、アントリル基(1一、 2 及び 5— アントリル基)、ピリジル基(2—、 3—及び 4 ピリジル基)、ビラジル基、キノリル基(3 一、 6—及び 8—キノリル基)、 9—アタリジル基、 6—クマリル基、 p—ジアルキルアミノ フエ-ル基、 p—トリアルキルアンモ-ゥムフエ-ル基、 1— (3—トリアルキルアンモ- ゥム)ナフチル基、 1— (5—トリアルキルアンモ-ゥム)ナフチル基、 1— (3—ジアルキ ルァミノ)ナフチル基、 1一(5—ジアルキルァミノ)ナフチル基、 p—スルホフヱ-ル基 、 1一(3—スルホ)ナフチル基、 1一(5—スルホ)ナフチル基、 p—ホスホフェ-ル基、 1— (3—ホスホ)ナフチル基、 1— (5—ホスホ)ナフチル基、 p—グァ -ジノフエ-ル基 、 1一(3—グァ-ジノ)ナフチル基、 1一(5—グァ-ジノ)ナフチル基等。上記ジアル キルアミノ基及びトリアルキルアンモ-ゥム基のアルキル基はそれぞれ独立的に、炭 素数 1〜5のアルキル基を表すことができる。これらの誘導体化試薬の調製方法及び それらを用いたアミノ酸の標識方法は、上記特許文献 2に詳細に記載されており、参 照により本明細書に組み込まれる。
[0034] (本発明の分析方法)
本発明の分析方法における上記アミノ官能性化合物と誘導体化試薬との反応 (標 識化反応)には特に困難は無い。反応条件は、このような試薬を用いて標識する場 合の一般的な条件(Iwaki, K., Yoshida, S" Nimura, N" Kinoshita, T., Takeda, K., a nd Ogura, H., Chromatographia 23 899 (1987)参照。)を用いればよいが、好ましくは ァミノ官能性ィ匕合物を pH値 8〜 10程度の環境下で、アルコール類を除く適当な有機 溶媒で溶解した溶液と誘導体ィ匕試薬とを混合した後、 60°C程度に加熱する等の条 件を好適に採用することができる。誘導体ィ匕試薬の使用量については、ァミノ官能性 化合物の量、特にその中に含まれる全第 1級ァミン及び第 2級ァミンの量を考慮して 、ァミノ官能性ィ匕合物に対し、 10〜: L000倍モル(当量)程度、好ましくは 100〜100 0倍モル(当量)程度使用し、全てのアミノ基、イミノ基に対して標識できるようにする。
[0035] ァミノ官能性ィ匕合物、例えばアミノ酸は図 1に示したような反応によりアミノ官能性ィ匕 合物誘導体とすることができる。図 1 (a)の反応式によれば、アミノ酸を異なる誘導体 化試薬であるフエ-ルー N—ヒドロキシスクシンィミジル力ルバメート(PAHS)又はフ ェニルイソシァネート (PIC)と反応させた場合にも同一のァミノ官能性ィ匕合物誘導体 力 S生成することが示される。同様に、図 1 (b)では、アミノ酸を 3—アミノビリジル一 N— ヒドロキシスクシ-ミジル力ルバメート(APDS)又はピリジルイソシァネート(PvIC)と 反応させた場合にも同一のァミノ官能性ィ匕合物誘導体が生成することが分かる。従つ て、本発明の方法は、誘導体化反応の結果生じたァミノ官能性化合物誘導体の構造 が上記一般式 (I)又は (Π)で示される構造である点に特徴を有し、それらの構造を有 する限り、どのような誘導体化試薬を用いて反応を行う方法も本発明の範囲に含まれ る。
[0036] 本発明の分析方法における「液体クロマトグラフィー」とは、液体を移動相とするクロ マトグラフィ一による分離手法であって、固定相カラムを選択することによって加圧下 で操作が可能な高速液体クロマトグラフィー(HPLC)として種々の用途に用いられて いる。分離機構は、分配、吸着、イオン交換、サイズ排除等の種々の機構に分類され るが、最も頻繁に使用されるカラムは逆相固定相で分配によって分離され、試料はよ り極性の低 ヽ固定相に保持され、極性を持つ移動相によって溶出される。
[0037] 「段階的な濃度勾配溶出手段 (ステップワイズグラジェント)」とは、移動相の極性や 塩強度などを段階的に変化させることであって、例えば、溶離液に含まれる有機溶媒 の割合を図 2に示したように変化させることをいう。図 2において、溶離液に含まれる 有機溶媒の割合は分析時間の経過と共に階段的に変化するが、濃度勾配の無い状 態又は緩やかな濃度勾配の状態から、それよりも急激な濃度勾配を有する状態へと 非直線的に変化することをいう。好ましくは、有機溶媒の割合を少なくとも 2回、より好 ましくは 3回以上変化させることにより効率的な分離を行うことができる。なお、最適な ステップワイズグラジェントは、分析対象となるアミノ官能性化合物誘導体の種類や 用いる有機溶媒の種類によって異なる。また、分離能は溶出時間を長くすると改善さ れるため、直線的な濃度勾配溶出手段(リニアーグラジェント法)を用いた場合にも 溶出時間を長くすることによって本発明と同様の効果が得られる場合もある。用いる 有機溶媒としてはカラムの充填剤やサイズなどの種類に併せて種々の溶媒を適宜選 択することができるが、例えば、逆相カラムを用いた HPLCの場合には、酸としてはギ 酸、酢酸、トリフルォロ酢酸、プロピオン酸、酪酸、ペンタフルォロプロピオン酸、ヘプ タフルォロ酪酸を、塩基としては、アンモニア、トリメチルァミン、トリェチルァミン、トリ プチルァミンを、また、これらの塩溶液によって pHを調製した溶液、望ましくは、ギ酸 、酢酸、ギ酸アンモ-ゥム、酢酸アンモ-ゥムの 5〜50mM水溶液で pHを 2. 5〜7. 5に調整した溶液、また有機溶媒としてはァセトニトリル、メタノール、エタノール、及 びこれらと水の混合溶液を用いることが好ま 、。
[0038] 上記液体クロマトグラフィーによる溶出工程における好ましい実施形態において、ヒ スチジン誘導体、ァスパラギン酸誘導体、アルギニン誘導体、ヒドロキシプロリン誘導 体、グルタミン酸誘導体、アルギ-ノコハク酸誘導体、システインスルフィン酸誘導体 、システィン酸誘導体、及び j8—ヒドロキシァスパラギン酸誘導体の中で最も溶出時 間の短いアミノ官能性化合物誘導体とトリブトファン誘導体、リジン誘導体、フエニル ァラニン誘導体、 1, 5—ジァミノペンタン誘導体、ホモロイシン誘導体、トリプタミン誘 導体、ホモランチォニン誘導体、チラミン誘導体、システアミン誘導体、プトレシン誘 導体、シスタミン誘導体及び 2—フエ-ルェチルァミン誘導体の中で最も溶出時間の 長い該誘導体との溶出時間の差が 3〜20分の間、より好ましくは 3〜: LO分の間に設 定することができる。迅速な分析を行うためには、この溶出時間差をできるだけ短くし た方がよいが、用いる分離カラムの性能と対象サンプルの種類を考慮して当該溶出 時間差を適宜設定することができる。
[0039] 本発明において使用する質量分析法は、上記液体クロマトグラフィーにより溶出さ れるァミノ官能性ィ匕合物をエレクトロスプレーイオンィ匕法 (ESI)、大気圧化学イオン化 法 (APCI)、及びソニックスプレーイオン化法(SSI)などの方法で正イオンある!/、は 負イオンにイオン化し、気相で測定する方法である。生じたイオンは四重極型、ィォ ントラップ型、飛行時間型、及び磁場型などの質量分離装置にかけられ、質量と電荷 の比により分離される。さらに三連四重極型の装置のように質量分離装置を複数個 直列につなぐことにより(MSZMS)、選択性の高い測定が可能になる。
[0040] 例えば、三連四重極装置においては、 1番目の四重極でアミノ官能性ィヒ合物誘導 体の質量を測定した後、注目するアミノ官能性化合物誘導体のみを 2番目の四重極 に送り込んで、そこで衝突誘起解離(Collision-induced dissociation; CID)によってフ ラグメント化し、そのフラグメントの質量を 3番目の四重極で極めて高感度に測定する ことができる。
[0041] このことを利用して、下記に示す 2種類の測定方法、即ち、プリカーサ一イオンスキ ヤン法(Precursor Ion Scan)、セレクテッドリアクションモニタリング法(Selected Reactio n Monitoring (SRM)法)により、第一のマスアナライザーでァミノ官能性ィ匕合物と前記 標識試薬との反応体のイオンを、第二のマスアナライザーで試薬由来のフラグメント イオンを検出することで極めて選択性が高ぐ高感度な分析を達成することができる。
[0042] このような方法に用いる誘導体ィ匕試薬としては、 p ジメチルアミノア-リル一 N ヒ ドロキシスクシンィミジル力ルバメート(DAHS)、 3—アミノビリジルー N ヒドロキシス クシンィミジル力ルバメート(APDS)、 p トリメチルアンモ-ゥムァ-リル一 N ヒドロ キシスクシンィミジル力ルバメートアイオダイド (TAHS)、アミノビラジル N—ヒドロキ シスクシンィミジル力ルバメート、 6—ァミノキノリル N ヒドロキシスクシンイミドカル ノ メート(AQC)、 9—アミノアクリジル N ヒドロキシスクシンイミドカルバメート等が 挙げられる。
[0043] 一方、誘導体ィ匕試薬に前記力ルバメートィ匕合物の中、試薬のイオン性が小さいィ匕 合物を選択した場合、 CIDにより同様に選択的な開裂が発生するが、質量分析計内 で陽イオンを観測するように設定すると、試薬由来の構造が-ユートラルロスし、 [アミ ノ酸 + H]がフラグメントイオンとして観測される。このことを利用して、コンスタント-ュ ートラルロススキャン法(Constant Neutral Loss Scan)〖こより、質量分析計で陽イオン を観測するように設定することにより、第一のマスアナライザーでアミノ酸と試薬の反 応体のイオンを、第二のマスアナライザーで試薬骨格由来の構造が-ユートラルロス したアミノ酸由来のイオンを検出することで、極めて選択性が高く高感度なアミノ酸分 祈が達成される。このような方法に用いる誘導体ィ匕試薬としては、 1—ナフチルァミノ —N ヒドロキシスクシンィミジル力ルバメート(NAHS)が挙げられる。
[0044] <好適な質量分析方法 >
本発明において使用する質量分析法には特に制限は無いが、より好ましい例とし て幾つか紹介する。
<¾elected Ion Monitoring)
SIMでは、あら力じめ選択された特定の mZz比のみをモニターすることにより目的 の質量をもつ化合物を高 、精度で検出することができる。
[0045] < Precursor Ion Scan >
プリカーサ一イオンスキャン分析では、第一のマスアナライザー(Q1等)は指定され た質量範囲に従ってスキャンされ、この範囲のイオンは、例えば Q2での衝突誘起解 離により解離する。このとき第二のマスアナライザー(Q3等)は、特定のフラグメントィ オン (例えば、 TAHSの場合 mZz= 177)を選択するように設定する。得られるスぺ タトルには特定のフラグメントイオンを生成するプリカーサ一イオン (親イオン)だけが 記録される。
[0046] < Selected Reaction Monitoring (SRM) >
SRM分析では、対象となるイオンを第一のマスアナライザー(Ql等)で選択し、こ のイオンを衝突セルの中で解離させ、第二のマスアナライザー(Q3等)で特定のフラ グメントイオン (例えば、 TAHSの場合 mZz= 177)を選択してモニタリングする。こ の方法により、定量対象化合物と同一の保持時間でかつプリカーサ一イオンと同一 の質量を有する夾雑成分が存在しても、夾雑成分が定量対象化合物のフラグメントィ オンを生じない限り、その影響を排除できるので、感度'選択性が飛躍的に向上する
[0047] < Constant Neutral Loss ¾can>
コンスタント-ユートラルスキャン分析では、第一のマスアナライザー(Q1等)は指定 された質量範囲に従ってスキャンされ、この範囲のイオンは、例えば Q2での衝突誘 起解離により解離する。このとき第二のマスアナライザー (Q3等)は、特定の二ユート ラルフラグメント(例えば、 1—ナフチルァミノ一 N—ヒドロキシスクシンィミジルカルバメ ートの場合 mZz= 170)を選択するように設定する。得られるスペクトルにはある特 定の中性分子が脱離する全てのプリカーサ一イオン (親イオン)を検出するスキャン 法を採用する。
[0048] 質量分析は、その分析対象物質の質量に起因するイオンを検出できるために、極 めて選択性の高い検出方法として、広く使用されている。本発明においては、分析対 象を規則的な開裂を発生させる誘導体化試薬を設計することで、ァミノ官能性化合 物のより選択性の高い検出方法が得られる。更に、イオン性の高い誘導体化試薬を 設計した場合には、ァミノ官能性ィ匕合物の高感度分析を達成することができる。
[0049] また、一般的に質量分析においては、低分子領域に夾雑物が多ぐそれがノイズの 原因となり、分析対象の検出能を妨げる要因となるが、一つ以上の芳香環を誘導体 化試薬に導入することで、分子量を大きくし、ノイズの少ない領域での測定を達成す ることがでさる。
[0050] アミノ酸の検出限界は、アミノ酸の種類によって異なる力 四重極質量分析計、例え ば API365タイプの検出器(アプライドバイオシステムズ)を用い、 SRMモードを選択 した場合、 ρ -トリメチルアンモ-ゥムァ-リル N ヒドロキシスクシンィミジル力ルバ メートアイオダイド (TAHS)で 2〜40f mol程度、 p ジメチルアミノア-リル N—ヒド ロキシスクシンィミジル力ルバメート(DAHS)で 3〜2000fmol程度、 3 アミノビリジ ルー N ヒドロキシスクシンィミジル力ルバメート(APDS)で 3〜180fmol程度、 6— ァミノキノリル一 N ヒドロキシスクシンイミドカルバメート(AQC)で 2〜200fmol程度 であり、一般的な蛍光標識試薬を凌ぐことができることが確認される。特に、 6—ァミノ キノリル一 N ヒドロキシスクシンイミドカルバメート (AQC)は蛍光標識試薬として巿 販されているものである力 その検出限界は数百 fmolと報告されている。 SRMでの 測定では、蛍光法と同等力 最大で百倍の感度改善が見られる。
[0051] 本発明の方法による検出は、誘導体化標識されたァミノ官能性化合物の質量に起 因するイオンで行われるため、それ以外の化合物、例えば、標識試薬や標識試薬の 加水分解物、その他、標識反応により形成される予期せぬ夾雑物の障害を受けるこ となぐ分析対象を測定することができる。
[0052] 本発明にお 、て、安定同位体を含むアミノ官能性ィ匕合物を用いることで測定の精 度を向上することができる。例えば、 13C、 (D)、 15N及び 180等の天然存在比の低 い安定同位体、あるいは放射性同位元素を含むアミノ官能性ィヒ合物を内部標準物 質とする方法や、前記同位体を含む誘導体化試薬を用いてァミノ官能性化合物を誘 導体ィ匕したものを内部標準物質として用いることで、生体試料分析におけるマトリック ス効果やそれに伴うイオンィ匕抑制の影響を低減し、測定精度を上げることができる。 分析対象となるアミノ官能性化合物の種類、試料中の濃度及び分析条件により最適 な内部標準物質を選択することで定量精度は飛躍的に向上する。好ましくは、分析 対象となるアミノ官能性ィ匕合物のすべての内部標準物質を用いることが望ましい。
[0053] 本発明の好ましい実施形態において、上記質量分析法による検出工程は、以下の
(a)群より選択される 2以上のァミノ官能性化合物誘導体、及び (b)〜 (i)の少なくとも 1つの群より選択される 2以上のァミノ官能性化合物誘導体のそれぞれを分離して検 出することができる。
(a) ε アミノー η—力プロン酸、ロイシン誘導体、イソロイシン誘導体、及びノルロイ シン誘導体
(b)ザルコシン誘導体、 13ーァラニン誘導体、及びァラニン誘導体
(c) γ—アミノー η—酪酸誘導体、 β—ァミノイソ酪酸誘導体、 a—アミノー n—酪酸 誘導体、 aーァミノイソ酪酸誘導体、及び j8—アミノー n 酪酸誘導体
(d) 1 メチルヒスチジン誘導体、及び 3 メチルヒルチジン誘導体
(e)ホモセリン誘導体、及びスレオニン誘導体
(f) 5—アミノ吉草酸誘導体、パリン誘導体、及びノルパリン誘導体
(g) 4—ヒドロキシ安息香酸誘導体、アンスラ-ル酸誘導体
(h)グルタミン酸誘導体、 O ァセチルセリン誘導体
(i)アンセリン誘導体、ホモカルノシン誘導体
[0054] 上記 (a)〜 (i)の各群には、それぞれ質量が同一のァミノ官能性ィ匕合物誘導体が示 されるが、本発明の方法によれば、これら各群に含まれるァミノ官能性化合物誘導体 のそれぞれを分離して検出するように溶出工程の条件設定をすることができ、このた め多種類のアミノ官能性ィ匕合物を含む試料を用いてこれらを同時に分析することが 可能となる。従って、本発明の方法は、これら全てのァミノ官能性ィ匕合物を含む試料 を用いてもよいが、少なくともロイシン、イソロイシン及びノルロイシン力も選択される 2 以上のァミノ官能性ィ匕合物を含む試料を用いてこれら複数のァミノ官能性ィ匕合物誘 導体を同時に分析する方法を含む。
[0055] (本発明の分析装置)
本発明の分析装置は、例えば、図 3に示したように、上記本発明の分析方法を実施 するために必要な構成要素 (部分)からなる。これらの構成要素としては、少なくとも、 試料中のアミノ官能性化合物と誘導体化試薬とを反応させる反応部 10と、前記反応 部 10で生成したァミノ官能性ィ匕合物誘導体の液体クロマトグラフィーにより溶出する クロマトグラフ部 20と、前記クロマトグラフ部 20からの溶出液に含まれるァミノ官能性 化合物誘導体を検出する質量分析部 30とを含む。前記溶出部 20は、分離カラム 21 及び当該カラムに段階的な濃度勾配を有する溶出液を供給する溶出系、例えば、溶 離液 24a (24b)をカラムに送るためのポンプ 23a (23b)等が含まれる。溶出液に濃 度勾配をつけるために複数のポンプ(23a、 23b)を用いることができる。また、クロマト グラフ部 20は、上記反応部 10で生成したァミノ官能性ィ匕合物誘導体を導入するため のインジェクションバルブ 22を備える。
[0056] クロマトグラフ部 20から溶出されたァミノ官能性ィ匕合物誘導体は、質量分析部 30に おいて、まずイオン化される。タンパク質やペプチド等の試料をイオンィ匕するために 最も一般的に用いられる技術として、エレクトロスプレーイオン化法 (ESI)、大気圧化 学イオン化法 (APCI)及びマトリクス支援レーザー脱離イオンィ匕法 (MALDI)、ソニ ックスプレーイオンィ匕法(SSI)などがある力 本発明の装置において、液体クロマトグ ラフィ一からの溶出液に含まれるァミノ官能性ィ匕合物誘導体をイオンィ匕させる方法と しては ESI法を用いることが好ま 、。イオン化のための効率的な熱伝導やガス化方 法を備えた多くのシステムが用いられる。
[0057] 続いて、質量分析部 30は、イオンィ匕した試料カゝら選択された質量対電荷比 (m/z)内 においてイオンを分離する。質量分析部は分析データの感度や分解能、質量の正 確さやマススペクトルデータ力 得られる情報の豊富さに重要な役割を果たして 、る 。イオンの分離方法としては、現在、 6種類の基本的なタイプに分類することができ、 それらは、磁場型、電場型、イオントラップ型、飛行時間 (TOF)型、四重極型、及び フーリエ変換サイクロトロン型である。これらはそれぞれ長所と短所があり、単独で又 は互いに連結して用いることができる力 ESIによるイオンィ匕では通常、四重極質量 分析部が用いられる。最新の四重極質量分析計 (例えば、 API4000 (アプライドバイ ォシステムズ))による測定では、 p—トリメチルアンモ-ゥムァ-リル N ヒドロキシ スクシンィミジル力ルバメートアイオダイド (TAHS)標識後のアミノ酸の検出限界は殆 どのアミノ酸で lfmol以下となる。
[0058] 本発明の分析装置は、上記各構成要素 (ユニット)を自動的に連結し、反応部 10か ら質量分析部 30までをオートメーションィ匕することができる。例えば、 96穴のゥエルプ レートで血漿等の試料を保存するユニットを追加し、これより自動サンプリング装置に より所定量の試料を採取して反応部 10へ移送し、更に、誘導体化されたァミノ官能 性ィ匕合物を液体クロマトグラフィーのオートサンプラー等を用いて自動的にクロマトグ ラフ部 20へインジェクションすることができる。これにより極めてハイスループットな分 祈が可能となる。
実施例
[0059] 以下に、実施例を挙げて本発明をより具体的に説明する力 本発明はこれらに限 定されるものではない。
[0060] <例 1:ァミノ官能性化合物の誘導体化の具体的な手順 1 >
ァミノ官能性ィ匕合物を含む試料としてアミン標準溶液 20 Lに、硼酸緩衝液 (硼酸 塩 200mM、 EDTA5mM) 60 μ Lを添カ卩した。この混合物に、標識試薬溶液(HPLC等 級ァセトニトリル lmL中に誘導体ィ匕試薬 5mg) 20 Lを添加した。得られた混合物を 1 0分間、 55°Cで加熱した。加熱後、得られたァミノ官能性化合物の誘導体化物の混 合物を用いて、逆相の液体クロマトグラフィーで分離後、質量分析装置に導入した。 その際に、得られた誘導体ィ匕物の混合物は液体クロマトグラフィーの移動相 Aで 10 倍に希釈しておく。
(1)移動相 A: 50mM酢酸水溶液をアンモニア水で pH6. 0に調製した水溶液
(2)移動相 B : 125mM酢酸水溶液をアンモニア水で pH6. 0に調製した水溶液とメ タノールを 4: 6で混合した溶液
(3) HPLC : Agilent HP 1100シリーズ
(4)検出器:質量分析装置 Sciex API4000
(5)温度: 40°C
[0061] <例 2 :分析例 1 >
P -トリメチルアンモ-ゥムァ-リル N ヒドロキシスクシンィミジル力ルバメートアイ オダィォド (TAHS)により前記例 1に記載した反応条件によって調製した 40種のアミ ノ官能性化合物の混合物の誘導体化物を逆相 HPLCにより分離し、 Selected Ion Monitoring (ポジティブイオンモード)にお!/ヽて検出した。
[0062] 逆相 HPLCにおける分離カラムは CAPCELL PAK AQ 内径 2. Omm、長さ 5 Omm、粒子径 3 m (資生堂)を用い、流速は 0. 3mLZminで勾配条件は以下の 通りである。時間(移動相 Bの比率) 0分から 0. 25分(3%)、0. 25分から 1分(3%か ら 150/0)、 1分力ら 1. 75分(150/0)、 1. 75分力ら 2. 35分(150/0力ら 340/0)、 2. 35 分から 5分(34%から 35%)、 5. 01分から 5. 1分(50%から 70%)、 5. 1分から 5. 7 分(70%)、 5. 71分から 12分(3%)。なお、メタノール濃度について表したグラジェ ントパターンを図 2の(a)に示した。
[0063] 分析した結果を図 4に示す。 TIC(Total Ion Chromatogram)は、 40種類のアミノ官 能性ィ匕合物の溶出パターンを連続的に示したものである。抽出イオンクロマトグラム( XIC)は、これら 40種類の化合物を分離して検出したパターンを示す。また、それぞれ のァミノ官能性ィ匕合物を単独で、又は数種の混合物として検出したパターンをそれら の下に示した。図 4から明らかなように、 40種類のァミノ官能性ィ匕合物のそれぞれを 分離して約 9分間で検出できることが分力る。
[0064] <例 3 :分析例 2 >
P -トリメチルアンモ-ゥムァ-リル N ヒドロキシスクシンィミジル力ルバメートアイ オダィォド (TAHS)により前記例 1に記載した反応条件によって調製した 40種のアミ ノ官能性化合物の混合物の誘導体化物を逆相 HPLCより分離し、 Selected Reaction Monitoring (ポジティブイオンモード)にお!/ヽて検出した。
[0065] 逆相 HPLCにおける分離カラムは CAPCELL PAK AQ 内径 2. Omm、長さ 5 Omm、粒子径 3 m (資生堂)を用い、流速は 0. 3mLZminで勾配条件は以下の 通りである。時間(移動相 Bの比率) 0分から 0. 25分(3%)、0. 25分から 1分(3%か ら 150/0)、 1分力ら 1. 75分(150/0)、 1. 75分力ら 2. 35分(150/0力ら 340/0)、 2. 35 分から 5分(34%から 35%)、 5. 01分から 5. 1分(50%から 70%)、 5. 1分から 5. 7 分 (70%)、 5. 71分力 12分 (3%)。
[0066] 分析した結果を図 5に示す。本分析例においても上記分析例 1と同様に約 9分間で 40種類のァミノ官能性ィ匕合物のそれぞれを分離して検出できることが分かる。
[0067] <例 4 :分析例 3 >
3—アミノビリジル一 N ヒドロキシスクシンィミジル力ルバメート(APDS)により前記 例 1に記載した反応条件によって調製した 39種のアミノ官能性ィ匕合物の混合物の誘 導体化物を逆相 HPLCより分離し、 Selected Ion Monitoring (ポジティブイオンモード )において検出した。 [0068] 逆相 HPLCにおける分離カラムは CAPCELL PAK AQ 内径 2. Omm、長さ 5 Omm、粒子径 3 m (資生堂)を用い、流速は 0. 3mLZminで勾配条件は以下の 通りである。時間(移動相 Bの比率) 0分から 0. 5分(13%)、0. 51分力 4分(50%) 、 4. 01分から 6分(80%)、 6. 01分から 12分(13%)。なお、メタノール濃度につい て表したグラジェントパターンを図 2の(b)に示した。
[0069] 分析した結果を図 6に示す。本分析例においても上記分析例 1及び 2と同様に約 8 分間で 39種類のァミノ官能性ィ匕合物のそれぞれを分離して検出できることが分かる
[0070] <例 5 :分析例 4 >
3—アミノビリジル一 N—ヒドロキシスクシンィミジル力ルバメート(APDS)により前記 例 1に記載した反応条件によって調製した 39種のアミノ官能性ィ匕合物の混合物の誘 導体化物を逆相 HPLCより分離し、 Selected Reaction Monitoring (ポジティブイオン モード)において検出した。
[0071] 逆相 HPLCにおける分離カラムは CAPCELL PAK AQ 内径 2. Omm、長さ 5
Omm、粒子径 3 m (資生堂)を用い、流速は 0. 3mLZminで勾配条件は以下の 通りである。時間(移動相 Bの比率) 0分から 0. 5分(13%)、0. 51分力 4分(50%)
、 4. 01分力ら 6分(800/0)、 6. 01分力ら 12分(130/0)。
[0072] 分析した結果を図 7に示す。本分析例においても上記分析例 1〜3と同様に約 8分 間で 39種類のァミノ官能性ィ匕合物のそれぞれを分離して検出できることが分かる。
[0073] <例 6 :分析例 5 >
フエ-ルイソシァネート (PIC)により前記例 1に記載した反応条件によって調製した
39種のアミノ官能性ィ匕合物の混合物の誘導体ィ匕物を逆相 HPLCより分離し、 Selecte d Ion Monitoring (ポジティブイオンモード)において検出した。
[0074] 逆相 HPLCにおける分離カラムは SuperODS 内径 2. Omm、長さ 50mm、粒子 径 2 /ζ πι (Τ030Η)を用い、流速は 0. 4mLZminで勾配条件は以下の通りである。 時間(移動相 Bの比率) 0分から 0. 01分(13%)、 0. 01分から 2分(60%)、 2. 5分 力ら 4. 5分(1000/0)、 4. 51分カら10分(130/0)。
[0075] 分析した結果を図 8に示す。本分析例においても上記分析例 1〜4と同様に約 6分 間で 39種類のァミノ官能性ィ匕合物のそれぞれを分離して検出できることが分かる。
[0076] <例 7 :分析例 6 >
3—アミノビリジル一 N ヒドロキシスクシンィミジル力ルバメート(APDS)により前記 例 1で記載した反応条件によって調製した 17種のアミノ酸誘導体 (ロイシン誘導体、 イソロイシン誘導体、ノルロイシン誘導体、ザルコシン誘導体、 βーァラニン誘導体、 ァラニン誘導体、 Ύ アミノー η—酪酸誘導体、 βーァミノイソ酪酸誘導体、 α—アミ ノー η—酪酸誘導体、 α—アミノイソ酪酸誘導体、 j8—アミノー η—酪酸誘導体、 1 メチルヒスチジン誘導体、 3—メチルヒスチジン誘導体、ホモセリン誘導体、スレオニン 誘導体、パリン誘導体、及びノルパリン誘導体)の混合物を逆相 HPLCにより分離し 、 Selected Reaction Monitoring (ポジティブモード)において検出した。逆相 HPLCに おけるカラムは CAPCELL PAK AQ 内径 2. Omm、長さ 50mm、粒子径 3 m ( 資生堂)を用い、流速は 0. 3mLZminで勾配条件は以下の通りである。時間(移動 相 Bの比率) 0分力も 0. 5分(13%)、0. 51分から 4分(50%)、4. 01分から 6分(80 %)、 6. 01分から 12分(13%)。
[0077] その結果を図 9に示す。図 9の各チャートに示したように、質量数が同一の複数のァ ミノ官能性ィ匕合物、例えば、ザルコシン誘導体、 βーァラニン誘導体、及びァラニン 誘導体を分離して検出できることが分力る。
[0078] <例 8:ァミノ官能性化合物の誘導体化の具体的な手順 2 >
ァミノ官能性ィ匕合物を含む試料としてアミノ官能性ィ匕合物標準混合溶液 20 μ Lに、 0. 2Μ硼酸緩衝液 (ρΗ8. 8)を添カ卩した。この混合物に、 3 アミノビリジル一 Ν—ヒ ドロキシスクシンィミジル力ルバメート試薬溶液(10mgの誘導体化試薬を LCZMS 用のァセトニトリル lmL中に溶解)を 20 /z L添カ卩した。得られた混合物を 10分間、 55 °Cで加熱した。加熱後、得られたァミノ官能性化合物誘導体混合物を逆相の液体ク 口マトグラフィ一で分離後、質量分析装置に導入した。その際、得られたァミノ官能性 化合物誘導体混合物は、 0. 1%のギ酸水溶液 100 Lで中和後、液体クロマトダラ フィ一の移動相 Aを 300 μ L加えて希釈しておく。
(1)移動相 A: 25mMギ酸水溶液をアンモニア水で ρΗ6. 0に調製した水溶液
(2)移動相 Β:ァセトニトリルと精製水を 6: 4で混合した溶液 (3) HPLC : Agilent HP 1100シリーズ
(4)検出器:質量分析装置 Sciex API4000
(5)温度: 40°C
[0079] <例 9 :分析例 7 >
3—アミノビリジル一 N—ヒドロキシスクシンィミジル力ルバメート(APDS)により前記 例 8に記載した反応条件によって調製した 106種のアミノ官能性ィ匕合物の混合物の 誘導体化物を逆相 HPLCにより分離し、 Selected Reaction Monitoring (ポジティブモ ード)において検出した。逆相 HPLCにおける分離カラムは InertsilC8— 3内径 2. 1 mm、長さ 50mm、粒子系 3 m (ジーエルサイエンス)を用い、流速は 0. 3mL/mi nで勾配条件は以下の通りである。時間(移動相 Bの比率) 0分から 1. 25分 (4%)、 1 . 25分から 1. 26分 (4%から 15%)、 1. 26分から 5分(15%から 20%)、 5分から 5. 5分(200/0力ら 500/0)、 5. 5分力ら 6. 5分(500/0力ら 950/0)、 6. 5分力ら 6. 75分(95 %)、 6. 76分から 12分 (4%)。
[0080] 分析した結果を図 10に示す。図 10に示したように、約 9分間で 106種類のアミノ官 能性ィ匕合物のそれぞれを分離して検出できることが分力る。
[0081] <例 10 :分析例 8 >
3—アミノビリジル一 N—ヒドロキシスクシンィミジル力ルバメート(APDS)により前記 例 8に記載した反応条件によって調製した 38種のアミノ官能性ィ匕合物の混合物の誘 導体化物を逆相 HPLCにより分離し、 Selected Ion Monitoring (ポジティブモード)に おいて検出した。逆相 HPLCにおける分離カラムは InertsilC8— 3内径 2. lmm、 長さ 50mm、粒子系 3 m (ジーエルサイエンス)を用い、流速は 0. 3mLZminで勾 配条件は以下の通りである。時間(移動相 Bの比率) 0分から 1. 25分 (4%)、 1. 25 分から 1. 26分 (4%から 15%)、 1. 26分から 5分(15%から 20%)、 5分から 5. 5分 ( 200/0力ら 500/0)、 5. 5分力ら 5. 51分(500/0力ら 950/0)、 5. 51分力ら 6. 5分(950/0) 、 6. 51分から 12分 (4%)。
[0082] 分析した結果を図 11に示す。図 11に示したように、約 8分間で 38種類のァミノ官能 性ィ匕合物のそれぞれを分離して検出できることが分力る。
[0083] <例 11:ァミノ官能性化合物の誘導体化の具体的な手順 3 > ァミノ官能性ィ匕合物を含む試料としてアミノ官能性ィ匕合物標準混合溶液 20 μ Lに、 0. 2Μ硼酸緩衝液 (ρΗ8. 8)を添カ卩した。この混合物に、 3—アミノビリジル一 Ν—ヒ ドロキシスクシンィミジル力ルバメート試薬溶液(10mgの誘導体化試薬を LCZMS 用のァセトニトリル lmL中に溶解)を 20 /z L添カ卩した。得られた混合物を 10分間、 55 °Cで加熱した。加熱後、得られたァミノ官能性化合物誘導体混合物を逆相の液体ク 口マトグラフィ一で分離後、質量分析装置に導入した。その際、得られたァミノ官能性 化合物誘導体混合物は、 0. 1%のギ酸水溶液 100 Lで中和後、液体クロマトダラ フィ一の移動相 Aを 300 μ L加えて希釈しておく。
(1)移動相 A: 25mMギ酸水溶液
(2)移動相 B:ァセトニトリルと精製水を 6: 4で混合した溶液
(3) HPLC : Agilent HP 1100シリーズ
(4)検出器:質量分析装置 Sciex API4000
(5)温度: 40°C
[0084] <例 12:分析例 9 >
3—アミノビリジル一 N—ヒドロキシスクシンィミジル力ルバメート(APDS)により前記 例 11に記載した反応条件によって調製した 39種のアミノ官能性ィ匕合物の混合物の 誘導体化物を逆相 HPLCにより分離し、 Selected Reaction Monitoring (ポジティブモ ード)において検出した。逆相 HPLCにおける分離カラムは Atlantis dC18 内径 2 . lmm、長さ 100mm、粒子系 3 m (ウォーターズ)を用い、流速は 0. 3mL/min で勾配条件は以下の通りである。時間(移動相 Bの比率) 0分から 0. 5分 (0%)、 0. 5 カら 2. 25 (00/0力ら 120/0)、 2. 25 カら 2. 26 (120/0力ら 180/0)、 2. 26 カ ら 5. 5分(180/0力ら 220/0)、 5. 5分力ら 6分(220/0力ら 500/0)、 6分力ら 6. 25分(50 %から 90%)、 6. 25分から 6. 5分(90%)、 6. 51分から 12分 (0%)。
[0085] 分析した結果を図 12に示す。図 12に示したように、約 10分間で 39種類のアミノ官 能性ィ匕合物のそれぞれを分離して検出できることが分力る。
産業上の利用可能性
[0086] 本発明の方法によれば、生体アミノ酸を含む 100種類以上のァミノ官能性ィ匕合物を 極めて短時間に、例えば 10分以内に分析できることから、これらァミノ官能性ィ匕合物 に関連する食品、医薬品、医療や分析機器の分野において有用である。

Claims

請求の範囲 ァミノ官能性ィ匕合物を含む試料中のアミノ官能性ィ匕合物と誘導体ィ匕試薬とを反応さ せて下記一般式 (I)で示されるァミノ官能性化合物誘導体を生成せしめる工程、 前記アミノ官能性化合物誘導体を段階的な濃度勾配溶出手段を用いる液体クロマ トグラフィ一により溶出する工程、及び 前記液体クロマトグラフィーにより溶出されたァミノ官能性ィ匕合物誘導体を質量分析 法により検出する工程を含むことを特徴とするアミノ官能性ィ匕合物の分析方法。
[化 1]
ノ\
(式中、 Arは置換基を有してもよい炭化水素、又は芳香族性を示す炭素環若しくは 複素環を含む置換基を表し、 Rは水素原子、置換基を有していてもよいアルキル基 又は環を形成する炭素原子を表し、 Rは置換基を有していてもよいアルキル基を表
2
し、 Arと R、又は Rと Rは一緒になつて環を形成してもよい。 )
1 1 1 2
前記アミノ官能性ィ匕合物誘導体が下記一般式 (π)で示される化合物である請求項
1に記載の方法。
[化 2]
Figure imgf000030_0001
(式中、 Arは芳香族性を示す炭素環化合物残基又は複素環化合物残基を表し、 X
2
は酸素原子又は硫黄原子を表し、 Yは酸素原子、硫黄原子、第 2級ァミン、第 3級ァ ミン、又は置換基を有していてもよいメチレン基を表し、 Rは水素原子、置換基を有 していてもよいアルキル基又は環を形成する炭素原子を表し、 Rは置換基を有して
2
いてもよいアルキル基を表し、 Rと Rは一緒になつて環を形成してもよい。 ) [3] 前記アミノ官能性ィ匕合物誘導体が、フエ二ルカルバミルアミノ官能性ィ匕合物、 3—ピ リジルカルバミルアミノ官能性ィ匕合物、フエ-ルチオ力ルバミルアミノ官能性ィ匕合物、 3—ピリジルチオ力ルバミルアミノ官能性ィ匕合物、 p トリメチルアンモ-ゥムァ-リル 力ルバミルアミノ官能性化合物、又は p ジメチルアンモ-ゥムァ-リル力ルバミルアミ ノ官能性化合物である請求項 1又は 2に記載の方法。
[4] 前記誘導体化試薬が下記一般式 (ΠΙ)又は (IV)で示される置換イソチオシァネー ト芳香族化合物、置 ソシァネート芳香族化合物、置換スクシンィミジルカルバメー ト芳香族化合物、置換力ルバモイルノヽライド芳香族化合物、又は置換力ルバモイル アルコキシ芳香族化合物である請求項 1〜3のいずれか一項に記載の方法。
[化 3]
Figure imgf000031_0001
[化 4]
Figure imgf000031_0002
(式中、 Arは芳香族性を示す炭素環化合物残基又は複素環化合物残基を表し、 R
2
'はフッ素原子、塩素原子、臭素原子、ヨウ素原子、 N ヒドロキシスクシンィミジル基 、又はアルコキシ基を表し、 Xは酸素原子又は硫黄原子を表し、 Yは酸素原子、硫黄 原子、第 2級ァミン、第 3級ァミン、又は置換基を有していてもよいメチレン基を表す。 )
[5] 前記誘導体ィ匕試薬がフエ-ルイソシァネート、 3—ピリジルイソシァネート、フエ-ル イソチオシァネート、 3—ピリジノレイソチオシァネート、フエニノレー N ヒドロキシスクシ ンィミジル力ルバメート、 3—アミノビリジル一 N ヒドロキシスクシンィミジルカルバメー ト、フエ-ルー N ヒドロキシチォスクシ-ルイミジル力ルバメート、又は 3—ピリジル一 N ヒドロキシチォスクシ-ルイミジル力ルバメートである請求項 4に記載の方法。
[6] 前記アミノ官能性化合物が、ァスパラギン、ァスパラギン酸、 O ァセチルセリン、 N a ァセチルリジン、 S—アデノシルホモシスティン、 S—アミノエチルシスティン、 ε —アミノー n—カプロン酸、 a—ァミノアジピン酸、 4—ァミノ安息香酸、 a—ァミノイソ 酪酸、 βーァミノイソ酪酸、 5—アミノ吉草酸、 a アミノピメリン酸、 a アミノー n— 酪酸、 β—ァミノ一 η—酪酸、 γ—ァミノ一 η—酪酸、 β—ァラニン、ァラニン、アルギ 二ノコハク酸、アルギニン、アンセリン、アンスラ-ル酸、イソロイシン、エタノールアミ ン、ェチォニン、ェピネフリン、オル-チン、ガラクトサミン、カルノシン、キヌレニン、グ リシン、ダルタチオン還元型、ダルタチオン酸ィ匕型、グルタミン、グルタミン酸、サッカ 口ピン、ザルコシン、 13—シァノアラニン、 at , ε —ジアミノピメリン酸、 1, 5 ジァミノ ペンタン、 a , y—ジァミノ酪酸、ジェンコル酸、シスタチォニン、シスタミン、シスチン 、システアミン、システィン、システィン酸、システィンスノレフィン酸、シトノレリン、ジヒドロ キシフエ-ルァラニン、ジメチルァミン、スレオ-ン、セリン、タウリン、チラミン、チロシ ン、テア-ン、トリプタミン、トリプトファン、 N ε , N ε , N ε —トリメチルリジン、ノルェピ ネフリン、ノルパリン、ノルロイシン、ノ リン、ヒスタミン、ヒスチジノール、ヒスチジン、 13 —ヒドロキシァスパラギン酸、 3—ヒドロキシアンスラ-ル酸、 3—ヒドロキシキヌレニン、 ヒドロキシチラミン、 5—ヒドロキシトリプタミン、 5—ヒドロキシトリプトファン、ヒドロキシプ 口リン、ヒドロキシリジン、ピペコリン酸、ヒポタウリン、フエ-ルァラニン、 2—フエ-ルェ チルァミン、フエ-ルグリシン、プトレシン、プロリン、プロリンアミド、 S ベンジルシス ティン、 Ο ホスホエタノールァミン、ホモアルギニン、ホモカルノシン、ホモシスチン、 ホモシスティン、ホモシトルリン、ホモセリン、ホモランチォニン、ホモロイシン、メチォ ニン、メチォ -ンスルホキシド、メチォニンスルホン、 13 Ν—メチルアミノアラニン、メ チルァミン、 1 メチルヒスタミン、 1 メチルヒスチジン、 3 メチルヒスチジン、モノメ チルエタノールァミン、ランチォニン、リジン、及びロイシンの少なくとも 1種である請求 項 1〜5の何れか一項に記載の方法。
前記液体クロマトグラフィーによる溶出工程は、ヒスチジン誘導体、ァスパラギン酸 誘導体、アルギニン誘導体、ヒドロキシプロリン誘導体、グルタミン酸誘導体、アルギ 二ノコハク酸誘導体、システインスルフィン酸誘導体、システィン酸誘導体、及び j8 - ヒドロキシァスパラギン酸誘導体の中で最も溶出時間の短 、ァミノ官能性化合物誘導 体とトリブトファン誘導体、リジン誘導体、フエ二ルァラニン誘導体、 1, 5 ジアミノぺ ンタン誘導体、ホモロイシン誘導体、トリプタミン誘導体、ホモランチォニン誘導体、チ ラミン誘導体、システアミン誘導体、プトレシン誘導体、シスタミン誘導体及び 2—フ ニルェチルァミン誘導体の中で最も溶出時間の長 、該誘導体との溶出時間の差が 3 〜20分の間にある請求項 1〜6の何れか一項に記載の方法。
[8] 前記質量分析法による検出工程は、以下の (a)群より選択される 2以上のアミノ官 能性化合物誘導体、及び (b)〜 (i)の少なくとも 1つの群より選択される 2以上のァミノ 官能性化合物誘導体のそれぞれを分離して検出する請求項 1〜7の何れか一項に 記載の方法。
(a) ε アミノー η—力プロン酸、ロイシン誘導体、イソロイシン誘導体、及びノルロイ シン誘導体
(b)ザルコシン誘導体、 13ーァラニン誘導体、及びァラニン誘導体
(c) γ—アミノー η—酪酸誘導体、 β—ァミノイソ酪酸誘導体、 a—アミノー n—酪酸 誘導体、 aーァミノイソ酪酸誘導体、及び j8—アミノー n 酪酸誘導体
(d) 1 メチルヒスチジン誘導体、及び 3 メチルヒルチジン誘導体
(e)ホモセリン誘導体、及びスレオニン誘導体
(f) 5—アミノ吉草酸誘導体、パリン誘導体、及びノルパリン誘導体
(g) 4—ヒドロキシ安息香酸誘導体、アンスラ-ル酸誘導体
(h)グルタミン酸誘導体、 O ァセチルセリン誘導体
(i)アンセリン誘導体、ホモカルノシン誘導体
[9] ァミノ官能性ィ匕合物の分析装置であって、
試料中のアミノ官能性化合物と誘導体化試薬とを反応させて下記一般式 (I)で示さ れるァミノ官能性化合物誘導体を生成させる反応部と、
前記アミノ官能性化合物誘導体を溶出するクロマトグラフ部と、
前記クロマトグラフ部からの溶出液に含まれるァミノ官能性化合物誘導体を検出す る質量分析部とを備えることを特徴とする分析装置。
[化 5]
\ (式中、 Αι^は置換基を有してもよい炭化水素、又は芳香族性を示す炭素環若しくは 複素環を含む置換基を表し、 Rは水素原子、置換基を有していてもよいアルキル基 又は環を形成する炭素原子を表し、 Rは置換基を有していてもよいアルキル基を表
2
し、 Arと R、又は Rと Rは一緒になつて環を形成してもよい。 )
1 1 1 2
[10] 前記クロマトグラフ部が、分離カラム及び当該カラムに段階的な濃度勾配を有する 溶出液を供給する送液系を備える請求項 9に記載の分析装置。
[11] 前記質量分析部が、以下の (a)群より選択される 2以上のァミノ官能性化合物誘導 体、及び (b)〜 (i)の少なくとも 1つの群より選択される 2以上のァミノ官能性ィヒ合物誘 導体のそれぞれを分離して検出する請求項 9又は 10に記載の分析装置。
(a) ε アミノー η—力プロン酸、ロイシン誘導体、イソロイシン誘導体、及びノルロイ シン誘導体
(b)ザルコシン誘導体、 13ーァラニン誘導体、及びァラニン誘導体
(c) γ—アミノー η—酪酸誘導体、 β—ァミノイソ酪酸誘導体、 a—アミノー n—酪酸 誘導体、 aーァミノイソ酪酸誘導体、及び j8—アミノー n 酪酸誘導体
(d) 1 メチルヒスチジン誘導体、及び 3 メチルヒルチジン誘導体
(e)ホモセリン誘導体、及びスレオニン誘導体
(f) 5—アミノ吉草酸誘導体、パリン誘導体、及びノルパリン誘導体
(g) 4—ヒドロキシ安息香酸誘導体、アンスラ-ル酸誘導体
(h)グルタミン酸誘導体、 O ァセチルセリン誘導体
(i)アンセリン誘導体、ホモカルノシン誘導体
PCT/JP2005/009618 2004-05-26 2005-05-26 アミノ官能性化合物の分析方法及び装置 WO2005116629A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006513925A JP5030586B2 (ja) 2004-05-26 2005-05-26 アミノ官能性化合物の分析方法及び装置
EP05743616.4A EP1750126B1 (en) 2004-05-26 2005-05-26 Method and apparatus for analyzing aminofunctional compound
US11/563,324 US7494815B2 (en) 2004-05-26 2006-11-27 Method and apparatus for analyzing compounds with amino group

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-156714 2004-05-26
JP2004156714 2004-05-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/563,324 Continuation US7494815B2 (en) 2004-05-26 2006-11-27 Method and apparatus for analyzing compounds with amino group

Publications (1)

Publication Number Publication Date
WO2005116629A1 true WO2005116629A1 (ja) 2005-12-08

Family

ID=35450995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/009618 WO2005116629A1 (ja) 2004-05-26 2005-05-26 アミノ官能性化合物の分析方法及び装置

Country Status (4)

Country Link
US (1) US7494815B2 (ja)
EP (1) EP1750126B1 (ja)
JP (1) JP5030586B2 (ja)
WO (1) WO2005116629A1 (ja)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007069591A1 (ja) * 2005-12-16 2007-06-21 Ajinomoto Co., Inc. 質量分析計によるアミノ酸分析方法
JP2008051790A (ja) * 2006-03-15 2008-03-06 Noguchi Inst 微量質量分析法
CN100376894C (zh) * 2006-01-24 2008-03-26 李振国 一种地龙指纹图谱的建立方法和地龙药材的鉴别方法
WO2009054350A1 (ja) 2007-10-25 2009-04-30 Ajinomoto Co., Inc. 耐糖能異常の評価方法
JP2010532481A (ja) * 2007-06-29 2010-10-07 クエスト ダイアグノスティックス インヴェストメンツ インコーポレイテッド 液体クロマトグラフィー質量分析による体液中のアミノ酸分析
JP2011504596A (ja) * 2007-11-26 2011-02-10 ウオーターズ・テクノロジーズ・コーポレイシヨン サンプル中の分析物を定量測定する際に使用するための内部標準および方法
CN102707011A (zh) * 2012-07-02 2012-10-03 涂瑶生 冬瓜仁配方颗粒的薄层色谱鉴别方法
US8969089B2 (en) 2004-10-12 2015-03-03 Quest Diagnostics Investments, Inc. Analysis of amino acids in body fluid by liquid chromatography-mass spectrometry
CN105181859A (zh) * 2015-10-12 2015-12-23 南京天翔医药科技有限公司 对乙酰氨基酚注射液中盐酸半胱氨酸及降解产物胱氨酸的测定方法
CN106226527A (zh) * 2011-07-21 2016-12-14 和光纯药工业株式会社 血浆中氨基酸分析用内标液、内标物质及血浆中氨基酸的定量方法
US9772333B2 (en) 2011-09-28 2017-09-26 Water Technologies Corporation Rapid fluorescence tagging of glycans and other biomolecules with enhanced MS signals
CN107449841A (zh) * 2017-07-20 2017-12-08 上海药明康德新药开发有限公司 一种基于衍生化测定单胺类神经递质的检测方法
CN108680690A (zh) * 2018-05-13 2018-10-19 桂林理工大学 一种发酵酱类中酪胺含量的检测方法
CN108931598A (zh) * 2017-05-27 2018-12-04 广州可力质谱医疗器械有限公司 基于lc-ms/ms的血清中40种氨基化合物的检测试剂盒
WO2019130920A1 (ja) 2017-12-28 2019-07-04 味の素株式会社 給餌管理システムおよび給餌管理方法
US10436790B2 (en) 2011-09-28 2019-10-08 Waters Technologies Corporation Rapid fluorescence tagging of glycans and other biomolecules with enhanced MS signals
US10502720B2 (en) 2014-11-13 2019-12-10 Waters Technologies Corporation Methods for liquid chromatography calibration for rapid labeled N-glycans
WO2020067386A1 (ja) 2018-09-26 2020-04-02 味の素株式会社 軽度認知障害の評価方法、算出方法、評価装置、算出装置、評価プログラム、算出プログラム、記録媒体、評価システムおよび端末装置
US10656126B2 (en) 2015-12-29 2020-05-19 Aisti Science Co., Ltd. Pre-analysis treatment method for sample containing plurality of components with greatly different concentrations
CN111505151A (zh) * 2020-04-30 2020-08-07 宜昌三峡普诺丁生物制药有限公司 高效液相色谱法测定l-缬氨酸原料中其他氨基酸的方法
US10962550B2 (en) 2004-10-12 2021-03-30 Quest Diagnostics Investments Incorporated Analysis of amino acids in body fluid by liquid chromotography-mass spectrometry
JP2021177196A (ja) * 2016-10-04 2021-11-11 味の素株式会社 大腸癌の評価方法、算出方法、評価装置、算出装置、評価プログラム、算出プログラム、評価システム、及び端末装置
US11352325B2 (en) 2011-09-28 2022-06-07 Waters Technologies Corporation Rapid fluorescence tagging of glycans and other biomolecules with enhanced MS signals
US11371996B2 (en) 2014-10-30 2022-06-28 Waters Technologies Corporation Methods for the rapid preparation of labeled glycosylamines and for the analysis of glycosylated biomolecules producing the same

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2317307B1 (en) 2002-02-14 2013-11-20 Ajinomoto Co., Inc. Method of analyzing amino- and/or imino-functional compounds, and analytical reagent
JP5030586B2 (ja) 2004-05-26 2012-09-19 味の素株式会社 アミノ官能性化合物の分析方法及び装置
PL2470555T3 (pl) * 2009-10-30 2015-05-29 Xellia Pharmaceuticals Aps Sposób oczyszczania kolistyny i oczyszczone składniki kolistyny
CN102680599A (zh) * 2012-05-11 2012-09-19 上海特敏生物医药科技有限公司 尿肌氨酸及肌酐测定试剂盒
CN102662013A (zh) * 2012-05-18 2012-09-12 上海市徐汇区中心医院 一种尿样中肌氨酸的定量检测方法
CN103869023B (zh) * 2014-04-03 2015-06-03 郑州新威营养技术有限公司 一种测定蛋白质或其水解物中结合态谷氨酰胺含量的方法
CN103926338B (zh) * 2014-04-28 2016-03-02 张家港威胜生物医药有限公司 一种测定色胺含量的高效液相色谱方法
CN104678044B (zh) * 2015-03-12 2016-03-30 安徽农业大学 利用反相高效液相色谱检测茶叶中游离氨基酸的方法
CN109154604B (zh) 2016-04-24 2023-07-21 沃特世科技公司 用于对用两亲强碱性部分改性的聚糖进行分析的带电表面反相色谱材料方法
US11061023B2 (en) 2016-06-21 2021-07-13 Waters Technologies Corporation Fluorescence tagging of glycans and other biomolecules through reductive amination for enhanced MS signals
CN109642906A (zh) 2016-06-21 2019-04-16 沃特世科技公司 对用两亲强碱性部分改性的聚糖进行电喷雾电离的方法
EP3479103B1 (en) 2016-07-01 2022-04-20 Waters Technologies Corporation Methods for the rapid preparation of labeled glycosylamines from complex matrices using molecular weight cut off filtration and on-filter deglycosylation
CN106053656B (zh) * 2016-07-01 2019-08-16 东北制药集团股份有限公司 一种采用高效液相色谱检测苯乙胺含量的方法
CN106198661A (zh) * 2016-07-29 2016-12-07 仲恺农业工程学院 一种苯乙胺的电化学测定方法
EP3519832B1 (en) 2016-10-03 2024-04-03 Waters Technologies Corporation Labeled glycan amino acid complexes useful in lc-ms analysis and methods of making the same
KR102427924B1 (ko) * 2016-10-04 2022-08-02 아지노모토 가부시키가이샤 췌장암의 평가 방법, 평가 장치, 평가 프로그램, 평가 시스템, 및 단말 장치
CN107271578A (zh) * 2017-03-23 2017-10-20 浙江奇彩环境科技股份有限公司 用于测定样品中胺类物质含量的方法
CN107607638B (zh) * 2017-08-22 2020-06-12 杭州谱景柏泰科技有限公司 芳香族化合物的检测方法及试剂盒
CN107907618A (zh) * 2017-10-24 2018-04-13 重庆医科大学 大鼠血浆中高半胱氨酸和半胱氨酸的检测方法
CN107991415B (zh) * 2018-01-17 2021-04-13 南京医科大学康达学院 用液相色谱法同时分离测定复方氨基酸注射液18aa中焦谷氨酸和蛋氨酸亚砜杂质的方法
CN108645947B (zh) * 2018-05-13 2021-01-05 桂林理工大学 一种酱油中酪胺含量的检测方法
CN108627605B (zh) * 2018-05-13 2021-01-05 桂林理工大学 一种发酵肉制品中酪胺含量的检测方法
CN109470796A (zh) * 2018-12-28 2019-03-15 江苏国泰超威新材料有限公司 一种铝电解电容器电解液中二元羧酸含量的检测方法
CN110208404A (zh) * 2019-05-30 2019-09-06 江苏恒生检测有限公司 一种丙硫菌唑中杂质的定性分析方法
CN110749679B (zh) * 2019-11-08 2022-11-01 华熙生物科技股份有限公司 一种三甲基吡嗪残留的检测方法
CN111879860B (zh) * 2019-11-27 2021-09-28 江南大学 一种精确检测发酵液中戊二胺含量的方法
CN111044642A (zh) * 2019-12-31 2020-04-21 贵州医科大学 一种同时测定五种神经递质含量的方法
CN112326817B (zh) * 2020-10-19 2022-04-22 秦皇岛海关技术中心 一种鉴别茴香蜂蜜的方法
CN113341023B (zh) * 2021-06-30 2022-12-23 大连医科大学附属第一医院 一种基于液质联用的血清二氨基庚二酸的检测试剂盒及检测方法与应用
CN117074578B (zh) * 2023-10-16 2024-02-09 瀚盟测试科技(天津)有限公司 一种2-(甲氨基)-乙醇的lc-ms/ms定量检测方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855754A (ja) * 1981-09-30 1983-04-02 Hitachi Ltd アミノ酸分析方法
JPS6444848A (en) * 1987-08-14 1989-02-17 Hitachi Ltd Analysis of amino acid
WO2003069328A1 (fr) * 2002-02-14 2003-08-21 Ajinomoto Co., Inc. Procede d'analyse aminofonctionnelle et reactif analytique

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH048031Y2 (ja) 1987-09-15 1992-03-02
US5296599A (en) * 1991-09-19 1994-03-22 Millipore Corporation Activated carbamates compounds
JP3346965B2 (ja) * 1995-09-14 2002-11-18 株式会社日立製作所 アミノ酸分析装置
ATE536422T1 (de) * 1998-08-25 2011-12-15 Univ Washington Schnelle quantitative analyse von proteinen oder proteinfunktionen in komplexen gemischen
JP3508710B2 (ja) 2000-09-01 2004-03-22 株式会社日立製作所 アミノ酸分析方法および装置
JP3464665B2 (ja) 2002-01-07 2003-11-10 株式会社日立製作所 アミノ酸分析装置
JP4129511B2 (ja) * 2002-09-26 2008-08-06 国立大学法人 東京医科歯科大学 高速液体クロマトグラフィーによるアミノ酸の分析方法
JP5030586B2 (ja) 2004-05-26 2012-09-19 味の素株式会社 アミノ官能性化合物の分析方法及び装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855754A (ja) * 1981-09-30 1983-04-02 Hitachi Ltd アミノ酸分析方法
JPS6444848A (en) * 1987-08-14 1989-02-17 Hitachi Ltd Analysis of amino acid
WO2003069328A1 (fr) * 2002-02-14 2003-08-21 Ajinomoto Co., Inc. Procede d'analyse aminofonctionnelle et reactif analytique

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1750126A4 *

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10962550B2 (en) 2004-10-12 2021-03-30 Quest Diagnostics Investments Incorporated Analysis of amino acids in body fluid by liquid chromotography-mass spectrometry
US10175208B2 (en) 2004-10-12 2019-01-08 Quest Diagnostics Investments Incorporated Analysis of amino acids in body fluid by liquid chromotography-mass spectrometry
US8969089B2 (en) 2004-10-12 2015-03-03 Quest Diagnostics Investments, Inc. Analysis of amino acids in body fluid by liquid chromatography-mass spectrometry
JP2007163423A (ja) * 2005-12-16 2007-06-28 Ajinomoto Co Inc 質量分析計によるアミノ酸分析方法
WO2007069591A1 (ja) * 2005-12-16 2007-06-21 Ajinomoto Co., Inc. 質量分析計によるアミノ酸分析方法
CN100376894C (zh) * 2006-01-24 2008-03-26 李振国 一种地龙指纹图谱的建立方法和地龙药材的鉴别方法
JP2008051790A (ja) * 2006-03-15 2008-03-06 Noguchi Inst 微量質量分析法
JP7069255B2 (ja) 2007-06-29 2022-05-17 クエスト ダイアグノスティックス インヴェストメンツ インコーポレイテッド 液体クロマトグラフィー質量分析による体液中のアミノ酸分析
JP2013137320A (ja) * 2007-06-29 2013-07-11 Quest Diagnostics Investments Inc 液体クロマトグラフィー質量分析による体液中のアミノ酸分析
JP2020187130A (ja) * 2007-06-29 2020-11-19 クエスト ダイアグノスティックス インヴェストメンツ インコーポレイテッド 液体クロマトグラフィー質量分析による体液中のアミノ酸分析
JP2010532481A (ja) * 2007-06-29 2010-10-07 クエスト ダイアグノスティックス インヴェストメンツ インコーポレイテッド 液体クロマトグラフィー質量分析による体液中のアミノ酸分析
JP2016145833A (ja) * 2007-06-29 2016-08-12 クエスト ダイアグノスティックス インヴェストメンツ インコーポレイテッド 液体クロマトグラフィー質量分析による体液中のアミノ酸分析
JP2022119774A (ja) * 2007-06-29 2022-08-17 クエスト ダイアグノスティックス インヴェストメンツ インコーポレイテッド 液体クロマトグラフィー質量分析による体液中のアミノ酸分析
JP7399214B2 (ja) 2007-06-29 2023-12-15 クエスト ダイアグノスティックス インヴェストメンツ インコーポレイテッド 液体クロマトグラフィー質量分析による体液中のアミノ酸分析
JP2018105881A (ja) * 2007-06-29 2018-07-05 クエスト ダイアグノスティックス インヴェストメンツ インコーポレイテッド 液体クロマトグラフィー質量分析による体液中のアミノ酸分析
WO2009054350A1 (ja) 2007-10-25 2009-04-30 Ajinomoto Co., Inc. 耐糖能異常の評価方法
JP2011504596A (ja) * 2007-11-26 2011-02-10 ウオーターズ・テクノロジーズ・コーポレイシヨン サンプル中の分析物を定量測定する際に使用するための内部標準および方法
CN106226527A (zh) * 2011-07-21 2016-12-14 和光纯药工业株式会社 血浆中氨基酸分析用内标液、内标物质及血浆中氨基酸的定量方法
US11448652B2 (en) 2011-09-28 2022-09-20 Waters Technologies Corporation Rapid fluorescence tagging of glycans and other biomolecules with enhanced MS signals
US9772333B2 (en) 2011-09-28 2017-09-26 Water Technologies Corporation Rapid fluorescence tagging of glycans and other biomolecules with enhanced MS signals
US10416166B2 (en) 2011-09-28 2019-09-17 Waters Technologies Corporation Rapid fluorescence tagging of glycans and other biomolecules with enhanced MS signals
US10436790B2 (en) 2011-09-28 2019-10-08 Waters Technologies Corporation Rapid fluorescence tagging of glycans and other biomolecules with enhanced MS signals
US11352325B2 (en) 2011-09-28 2022-06-07 Waters Technologies Corporation Rapid fluorescence tagging of glycans and other biomolecules with enhanced MS signals
CN102707011A (zh) * 2012-07-02 2012-10-03 涂瑶生 冬瓜仁配方颗粒的薄层色谱鉴别方法
US11371996B2 (en) 2014-10-30 2022-06-28 Waters Technologies Corporation Methods for the rapid preparation of labeled glycosylamines and for the analysis of glycosylated biomolecules producing the same
US10502720B2 (en) 2014-11-13 2019-12-10 Waters Technologies Corporation Methods for liquid chromatography calibration for rapid labeled N-glycans
CN105181859A (zh) * 2015-10-12 2015-12-23 南京天翔医药科技有限公司 对乙酰氨基酚注射液中盐酸半胱氨酸及降解产物胱氨酸的测定方法
US10656126B2 (en) 2015-12-29 2020-05-19 Aisti Science Co., Ltd. Pre-analysis treatment method for sample containing plurality of components with greatly different concentrations
JP2021177196A (ja) * 2016-10-04 2021-11-11 味の素株式会社 大腸癌の評価方法、算出方法、評価装置、算出装置、評価プログラム、算出プログラム、評価システム、及び端末装置
JP7173240B2 (ja) 2016-10-04 2022-11-16 味の素株式会社 取得方法、算出方法、評価装置、算出装置、評価プログラム、算出プログラム、及び評価システム
CN108931598A (zh) * 2017-05-27 2018-12-04 广州可力质谱医疗器械有限公司 基于lc-ms/ms的血清中40种氨基化合物的检测试剂盒
CN107449841A (zh) * 2017-07-20 2017-12-08 上海药明康德新药开发有限公司 一种基于衍生化测定单胺类神经递质的检测方法
CN107449841B (zh) * 2017-07-20 2020-07-17 上海药明康德新药开发有限公司 一种基于衍生化测定单胺类神经递质的检测方法
WO2019130920A1 (ja) 2017-12-28 2019-07-04 味の素株式会社 給餌管理システムおよび給餌管理方法
US11871728B2 (en) 2017-12-28 2024-01-16 Ajinomoto Co., Inc. Feeding management system and feeding management method
CN108680690A (zh) * 2018-05-13 2018-10-19 桂林理工大学 一种发酵酱类中酪胺含量的检测方法
CN108680690B (zh) * 2018-05-13 2021-01-05 桂林理工大学 一种发酵酱类中酪胺含量的检测方法
WO2020067386A1 (ja) 2018-09-26 2020-04-02 味の素株式会社 軽度認知障害の評価方法、算出方法、評価装置、算出装置、評価プログラム、算出プログラム、記録媒体、評価システムおよび端末装置
CN111505151A (zh) * 2020-04-30 2020-08-07 宜昌三峡普诺丁生物制药有限公司 高效液相色谱法测定l-缬氨酸原料中其他氨基酸的方法
CN111505151B (zh) * 2020-04-30 2022-09-02 宜昌三峡普诺丁生物制药有限公司 高效液相色谱法测定l-缬氨酸原料中其他氨基酸的方法

Also Published As

Publication number Publication date
JP5030586B2 (ja) 2012-09-19
EP1750126A1 (en) 2007-02-07
US7494815B2 (en) 2009-02-24
EP1750126A4 (en) 2010-04-21
US20070269899A1 (en) 2007-11-22
JPWO2005116629A1 (ja) 2008-04-03
EP1750126B1 (en) 2015-09-16

Similar Documents

Publication Publication Date Title
JP5030586B2 (ja) アミノ官能性化合物の分析方法及び装置
Armstrong et al. Analysis of 25 underivatized amino acids in human plasma using ion‐pairing reversed‐phase liquid chromatography/time‐of‐flight mass spectrometry
Tsikas et al. Mass spectrometry and 3‐nitrotyrosine: strategies, controversies, and our current perspective
US8901484B2 (en) Quantification of impurities for release testing of peptide products
US11333669B2 (en) Neutron encoded mass tags for analyte quantification
JP5517931B2 (ja) 液体クロマトグラフィー質量分析による体液中のアミノ酸分析
Forgacsova et al. Ultra-high performance hydrophilic interaction liquid chromatography–triple quadrupole tandem mass spectrometry method for determination of cysteine, homocysteine, cysteinyl-glycine and glutathione in rat plasma
US20060183238A1 (en) Amine-containing compound analysis methods
US20100136703A1 (en) Thyroxine-Containing Compound Analysis Methods
BRPI0718407A2 (pt) Conjunto de reagentes de marcação, métodos para analisar simultaneamente a presença de um ou mais polipeptídeos, para marcar uma amostra de polipeptídeos, e para determinar montantes relativos de polipeptídeos ou peptídeos, uso do método, mistura de polipeptídeos ou peptídeos, kit, e, dispositivo para marcação por multiplexação e análise de amostras de proteínas.
AU2013254728A1 (en) Quantification of impurities for release testing of peptide products
WO2007069591A1 (ja) 質量分析計によるアミノ酸分析方法
Mazzotti et al. Light and heavy dansyl reporter groups in food chemistry: amino acid assay in beverages
US7700364B2 (en) Analysis of amino acids in body fluid by liquid chromatography-mass spectrometry
JP5276993B2 (ja) 低分子量ペプチドの高感度定量方法
Yang et al. Quantitative analysis of a model opioid peptide and its cyclic prodrugs in rat plasma using high-performance liquid chromatography with fluorescence and tandem mass spectrometric detection
Meesters Bioanalytical LC separation techniques for quantitative analysis of free amino acids in human plasma
Bąchor et al. The unusual hydrogen‐deuterium exchange of α‐carbon protons in N‐substituted glycine‐containing peptides
JP5958957B2 (ja) アミノ基含有非ペプチド化合物を高効率かつ高感度で多重定量する方法およびそのためのキット
Tang et al. Quantification of amino acids in rat urine by solid-phase extraction and liquid chromatography/electrospray tandem mass spectrometry: application to radiation injury rat model
US20210380503A1 (en) Method for the stereoisomerization of chiral compounds
Zhang et al. A novel class of chemically modified iodo‐containing resins: design, synthesis and application to mass spectrometry‐based proteome analysis
JP7266626B2 (ja) キラルアミノ酸の分離解析方法
Zhan et al. Mass spectroscopy measurements of nitrotyrosine‐containing proteins
Hodek Determination of proteinogenic amino acids by high-performance separation techniques

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006513925

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005743616

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11563324

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2005743616

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11563324

Country of ref document: US