WO2005106139A9 - 建設機械のメンテナンス支援システム - Google Patents

建設機械のメンテナンス支援システム

Info

Publication number
WO2005106139A9
WO2005106139A9 PCT/JP2005/007958 JP2005007958W WO2005106139A9 WO 2005106139 A9 WO2005106139 A9 WO 2005106139A9 JP 2005007958 W JP2005007958 W JP 2005007958W WO 2005106139 A9 WO2005106139 A9 WO 2005106139A9
Authority
WO
WIPO (PCT)
Prior art keywords
construction machine
simulation
cumulative load
load
support system
Prior art date
Application number
PCT/JP2005/007958
Other languages
English (en)
French (fr)
Other versions
WO2005106139A1 (ja
Inventor
Yasunori Ohkura
Hirobumi Miwa
Masakazu Kawakita
Takahiro Yoshimura
Original Assignee
Komatsu Mfg Co Ltd
Yasunori Ohkura
Hirobumi Miwa
Masakazu Kawakita
Takahiro Yoshimura
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Mfg Co Ltd, Yasunori Ohkura, Hirobumi Miwa, Masakazu Kawakita, Takahiro Yoshimura filed Critical Komatsu Mfg Co Ltd
Priority to US11/587,917 priority Critical patent/US7921000B2/en
Priority to JP2006512794A priority patent/JP4884214B2/ja
Priority to CA002562946A priority patent/CA2562946A1/en
Priority to AU2005238350A priority patent/AU2005238350B2/en
Priority to CN2005800134005A priority patent/CN1954122B/zh
Publication of WO2005106139A1 publication Critical patent/WO2005106139A1/ja
Publication of WO2005106139A9 publication Critical patent/WO2005106139A9/ja

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices

Definitions

  • the present invention relates to a construction machine maintenance support system.
  • Patent Document 1 JP 2003-119831
  • a construction machine is equipped with a number of sensors for detecting the operating state of each important component, and when it is determined that an abnormality has occurred in the component. Can perform maintenance of parts without depending on the maintenance plan.
  • An object of the present invention is to provide a construction machine maintenance support system that can improve the accuracy of a construction machine maintenance plan.
  • Another object of the present invention is to provide a maintenance support system for a construction machine that can prepare a maintenance plan for the construction machine with high accuracy in consideration of an actual operation state of the construction machine.
  • a maintenance support system for a construction machine is a maintenance support system for a construction machine including a computer system that can be connected to the construction machine via a communication network.
  • Operation simulation means for simulating the operation status or Z and work status of the construction machine based on the input production operation conditions, and the cumulative load of predetermined parts set based on the simulation result (severity: severe And a life calculating means for calculating the life of a predetermined part based on the accumulated load.
  • a construction machine maintenance support system is a construction machine maintenance support system including a computer system that can be connected to the construction machine via a communication network, and the computer system includes: A cumulative load calculating means for calculating a cumulative load of a predetermined part based on operation information of the construction machine; and a life calculating means for calculating a lifetime of the predetermined part based on the cumulative load.
  • a construction machine maintenance support system is the construction machine maintenance support system according to claim 2, wherein the computer system is configured to operate the construction machine according to a production operation condition or Z and an operation simulation means for simulating the work situation are provided, and the cumulative load calculation means calculates the cumulative load of the parts based on both the simulation result or the operation information by a predetermined calculation algorithm. It is provided for calculation and simulation results A cumulative load comparison means for comparing the cumulative load based on the operational information and the cumulative load based on the operation information, and a load calculation algorithm changing means for changing the calculation algorithm based on the comparison result.
  • a construction machine maintenance support system is the construction machine maintenance support system according to any one of claims 1 to 3, wherein the operation simulation means includes: In the simulation model, the starting point of the construction machine specified by the production operating conditions, the arrival point of the construction machine, and at least one runway connecting the starting point and the arrival point are respectively set in the simulation model.
  • the operation status or Z and the work status of the construction machine are simulated every predetermined time according to the event occurrence status associated with the arrival point and the runway.
  • the maintenance support system for a construction machine according to claim 5 of the present invention is the maintenance support system for a construction machine according to claim 4, wherein the operation simulation means sets a plurality of event nodes on the road, Considering the traffic regulation and traffic volume between each event node, an event is generated for each event node.
  • a construction machine maintenance support system is the construction machine maintenance support system according to any one of claims 1 to 3, wherein the cumulative load calculation means includes a predetermined load Calculate the relationship between cumulative load and operating time for parts.
  • a construction machine maintenance support system is the construction machine maintenance support system according to any one of claims 1 to 3, wherein the life calculation means includes a predetermined component. The life of a predetermined part is predicted and calculated based on the standard life set in advance and the result calculated by the cumulative load calculation means.
  • the maintenance support system for a construction machine according to claim 8 of the present invention is the maintenance support system for a construction machine according to claim 3, wherein the cumulative load calculating means includes a cumulative load and an operating time relating to a predetermined part.
  • the cumulative load comparison means obtains the maximum value common to both the cumulative load based on the simulation result and the cumulative load based on the operation information, and the operation corresponding to this maximum value is calculated.
  • Each time is detected, and the ratio of each detected operating time is calculated and output, and the load calculation algorithm changing means changes the ratio of each operating time calculated by the cumulative load comparing means. Based on this, the calculation algorithm is modified so that the error between the cumulative load based on the simulation results and the cumulative load based on the operation information is reduced.
  • a construction machine maintenance support system comprises a plurality of construction machines each connectable to a communication network and a computer system connectable to the communication network.
  • Each construction machine includes a plurality of sensors for detecting the operation state of each part, an operation information generation unit that statistically processes information detected by each sensor, and outputs the information as operation information,
  • a communication unit for transmitting the operation information output from the operation information generation unit to the computer system via the communication network.
  • the computer system stores an operation information database that stores operation information received from the communication unit via the communication network, a component standard life database that stores the standard life of each component in advance, and a simulation result.
  • the simulation result database, the input unit for inputting the production operation conditions of each construction machine, and the production operation conditions input through the input unit are set in the simulation model, thereby operating the operation status of each construction machine. Or, Z and the work situation are individually simulated, the operation simulation unit for storing the simulation results in the simulation result database, the operation information stored in the operation information database, and the simulation results stored in the simulation result database.
  • a cumulative load calculation unit that calculates the cumulative load for each component according to a predetermined calculation algorithm, a life calculation unit that calculates the life of each component based on the calculated cumulative load and component standard life database, and a simulation result
  • a cumulative load calculation unit that compares the cumulative load calculated based on the cumulative load calculated based on the operation information, and a load calculation algorithm change unit that changes the calculation algorithm based on the comparison result of the cumulative load calculation unit And.
  • the operation status or Z and work status of the construction machine after simulating the operation status or Z and work status of the construction machine with the simulation means based on the production operation conditions, the operation status or Z and work status is simulated.
  • the cumulative load for each part is calculated by the cumulative load calculation means, and the life of each part is calculated by the life calculation means based on such cumulative load.
  • the cumulative load for each part is calculated at a predetermined time by the cumulative load calculating means based on the actual operation information of the construction machine, and the life calculating means is based on such cumulative load. Since the latest life of each part is calculated, the reliability of the maintenance plan can be further improved based on the prediction of the latest life.
  • the accumulated load calculated by the simulation before the construction machine is operated may differ from the actual accumulated load for some reason. Therefore, according to the invention of claim 3, in such a case, the accumulated load comparing means is activated to determine the difference between the accumulated loads, and the load calculation algorithm changing means is used to determine the production operation condition during simulation. Encourage changes to algorithms that relate to cumulative load. According to this, since the accuracy of the simulation is further improved, the accuracy of the maintenance plan is further improved.
  • the operation state of the construction machine or Z and The work situation can be simulated every predetermined time. Therefore, by adopting such an event-driven simulation, the behavior of a plurality of construction machines can be simulated in real time with a relatively simple configuration.
  • the accumulated load calculating means calculates the relationship between the accumulated load and the operating time related to the predetermined component, so that the lifetime of the component can be indicated by time information.
  • the life calculation means is preset for a predetermined part.
  • the life of a predetermined part can be predicted and calculated based on the standard life and the calculation result by the cumulative load calculation means.
  • the calculation algorithm can be modified so that an error between the accumulated load based on the simulation result and the accumulated load based on the operation information is reduced.
  • FIG. 1 is a block diagram of a computer terminal for realizing a maintenance support system for a construction machine according to an embodiment of the present invention.
  • FIG. 1 A diagram showing the production condition input screen.
  • FIG. 3 is a diagram showing an input screen for running road conditions.
  • FIG. 5 is a diagram showing a machine condition input screen.
  • FIG. 6 A diagram showing an input screen for fleet conditions.
  • FIG. 7 is a diagram showing a section time input screen.
  • FIG. 8 A diagram showing a simulation condition input screen.
  • FIG. 9 A diagram showing an input screen for machine expenses.
  • FIG. 10 is a diagram showing a display screen of individual machine expenses in a normal simulation result.
  • FIG. 11 A view showing a display screen of fleet machine expenses in a normal simulation result.
  • FIG. 12 is a diagram showing a summary display screen in a normal simulation result.
  • FIG. 13 shows an animation playback screen.
  • FIG. 15 is a diagram showing a cumulative load calculation table.
  • FIG. 16 is a flowchart showing a flow of component life calculation based on actual operation information.
  • FIG. 17 is a diagram showing a cycle time frequency map.
  • FIG. 18 is a diagram showing a travel distance frequency map.
  • FIG. 19 is a diagram showing a configuration of operation simulation means.
  • FIG. 20 is a flowchart showing details of event processing.
  • FIG. 21 is a flowchart of event processing following FIG.
  • FIG. 22 is a diagram showing a configuration of cumulative load calculation means.
  • FIG. 23 is a diagram showing a configuration of a life calculation means.
  • FIG. 24 is a characteristic diagram showing the relationship between cumulative load and operating time.
  • FIG. 25 is a diagram showing a configuration of cumulative load comparison means.
  • FIG. 26 is a diagram showing a configuration of load calculation algorithm changing means.
  • FIG. 27 is a block diagram showing another configuration example of the construction machine maintenance support system.
  • [0024] 1 ... Construction machine maintenance support system, 3 ... Construction machine, 5 ... Computer terminal, 6 ... In-vehicle controller, 7 ... Data collection controller, 8 ... Various sensors, 9 ... Satellite communication modem, 10 ... Computer Terminal, 10A ... Server computer, 11 ... Arithmetic processing unit, 12 ... Operation simulation means, 12A ... Construction machine database, 13 ... Cumulative load calculation means, 14 ... Life calculation means, 15 ... Cumulative load Comparison means 16 ⁇ Load calculation algorithm changing means 17 ⁇ Storage means 18 ⁇ Simulation result database 19 ⁇ Part standard life database 20 ⁇ Database server 2 ⁇ Operation result database BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 shows an overall configuration of a parts recommendation system 1 as a maintenance support system for a construction machine according to the present embodiment.
  • the component recommendation system 1 can be used to make various proposals to a customer whose construction machine manufacturer is a mine developer prior to mine development, for example.
  • a construction machine manufacturer can use the system 1 to simulate and propose a fleet configuration that satisfies the production operation conditions of a customer.
  • a fleet configuration means a configuration of a group of construction machines organized to achieve a certain purpose.
  • the construction machinery make-up power can provide customers with information on parts maintenance plans (repair plans, supply arrangement plans, etc.) required for maintenance contracts when purchasing construction machinery.
  • parts maintenance plans repair plans, supply arrangement plans, etc.
  • construction machinery manufacturers can use this system 1.
  • the maintenance plan can be updated to the latest state by predicting the optimal replacement time for the parts of the construction machine.
  • the computer terminal 10 for constructing at least a part of the component recommendation system 1 for example, a general-purpose personal computer can be used.
  • the computer terminal 10 can be used alone.
  • the maintenance plan should be reviewed by connecting the computer terminal 10 and the database server 20 on the manufacturer side via the communication network 2 such as the Internet. Can do.
  • This computer terminal 10 will be described in detail later.
  • the database server 20 is a device for acquiring operation information from the construction machine 3 and storing this operation information in the operation result database 21 of each machine.
  • Examples of the construction machine 3 include a loader or a hydraulic shovel loading machine operating at a mine development site, a transporter such as a dump truck, and the like.
  • the operation information can be transmitted directly from each machine 3 to the database server 20 via the communication satellite 4 and the communication network 2.
  • the operation information may be transmitted from the computer terminal 5 to the database server 20 via the communication network 2.
  • the construction machine 3 has means for generating operation information, means for transmitting the generated operation information to the database server 20, or downloading operation information to the computer terminal 5.
  • Various means such as means are provided.
  • the construction machine 3 includes an in-vehicle controller 6 for controlling the engine, transmission, power line, and other components.
  • the in-vehicle controller 6 outputs the operation information acquired from each component to the data collection controller 7.
  • operational information for example, an engine! You can list fuel consumption, for example, transmission!
  • the construction machine 3 detects, for example, the engine speed, the lubricating oil temperature, the water temperature, the blower pressure, the exhaust temperature, etc., the clutch wear amount, the output torque, the operation in the transmission.
  • Various sensors 8 for detecting the oil temperature and the like are provided.
  • the detection data from these various sensors 8 is also output to the data collection controller 7 as operation information.
  • Other operating information includes operating time, cycle time, travel distance, excavation time, maximum vehicle speed, and the like.
  • the operation information collected by the data collection controller 7 can be arbitrarily compressed.
  • each operation information can be statistically processed like a minimum value, a maximum value, and an average value.
  • maps and trends can be constructed by combining appropriate operation information.
  • the operation information processed in this way is transmitted from the satellite communication modem 9 to the communication satellite 4 or downloaded to the terminal 5 and stored in the operation result database 21 described above. The map type will be described later.
  • the computer terminal 10 includes an arithmetic processing unit 11 that develops various programs on an OS (Operating System) that controls the operation of the terminal 10.
  • OS Operating System
  • Examples of programs deployed on the OS include operation simulation means 12, cumulative load calculation means 13, life calculation means 14, cumulative load comparison means 15, load calculation algorithm change means 16, and the like.
  • the simulation result database 18 for accumulating the operation simulation results, and the design values of each component, etc.
  • Each component standard life database 19 in which standard lifespans are stored as standard life tables is provided.
  • the operation simulation means 12 is constructed by arbitrarily selecting production operation conditions such as on-site road conditions, machine conditions, fleet conditions, section time, simulation conditions, etc. It has the function to simulate the operation status of machine 3's operation. As a result of this simulation, it is possible to obtain a simulation result that summarizes the recommended individual expenses for the construction machine 3, the expenses for the construction machine 3 in the entire fleet, and the working time and downtime of the construction machine 3 in the fleet. Furthermore, based on the simulation results, the operation status of each construction machine 3 can be displayed as an animation video. [0035] Then, the construction machine manufacturer negotiates with the customer based on the cost information obtained as a result of the simulation, and promotes the sales of the recommended construction machine. In other words, the operation simulation means 12 can be used as a sales tool of a construction machine manufacturer for customers who want to develop mines. The specific procedure of the simulation by the operation simulation means 12 will be described later.
  • Cumulative load calculation means 13 calculates the severity (severity) as the cumulative load of each part based on the simulation result at the negotiation stage with the customer.
  • the accumulated load calculation means 13 has a function of calculating the severity of each part based on the actual operation information acquired by the construction machine 3 after actual mine development has been started. ing.
  • the life calculation means 14 predicts and calculates the life of each component based on the severity calculated by the cumulative load calculation means 13. This predicted life can be used to predict the optimal replacement time for consumables and reinforcing parts. In addition, the information on the optimal replacement time can be used to develop maintenance plans such as repair plans and reinforcement parts arrangement plans. The maintenance plan is useful for concluding maintenance contracts for construction machinery 3 to be sold at the negotiation stage with customers. After the start of mine development, the maintenance contract is actually implemented. To be used.
  • the life is calculated according to the severity of each component by the life calculation means 14 and the accumulated load calculation means 13.
  • the replacement time of each component is determined based on each predicted life. In this respect, it is different from the conventional technology in which the part replacement time is simply determined according to the cumulative operating time of the construction machine 3.
  • the cumulative load comparing means 15 has a function of comparing the severity calculated based on the simulation result with the severity calculated based on the operation information corresponding to the actual operation state. is doing. By comparing the severity of both parts for each part that is subject to maintenance planning, it is possible to identify parts that differ greatly in severity. For parts that differ between the severity predicted before the construction machine 3 is in operation and the actual severity calculated after the construction machine 3 is in operation, the service life of the parts will also differ. Is updated. In addition, based on the difference between each severity of a specific part, the algorithm for verifying the production operating conditions related to the part at the time of simulation and calculating the severity from simulation results or operation information. Can be verified.
  • a brake pad of a loader is given as an example. If the severity of the brake pads calculated based on the operation information is severer than the severity predicted by the simulation, for example, the production operating conditions used during the simulation are the actual operating conditions. It can be thought that it was very different. For example, this is the case when the value of the moving speed of the mouth at the time of loading differs greatly from that at the time of simulation. If the actual moving speed is larger than the input value at the time of simulation, it will also be the force that reduces the brake pad speed. The results of such comparisons are vital for determining more accurate input values during the next simulation.
  • load calculation algorithm changing means 16 is provided.
  • the load calculation algorithm changing means 16 is a function that prompts the change of the coefficient in the calculation formula when it is determined that the calculation result for calculating the severity is the cause of the difference in the severity comparison result. have.
  • the arithmetic expression is corrected to a more correct expression, so that the severity value is also accurate, and consequently, the life calculation result and the accuracy of the maintenance plan based on the result are further improved.
  • a production condition input screen 121 as shown in FIG. 2 is displayed on the display 31 of the terminal 10.
  • information related to a production plan such as an operation schedule scheduled by the customer and a target production amount is input as production conditions.
  • the information related to the operation schedule include an operation time per day, a repairing / maintenance time, an operator restraint time, an operation rate, and the like.
  • the target production amount include a target production amount per hour and a target production amount per day. Each of these values can be input with the keyboard / mouse 32.
  • a runway condition input screen 122 (Fig. 3) is displayed.
  • the soil condition of the mine for example, the soil condition of the mine, the work conditions of the construction machine 3, and the conditions regarding the topography are input.
  • mine soil quality include soil names and soil conversion factors.
  • work conditions include the dump truck and loader function rate.
  • terrain include site elevation, track width, curve radius, speed limit, and the like.
  • On-site courses are automatically created based on various terrain conditions. By clicking on “Confirm terrain” on the runway condition input screen 122 with the mouse, the course 123 on the spot is displayed in a separate window as shown in FIG.
  • a machine condition input screen 124 (Fig. 5) is displayed.
  • the machine conditions include, for example, a fleet number in which the construction machine 3 is used, detailed information on a loader (loader 'hydraulic excavator) recommended as the construction machine 3, and detailed information on a dump truck.
  • loader loader 'hydraulic excavator
  • dump truck On the machine condition input screen 124, conditions for all construction machines 3 recommended for configuring the fleet are input.
  • next section time input screen 126 for example, the average speed and section time of each dump truck are input for each section of the course. As shown in Figure 7, the average speed and The interval time can be input for each of the forward path and the return path for each section.
  • a simulation condition input screen 127 (FIG. 8) is displayed.
  • various conditions for simulation are input. For example, in a dump truck, it is possible to select whether or not to pass. That is, for example, when multiple dump trucks are running on the same track, the ability to permit overtaking of a low-speed dump truck by a dump truck capable of high-speed traveling, or continuous without allowing overtaking. Select whether or not to keep running.
  • the machine expense input screen 128 (Fig. 9) is displayed.
  • the cost of consumable parts is entered in addition to the recommended machine price for each construction machine 3 and machine costs such as operator labor costs.
  • the normal simulation result is displayed.
  • the simulation results are displayed separately for individual machine expenses, fleet machine expenses, and a summary screen.
  • the individual machine cost display screen 129 shown in FIG. 10 the machine loss, operation cost, machine cost, production cost, etc. for each construction machine 3 constituting the fleet are displayed.
  • the fleet machine cost display screen 130 shown in FIG. 11 the machine cost per unit time, the production cost per unit area, the total transportation amount per day, the total waiting time, etc. are displayed for the entire fleet.
  • the summary screen 131 shown in Fig. 12 displays the amount of earth discharged at the earth discharging site, the working time and the downtime of the loader and dumper.
  • simulation result is presented to the customer together with the animation, and the sales negotiation of the construction machine 3 is promoted.
  • the simulation results are also used to predict the severity and life of the parts, and ultimately as a tool for obtaining information when signing maintenance contracts with customers.
  • simulation power to maintenance contract will be described with reference to the flowchart in FIG. [0055] [Simulation capability before mine development up to maintenance contract]
  • the operation simulation is performed by the operation simulation means 12 of the computer terminal 10 as described above. That is, field conditions such as track conditions and simulation conditions, machine conditions, and production plans represented by production conditions are input (ST1), and operation simulation is executed (ST2).
  • the dump truck travel schedule includes, for example, travel time and distance in a loaded state during production operation conditions, travel time and distance in an empty load, waiting time, fuel consumption, and It is determined by information such as the number of shifts.
  • the loading schedule of the loader is determined by, for example, information such as the number of loading operations and the time, waiting time, and fuel consumption during the production operation conditions.
  • Each of these schedules is accumulated in the simulation result database 18 shown in FIG. 1, and can be output by the printer 33 connected to the terminal 10 as necessary.
  • the cumulative load calculation means 13 is activated to calculate the work load, that is, the severity (ST7), and the load fluctuation of each component is calculated.
  • the severity is output for prediction (ST8).
  • FIG. 15 shows, as an example, a calculation table 133 for calculating the severity of an axle frame that is a loader power line (see FIG. 16).
  • Cumulative load calculation means 13 is used to determine the loading schedule, and from each piece of information, a coefficient relating to “a load magnitude”, a coefficient relating to “b uneven load”, and a coefficient relating to “c load frequency”, The coefficient relating to “d vehicle weight” is obtained by a predetermined arithmetic expression, and these are multiplied to calculate the severity.
  • Coefficients related to "a load magnitude” are typically divided into five levels depending on the work content, from light load to heavy load, and when the loading schedule is executed. The combined coefficient is calculated by the cumulative load calculating means 13. Figure 15 shows that “1.025” was calculated as the coefficient based on the loading schedule based on the simulation result of customer A.
  • the coefficient relating to "b unbalanced load” is divided into three stages according to the size of the object to be loaded, for example.
  • FIG. 15 shows that the object handled by customer A is between the middle stone and the large stone, and “1.025” is calculated as the coefficient relating to the “b offset load”.
  • the coefficient relating to "c load frequency" is divided into four stages according to, for example, cycle time and fuel consumption. In the case of customer A, who has a loading cycle time of 25 to 40.5 seconds on the dump truck, “1.0” is calculated as the coefficient.
  • the coefficient relating to "d vehicle weight” is the vehicle weight in the loaded state, and is divided into, for example, three stages.
  • the loader of customer A shown in Fig. 15 the standard vehicle has undergone packet modification, ADD weight installation, tire chain installation, etc., to increase weight, and "1.05" is calculated as the coefficient. Has been.
  • the cumulative load calculating means 13 calculates the severity of the axle frame as “1. 103” from “a X b X c X d”.
  • the calculation table 133 is stored in the part standard life database 19.
  • the life calculation means 14 when the calculation of the severity by the cumulative load calculation means 13 is completed, the life calculation means 14 is activated and calculates a life ratio corresponding to the severity based on a predetermined calculation formula. For customer A, when the severity is “1. 103”, the life ratio is calculated to be “90”% (see Figure 15). This means that the lifetime is 10% shorter than the standard lifetime.
  • the life calculation means 14 performs matching with the standard life of each component based on the life ratio (ST9).
  • the standard life tables 191, 192 used at this time are also stored in the parts standard life database 19.
  • the specific life of an axle frame with a life ratio of 90% is calculated in terms of days.
  • the calculated lifetime is output for each component (ST10).
  • the optimal replacement time for consumables and supply parts is predicted (ST11), and based on the prediction results, repair plans and supply arrangement plans Develop a maintenance plan, etc., and conclude a maintenance contract based on this maintenance plan.
  • This maintenance plan Is based on the service life calculated as described above, so it is more accurate than a maintenance plan simply based on operating hours!
  • the maintenance contract is executed based on the maintenance plan.
  • operation information can be acquired from the construction machine 3 one by one. Therefore, after the start of mine development, the actual severity of parts is predicted and calculated based on the operation information to obtain a life that is more realistic, and the maintenance plan is reviewed as necessary. Maintenance work can be performed in accordance with the maintenance plan. By revising the maintenance plan based on the operation information, there will be a slight deviation from the simulated maintenance plan. The accuracy of the maintenance plan will be further improved, and sudden abnormalities will occur. .
  • the flow of component life calculation after the start of mine development will be described with reference to FIG.
  • the operation information of each construction machine 3 is accumulated in the operation result database 21 for every predetermined time (ST21).
  • operation information is often converted to a map format.
  • the following maps are formed by combining multiple operation information.
  • the load frequency map, the cycle time frequency map, the travel distance frequency map, the excavation time frequency map, the engine load map, the engagement frequency map in the transmission, the vehicle speed frequency map before the shift, the shift frequency RZF speed are a number map, a map of the number of revolutions of torque during load & carry, an input torque slip ratio map, a MZC clutch thermal load map, and the like.
  • the maps necessary for calculating the severity of the axle frame at the loader are the cycle time frequency map, the travel distance frequency map, the load capacity frequency map, and the excavation time frequency map. is there.
  • FIG. 17 shows a cycle time frequency map 134
  • FIG. 18 shows a travel distance frequency map 135 (only for the travel distance L1).
  • the cumulative load calculation means 13 calculates the degree of work load based on the information of each map, that is, the severity (ST22), and uses the calculated severity to predict the load fluctuation of each component. (ST23).
  • the calculation table necessary for calculating the severity is shown in Fig. 15. Same as ours.
  • the life calculation means 14 When the calculation of the severity level by the cumulative load calculation means 13 is completed, the life calculation means 14 is activated and calculates the life ratio corresponding to the severity level based on a predetermined calculation formula, as in the simulation process. . The life calculation means 14 then matches the standard life of each component based on the life ratio (ST24). As a result, a specific life in accordance with the actual operation status of the axle frame is calculated by the number of days. The calculated life is output for each part (ST25).
  • the optimal replacement time for consumables and replacement parts is predicted (ST16), and if this prediction differs from the prediction at the time of simulation, the repair plan and The maintenance plan such as the supply arrangement plan can be revised and updated to further improve the accuracy.
  • the severity of each part is calculated in accordance with the actual operation status and work status of the construction machine 3, and the lifetime is calculated based on this severity. For this reason, if the maintenance plan is updated to the latest state based on this life, maintenance work such as arrangement and replacement of parts can be performed before an abnormality occurs.
  • the severity at the time of simulation is input at the stage of ST24 (ST27), and the cumulative load comparison means 15 is activated to compare each severity (ST28).
  • the following effects are obtained.
  • (1) in the parts recommendation system 1, before the start of mine development, etc., after simulating the operation status of the construction machine 3 based on the production operation conditions, The severity of each part can be calculated, and the life of each part can be predicted and calculated more accurately based on such cumulative load. For this reason, as compared with the conventional case where a misaligned part is to be maintained based on a single operating time! / The case of making a general maintenance plan, more accurate maintenance is predicted by predicting the component life. You can make a plan. Therefore, it is possible to reduce the possibility of sudden component failures occurring at an earlier stage than the expected life. As a result, it is only necessary to transport parts to the mine development site in a planned manner based on the initial maintenance plan, so it is sufficient to transport by ship, which does not require the use of air mail, and transportation costs can be greatly reduced.
  • FIG. 19 shows a specific configuration example of the operation simulation means 12.
  • Operation simulation means 12 is As described above, the behavior of each construction machine 3 is simulated based on the production operation conditions and the specifications of each construction machine 3.
  • the operation simulation means 12 simulates the behavior of each construction machine 3 in an event-driven manner in the virtual production site space modeled as described above.
  • the production operating conditions include fleet conditions, site conditions, and runway conditions.
  • the fleet condition includes, for example, information on the model and the number of various construction machines 3 constituting the fleet.
  • the site conditions include, for example, information on the altitude and temperature of the production site where the construction machine 3 is used.
  • Track conditions include, for example, the number of loading sites installed, the number of waste soil sites installed, the distance of the track between the loading site and the waste site, the slope of the track, the position of the curve, the traffic regulation (one-way power) Information).
  • the construction machine database 12A stores information related to the specifications of the various construction machines 3.
  • the specification information can include, for example, the amount of work per time, the transport amount, the size, and the moving speed.
  • the operation simulation means 12 initializes the simulation time (ST31).
  • the simulation time can be set, for example, as the daily operation time or the time to reach the planned production volume. Since the simulation time can be changed faster than the real time, the behavior change in the real world for a day can be simulated in a short time.
  • the operation simulation means 12 sets an initial state (ST32).
  • the initial state can be set by setting the initial position and state of each construction machine 3 and waiting for each loading site. Examples include queue settings, queue settings for each abandoned land, and queue settings for each node on the runway. Each queue setting can include the time to process that queue (loading time, waste time, etc.).
  • a plurality of nodes can be set on the runway connecting the loading site and the waste soil site in the simulation space.
  • a node can be set at a point where the environment of the road changes, such as a point where the straight road force also changes to a curve or a point where the two-way road changes to one-way.
  • Nodes can also be set at predetermined distances, such as every mile or every 10 kilometers. It is also possible to set a combination of distance and change point of the track environment.
  • the operation simulation means 12 starts the loading operation for the dump track at the head of the queue at the loading site (ST33). In other words, the operation simulation means 12 starts counting a predetermined loading time for the leading dump truck, and generates a loading end event when counting up (ST33).
  • the operation simulation means 12 can simulate the behavior of each dump truck in parallel.
  • the behavior of each object (construction machine 3) proceeds based on the event-driven method. In other words, the occurrence of an event triggers another event that follows this event and proceeds in order.
  • the operation simulation means 12 When occurrence of an event is detected (ST34: YES), the operation simulation means 12 performs processing according to the event that has occurred (ST35). Details of event processing will be described later. Then, the operation simulation means 12 records the event of each dump truck together with the time information in the simulation space in the simulation result database 18 (ST36).
  • the operation simulation means 12 advances the simulation time (ST37), The position and state of the track are updated (ST38). For example, the operation simulation means 12 advances the time in the simulation space by a predetermined unit time (for example, 10 minutes), and updates the position and state of each dump truck in the simulation space according to this time progress. . For example, “Waiting for loading”, “Waiting for going to waste land”, “Waiting for driving”, “Waiting for waste”, “Driving to loading” State "etc. can be mentioned.
  • the operation simulation means 12 determines whether to end the simulation (ST39). For example, the simulation is terminated when the scheduled time set at the start of the simulation is reached or when the target production amount is reached. In addition, the simulation can be terminated if a manual operation orders the cancellation.
  • earth and sand etc. are loaded one after another on the dump trucks waiting at the loading site, and loading end events occur one after another.
  • the dump trucks that have finished loading start traveling in order, and this causes a different event at each node on the track.
  • Each dump truck arrives at the dump site, joins the queue for waiting for the dump site, and starts moving toward the loading site when the dump site is finished.
  • event processing the type of event that occurred is determined, and predetermined processing is performed according to the type of each event.
  • the operation simulation means 12 advances the loading queue one by one and calculates the loading time for the dump truck located at the head of the loading queue ( Count) is started (ST42).
  • the loading time elapses, the state of the dump truck changes from “waiting for loading” to “loading completed”, and a loading completion event occurs.
  • the queue at the loading site is a queue for waiting for the loading machine to load a certain amount of earth and sand.
  • the maximum load capacity of each dump truck varies depending on the model.
  • the operation simulation means 12 performs processing for the dump truck in which the loading end event has occurred (ST43). That is, the operation simulation means 12 sets a target waste site for the dump truck that has been loaded, and selects a travel route to the waste site (ST43). Furthermore, the operation simulation means 12 is the highest on the travel route. The travel pattern, the number of shifts, the travel time, etc. until reaching the first node are calculated (ST43). An example of a running pattern is a time change in an acceleration / deceleration state.
  • the loading place arrival event is an event that occurs when the dump truck arrives at a predetermined loading place associated with the dump truck.
  • ST44 When a loading place arrival event occurs (ST44), the operation simulation means 12 adds the dump truck that has arrived at the loading place to the end of the loading place queue (ST45).
  • the waste soil end event is an event that occurs when the dump truck discharges the load at the waste soil site.
  • the operation simulation means 12 processes the waste soil queue (ST47), and then continues to the next dump truck that generated the waste soil end event. Processing to start the event is performed (ST48).
  • the operation simulation means 12 advances the queue of the dump site one by one and starts measuring the dump time for the dump truck at the head (ST47).
  • the operation simulation means 12 selects a loading place to be returned and a traveling route to the loading place for each dump truck that has been abandoned after being abandoned (ST48).
  • the operation simulation means 12 calculates the travel pattern, the number of shifts, the travel time, etc. until reaching the first node on the travel route (ST48).
  • a waste land arrival event is an event that occurs when a dump truck arrives at a waste land associated with the dump truck.
  • the operation simulation unit 12 adds the dump truck that has arrived at the landfill to the end of the queue of the landfill (ST50).
  • FIG. 21 is a flowchart of event processing following FIG.
  • a node arrival event is an event that occurs when a node arrives on a travel route set for the dump truck. For each dump truck, one traveling route is set for each of the outbound route and the inbound route. Then, at least one or more nodes are set for each traveling route of the forward route and the backward route.
  • the operation simulation means 12 performs a process (ST52 to ST55) related to the runway that the dump truck has passed, and a process (ST56 to ST60) related to the next runway. Are executed respectively.
  • the operation simulation means 12 subtracts one occupancy degree from the one-way road through which the dump truck has passed (ST53). Occupancy is information indicating the degree of congestion (traffic volume) on the road. The higher the occupancy of a runway, the more dump trucks are running on the runway and the more crowded it is.
  • the operation simulation means 12 compares the occupancy of the one-way road with a predetermined value set in advance, and determines whether or not the occupancy is less than a predetermined value (ST54). When the degree of occupancy is less than the predetermined value (ST54: YES), the next dump truck can enter the one-way road, so the operation simulation means 12 sets the queue at the start point of the one-way road one by one. Proceed (ST55). In other words, among the dump trucks waiting at the node immediately before the node related to the node arrival event, the leading dump truck enters the one-way path.
  • the operation simulation means 12 determines whether or not the track on which the dump truck that has generated the node arrival event travels next is a one-way street (ST56).
  • the operation simulation means 12 The occupancy of the fixed runway is compared with a predetermined value set in advance, and it is determined whether or not the occupancy is greater than or equal to the predetermined value (ST57).
  • This predetermined value can be set to a value different from the predetermined value described in ST54.
  • This predetermined value is a threshold value for determining whether or not the next runway can be entered.
  • the operation simulation means 12 adds the dump truck to the end of the queue (ST58). In other words, the dump truck that caused the node arrival event is added to the end of the line of dump trucks waiting for permission to enter the next track.
  • the operation simulation means 12 adds one occupancy of the next runway (ST59).
  • the operation simulation means 12 increases the occupation degree associated with the next runway by one in order to allow the dump truck that generated the node arrival event to enter the next runway.
  • the operation simulation means 12 calculates the current node force, the travel pattern up to the next node, the number of shifts, the travel time, etc. (ST60). If the next travel route is not a one-way route (ST56: NO), there is no need to perform queue processing and the like, and the operation simulation means 12 moves to ST60.
  • FIG. 22 is an explanatory diagram showing a configuration example of the cumulative load calculation means 13.
  • the cumulative load calculation means 13 can calculate the cumulative load of each part based on both the simulation result by the operation simulation means 12 or the operation information accumulated in the operation result database 21.
  • the value calculated based on the result of the simulation may be called “predicted cumulative load”, and the value calculated based on the operation information may be called “actual cumulative load”.
  • a dump truck transmission will be described as an example of the predetermined part to be maintained.
  • Cumulative load calculation means 13 sets an initial value for the operating time when calculating the cumulative load (ST71). Then, the cumulative load calculating means 13 reads the operating time and the number of shifts for each operating day (ST72). When the simulation result force also calculates the cumulative load, the cumulative load calculation means 13 obtains the simulation result force operating time and the number of shifts stored in the simulation result database 18, respectively. On the other hand, when calculating the cumulative load based on the actual operating status, the cumulative load calculating means 13 acquires the operating information capability operating time and the number of shifts stored in the operating result database 21.
  • the cumulative load calculating means 13 calculates the cumulative value of the number of shifts (ST73), and stores the relationship between the operating time and the cumulative value of the number of shifts (ST74).
  • the storage unit 17 can be used as the storage destination.
  • the accumulated load calculating means 13 determines whether or not the data to be processed has been analyzed (ST75), and repeats steps ST72 to ST75 until all the target data has been processed. This makes it possible to obtain the relationship between the cumulative load (cumulative number of shifts) and the operation time for a certain dump truck transmission.
  • FIG. 23 is an explanatory diagram showing a configuration example of the life calculation unit 14.
  • the life calculation means 14 reads the relationship between the cumulative load output by the cumulative load calculation means 13 and the operating time (ST81), and the part standard life associated with the transmission is stored in the part standard life database. Read from 19 (ST82).
  • the transmission parts standard life is set as a “count value”. In other words, the cumulative load dimension and the part standard life dimension coincide.
  • the life calculation means 14 compares the final cumulative load (value obtained in ST81) related to the transmission with the part standard life, and determines whether the cumulative load is greater than or equal to the part standard life (ST83). . If the cumulative load of the transmission is greater than or equal to the transmission part standard life value (ST83: YES), the life calculation means 14 operates as shown in Fig. 24. Extrapolate the characteristic line between time and accumulated load (ST84).
  • FIG. 25 is an explanatory diagram showing a configuration example of the cumulative load comparison means 15. As described above, in this embodiment, the cumulative load (severity) is calculated for both the simulation result performed under the conditions given in advance and the actual operating status of each construction machine 3. .
  • Cumulative load comparison means 15 acquires a predicted cumulative load based on the simulation result (ST91), and acquires an actual cumulative load based on the operation information (ST92). Next, the cumulative load comparing means 15 obtains the maximum value CL common to both cumulative loads (ST93). Subsequently, the cumulative load comparing means 15 calculates the operation time ts (ST94) when the predicted cumulative load becomes the common maximum value CL and the operation time tr (ST95) when the actual cumulative load becomes the common maximum value CL. And ask for each.
  • the cumulative load comparing means 15 calculates the correction ratio RL based on the operating times ts and tr.
  • the characteristic line between the accumulated load and the operating time is not a straight line, but a force to draw a curve.
  • the ratio RL is simply obtained with an average slope.
  • the ratio RL is simply obtained by regarding the characteristic line between the cumulative load and the operating time as a straight line. Therefore, the ratio RL can be easily obtained. Therefore, for example, even when there are many construction machines 3 each having a plurality of parts to be maintained, the correction ratio RL can be obtained in a relatively short time.
  • FIG. 26 is an explanatory diagram showing a configuration example of the load calculation algorithm changing means 16.
  • the load calculation algorithm changing means 16 acquires the ratio RL calculated by the cumulative load comparing means 15 (ST100). Then, the load calculation algorithm changing means 16 sets the accumulated load calculating means 13 so as to calculate the accumulated load by multiplying the load for which the simulation power is also obtained by the ratio RL (ST101).
  • FIG. 27 is a block diagram showing another configuration example of the system of the present invention.
  • the computer 10A is configured as a server, and a response is returned in response to a request from another computer terminal 5.
  • the computer terminal 5 is a client terminal operated by, for example, a construction machine manufacturer, a sales agent of a sales agent, or maintenance personnel.
  • the terminal 5 can be connected to the server computer 10A via the communication network 2.
  • the terminal 5 includes, for example, a web browser 51, and exchanges information with the server computer 10A via the web browser 51.
  • a mopile terminal such as a mobile phone, a personal digital assistant, a handheld computer, etc. can be used as the client terminal 5.
  • the present invention is not limited to this.
  • one or a plurality of plug-in software may be installed in the web browser 51 so that the server computer 10A and the terminal 5 cooperate in the maintenance process.
  • the server computer 10A is communicably connected to each construction machine 3 and the terminal 5 via the communication network 2.
  • the server computer 10A includes, for example, an operation simulation unit 12, a cumulative load calculation unit 13, a life calculation unit 14, a cumulative load comparison unit 15, a load calculation algorithm change unit 16, a storage unit 17, and a simulation result.
  • a database (abbreviated as “DB” in FIG. 27) 18, a parts standard life database 19, an operation results database 21, and a construction machine database 12A can be configured.
  • the server computer 10A can be constructed by linking a plurality of server computers that do not need to be a single computer.
  • the server computer 10A simulates the behavior of the construction machine group based on the input production operation conditions, and the cumulative load of each of the parts of each construction machine 3 is calculated. Predict. Further, the server computer 10A calculates an actual cumulative load based on the operation information collected from each construction machine 3. Then, the server computer 10A predicts the service life of the parts subject to maintenance. The server computer 10A can automatically improve the prediction accuracy by autonomously correcting the accumulated load calculation algorithm.
  • the terminal 5 can, for example, cause the server computer 10A to input production operating conditions and perform simulation. Information such as the predicted life based on the simulation result is transmitted from the server computer 10A to the terminal 5 via the communication network 2. Further, the terminal 5 can obtain information on the accumulated load based on the operation information from the server computer 10A by accessing the server computer 10A.
  • the computer terminal 10 includes the operation simulation means 12, and calculates the severity of the parts before the mine development, calculates the life of the parts, and calculates a precise maintenance plan.
  • operation simulation means 12 even if such operation simulation means 12 is not provided, it is included in the present invention.
  • a more accurate part life can be calculated, and a maintenance plan based on this can be calculated from time to time. This is because the maintenance plan can be made more accurate if it is updated.
  • the cumulative load calculation means 13 in the embodiment described above is a force simulation result provided so that both the severity according to the simulation result and the severity based on the actual operation information can be calculated. Even in the case where only the severity according to the above can be calculated, it is included in the present invention. Even in such a case, a sufficiently accurate maintenance plan can be drawn up compared to the conventional case, so that parts can be arranged or replaced before any abnormality occurs.
  • the embodiment has been described by taking mine development as an example.
  • the present invention is not limited to this, and the system of the present invention is applied to a construction machine that operates at an arbitrary site such as a construction site or a civil engineering site. be able to.
  • the operation site does not need to be overseas.
  • the construction machine is not limited to a loader, a hydraulic excavator, and a dump truck, and may be any construction machine such as a bulldozer, a grader, or a crusher.
  • the construction machine maintenance support system of the present invention can be applied to various construction machines operating on the site accompanied by transportation of replacement parts.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Operation Control Of Excavators (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

 本発明は、部品の保守計画を精度よく立案可能な建設機械のメンテナンス支援システムを提供する。  このシステム1では、生産稼動条件に基づいて建設機械3の運転・作業状況を運行シミュレーション手段12でシミュレーションした後に、運転・作業状況に応じた部品毎の累積負荷を負荷算出手段13で算出し、累積負荷に基づいて各部品の寿命を寿命算出手段14で予測する。このため、従来のように、単なる稼動時間に基づいてどの部品を保守するかを決定するのに比し、より精度のよい保守計画を立てることができる。従って、予定された寿命よりも早い段階で突発的な部品異常が発生する可能性を低減できる。        

Description

建設機械のメンテナンス支援システム
技術分野
[0001] 本発明は、建設機械のメンテナンス支援システムに関する。
背景技術
[0002] 近年、建設機械の稼動時間に係る情報を無線通信により取得し、累積稼動時間が 保守計画で定められた保守時期に達した場合に、当該保守時期に該当する部品( 図中、コンポーネントの略として「コンポ」と表記する)の保守をユーザに促すと 、ぅシ ステムが提案されている (特許文献 1)。つまり、そのような保守計画では、建設機械 の累積稼動時間に応じて、いずれの部品を保守するかが決められていた。
特許文献 1 :特開 2003— 119831号公報
発明の開示
発明が解決しょうとする課題
[0003] ところで、前述の特許文献によれば、建設機械には各重要部品の稼動状態をそれ ぞれ検出する多数のセンサ類が装着されており、部品に異常が生じたと判断された 場合には、保守計画によらずに部品の保守を行うことが可能になっている。
しかし、建設機械の稼動現場が例えば海外である場合、異常と判断されてカゝら部品 を手配したのでは、ユーザの作業計画に支障をきたす可能性がある。さらに、部品の 早期補給のために航空便を使用する必要があるから、輸送費が大きく嵩むという問 題がある。
このため、部品が異常となる前にその寿命を予測し、タイムリーな保守が行える修理 計画や補給部品の手配計画を立てることが望まれている。
[0004] また、建設機械の運転や作業が当初の予測よりも過酷な条件で行われている場合 、標準的な保守計画での保守時期よりも早期に部品の異常が発生する。この場合、 当初の保守計画よりも早期に保守が必要となる。従って、保守契約 (建設機械のメー 力と、その使用者 (所有者)である顧客とで交わす保守契約)をメーカが履行するにあ たり、メーカ側は当初予定していたよりも高い頻度で保守を行うことになる。このため、 メーカ側にとっては経費が余計に力かることになる。
従って、各部品の修理計画や補給部品の手配計画等の保守計画の精度をよくする ことが重要であり、より精度の高い保守計画に基づいて適切な保守契約を結ぶことが 望まれている。
[0005] 本発明の目的は、建設機械の保守計画の精度を改善できるようにした建設機械の メンテナンス支援システムを提供することにある。
本発明の他の目的は、建設機械の実際の稼働状況を考慮して、建設機械の保守 計画を精度良く作成することができるようにした建設機械のメンテナンス支援システム を提供することにある。
課題を解決するための手段
[0006] 本発明の請求項 1に係る建設機械のメンテナンス支援システムは、建設機械と通信 網を介して接続可能なコンピュータシステムを備えた建設機械のメンテナンス支援シ ステムにであって、コンピュータシステムは、入力された生産稼動条件に基づいて建 設機械の運転状況又は Z及び作業状況をシミュレートする運行シミュレーション手段 と、シミュレーション結果に基づいて予め設定された所定の部品の累積負荷 (苛酷度 :シビアリティ)を予測算出する累積負荷算出手段と、その累積負荷に基づいて所定 の部品の寿命を算出する寿命算出手段とを備えていることを特徴とする。
[0007] 本発明の請求項 2に係る建設機械のメンテナンス支援システムは、建設機械と通信 網を介して接続可能なコンピュータシステムを備えた建設機械のメンテナンス支援シ ステムであって、コンピュータシステムは、建設機械の稼動情報に基づいて所定の部 品の累積負荷を算出する累積負荷算出手段と、その累積負荷に基づいて所定の部 品の寿命を算出する寿命算出手段とを備えていることを特徴とする。
[0008] 本発明の請求項 3に係る建設機械のメンテナンス支援システムは、請求項 2に記載 の建設機械のメンテナンス支援システムにおいて、コンピュータシステムは、生産稼 動条件に基づいて建設機械の運転状況又は Z及び作業状況をシミュレートする運 行シミュレーション手段を備えているとともに、前記累積負荷算出手段は、シミュレ一 シヨン結果又は前記稼働情報の両方に基づいて前記部品の累積負荷を所定の算出 アルゴリズムによってそれぞれ算出可能に設けられており、かつシミュレーション結果 に基づく累積負荷と前記稼動情報に基づく累積負荷とを比較する累積負荷比較手 段と、この比較結果に基づいて前記算出アルゴリズムを変更する負荷算出アルゴリズ ム変更手段とが設けられて 、ることを特徴とする。
[0009] 本発明の請求項 4に係る建設機械のメンテナンス支援システムは、請求項 1〜請求 項 3の 、ずれか一項に記載の建設機械のメンテナンス支援システムにお 、て、運行 シミュレーション手段は、生産稼働条件によってそれぞれ指定される建設機械の出発 点と、建設機械の到着点と、出発点と到着点とを結ぶ少なくとも一つ以上の走路とを シミュレーションモデルにそれぞれ設定し、これら出発点、到着点及び走路にそれぞ れ関連づけられるイベントの発生状況に応じて、建設機械の運転状況又は Z及び作 業状況を所定時間毎にシミュレートする。
[0010] 本発明の請求項 5に係る建設機械のメンテナンス支援システムは、請求項 4に記載 の建設機械のメンテナンス支援システムにおいて、運行シミュレーション手段は、走 路に複数のイベントノードをそれぞれ設定し、該各イベントノード間の通行規制及び 通行量をそれぞれ考慮して、各イベントノード毎にそれぞれイベントを発生させる。
[0011] 本発明の請求項 6に係る建設機械のメンテナンス支援システムは、請求項 1〜請求 項 3のいずれか一項に記載の建設機械のメンテナンス支援システムにおいて、累積 負荷算出手段は、所定の部品に関する累積負荷と稼働時間との関係を算出する。
[0012] 本発明の請求項 7に係る建設機械のメンテナンス支援システムは、請求項 1〜請求 項 3のいずれか一項に記載の建設機械のメンテナンス支援システムにおいて、寿命 算出手段は、所定の部品について予め設定されている標準寿命と累積負荷算出手 段による算出結果とに基づいて、所定の部品の寿命を予測算出する。
[0013] 本発明の請求項 8に係る建設機械のメンテナンス支援システムは、請求項 3に記載 の建設機械のメンテナンス支援システムにおいて、累積負荷算出手段は、所定の部 品に関する累積負荷と稼働時間との関係を算出するようになっており、累積負荷比 較手段は、シミュレーション結果に基づく累積負荷と稼働情報に基づく累積負荷との 両方に共通する最大値を求めて、この最大値に対応する稼働時間をそれぞれ検出 し、これら検出された各稼働時間の比を算出して出力するようになっており、負荷算 出アルゴリズム変更手段は、累積負荷比較手段により算出された各稼働時間の比に 基づいて、シミュレーション結果に基づく累積負荷と稼働情報に基づく累積負荷との 誤差が少なくなるように算出アルゴリズムを修正する。
[0014] 本発明の請求項 9に係る建設機械のメンテナンス支援システムは、それぞれ通信 網に接続可能な複数の建設機械と、通信網に接続可能なコンピュータシステムとを 備えた建設機械のメンテナンス支援システムであって、各建設機械は、各部品の稼 働状態を検出するための複数のセンサと、各センサによってそれぞれ検出された情 報を統計処理し、稼働情報として出力する稼働情報生成部と、稼働情報生成部から 出力される稼働情報を、通信網を介してコンピュータシステムに送信するための通信 部と、をそれぞれ備えている。コンピュータシステムは、通信部から通信網を介して受 信される稼働情報を蓄積する稼働情報データベースと、各部品の標準寿命がそれぞ れ予め蓄積されている部品標準寿命データベースと、シミュレーション結果を蓄積す るシミュレーション結果データベースと、各建設機械の生産稼働条件を入力するため の入力部と、入力部を介して入力された生産稼働条件をシミュレーションモデルに設 定することにより、各建設機械の運転状況又は Z及び作業状況をそれぞれ個別にシ ミュレートし、そのシミュレーション結果をシミュレーション結果データベースに記憶さ せる運行シミュレーション部と、稼働情報データベースに記憶された稼働情報とシミュ レーシヨン結果データベースに記憶されたシミュレーション結果との両方に基づいて 、各部品に関する累積負荷を所定の算出アルゴリズムに従って算出する累積負荷算 出部と、算出された累積負荷及び部品標準寿命データベースに基づいて、各部品 の寿命をそれぞれ算出する寿命算出部と、シミュレーション結果に基づいて算出され た累積負荷と稼働情報に基づいて算出された累積負荷とを比較する累積負荷算出 部と、累積負荷算出部による比較結果に基づいて、算出アルゴリズムを変更させる負 荷算出アルゴリズム変更部と、を備えていることを特徴とする。
発明の効果
[0015] 以上において、請求項 1の発明によれば、生産稼動条件に基づいて建設機械の運 転状況又は Z及び作業状況をシミュレーション手段でシミュレートした後に、その運 転状況又は Z及び作業状況に応じた部品毎の累積負荷を累積負荷算出手段で算 出し、このような累積負荷に基づいて各部品の寿命を寿命算出手段によって算出す る。従って、従来のように、単なる稼動時間に基づく場合に比較して、より精度の高い 保守計画を立案可能である。このため、予想した寿命よりも早い段階で部品異常が 発生する可能性を低減できる。従って、当初の保守計画に応じて部品を稼動現場に 輸送すればょ 、から、航空便での早急な輸送を避けて船便による輸送を利用でき、 輸送経費を削減できる。
さらに、部品の保守計画の精度がよくなることで、部品の予期せぬ修理や交換を行 う可能性を低減できるため、保守計画から大きく外れた作業を行う必要がなぐ保守 コストを低下させることができる。
[0016] 請求項 2の発明では、建設機械の実際の稼動情報に基づいて部品毎の累積負荷 を累積負荷算出手段で所定時間毎に算出し、このような累積負荷に基づいて寿命 算出手段が各部品の最新の寿命を算出するので、最新の寿命の予測に基づいて保 守計画の信頼性をより高めることができる。
[0017] 建設機械が稼動する以前のシミュレーションによって算出された累積負荷と実際の 累積負荷とが、何らかの理由で異なる可能性がある。このために請求項 3の発明によ れば、そのような場合に、累積負荷比較手段が起動して各累積負荷の相違を判断し 、負荷算出アルゴリズム変更手段により、シミュレーション時の生産稼動条件と累積負 荷とを関係づけるアルゴリズム等の変更を促す。これによれば、シミュレーションの精 度がより向上するので、保守計画の精度がさらに向上する。
[0018] 請求項 4の発明によれば、建設機械が出発してから目的地に到着するまでの間に 存在する各イベントの発生状況に基づ!、て、建設機械の運転状況又は Z及び作業 状況を所定時間毎にシミュレートすることができる。従って、このようなイベントドリブン 方式のシミュレーションを採用することにより、複数の建設機械の挙動を比較的簡易 な構成でリアルタイムにシミュレートすることができる。
[0019] 請求項 5の発明によれば、走路に設定された複数のイベントノード間の通行規制及 び通行量をそれぞれ考慮して、より正確なシミュレーション結果を得ることができる。
[0020] 請求項 6の発明によれば、累積負荷算出手段は、所定の部品に関する累積負荷と 稼働時間との関係を算出するため、部品の寿命を時間情報で示すことができる。
[0021] 請求項 7の発明によれば、寿命算出手段は、所定の部品について予め設定されて いる標準寿命と累積負荷算出手段による算出結果とに基づいて、所定の部品の寿 命を予測算出することができる。
[0022] 請求項 8の発明によれば、比較的簡易な構成で、シミュレーション結果に基づく累 積負荷と稼働情報に基づく累積負荷との誤差が少なくなるように算出アルゴリズムを 修正することができる。
図面の簡単な説明
[0023] [図 1]本発明の一実施形態に係る建設機械のメンテナンス支援システムを実現するた めのコンピュータ端末のブロック図。
[図 2]生産条件の入力画面を示す図。
[図 3]走路条件の入力画面を示す図。
[図 4]コースの一例を示す図。
[図 5]機械条件の入力画面を示す図。
[図 6]フリート条件の入力画面を示す図。
[図 7]区間時間の入力画面を示す図。
[図 8]シミュレーション条件の入力画面を示す図。
[図 9]機械経費の入力画面を示す図。
[図 10]通常シミュレーション結果における個別機械経費の表示画面を示す図。
[図 11]通常シミュレーション結果におけるフリート機械経費の表示画面を示す図。
[図 12]通常シミュレーション結果におけるまとめの表示画面を示す図。
[図 13]アニメーションの再生画面を示す図。
[図 14]シミュレーション力 保守契約までの流れを示すフローチャート。
[図 15]累積負荷の演算テーブルを示す図。
[図 16]実際の稼動情報に基づく部品寿命算出の流れを示すフローチャート。
[図 17]サイクルタイム頻度マップを示す図。
[図 18]移動距離頻度マップを示す図。
[図 19]運行シミュレーション手段の構成を示す図。
[図 20]イベント処理の詳細を示すフローチャート。
[図 21]図 20に続くイベント処理のフローチャート。 [図 22]累積負荷算出手段の構成を示す図。
[図 23]寿命算出手段の構成を示す図。
[図 24]累積負荷と稼働時間との関係を示す特性図。
[図 25]累積負荷比較手段の構成を示す図。
[図 26]負荷算出アルゴリズム変更手段の構成を示す図。
[図 27]建設機械のメンテナンス支援システムの別の構成例を示すブロック図。
符号の説明
[0024] 1…建設機械のメンテナンス支援システム、 3…建設機械、 5· ··コンピュータ端末、 6 …車載コントローラ、 7…データ収集コントローラ、 8…各種センサ、 9…衛星通信モデ ム、 10…コンピュータ端末、 10A…サーバコンピュータ、 11· ··演算処理装置、 12· ·· 運行シミュレーション手段、 12A…建設機械データベース、 13· ··累積負荷算出手段 、 14…寿命算出手段、 15· ··累積負荷比較手段、 16· ··負荷算出アルゴリズム変更手 段、 17· ··記憶手段、 18· ··シミュレーション結果データベース、 19· ··部品標準ライフ データベース、 20…データベースサーバ、 2丄…稼働実績データベース。 発明を実施するための最良の形態
[0025] 以下、本発明の一実施形態を図面に基づいて説明する。
図 1には、本実施形態に係る建設機械のメンテナンス支援システムとしての部品リコ メンドシステム 1の全体構成が示されている。
実施例 1
[0026] 〔システムの概略構成〕
部品リコメンドシステム 1は、例えば、鉱山開発等に先立って、建設機械メーカが鉱 山開発者である顧客に対し、種々の提案を行うために使用することができる。例えば 、建設機械メーカは、本システム 1を用いることにより、顧客の生産稼動条件を満足す るフリート構成をシミュレーションして提唱することができる。フリート構成とは、ある目 的を達成するために編成された建設機械群の構成を意味する。また、建設機械メー 力は、本システム 1を用いることにより、建設機械購入時の保守契約に必要な部品の 保守計画 (修理計画、補給手配計画等)に関する情報を、顧客に提示することができ る。さらに、鉱山開発開始後においては、建設機械メーカは、本システム 1を用いるこ とにより、建設機械の部品の最適交換時期等を予測して保守計画を最新状態に更 新することができる。
[0027] 部品リコメンドシステム 1の少なくとも一部を構築するためのコンピュータ端末 10に は、例えば、汎用のパーソナルコンピュータを用いることができる。例えば、建設機械 メーカによるフリート構成の提案段階では、コンピュータ端末 10単独で使用すること ができる。また、例えば、鉱山の開発開始後にあっては、インターネット等の通信網 2 を介して、コンピュータ端末 10とメーカ側のデータベースサーバ 20とを接続させるこ とにより、保守計画の見直し作業等を行うことができる。このコンピュータ端末 10につ いては、後段で詳説する。
[0028] データベースサーバ 20は、建設機械 3から稼動情報を取得し、この稼動情報を各 機械の稼動実績データベース 21に記憶するための装置である。
建設機械 3としては、例えば、鉱山開発現場で稼動するローダあるいは油圧ショべ ル等の積込機や、ダンプトラックのような運搬機等を挙げることができる。
稼動情報は、通信衛星 4および通信網 2を介して各機械 3からデータベースサーバ 20に直接的に送信することができる。この他、例えば、各機械 3から別のコンピュータ 端末 5に稼働情報をダウンロードさせた後、このコンピュータ端末 5から通信網 2を介 してデータベースサーバ 20に稼働情報を送信できる場合もある。
[0029] このために、建設機械 3には、稼動情報を生成する手段や、生成された稼働情報を データベースサーバ 20に送信するための手段、あるいは稼働情報をコンピュータ端 末 5にダウンロードするための手段等の各種の手段が設けられている。
これらの手段は、具体的には、図 16に模式的に示されている。すなわち、建設機械 3は、エンジン、トランスミッション、パワーライン、その他の部品(コンポーネント)を制 御するための車載コントローラ 6を備えている。車載コントローラ 6は、各部品からそれ ぞれ取得した稼働情報をデータ収集コントローラ 7に出力する。稼働情報としては、 例えばエンジンで!/ヽえば燃料消費量、トランスミッションで!/ヽえば変速回数等を挙げ ることがでさる。
[0030] さらに、建設機械 3には、例えば、エンジンでの回転数、潤滑油温、水温、ブローバ ィ圧、排気温等を検出したり、トランスミッションでのクラッチ摩耗量、出力トルク、作動 油温等を検出する各種センサ 8が設けられて 、る。これら各種センサ 8からの検出デ ータも稼動情報としてデータ収集コントローラ 7に出力される。また、その他の稼動情 報としては、例えば、稼動時間、サイクルタイム、移動距離、掘削時間、最高車速など が挙げられる。
[0031] そして、データ収集コントローラ 7で収集された稼動情報は、任意に圧縮することが できる。例えば、各稼働情報は、最低値、最高値、平均値のように、統計処理すること ができる。また、適宜な稼動情報の組み合わせにより、マップやトレンドを構築するこ とができる。このように処理された稼働情報は、衛星通信モデム 9から通信衛星 4に送 信されるか、または端末 5にダウンロードされて、前述の稼動実績データベース 21に 蓄積されるようになって 、る。マップの種類等にっ ヽては後述する。
[0032] 〔コンピュータ端末〕
図 1に戻って、コンピュータ端末 10は、当該端末 10の動作制御を行う OS ( Operating System)上で各種のプログラムを展開させる演算処理装置 11を備えて!/ヽ る。 OS上で展開されるプログラムとしては、運行シミュレーション手段 12、累積負荷 算出手段 13、寿命算出手段 14、累積負荷比較手段 15、負荷算出アルゴリズム変更 手段 16などを挙げることができる。
[0033] また、コンピュータ端末 10には、前記各プログラム 12〜16がそれぞれ格納される 記憶手段 17の他、運行シミュレーションの結果を蓄積するシミュレーション結果デー タベース 18、および各部品の設計値など力 得られる標準的な寿命が標準ライフ表 として蓄積されている部品標準ライフデータベース 19がそれぞれ設けられている。
[0034] 運行シミュレーション手段 12は、顧客が提示した生産条件に加え、例えば、現場で の走路条件、機械条件、フリート条件、区間時間、シミュレーション条件等の生産稼 動条件を任意に選定して建設機械 3の運転'作業状況のシミュレーションを行う機能 を有している。このシミュレーションの結果、推奨する建設機械 3にかかる個別の経費 、フリート全体での建設機械 3にかかる経費、フリートでの建設機械 3の作業時間や 休止時間をまとめたシミュレーション結果を得ることができる。さらに、シミュレーション 結果に基づ 、て、各建設機械 3の運行状況をアニメーション動画で表示させることが 可能である。 [0035] そして、建設機械メーカは、シミュレーションの結果得られた経費の情報に基づ!/ヽ て顧客と商談し、推奨した建設機械の販売を促進させる。つまり、運行シミュレーショ ン手段 12は、鉱山開発等を行おうとする顧客に対し、建設機械メーカの営業ツール として利用することができる。この運行シミュレーション手段 12によるシミュレーション の具体的な手順にっ 、ては後述する。
[0036] 累積負荷算出手段 13は、顧客との商談段階にあっては、前記シミュレーション結果 に基づき、各部品の累積負荷としての苛酷度 (シビアリティ)を算出する。そして、累 積負荷算出手段 13は、実際の鉱山開発等が開始された後にあっては、建設機械 3 力 取得された実際の稼動情報に基づいて各部品の苛酷度を算出する機能を有し ている。
[0037] 寿命算出手段 14は、前記累積負荷算出手段 13で算出された苛酷度に基づき、各 部品の寿命を予測算出する。この予測算出された寿命は、消耗品や補強部品の最 適交換時期を予測するのに用いることができる。さらに、最適交換時期の情報は、修 理計画および補強部品の手配計画といった保守計画の立案に利用することができる 。そして、保守計画は、顧客との商談段階にあっては、販売する建設機械 3の保守契 約を結ぶのに有用であり、鉱山開発が開始された後にあっては、保守契約を実際に 履行するために利用される。
[0038] すなわち、本実施形態では、この寿命算出手段 14と累積負荷算出手段 13とにより 、個々の部品の苛酷度に応じてその寿命をそれぞれ予測する。そして、本実施形態 では、これらの予測された各寿命に基づいて、各部品の交換時期等をそれぞれ決定 する。この点で、単に建設機械 3の累積稼動時間に応じて部品の交換時期を決定し て 、た従来技術とは異なる。
[0039] 累積負荷比較手段 15は、シミュレーション結果に基づいて算出された苛酷度と、実 際の運転'作業状況に即した稼動情報に基づいて算出された苛酷度とを比較する機 能を有している。保守計画の対象となる各部品毎に双方の苛酷度をそれぞれ比較す ることにより、双方の苛酷度が大きく異なる部品を特定することが可能である。そして、 建設機械 3の稼働前に予測された苛酷度と建設機械 3の稼働後に算出される実際の 苛酷度とに違いのある部品については、その部品寿命も異なってくるため、保守計画 の修正更新が行われる。また、特定の部品における前記各苛酷度間の違いに基づ いて、シミュレーション時におけるその部品に関係する生産稼動条件を検証したり、 シミュレーション結果あるいは稼動情報から苛酷度をそれぞれ算出する際のアルゴリ ズムを検証することができる。
[0040] 例えば、ローダのブレーキパッドを一例として挙げる。稼動情報に基づいて算出さ れたブレーキパッドの苛酷度が、シミュレーションによって予測された苛酷度よりも厳 しい結果となった場合には、例えば、シミュレーション時に使用された生産稼動条件 が実際の稼働条件とは大きく異なっていたと考えることができる。例えば、積込時の口 ーダの移動速度の値力 シミュレーション時と実際のそれとで大きく異なっている場合 である。実際の移動速度がシミュレーション時の入力値よりも大きいと、ブレーキパッ ドの減り具合も早まる力もである。このような比較の結果は、次回のシミュレーションを 行う際、より正確な入力値を決定するのに活力される。
[0041] ところで、そのような入力値は、予め定められた標準値に基づいて人為的に決めら れるのであるが、シミュレーション結果あるいは稼動情報から苛酷度を算出するのに は、所定の演算式等が用いられる。従って、前述のように、ブレーキパッドの苛酷度 の比較結果に違いが生じた場合に、生産稼動条件の検証の結果、人為的に決めら れた移動速度の入力値が実際の移動速度と略同じであった場合には、その演算式 を疑うことになる。
[0042] そこで、本実施形態では、負荷算出アルゴリズム変更手段 16が設けられている。
負荷算出アルゴリズム変更手段 16は、苛酷度の比較結果に違いを生じた原因が 苛酷度を算出する際の演算式にあると判断した場合には、その演算式中の係数等の 変更を促す機能を有している。これにより、演算式がより正しい式に修正されることに なるから、苛酷度の値も正確になり、ひいては寿命の算出結果、およびこれに基づい て立てられる保守計画の精度も一層向上する。
[0043] 〔シミュレーション手順〕
以下には、図 2ないし図 13を参照し、運行シミュレーション手段 12を起動させた際 の具体的なシミュレーション手順について説明する。
[0044] シミュレーション用のプログラムである運行シミュレーション手段 12を起動させると先 ず、図 2に示すような、生産条件入力画面 121が端末 10のディスプレイ 31に表示さ れる。この生産条件入力画面 121では、顧客側が予定している稼動スケジュールお よび目標生産量等の生産計画に関する情報が生産条件として入力される。稼動スケ ジュールに関する情報としては、例えば、一日当たりの運転時間、修理'整備時間、 オペレータの拘束時間、稼動率等を挙げることができる。目標生産量としては、例え ば、一時間当たりの目標生産量、一日当たりの目標生産量等を挙げることができる。 これら各値の入力は、キーボード ·マウス 32によって行うことができる。
[0045] 次の画面としては、走路条件入力画面 122 (図 3)が表示される。走路条件入力画 面 122では、例えば、鉱山の土質、建設機械 3の作業条件、地形に関する条件が入 力される。鉱山の土質としては、例えば、土質名や土質換算係数等を挙げることがで きる。作業条件としては、例えば、ダンプトラックや積込機の機能率等を挙げることが できる。地形としては、例えば、現場標高、走路幅、カーブ半径、制限速度等を挙げ ることができる。また、地形の各種条件に基づく現場のコースが自動的に作成される ようになつている。走路条件入力画面 122中の「地形確認」をマウスでクリック等するこ とにより、図 4に示すように、別ウィンドウで現場のコース 123が表示されるようになつ ている。
[0046] さらに、機械条件入力画面 124 (図 5)が表示される。機械条件とは、例えば、建設 機械 3が使用されるフリート番号、建設機械 3として推奨する積込機 (ローダ'油圧ショ ベル)の詳細情報、ダンプトラックの詳細情報等である。機械条件入力画面 124では 、フリートを構成するために推奨される全建設機械 3の条件が入力される。また、入力 台数を任意に変更することで、様々なフリート構成にてシミュレーションを行うことが可 能である。
[0047] 次に表示されるフリート条件入力画面 125 (図 6)では、例えば、フリートを構成する 積込機およびダンプトラックの初期配置位置や、各積込機が!、ずれのダンプに対し て積込を行うかといつた情報、ダンプの各積込機に対する 1日当たりの積込回数等が フリート条件として入力される。
[0048] 次の区間時間入力画面 126 (図 7)では、例えば、各ダンプトラックの平均速度や区 間時間がコースの区間毎にそれぞれ入力される。図 7に示すように、平均速度や区 間時間は、各区間毎に、往路及び復路のそれぞれについて入力することができる。
[0049] そして、シミュレーション条件入力画面 127 (図 8)が表示される。この画面 127では 、シミュレーションを行う際の各種の条件が入力される。例えば、ダンプトラックにおい ては、追い越しの可否を選択することができる。即ち例えば、同一走路を複数のダン プトラックが連なって走行して 、る場合など、高速走行可能なダンプトラックによる低 速ダンプトラックの追い越しを許可するの力、または、追い越しを許可せずに連なつ た状態を維持して走行するのか等を選択する。
[0050] 次の画面としては、機械経費入力画面 128 (図 9)が表示される。この画面 128では 、例えば、推奨する建設機械 3毎の本体価格や、オペレータ労務費といった機械経 費の他、消耗部品のコストを入力する。
[0051] 以上の入力を行った後にシミュレーションを実行すると、通常シミュレーション結果 が表示される。シミュレーション結果としては、個別機械経費、フリート機械経費、まと めの画面に分けて表示される。
[0052] 図 10に示す個別機械経費表示画面 129では、フリートを構成する建設機械 3毎の 機械損料、運転経費、機械経費、生産コスト等が表示される。図 11に示すフリート機 械経費表示画面 130では、フリート全体での単位時間当たりの機械経費、単位立米 当たりの生産コスト、一日当たりの総運搬量、総待ち時間等が表示される。図 12に示 すまとめの画面 131では、排土場での排土量、積込機およびダンプの個々の作業時 間および休止時間等が表示される。
[0053] また、このシミュレーション結果に基づ 、て、ダンプトラックがどのような動きで現場 内のコースを走行するかといったアニメーションを動画表示させることが可能である。 このようなアニメーションの再生画面 132を図 13に示す。本実施形態では、約 1時間 毎のダンプの動きを任意の再生速度で表示させることが可能である。
[0054] 以上の運行シミュレーションを行うことにより、シミュレーション結果を顧客にアニメ一 シヨンと共に提示し、建設機械 3の販売商談の成立を促す。また、このシミュレーショ ン結果は、部品の苛酷度および寿命を予測するのに用いられ、最終的には顧客との 保守契約を結ぶ際の情報を得るためのツールとして使用される。以下には、シミュレ ーシヨン力も保守契約までの流れを図 14のフローチャートをも参照して説明する。 [0055] 〔鉱山開発以前におけるシミュレーション力 保守契約までの流れ〕
図 14において、先ず、前述したように、コンピュータ端末 10の運行シミュレーション 手段 12により運行シミュレーションを行う。すなわち、走路条件やシミュレーション条 件等の現場条件と、機械条件と、生産条件に代表される生産計画とをそれぞれ入力 し (ST1)、運行シミュレーションを実行させる(ST2)。
[0056] そして、シミュレーションの結果により得られた個別機械経費、フリート機械経費、お よびまとめの情報により、顧客との商談を行う(ST3)。一方で、シミュレーション結果 力 各機械 3の作業スケジュール、つまり各ダンプトラックの走行スケジュール、およ び各積込機(ローダ、油圧ショベル)の積込スケジュールもそれぞれ出力される (ST4 〜ST6)。
[0057] 具体的には、ダンプトラックの走行スケジュールは、例えば、生産稼動条件中の積 荷状態での走行時間と距離、空荷での走行時間と距離、待ち時間、燃料消費量、お よび変速回数等の情報によって決定される。積込機の積込スケジュールは、同様に 例えば、生産稼動条件中の積込作業回数と時間、待ち時間、燃料消費量等の情報 によって決定される。これらの各スケジュールは、図 1に示したシミュレーション結果デ ータベース 18に蓄積されるとともに、必要に応じて端末 10に接続されたプリンタ 33で 出力させることち可會である。
[0058] 次いで、それらの走行スケジュール及び積込スケジュールに基づき、累積負荷算 出手段 13を起動させて作業負荷度、すなわち苛酷度 (シビアリティ)を算出し (ST7) 、各部品の負荷変動を予測するために苛酷度を出力する (ST8)。
[0059] ここで、図 15には、一例として、ローダのパワーライン(図 16参照)であるアクスルフ レームの苛酷度を算出するための算出テーブル 133が示されている。累積負荷算出 手段 13は、前記積込スケジュールを決定するのに用 、られた各情報から「a負荷の 大きさ」に関する係数、「b偏荷重」に関する係数、および「c負荷頻度」に関する係数 、および「d車両重量」に関する係数を所定の演算式によってそれぞれ求め、これらを 掛け合わすことで苛酷度を算出する。
[0060] 「a負荷の大きさ」に関する係数は、標準的には、例えば、作業内容に応じて軽負荷 力 重負荷までの間で 5段階に分かれており、前記積込スケジュールを実行した場 合の係数が累積負荷算出手段 13により演算される。図 15では、顧客 Aのシミュレ一 シヨン結果による積込スケジュールに基づき、係数として「1. 025」が演算されたこと を示している。
[0061] 「b偏荷重」に関する係数は、例えば、積込を行う対象物の大きさに応じて 3段階に 分かれている。図 15では、顧客 Aの扱う対象物が中石〜大石の間であり、「b偏荷重 」に関する係数として「 1. 025」が演算されたことが示されて 、る。
[0062] 「c負荷頻度」に関する係数は、例えば、サイクルタイムおよび燃費に応じて 4段階 に分力れている。ダンプトラックへの積み込みサイクルタイムが 25〜40. 5secである 顧客 Aの場合では、係数として「1. 0」が演算されている。
[0063] 「d車両重量」に関する係数は、積荷状態の車両重量であって、例えば、 3段階に分 かれている。図 15に示す顧客 Aのローダでは、スタンダードな車両に対し、重量アツ プとなるパケット改造、 ADDウェイトの装着、タイヤチェーンの装着などが行われてお り、係数として「1. 05」が算出されている。
[0064] 従って、以上の各係数から、累積負荷算出手段 13は、アクスルフレームの苛酷度 を、「a X b X c X d」により、「1. 103」であると算出することになる。なお、前記の算出 テーブル 133は、部品標準ライフデータベース 19に格納されている。
[0065] 図 14に戻り、累積負荷算出手段 13による苛酷度の演算が終了すると、寿命算出 手段 14が起動し、所定の演算式に基づいて苛酷度に対応した寿命比を演算する。 顧客 Aでいえば、苛酷度「1. 103」の場合は、寿命比が「90」%であると算出される( 図 15参照)。これは、標準の寿命に比して 10%寿命が短いことを意味する。
[0066] そして、寿命算出手段 14は、その寿命比に基づいて各部品の標準ライフとの突き 合わせを行う(ST9)。この際に用いられる標準ライフ表 191, 192も、部品標準ライフ データベース 19に格納されている。これにより、寿命比 90%とされたアクスルフレー ムの具体的な寿命が日数等で算出される。また、算出された寿命は、各部品毎にそ れぞれ出力される(ST10)。
[0067] この後、算出された寿命日数を参照して、消耗品や補給部品の最適交換時期を予 測するとともに(ST11)、この予測結果に基づ!/、て修理計画および補給手配計画等 の保守計画を立案し、この保守計画に基づいて保守契約を締結する。この保守計画 は、上述のように算出された寿命に基づくことになるため、単純に稼働時間に基づい て立案される保守計画よりも精度が高!、。
[0068] 締結後は、その保守計画に基づいて保守契約を履行する。ただし、本実施形態で は、建設機械 3から逐一稼働情報を取得することができる。従って、鉱山開発の開始 後にあっては、その稼働情報に基づいて部品の実際の苛酷度を予測算出して、より 実態に即した寿命を求めるとともに、必要に応じて保守計画を見直し、最新の保守計 画に則って保守業務を行うことができる。稼働情報に基づいて保守計画を見直すこと により、シミュレーションによる保守計画との間で多少のずれが生じる力 保守計画の 精度が一層向上することになるため、突発的な異常がより発生しに《なる。以下には 、鉱山開発の開始以後における部品の寿命算出の流れを図 16をも参照して説明す る。
[0069] 〔鉱山開発開始後における部品寿命算出の流れ〕
図 16に示すように、各建設機械 3の稼動情報が所定時間毎に逐一稼動実績デー タベース 21に蓄積される(ST21)。稼動情報は、前述したように、マップ形式に変換 されて 、ることが多 ヽ。複数の稼動情報の組み合わせにより形成されるマップとして は、以下のものがある。
[0070] すなわち、積載量頻度マップ、サイクルタイム頻度マップ、移動距離頻度マップ、掘 削時間頻度マップ、エンジン負荷マップ、トランスミッションでの係合回数頻度マップ 、変速前の車速頻度マップ、変速頻度 RZF速度回数マップ、ロード &キャリー時 のトルク一回転数マップ、入力トルク 滑り率マップ、 MZCクラッチ熱負荷マップ等 である。
[0071] これらのうち、例えば、ローダでのアクスルフレームの苛酷度を演算するのに必要な マップは、サイクルタイム頻度マップ、移動距離頻度マップ、積載量頻度マップ、およ び掘削時間頻度マップである。参考として、図 17にサイクルタイム頻度マップ 134を 、図 18に移動距離頻度マップ 135 (移動距離 L1についてのみ)をそれぞれ示した。
[0072] 図 16に戻って、累積負荷算出手段 13は、各マップの情報に基づく作業負荷度、 すなわち苛酷度を演算し (ST22)、算出された苛酷度を各部品の負荷変動予測の ために出力する(ST23)。なお、苛酷度の演算に必要な演算テーブルは、図 15に示 したちのと同じである。
[0073] 累積負荷算出手段 13による苛酷度の演算が終了すると、シミュレーション時の処理 と同様に、寿命算出手段 14が起動し、所定の演算式に基づいて苛酷度に対応した 寿命比を演算する。そして、寿命算出手段 14は、その寿命比に基づいて各部品の 標準ライフとの突き合わせを行う(ST24)。これにより、アクスルフレームの実際の稼 動状況に即した具体的な寿命が日数等で算出される。また、算出された寿命は、各 部品毎にそれぞれ出力される(ST25)。
[0074] この後、算出された寿命日数を参照して消耗品や補給部品の最適交換時期を予 測するとともに(ST16)、この予測がシミュレーション時の予測と異なる場合には、修 理計画および補給手配計画等の保守計画を修正更新し、最新のものとして精度を一 層高めることが可能である。
[0075] 以上により、鉱山開発開始後においては、建設機械 3の実際の運転状況や作業状 況に即した各部品の苛酷度が算出され、この苛酷度に基づいてその寿命が算出さ れる。このため、この寿命に基づいて保守計画を最新状態に更新すれば、異常が生 じる前に、部品の手配や交換といった保守業務を行うことができる。
[0076] ところで、 ST23で算出された苛酷度が、シミュレーション時の苛酷度と大きく違う場 合も考えられる。そこで、本実施形態では、シミュレーション時の苛酷度を ST24の段 階で入力し (ST27)、累積負荷比較手段 15を起動させ、各苛酷度の比較を行うよう にしている(ST28)。
[0077] この結果、各苛酷度に大きな違いがあり、この違いがシミュレーション時の生産稼動 条件の入力値に起因して生じたと判断された場合、この相違は、次回のシミュレーシ ヨンを行う際に活力されるようにフィードバックされる。これにより、次回のシミュレーショ ン時には、より適切な入力値が決定、入力されるようにする。これに対して、各苛酷度 の相違が、シミュレーション時の苛酷度の演算式に起因して生じたと判断された場合 は、負荷算出アルゴリズム変更手段 16が起動し、演算式中の係数等の変更を促す( ST29)。これにより、次回のシミュレーション時には、より正確な演算式で苛酷度が演 算されるようになり、部品寿命の算出結果の信頼性が増す。
[0078] このような本実施形態によれば、以下の効果がある。 (1)すなわち、部品リコメンドシステム 1では、鉱山開発等の開始以前にあっては、生 産稼動条件に基づいて建設機械 3の運転'作業状況をシミュレーションした後に、そ の運転 ·作業状況に応じた部品毎の過酷度を算出し、このような累積負荷に基づい て各部品の寿命をより正確に予測算出することができる。このため、従来のように、単 なる稼動時間に基づ ヽて 、ずれの部品を保守するかと!/ヽつた保守計画を立てる場合 に比較して、部品寿命を予測してより精度のよい保守計画を立てることができる。従つ て、予想した寿命よりも早い段階で、突発的な部品異常が発生する可能性を少なく することができる。この結果、当初の保守計画に基づいて、部品を鉱山開発現場に 計画的に搬入すればよいから、航空便を利用する必要がなぐ船便による輸送で足り 、輸送経費を大幅に削減できる。
[0079] (2)さらに、本実施形態では、部品の保守計画の精度を改善できるため、予期せぬ 部品交換の発生を低減することができる。従って、顧客との保守契約を履行するにあ たっては、保守計画力 大きく外れた作業を行う可能性が少なくなり、保守作業の作 業性を向上させることができ、保守コストを低減することができる。
[0080] (3)本実施形態では、鉱山開発開始後にあっては、建設機械 3の実際の稼動情報に 基づいて部品毎の苛酷度を所定時間毎に予測算出し、このような苛酷度に基づいて 各部品の最新の寿命を算出可能である。このため、最新の寿命の予測に基づいて保 守計画をより精度のよいものに更新でき、船便によるタイムリーな部品の輸送をより確 実に行える。
[0081] (4)本実施形態では、建設機械 3が稼動する以前のシミュレーションによって算出さ れた苛酷度と実際の苛酷度とが、何らかの理由で相違する場合には、累積負荷比較 手段 15が起動してこれを判断する。そして、負荷算出アルゴリズム変更手段 16により 、シミュレーション時の苛酷度を演算するための演算式を変更することができるため、 次回のシミュレーションの精度をより向上させることができ、保守計画の精度もさらに 向上させてより適切な保守契約を交わすことができる。
実施例 2
[0082] 上述した実施形態のより詳細な具体例を以下に説明する。まず、図 19は、運行シミ ユレーシヨン手段 12の具体的な構成例を示す。運行シミュレーション手段 12は、上 述の通り、生産稼働条件及び各建設機械 3の仕様に基づいて、各建設機械 3の挙動 をシミュレートする。
[0083] 以下の例では、例えば、積込場と廃土場との間を複数のダンプトラックが往復する 場合を説明する。即ち、積込場においては、ローダがダンプトラックに土砂や鉱石等 を積み込ませる。土砂等を満載したダンプトラックは、走路を通って廃土場に移動し、 廃土場で土砂等を排出させる。空荷となったダンプトラックは、走路を通って、積込場 に戻り、再び土砂等が積み込まれるのを待機する。
[0084] 積込場では、先着のダンプトラックへの積み込みが完了するまで待ち時間が生じる 。同様に、廃土場でも、先着のダンプトラックの廃土が完了するまで待ち時間が生じ る。さらに、走行中の場合、通行規制等による渋滞等が発生し、待ち時間を生じる。 運行シミュレーション手段 12は、上述のようにモデル化された仮想的な生産現場空 間において、各建設機械 3の挙動をイベントドリブン方式でシミュレートする。
[0085] 図 19中に符号 PEで示すように、生産稼働条件には、フリート条件と、現場条件と、 走路条件とが含まれている。フリート条件には、例えば、そのフリートを構成する各種 建設機械 3の機種及び台数の情報が含まれる。現場条件には、例えば、建設機械 3 が使用される生産現場の標高や気温等の情報が含まれる。走路条件には、例えば、 積込場の設置数、廃土場の設置数、積込場と廃土場との間の走路の距離、走路の 勾配、カーブの位置、通行規制(一方通行力否か)等の情報が含まれる。
[0086] 建設機械データベース 12Aには、各種建設機械 3の仕様に関する情報が記憶され ている。仕様情報としては、例えば、一回あたりの作業量、搬送量、大きさ、移動速度 等を挙げることができる。
[0087] 運行シミュレーション手段 12の作動について説明する。まず、運行シミュレーション 手段 12は、シミュレーション時間を初期化する(ST31)。シミュレーション時間は、例 えば、一日の操業時間または予定生産量に達するまでの時間として設定することが できる。なお、シミュレーション時間は、実時間よりも早く変化させることができるため、 現実世界における一日分の挙動変化を短時間のうちにシミュレート可能である。
[0088] 次に、運行シミュレーション手段 12は、初期状態を設定する(ST32)。初期状態の 設定としては、例えば、各建設機械 3の初期位置及び状態の設定、各積込場の待ち 行列の設定、各廃土場の待ち行列の設定、走路上の各ノードの待ち行列の設定等 を挙げることができる。なお、各待ち行列の設定には、その行列を処理するための時 間 (積込時間や廃土時間等)を含めることができる。
[0089] 後述のように、シミュレーション空間内において、積込場と廃土場とを結ぶ走路上に は、複数のノードを設定することができる。ノードは、例えば、直線路力もカーブに変 化する地点や、双方向通行路から一方通行に変化する地点等のように、走路の環境 が変化する地点に設定することができる。また、ノードは、例えば、 1マイル毎、 10キロ メートル毎のように、所定距離毎に設定することもできる。さらに、距離と走路環境の 変化点とを組み合わせて設定することもできる。
[0090] 次に、運行シミュレーション手段 12は、積込場の待ち行列の先頭にあるダンプトラッ クについて、積込作業を開始させる(ST33)。つまり、運行シミュレーション手段 12は 、その先頭のダンプトラックについて、所定の積込時間のカウントを開始し、カウントァ ップした場合には、積込終了イベントを発生させる(ST33)。
シミュレーション開始直後は、その先頭のダンプトラックへの積込時間が経過するま で、イベントは発生しない。先頭のダンプトラックについて積込時間が経過すると、そ のダンプトラックに関して「積込終了イベント」が発生する。積込を終えたダンプトラッ クは、所定の走路を通行しながら、廃土場へ向けて移動する。積込場で待機している ダンプトラックの列は 1台分だけ短くなり、次のダンプトラックへの積込が開始される。 このように、運行シミュレーション手段 12は、各ダンプトラックの挙動をそれぞれ並行 的にシミュレートすることができる。各オブジェクト (建設機械 3)の挙動は、イベントドリ ブン方式に基づいて進められる。つまり、あるイベントの発生は、このイベントに続く別 のイベントのトリガとなり、順序よく進行していく。
[0091] イベントの発生が検出されると(ST34:YES)、運行シミュレーション手段 12は、その 発生したイベントに応じた処理を行う(ST35)。イベント処理の詳細は、さらに後述す る。そして、運行シミュレーション手段 12は、シミュレーション空間内における時刻情 報と共に各ダンプトラックのイベントを、シミュレーション結果データベース 18に記録さ せる(ST36)。
[0092] 運行シミュレーション手段 12は、シミュレーション時間を進行させ(ST37)、各ダン プトラックの位置及び状態をそれぞれ更新させる(ST38)。運行シミュレーション手段 12は、例えば、シミュレーション空間内の時間を所定の単位時間(例えば、 10分間) だけ進行させ、この時間進行に応じて各ダンプトラックのシミュレーション空間内の位 置及び状態をそれぞれ更新させる。状態としては、例えば、「積込待ち状態」、「廃土 場への往路走行中状態」、「走行中の待ち状態」、「廃土待ち状態」、「積込場への復 路走行中状態」等を挙げることができる。
[0093] 運行シミュレーション手段 12は、シミュレーションを終了させるか否かを判定する(S T39)。例えば、シミュレーション開始時に設定された予定の時間に到達した場合や 、 目標生産量に到達した場合等には、シミュレーションを終了させる。また、手動操作 によって中止が命じられた場合も、シミュレーションを終了させることができる。
シミュレーションの開始直後には、積込場で待機していたダンプトラックに次々に土 砂等が積み込まれて、積込終了イベントが続々と発生する。積込を終えたダンプトラ ックは、それぞれ順番に走行を開始し、これにより、走路上の各ノードでは別のィベン トがそれぞれ発生する。そして、各ダンプトラックは、廃土場にそれぞれ到着して、廃 土待ちの行列に加わり、廃土を終えると積込場へ向けて移動を開始する。
[0094] 図 20,図 21に基づいて、イベント処理の詳細を説明する。イベント処理では、発生 したイベントの種類を判別し、各イベントの種類に応じて所定の処理を行う。
積込終了イベントが発生した場合 (ST41:YES)、運行シミュレーション手段 12は、積 込場の待ち行列を一つずつ進めると共に、その待ち行列の先頭に位置するダンプト ラックについて積込時間の演算 (カウント)を開始させる(ST42)。積込時間が経過す ると、そのダンプトラックの状態は「積込待ち状態」から「積込終了状態」に遷移し、積 込終了イベントが発生する。なお、積込場の待ち行列とは、積込機による所定量の土 砂等の積込を待っための行列である。各ダンプトラックの最大積載量は、その機種に よって相違する。
[0095] 次に、運行シミュレーション手段 12は、積込終了イベントが発生したダンプトラック についての処理を行う(ST43)。つまり、運行シミュレーション手段 12は、積込を終え たダンプトラックについて、 目標の廃土場を設定し、その廃土場までの走行ルートを 選択する(ST43)。さらに、運行シミュレーション手段 12は、その走行ルート上の最 初のノードに到達するまでの走行パターンや、変速回数、走行時間等をそれぞれ算 出する(ST43)。走行パターンとしては、例えば、加減速状態の時間変化を挙げるこ とがでさる。
以上のように、積込終了イベントが発生した場合は、積込場で待機する別のダンプ トラックに関する処理 (ST42)と、その積込終了イベントを発生させたダンプトラックに 関する次のイベントへの開始処理 (ST43)とをそれぞれ実行する。
[0096] 順番は前後するが、次に、積込場到着イベントについて説明する。積込場到着ィべ ントとは、そのダンプトラックに関連づけられた所定の積込場に、そのダンプトラックが 到着した場合に発生するイベントである。積込場到着イベントが発生した場合 (ST44 )、運行シミュレーション手段 12は、積込場に到着したダンプトラックを積込場の待ち 行列の最後に追加させる(ST45)。
[0097] 次に、廃土終了イベントを説明する。廃土終了イベントとは、そのダンプトラックが積 載物を廃土場で排出した場合に発生するイベントである。廃土終了イベントが発生し た場合 (ST46:YES)、運行シミュレーション手段 12は、廃土場の待ち行列を処理し (S T47)、続いて、廃土終了イベントを発生させたダンプトラックに関する次のイベントを 開始させるための処理を行う(ST48)。
即ち、運行シミュレーション手段 12は、廃土場の待ち行列を 1つずつ進めると共に 、先頭となったダンプトラックについて廃土時間の計測を開始させる(ST47)。次に、 運行シミュレーション手段 12は、廃土を終えて空荷になったダンプトラックについて、 戻るべき積込場及びその積込場への走行ルートをそれぞれ選択する(ST48)。また 、運行シミュレーション手段 12は、その走行ルート上の最初のノードに到達するまで の走行パターン、変速回数、走行時間等をそれぞれ算出する(ST48)。
[0098] 次に、廃土場到着イベントを説明する。廃土場到着イベントとは、そのダンプトラック に関連づけられている廃土場に、そのダンプトラックが到着した場合に発生するィべ ントである。廃土場到着イベントが発生した場合 (ST49:YES)、運行シミュレーション手 段 12は、廃土場に到着したダンプトラックを廃土場の待ち行列の最後に追加させる( ST50)。
上述した各イベント毎の処理を行うと、イベント処理は終了し、図 19に示した運行シ ミュレーシヨン処理のメインフローチャートに戻る。
[0099] 図 21は、図 20に続くイベント処理のフローチャートである。ノード到着イベントとは、 そのダンプトラックに設定された走行ルート上のノードに到着した場合に発生するィ ベントである。各ダンプトラックには、往路と復路とでそれぞれ一つずつ走行ルートが 設定される。そして、往路及び復路の各走行ルートには、それぞれ少なくとも一つ以 上のノードが設定される。
[0100] ノード到着イベントが発生すると(S51: YES)、運行シミュレーション手段 12は、その ダンプトラックが通過した走路に関する処理 (ST52〜ST55)と、次に通行する走路 に関する処理 (ST56〜ST60)とをそれぞれ実行する。
[0101] まず、そのノードに到着する直前にダンプトラックの通過した走路力 一方通行路で あるカゝ否かを判定する(ST52)。一方通行路を走行してそのノードに到着した場合 ( ST52:YES)、運行シミュレーション手段 12は、そのダンプトラックが通過してきた一方 通行路について、占有度を 1つ減算させる(ST53)。占有度とは、その走路の混雑度 (通行量)を示す情報である。走路の占有度が高いほど、その走路を多くのダンプトラ ックが走行中であり、混雑していることを意味する。
[0102] 運行シミュレーション手段 12は、その一方通行路の占有度と予め設定されている所 定値とを比較し、占有度が所定値未満である力否かを判定する(ST54)。占有度が 所定値未満の場合 (ST54:YES)、その一方通行路に次のダンプトラックを進入させる ことができるため、運行シミュレーション手段 12は、その一方通行路の始点における 待ち行列を 1つずつ進める(ST55)。つまり、ノード到着イベントに係るノードよりも 1 つ手前のノードで待機するダンプトラックのうち、先頭のダンプトラックをその一方通 行路に進入させる。
[0103] 一方、ノード到着イベントに到着する直前に通過した走路が一方通行路ではない 場合 (ST52:NO)、または、通過した一方通行路の占有度が所定値以上の場合( ST54:NO)、 ST56に移行する。
運行シミュレーション手段 12は、ノード到着イベントを発生させたダンプトラックが次 に走行する走路が一方通行路であるか否かを判定する(ST56)。これから走行する 走路が一方通行路の場合 (ST56:YES)、運行シミュレーション手段 12は、その通過予 定の走路の占有度と予め設定されて ヽる所定値とを比較し、占有度が所定値以上で ある力否かを判定する(ST57)。この所定値は、 ST54で述べた所定値とは異なる値 に設定することができる。この所定値は、次の走路に進入可能か否かを判定するた めの閾値である。
[0104] 次の走路の占有度が所定値以上の場合 (ST57:YES)、運行シミュレーション手段 1 2は、そのダンプトラックを待ち行列の最後に追加させる(ST58)。即ち、次の走路へ の進入許可を待つダンプトラックの列の最後に、ノード到着イベントを発生させたダン プトラックを追加させる。
[0105] これに対し、次の走路の占有度が所定値以上ではな 、場合 (ST57:NO)、運行シミ ユレーシヨン手段 12は、次の走路の占有度を 1つ加算する(ST59)。運行シミュレ一 シヨン手段 12は、ノード到着イベントを発生させたダンプトラックを次の走路に進入さ せるために、次の走路に関連づけられて 、る占有度を 1つ増加させる。
[0106] そして、運行シミュレーション手段 12は、現ノード力も次ノードまでの走行パターン、 変速回数、走行時間等をそれぞれ算出する(ST60)。なお、次に走行する走路が一 方通行路ではない場合 (ST56:NO)、待ち行列の処理等を行う必要がないため、運行 シミュレーション手段 12は、 ST60に移行する。
[0107] 以上がイベント処理の説明である。上述のように、運行シミュレーション手段 12が使 用するシミュレーションモデルでは、各ダンプトラック毎に、積込終了イベント→一つ 又は複数のノード到着イベント (往路)→廃土場到着イベント→廃土終了イベント→ 一つまたは複数のノード到着イベント (復路)→積込場到着イベント→積込終了ィべ ントの順番で、各イベントをそれぞれ複数回ずつ発生させるであろう。
なお、各ダンプトラックの状態に着目すると、例えば、積込待ち状態→積込中状態 →積込終了状態→走行中状態→廃土待ち状態→廃土中状態→廃土終了状態→走 行中状態→積込待ち状態等のように遷移する。
[0108] 図 22は、累積負荷算出手段 13の構成例を示す説明図である。上述のように、累積 負荷算出手段 13は、運行シミュレーション手段 12によるシミュレーション結果、また は、稼働実績データベース 21に蓄積された稼働情報の両方に基づいて、各部品の 累積負荷をそれぞれ算出可能である。説明の便宜上、以下の説明では、シミュレ一 シヨン結果に基づいて算出される値を「予測累積負荷」と、稼働情報に基づいて算出 される値を「実累積負荷」とそれぞれ呼ぶ場合がある。なお、以下の説明では、保守 対象の所定部品として、ダンプトラックのトランスミッションを例に挙げて説明する。
[0109] 累積負荷算出手段 13は、累積負荷の算出に際して、稼働時間に初期値を設定す る (ST71)。そして、累積負荷算出手段 13は、各操業日毎の稼働時間及び変速回 数をそれぞれ読み出す (ST72)。シミュレーション結果力も累積負荷を算出する場合 、累積負荷算出手段 13は、シミュレーション結果データベース 18に記憶されたシミュ レーシヨン結果力 稼働時間及び変速回数をそれぞれ取得する。一方、実際の稼働 状況に基づいて累積負荷を算出する場合、累積負荷算出手段 13は、稼働実績デ ータベース 21に記憶された稼働情報力 稼働時間及び変速回数をそれぞれ取得す る。
[0110] 次に、累積負荷算出手段 13は、変速回数の累積値を算出し (ST73)、稼働時間と 変速回数の累積値との関係を保存する(ST74)。保存先としては、例えば、記憶手 段 17を用いることができる。
累積負荷算出手段 13は、処理対象のデータを全て解析したカゝ否かを判定し (ST7 5)、対象データを全て処理するまで ST72〜ST75のステップを繰り返す。これにより 、あるダンプトラックのトランスミッションについて、その累積負荷 (累積変速回数)と稼 働時間との関係を求めることができる。
[0111] 図 23は、寿命算出手段 14の構成例を示す説明図である。まず、寿命算出手段 14 は、累積負荷算出手段 13により出力された累積負荷と稼働時間との関係を読み込 むと共に(ST81)、そのトランスミッションに関連づけられている部品標準ライフを部 品標準ライフデータベース 19から読み込む(ST82)。トランスミッションの部品標準ラ ィフは、「回数値」として設定されている。即ち、累積負荷の次元と部品標準ライフの 次元とは一致する。
[0112] 寿命算出手段 14は、そのトランスミッションに関する最終の累積負荷 (ST81で取得 した値)と部品標準ライフとを比較し、累積負荷が部品標準ライフ以上である力否か を判定する(ST83)。トランスミッションの累積負荷がトランスミッションの部品標準ライ フの値以上である場合 (ST83:YES)、寿命算出手段 14は、図 24に示すように、稼働 時間と累積負荷との特性線を外挿する (ST84)。
[0113] トランスミッションの累積負荷力 その部品標準ライフ未満である場合 (ST83:NO)、 寿命算出手段 14は、図 24に示すように、現在の累積負荷が部品標準ライフの示す 値に到達するまでの稼働時間を算出する(ST85)。
[0114] 図 25は、累積負荷比較手段 15の構成例を示す説明図である。上述の通り、本実 施形態では、事前に与えられた条件の下で行われるシミュレーション結果と、各建設 機械 3の実際の稼働状況との両方について、累積負荷 (苛酷度)をそれぞれ算出す る。
このように由来の異なる複数種類の累積負荷を算出可能であるため、同一の部品 に関する累積負荷であっても、その値が異なる場合もあり得る。両者の差異が生じる 原因としては、例えば、シミュレーションモデルに設定される生産稼働条件の精度が 低い場合、累積負荷算出手段 13の使用する算出アルゴリズムの係数の値が最適値 に設定されて 、な 、場合等を挙げることができる。
[0115] 累積負荷比較手段 15は、シミュレーション結果に基づく予測累積負荷を取得し (S T91)、また、稼働情報に基づく実累積負荷を取得する (ST92)。次に、累積負荷比 較手段 15は、両方の累積負荷に共通する最大の値 CLを求める(ST93)。続いて、 累積負荷比較手段 15は、予測累積負荷が共通の最大値 CLになるときの稼働時間 t s (ST94)と、実累積負荷が共通の最大値 CLになるときの稼働時間 tr (ST95)とを、 それぞれ求める。
[0116] そして、累積負荷比較手段 15は、各稼働時間 ts, trに基づいて、修正用の比率 RL
(RL= (CL/tr) / (CL/ts) =ts/tr)を算出する(ST96)。この比率 RLは、予測累積負 荷よりも実累積負荷の方が RL倍大きいことを示す。 RLが大きくなるほど、その部品を 備えた建設機械 3は、想定された通常状態の使用条件よりも厳しい状況下で使用さ れていることを意味する。
[0117] なお、実際には、累積負荷と稼働時間との特性線は、直線とはならず、曲線を描く 力 本実施形態では、一例として、平均傾きで比率 RLを簡易的に求める場合を述べ た。これに限らず、より精密に両累積負荷の相違を算出してもよい。但し、本実施形 態のように、累積負荷と稼働時間との特性線を直線とみなして簡易的に比率 RLを求 めることにより、比率 RLを簡単に得ることができる。従って、例えば、保守対象部品を それぞれ複数ずつ備えた建設機械 3が多数存在するような場合でも、比較的短時間 で修正用の比率 RLを求めることができる。
[0118] 図 26は、負荷算出アルゴリズム変更手段 16の構成例を示す説明図である。負荷 算出アルゴリズム変更手段 16は、累積負荷比較手段 15によって算出された比率 RL を取得する(ST100)。そして、負荷算出アルゴリズム変更手段 16は、累積負荷算出 手段 13に対し、シミュレーション力も得られた負荷に比率 RLを乗算して累積負荷を 算出させるように、設定する(ST101)。
実施例 3
[0119] 図 27は、本発明のシステムの別の構成例を示すブロック図である。この例では、コ ンピュータ 10Aをサーバとして構成し、他のコンピュータ端末 5からのリクエストに応じ て、応答を返すようになつている。
[0120] コンピュータ端末 5は、例えば、建設機械メーカや販売代理店のセールスェンジ- ァ、あるいはメンテナンス要員等によって操作されるクライアント端末である。この端末 5は、通信網 2を介して、サーバコンピュータ 10Aに接続可能である。端末 5は、例え ば、ウェブブラウザ 51を搭載しており、このウェブブラウザ 51を介して、サーバコンビ ユータ 10Aとの間で情報を交換する。例えば、携帯電話や携帯情報端末、ハンドへ ルドコンピュータ等のようなモパイル端末をクライアント端末 5として利用可能である。
[0121] なお、本実施例では、メンテナンス支援処理の多くをサーバコンピュータ 10A上で 処理する場合を例に挙げる。しかし、これに限らず、例えば、ウェブブラウザ 51に一 つまたは複数のプラグインソフトウェアを実装し、サーバコンピュータ 10Aと端末 5とで メンテナンス処理を協働処理する構成でもよ ヽ。
[0122] サーバコンピュータ 10Aは、通信網 2を介して、各建設機械 3及び端末 5とそれぞれ 通信可能に接続される。サーバコンピュータ 10Aは、例えば、運行シミュレーション手 段 12と、累積負荷算出手段 13と、寿命算出手段 14と、累積負荷比較手段 15と、負 荷算出アルゴリズム変更手段 16と、記憶手段 17と、シミュレーション結果データべ一 ス(図 27中「DB」と略記) 18と、部品標準ライフデータベース 19と、稼働実績データ ベース 21と、建設機械データベース 12Aとを備えて構成することができる。 なお、サーバコンピュータ 10Aは、単一のコンピュータである必要はなぐ複数のサ 一バコンピュータを連携させて構築することもできる。
[0123] サーバコンピュータ 10Aは、上述のように、入力された生産稼働条件に基づいて建 設機械群の挙動をシミュレートし、各建設機械 3の有する複数の部品について、それ ぞれの累積負荷を予測する。また、サーバコンピュータ 10Aは、各建設機械 3から収 集された稼働情報に基づいて、実際の累積負荷を算出する。そして、サーバコンビュ ータ 10Aは、保守対象部品の寿命を予測する。サーバコンピュータ 10Aは、累積負 荷の算出アルゴリズムを自律的に修正して、予測精度を自動的に改善することができ る。
[0124] 端末 5は、通信網 2を介してサーバコンピュータ 10Aにアクセスすることにより、例え ば、サーバコンピュータ 10Aに生産稼働条件を入力してシミュレーションを行わせる ことができる。シミュレーション結果に基づく予測寿命等の情報は、通信網 2を介して 、サーバコンピュータ 10Aから端末 5に送信される。また、端末 5は、サーバコンビュ ータ 10Aにアクセスすることにより、稼働情報に基づく累積負荷の情報等をサーバコ ンピュータ 10Aから得ることもできる。
部品寿命の予測等を行うための各種データベース 12A, 18, 19, 21をサーバコン ピュータ 10Aで一元的に管理するため、データベースの保守も容易である。
[0125] なお、本発明は、前記実施形態に限定されるものではなぐ本発明の目的を達成で きる他の構成等を含み、以下に示すような変形等も本発明に含まれる。
例えば、前記実施形態の部品リコメンドシステム 1では、コンピュータ端末 10が運行 シミュレーション手段 12を備えており、鉱山開発以前の段階で部品の苛酷度を演算 し、その寿命を算出して精度のよい保守計画を立案できるようになっていたが、その ような運行シミュレーション手段 12が設けられていない場合でも本発明に含まれる。 つまり、実際の建設機械 3の運転'作業状況に即した稼動情報に基づいて部品の苛 酷度が演算されるだけでも、より正確な部品寿命を算出でき、これに基づいて保守計 画を随時更新すれば、保守計画を精度のよいものにできるからである。
し力しながら、運行シミュレーション手段 12を備えていることで、精度のよい保守計 画による正確な保守契約を締結できるという効果があるため、運行シミュレーション手 段 12を設けることが望ましい。
[0126] 反対に、前記実施形態での累積負荷算出手段 13は、シミュレーション結果に応じ た苛酷度と、実際の稼動情報に基づいた苛酷度との両方を演算可能に設けられて いた力 シミュレーション結果に応じた苛酷度のみを算出できる場合でも本発明に含 まれる。このような場合でも、従来に比べれば十分に精度のよい保守計画を立案でき るため、部品に異常が生じる前に部品の手配や交換等を行うことができる。
ただし、実際の稼動情報に基づいた苛酷度を算出することにより、シミュレーション により求めた苛酷度が何らかの理由で違っていた場合でも、前者の苛酷度に応じて 保守計画を見直すことができ、部品に異常が生じる前に手配、交換等を行うことがで きるため、稼動情報に基づいても苛酷度を算出可能に設けることが望ましい。
[0127] 前記実施形態では、鉱山開発を例にとって実施形態を説明したが、これに限定さ れず、建設現場や土木現場等、任意の現場で稼動する建設機械に本発明のシステ ムを適用することができる。稼働現場が海外である必要もない。さらには、建設機械と しても、ローダ、油圧ショベル、ダンプトラックに限らず、ブルドーザ、グレーダ、破砕 機等、いずれの建設機械であってもよい。
産業上の利用可能性
[0128] 本発明の建設機械のメンテナンス支援システムは、交換部品の輸送を伴う現場で 稼動する各種の建設機械に適用できる。

Claims

請求の範囲
建設機械 (3)と通信網(2)を介して接続可能なコンピュータシステム(10)を備えた 建設機械のメンテナンス支援システムにお 、て、
前記コンピュータシステム(10, 10A)は、
入力された生産稼動条件に基づ!、て前記建設機械 (3)の運転状況又は Z及び作 業状況をシミュレートする運行シミュレーション手段(12)と、
前記運行シミュレーション手段(12)によるシミュレーション結果に基づいて、予め設 定された所定の部品に関する累積負荷を算出する累積負荷算出手段(13)と、 前記算出された累積負荷に基づいて、前記所定の部品の寿命を算出する寿命算 出手段(14)と、
を備えることを特徴とする建設機械のメンテナンス支援システム(1)。 建設機械 (3)と通信網(2)を介して接続可能なコンピュータシステム(10)を備えた 建設機械のメンテナンス支援システムにお 、て、
前記コンピュータシステム(10, 10A)は、
前記建設機械(3)力も前記通信網を介して取得される稼動情報に基づ 、て、予め 設定された所定の部品に関する累積負荷を算出する累積負荷算出手段(13)と、 前記算出された累積負荷に基づいて、前記所定の部品の寿命を算出する寿命算 出手段(14)と、
を備えることを特徴とする建設機械のメンテナンス支援システム(1)。 請求項 2に記載の建設機械(3)のメンテナンス支援システム(1)にお 、て、 前記コンピュータシステム(10, 10A)は、
入力された生産稼動条件に基づ!、て建設機械 (3)の運転状況又は Z及び作業状 況をシミュレーションする運行シミュレーション手段(12)をさらに備えるとともに、 前記累積負荷算出手段(13)は、前記運行シミュレーション手段によるシミュレーシ ヨン結果又は前記稼働情報の両方に基づいて、前記所定の部品の累積負荷を所定 の算出アルゴリズムによってそれぞれ算出可能に設けられており、 かつ、前記シミュレーション結果に基づく累積負荷と前記稼動情報に基づく累積負 荷とを比較する累積負荷比較手段(15)と、
前記累積負荷比較手段(15)による比較結果に基づいて、前記算出アルゴリズムを 変更させる負荷算出アルゴリズム変更手段(16)とが設けられている
ことを特徴とする建設機械のメンテナンス支援システム(1)。
[4] 請求項 1〜請求項 3の ヽずれか一項に記載の建設機械のメンテナンス支援システ ム【しお!、て、
前記運行シミュレーション手段(12)は、
前記生産稼働条件によってそれぞれ指定される前記建設機械(3)の出発点と、前 記建設機械 (3)の到着点と、前記出発点と前記到着点とを結ぶ少なくとも一つ以上 の走路とをシミュレーションモデルにそれぞれ設定し、これら出発点、到着点及び走 路にそれぞれ関連づけられるイベントの発生状況に応じて、前記建設機械(3)の運 転状況又は Z及び作業状況を所定時間毎にシミュレートするようになっている建設 機械のメンテナンス支援システム。
[5] 請求項 4に記載の建設機械のメンテナンス支援システムにお 、て、
前記運行シミュレーション手段(12)は、
前記走路に複数のイベントノードをそれぞれ設定し、該各イベントノード間の通行規 制及び通行量をそれぞれ考慮して、前記各イベントノード毎にそれぞれイベントを発 生させるようになって!/ヽる建設機械のメンテナンス支援システム。
[6] 請求項 1〜請求項 3の ヽずれか一項に記載の建設機械のメンテナンス支援システ ム【しお!、て、
前記累積負荷算出手段(13)は、
前記所定の部品に関する累積負荷と稼働時間との関係を算出するようになってい る建設機械のメンテナンス支援システム。 [7] 請求項 1〜請求項 3の ヽずれか一項に記載の建設機械のメンテナンス支援システ ム【しお!、て、
前記寿命算出手段(14)は、
前記所定の部品につ 、て予め設定されて!、る標準寿命と前記累積負荷算出手段 ( 13)による算出結果とに基づいて、前記所定の部品の寿命を予測算出するようにな つて 、る建設機械のメンテナンス支援システム。
[8] 請求項 3に記載の建設機械のメンテナンス支援システムにお 、て、
前記累積負荷算出手段(13)は、前記所定の部品に関する累積負荷と稼働時間と の関係を算出するようになっており、
前記累積負荷比較手段(14)は、前記シミュレーション結果に基づく累積負荷と前 記稼働情報に基づく累積負荷との両方に共通する最大値を求めて、この最大値に 対応する稼働時間をそれぞれ検出し、これら検出された各稼働時間の比を算出して 出力するようになっており、
前記負荷算出アルゴリズム変更手段(16)は、前記累積負荷比較手段(14)により 算出された各稼働時間の比に基づいて、前記シミュレーション結果に基づく累積負 荷と前記稼働情報に基づく累積負荷との誤差が少なくなるように前記算出アルゴリズ ムを修正するようになって ヽる建設機械のメンテナンス支援システム。
[9] それぞれ通信網 (2)に接続可能な複数の建設機械 (3)と、前記通信網 (2)に接続 可能なコンピュータシステム(10, 10A, 20)とを備えた建設機械のメンテナンス支援 システムであって、
前記各建設機械 (3)は、
各部品の稼働状態を検出するための複数のセンサ(6, 8)と、
前記各センサ(6, 8)によってそれぞれ検出された情報を統計処理し、稼働情報と して出力する稼働情報生成部 (7)と、
前記稼働情報生成部(7)から出力される前記稼働情報を、前記通信網(2)を介し て前記コンピュータシステム(10, 20)に送信するための通信部(9)と、 をそれぞれ備えており、
前記コンピュータシステム(10, 10A, 20)は、
前記通信部(9)から前記通信網(2)を介して受信される前記稼働情報を蓄積する 稼働情報データベース (21)と、
前記各部品の標準寿命がそれぞれ予め蓄積されている部品標準寿命データべ一 ス(19)と、
シミュレーション結果を蓄積するシミュレーション結果データベース(18)と、 前記各建設機械 (3)の生産稼働条件を入力するための入力部 (32)と、 前記入力部(32)を介して入力された生産稼働条件をシミュレーションモデルに設 定することにより、前記各建設機械 (3)の運転状況又は Z及び作業状況をそれぞれ 個別にシミュレートし、そのシミュレーション結果を前記シミュレーション結果データべ ース( 18)に記憶させる運行シミュレーション部( 12)と、
前記稼働情報データベース(21)に記憶された前記稼働情報と前記シミュレーショ ン結果データベース(18)に記憶された前記シミュレーション結果との両方に基づい て、前記各部品に関する累積負荷を所定の算出アルゴリズムに従って算出する累積 負荷算出部(13)と、
前記算出された累積負荷及び前記部品標準寿命データベース(19)に基づいて、 前記各部品の寿命をそれぞれ算出する寿命算出部(14)と、
前記シミュレーション結果に基づいて算出された累積負荷と前記稼働情報に基づ いて算出された累積負荷とを比較する累積負荷算出部(15)と、
前記累積負荷算出部(15)による比較結果に基づいて、前記算出アルゴリズムを変 更させる負荷算出アルゴリズム変更部(16)と、
を備えていることを特徴とする建設機械のメンテナンス支援システム。
PCT/JP2005/007958 2004-04-28 2005-04-27 建設機械のメンテナンス支援システム WO2005106139A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US11/587,917 US7921000B2 (en) 2004-04-28 2005-04-27 Maintenance support system for construction machine
JP2006512794A JP4884214B2 (ja) 2004-04-28 2005-04-27 建設機械のメンテナンス支援システム
CA002562946A CA2562946A1 (en) 2004-04-28 2005-04-27 Maintenance support system for construction machine
AU2005238350A AU2005238350B2 (en) 2004-04-28 2005-04-27 Maintenance support system for construction machine
CN2005800134005A CN1954122B (zh) 2004-04-28 2005-04-27 建筑机械的维护支援系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004133496 2004-04-28
JP2004-133496 2004-04-28

Publications (2)

Publication Number Publication Date
WO2005106139A1 WO2005106139A1 (ja) 2005-11-10
WO2005106139A9 true WO2005106139A9 (ja) 2006-12-21

Family

ID=35241712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/007958 WO2005106139A1 (ja) 2004-04-28 2005-04-27 建設機械のメンテナンス支援システム

Country Status (6)

Country Link
US (1) US7921000B2 (ja)
JP (1) JP4884214B2 (ja)
CN (1) CN1954122B (ja)
AU (1) AU2005238350B2 (ja)
CA (1) CA2562946A1 (ja)
WO (1) WO2005106139A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7203894B2 (ja) 2019-09-18 2023-01-13 株式会社クボタ 作業支援方法

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4717579B2 (ja) * 2005-09-30 2011-07-06 株式会社小松製作所 作業機械のメンテナンス作業管理システム
US20070150254A1 (en) * 2005-12-23 2007-06-28 Choi Cathy Y Simulation engine for a performance validation system
JP5006119B2 (ja) * 2007-06-25 2012-08-22 株式会社キック 積み出し作業管理システム
AT504028B1 (de) * 2007-11-02 2009-03-15 Avl List Gmbh Verfahren zur schädigungsvorhersage von bauteilen eines kraftfahrzeuges
JP4302177B1 (ja) * 2008-07-10 2009-07-22 三菱重工業株式会社 荷役作業用車輛における累積使用時間計時方法と該計時方法を用いる荷役作業用車輌
US20100042461A1 (en) * 2008-08-15 2010-02-18 Sears Brands, Llc Grouping service orders in an electronic services marketplace
JP2010066188A (ja) * 2008-09-12 2010-03-25 Mitsubishi Heavy Ind Ltd 産業車両の回転体故障診断方法及び装置
CA2799404C (en) * 2010-05-14 2020-10-06 Harnischfeger Technologies, Inc. Remote monitoring of machine alarms
JP5228019B2 (ja) * 2010-09-27 2013-07-03 株式会社東芝 評価装置
US20120101863A1 (en) * 2010-10-22 2012-04-26 Byron Edwin Truax Machine-management system
US20130173329A1 (en) * 2012-01-04 2013-07-04 Honeywell International Inc. Systems and methods for the solution to the joint problem of parts order scheduling and maintenance plan generation for field maintenance
AU2013200491B2 (en) 2012-01-30 2015-02-12 Joy Global Surface Mining Inc System and method for remote monitoring of drilling equipment
WO2014061080A1 (ja) * 2012-10-15 2014-04-24 株式会社日立製作所 保守計画立案支援システム、保守計画立案支援方法、保守計画立案支援プログラム
JP5773455B2 (ja) * 2013-01-07 2015-09-02 Necフィールディング株式会社 管理サーバ、管理システム、部品管理方法及びプログラム
US9244464B2 (en) * 2013-01-28 2016-01-26 Caterpillar Inc. Machine control system having autonomous edge dumping
US8880334B2 (en) * 2013-01-28 2014-11-04 Caterpillar Inc. Machine control system having autonomous edge dumping
US9298188B2 (en) 2013-01-28 2016-03-29 Caterpillar Inc. Machine control system having autonomous edge dumping
US20140324534A1 (en) * 2013-04-30 2014-10-30 Caterpillar Inc. Systems and methods for forecasting using customer preference profiles
JP6120669B2 (ja) * 2013-05-14 2017-04-26 住友重機械工業株式会社 ショベルの状態表示装置
CA2882906C (en) * 2013-08-20 2017-03-07 Komatsu Ltd. Management system and management method
US9998538B2 (en) * 2013-08-29 2018-06-12 International Business Machines Corporation Dispersed storage with coordinated execution and methods for use therewith
JP6376738B2 (ja) * 2013-09-30 2018-08-22 株式会社クボタ 作業支援システム
JP6320185B2 (ja) * 2014-06-16 2018-05-09 住友重機械工業株式会社 ショベル支援装置
CN105741005A (zh) * 2014-12-12 2016-07-06 通用电气公司 零件维护计划的优化方法及其系统
WO2016117041A1 (ja) * 2015-01-21 2016-07-28 株式会社日立製作所 損傷推定装置
US10642258B2 (en) * 2015-07-01 2020-05-05 Panasonic Intellectual Property Management Co., Ltd. Maintenance work support system
US20170186250A1 (en) * 2015-12-28 2017-06-29 Caterpillar Inc. System and method for determining machine hang time
WO2017170968A1 (ja) * 2016-03-30 2017-10-05 株式会社小松製作所 シミュレーションシステム及びシミュレーション方法
JP6630644B2 (ja) * 2016-07-26 2020-01-15 プレス工業株式会社 アクスルケースの亀裂検知システム
JP6630643B2 (ja) * 2016-07-26 2020-01-15 プレス工業株式会社 デッドアクスルケースの亀裂検知システム
EP3559354A1 (en) 2016-12-23 2019-10-30 Caterpillar SARL Monitoring the operation of a work machine
US20180247207A1 (en) * 2017-02-24 2018-08-30 Hitachi, Ltd. Online hierarchical ensemble of learners for activity time prediction in open pit mining
JP6981030B2 (ja) * 2017-04-14 2021-12-15 横浜ゴム株式会社 コンベヤベルトの管理システム
JP6926615B2 (ja) 2017-04-14 2021-08-25 横浜ゴム株式会社 コンベヤベルトの管理システム
JP6926614B2 (ja) * 2017-04-14 2021-08-25 横浜ゴム株式会社 コンベヤベルトの管理システム
JP6981031B2 (ja) * 2017-04-14 2021-12-15 横浜ゴム株式会社 コンベヤベルトの管理システム
JP6946705B2 (ja) 2017-04-14 2021-10-06 横浜ゴム株式会社 コンベヤベルトの管理システム
JP6946704B2 (ja) * 2017-04-14 2021-10-06 横浜ゴム株式会社 コンベヤベルトの管理システム
JP1603245S (ja) * 2017-05-31 2018-05-07
JP6591496B2 (ja) * 2017-06-27 2019-10-16 株式会社クボタ 作業支援システム
CN107403051B (zh) * 2017-08-01 2020-07-31 贺州学院 养护时间确定方法及装置
JP7202064B2 (ja) 2017-10-04 2023-01-11 株式会社小松製作所 作業機械制御装置および制御方法
WO2019117166A1 (ja) * 2017-12-11 2019-06-20 住友建機株式会社 ショベル
JP6916754B2 (ja) * 2018-02-28 2021-08-11 三菱パワー株式会社 プラント運転支援装置、および、プラント運転支援方法
US11727168B2 (en) * 2018-02-28 2023-08-15 Toyota Jidosha Kabushiki Kaisha Proactive vehicle maintenance scheduling based on digital twin simulations
CN112334924A (zh) * 2018-07-10 2021-02-05 住友重机械工业株式会社 施工机械的显示方法及施工机械的支持装置
KR102109691B1 (ko) * 2018-10-04 2020-05-12 삼성물산 주식회사 건설기계 인디케이터 모니터링 시스템 및 이를 이용한 모니터링 방법
CN109359922B (zh) * 2018-11-14 2021-02-26 慕贝尔汽车部件(太仓)有限公司 备件管理方法及装置
CN109635962A (zh) * 2018-12-17 2019-04-16 广州甘来信息科技有限公司 基于自贩机的检修时间预测方法、装置、设备及存储介质
DE102019103195A1 (de) * 2019-02-08 2020-08-13 Liebherr-Werk Biberach Gmbh Vorrichtung und Verfahren zum Steuern und/oder Konfigurieren einer Baumaschine
JP7417212B2 (ja) * 2019-12-26 2024-01-18 東急建設株式会社 運行最適化システム
JP7460414B2 (ja) * 2020-03-25 2024-04-02 住友重機械工業株式会社 ショベルの管理システム
EP3958458A1 (en) * 2020-08-19 2022-02-23 Siemens Aktiengesellschaft Software based condition monitoring for machines
CN112182863A (zh) * 2020-09-17 2021-01-05 中联重科股份有限公司 工程机械健康监测方法、剩余寿命估算方法及系统
JP7214780B2 (ja) * 2021-04-06 2023-01-30 日立建機株式会社 性能診断装置、性能診断方法

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5216612A (en) * 1990-07-16 1993-06-01 R. J. Reynolds Tobacco Company Intelligent computer integrated maintenance system and method
US6546363B1 (en) * 1994-02-15 2003-04-08 Leroy G. Hagenbuch Apparatus for tracking and recording vital signs and task-related information of a vehicle to identify operating patterns
US7103460B1 (en) * 1994-05-09 2006-09-05 Automotive Technologies International, Inc. System and method for vehicle diagnostics
US5642722A (en) * 1995-10-30 1997-07-01 Motorola Inc. Adaptive transient fuel compensation for a spark ignited engine
US6311093B1 (en) * 1997-06-20 2001-10-30 Peter G. Brown System and method for simulation, modeling and scheduling of equipment maintenance and calibration in biopharmaceutical batch process manufacturing facilities
US7043414B2 (en) * 1997-06-20 2006-05-09 Brown Peter G System and method for simulating, modeling and scheduling of solution preparation in batch process manufacturing facilities
JP3681033B2 (ja) * 1997-11-17 2005-08-10 株式会社小松製作所 エンジン並びに熱源を有する機械の寿命予測装置
US6199018B1 (en) * 1998-03-04 2001-03-06 Emerson Electric Co. Distributed diagnostic system
US5952587A (en) * 1998-08-06 1999-09-14 The Torrington Company Imbedded bearing life and load monitor
US20110208567A9 (en) * 1999-08-23 2011-08-25 Roddy Nicholas E System and method for managing a fleet of remote assets
US6907384B2 (en) * 2000-03-31 2005-06-14 Hitachi Construction Machinery Co., Ltd. Method and system for managing construction machine, and arithmetic processing apparatus
JP2001350510A (ja) * 2000-06-06 2001-12-21 Mori Seiki Co Ltd 工作機械保守管理システム
JP2002188183A (ja) * 2000-10-12 2002-07-05 Komatsu Ltd 作機機械の管理装置
US6853930B2 (en) * 2001-02-27 2005-02-08 Hitachi, Ltd. System for aiding the preparation of operation and maintenance plans for a power generation installation
US7194415B2 (en) * 2001-03-09 2007-03-20 Hitachi, Ltd. Support system for maintenance contract of elevator
US7797062B2 (en) * 2001-08-10 2010-09-14 Rockwell Automation Technologies, Inc. System and method for dynamic multi-objective optimization of machine selection, integration and utilization
JP2003141173A (ja) * 2001-08-22 2003-05-16 Komatsu Ltd データベース管理システム及びデータベース
JP4186450B2 (ja) * 2001-10-16 2008-11-26 株式会社日立製作所 空調設備運用システム及び空調設備設計支援システム
JP2003119831A (ja) * 2001-10-18 2003-04-23 Komatsu Ltd メンテナンス計画作成システム、メンテナンス計画作成方法、およびこの方法をコンピュータに実行させるプログラム
JP2003140743A (ja) * 2001-10-29 2003-05-16 Komatsu Ltd 機械の操縦履歴管理システム、その操縦履歴管理方法、およびその操縦履歴管理プログラム
US7032816B2 (en) * 2001-12-28 2006-04-25 Kimberly-Clark Worldwide, Inc. Communication between machines and feed-forward control in event-based product manufacturing
JP2004021290A (ja) * 2002-06-12 2004-01-22 Hitachi Constr Mach Co Ltd 建設機械の情報提供システム、建設機械の情報表示装置、及び建設機械の情報提供方法
CN1564995A (zh) * 2002-06-12 2005-01-12 日立建机株式会社 工程机械的信息提供系统以及工程机械的信息提供方法
JP2004046550A (ja) * 2002-07-12 2004-02-12 Hitachi Constr Mach Co Ltd 建設機械の情報提供システム、建設機械の情報表示装置、及び建設機械の情報提供方法
US7610223B2 (en) * 2002-06-14 2009-10-27 Amada Company, Limited Sheet metal equipment sales method and system therefor
JP4201542B2 (ja) * 2002-07-30 2008-12-24 株式会社小松製作所 移動機械の部品情報管理システム、移動機械の部品情報管理方法をコンピュータに実行させるためのプログラム
US20040049715A1 (en) * 2002-09-05 2004-03-11 Jaw Link C. Computer networked intelligent condition-based engine/equipment management system
JP2004211587A (ja) * 2002-12-27 2004-07-29 Toshiba Corp 発電プラントの運用支援システム
US7359931B2 (en) * 2003-08-15 2008-04-15 Saudi Arabian Oil Company System to facilitate pipeline management, software, and related methods
JP4246039B2 (ja) * 2003-11-18 2009-04-02 日立建機株式会社 建設機械の稼働情報管理装置
JP4717579B2 (ja) * 2005-09-30 2011-07-06 株式会社小松製作所 作業機械のメンテナンス作業管理システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7203894B2 (ja) 2019-09-18 2023-01-13 株式会社クボタ 作業支援方法

Also Published As

Publication number Publication date
US20080195365A1 (en) 2008-08-14
CN1954122A (zh) 2007-04-25
JP4884214B2 (ja) 2012-02-29
US7921000B2 (en) 2011-04-05
CN1954122B (zh) 2010-12-08
WO2005106139A1 (ja) 2005-11-10
JPWO2005106139A1 (ja) 2008-03-21
CA2562946A1 (en) 2005-11-10
AU2005238350A1 (en) 2005-11-10
AU2005238350B2 (en) 2009-12-10

Similar Documents

Publication Publication Date Title
JP4884214B2 (ja) 建設機械のメンテナンス支援システム
US8145513B2 (en) Haul road maintenance management system
JP4245842B2 (ja) 建設機械の管理システム
CN107408227B (zh) 工程机械的更换件管理系统
AU2008311268B2 (en) Systems and methods for improving haul road conditions
US6919865B2 (en) Display device for work machine
US20020059320A1 (en) Work machine management system
EP3724603B1 (en) Worksite management system
CN101751615A (zh) 用于管理建筑工地上的原料的方法和系统
US8090560B2 (en) Systems and methods for haul road management based on greenhouse gas emissions
JP6906209B2 (ja) 建設機械稼働状況管理システム及び管理方法
CN101273316A (zh) 资产管理系统
US20090099708A1 (en) Systems and methods for designing a haul road
JP2008217559A (ja) 作業機械の運転評価システム
US20070100760A1 (en) System and method for selling work machine projects
WO2022209167A1 (ja) 部品寿命予測システム及び保守支援システム
JP7113054B2 (ja) 作業機械の補修部品の選択支援システム
JP2002121775A (ja) 作業機械の表示装置
JP2002117164A (ja) 作業車両の修理費予測システム
US11995577B2 (en) System and method for estimating a machine's potential usage, profitability, and cost of ownership based on machine's value and mechanical state
WO2020203171A1 (ja) 技能評価システム及び技能評価方法
JP2021105824A (ja) 運行最適化システム

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006512794

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2562946

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 200580013400.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005238350

Country of ref document: AU

WWW Wipo information: withdrawn in national office

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 2005238350

Country of ref document: AU

Date of ref document: 20050427

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005238350

Country of ref document: AU

122 Ep: pct application non-entry in european phase
WWE Wipo information: entry into national phase

Ref document number: 11587917

Country of ref document: US