WO2017170968A1 - シミュレーションシステム及びシミュレーション方法 - Google Patents

シミュレーションシステム及びシミュレーション方法 Download PDF

Info

Publication number
WO2017170968A1
WO2017170968A1 PCT/JP2017/013482 JP2017013482W WO2017170968A1 WO 2017170968 A1 WO2017170968 A1 WO 2017170968A1 JP 2017013482 W JP2017013482 W JP 2017013482W WO 2017170968 A1 WO2017170968 A1 WO 2017170968A1
Authority
WO
WIPO (PCT)
Prior art keywords
construction
data
unit
amount
simulation
Prior art date
Application number
PCT/JP2017/013482
Other languages
English (en)
French (fr)
Inventor
伸也 加納
律昭 小島
喜之 大西
恭平 黒田
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Priority to DE112017000279.6T priority Critical patent/DE112017000279T5/de
Priority to CN201780006990.1A priority patent/CN108475399B/zh
Priority to US16/064,656 priority patent/US20180374168A1/en
Priority to JP2018509489A priority patent/JP6979015B2/ja
Priority to AU2017239878A priority patent/AU2017239878B2/en
Publication of WO2017170968A1 publication Critical patent/WO2017170968A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/08Construction
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/13Architectural design, e.g. computer-aided architectural design [CAAD] related to design of buildings, bridges, landscapes, production plants or roads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06313Resource planning in a project environment

Definitions

  • the present invention relates to a simulation system and a simulation method.
  • Construction site construction may be simulated by a computer system.
  • Patent Document 1 discloses a technique for executing a construction plan and construction management by a computer system.
  • An object of an aspect of the present invention is to provide a simulation system and a simulation method capable of improving productivity at a construction site.
  • a current landform data acquisition unit that acquires current landform data indicating the current landform of the construction site, and a design landform data acquisition unit that acquires design landform data indicating the design landform of the construction site
  • a basic unit data acquisition unit for acquiring basic unit data indicating the specifications of resources related to construction at the construction site, and a construction amount indicating a construction amount at the construction site based on the current topography and the design topography
  • the construction condition setting unit that sets the construction condition data indicating the construction procedure, the basic unit data, the construction condition data, and the construction amount data, the construction
  • a simulation system including a simulation unit that calculates a transition state of a site.
  • the present terrain data indicating the current terrain at the construction site is acquired, the design terrain data indicating the design terrain at the construction site is acquired, and the construction at the construction site is performed.
  • a simulation method including calculating a transition state of the construction site is provided.
  • a simulation system and a simulation method capable of improving the productivity of a construction site are provided.
  • FIG. 1 is a hardware configuration diagram illustrating an example of a simulation system according to the first embodiment.
  • FIG. 2 is a functional block diagram illustrating an example of the simulation system according to the first embodiment.
  • FIG. 3 is a flowchart illustrating an example of the simulation method according to the first embodiment.
  • FIG. 4 is a diagram schematically illustrating an example of construction amount data displayed on the output device according to the first embodiment.
  • FIG. 5 is a diagram schematically illustrating an example of the basic unit data displayed on the output device according to the first embodiment.
  • FIG. 6 is a diagram schematically illustrating an example of construction condition data displayed on the output device according to the first embodiment.
  • FIG. 7 is a diagram schematically illustrating an example of construction condition data displayed on the output device according to the first embodiment.
  • FIG. 1 is a hardware configuration diagram illustrating an example of a simulation system according to the first embodiment.
  • FIG. 2 is a functional block diagram illustrating an example of the simulation system according to the first embodiment.
  • FIG. 3 is a
  • FIG. 8 is a diagram schematically illustrating an example of construction condition data displayed on the output device according to the first embodiment.
  • FIG. 9 is a diagram schematically illustrating an example of a simulation result displayed on the output device according to the first embodiment.
  • FIG. 10 is a diagram schematically illustrating an example of a simulation result displayed on the output device according to the first embodiment.
  • FIG. 11 is a diagram schematically illustrating an example of a simulation result displayed on the output device according to the first embodiment.
  • FIG. 12 is a diagram illustrating an example of a simulation result by the simulation unit according to the present embodiment.
  • FIG. 13 is a flowchart illustrating an example of the simulation method according to the second embodiment.
  • FIG. 1 is a hardware configuration diagram illustrating an example of a simulation system 1 according to the present embodiment.
  • the simulation system 1 includes a data processing device 2, an output device 3 that outputs output data supplied from the data processing device 2, and an input device 4 that generates input data.
  • the output device 3 and the input device 4 are connected to the interface circuit 5 of the data processing device 2.
  • the data processing device 2 includes an interface circuit 5, a processor 6 such as a CPU (Central Processing Unit), a nonvolatile memory 7 such as a ROM (Read Only Memory) or a flash memory, and a RAM (Random Access Memory). Volatile memory 8.
  • the nonvolatile memory 7 stores a computer program 9 that is executed in the data processing of the data processing device 2.
  • the computer program 9 is executed by being loaded from the nonvolatile memory 7 to the working area of the volatile memory 8 and being read by the processor 6.
  • the output device 3 includes a display device that displays the display data supplied from the data processing device 2.
  • the output device 3 includes a flat panel display such as a liquid crystal display (LCD) or an organic EL display (Organic Electroluminescence Display: OELD).
  • LCD liquid crystal display
  • OELD Organic Electroluminescence Display
  • the input device 4 generates input data when operated by the user. Input data generated by the input device 4 is output to the data processing device 2.
  • the input device 4 includes a touch sensor provided on the display screen of the display device 3.
  • the input device 4 may include at least one of a computer keyboard and a mouse.
  • FIG. 2 is a functional block diagram showing an example of the simulation system 1 according to the present embodiment.
  • the simulation system 1 includes an input / output unit 10, a current terrain data acquisition unit 11 that acquires current terrain data indicating the current terrain at the construction site, and design terrain data indicating the design terrain at the construction site.
  • Design terrain data acquisition unit 12 to be acquired basic unit data acquisition unit 13 to acquire basic unit data indicating the specifications of resources related to construction on the construction site, and input data generated by operating the input device 4
  • an input data acquisition unit 14 for acquiring.
  • the simulation system 1 is configured to set a construction amount data calculation unit 15 that calculates construction amount data indicating a construction amount at a construction site based on the current terrain and a design terrain, and a construction condition data that indicates a construction procedure. Based on the condition setting unit 16, the basic unit data, the construction condition data, and the construction amount data, the simulation unit 17 that calculates the transition state of the construction site, and the output control that outputs the calculation data of the simulation unit 17 to the output device 3 Unit 18 and a storage unit 19 for storing data.
  • the function of the input / output unit 10 is exhibited by the interface circuit 5.
  • Current terrain data acquisition unit 11, design terrain data acquisition unit 12, basic unit data acquisition unit 13, input data acquisition unit 14, construction amount data calculation unit 15, construction condition setting unit 16, simulation unit 17, and output control unit 18 Each function is exhibited by the processor 6.
  • the function of the storage unit 19 is exhibited by the nonvolatile memory 7 or the volatile memory 8.
  • the current terrain data acquisition unit 11 acquires current terrain data indicating the current terrain at the construction site.
  • the current terrain data is three-dimensional terrain data.
  • the current terrain data includes position data of a plurality of points.
  • the position data of the point is three-dimensional coordinate data including latitude data, longitude data, and altitude data.
  • the current terrain data is acquired by a camera mounted on an unmanned air vehicle such as an unmanned airplane or an unmanned helicopter. In this embodiment, the case where a drone is used as an unmanned air vehicle will be described.
  • the drone takes aerial photographs of the construction site and obtains the current terrain data.
  • the current terrain data acquisition unit 11 acquires the current terrain data from the drone.
  • the input / output unit 10 has a wireless communication function.
  • the current landform data acquired by the drone is supplied to the input / output unit 10 by wireless communication, for example.
  • the current terrain data acquisition unit 11 acquires the current terrain data supplied by wireless communication.
  • the current terrain data may be acquired by a stereo camera mounted on a work machine at a construction site. Further, the current landform data may be data generated using a three-dimensional CAD (Computer Aided Design), or may be data generated by a predetermined organization such as the Geographical Survey Institute.
  • CAD Computer Aided Design
  • the design terrain data acquisition unit 12 acquires design terrain data indicating the design terrain of the construction site.
  • the designed terrain data is three-dimensional terrain data.
  • the design terrain data includes position data of a plurality of points.
  • the position data of the point is three-dimensional coordinate data including latitude data, longitude data, and altitude data.
  • the design terrain data is created by, for example, a construction company.
  • the design terrain data acquisition unit 12 acquires design terrain data from a construction company.
  • the input / output unit 10 is connected to, for example, the Internet.
  • the design terrain data created by the construction company is supplied to the input / output unit 10 from the information terminal of the construction company via the Internet.
  • the design terrain data acquisition unit 12 acquires design terrain data supplied via the Internet.
  • the basic unit data acquisition unit 13 acquires basic unit data indicating the specifications of resources related to construction at the construction site.
  • the basic unit data is stored in the storage unit 19.
  • the basic unit data includes data indicating the construction capability of the work machine that constructs the construction site.
  • the basic unit data includes the construction capability of each of a plurality of work machines that can be used for construction on the construction site.
  • the basic unit data of each of the plurality of work machines is made into a database and stored in the storage unit 19.
  • the basic unit data acquisition unit 13 acquires the basic unit data from the storage unit 19.
  • the basic unit data of each of the plurality of work machines may be stored in a database device different from the data processing device 2.
  • the basic unit data may be supplied from the database device to the input / output unit 10.
  • the basic unit data acquisition unit 13 may acquire the basic unit data from the database device.
  • a work machine is a work vehicle that can be operated at a construction site.
  • the work machine includes at least one of a construction machine capable of pushing or excavating earth and sand and a transporting vehicle capable of carrying earth and sand.
  • the construction machine includes at least one of a hydraulic excavator having a bucket and a bulldozer having a blade.
  • the haul vehicle includes a dump truck having a vessel.
  • the construction machine may be a wheel loader or a motor grader.
  • the construction capacity of the work machine with basic unit data includes the work volume of the work machine that can be executed per unit time.
  • the work amount of the work machine that can be performed per unit time is an index that indicates the work capability of the work machine, and refers to the amount of earth and sand that the work machine can move per unit time.
  • the work amount of the bulldozer includes at least one of a pressing amount and a filling amount that can be performed by the bulldozer per unit time.
  • the work amount of the hydraulic excavator includes at least one of a loading amount, a cut amount, and a fill amount that can be performed by the hydraulic excavator per unit time.
  • the work volume of the dump truck refers to the amount of earth and sand that the dump truck can carry per unit time.
  • the amount of earth press means the amount of earth and sand that the construction machine can push.
  • the amount of embankment means the amount of earth and sand that the construction machine can accumulate.
  • the loading amount is the amount of earth and sand that the construction machine can load on the transport vehicle.
  • the amount of cut means the amount of earth and sand that can be excavated by the construction machine.
  • the work amount of the work machine that can be performed per unit time includes a bucket capacity that indicates the size of the bucket of the hydraulic excavator.
  • the work amount of the hydraulic excavator depends on the bucket capacity. When the bucket capacity is large, the amount of work increases. When the bucket capacity is small, the work amount is small.
  • the work machine work volume that can be performed per unit time includes the size of the bulldozer blade.
  • the work amount of the bulldozer depends on the size of the blade. When the size of the blade is large, the amount of work increases. When the blade size is small, the amount of work is reduced.
  • the basic unit data when the work machine is a hydraulic excavator, the basic unit data includes not only the bucket capacity but also the maximum excavation height, maximum turning radius, and slope shaping ability of the hydraulic excavator.
  • the basic unit data When a hydraulic excavator is rented and used, the basic unit data includes a rental fee per day or a rental fee per month.
  • the basic unit data includes the fuel consumption of the work machine.
  • the basic unit data includes at least one of the type of work machine, model number, vehicle grade, and the number of work machines that can be procured at the construction site.
  • the basic unit data includes the management state of the work machine.
  • the basic unit data further includes the construction capability of the operator at the construction site, that is, the operator who operates the work machine.
  • the construction ability of the worker includes the skill level or skill of the worker.
  • the basic unit data includes the number of workers that can be procured at the construction site.
  • the basic unit data includes the construction work capacity of the structure.
  • Construction work of structures includes installation work and leveling work such as concrete blocks and concrete panels in scenes such as revetment work and slope work.
  • the basic unit data includes surveying ability by the worker.
  • the basic unit data may include data that indexes the ease of work at the construction site.
  • the construction content is construction work (construction site) such as construction of a structure such as laying a concrete structure or installing a retaining wall, rather than excavating or pushing earth, Ease of construction and the construction ability of the worker regarding construction of the structure may be included in the basic unit data.
  • the basic unit data is data indicating resources necessary for construction, such as work machines and workers, and ease of construction related to construction contents. These data include the capacity of the work machine, the skill of the worker, the specifications of the installed structure, and the soil quality of the construction site. That is, the basic unit data is data indicating the specifications of resources related to the construction site.
  • the basic unit data is known data that can be acquired before construction, is made into a database, and is held in the storage unit 19.
  • the input data acquisition unit 14 acquires input data input from the input device 4 by the user.
  • the construction amount data calculation unit 15 compares the current terrain data acquired by the current terrain data acquisition unit 11 with the design terrain data acquired by the design terrain data acquisition unit 12 to indicate the construction amount at the construction site. Calculate construction volume data. The construction amount data calculation unit 15 calculates construction amount data from the difference between the current terrain and the design terrain.
  • the construction amount data includes at least one of construction range data indicating the construction range of the construction site, earth and sand cutting data, and earth and sand embankment data.
  • the cut data includes at least one of cut portion data indicating a portion that requires cutting of earth and sand in the construction range and cut amount data indicating the amount of cut of earth and sand in the construction range.
  • the embankment data includes at least one of embedding part data indicating a part that requires embankment of earth and sand in the construction range and embankment amount data indicating the amount of earth and sand in the construction range.
  • Cut means the earth and sand excavated by a working machine or an operator.
  • the amount of cut means the amount of earth and sand excavated.
  • Embankment refers to the replenished earth and sand.
  • the amount of embankment means the amount of earth and sand.
  • the construction amount data calculation unit 15 calculates a cut portion and a cut amount from the current topography from the difference between the current topography and the design topography. Further, the construction amount data calculation unit 15 calculates the embedding portion and the embankment amount for the current landform from the difference between the current landform and the design landform.
  • the construction condition setting unit 16 sets construction condition data indicating the construction conditions at the construction site.
  • the construction condition data includes construction procedures.
  • the construction condition data includes at least one of soil quality at the construction site and a travel route of the work machine.
  • the construction condition data includes input data generated by the input device 4. That is, in this embodiment, the user operates the input device 4 to input construction condition data.
  • Input data indicating the construction condition data generated by the input device 4 is acquired by the input data acquisition unit 14.
  • the construction condition setting unit 16 acquires construction condition data from the input data acquisition unit 14.
  • the construction condition setting unit 16 sets construction condition data based on the input data input by the user.
  • the simulation unit 17 is based on the basic unit data acquired by the basic unit data acquisition unit 13, the construction condition data set by the construction condition setting unit 16, and the construction amount data calculated by the construction amount data calculation unit 15. To calculate the transition status of the construction site.
  • the transition status of the construction site includes one or both of the site status of the construction site and the operating status of the work machine.
  • the site situation at the construction site includes one or both of the topographical situation at the construction site and the installation status of the structure at the construction site.
  • the simulation unit 17 simulates the topography of the construction site that changes as the construction progresses, based on the basic unit data, the construction condition data, and the construction amount data.
  • the simulation part 17 simulates the working condition of the working machine containing an operation rate, for example based on basic unit data, construction condition data, and construction amount data.
  • the simulation unit 17 includes the basic unit data acquired by the basic unit data acquisition unit 13, the construction condition data set by the construction condition setting unit 16, and the construction amount data calculated by the construction amount data calculation unit 15. Based on the above, the construction efficiency when performing the construction of the calculated construction amount is calculated.
  • the construction efficiency includes at least one of the cost required for construction, the number of man-hours, and the construction period.
  • the simulation unit 17 simulates at least one of the cost required for the construction, the number of man-hours, and the construction period based on the basic unit data, the construction condition data, and the construction amount data.
  • the output control unit 18 outputs the calculation data of the simulation unit 17 to the output device 3.
  • the calculation data of the simulation unit 17 includes the simulation result of the simulation unit 17.
  • the calculation data of the simulation part 17 contains the transition status data which shows the transition status of a construction site, and the construction efficiency data which shows construction efficiency.
  • the output control unit 18 controls the output device 3.
  • the output control unit 18 generates output data (display data) to be displayed on the output device 3 from the calculation data of the simulation unit 17 and causes the output device 3 to display the output data. Thereby, the simulation result calculated in the simulation part 17 is visualized.
  • FIG. 3 is a flowchart illustrating an example of the simulation method according to the present embodiment.
  • the simulation method according to the present embodiment acquires current terrain data indicating the current terrain at the construction site (step SP10) and acquires design terrain data indicating the designed terrain at the construction site.
  • step SP20 Based on (step SP20), the current terrain and the design terrain, calculating the construction amount data indicating the construction amount at the construction site (step SP30), and the construction capability of the work machine used for construction at the construction site , Obtaining basic unit data indicating the specifications of resources related to the construction site construction (step SP40), setting construction conditions including construction procedures (step SP50), and construction showing the construction conditions Based on the condition data, the basic unit data, and the construction amount data, calculating the transition status of the construction site (step SP60) and the calculated transition Comprising outputting the status to the output device 3 (step SP70), the.
  • Current terrain data is acquired (step SP10).
  • a drone equipped with a camera flies over the construction site, photographs the construction site with the camera, and acquires the current terrain data.
  • the current terrain data is transmitted from the drone to the current terrain data acquisition unit 11.
  • the current terrain data acquisition unit 11 acquires current terrain data from the drone.
  • Design terrain data is acquired (step SP20).
  • Design topography data shows the target topography of the construction site after construction.
  • the design terrain data acquisition unit 12 acquires the design terrain data from the information terminal of the construction company.
  • construction amount data is calculated (step SP30).
  • the construction amount data calculation unit 15 calculates a cut portion and a cut amount for the current topography, and a fill portion and a fill amount for the current topography from the difference between the current topography and the design topography.
  • the current terrain data and the design terrain data each include position data (three-dimensional coordinate data) of a plurality of points.
  • the construction amount data calculation unit 15 calculates the difference between the position data of the first point of the current terrain data and the position data of the first point of the design terrain data, and calculates the construction amount at the first point. calculate.
  • the output control unit 18 causes the output device 3 to display a work content list 25 indicating work content necessary for construction. Further, the output control unit 18 causes the output device 3 to display a work area list 26 for designating a partial area of the cut part 21 and a partial area of the embankment part 22 at the construction site.
  • the work type area shown in the work type area list 26 is an area partitioned at the construction site, and an area in which work contents to be performed in the area are designated. The user assigns a work machine and a worker to perform the construction of the work area displayed in the work area list 26. In the example shown in FIG.
  • the user performs the cutting work in a part of the work area of the cutting part 21 named “Cutting area A” with the model number “D”.
  • the worker b (No. 1 shown in the work content list 25) are assigned.
  • the user performs the work of embedding in a part of the work area of the embankment part 22 named “embankment area B” and the work machine having the model number “C” and the worker a (No shown in the work content list 25). .2).
  • the user assigns “digging” work to the work machine D and the worker b, and assigns “filling” work to the work machine C and the worker a.
  • each of the cut portion 21 and the fill portion 22 is divided into at least two work type areas, and work machines and workers are assigned to the plurality of work type areas.
  • the work area may be set at the same location within the construction site, or the work area may be set at different locations within the construction site.
  • the construction procedure (order) for the plurality of work area is designated by the user.
  • the work contents include the work of making slopes, leveling work, construction of concrete, etc. using construction machines to make retaining walls and revetment This includes the work of making a wall and the work of transporting earth and sand using a transport vehicle.
  • a color is given to the mass 50 of the table indicating the work machine.
  • the simulation unit 17 simulates whether or not the work machine is operating, for example, every second.
  • the output control unit 18 displays the color on the output device 3 by color-coding whether the work machine is operating, for example, every second.
  • the dead time for stopping the loading operation of the construction machine increases. Therefore, the progress speed of construction also changes depending on the travel route of the transport vehicle.
  • the user performs designation of the travel start point P1, designation of the travel end point P2, designation in the travel designation unit 30, designation in the standby location designation unit 31, designation in the stock amount designation unit 40, and input in the road surface input unit 32.
  • the optimum travel route 33 is set for the situation at the construction site, and the construction efficiency can be obtained with high accuracy.
  • the simulation accuracy is improved by setting the optimum travel route 33 as the construction condition data.

Abstract

施工現場の生産性の向上を図ることができるシミュレーションシステムを提供する。シミュレーションシステムは、施工現場の現況地形を示す現況地形データを取得する現況地形データ取得部と、施工現場の設計地形を示す設計地形データを取得する設計地形データ取得部と、施工現場の施工に関係する資源の仕様を示す原単位データを取得する原単位データ取得部と、現況地形と設計地形とに基づいて、施工現場の施工量を示す施工量データを算出する施工量データ算出部と、施工の手順を示す施工条件データを設定する施工条件設定部と、原単位データと施工条件データと施工量データとに基づいて、施工現場の遷移状況を算出するシミュレーション部と、を備える。

Description

シミュレーションシステム及びシミュレーション方法
 本発明は、シミュレーションシステム及びシミュレーション方法に関する。
 施工現場の施工がコンピュータシステムによりシミュレーションされる場合がある。コンピュータシステムにより施工計画及び施工管理を実施する技術が特許文献1に開示されている。
特開平09-177321号公報
 施工現場の生産性を向上するためには、実施予定の施工をシミュレーションして可視化できることが要望される。
 本発明の態様は、施工現場の生産性の向上を図ることができるシミュレーションシステム及びシミュレーション方法を提供することを目的とする。
 本発明の第1の態様に従えば、施工現場の現況地形を示す現況地形データを取得する現況地形データ取得部と、前記施工現場の設計地形を示す設計地形データを取得する設計地形データ取得部と、前記施工現場の施工に関係する資源の仕様を示す原単位データを取得する原単位データ取得部と、前記現況地形と前記設計地形とに基づいて、前記施工現場の施工量を示す施工量データを算出する施工量データ算出部と、前記施工の手順を示す施工条件データを設定する施工条件設定部と、前記原単位データと前記施工条件データと前記施工量データとに基づいて、前記施工現場の遷移状況を算出するシミュレーション部と、を備えるシミュレーションシステムが提供される。
 本発明の第2の態様に従えば、施工現場の現況地形を示す現況地形データを取得することと、前記施工現場の設計地形を示す設計地形データを取得することと、前記施工現場の施工に関係する資源の仕様を示す原単位データを取得することと、前記現況地形と前記設計地形とに基づいて、前記施工現場の施工量を示す施工量データを算出することと、前記施工の手順を示す施工条件データと前記原単位データと前記施工量データとに基づいて、前記施工現場の遷移状況を算出することと、を含むシミュレーション方法が提供される。
 本発明の態様によれば、施工現場の生産性の向上を図ることができるシミュレーションシステム及びシミュレーション方法が提供される。
図1は、第1実施形態に係るシミュレーションシステムの一例を示すハードウェア構成図である。 図2は、第1実施形態に係るシミュレーションシステムの一例を示す機能ブロック図である。 図3は、第1実施形態に係るシミュレーション方法の一例を示すフローチャートである。 図4は、第1実施形態に係る出力装置に表示される施工量データの一例を模式的に示す図である。 図5は、第1実施形態に係る出力装置に表示される原単位データの一例を模式的に示す図である。 図6は、第1実施形態に係る出力装置に表示される施工条件データの一例を模式的に示す図である。 図7は、第1実施形態に係る出力装置に表示される施工条件データの一例を模式的に示す図である。 図8は、第1実施形態に係る出力装置に表示される施工条件データの一例を模式的に示す図である。 図9は、第1実施形態に係る出力装置に表示されるシミュレーション結果の一例を模式的に示す図である。 図10は、第1実施形態に係る出力装置に表示されるシミュレーション結果の一例を模式的に示す図である。 図11は、第1実施形態に係る出力装置に表示されるシミュレーション結果の一例を模式的に示す図である。 図12は、本実施形態に係るシミュレーション部によるシミュレーション結果の一例を示す図である。 図13は、第2実施形態に係るシミュレーション方法の一例を示すフローチャートである。
 以下、本発明に係る実施形態について図面を参照しながら説明するが、本発明はこれに限定されない。以下で説明する各実施形態の構成要素は適宜組み合わせることができる。また、一部の構成要素を用いない場合もある。
<第1実施形態>
 第1実施形態について説明する。図1は、本実施形態に係るシミュレーションシステム1の一例を示すハードウェア構成図である。図1に示すように、シミュレーションシステム1は、データ処理装置2と、データ処理装置2から供給された出力データを出力する出力装置3と、入力データを生成する入力装置4とを有する。出力装置3及び入力装置4は、データ処理装置2のインターフェース回路5と接続される。
 データ処理装置2は、インターフェース回路5と、CPU(Central Processing Unit)のようなプロセッサ6と、ROM(Read Only Memory)又はフラッシュメモリのような不揮発性メモリ7と、RAM(Random Access Memory)のような揮発性メモリ8とを有する。不揮発性メモリ7は、データ処理装置2のデータ処理において実行されるコンピュータプログラム9を記憶する。コンピュータプログラム9は、不揮発性メモリ7から揮発性メモリ8のワーキング領域にロードされ、プロセッサ6に読み込まれることによって実行される。
 出力装置3は、データ処理装置2から供給された表示データを表示する表示装置を含む。出力装置3は、液晶ディスプレイ(Liquid Crystal Display:LCD)又は有機ELディスプレイ(Organic Electroluminescence Display:OELD)のようなフラットパネルディスプレイを含む。
 入力装置4は、ユーザに操作されることにより入力データを生成する。入力装置4で生成された入力データは、データ処理装置2に出力される。入力装置4は、表示装置3の表示画面に設けられたタッチセンサを含む。なお、入力装置4が、コンピュータ用キーボード及びマウスの少なくとも一方を含んでもよい。
 図2は、本実施形態に係るシミュレーションシステム1の一例を示す機能ブロック図である。図2に示すように、シミュレーションシステム1は、入出力部10と、施工現場の現況地形を示す現況地形データを取得する現況地形データ取得部11と、施工現場の設計地形を示す設計地形データを取得する設計地形データ取得部12と、施工現場の施工に関係する資源の仕様を示す原単位データを取得する原単位データ取得部13と、入力装置4が操作されることにより生成される入力データを取得する入力データ取得部14とを備える。
 また、シミュレーションシステム1は、現況地形と設計地形とに基づいて、施工現場の施工量を示す施工量データを算出する施工量データ算出部15と、施工の手順を示す施工条件データを設定する施工条件設定部16と、原単位データと施工条件データと施工量データとに基づいて、施工現場の遷移状況を算出するシミュレーション部17と、シミュレーション部17の算出データを出力装置3に出力する出力制御部18と、データを記憶する記憶部19とを備える。
 入出力部10の機能は、インターフェース回路5によって発揮される。現況地形データ取得部11、設計地形データ取得部12、原単位データ取得部13、入力データ取得部14、施工量データ算出部15、施工条件設定部16、シミュレーション部17、及び出力制御部18のそれぞれの機能は、プロセッサ6によって発揮される。記憶部19の機能は、不揮発性メモリ7又は揮発性メモリ8によって発揮される。
 現況地形データ取得部11は、施工現場の現況地形を示す現況地形データを取得する。現況地形データは、3次元地形データである。現況地形データは、複数の地点の位置データを含む。地点の位置データは、緯度データ、経度データ、及び高度データを含む3次元座標データである。現況地形データは、無人飛行機や無人ヘリコプターといった無人飛行体に搭載されたカメラによって取得される。本実施形態においては、無人飛行体としてドローンを用いる場合として説明する。ドローンは、施工現場を空撮して、現況地形データを取得する。現況地形データ取得部11は、現況地形データをドローンから取得する。本実施形態において、入出力部10は、無線通信機能を有する。ドローンで取得された現況地形データは、例えば、無線通信により入出力部10に供給される。現況地形データ取得部11は、無線通信により供給された現況地形データを取得する。なお、現況地形データは、施工現場の作業機械に搭載されたステレオカメラによって取得されてもよい。また、現況地形データは、三次元CAD(Computer Aided Design)を用いて生成されたデータでもよいし、国土地理院のような所定の機関において生成されたデータでもよい。
 設計地形データ取得部12は、施工現場の設計地形を示す設計地形データを取得する。設計地形データは、3次元地形データである。設計地形データは、複数の地点の位置データを含む。地点の位置データは、緯度データ、経度データ、及び高度データを含む3次元座標データである。設計地形データは、例えば、施工会社において作成される。設計地形データ取得部12は、設計地形データを施工会社から取得する。本実施形態において、入出力部10は、例えば、インターネット(Internet)に接続される。施工会社で作成された設計地形データは、施工会社の情報端末からインターネットを介して入出力部10に供給される。設計地形データ取得部12は、インターネットを介して供給された設計地形データを取得する。
 原単位データ取得部13は、施工現場の施工に関係する資源の仕様を示す原単位データを取得する。原単位データは、記憶部19に記憶されている。原単位データは、施工現場を施工する作業機械の施工能力を示すデータを含む。原単位データは、施工現場の施工に使用可能な複数の作業機械それぞれの施工能力を含む。複数の作業機械それぞれの原単位データがデータベース化され、記憶部19に記憶されている。原単位データ取得部13は、原単位データを記憶部19から取得する。なお、複数の作業機械それぞれの原単位データが、データ処理装置2とは別のデータベース装置に記憶されていてもよい。そのデータベース装置から入出力部10に原単位データが供給されてもよい。原単位データ取得部13は、そのデータベース装置から原単位データを取得してもよい。
 作業機械とは、施工現場において稼働可能な作業車両をいう。作業機械は、土砂を押土又は掘削を実施可能な建設機械、及び土砂を運搬可能な運搬車両の少なくとも一方を含む。建設機械は、バケットを有する油圧ショベル及びブレードを有するブルドーザの少なくとも一方を含む。運搬車両は、ベッセルを有するダンプトラックを含む。なお、建設機械は、ホイールローダやモータグレーダでもよい。
 原単位データの作業機械の施工能力は、単位時間当たりに実施可能な作業機械の作業量を含む。単位時間当たりに実施可能な作業機械の作業量とは、作業機械の作業能力を示す指標であり、単位時間当たりに作業機械が動かすことができる土砂の量をいう。作業機械がブルドーザである場合、ブルドーザの作業量は、単位時間当たりにブルドーザが実施可能な押土量及び盛土量の少なくとも一方を含む。作業機械が油圧ショベルである場合、油圧ショベルの作業量は、単位時間当たりに油圧ショベルが実施可能な積込量、切土量、及び盛土量の少なくとも一つを含む。作業機械がダンプトラックである場合、ダンプトラックの作業量は、単位時間当たりにダンプトラックが運搬可能な土砂の量をいう。なお、押土量とは、建設機械が押すことができる土砂の量をいう。盛土量とは、建設機械が盛ることができる土砂の量をいう。積込量とは、建設機械が運搬車両に積み込むことができる土砂の量をいう。切土量とは、建設機械が掘削することができる土砂の量をいう。
 作業機械が油圧ショベルである場合、単位時間あたりに実施可能な作業機械の作業量は、油圧ショベルのバケットのサイズを示すバケット容量を含む。油圧ショベルの作業量は、バケット容量に依存する。バケット容量が大きい場合、作業量は多くなる。バケット容量が小さい場合、作業量は少なくなる。
 作業機械がブルドーザである場合、単位時間当たりに実施可能な作業機械の作業量は、ブルドーザのブレードのサイズを含む。ブルドーザの作業量は、ブレードのサイズに依存する。ブレードのサイズが大きい場合、作業量は多くなる。ブレードのサイズが小さい場合、作業量は少なくなる。
 また、作業機械が油圧ショベルである場合、原単位データは、バケット容量のみならず、油圧ショベルの最大掘削高さ、最大旋回半径、及び法面整形能力を含む。また、油圧ショベルがレンタルされて使用される場合、原単位データは、1日当たりのレンタル料又は1月当たりのレンタル料を含む。また、原単位データは、作業機械の燃費を含む。
 また、原単位データは、作業機械の種類、型番、車格、及び施工現場に調達可能な作業機械の台数の少なくとも一つを含む。また、原単位データは、作業機械の管理状態を含む。
 また、原単位データは、施工現場の作業者、つまり、作業機械を運転するオペレータの施工能力を更に含む。作業者の施工能力は、作業者の熟練度又は技量を含む。また、原単位データは、施工現場に調達可能な作業者の人数を含む。
 また、原単位データは、構造物の施工作業能力を含む。構造物の施工作業は、護岸工事や法面工事などの場面で、コンクリートのブロックやコンクリートのパネル等の設置作業や整地作業を含む。また、原単位データは、作業者による測量能力を含む。
 さらに、原単位データは、施工現場の作業のしやすさを指標化したデータを含めてもよい。また、施工内容が、土砂の掘削や押土ではなく、コンクリートの構造物の敷設や擁壁の設置等を行うような構造物の施工といった施工内容(施工現場)である場合は、構造物の施工のしやすさや、構造物の施工に関する作業者の施工能力を原単位データに含めてもよい。
 すなわち、原単位データは、作業機械及び作業者のような、施工に必要な資源(リソース)や、施工内容に関する施工のしやすさなどを示すデータである。これらのデータは、作業機械の能力、作業者の技量、設置される構造物の仕様、及び施工現場の土質を含む。つまり、原単位データは、施工現場を施工するために関係する資源の仕様を示すデータである。原単位データは、施工前に取得可能な既知データであり、データベース化され、記憶部19に保持される。
 入力データ取得部14は、ユーザによって入力装置4から入力された入力データを取得する。
 施工量データ算出部15は、現況地形データ取得部11で取得された現況地形データと、設計地形データ取得部12で取得された設計地形データとを比較照合して、施工現場の施工量を示す施工量データを算出する。施工量データ算出部15は、現況地形と設計地形との差分から、施工量データを算出する。
 施工量データは、施工現場の施工範囲を示す施工範囲データ、土砂の切土データ、及び土砂の盛土データの少なくとも一つを含む。切土データは、施工範囲における土砂の切土を必要とする部位を示す切土部位データ、及び施工範囲における土砂の切土量を示す切土量データの少なくとも一方を含む。盛土データは、施工範囲における土砂の盛土を必要とする部位を示す盛土部位データ、及び施工範囲における土砂の盛土量を示す盛土量データの少なくとも一方を含む。切土とは、作業機械又は作業者によって掘削される土砂のことをいう。切土量とは、土砂の掘削量をいう。盛土とは、補填された土砂のことをいう。盛土量とは、土砂の補填量をいう。
 施工量データ算出部15は、現況地形と設計地形との差分から、現況地形からの切土部位及び切土量を算出する。また、施工量データ算出部15は、現況地形と設計地形との差分から、現況地形に対する盛土部位及び盛土量を算出する。
 施工条件設定部16は、施工現場の施工条件を示す施工条件データを設定する。施工条件データは、施工の手順を含む。また、施工条件データは、施工現場の土質、及び作業機械の走行経路の少なくとも一方を含む。
 本実施形態において、施工条件データは、入力装置4で生成される入力データを含む。すなわち、本実施形態においては、ユーザが入力装置4を操作して、施工条件データを入力する。入力装置4で生成された施工条件データを示す入力データは、入力データ取得部14に取得される。施工条件設定部16は、入力データ取得部14から施工条件データを取得する。施工条件設定部16は、ユーザにより入力された入力データに基づいて、施工条件データを設定する。
 シミュレーション部17は、原単位データ取得部13で取得された原単位データと、施工条件設定部16で設定された施工条件データと、施工量データ算出部15で算出された施工量データとに基づいて、施工現場の遷移状況を算出する。施工現場の遷移状況は、施工現場の現場状況及び作業機械の稼動状況の一方又は両方を含む。施工現場の現場状況は、施工現場の地形状況及び施工現場の構造物の設置状況の一方又は両方を含む。シミュレーション部17は、原単位データと施工条件データと施工量データとに基づいて、施工の進行に従って変化する施工現場の地形をシミュレーションする。また、シミュレーション部17は、原単位データと施工条件データと施工量データとに基づいて、例えば、稼働率を含む作業機械の稼働状況をシミュレーションする。
 また、シミュレーション部17は、原単位データ取得部13で取得された原単位データと、施工条件設定部16で設定された施工条件データと、施工量データ算出部15で算出された施工量データとに基づいて、算出された施工量の施工を実施するときの施工効率を算出する。施工効率は、施工に要するコスト、工数、及び工期の少なくとも一つを含む。シミュレーション部17は、原単位データと施工条件データと施工量データとに基づいて、施工に要するコスト、工数、及び工期の少なくとも一つをシミュレーションする。
 出力制御部18は、シミュレーション部17の算出データを出力装置3に出力する。シミュレーション部17の算出データは、シミュレーション部17のシミュレーション結果を含む。本実施形態において、シミュレーション部17の算出データは、施工現場の遷移状況を示す遷移状況データ、及び施工効率を示す施工効率データを含む。出力制御部18は、出力装置3を制御する。出力制御部18は、シミュレーション部17の算出データから、出力装置3に表示させる出力データ(表示データ)を生成して、出力装置3に表示させる。これにより、シミュレーション部17で算出されたシミュレーション結果は可視化される。
 次に、本実施形態に係るシミュレーション方法について説明する。図3は、本実施形態に係るシミュレーション方法の一例を示すフローチャートである。図3に示すように、本実施形態に係るシミュレーション方法は、施工現場の現況地形を示す現況地形データを取得すること(ステップSP10)と、施工現場の設計地形を示す設計地形データを取得すること(ステップSP20)と、現況地形と設計地形とに基づいて、施工現場の施工量を示す施工量データを算出すること(ステップSP30)と、施工現場の施工に使用される作業機械の施工能力といった、施工現場を施工するために関係する資源の仕様を示す原単位データを取得すること(ステップSP40)と、施工の手順を含む施工条件を設定すること(ステップSP50)と、施工条件を示す施工条件データと原単位データと施工量データとに基づいて、施工現場の遷移状況を算出すること(ステップSP60)と、算出された遷移状況を出力装置3に出力すること(ステップSP70)と、を含む。
 現況地形データが取得される(ステップSP10)。本実施形態においては、カメラを搭載したドローンが施工現場の上空を飛行して、施工現場をカメラで撮影して、現況地形データを取得する。現況地形データは、ドローンから現況地形データ取得部11に送信される。現況地形データ取得部11は、ドローンから現況地形データを取得する。
 次に、設計地形データが取得される(ステップSP20)。設計地形データは、施工後の施工現場の目標地形を示す。設計地形データ取得部12は、設計地形データを施工会社の情報端末から取得する。
 次に、施工量データが算出される(ステップSP30)。施工量データ算出部15は、現況地形と設計地形との差分から、現況地形に対する切土部位及び切土量と、現況地形に対する盛土部位及び盛土量とを算出する。上述のように、現況地形データ及び設計地形データはそれぞれ、複数の地点の位置データ(3次元座標データ)を含む。施工量データ算出部15は、例えば、現況地形データの第1の地点の位置データと、設計地形データの第1の地点の位置データとの差分を算出して、第1の地点における施工量を算出する。施工量データ算出部15は、施工現場の複数の地点のそれぞれについて、現況地形データの位置データと設計地形データの位置データとの差分を算出して、複数の地点のそれぞれにおける施工量を算出する。これにより、施工量データ算出部15は、施工現場の全体の切土部位及び切土量と、盛土部位及び盛土量とを算出することができる。
 出力制御部18は、施工量データ算出部15で算出された施工量データを出力装置3に表示させる。図4は、本実施形態に係る出力装置3に表示される施工量データの一例を模式的に示す図である。図4に示すように、出力制御部18は、現況地形データと設計地形データとを重ねて出力装置3に表示させる。出力制御部18は、施工量データとして、切土を実施すべき範囲を示す切土部位21と、盛土を実施すべき範囲を示す盛土部位22とを異なる色で出力装置3に表示させる。出力制御部18は、現況地形データ、設計地形データ、及び施工量データのそれぞれを出力装置3に3次元表示させる。
 次に、原単位データが取得される(ステップSP40)。施工現場の施工に使用可能な複数の作業機械それぞれの施工能力を示す原単位データがデータベース化され、記憶部19に記憶されている。ユーザは、入力装置4を操作して、データベース化されている原単位データから、施工現場の施工に使用予定の作業機械を選択する。ユーザは、入力装置4を操作して、使用予定の作業機械の種類及び数を指定する。
 また、ユーザは、入力装置4を操作して、データベース化されている原単位データから、施工現場の施工に調達予定の作業者を選択する。作業者は、例えば、作業機械を運転することが可能なオペレータである。また、ユーザは、例えば施工現場の監督者や管理者である。ユーザは、入力装置4を操作して、調達予定の作業者及び人数を指定する。
 図5は、本実施形態に係る出力装置3に表示される原単位データの一例を模式的に示す図である。図5に示すように、出力制御部18は、データベース化されている作業者リスト23と、データベース化されている作業機械リスト24とを出力装置3に表示させる。作業者リスト23に示すように、作業者の原単位データは、作業者の熟練度を含む。作業者の熟練度は、施工現場の地形や施工内容に対応する技量を考慮した係数を、熟練度を示す指標に掛けたものを用いてもよい。作業機械リスト24に示すように、作業機械の原単位データは、作業機械の種類を示す「型番」、及び単位時間当たりに実施可能な作業機械の作業量の計算に必要なものであって、例えば「バケット容量」などを含む。ユーザは、入力装置4を介して、使用予定の作業機械を作業機械リスト24から選択するとともに、調達予定の作業者を作業者リスト23から選択する。選択された作業機械及び作業者は、作業内容リスト25に表示される。
 次に、施工条件が設定される(ステップSP50)。ユーザは、入力装置4を操作して施工条件データを入力する。本実施形態において、施工条件データは、施工の手順を含む。
 図5に示すように、出力制御部18は、施工に必要な作業内容を示す作業内容リスト25を出力装置3に表示させる。また、出力制御部18は、施工現場の切土部位21の一部のエリア、及び盛土部位22の一部のエリアを指定するための工種エリアリスト26を出力装置3に表示させる。工種エリアリスト26に示される工種エリアとは、施工現場において区画されたエリアであって、そのエリアにおいて実施すべき作業内容が指定されたエリアをいう。ユーザは、工種エリアリスト26に表示されている工種エリアの施工を実施させる作業機械及び作業者を割り当てる。図5に示す例では、作業内容リスト25に示すように、ユーザは、「切土エリアA」と名付けられた切土部位21の一部の工種エリアの切土作業に、型番が「D」の作業機械と作業者b(作業内容リスト25に示されたNo.1)とを割り当てる。また、ユーザは、「盛土エリアB」と名付けられた盛土部位22の一部の工種エリアの盛土作業に、型番が「C」の作業機械と作業者a(作業内容リスト25に示されたNo.2)とを割り当てる。また、作業内容リスト25に示すように、ユーザは、作業機械D及び作業者bに「掘削」作業を割り当て、作業機械C及び作業者aに「盛土」作業を割り当てる。盛土作業は、地面の整地や法面成形といった作業を含む。また、図5に示す例では、作業内容リスト25に示すように、ユーザは、切土エリアAの切土作業の後に、盛土エリアBの盛土作業が実施されるように、施工の手順(順番)を指定する。
 なお、図5に示す例では、説明を簡単にするために、工種エリアリスト26に2つの工種エリア(切土エリアA及び盛土エリアB)が表示され、それら2つの工種エリアのそれぞれの施工に作業機械及び作業者が割り当て、それら2つの施工の手順が指定される例について説明した。実際には、例えば、切土部位21及び盛土部位22のそれぞれが少なくとも2つ以上の工種エリアに区画され、それら複数の工種エリアについての作業機械及び作業者の割り当てが実施される。施工現場内の同一の場所で、工種エリアを設定してもよいし、施工現場内の異なる場所で工種エリアを設定してもよい。また、それら複数の工種エリアについての施工の手順(順番)がユーザによって指定される。また、作業内容には、切土作業及び盛土作業のみならず、建設機械を用いて、法面を作る作業や整地する作業、コンクリートなどの構造物を設置して擁壁を作ったり護岸のための壁を作ったりする作業、及び運搬車両を用いて土砂を運搬する作業が含まれる。
 また、本実施形態においては、ユーザは、例えば図4を参照して説明した3次元表示データにおいて、マウスやタッチパネルのような入力装置4を使って工種エリアを指定することができる。
 また、ユーザは、1つの工種エリアにおいて、作業機械を移動させる手順を指定することができる。図6は、本実施形態に係る出力装置3に表示される施工条件データの一例を模式的に示す図である。図6に示すように、出力制御部18は、複数の移動軌跡パターン27を出力装置3に表示させる。移動軌跡パターン27は、1つの工種エリアにおいて、例えば、油圧ショベル又はブルドーザが移動する軌跡を示す。使用する作業機械の種類に応じて移動軌跡パターン27は用意されている。ユーザは、入力装置4を操作して、出力装置3に表示されている複数の移動軌跡パターン27から任意の移動軌跡パターン27を選択することができる。
 また、ユーザは、施工条件データとして、施工現場の土質を設定する。図7は、本実施形態に係る出力装置3に表示される施工条件データの一例を模式的に示す図である。図7に示すように、出力制御部18は、複数の土質を示す土質リスト28を出力装置3に表示させる。図7に示す例では、土質リスト28として、「砂」、「粘性土」、「礫混じり土」、「岩塊・玉石」が表示される。ユーザは、入力装置4を操作して、土質リスト28から、施工現場の土質に最も近い土質を選択する。
 また、土質リスト28は、その土砂の標準土量換算率を含む。土質リスト28において、標準土量換算率Lは、掘削した土砂をダンプトラックに積み込んだとき等、土砂が空気を含んで体積が増大する割合を示す。標準土量換算率Cは、土砂を締め固めたときに体積が減少する割合を示す。
 また、シミュレーションに際し、現況地形データ、設計地形データ、及び施工量データがメッシュ分割される。図7に示すように、出力制御部18は、メッシュ分割の分割幅をユーザに指定させるための分割幅指定部29を出力装置3に表示させる。ユーザは、入力装置4を介して、メッシュ分割の分割幅を指定する。図7において、「XY方向」と示された入力欄には、緯度方向及び経度方向におけるメッシュ分割の分割幅が入力され、「Z方向」と示された入力欄には、高度方向におけるメッシュ分割の分割幅が入力される。
 また、本実施形態においては、施工条件データとして、運搬車両の走行経路が設定される。図8は、本実施形態に係る出力装置3に表示される施工条件データの一例を模式的に示す図である。ユーザは、入力装置4を操作して、施工現場における運搬車両の走行条件を指定する。運搬車両の走行条件は、運搬車両の走行を開始させたい走行開始地点P1と、運搬車両の走行を終了させたい走行終了地点P2とを含む。ユーザは、入力装置4を操作して、走行開始地点P1及び走行終了地点P2を指定する。なお、施工現場において、走行路が複数設定されてもよい。
 また、出力制御部18は、運搬車両がすれ違い可能か否かをユーザに指定させるための走行指定部30と、運搬車両が待機可能な場所が有るか否かをユーザに指定させるための待機場所指定部31と、路面状態をユーザに入力させるための路面入力部32と、切土した土砂を溜める際の最大のストック量あるいは盛土するために土砂を溜める際の最大ストック量を指定するためのストック土量指定部40とを表示装置3に表示させる。ユーザは、施工現場の状況から、運搬車両がすれ違い可能か否かを判断し、入力装置4を操作して、運搬車両がすれ違い可能か否かを指定する。また、走行路の全体において運搬車両がすれ違い可能か否かが設定されもよいし、走行路の一部において運搬車両がすれ違い可能か否かが設定されてもよい。例えば、図8に示すマップ上における走行路が選択された上で、すれ違い可能か否かを設定できるようにしてもよい。また、図8に示す走行路の一部の区間を選択した上で、その区間のすれ違い可能か否かを設定できるようにしてもよい。また、ユーザは、施工現場の状況から、運搬車両が待機可能な場所が有るか否かを判断し、入力装置4を操作して、運搬車両が待機可能な場所が有るか否かを指定する。また、ユーザは、施工現場の状況から、路面状態を判定し、入力装置4を操作して、路面状態を入力する。ストック土量指定部40で指定される、切土最大積み待ち土量は、例えば、油圧ショベルが切土作業を行い、運搬車両に積込むために土砂を溜める際の最大ストック量であり、この土量の大小によって、シミュレーション結果(油圧ショベルの稼働率や運搬車両の稼働率)が変化する。また、ストック土量指定部40で指定される、盛土最大敷均し待ち土量は、例えば、ブルドーザで盛土作業を行うために、運搬車両で持ち込まれた土砂を溜める際の最大ストック量であり、この土量の大小によって、シミュレーション結果(ブルドーザの稼働率や運搬車両の稼働率)が変化する。
 施工条件設定部16は、入力装置4が操作されることにより生成された入力データに基づいて、ダンプトラック2の走行経路33を決定する。施工条件設定部16は、例えば路面傾斜が10[%]以上の経路を運搬車両が走行しないように、且つ、走行開始地点P1から走行開始地点P2までの距離が最短になるように、走行経路33を算出する。また、施工条件設定部16は、走行指定部30において指定された指定データ、待機場所指定部31で指定された指定データ、及び路面入力部32において入力された指定データに基づいて、最適な走行経路33を算出する。また、施工条件設定部16は、施工現場における障害物の有無を考慮して、走行経路33を算出する。なお、ユーザが入力装置4を用いて、任意の走行経路33を指定してもよい。
 また、施工条件データとして、施工期間(工期)が設定される。施工期間は、例えば、何月何日に施工を開始して何月何日に施工が完了するまでを示すもので、ユーザは、入力装置4を操作して、施工開始時点と施工終了時点とを入力する。
 シミュレーションに際しての前提条件である施工条件が設定された後、施工のシミュレーションが実施される(ステップSP60)。シミュレーション部17は、原単位データと施工条件データと施工量データとに基づいて、施工現場の遷移状況を算出する。また、シミュレーション部17は、原単位データと施工条件データと施工量データとに基づいて、施工量データ算出部15で算出された施工量の施工を実施するときの施工効率を算出する。
 施工現場の遷移状況は、施工現場の現場状況及び作業機械の稼動状況の一方又は両方を含む。施工効率は、施工に要するコスト、工数、及び工期の少なくとも一つを含む。
 シミュレーション部17で求められた算出データが出力装置3に出力される(ステップSP70)。出力制御部18は、シミュレーション部17の算出データから、出力装置3が表示可能な表示データ(シミュレーション結果)を生成して、出力装置3に出力する。
 図9及び図10は、本実施形態に係る出力装置3に表示されるシミュレーション結果の一例を模式的に示す図である。図10は、図9のA部分を拡大した図である。
 シミュレーション部17は、原単位データと施工条件データと施工量データとに基づいて、施工の進行に従って変化する施工現場の地形をシミュレーションする。シミュレーション部17は、施工条件データとして入力された施工期間において、所定時間ごと(例えば1秒毎)に、その時点における施工現場の地形をシミュレーションする。出力制御部18は、所定時間ごとに算出された施工現場の地形を、施工開始時点からの経過時間に対応付けて、出力装置3に表示させる。すなわち、出力制御部18は、施工の進行に従って変化する施工現場の地形の動画データを出力装置3に表示させる。
 図10に示すように、出力制御部18は、図7でユーザが指定したメッシュ分割にしたがって切られたメッシュ、すなわち、施工現場の地形を複数のブロック(メッシュ)で表されたものを使って出力装置3に表示させる。出力制御部18は、施工開始時点からの経過時間に対応付けて、土砂の移動に対応してブロックの位置及び数を変化させて、施工現場の地形の変化を可視化する。
 図11は、本実施形態に係る出力装置3に表示されるシミュレーション結果の一例を模式的に示す図である。シミュレーション部17は、施工条件データとして入力された施工期間52において、所定時間ごと(例えば1秒毎)に、その時点における作業機械の稼動状況をシミュレーションする。作業機械の稼動状況は、作業機械の稼働率を含む。出力制御部18は、所定時間ごとに算出された作業機械の稼動状況を、施工開始時点からの経過時間に対応付けて、出力装置3に表示させる。図11に示すように、出力制御部18は、所定時間ごとに算出された作業機械の稼動状況を示す表を出力装置3に表示させる。
 作業機械が稼働している場合、図11に示すように、その作業機械を示す表のマス50に色が付される。シミュレーション部17は、例えば1秒毎に、作業機械が稼働しているか否かをシミュレーションする。出力制御部18は、例えば1秒ごとに、作業機械が稼働しているか否かを色分けして出力装置3に表示させる。
 また、シミュレーション部17は、例えば1時間当たりの作業機械の稼働率51を算出する。図11に示すように、出力制御部18は、算出された稼動率の数値を出力装置3に表示させる。稼働率51が高い場合には、その作業機械を示す色付けされたマス50の数が多くなり、稼働率51が低い場合には、その作業機械を示す色付けされたマス50の数が少なくなる。
 図12は、本実施形態に係るシミュレーション部17によるシミュレーション結果の一例を示す図である。シミュレーション部17は、シミュレーション結果として、施工に要するコストと工期との関係をシミュレーションする。図12において、横軸は工期であり、縦軸は施工に要するコストである。
 図12において、点a、点b、及び点cのそれぞれは、異なる施工条件または原単位データに基づいて算出されたシミュレーション結果を示す。点a、点b、及び点cのそれぞれは、シミュレーション部17により算出されたコストと工期との関係をプロットした点である。シミュレーション部17は、施工条件又は原単位を変化させて、シミュレーションを複数回実施できる。例えば、ダンプトラックの台数を変化させてシミュレーションを実施した場合、図12に示すように、異なる複数のシミュレーション結果が得られる。一例として、点aは原単位データとしてダンプトラックが6台の場合におけるシミュレーション結果を示し、点bは原単位データとしてダンプトラックが7台の場合におけるシミュレーション結果を示し、点cは原単位データとしてダンプトラックが8台の場合におけるシミュレーション結果を示す。点aで示す結果の場合、コストは他の結果よりも低いものの工期が長くなってしまっている。点bで示す結果の場合、点aで示す結果よりもダンプトラックが1台多いため、コストは高くなるものの工期が大幅に短くなっている。点cで示す結果の場合、点bで示す結果よりもさらにダンプトラックが1台多いため、コストが高くなっているが工期はそれほど短縮されていない。すなわちユーザは、点bにおける施工条件又は原単位データよりもダンプトラックの台数を増加させても、工期の短縮の効果は得られないと理解できる。ユーザは、コストを優先させた点aにおける施工条件または原単位データを選択するか、若しくは工期を優先させた点bにおける施工条件又は原単位データを選択することができる。
 以上説明したように、本実施形態によれば、現況地形データ及び設計地形データから施工量データが算出され、原単位データのデータベースから施工現場の施工に使用される作業機械等の資源の仕様、すなわち、施工現場を施工するために関係する資源の仕様を示すデータである原単位データが取得され、ユーザによって施工条件データが設定される。したがって、シミュレーション部17は、原単位データと施工条件データと施工量データとに基づいて、施工現場の現場状況及び作業機械の稼動状況の一方又は両方を含む遷移状況をシミュレーションすることができる。そのシミュレーション部のシミュレーション結果が出力装置3に表示されることにより、実施予定の施工のシミュレーション結果が可視化される。実施予定の施工のシミュレーション結果が可視化されることにより、ユーザは、自身が設定した施工条件に基づく施工の遷移状況を確認することができる。ユーザは、シミュレーション結果を見て、自身が設定した施工条件が最適か否かを判断することができる。ユーザが施工現場の監督者である場合、そのユーザは、シミュレーション結果を見て、例えば作業機械又は作業者の数や能力について、再検討を実行することができる。また、ユーザは、シミュレーション結果を見て、コストや工期を考慮しながら、より好ましいシミュレーション結果が得られるように、入力装置4を操作して、新たな施工条件を入力して、シミュレーションシステム1にシミュレーションを再度実施させることができる。これにより、施工現場の生産性の向上が図られる。
 また、本実施形態によれば、シミュレーション部17は、原単位データと施工条件データと施工量データとに基づいて、施工に要するコスト、工数、及び工期の少なくとも一つを含む施工効率を算出する。そのシミュレーション部のシミュレーション結果が出力装置3に表示されることにより、ユーザは、自身が設定した施工条件に基づく施工効率を確認することができる。ユーザは、シミュレーション結果を見て、自身が設定した施工条件が最適か否かを判断することができる。ユーザは、シミュレーション結果を見て、例えば施工効率が改善するように作業機械又は作業者の数や能力について、再検討を実行したり、コストや工期を考慮しながら、より好ましい施工効率のシミュレーション結果が得られるように、入力装置4を操作して新たな施工条件を入力して、シミュレーションシステム1にシミュレーションを再度実施させたりすることができる。
 また、本実施形態によれば、施工条件データは、施工現場の土質、及び作業機械の走行経路の少なくとも一方を含む。施工現場の土質によっては、施工の困難度が高まり、施工の進行速度が変化する。施工条件データとして、施工現場の土質が入力されることにより、シミュレーション精度は向上する。また、工種エリアにおける作業機械の移動軌跡によっても、施工の進行速度が変化する。施工条件データとして、ユーザにより移動軌跡パターン27を介して、例えば油圧ショベルなどの建設機械の移動軌跡が指定されることにより、シミュレーション精度は向上する。また、運搬車両が高効率で走行しないと、施工の進行速度は低下する。例えば、運搬車両が建設機械による掘削場所と掘削された土砂を排出する排土場所とを効率良く移動しない場合、建設機械の積込作業が停止する無駄時間が増加する。したがって、運搬車両の走行経路によっても、施工の進行速度が変化する。ユーザにより、走行開始地点P1の指定、走行終了地点P2の指定、走行指定部30における指定、待機場所指定部31における指定、ストック量指定部40における指定、及び路面入力部32における入力が実施されることにより、施工現場の状況に最適な走行経路33が設定され、精度よく施工効率を求めることができる。施工条件データとして最適な走行経路33が設定されることにより、シミュレーション精度は向上する。
 なお、本実施形態においては、施工条件データとして施工期間(工期)を設定するとき、ユーザが入力装置4を操作して、施工開始時点と施工終了時点とを入力することによって、施工期間が設定されることとした。ユーザは入力装置4を操作して施工開始時点を入力し、施工終了時点を入力しなくてもよい。施工開始時点が入力されれば、シミュレーション部17は、原単位データと施工条件データと施工量データとに基づいてシミュレーションを実施して、施工終了時点を算出することができる。
 また、作業機械の台数(原単位)が未定である場合、ユーザにより施工開始時点と施工終了時点とが入力されることにより、シミュレーション部17は、入力された施工終了時点に施工が完了するように、最適な作業機械の台数をシミュレーションにより算出することができる。
<第2実施形態>
 第2実施形態について説明する。以下の説明において、上述の実施形態と同一又は同等の構成要素については同一の符号を付し、その説明を簡略又は省略する。
 上述の実施形態においては、施工条件データがユーザにより入力装置4を介してデータ処理装置2に入力されることとした。本実施形態においては、施工条件設定部16が、原単位データと施工量データとに基づいて施工条件データを設定する例について説明する。
 図13は、本実施形態に係るシミュレーション方法の一例を示すフローチャートである。上述の実施形態と同様、現況地形データが取得され(ステップSP10)、設計地形データが取得され(ステップSP20)、施工量データが算出され(ステップSP30)、原単位データが取得される(ステップSP40)。
 原単位データは、使用予定の作業機械の種類及び数を含む。本実施形態においては、原単位データ取得部15が、記憶部19に記憶されている原単位データのデータベースから、使用予定の作業機械の種類及び数を選定する。例えば、施工現場の規模に応じて設定されている作業機械の種類及び数を示す作業機リストが記憶部19に記憶され、原単位データ取得部15は、複数の作業機リストから任意の作業機リストを選択してもよい。なお、上述の実施形態と同様、ユーザによって使用予定の作業機械の種類及び数が指定されてもよい。
 本実施形態においては、第1実施形態と異なり、施工条件設定部16が、施工条件を設定する(ステップSP50B)。本実施形態においては、施工の手順のリストデータが記憶部19に記憶されている。施工条件設定部16は、施工の手順のリストデータから任意の施工の手順を選択し、その選択した施工の手順を施工条件データとして設定する。なお、施工現場の土質のリストデータ、及び作業機械の走行経路のリストデータが記憶部19に記憶され、施工条件設定部16がそのリストデータから任意の土質、及び作業機械の走行経路を選択してもよい。
 シミュレーション部17は、原単位データ取得部13で取得された原単位データと、施工量データ算出部15で算出された施工量データと、施工条件設定部16で設定された施工条件データとに基づいて、施工現場の遷移状況及び施工効率をシミュレーションする。本実施形態において、シミュレーション部17は、施工現場で使用予定の作業機械の稼働率を示す稼働率データを算出する(ステップSP60B)。
 シミュレーション部17は、少なくとも一台の作業機械の稼働率が予め決められている閾値以上か否かを判定する(ステップSP65)。例えば、一台の作業機械を使用予定である場合、その一台の作業機械の稼働率が予め決められている閾値以上か否かが判定される。あるいは、例えば、N台の作業機械を使用予定である場合、N台の作業機械の全ての稼働率が閾値以上か否かが判定される。また、例えば、N台の作業機械を使用予定である場合、N台のうち特定の作業機械についてのみの稼働率が予め決められている閾値以上か否かが判定されてもよい。この場合、例えば、使用予定の作業機械として、油圧ショベルが3台、ブルドーザが2台、合計5台の作業機械がある場合、特定の作業機械として3台の油圧ショベルを設定し、その3台の油圧ショベル全ての稼働率が予め決められている閾値以上か否かを判定してもよい。特定の作業機械は、例えば、ユーザが入力装置4を操作し特定の作業機械を指定し、入力データ取得部14を介して施工条件設定部16が特定された作業機械を認識し設定する。
 ステップSP65において、全ての作業機械の稼働率が閾値以上であると判定された場合(ステップSP65:Yes)、出力制御部18は、シミュレーション部17のシミュレーション結果を出力装置3に表示させる(ステップSP70)。
 ステップSP65において、全ての作業機械の稼働率が閾値以上でないと判定された場合(ステップSP65:No)、施工条件設定部16は、施工条件を変更し、変更後の施工条件を設定する(ステップSP50B)。
 シミュレーション部17は、再設定された施工条件データに基づいて、シミュレーションを実施し、作業機械の稼働率データを算出する(ステップSP60B)。
 データ処理装置2は、作業機械の稼働率が閾値以上になるまで、ステップSP50B、ステップSP60B、及びステップSP65の処理を実施する。
 以上説明したように、本実施形態においては、施工条件設定部16は、シミュレーション部17で算出された稼働率データに基づいて、作業機械の稼働率が閾値以上になるように、施工条件データを設定する。本実施形態においては、施工量データ及び原単位データが取得されれば、データ処理装置2は、作業機械の稼働率が閾値以上となる最適な施工条件を自動で算出する。これにより、シミュレーションシステム1は、最適な施工条件をユーザに提供することができる。
 なお、上述の実施形態において、原単位データは修正又は更新されてもよい。例えば、実際の施工が開始された後の所定期間が経過した所定時点において、施工が開始された時点から所定時点までの施工実績又は各種センサの検出結果に基づいて、記憶部19に登録されている作業機械の原単位又は作業者の熟練度が修正又は更新されてもよい。シミュレーション部17は、修正後又は更新後の作業機械の原単位又は作業者の熟練度に基づいて再度シミュレーションを実施してもよい。
 上述の実施形態において、シミュレーション部17は、施工現場の遷移状況及び施工効率を算出したが、施工現場の遷移状況と施工効率とをそれぞれ単独に算出するようにしてもよい。
 なお、上述の実施形態においては、出力装置3が表示装置である例について主に説明した。出力装置3が印刷装置でもよい。出力装置3による出力は、印刷装置による印刷(プリントアウト)を含む。すなわち、上述の実施形態で説明した、出力装置3に表示される表示データ(画像データ及び文字データ)が、印刷物として出力されてもよい。
1 シミュレーションシステム
2 データ処理装置
3 出力装置
4 入力装置
5 インターフェース回路
6 プロセッサ
7 不揮発性メモリ
8 揮発性メモリ
9 コンピュータプログラム
10 入出力部
11 現況地形データ取得部
12 設計地形データ取得部
13 原単位データ取得部
14 入力データ取得部
15 施工量データ算出部
16 施工条件設定部
17 シミュレーション部
18 出力制御部
19 記憶部
21 切土部位
22 盛土部位
23 作業車リスト
24 作業機械リスト
25 作業内容リスト
26 工種エリアリスト
27 移動軌跡パターン
28 土質リスト
29 分割幅指定部
30 走行指定部
31 待機場所指定部
32 路面入力部
33 走行経路

Claims (9)

  1.  施工現場の現況地形を示す現況地形データを取得する現況地形データ取得部と、
     前記施工現場の設計地形を示す設計地形データを取得する設計地形データ取得部と、
     前記施工現場の施工に関係する資源の仕様を示す原単位データを取得する原単位データ取得部と、
     前記現況地形と前記設計地形とに基づいて、前記施工現場の施工量を示す施工量データを算出する施工量データ算出部と、
     前記施工の手順を示す施工条件データを設定する施工条件設定部と、
     前記原単位データと前記施工条件データと前記施工量データとに基づいて、前記施工現場の遷移状況を算出するシミュレーション部と、
     を備えるシミュレーションシステム。
  2.  前記遷移状況は、前記施工現場の現場状況及び作業機械の稼動状況の一方又は両方を含む、
    請求項1に記載のシミュレーションシステム。
  3.  施工現場の現況地形を示す現況地形データを取得する現況地形データ取得部と、
     前記施工現場の設計地形を示す設計地形データを取得する設計地形データ取得部と、
     前記施工現場の施工に関係する資源の仕様を示す原単位データを取得する原単位データ取得部と、
     前記現況地形と前記設計地形とに基づいて、前記施工現場の施工量を示す施工量データを算出する施工量データ算出部と、
     前記施工の手順を示す施工条件データを設定する施工条件設定部と、
     前記原単位データと前記施工条件データと前記施工量データとに基づいて、前記施工量の施工を実施するときの施工効率を算出するシミュレーション部と、
     を備えるシミュレーションシステム。
  4.  前記シミュレーション部は、
     前記施工条件データ又は原単位データを変化させて複数回のシミュレーションを実施する、
    請求項1から請求項3のいずれか一項に記載のシミュレーションシステム。
  5.  前記施工条件データは、前記施工現場の土質、及び作業機械の走行経路の少なくとも一方を含む、
    請求項1から請求項4のいずれか一項に記載のシミュレーションシステム。
  6.  入力装置が操作されることにより生成される入力データを取得する入力データ取得部を備え、
     前記施工条件データは、前記入力データを含む、
    請求項1から請求項5のいずれか一項に記載のシミュレーションシステム。
  7.  前記シミュレーション部は、作業機械の稼働率データを算出し、
     前記施工条件設定部は、前記シミュレーション部で算出された前記稼働率データに基づいて、前記作業機械の稼働率が閾値以上になるように、前記施工条件データを設定する、
    請求項1から請求項6のいずれか一項に記載のシミュレーションシステム。
  8.  施工現場の現況地形を示す現況地形データを取得することと、
     前記施工現場の設計地形を示す設計地形データを取得することと、
     前記施工現場の施工に関係する資源の仕様を示す原単位データを取得することと、
     前記現況地形と前記設計地形とに基づいて、前記施工現場の施工量を示す施工量データを算出することと、
     前記施工の手順を示す施工条件データと前記原単位データと前記施工量データとに基づいて、前記施工現場の遷移状況を算出することと、
     を含むシミュレーション方法。
  9.  施工現場の現況地形を示す現況地形データを取得することと、
     前記施工現場の設計地形を示す設計地形データを取得することと、
     前記施工現場の施工に関係する資源の仕様を示す原単位データを取得することと、
     前記現況地形と前記設計地形とに基づいて、前記施工現場の施工量を示す施工量データを算出することと、
     前記施工の手順を示す施工条件データを設定することと、
     前記原単位データと前記施工条件データと前記施工量データとに基づいて、前記施工量の施工を実施するときの施工効率を算出することと、
     を含むシミュレーション方法。
PCT/JP2017/013482 2016-03-30 2017-03-30 シミュレーションシステム及びシミュレーション方法 WO2017170968A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112017000279.6T DE112017000279T5 (de) 2016-03-30 2017-03-30 Simulationssystem und simulationsverfahren
CN201780006990.1A CN108475399B (zh) 2016-03-30 2017-03-30 模拟系统及模拟方法
US16/064,656 US20180374168A1 (en) 2016-03-30 2017-03-30 Simulation system and simulation method
JP2018509489A JP6979015B2 (ja) 2016-03-30 2017-03-30 作業機械を用いて施工する施工現場のシミュレーションシステム及びシミュレーション方法
AU2017239878A AU2017239878B2 (en) 2016-03-30 2017-03-30 Simulation system and simulation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-069781 2016-03-30
JP2016069781 2016-03-30

Publications (1)

Publication Number Publication Date
WO2017170968A1 true WO2017170968A1 (ja) 2017-10-05

Family

ID=59964767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/013482 WO2017170968A1 (ja) 2016-03-30 2017-03-30 シミュレーションシステム及びシミュレーション方法

Country Status (6)

Country Link
US (1) US20180374168A1 (ja)
JP (1) JP6979015B2 (ja)
CN (1) CN108475399B (ja)
AU (1) AU2017239878B2 (ja)
DE (1) DE112017000279T5 (ja)
WO (1) WO2017170968A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019189888A1 (ja) * 2018-03-30 2019-10-03 住友重機械工業株式会社 建設機械の運転支援システム、建設機械
WO2020174774A1 (ja) * 2019-02-26 2020-09-03 株式会社小松製作所 施工管理装置、施工管理システム、作業機械、施工管理方法及びプログラム
WO2020217977A1 (ja) * 2019-04-24 2020-10-29 株式会社小松製作所 作業機械を制御するためのシステムおよび方法
WO2020217972A1 (ja) * 2019-04-24 2020-10-29 株式会社小松製作所 作業機械を制御するためのシステムおよび方法
WO2021131864A1 (ja) * 2019-12-24 2021-07-01 株式会社小松製作所 施工現場において作業機械の施工計画を決定するためのシステムおよび方法
WO2021241716A1 (ja) * 2020-05-27 2021-12-02 住友重機械工業株式会社 ショベル用の施工支援システム
US20210397765A1 (en) * 2018-11-07 2021-12-23 Honda Motor Co., Ltd. Work area zone boundary demarcation apparatus of autonomously navigating work machine
JP7195659B1 (ja) 2021-08-04 2022-12-26 株式会社日豊 動画生成装置、動画生成方法、プログラム、動画生成システム
JP7465685B2 (ja) 2020-03-18 2024-04-11 株式会社奥村組 運土計画管理装置、運土計画管理方法および運土計画管理プログラム

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016004382A1 (de) 2016-04-08 2017-10-12 Liebherr-Werk Biberach Gmbh Verfahren und Vorrichtung zum Planen und/oder Steuern und/oder Simulieren des Betriebs einer Baumaschine
US10936512B2 (en) * 2019-03-13 2021-03-02 International Business Machines Corporation Accurate can-based distributed control system simulations
JP7277256B2 (ja) * 2019-05-24 2023-05-18 コニカミノルタ株式会社 作業分析システム、作業分析装置、および作業分析プログラム
JP7349956B2 (ja) * 2020-04-14 2023-09-25 株式会社小松製作所 施工方法及び施工システム
CN113486417B (zh) * 2021-05-29 2024-01-19 中铁建工集团有限公司 一种控制主塔和钢梁施工仿真系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002188183A (ja) * 2000-10-12 2002-07-05 Komatsu Ltd 作機機械の管理装置
WO2005106139A1 (ja) * 2004-04-28 2005-11-10 Komatsu Ltd. 建設機械のメンテナンス支援システム
JP2007177541A (ja) * 2005-12-28 2007-07-12 Mitsubishi Heavy Ind Ltd 構造物現地据付システム
US20100217640A1 (en) * 2009-02-20 2010-08-26 Mark Nichols Method and system for adaptive construction sequencing
JP2014026548A (ja) * 2012-07-27 2014-02-06 Computer System Kenkyusho:Kk 工程管理データ生成装置、工程管理データ生成方法、工程管理データ生成プログラム、および、記録媒体
JP2015082141A (ja) * 2013-10-21 2015-04-27 株式会社日立製作所 原単位算出装置、原単位算出方法
JP2016212469A (ja) * 2015-04-28 2016-12-15 株式会社小松製作所 施工計画システム
JP2017071916A (ja) * 2015-10-05 2017-04-13 株式会社小松製作所 施工管理システム及び施工管理方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA948824B (en) * 1993-12-08 1995-07-11 Caterpillar Inc Method and apparatus for operating geography altering machinery relative to a work site
JP4340946B2 (ja) * 2000-12-20 2009-10-07 清水建設株式会社 大規模土工の施工管理システム
CN102598031A (zh) * 2009-11-12 2012-07-18 株式会社东芝 施工工序制作系统及施工工序制作方法
JP5565957B2 (ja) * 2010-10-13 2014-08-06 五洋建設株式会社 3次元ソナーによる施工管理方法とその施工管理装置
US9466144B2 (en) * 2012-11-02 2016-10-11 Trimble Navigation Limited 3D mapping of a surveyed environment
JP5997615B2 (ja) * 2013-01-10 2016-09-28 日立Geニュークリア・エナジー株式会社 工程表示装置、工程表示方法及び工程表示プログラム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002188183A (ja) * 2000-10-12 2002-07-05 Komatsu Ltd 作機機械の管理装置
WO2005106139A1 (ja) * 2004-04-28 2005-11-10 Komatsu Ltd. 建設機械のメンテナンス支援システム
JP2007177541A (ja) * 2005-12-28 2007-07-12 Mitsubishi Heavy Ind Ltd 構造物現地据付システム
US20100217640A1 (en) * 2009-02-20 2010-08-26 Mark Nichols Method and system for adaptive construction sequencing
JP2014026548A (ja) * 2012-07-27 2014-02-06 Computer System Kenkyusho:Kk 工程管理データ生成装置、工程管理データ生成方法、工程管理データ生成プログラム、および、記録媒体
JP2015082141A (ja) * 2013-10-21 2015-04-27 株式会社日立製作所 原単位算出装置、原単位算出方法
JP2016212469A (ja) * 2015-04-28 2016-12-15 株式会社小松製作所 施工計画システム
JP2017071916A (ja) * 2015-10-05 2017-04-13 株式会社小松製作所 施工管理システム及び施工管理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DAHLAN NARIMAN ET AL.: "Development of a Civil Engineering Support System Using Augmented Reality", THE VIRTUAL REALITY SOCIETY OF JAPAN DAI 6 KAI TAIKAI RONBUNSHU, 19 September 2001 (2001-09-19), pages 9 - 12, ISSN: 1342-4564 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019189888A1 (ja) * 2018-03-30 2019-10-03 住友重機械工業株式会社 建設機械の運転支援システム、建設機械
JP7328212B2 (ja) 2018-03-30 2023-08-16 住友重機械工業株式会社 建設機械の運転支援システム、建設機械
KR102602383B1 (ko) 2018-03-30 2023-11-14 스미도모쥬기가이고교 가부시키가이샤 건설기계의 운전지원시스템, 건설기계
KR20200130376A (ko) * 2018-03-30 2020-11-18 스미도모쥬기가이고교 가부시키가이샤 건설기계의 운전지원시스템, 건설기계
JPWO2019189888A1 (ja) * 2018-03-30 2021-03-25 住友重機械工業株式会社 建設機械の運転支援システム、建設機械
US20210397765A1 (en) * 2018-11-07 2021-12-23 Honda Motor Co., Ltd. Work area zone boundary demarcation apparatus of autonomously navigating work machine
WO2020174774A1 (ja) * 2019-02-26 2020-09-03 株式会社小松製作所 施工管理装置、施工管理システム、作業機械、施工管理方法及びプログラム
JP2020140233A (ja) * 2019-02-26 2020-09-03 株式会社小松製作所 施工管理装置、施工管理システム、作業機械、施工管理方法及びプログラム
JP7165599B2 (ja) 2019-02-26 2022-11-04 株式会社小松製作所 施工管理装置、施工管理システム、作業機械、施工管理方法及びプログラム
JP2020180452A (ja) * 2019-04-24 2020-11-05 株式会社小松製作所 作業機械を制御するためのシステムおよび方法
JP2020180451A (ja) * 2019-04-24 2020-11-05 株式会社小松製作所 作業機械を制御するためのシステムおよび方法
WO2020217972A1 (ja) * 2019-04-24 2020-10-29 株式会社小松製作所 作業機械を制御するためのシステムおよび方法
AU2020263549B2 (en) * 2019-04-24 2022-12-01 Komatsu Ltd. A system and a method for controlling a work machine
JP7257239B2 (ja) 2019-04-24 2023-04-13 株式会社小松製作所 作業機械を制御するためのシステムおよび方法
JP7257240B2 (ja) 2019-04-24 2023-04-13 株式会社小松製作所 作業機械を制御するためのシステムおよび方法
WO2020217977A1 (ja) * 2019-04-24 2020-10-29 株式会社小松製作所 作業機械を制御するためのシステムおよび方法
WO2021131864A1 (ja) * 2019-12-24 2021-07-01 株式会社小松製作所 施工現場において作業機械の施工計画を決定するためのシステムおよび方法
DE112020005322T5 (de) 2019-12-24 2022-08-18 Komatsu Ltd. System und Verfahren zur Bestimmung eines Bauplans für eine Arbeitsmaschine auf einer Baustelle
JP7461736B2 (ja) 2019-12-24 2024-04-04 株式会社小松製作所 施工現場において作業機械の施工計画を決定するためのシステムおよび方法
JP7465685B2 (ja) 2020-03-18 2024-04-11 株式会社奥村組 運土計画管理装置、運土計画管理方法および運土計画管理プログラム
WO2021241716A1 (ja) * 2020-05-27 2021-12-02 住友重機械工業株式会社 ショベル用の施工支援システム
JP2023023112A (ja) * 2021-08-04 2023-02-16 株式会社日豊 動画生成装置、動画生成方法、プログラム、動画生成システム
JP7195659B1 (ja) 2021-08-04 2022-12-26 株式会社日豊 動画生成装置、動画生成方法、プログラム、動画生成システム

Also Published As

Publication number Publication date
CN108475399A (zh) 2018-08-31
US20180374168A1 (en) 2018-12-27
AU2017239878B2 (en) 2019-11-07
AU2017239878A1 (en) 2018-07-12
CN108475399B (zh) 2023-10-31
DE112017000279T5 (de) 2018-09-13
JP6979015B2 (ja) 2021-12-08
JPWO2017170968A1 (ja) 2019-02-07

Similar Documents

Publication Publication Date Title
WO2017170968A1 (ja) シミュレーションシステム及びシミュレーション方法
JP6839078B2 (ja) 施工管理システム及び施工管理方法
JP6567940B2 (ja) 施工管理システム
JP6496182B2 (ja) 施工計画システム
JP6578366B2 (ja) 施工管理システム
KR101595243B1 (ko) Bim 기반의 현장 시설물 자동화 모델링 시스템 및 방법
CN111226007B (zh) 施工管理装置、显示装置及施工管理方法
JPWO2018179963A1 (ja) 作業車両の制御システム、作業機の軌跡設定方法、及び作業車両
WO2015139090A1 (en) Visualisation of work status for a mine worksite
JPWO2018179962A1 (ja) 作業車両の制御システム、作業機の軌跡設定方法、及び作業車両
US11761173B2 (en) Systems and methods for building a pad
WO2021131864A1 (ja) 施工現場において作業機械の施工計画を決定するためのシステムおよび方法
KR102613634B1 (ko) 건설장비 모바일 내비게이션 시스템
JP7317926B2 (ja) 施工管理装置、表示装置および施工管理方法
JP2022011680A (ja) 作業計画システム、および、作業計画方法
CN114022622A (zh) 一种土方施工三维实时导航方法及系统

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018509489

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017239878

Country of ref document: AU

Date of ref document: 20170330

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 201780006990.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 112017000279

Country of ref document: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17775501

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17775501

Country of ref document: EP

Kind code of ref document: A1