JPWO2019189888A1 - 建設機械の運転支援システム、建設機械 - Google Patents

建設機械の運転支援システム、建設機械 Download PDF

Info

Publication number
JPWO2019189888A1
JPWO2019189888A1 JP2020509360A JP2020509360A JPWO2019189888A1 JP WO2019189888 A1 JPWO2019189888 A1 JP WO2019189888A1 JP 2020509360 A JP2020509360 A JP 2020509360A JP 2020509360 A JP2020509360 A JP 2020509360A JP WO2019189888 A1 JPWO2019189888 A1 JP WO2019189888A1
Authority
JP
Japan
Prior art keywords
work
unit
setup
excavator
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020509360A
Other languages
English (en)
Other versions
JP7328212B2 (ja
Inventor
蒙萌 李
蒙萌 李
正樹 小川
正樹 小川
文乃 階戸
文乃 階戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Publication of JPWO2019189888A1 publication Critical patent/JPWO2019189888A1/ja
Application granted granted Critical
Publication of JP7328212B2 publication Critical patent/JP7328212B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/431Control of dipper or bucket position; Control of sequence of drive operations for bucket-arms, front-end loaders, dumpers or the like
    • E02F3/434Control of dipper or bucket position; Control of sequence of drive operations for bucket-arms, front-end loaders, dumpers or the like providing automatic sequences of movements, e.g. automatic dumping or loading, automatic return-to-dig
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • E02F3/437Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like providing automatic sequences of movements, e.g. linear excavation, keeping dipper angle constant
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • E02F3/438Memorising movements for repetition, e.g. play-back capability
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/2045Guiding machines along a predetermined path
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/2054Fleet management
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/261Surveying the work-site to be treated
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/214Generating training patterns; Bootstrap methods, e.g. bagging or boosting
    • G06F18/2148Generating training patterns; Bootstrap methods, e.g. bagging or boosting characterised by the process organisation or structure, e.g. boosting cascade
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/217Validation; Performance evaluation; Active pattern learning techniques
    • G06F18/2178Validation; Performance evaluation; Active pattern learning techniques based on feedback of a supervisor
    • G06F18/2185Validation; Performance evaluation; Active pattern learning techniques based on feedback of a supervisor the supervisor being an automated module, e.g. intelligent oracle
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/77Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
    • G06V10/778Active pattern-learning, e.g. online learning of image or video features
    • G06V10/7784Active pattern-learning, e.g. online learning of image or video features based on feedback from supervisors
    • G06V10/7788Active pattern-learning, e.g. online learning of image or video features based on feedback from supervisors the supervisor being a human, e.g. interactive learning with a human teacher
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/10Terrestrial scenes
    • G06V20/13Satellite images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/10Terrestrial scenes
    • G06V20/17Terrestrial scenes taken from planes or by drones
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/004Artificial life, i.e. computing arrangements simulating life
    • G06N3/006Artificial life, i.e. computing arrangements simulating life based on simulated virtual individual or collective life forms, e.g. social simulations or particle swarm optimisation [PSO]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N7/00Computing arrangements based on specific mathematical models
    • G06N7/01Probabilistic graphical models, e.g. probabilistic networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Multimedia (AREA)
  • Software Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Databases & Information Systems (AREA)
  • Medical Informatics (AREA)
  • Computing Systems (AREA)
  • Remote Sensing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mathematical Physics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Health & Medical Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Paleontology (AREA)
  • Operation Control Of Excavators (AREA)
  • Component Parts Of Construction Machinery (AREA)

Abstract

目標指標に関する評価がより高い支援データを出力することが可能な建設機械の運転支援システムを提供する。本発明の一実施形態に係る建設機械の運転支援システムは、所定の目標指標に関する評価が相対的に高くなるように、建設機械の複数の作業パターン又は段取りパターンを生成する生成部と、支援対象の建設機械の環境情報を取得する環境情報取得部と、生成部により生成される複数の作業パターン又は段取りパターンに基づき、環境情報取得部により取得される環境情報に対応する環境下において、支援対象の建設機械の作業の目標指標に関する評価が相対的に高くなるような作業パターン又は段取りパターンを出力する出力部と、を備える。

Description

本発明は、建設機械の運転支援システム等に関する。
例えば、過去の作業機械の操作データのうちの作業品質の高い操作データを用いて、建設機械の操作者の支援を行う操作支援システムが知られている(例えば、特許文献1等参照)。
特開2016−210816号公報
しかしながら、過去の実績データのうちの作業品質の高い実績データを用いる手法では、ある目標指標(例えば、作業の速さ等)に関する評価が過去の実績を超える支援データを出力することができない。よって、目標指標に関する評価を最適化(最大化)させる観点において、改善の余地がある。
そこで、上記課題に鑑み、目標指標に関する評価がより高い支援データを出力することが可能な建設機械の運転支援システム等を提供することを目的とする。
上記目的を達成するため、本発明の一実施形態では、
所定の目標指標に関する評価が相対的に高くなるように、建設機械の複数の作業パターン又は段取りパターンを生成する生成部と、
支援対象の建設機械の環境情報を取得する環境情報取得部と、
前記生成部により生成される複数の作業パターンに基づき、前記環境情報取得部により取得される環境情報に対応する環境下において、支援対象の建設機械の作業の前記目標指標に関する評価が相対的に高くなるような作業パターン又は段取りパターンを出力する出力部と、を備える、
建設機械の運転支援システムが提供される。
また、本発明の他の実施形態では、
所定の目標指標に関する評価が相対的に高くなるように、自機の複数の作業パターン又は段取りパターンを生成する生成部と、
自機の周囲の環境情報を取得する環境情報取得部と、
前記生成部により生成される複数の作業パターン又は段取りパターンに基づき、前記環境情報取得部により取得される環境情報に対応する環境下において、前記目標指標に関する評価が相対的に高くなるような作業パターン又は段取りパターンを出力する出力部と、
前記出力部により出力される作業パターン又は段取りパターンに基づき、自機の動作を制御する制御部と、を備える、
建設機械が提供される。
上述の実施形態によれば、目標指標に関する評価がより高い支援データを出力することが可能な建設機械の運転支援システム等を提供することができる。
運転支援システムの一例を示す概要図である。 運転支援システムの構成の一例を示す構成図である。 運転支援システムにおける機械学習機能及び運転支援機能に関する機能構成の一例を示す機能ブロック図である。 シミュレータ部による作業パターンに関するショベルの動作シミュレーションの一例を説明する図である。 運転支援システムの作用を説明する図である。 運転支援システムにおける機械学習機能及び運転支援機能に関する機能構成の他の例を示す機能ブロック図である。 シミュレータ部による段取りに関する動作シミュレーションの一例を説明する図である。 運転支援システムにおける機械学習機能及び運転支援機能に関する機能構成の更に他の例を示す機能ブロック図である。 運転支援システムにおける機械学習機能及び運転支援機能に関する機能構成の更に他の例を示す機能ブロック図である。 運転支援システムの作用を説明する図である。
以下、図面を参照して発明を実施するための形態について説明する。
[運転支援システムの概要]
まず、図1を参照して、運転支援システムSYSの概要について説明する。
図1は、運転支援システムSYSの一例を示す概要図である。
運転支援システムSYSは、複数のショベル100と、飛行体200と、管理装置300を含む。
運転支援システムSYSは、複数のショベル100から所定の種別の作業(例えば、掘削作業、積込み作業、転圧作業等の繰り返し作業)の作業パターンに関する実績情報(以下、「作業パターン実績情報」)と、作業時の環境条件に関する実績情報(以下、「環境条件実績情報」)とを収集する。作業パターンとは、所定の種別の作業を行う際のショベル100の一連の動作の型を示す。例えば、作業パターンには、下部走行体1、上部旋回体3、ブーム4、アーム5、及び、バケット6等の動作要素の作業時の動作軌跡等が含まれる。また、作業パターン実績情報は、具体的に、ショベル100が実際に所定の種別の作業を行った際の当該ショベル100の作業パターンの実績を表す各種センサの検出情報等である。また、環境条件には、ショベル100の周辺環境に関する条件等の外的環境条件の他、ショベル100の動作に影響を与えるショベル100の可変される仕様(例えば、アームの長さ、バケットの種類等)等の内的環境条件が含まれうる。運転支援システムSYSは、収集した作業パターン実績情報及び環境条件実績情報に基づき、機械学習を行うことにより、ショベル100が所定の種別の作業を行う際の最適な作業パターン(最適作業パターン)を複数の環境条件ごとに生成する。最適作業パターンとは、所定の目標指標に関する評価が相対的に高くなるように生成される作業パターンである。このとき、目標指標には、例えば、作業の速さ、燃費の良さ、アタッチメントの寿命の長さ、衝撃荷重の発生頻度の少なさ、積込み作業における積込み量の多さ、アタッチメント等へのき裂発生後のき裂進展の遅さ等が含まれる。そして、運転支援システムSYSは、生成した当該複数の作業パターンに基づき、支援対象のショベル100の現在の環境条件下における最適作業パターンを出力し、当該最適作業パターンに沿ってショベル100が動作するように、オペレータの操作を支援する。
尚、運転支援システムSYSは、ショベル100に代えて、或いは、加えて、他の種類の建設機械(例えば、アスファルトフィニッシャ、ブルドーザ等)を含んでもよい。また、飛行体200は、複数の現場ごとに、配備されてもよい。つまり、運転支援システムSYSは、複数の飛行体200を含んでもよい。
<ショベルの概要>
ショベル100(建設機械の一例)は、下部走行体1と、旋回機構2を介して旋回可能に下部走行体1に搭載される上部旋回体3と、アタッチメント(作業装置)としてのブーム4、アーム5、及び、バケット6と、キャビン10を備える。
下部走行体1は、例えば、左右一対のクローラを含み、それぞれのクローラが走行油圧モータ1A,1B(図2参照)で油圧駆動されることにより、自走する。
上部旋回体3は、旋回油圧モータ2A(図2参照)で駆動されることにより、下部走行体1に対して旋回する。
ブーム4は、上部旋回体3の前部中央に俯仰可能に枢着され、ブーム4の先端には、アーム5が上下回動可能に枢着され、アーム5の先端には、バケット6が上下回動可能に枢着される。ブーム4、アーム5、及び、バケット6は、それぞれ、ブームシリンダ7、アームシリンダ8、及び、バケットシリンダ9により油圧駆動される。
キャビン10は、オペレータが搭乗する操縦室であり、上部旋回体3の前部左側に搭載される。
ショベル100は、例えば、基地局を末端とする移動体通信網、上空の通信衛星を利用する衛星通信網、インターネット等を含む所定の通信ネットワークNWを通じて、管理装置300と相互に通信を行うことができる。これにより、ショベル100は、上述の作業パターン実績情報及び環境条件実績情報を含む各種情報を管理装置300に送信(アップロード)することができる。詳細は、後述する。
<飛行体の概要>
飛行体200は、ショベル100が作業する作業現場の上空を飛行する。このとき、飛行体200は、作業現場の地上にいる操作者が所持するリモコンからの操作指令に応じて、飛行してもよいし、予め規定された飛行ルート等に従い、自動的に飛行してもよい。
飛行体200は、後述の如く、カメラ240を搭載し、作業現場の撮像画像(以下、「作業現場画像」を取得する。
また、飛行体200は、通信ネットワークNWを通じて、管理装置300と相互に通信を行うことができる。これにより、飛行体200は、カメラ240により撮像された作業現場画像や、当該作業現場画像が撮像されたときの飛行体の向きを示す情報(以下、「飛行体向き情報」)及び位置を示す情報(「飛行体位置情報」)を送信(アップロード)することができる。以下、詳細は、後述する。
<管理装置の概要>
管理装置300は、ショベル100と地理的に離れた位置に設置される端末装置である。管理装置300は、例えば、ショベル100が作業する作業現場外に設けられる管理センタ等に設置され、一又は複数のサーバコンピュータ等を中心に構成されるサーバ装置である。この場合、サーバ装置は、運転支援システムSYSを運用する事業者或いは当該事業者に関連する関連事業者が運営する自社サーバであってもよいし、いわゆるクラウドサーバであってもよい。
管理装置300は、上述の如く、通信ネットワークNWを通じて、ショベル100及び飛行体200のそれぞれと相互に通信を行うことができる。これにより、管理装置300は、ショベル100からアップロードされる作業パターン実績情報及び環境条件実績情報や飛行体200からアップロードされる作業現場画像等を受信し、これらの情報に基づき、支援対象のショベル100に最適な作業パターンを生成することができる。詳細は、後述する。
[運転支援システムの構成]
次に、図1に加えて、図2を参照して、運転支援システムSYSの構成について説明する。
図2は、運転支援システムSYSの構成の一例を示す構成図である。
尚、図中において、機械的動力ラインは二重線、高圧油圧ラインは太い実線、パイロットラインは破線、電気駆動・制御ラインは細い実線でそれぞれ示される。
<ショベルの構成>
本実施形態に係るショベル100の油圧アクチュエータを油圧駆動する油圧駆動系は、エンジン11と、メインポンプ14と、レギュレータ14aと、コントロールバルブ17を含む。また、本実施形態に係るショベル100の油圧駆動系は、上述の如く、下部走行体1、上部旋回体3、ブーム4、アーム5、及びバケット6のそれぞれを油圧駆動する走行油圧モータ1A,1B、旋回油圧モータ2A、ブームシリンダ7、アームシリンダ8、及びバケットシリンダ9等の油圧アクチュエータを含む。
エンジン11は、油圧駆動系におけるメイン動力源であり、例えば、上部旋回体3の後部に搭載される。具体的には、エンジン11は、後述するエンジン制御装置(ECU:Engine Control Unit)74による制御下で、予め設定される目標回転数で一定回転し、メインポンプ14及びパイロットポンプ15を駆動する。エンジン11は、例えば、軽油を燃料とするディーゼルエンジンである。
レギュレータ14aは、メインポンプ14の吐出量を制御する。例えば、レギュレータ14aは、コントローラ30からの制御指令に応じて、メインポンプ14の斜板の角度(傾転角)を調節する。
メインポンプ14は、例えば、エンジン11と同様、上部旋回体3の後部に搭載され、高圧油圧ライン16を通じてコントロールバルブ17に作動油を供給する。メインポンプ14は、上述の如く、エンジン11により駆動される。メインポンプ14は、例えば、可変容量式油圧ポンプであり、上述の如く、コントローラ30による制御の下、レギュレータ14aにより斜板の傾転角が調節されることでピストンのストローク長が調整され、吐出流量(吐出圧)が制御されうる。
コントロールバルブ17は、例えば、上部旋回体3の中央部に搭載され、オペレータによる操作装置26に対する操作に応じて、油圧駆動系の制御を行う油圧制御装置である。コントロールバルブ17は、上述の如く、高圧油圧ライン16を介してメインポンプ14と接続され、メインポンプ14から供給される作動油を、操作装置26の操作状態に応じて、油圧アクチュエータ(走行油圧モータ1A,1B、旋回油圧モータ2A、ブームシリンダ7、アームシリンダ8、及びバケットシリンダ9)に選択的に供給する。具体的には、コントロールバルブ17は、メインポンプ14から油圧アクチュエータのそれぞれに供給される作動油の流量と流れる方向を制御する複数の制御弁を含む。例えば、コントロールバルブ17は、ブーム4(ブームシリンダ7)に対応する制御弁175を含む(図9参照)。また、例えば、コントロールバルブ17は、アーム5(アームシリンダ8)に対応する制御弁176を含む(図9参照)。また、例えば、コントロールバルブ17は、バケット6(バケットシリンダ9)に対応する制御弁174を含む(図9参照)。また、例えば、コントロールバルブ17は、上部旋回体3(旋回油圧モータ2A)に対応する制御弁173を含む(図9参照)。また、例えば、コントロールバルブ17には、下部走行体1の右側のクローラ及び左側のクローラのそれぞれに対応する右走行制御弁及び左走行制御弁が含まれる。
本実施形態に係るショベル100の操作系は、パイロットポンプ15と、操作装置26と、操作バルブ31を含む。
パイロットポンプ15は、例えば、上部旋回体3の後部に搭載され、パイロットライン25を介して操作装置26及び操作バルブ31にパイロット圧を供給する。パイロットポンプ15は、例えば、固定容量式油圧ポンプであり、上述の如く、エンジン11により駆動される。
操作装置26は、キャビン10の操縦席付近に設けられ、オペレータが各種動作要素(下部走行体1、上部旋回体3、ブーム4、アーム5、バケット6等)の操作を行うための操作入力手段である。換言すれば、操作装置26は、オペレータがそれぞれの動作要素を駆動する油圧アクチュエータ(即ち、走行油圧モータ1A,1B、旋回油圧モータ2A、ブームシリンダ7、アームシリンダ8、バケットシリンダ9等)の操作を行うための操作入力手段である。操作装置26は、その二次側のパイロットラインがコントロールバルブ17にそれぞれ接続される。これにより、コントロールバルブ17には、操作装置26における下部走行体1、上部旋回体3、ブーム4、アーム5、及びバケット6等の操作状態に応じたパイロット圧が入力されうる。そのため、コントロールバルブ17は、操作装置26における操作状態に応じて、それぞれの油圧アクチュエータを駆動することができる。
操作バルブ31は、コントローラ30からの制御指令(例えば、制御電流)に応じて、パイロットライン25の流路面積を調整する。これにより、操作バルブ31は、パイロットポンプ15から供給される一次側のパイロット圧を元圧として、二次側のパイロットラインに制御指令に対応するパイロット圧を出力することができる。操作バルブ31は、その二次側ポートが、コントロールバルブ17のそれぞれの油圧アクチュエータに対応する制御弁の左右のパイロットポートに接続され、コントローラ30からの制御指令に応じたパイロット圧を制御弁のパイロットポートに作用させる。これにより、コントローラ30は、オペレータにより操作装置26が操作されていない場合であっても、パイロットポンプ15から吐出される作動油を、操作バルブ31を介して、コントロールバルブ17内の対応する制御弁のパイロットポートに供給させ、油圧アクチュエータを動作させることができる。
尚、操作バルブ31に加えて、油圧アクチュエータ内に発生する過剰な油圧を作動油タンクにリリーフする電磁リリーフ弁が設けられてもよい。これにより、オペレータによる操作装置26に対する操作量が過剰な場合等において、積極的に、油圧アクチュエータの動作を抑制させることができる。例えば、ブームシリンダ7、アームシリンダ8、及びバケットシリンダ9のボトム側油室及びロッド側油室のそれぞれの過剰な圧力を作動油タンクにリリーフする電磁リリーフ弁が設けられてよい。
本実施形態に係るショベル100の制御系は、コントローラ30と、ECU74と、吐出圧センサ14bと、操作圧センサ15aと、表示装置40と、入力装置42と、撮像装置80と、状態検出装置S1と、通信機器T1を含む。
コントローラ30は、ショベル100の駆動制御を行う。コントローラ30は、その機能が任意のハードウェア、ソフトウェア、或いは、その組み合わせにより実現されてよい。例えば、コントローラ30は、CPU(Central Processing Unit)等のプロセッサと、RAM(Random Access Memory)等のメモリ装置と、ROM(Read Only Memory)等の不揮発性の補助記憶装置と、各種入出力用のインタフェース装置等を含むコンピュータを中心に構成される。コントローラ30は、例えば、補助記憶装置にインストールされる各種プログラムをCPU上で実行することにより各種機能を実現する。以下、後述するECU74、飛行体200の制御装置210、及び、管理装置300の制御装置310についても同様である。
例えば、コントローラ30は、オペレータ等の所定操作により予め設定される作業モード等に基づき、目標回転数を設定し、ECU74に制御指令を出力することより、ECU74を介して、エンジン11を一定回転させる駆動制御を行う。
また、例えば、コントローラ30は、必要に応じてレギュレータ14aに対して制御指令を出力し、メインポンプ14の吐出量を変化させることにより、いわゆる全馬力制御やネガコン制御を行う。
また、例えば、コントローラ30は、ショベル100に関する各種情報を管理装置300にアップロードする機能(以下、「アップロード機能」)。具体的には、コントローラ30は、ショベル100の所定の種別の作業時における作業パターン実績情報及び環境条件実績情報を、通信機器T1を通じて、管理装置300に送信(アップロード)してよい。コントローラ30は、例えば、補助記憶装置等にインストールされる一以上のプログラムをCPU上で実行することにより実現される、アップロード機能に関する機能部として、情報送信部301を含む。
また、例えば、コントローラ30は、オペレータによる操作装置26を通じたショベル100の手動操作をガイド(案内)するマシンガイダンス機能に関する制御を行う。また、コントローラ30は、オペレータによる操作装置26を通じたショベル100の手動操作を自動的に支援するマシンコントロール機能に関する制御を行ってよい。コントローラ30は、例えば、補助記憶装置等にインストールされる一以上のプログラムをCPU上で実行することにより実現される、マシンガイダンス機能及びマシンコントロール機能に関する機能部として、作業パターン取得部302と、マシンガイダンス部303を含む。
尚、コントローラ30の機能の一部は、他のコントローラ(制御装置)により実現されてもよい。即ち、コントローラ30の機能は、複数のコントローラにより分散される態様で実現されてもよい。例えば、上述したマシンガイダンス機能及びマシンコントロール機能は、専用のコントローラ(制御装置)により実現されてもよい。
ECU74は、コントローラ30からの制御指令に応じて、エンジン11の各種アクチュエータ(例えば、燃料噴射装置等)を制御し、エンジン11を設定された目標回転数(設定回転数)で定回転させる(定回転制御)。このとき、ECU74は、エンジン回転数センサ11aにより検出されるエンジン11の回転数に基づき、エンジン11の定回転制御を行う。
吐出圧センサ14bは、メインポンプ14の吐出圧を検出する。吐出圧センサ14bにより検出された吐出圧に対応する検出信号は、コントローラ30に取り込まれる。
操作圧センサ15aは、上述の如く、操作装置26の二次側のパイロット圧、即ち、操作装置26におけるそれぞれの動作要素(油圧アクチュエータ)の操作状態に対応するパイロット圧を検出する。操作圧センサ15aによる操作装置26における下部走行体1、上部旋回体3、ブーム4、アーム5、及びバケット6等の操作状態に対応するパイロット圧の検出信号は、コントローラ30に取り込まれる。
表示装置40は、コントローラ30と接続され、コントローラ30による制御下で、キャビン10内の着座したオペレータから視認し易い位置に設けられ、各種情報画像を表示する。表示装置40は、例えば、液晶ディスプレイや有機EL(Electroluminescence)ディスプレイ等である。
入力装置42は、キャビン10内の着座したオペレータから手が届く範囲に設けられ、オペレータによる各種操作を受け付け、操作内容に対応する信号を出力する。例えば、入力装置42は、表示装置40と一体化される。また、入力装置42は、表示装置40と別に設けられてもよい。入力装置42は、表示装置40のディスプレイに実装されるタッチパネル、操作装置26に含まれるレバーの先端に設けられるノブスイッチ、表示装置40の周囲に設置されるボタンスイッチ、レバー、トグル等を含む。入力装置42に対する操作内容に対応する信号は、コントローラ30に取り込まれる。
撮像装置80は、ショベル100の周辺を撮像する。撮像装置80は、ショベル100の前方を撮像するカメラ80F、ショベル100の左方を撮像するカメラ80L、ショベル100の右方を撮像するカメラ80R、及び、ショベル100の後方を撮像するカメラ80Bを含む。
カメラ80Fは、例えば、キャビン10の天井、即ち、キャビン10の内部に取り付けられている。また、カメラ80Fは、キャビン10の屋根、ブーム4の側面等、キャビン10の外部に取り付けられていてもよい。カメラ80Lは、上部旋回体3の上面左端に取り付けられ、カメラ80Rは、上部旋回体3の上面右端に取り付けられ、カメラ80Bは、上部旋回体3の上面後端に取り付けられている。
撮像装置80(カメラ80F,80B,80L,80R)は、それぞれ、例えば、非常に広い画角を有する単眼の広角カメラである。また、撮像装置80は、ステレオカメラや距離画像カメラ等であってもよい。撮像装置80によるショベル100の周辺の撮像画像(以下、「周辺画像」)は、コントローラ30に取り込まれる。
状態検出装置S1は、ショベル100の各種状態に関する検出情報を出力する。状態検出装置S1から出力される検出情報は、コントローラ30に取り込まれる。
例えば、状態検出装置S1は、アタッチメントの姿勢状態や動作状態を検出する。具体的には、状態検出装置S1は、ブーム4、アーム5、及び、バケット6の俯仰角度(以下、それぞれ、「ブーム角度」、「アーム角度」、「バケット角度」)を検出してよい。つまり、状態検出装置S1は、ブーム角度、アーム角度、及びバケット角度のそれぞれを検出するブーム角度センサS11、アーム角度センサS12、及びバケット角度センサS13を含んでよい(図9参照)。また、状態検出装置S1は、ブーム4、アーム5、及び、バケット6の加速度、角加速度等を検出してよい。この場合、状態検出装置S1は、例えば、ブーム4、アーム5、及び、バケット6のそれぞれに取付けられる、ロータリエンコーダ、加速度センサ、角加速度センサ、6軸センサ、IMU(Inertial Measurement Unit:慣性計測装置)等を含みうる。また、状態検出装置S1は、ブーム4、アーム5、及び、バケット6のそれぞれを駆動するブームシリンダ7、アームシリンダ8、及び、バケットシリンダ9のシリンダ位置、速度、加速度等を検出するシリンダセンサを含みうる。
また、例えば、状態検出装置S1は、機体、つまり、下部走行体1及び上部旋回体3の姿勢状態を検出する。具体的には、状態検出装置S1は、水平面に対する機体の傾斜状態を検出してよい。この場合、状態検出装置S1は、例えば、上部旋回体3に取り付けられ、上部旋回体3の前後方向及び左右方向の2軸回りの傾斜角度(以下、「前後傾斜角」及び「左右傾斜角」)を検出する傾斜センサを含みうる。
また、例えば、状態検出装置S1は、上部旋回体3の旋回状態を検出する。具体的には、状態検出装置S1は、上部旋回体3の旋回角速度や旋回角度を検出する。この場合、状態検出装置S1は、例えば、上部旋回体3に取り付けられるジャイロセンサ、レゾルバ、ロータリエンコーダ等を含みうる。つまり、状態検出装置S1は、上部旋回体3の旋回角度等を検出する旋回角度センサS15を含んでよい。
また、例えば、状態検出装置S1は、アタッチメントを通じてショベル100に作用する力の作用状態を検出する。具体的には、状態検出装置S1は、油圧アクチュエータの作動圧(シリンダ圧)を検出してよい。この場合、状態検出装置S1は、ブームシリンダ7、アームシリンダ8、及びバケットシリンダ9のそれぞれのロッド側油室及びボトム側油室の圧力を検出する圧力センサを含みうる。
また、例えば、状態検出装置S1は、コントロールバルブ17内の制御弁のスプールの変位を検出するセンサを含んでよい。具体的には、状態検出装置S1は、制御弁175を構成するブームスプールの変位を検出するブームスプール変位センサS16を含んでよい。また、状態検出装置S1は、制御弁176を構成するアームスプールの変位を検出するアームスプール変位センサS17を含んでよい。また、状態検出装置S1は、制御弁174を構成するバケットスプールの変位を検出するバケットスプール変位センサS18を含んでよい。また、状態検出装置S1は、制御弁173を構成する旋回スプールの変位を検出する旋回スプール変位センサS19を含んでよい。また、状態検出装置S1は、右走行制御弁及び左走行制御弁のそれぞれを構成する右走行スプール及び左走行スプールの変位を検出する右走行スプール変位センサ及び左走行スプール変位センサを含んでよい。
また、例えば、状態検出装置S1は、ショベル100の位置や上部旋回体3の向き等を検出する。この場合、状態検出装置S1は、例えば、上部旋回体3に取り付けられるGNSS(Global Navigation Satellite System)コンパス、GNSSセンサ、方位センサ等を含みうる。
通信機器T1は、通信ネットワークNWを通じて外部機器と通信を行う。通信機器T1は、例えば、LTE(Long Term Evolution)、4G(4th Generation)、5G(5th Generation)等の移動体通信規格に対応する移動体通信モジュールや、衛星通信網に接続するための衛星通信モジュール等である。以下、飛行体200の通信機器220についても同様である。
情報送信部301は、ショベル100の所定の種別の作業時における作業パターン実績情報及び環境条件実績情報を、通信機器T1を通じて、管理装置300に送信する。情報送信部301により送信される作業パターン実績情報には、例えば、状態検出装置S1から入力される各種検出情報が含まれる。また、情報送信部301により送信される環境条件実績情報には、例えば、撮像装置80から入力されるショベル100の周辺画像が含まれる。また、情報送信部301により送信される環境条件実績情報には、ショベル100の内的環境条件、例えば、大容量バケット仕様、ロングアーム仕様、クイックカップリング仕様等の可変される仕様に関する情報が含まれてもよい。情報送信部301は、例えば、予め規定される対象の種別の作業が行われているか否かを逐次判定し、対象の種別の作業が行われていると判定すると、当該作業が行われている期間の作業パターン実績情報(つまり、状態検出装置S1から入力される各種検出情報)及び環境条件情報(つまり、撮像装置80から入力されるショベル100の周辺画像)を紐付けて、内部メモリ等に記録する。このとき、併せて、対象の種別の作業の開始及び終了に関する日時情報、並びに、当該作業時のショベル100の位置情報が、作業パターン実績情報及び環境条件実績情報のセットに更に紐付けられる態様で、内部メモリに保存されてもよい。これにより、管理装置300は、飛行体200からアップロードされる作業現場画像の中から、ショベル100から送信された作業パターン実績情報及び環境条件実績情報のセットに対応する作業現場画像を抽出することができる。このとき、日時情報は、例えば、コントローラ30内部の所定の計時手段(例えば、RTC(Real Time Clock))から取得されうる。そして、情報送信部301は、ショベル100のキーオフ時(停止時)等の所定のタイミングにおいて、記録された作業パターン実績情報及び環境条件実績情報のセットを、通信機器T1を通じて、管理装置300に送信する。また、情報送信部301は、対象の種別の作業が行われるたびに、その終了後、記録された作業パターン実績情報及び環境条件実績情報のセットを、通信機器T1を通じて、管理装置300に送信してもよい。
尚、環境条件実績情報には、撮像装置80に代えて、或いは、加えて、ショベル100に搭載される他のセンサにより検出される検出情報が含まれてよい。例えば、ショベル100には、ミリ波レーダ、LIDAR(Light Detecting and Ranging)等の他のセンサが搭載され、環境条件実績情報には、これらの距離センサの検出情報が含まれる態様であってもよい。以下、後述する現環境条件情報についても同様である。また、環境条件実績情報には、天候情報が含まれてもよい。天候情報は、例えば、状態検出装置S1に含まれうる雨滴感知センサ、照度センサ等の検出情報が含まれうる。また、情報送信部301は、作業パターン実績情報だけを管理装置300に送信してもよい。この場合、管理装置300は、ショベル100の作業現場の上空を飛行する飛行体200により撮像された撮像画像に基づき、ショベル100から送信された作業パターン実績情報に対応する環境条件実績情報を生成することができる。また、情報送信部301は、状態検出装置S1の検出情報や撮像装置80によるショベル100の周辺画像を、通信機器T1を通じて、逐次、管理装置300にアップロードしてもよい。この場合、管理装置300は、ショベル100からアップロードされる情報の中から対象の種別の作業が行われたときの情報を抽出し、作業パターン実績情報及び環境情報を生成してよい。
作業パターン取得部302は、所定の種別の作業を行う場合に、所定の目標指標に関する現在の環境条件に最適の作業パターン(最適作業パターン)を管理装置300から取得する。例えば、作業パターン取得部302は、オペレータによる入力装置42に対する所定操作(以下、「取得要求操作」)に応じて、ショベル100の現在の環境条件に関する情報(以下、「現環境条件情報」)を含む、作業パターンの取得を要求する信号(取得要求信号)を、通信機器T1を通じて、管理装置300に送信する。これにより、管理装置300は、ショベル100の現在の環境条件に合わせた最適な作業パターンをショベル100に提供できる。現環境条件情報には、例えば、撮像装置80によるショベル100の最新の周辺画像が含まれる。また、現環境条件情報には、ショベル100の内的環境条件、例えば、大容量バケット仕様、ロングアーム仕様、クイックカップリング仕様等の可変される仕様に関する情報が含まれてもよい。また、現環境条件情報には、状態検出装置S1に含まれうる雨滴感知センサや照度センサ等の検出情報、つまり、天候情報が含まれてもよい。そして、作業パターン取得部302は、取得要求信号に応じて管理装置300から送信され、通信機器T1により受信される作業パターンに関する情報を取得する。
尚、作業パターン取得部302は、取得要求信号の送信に併せて、現環境条件情報を管理装置300に送信しなくてもよい。この場合、管理装置300は、飛行体200からアップロードされる、対象のショベル100の作業現場に対応する作業現場画像に基づき、ショベル100の現在の環境条件(外的環境条件)を判断することができる。また、管理装置300は、飛行体200からアップロードされる飛行体位置情報等に基づき、ショベル100の現場の環境条件としての天候情報を、気象情報に関するサーバやウェブサイトから取得してもよい。
マシンガイダンス部303は、マシンガイダンス機能及びマシンコントロール機能に関する制御を行う。つまり、マシンガイダンス部303は、オペレータによる操作装置26を通じた各種動作要素(下部走行体1、上部旋回体3、並びに、ブーム4、アーム5、及びバケット6を含むアタッチメント)の操作を支援する。
例えば、マシンガイダンス部303は、オペレータにより操作装置26を通じてアーム5の操作が行われている場合に、予め規定される目標設計面(以下、単に「設計面」)とバケット6の先端部(例えば、爪先や背面)とが一致するように、ブーム4及びバケット6の少なくとも一つを自動的に動作させてよい。また、マシンガイダンス部303は、併せて、アーム5を操作する操作装置26の操作状態に依らず、アーム5を自動的に動作させてもよい。つまり、マシンガイダンス部303は、オペレータによる操作装置26の操作をトリガにして、予め規定された動作をアタッチメントに行わせてよい。
より具体的には、マシンガイダンス部303は、状態検出装置S1、撮像装置80、通信機器T1、及び入力装置42等から各種情報を取得する。また、マシンガイダンス部303は、例えば、取得した情報に基づいてバケット6と設計面との間の距離を算出する。そして、マシンガイダンス部303は、算出したバケット6と設計面との距離等に応じて、操作バルブ31を適宜制御し、油圧アクチュエータに対応する制御弁に作用するパイロット圧を個別に且つ自動的に調整することにより、それぞれの油圧アクチュエータを自動的に動作させることができる。操作バルブ31には、例えば、ブーム4(ブームシリンダ7)に対応するブーム比例弁31Aが含まれる(図9参照)。また、操作バルブ31には、例えば、アーム5(アームシリンダ8)に対応するアーム比例弁31Bが含まれる(図9参照)。また、操作バルブ31には、例えば、バケット6(バケットシリンダ9)に対応するバケット比例弁31Cが含まれる(図9参照)。また、操作バルブ31には、例えば、上部旋回体3(旋回油圧モータ2A)に対応する旋回比例弁31Dが含まれる(図9参照)。また、操作バルブ31には、例えば、下部走行体1の右側のクローラ及び左側のクローラのそれぞれに対応する右走行比例弁及び左走行比例弁が含まれる。
マシンガイダンス部303は、例えば、掘削作業を支援するために、操作装置26に対するアーム5の開閉操作に応じて、ブームシリンダ7、アームシリンダ8、及びバケットシリンダ9の少なくとも一つを自動的に伸縮させてよい。掘削作業は、設計面に沿ってバケット6の爪先で地面を掘削する作業である。マシンガイダンス部303は、例えば、オペレータが操作装置26に対して手動でアーム5の閉じ方向の操作(以下、「アーム閉じ操作」)を行っている場合に、ブームシリンダ7及びバケットシリンダ9のうちの少なくとも一つを自動的に伸縮させる。
また、マシンガイダンス部303は、例えば、法面や水平面の仕上げ作業(転圧作業)を支援するためにブームシリンダ7、アームシリンダ8、及び、バケットシリンダ9の少なくとも一つを自動的に伸縮させてもよい。転圧作業は、バケット6の背面を地面に押さえ付けながら設計面に沿ってバケット6を手前に引く作業である。マシンガイダンス部303は、例えば、オペレータが操作装置26に対して手動でアーム閉じ操作を行っている場合に、ブームシリンダ7及びバケットシリンダ9の少なくとも一つを自動的に伸縮させる。これにより、所定の押し付け力でバケット6の背面を完成前の斜面(法面)或いは水平面に押し付けながら、完成後の法面或いは水平面である設計面に沿ってバケット6を移動させることができる。
また、マシンガイダンス部303は、上部旋回体3を設計面に正対させるために旋回油圧モータ2Aを自動的に回転させてもよい。この場合、マシンガイダンス部303は、入力装置42に含まれる所定のスイッチが操作されることにより、上部旋回体3を設計面に正対させてよい。また、マシンガイダンス部303は、所定のスイッチが操作されるだけで、上部旋回体3を設計面に正対させ且つマシンコントロール機能を開始させてもよい。
また、例えば、マシンガイダンス部303は、所定の種別の作業(例えば、掘削作業、積込み作業、転圧作業等)が行われている場合に、オペレータによる操作装置26に対する操作に応じて、アタッチメント、上部旋回体3、及び、下部走行体1の少なくとも一部の動作を、作業パターン取得部302により取得された作業パターン(最適作業パターン)に合わせるように制御する。これにより、オペレータは、ショベル100の操縦に関する習熟度に依らず、ショベル100の動作を、所定の目標指標、例えば、作業の速さの評価が相対的に高くなるように管理装置300(後述する最適制御部3103)から出力される、現在のショベル100の環境条件に最適な作業パターンに合わせることができる。
また、マシンガイダンス部303は、最適作業パターンに基づき、ショベル100の動作の制御を行いながら、オペレータに対して、当該最適作業パターンに対応するショベル100の動作を表示装置40に表示させてもよい。例えば、マシンガイダンス部303は、最適作業パターンに基づき、ショベル100の動作の制御を行っている場合、最適作業パターンに対応する、後述のシミュレータ部3102Dによるシミュレーション結果の動画を表示装置40に表示させる。これにより、オペレータは、実際の作業パターンの内容を表示装置40の動画で確認しながら、作業を進めることができる。
<飛行体の構成>
飛行体200は、遠隔操作又は自動操縦により飛行させることができる自律式飛行体であり、例えば、マルチコプタ、飛行船等を含みうる。本実施形態では、図1に示すように、飛行体200は、クワッドコプタである。
飛行体200は、制御装置210と、通信機器220と、自律航行装置230と、カメラ240と、測位装置250を含む。
制御装置210は、飛行体200に関する各種制御を行う。
例えば、制御装置210は、カメラ240から逐次入力される作業現場画像を、通信機器220を通じて、管理装置300に送信する。また、制御装置210は、管理装置300から作業現場画像の送信要求があった場合に、通信機器220を通じて、カメラ240から入力された作業現場画像を管理装置300に送信してもよい。また、制御装置210は、ある程度の期間、バッファリングされる作業現場画像を、所定のタイミングで、まとめて、通信機器220を通じて、管理装置300に送信してもよい。また、制御装置210は、作業現場画像を管理装置300に送信する際、それぞれの撮像画像に対応する位置情報や日時情報を併せて、管理装置300に送信してもよい。このとき、日時情報は、例えば、制御装置210の内部の所定の計時手段(例えば、RTC)から取得されうる。
通信機器220は、通信ネットワークNWを通じて、外部機器と通信を行う。具体的には、通信機器220は、制御装置210による制御下で、管理装置300との間で通信を行う。通信機器220は、制御装置210と接続され、外部から受信される各種情報は、制御装置210に取り込まれる。
自律航行装置230は、飛行体200の自律航行を実現するためのデバイスである。自律航行装置230は、例えば、飛行制御装置、電動モータ、及び、バッテリ等を含む。また、飛行体200は、飛行体200の位置を独自に判断するためにGNSS受信機を搭載していてもよい。また、バッテリではなく、有線接続を介して地上の外部電源を用いる場合には、電圧変換を行うコンバータを搭載していてもよい。また、飛行体200はソーラーパネルを搭載していてもよい。飛行制御装置は、ジャイロセンサ、加速度センサ、気圧センサ、超音波センサ等の各種センサを含み、姿勢維持機能、高度維持機能等を実現する。電動モータは、バッテリから電力の供給を受けてプロペラを回転させる。自律航行装置230は、例えば、制御装置210から目標飛行位置に関する情報を受け付けると、4つのプロペラの回転速度を別々に制御し、飛行体200の姿勢及び高度を維持しながら飛行体200を目標飛行位置に移動させる。目標飛行位置に関する情報は、例えば、目標飛行位置の緯度、経度、及び、高度である。制御装置210は、通信機器220を通じて、目標飛行位置に関する情報を外部から取得する。自律航行装置230は、制御装置210から目標向きに関する情報を受け付けると、飛行体200の向きを変化させてもよい。
カメラ240は、飛行体200の飛行領域の下にある作業現場の様子を撮像する。カメラ240は、例えば、飛行体200の鉛直下方を撮像できるように、飛行体200の下面等に取り付けられてよい。カメラ240により撮像された撮像画像(作業現場画像)は、制御装置210に取り込まれる。
測位装置250は、飛行体200の位置や向き等を検出する。例えば、測位装置250は、GNSSコンパス、GNSSセンサ、方位センサ(地磁気センサ)等を含みうる。測位装置250による検出情報は、制御装置210に取り込まれる。
尚、測位装置250は、自律航行装置230(飛行制御装置)に内蔵されてもよい。
<管理装置の構成>
管理装置300は、制御装置310と、通信機器320と、操作入力装置330と、表示装置340を含む。
制御装置310は、管理装置300の各種制御を行う。
例えば、制御装置310は、収集した作業パターン実績情報及び環境条件実績情報に基づき、機械学習(教師あり学習及び強化学習)を行うことにより、ショベル100が所定の種別の作業を行う際の最適な作業パターン(最適作業パターン)を複数の環境条件ごとに生成する機能(以下、「機械学習機能」)に関する制御を行う。また、制御装置310は、生成した当該複数の作業パターンに基づき、支援対象のショベル100の現在の環境条件下における最適作業パターンを出力する機能(以下、「運転支援機能」)に関する制御を行う。
制御装置310は、例えば、補助記憶装置等にインストールされる一以上のプログラムをCPU上で実行することにより実現される、機械学習機能及び運転支援機能に関連する機能部として、情報取得部3101と、作業パターン生成部3102と、最適制御部3103とを含む。また、制御装置310は、制御装置310の内部の不揮発性の記憶装置に規定される、機械学習機能及び運転支援機能に関連する記憶領域としての記憶部3100を含む。管理装置300における機械学習機能及び運転支援機能に関連する構成の詳細については、後述する(図3参照)。
尚、記憶部3100は、制御装置310の外部に設けられてもよい。
通信機器320は、通信ネットワークNWを通じて、外部機器、つまり、ショベル100及び飛行体200と相互に通信を行う。通信機器320は、制御装置310と接続され、外部から受信される各種情報は、制御装置310に取り込まれる。
操作入力装置330は、管理装置300の作業者や管理者等による操作入力を受け付け、受け付けた操作入力の内容に対応する信号を出力する。操作入力装置330は、制御装置310に接続され、操作入力の内容に対応する信号は、制御装置310に取り込まれる。
表示装置340は、例えば、液晶ディスプレイや有機ELディスプレイ等であり、制御装置310による制御下で、各種情報画像を表示する。
[機械学習機能及び運転支援機能の一例]
次に、図3、図4を参照して、運転支援システムSYSにおける機械学習機能及び運転支援機能の一例について説明する。
図3は、運転支援システムSYSにおける機械学習機能及び運転支援機能に関する機能構成の一例を示す機能ブロック図である。具体的には、図3は、管理装置300(制御装置310)における機械学習機能及び運転支援機能に関する機能的な構成の一例を示す機能ブロック図である。
情報取得部3101(実績情報取得部の一例)は、一又は複数のショベル100からの作業パターン実績情報及び環境条件実績情報や一又は複数の飛行体200からの作業現場画像等のアップロードデータを取得する。そして、情報取得部3101は、1回のショベル100の作業ごと且つ作業の種別ごとに、データ抽出可能な態様に整理される、記憶部3100のショベル作業関連情報DB(Data Base)3100Aに作業パターン実績情報、環境条件実績情報、及び、作業現場画像を格納する。このとき、情報取得部3101は、作業現場画像の中から対応する作業現場のショベル100からアップロードされた作業パターン実績情報及び環境条件実績情報と同じ日時近辺で取得された作業現場画像だけを抽出し、環境条件実績情報の中に抽出した作業現場画像を組み込む態様であってよい。また、情報取得部3101は、通信機器320を通じて、気象情報に関するサーバやウェブサイトにアクセスし、ショベル100からアップロードされた作業パターン実績情報及び環境条件情報と同じ日時の天候情報を取得し、環境条件実績情報に組み込む態様であってもよい。以下、ショベル作業関連情報DB3100Aに格納される1回の作業ごとの作業パターン実績情報及び環境条件実績情報等のセットを便宜的に「ショベル作業関連情報」と称する。
作業パターン生成部3102(生成部の一例)は、ショベル作業関連情報DB3100Aに格納される、1回の作業ごとの作業パターン実績情報及び環境条件実績情報等に基づき、対象となる作業種別ごと、且つ、対象となる目標指標ごとに、目標指標に関する評価が相対的に高い、換言すれば、当該評価が最大化された、異なる環境条件ごとの最適作業パターンを生成する。
作業パターン生成部3102は、作業評価部3102Aと、教師あり学習部3102Bと、強化学習部3102Cと、シミュレータ部3102Dを含む。
作業評価部3102Aは、ショベル作業関連情報DB3100Aの中に格納される1回の作業ごとのショベル作業関連情報の中から対象となる目標指標ごとに、目標指標に関する評価が相対的に高い、具体的には、所定基準以上のショベル作業関連情報を抽出する。
具体的には、対象となる目標指標ごとに評価に関連する特徴量が規定されており、作業評価部3102Aは、ショベル作業関連情報の中から特徴量を抽出し、抽出した特徴量からそれぞれのショベル作業関連情報を評価する。例えば、積込み作業における作業の速さを目標指標とする場合、特徴量には、旋回速度、積込み量、掘削軌道(深さ、位置、長さ)、掘削中間での角度、ブーム上げ位置、バケット軌道(持ち上げ旋回時、下げ旋回時、排土時、吊り移動時)、エンジン回転数、ポンプ馬力等が含まれうる。また、掘削作業におけるアタッチメントの寿命の長さを目標指標とする場合、特徴量には、バケット6の爪先の貫入角度、掘削力の大きさ等が含まれうる。作業評価部3102Aは、抽出したショベル作業関連情報を教師あり学習の教師データとして、作業種別ごと、且つ、対象の目標指標ごとにデータ抽出可能にデータが整理された教師DB3100Bに格納する。
教師あり学習部3102Bは、教師DB3100Bに格納される教師データに基づき、作業種別ごと、且つ、目標指標ごとに、既知の機械学習(教師あり学習)を行い、目標指標に関する評価が相対的に高い、複数の異なる環境条件ごとの作業パターン(以下、「教師あり学習作業パターン」)を生成する。このとき、目標指標に関する評価を行う部分については、作業評価部3102Aの機能を利用する態様であってよい。以下、強化学習部3102Cの場合についても同様である。生成された複数の教師あり学習作業パターンは、環境条件ごとに抽出可能にデータが整理された教師あり学習作業パターンDB3100Cに格納される。
強化学習部3102Cは、教師あり学習作業パターンDB3100Cの複数の異なる環境条件ごとの教師あり学習作業パターンを起点として、所定の評価条件に基づき、作業種別ごと、且つ、目標指標ごとに、強化学習を行う。そして、強化学習部3102Cは、目標指標が更に高い、複数の異なる環境条件ごとの作業パターン(最適作業パターン)を生成する。具体的には、強化学習部3102Cは、シミュレータ部3102Dに対象の種別の作業のシミュレーションを繰り返し試行させ、自律的に、いわゆる報酬が多くなる、つまり、対象の目標指標に関する評価が高くなる作業パターンを選択しながら、最終的に、ある環境条件下での最適作業パターンを生成する。また、強化学習部3102Cは、シミュレータ部3102Dを利用することにより、教師あり学習作業パターンには含まれない環境条件下での最適作業パターンを生成することもできる。生成された複数の最適作業パターンは、作業種別ごと且つ環境条件ごとに抽出可能にデータが整理された最適作業パターンDB3100Dに格納される。
シミュレータ部3102Dは、作業種別ごとに、入力される環境条件、作業条件、作業パターン等の入力条件に基づき、ショベル100の作業パターンに含まれる動作シミュレーションを行うことができる。これにより、シミュレータ部3102Dは、作業パターンを生成することができる。そのため、強化学習部3102Cは、情報取得部3101により取得される過去の作業パターン(作業パターン実績情報)に基づく強化学習だけでなく、シミュレータ部3102Dにより生成される新たな作業パターンに関する情報に基づく強化学習を行うことができる。
例えば、図4は、シミュレータ部3102Dによる掘削作業におけるショベル100の動作シミュレーションの一例を説明する図である。
図4(A)〜(D)に示すように、掘削作業における動作シミュレーションでは、シミュレータ部3102Dは、入力条件に基づき、ショベル100がバケット6を接地させ、バケット6を手前に引きながら、バケット6内に土砂等の積載物を抱え込む一連の動作をシミュレーションする。
この場合、シミュレータ部3102Dは、バケット6の爪先角度(貫入角度、掘削中間での角度)、掘削軌道(深さ、位置、長さ)、ブーム上げ位置、エンジン回転数、ポンプ馬力等の動作設定を変更して複数の動作設定条件を生成し、シミュレーションを行う。その結果、シミュレータ部3102Dは、動作設定条件ごとの特徴量、目標指標を得る。このようにして、シミュレータ部3102Dは、仮想的な作業パターン情報(以下、「作業パターン仮想情報」)を生成することができる。そして、シミュレータ部3102Dは、作業パターン仮想情報を強化学習部3102Cへ入力し、強化学習部3102Cは、最適作業パターンを得ることができる。
尚、本実施形態では、情報取得部3101からの作業パターン実績情報を用いる事例も含まれるが、必ずしも作業パターン実績情報を用いる必要はない。つまり、作業パターン生成部3102は、シミュレータ部3102Dで生成される作業パターン仮想情報だけに基づき最適作業パターンが取得することもできる。
最適制御部3103(環境情報取得部及び出力部の一例)は、通信機器320を通じて、ショベル100から受信される取得要求信号に応じて、当該取得要求信号で指定される種別の作業について、現在のショベル100の環境条件下で、対象の目標指標が相対的に高くなる(最大化する)最適作業パターンを出力する。対象の目標指標は、予め規定されていてもよいし、ショベル100から送信される取得要求信号で指定されていてもよい。具体的には、最適制御部3103は、最適作業パターンDB3100Dに格納される複数の異なる環境条件ごとの最適作業パターンに基づき、現在のショベル100の環境条件下での最適作業パターンを出力する。
例えば、最適制御部3103は、最適作業パターンDB3100Dの中から現在のショベル100の環境条件(具体的には、取得要求信号に含まれる現環境条件情報に対応する環境条件)と一致する最適作業パターンを抽出し、出力する。また、最適制御部3103は、現在のショベル100の環境条件と一致する最適作業パターンが最適作業パターンDB3100Dにない場合、現在のショベル100の環境条件に比較的近い環境条件に対応する最適作業パターンを一又は複数抽出してよい。そして、最適制御部3103は、抽出した最適作業パターンに対応する環境条件と、現在のショベル100の環境条件との差異に基づき、抽出した一又は複数の最適作業パターンに対して所定の補正を施すことにより、現在のショベル100の環境条件に対応する最適作業パターンを出力してよい。
また、例えば、最適制御部3103は、強化学習部3102Cと同様の手法(アルゴリズム)を用いて、シミュレータ部3102Dを利用しながら、最適作業パターンDB3100Dに格納される複数の最適作業パターンに基づき、自律的に、ショベル100の現在の環境下での目標指標が最大化する最適作業パターンを一意的に出力してもよい。つまり、最適制御部3103は、最適作業パターンDB3100Dに格納される複数の最適作業パターンに基づき、シミュレータ部3102Dを利用しながら、自律的に、ショベル100の現在の環境下での目標指標が最大化する最適作業パターンを出力する人工知能(AI:Artificial Intelligence)を中心に構成されてもよい。これにより、最適制御部3103は、最適作業パターンDB3100Dの中に、ショベル100の現在の環境下に対応する最適作業パターンが無い場合であっても、補正等の手法を用いることなく、より目標指標に関する評価の高い最適作業パターンを出力できる。
最適制御部3103は、通信機器320を通じて、出力した最適作業パターンを取得要求信号の送信元であるショベル100に送信する。
また、最適制御部3103は、出力した最適作業パターンを最適作業パターンDB3100Dにフィードバック、つまり、追加し、最適作業パターンDB3100Dを更新させる。これにより、新たな環境条件に対応する作業パターンが最適作業パターンDB3100Dに追加されたり、最適作業パターンDB3100Dの作業パターンが目標指標に関する評価が更に高い作業パターンに更新されたりする。よって、最適制御部3103は、最適作業パターンDB3100Dの更新に応じて、目標指標に関する評価が更に高い最適作業パターンを出力できるようになる。
また、作業パターン生成部3102の上述した一連の動作も、情報取得部3101によるショベル100等から新たな情報が取得され、ショベル作業関連情報DB3100Aが更新されるのに応じて、繰り返し実行される。そのため、作業パターン生成部3102の一連の動作によっても、最適作業パターンDB3100Dが更新される。よって、最適制御部3103は、最適作業パターンDB3100Dの更新に応じて、目標指標に関する評価が更に高い最適作業パターンを出力できるようになる。
[運転支援システムの作用]
次に、図5を参照して、本実施形態に係る運転支援システムSYS(具体的には、図2、図3に示す運転支援システムSYS)の作用について説明する。
図5は、運転支援システムSYSの作用を説明する図である。具体的には、図5は、本実施形態に係る運転支援システムSYS(管理装置300)から出力される最適作業パターンを利用して、マシンコントロール機能によりショベル100に作業をさせた場合のアタッチメントの寿命と、オペレータ(初心者オペレータ及び熟練オペレータ)が手動でショベル100に作業をさせた場合のアタッチメントの寿命とを比較する図である。
尚、図中にて、縦棒の長さは、ばらつき範囲を示し、黒丸は、平均値を示す。
運転支援システムSYS(管理装置300)は、上述の如く、ショベル100の現在の環境条件下で、対象の目標指標に関する評価が相対的に高い(最大化された)最適作業パターンを出力し、ショベル100の運転支援を行う。例えば、運転支援システムSYS(管理装置300)は、ショベル100による積込み作業において、実現場での盛り土を現在の環境条件とし、作業の速さを目標指標とする、最適作業パターンを出力することにより、土砂の抱え込み、上部旋回体3の旋回、そして、排土までの最適な一連の動作をショベル100に実行させることができる。また、例えば、既に、アタッチメント等にき裂が発見されているショベル100に対して、き裂進展が遅くなるような作業パターンを出力することにより、ショベル100でのき裂進展を遅くすることができる。つまり、本実施形態に係る運転支援システムSYS(管理装置300)は、オペレータの操作熟練度に依らず、ある種別の作業において、対象の目標指標に関する評価が相対的に高い作業パターンをショベル100に行わせることができる。よって、運転支援システムSYSは、ショベルの作業効率、エネルギ効率(燃費)、耐久性等を向上させることができる。また、運転支援システムSYSは、掘削作業、積込み作業、転圧作業等の繰り返し操作を伴う作業におけるオペレータの操作を支援できる。よって、オペレータの疲労を緩和することができる。また、運転支援システムSYSは、ショベル100のアタッチメント等に発生したき裂の進展の遅さを目標指標にする場合、当該き裂の進展をなるべく遅くし、時間を稼ぐことができるため、き裂の状況把握や補修のために、現場の実作業が停止してしまうような事態を抑制できる。
具体的には、図5に示すように、目標指標がアタッチメントの仕様寿命の長さの場合を例にすると、初心者オペレータの場合、アタッチメントの使用寿命が短く、且つ、ばらつきが大きい。
また、熟練オペレータの場合、アタッチメントの使用寿命が初心者オペレータより長くなり、ばらつきも初心者より小さくなる。しかしながら、手動での作業であるため、ある程度のばらつきが生じ得る。
また、教師あり学習作業パターンを利用して、マシンコントロール機能によりショベル100に作業を行わせる場合、アタッチメントの使用寿命の平均値は上昇し、ばらつきもかなり小さくなる。しかしながら、教師データが過去の実績であるため、熟練オペレータの場合の使用寿命の最大値を超えることができない。
これに対して、本実施形態に係る運転支援システムSYS(管理装置300)により出力される最適作業パターンを利用して、マシンコントロール機能によりショベル100に作業を行わせる場合、アタッチメントの使用寿命の平均値及び最大値ともに教師あり学習作業パターンを利用する場合よりも長くなる。
また、運転支援システムSYS(管理装置300)は、上述の如く、最適作業パターンDB3100Dを更新する。これにより、図5に示すように、更新された最適作業パターンDBに基づく最適作業パターンを利用して、マシンコントロール機能によりショベル100に作業を行わせる場合、更新前よりも、アタッチメントの使用寿命の平均値を更に長くすることができると共に、ばらつきを更に小さくすることができる。
[機械学習機能及び運転支援機能の他の例]
次に、図6、図7を参照して、運転支援システムSYSにおける機械学習機能及び運転支援機能の他の例について説明する。
図6は、運転支援システムSYSにおける機械学習機能及び運転支援機能に関する機能構成の他の例を示す機能ブロック図である。具体的には、図6は、管理装置300(制御装置310)における機械学習機能及び運転支援機能に関する機能的な構成の他の例を示す機能ブロック図である。
本例では、管理装置300(制御装置310)は、最適作業パターンに加えて、最適段取りパターンを生成する。「段取り」は、作業内容(作業パターン)の組み合わせを意味し、「作業内容」は、動作パターンの組み合わせを意味する。具体的には、「段取り」は、例えば、施工現場における施工順番(掘削位置、掘削量、仮置き位置、仮置き量、スロープ位置等)、ダンプトラックの切返し位置、ダンプトラックの切返し回数、ダンプ台数、建設機械(ショベル等)の台数、土質、埋設物の有無や位置等を考慮した作業パターンの組み合わせである。つまり、管理装置300(制御装置310)は、最適段取りパターン、及び最適段取りパターンに含まれる各作業パターンに対応する最適作業パターンを生成する。以下、「段取りパターン」及び「作業パターン」を総括的に「段取り・作業パターン」と称する。また、本例では、段取りパターンや最適段取りパターンを中心に言及し、作業パターン及び最適作業パターン等の重複する記載を省略する場合がある。
制御装置310は、機能部として、情報取得部3101Xと、段取り・作業パターン生成部3102Xと、最適制御部3103Xを含む。また、制御装置310は、記憶部3100Xを利用する。記憶部3100Xには、ショベル段取り・作業関連情報DB3100AXと、教師DB3100BXと、教師あり学習段取り・作業パターンDB3100CXと、最適段取り・作業パターンDB3100DXが含まれる。
情報取得部3101Xは、一又は複数のショベル100からの作業パターン実績情報及び環境条件実績情報や一又は複数の飛行体200からの作業現場画像等のアップロードデータを取得する。また、情報取得部3101Xは、取得した作業パターン実績情報群から段取りに関する実績情報(以下、「段取り実績情報」)を生成する。また、情報取得部3101Xは、一又は複数のショベル100から段取り実績情報を取得してもよい。そして、情報取得部3101Xは、作業パターン情報、環境条件実績情報、段取り実績情報、及び作業現場画像を記憶部3100Xに構築されるショベル段取り・作業関連情報DBに格納(登録)する。ショベル段取り・作業関連情報DBは、ショベル100の一連の作業内容で構成される段取りごとに、且つ、段取りを構成する作業内容の組み合わせ(の種別)ごとにデータ抽出可能な態様に整理される。記憶部3100Xのショベル段取り・作業関連情報DB(Data Base)3100AXに作業パターン実績情報、環境条件実績情報、及び、作業現場画像を格納する。以下、ショベル段取り・作業関連情報DB3100AXに格納される1回の段取りごとの段取り実績情報及び環境条件実績情報等のセットを便宜的に「ショベル段取り関連情報」と称する。
段取り・作業パターン生成部3102Xは、ショベル段取り・作業関連情報DB3100AXに格納されるショベル段取り関連情報に基づき、対象となる作業内容の組み合わせ(の種別)ごと、且つ、対象となる目標指標ごとに、目標指標に関する評価が相対的に高い、換言すれば、当該評価が最大化された、異なる環境条件ごとの最適段取りパターンを生成する。
段取り・作業パターン生成部3102Xは、段取り・作業評価部3102AXと、教師あり学習部3102BXと、強化学習部3102CXと、シミュレータ部3102DXを含む。
段取り・作業評価部3102AXは、ショベル段取り・作業関連情報DB3100AXの中に格納されるショベル段取り関連情報の中から対象となる目標指標ごとに、目標指標に関する評価が相対的に高い、具体的には、所定基準以上のショベル段取り関連情報を抽出する。具体的には、対象となる目標指標ごとに評価に関連する特徴量が規定されており、段取り・作業評価部3102AXは、ショベル段取り関連情報の中から特徴量を抽出し、抽出した特徴量からそれぞれのショベル段取り関連情報を評価する。例えば、段取りに関する目標指標には、作業時間(の短さ)、作業人員(の少なさ)、必要燃料(の少なさ)、CO2排出量(の少なさ)等が含まれうる。また、段取りに関する特徴量には、掘削回数、旋回回数、旋回角度、掘削ごとの土量、積込みごとの土量等が含まれうる。段取り・作業評価部3102AXは、抽出したショベル段取り関連情報を教師あり学習の教師データとして、教師DB3100BXに格納する。教師DB3100BXは、作業内容の組み合わせ(の種別)ごと、且つ、対象の目標指標ごとに、データ抽出可能に教師データ(ショベル段取り関連情報)が整理される。
教師あり学習部3102BXは、教師DB3100BXに格納される教師データに基づき、作業内容の組み合わせ(の種別)ごと、且つ、目標指標ごとに、既知の機械学習(教師あり学習)を行う。そして、教師あり学習部3102BXは、教師あり学習の結果として、目標指標に関する評価が相対的に高い、複数の異なる環境条件ごとの段取りパターン(以下、「教師あり学習段取りパターン」)を生成する。このとき、目標指標に関する評価を行う部分については、段取り・作業評価部3102AXの機能を利用する態様であってよい。以下、強化学習部3102CXの場合についても同様である。生成された複数の教師あり学習段取りパターンは、環境条件ごとに抽出可能にデータが整理された教師あり学習段取り・作業パターンDB3100CXに格納される。
強化学習部3102CXは、教師あり学習段取り・作業パターンDB3100CXの複数の異なる環境条件ごとの教師あり学習段取りパターンを起点として、作業内容の組み合わせ(の種別)ごと、且つ、目標指標ごとに、強化学習を行い、目標指標が更に高い、複数の異なる環境条件ごとの作業パターン(最適作業パターン)を生成する。具体的には、強化学習部3102CXは、シミュレータ部3102DXに対象の組み合わせの段取りに関するシミュレーションを繰り返し試行させ、自律的に、いわゆる報酬が多くなる、つまり、対象の目標指標に関する評価が高くなる作業パターンを選択しながら、最終的に、ある環境条件下での最適作業パターンを生成する。また、強化学習部3102CXは、シミュレータ部3102DXを利用することにより、教師あり学習段取りパターンには含まれない環境条件下での最適作業パターンを生成することもできる。生成された複数の最適作業パターンは、作業内容の組み合わせ(の種別)ごと且つ環境条件ごとに抽出可能にデータが整理された最適段取り・作業パターンDB3100DXに格納される。
シミュレータ部3102DXは、作業内容の組み合わせ(の種別)ごとに、入力される環境条件、施工条件、段取りパターン等の入力条件に基づき、ショベル100の段取りに関する動作シミュレーションを行うことができる。これにより、シミュレータ部3102DXは、段取りパターンを生成することができる。そのため、強化学習部3102CXは、情報取得部3101Xにより取得される過去の段取りパターン(段取り実績情報)に基づく強化学習だけでなく、シミュレータ部3102DXにより生成される新たな段取りパターンに関する情報に基づく強化学習を行うことができる。
例えば、図7は、シミュレータ部3102DXによる施工現場の段取りに関するショベル100の動作シミュレーションの一例を説明する図である。
図7に示すように、本例では、一般道路720沿いの作業現場710でのショベル100による段取りに関するシミュレーションが行われる。
作業現場710には、一般道路720への土砂搬出用のスロープSLが形成され、ダンプトラックDTが土砂の搬出のために作業現場710に入場する。また、作業現場710には、掘削範囲711が設定されると共に、その周辺に土砂の仮置き領域712,713が設定される。また、作業現場710には、もう一箇所の掘削範囲714が設定されると共に、その周辺に土砂の仮置き領域715が設定される。
本例では、シミュレータ部3102DXは、この施工条件下で、掘削範囲711に関する掘削作業と、土砂の仮置き領域712,713への排土作業と、ダンプトラックDTへの仮置き領域712,713の土砂の積み込み作業との組み合わせに対応する段取りをシミュレーションする。また、シミュレータ部3102DXは、同じ施工条件下で、掘削範囲714に関する掘削作業と、土砂の仮置き領域715への排土作業と、ダンプトラックDTへの仮置き領域715の土砂の積み込み作業との組み合わせに対応する段取りをシミュレーションする。
この場合、シミュレータ部3102DXは、例えば、ショベル100の位置、向き、移動経路、作業の順番等の異なる複数の動作設定条件を生成し、シミュレーションを行う。その結果、シミュレータ部3102DXは、動作設定条件ごとの特徴量、目標指標を得る。このようにして、シミュレータ部3102DXは、仮想的な段取りパターン情報(以下、「段取りパターン仮想情報」)を生成することができる。そして、シミュレータ部3102DXは、段取りパターン仮想情報を強化学習部3102CXへ入力し、強化学習部3102CXは、最適段取りパターンを得ることができる。また、シミュレーションが行われる際には、一般道路720の位置等は変更不可要素、仮置き領域712、713、掘削範囲714等は変更可能要素として設定される。
尚、本実施形態では、情報取得部3101Xにより取得される情報に基づく段取りパターン実績情報を用いる事例も含まれるが、必ずしも段取りパターン実績情報を用いる必要はない。つまり、段取り・作業パターン生成部3102Xは、シミュレータ部3102DXで生成される段取りパターン仮想情報だけに基づき最適段取りパターンが取得することもできる。
最適制御部3103Xは、通信機器320を通じて、ショベル100から受信される取得要求信号に応じて、当該取得要求信号で指定される種別の作業内容の組み合わせについて、現在のショベル100の環境条件下で、対象の目標指標が相対的に高くなる(最大化する)最適段取りパターンを出力する。対象の目標指標は、予め規定されていてもよいし、ショベル100から送信される取得要求信号で指定されていてもよい。具体的には、最適制御部3103Xは、最適段取り・作業パターンDB3100DXに格納される複数の異なる環境条件ごとの最適作業パターンに基づき、現在のショベル100の環境条件下での最適作業パターンを出力する。
例えば、最適制御部3103Xは、最適段取り・作業パターンDB3100DXの中から現在のショベル100の環境条件(具体的には、取得要求信号に含まれる現環境条件情報に対応する環境条件)と一致する最適段取りパターンを抽出し、出力する。また、最適制御部3103Xは、現在のショベル100の環境条件と一致する最適段取りパターンが最適段取り・作業パターンDB3100DXにない場合、現在のショベル100の環境条件に比較的近い環境条件に対応する最適段取りパターンを一又は複数抽出してよい。そして、最適制御部3103Xは、抽出した最適段取りパターンに対応する環境条件と、現在のショベル100の環境条件との差異に基づき、抽出した一又は複数の最適段取りパターンに対して所定の補正を施すことにより、現在のショベル100の環境条件に対応する最適段取りパターンを出力してよい。
また、例えば、最適制御部3103Xは、強化学習部3102CXと同様の手法(アルゴリズム)を用いて、シミュレータ部3102DXを利用しながら、最適段取り・作業パターンDB3100DXに格納される複数の最適段取りパターンに基づき、自律的に、ショベル100の現在の環境下での目標指標が最大化する最適段取りパターンを一意的に出力してもよい。つまり、最適制御部3103Xは、最適段取り・作業パターンDB3100DXに格納される複数の最適段取りパターンに基づき、シミュレータ部3102DXを利用しながら、自律的に、ショベル100の現在の環境下での目標指標が最大化する最適段取りパターンを出力する人工知能を中心に構成されてもよい。これにより、最適制御部3103Xは、最適段取り・作業パターンDB3100DXの中に、ショベル100の現在の環境下に対応する最適段取りパターンが無い場合であっても、補正等の手法を用いることなく、より目標指標に関する評価の高い最適段取りパターンを出力できる。
最適制御部3103Xは、通信機器320を通じて、出力した最適段取りパターンを取得要求信号の送信元であるショベル100に送信する。
また、最適制御部3103Xは、出力した最適段取りパターンを最適段取り・作業パターンDB3100DXにフィードバック、つまり、追加し、最適段取り・作業パターンDB3100DXを更新させる。これにより、新たな環境条件に対応する作業パターンが最適段取り・作業パターンDB3100DXに追加されたり、最適段取り・作業パターンDB3100DXの作業パターンが目標指標に関する評価が更に高い作業パターンに更新されたりする。よって、最適制御部3103Xは、最適段取り・作業パターンDB3100DXの更新に応じて、目標指標に関する評価が更に高い最適段取りパターンを出力できるようになる。
また、段取り・作業パターン生成部3102Xの上述した一連の動作も、情報取得部3101Xによるショベル100等から新たな情報が取得され、ショベル段取り・作業関連情報DB3100AXが更新されるのに応じて、繰り返し実行される。そのため、段取り・作業パターン生成部3102Xの一連の動作によっても、最適段取り・作業パターンDB3100DXが更新される。よって、最適制御部3103Xは、最適段取り・作業パターンDB3100DXの更新に応じて、目標指標に関する評価が更に高い最適段取りパターンを出力できるようになる。
[機械学習機能及び運転支援機能の更に他の例]
次に、図8、図9を参照して、運転支援システムSYSにおける機械学習機能及び運転支援機能の更に他の例について説明する。
図8、図9は、運転支援システムSYSにおける機械学習機能及び運転支援機能に関する機能構成の更に他の例を示す機能ブロック図である。具体的には、図8は、本例に係る運転支援システムSYSの構成を示す機能ブロック図であり、図9は、本例に係る運転支援システムSYSの構成のうち、図8に記載されないショベル100の構成部分を示す機能ブロック図である。
本例では、機械学習機能及び運転支援機能がショベル100に搭載される。以下、本例に特有の部分を中心に説明し、重複する説明を省略する場合がある。
ショベル100のコントローラ30は、補助記憶装置にインストールされる一以上のプログラムをCPU上で実行することにより実現される機能部として、現在地形形状取得部F1と、目標地形形状取得部F2と、比較部F3と、作業開始判別部F4と、段取り・作業設定部F5と、動作内容判定部F6と、動作指令生成部F7と、動作制限部F8と、指令値算出部F9と、バケット現在位置算出部F10と、ブーム電流指令生成部F11と、ブームスプール変位量算出部F12と、ブーム角度算出部F13と、アーム電流指令生成部F21と、アームスプール変位量算出部F22と、アーム角度算出部F23と、バケット電流指令生成部F31と、バケットスプール変位量算出部F32と、バケット角度算出部F33と、旋回電流指令生成部F41と、旋回スプール変位量算出部F42と、旋回角度算出部F43を含む。
現在地形形状取得部F1(環境情報取得部の一例)は、撮像装置80の撮像画像に基づき、ショベル100の周囲の現在の地形形状(以下、「現在地形形状」)に関する情報(例えば、三次元の点群やサーフェス等の三次元データ)を取得する。
目標地形形状取得部F2は、施工現場における目標となる地形形状(例えば、目標施工面)(以下、「目標地形形状」)を取得する。
比較部F3は、現在地形形状と目標地形形状とを比較し、その差分に関する情報(以下、「差分情報」)を学習部F100に出力する。
作業開始判別部F4は、通信機器T1を通じて管理装置300から受信される指令に応じて、作業開始を判別する。
段取り・作業設定部F5は、通信機器T1を通じて管理装置300から受信される指令に応じて、作業現場での段取り及び段取りに含まれる作業の内容を設定する。設定される段取り及び作業の内容は、学習部F100及び動作内容判定部F6に入力される。
動作内容判定部F6は、学習部F100から指令に応じて、段取り・作業設定部F5により設定される段取り及び作業内容に沿った動作内容を判定する。また、判定される動作内容は、学習部F100及び動作指令生成部F7に入力される。
動作指令生成部F7(制御部の一例)は、学習部F100からの指令、動作内容判定部F6により判定された動作内容、及びバケット現在位置算出部F10により算出されるバケット6の作業部位(例えば、爪先や背面等)の現在位置(以下、「バケット現在位置」)に応じて、ショベル100の動作指令、つまり、ショベル100の被駆動要素を駆動するアクチュエータの動作指令を生成する。生成される動作指令は、学習部F100及び動作制限部F8に入力される。
動作制限部F8は、所定の動作制限条件に応じて、動作指令生成部F7により生成される動作指令に対応するショベル100の動作を制限する(動作を停止する場合を含む)。動作制限条件には、例えば、"動作指令に対応するショベル100の動作によって、ショベル100の作業部位以外の部分が周囲の物体と当接する可能性があること"を含まれてよい。また、動作制限条件には、例えば、"動作指令に対応するショベル100の動作によって、アタッチメントの動作軸の角速度の許容範囲を逸脱すること"が含まれてもよい。具体的には、動作制限部F8は、動作制限条件が成立する場合、動作指令生成部F7により生成される動作指令を、ショベル100の動作が制限されるように補正した補正動作指令を指令値算出部F9に出力する。一方、動作制限部F8は、動作制限条件が成立しない場合、動作指令生成部F7により生成される動作指令をそのまま指令値算出部F9に出力する。
指令値算出部F9は、動作制限部F8から入力される動作指令或いは補正動作指令に基づき、各被駆動要素(ブーム4、アーム5、バケット6、上部旋回体3、下部走行体1の左右のクローラ)に対する指令値を出力する。具体的には、指令値算出部F9は、ブーム4に対するブーム指令値α*、アーム5に対するアーム指令値β*、バケット6に対するバケット指令値γ*、上部旋回体3に対する旋回指令値δ*、右側のクローラに対する右走行指令値ε1*、左側のクローラに対する左走行指令値ε2*を出力する。
バケット現在位置算出部F10は、バケット6の作業部位の現在位置(バケット現在位置)を算出する。具体的には、ブーム角度算出部F13、アーム角度算出部F23、バケット角度算出部F33、旋回角度算出部F43等からフィードバックされるブーム角度α、アーム角度β、バケット角度γ、右駆動輪回転角度ε1、及び左駆動輪回転角度ε2に基き、バケット現在位置を算出する。
ブーム電流指令生成部F11は、ブーム比例弁31Aに対してブーム電流指令を出力する。
ブームスプール変位量算出部F12は、ブームスプール変位センサS16の出力に基づき、ブームシリンダ7に対応する制御弁175を構成するブームスプールの変位量を算出する。
ブーム角度算出部F13は、ブーム角度センサS11の出力に基づき、ブーム角度αを算出する。
ブーム電流指令生成部F11は、基本的に、指令値算出部F9が生成したブーム指令値α*とブーム角度算出部F13が算出したブーム角度αとの差がゼロになるように、ブーム比例弁31Aに対するブーム電流指令を生成する。その際、ブーム電流指令生成部F11は、ブーム電流指令から導き出される目標ブームスプール変位量とブームスプール変位量算出部F12が算出したブームスプール変位量との差がゼロになるように、ブーム電流指令を調節する。そして、ブーム電流指令生成部F11は、その調節後のブーム電流指令をブーム比例弁31Aに対して出力する。
ブーム比例弁31Aは、ブーム電流指令に応じて開口面積を変化させ、ブーム指令電流の大きさに対応するパイロット圧を制御弁175のパイロットポートに作用させる。制御弁175は、パイロット圧に応じてブームスプールを移動させ、ブームシリンダ7に作動油を流入させる。ブームスプール変位センサS16は、ブームスプールの変位を検出し、その検出結果をコントローラ30のブームスプール変位量算出部F12にフィードバックする。ブームシリンダ7は、作動油の流入に応じて伸縮し、ブーム4を上下動させる。ブーム角度センサS11は、上下動するブーム4の回動角度を検出し、その検出結果をコントローラ30のブーム角度算出部F13にフィードバックする。ブーム角度算出部F13は、算出したブーム角度αをバケット現在位置算出部F10にフィードバックする。
アーム電流指令生成部F21は、アーム比例弁31Bに対してアーム電流指令を出力する。
アームスプール変位量算出部F22は、アームスプール変位センサS17の出力に基づき、アームシリンダ8に対応する制御弁176を構成するアームスプールの変位量を算出する。
アーム角度算出部F23は、アーム角度センサS12の出力に基づき、アーム角度βを算出する。
アーム電流指令生成部F21は、基本的に、指令値算出部F9が生成したアーム指令値β*とアーム角度算出部F23が算出したアーム角度βとの差がゼロになるように、アーム比例弁31Bに対するアーム電流指令を生成する。その際、アーム電流指令生成部F21は、アーム電流指令から導き出される目標アームスプール変位量とアームスプール変位量算出部F22が算出したアームスプール変位量との差がゼロになるように、アーム電流指令を調節する。そして、アーム電流指令生成部F21は、その調節後のアーム電流指令をアーム比例弁31Bに対して出力する。
アーム比例弁31Bは、アーム電流指令に応じて開口面積を変化させ、アーム指令電流の大きさに対応するパイロット圧を制御弁176のパイロットポートに作用させる。制御弁176は、パイロット圧に応じてアームスプールを移動させ、アームシリンダ8に作動油を流入させる。アームスプール変位センサS17は、アームスプールの変位を検出し、その検出結果をコントローラ30のアームスプール変位量算出部F22にフィードバックする。アームシリンダ8は、作動油の流入に応じて伸縮し、アーム5を開閉させる。アーム角度センサS12は、開閉するアーム5の回動角度を検出し、その検出結果をコントローラ30のアーム角度算出部F23にフィードバックする。アーム角度算出部F23は、算出したアーム角度βをバケット現在位置算出部F10にフィードバックする。
バケット電流指令生成部F31は、バケット比例弁31Cに対してバケット電流指令を出力する。
バケットスプール変位量算出部F32は、バケットスプール変位センサS18の出力に基づき、バケットシリンダ9に対応する制御弁174を構成するバケットスプールの変位量を算出する。
バケット角度算出部F33は、バケット角度センサS13の出力に基づき、バケット角度γを算出する。
バケット電流指令生成部F31は、基本的に、指令値算出部F9が生成したバケット指令値γ*とバケット角度算出部F33が算出したバケット角度γとの差がゼロになるように、バケット比例弁31Cに対するバケット電流指令を生成する。その際、バケット電流指令生成部F31は、バケット電流指令から導き出される目標バケットスプール変位量とバケットスプール変位量算出部F32が算出したバケットスプール変位量との差がゼロになるように、バケット電流指令を調節する。そして、バケット電流指令生成部F31は、その調節後のバケット電流指令をバケット比例弁31Cに対して出力する。
バケット比例弁31Cは、バケット電流指令に応じて開口面積を変化させ、バケット指令電流の大きさに対応するパイロット圧を制御弁174のパイロットポートに作用させる。制御弁174は、パイロット圧に応じてバケットスプールを移動させ、バケットシリンダ9に作動油を流入させる。バケットスプール変位センサS18は、バケットスプールの変位を検出し、その検出結果をコントローラ30のバケットスプール変位量算出部F32にフィードバックする。バケットシリンダ9は、作動油の流入に応じて伸縮し、バケット6を開閉させる。バケット角度センサS13は、開閉するバケット6の回動角度を検出し、その検出結果をコントローラ30のバケット角度算出部F33にフィードバックする。バケット角度算出部F33は、算出したバケット角度γをバケット現在位置算出部F10にフィードバックする。
旋回電流指令生成部F41は、旋回比例弁31Dに対して旋回電流指令を出力する。
旋回スプール変位量算出部F42は、旋回スプール変位センサS19の出力に基づき、旋回油圧モータ2Aに対応する制御弁173を構成する旋回スプールの変位量を算出する。
旋回角度算出部F43は、旋回角度センサS15の出力に基づき、旋回角度δを算出する。
旋回電流指令生成部F41は、基本的に、指令値算出部F9が生成した旋回指令値δ*と旋回角度算出部F43が算出した旋回角度δとの差がゼロになるように、旋回比例弁31Dに対する旋回電流指令を生成する。その際、旋回電流指令生成部F41は、旋回電流指令から導き出される目標旋回スプール変位量と旋回スプール変位量算出部F42が算出した旋回スプール変位量との差がゼロになるように、旋回電流指令を調節する。そして、旋回電流指令生成部F41は、その調節後の旋回電流指令を旋回比例弁31Dに対して出力する。
旋回比例弁31Dは、旋回電流指令に応じて開口面積を変化させ、旋回指令電流の大きさに対応するパイロット圧を制御弁173のパイロットポートに作用させる。制御弁173は、パイロット圧に応じて旋回スプールを移動させ、旋回油圧モータ2Aに作動油を流入させる。旋回スプール変位センサS19は、旋回スプールの変位を検出し、その検出結果をコントローラ30の旋回スプール変位量算出部F42にフィードバックする。旋回油圧モータ2Aは、作動油の流入に応じて回転し、上部旋回体3を旋回させる。旋回角度センサS15は、旋回する上部旋回体3の旋回角度を検出し、その検出結果をコントローラ30の旋回角度算出部F43にフィードバックする。旋回角度算出部F43は、算出した旋回角度δをバケット現在位置算出部F10にフィードバックする。
また、下部走行体1の右クローラ及び左クローラについても、ブーム4、アーム5、バケット6、及び上部旋回体3等の他の被駆動要素(作業体)と同様のフィードバックループを有する。つまり、指令値算出部F9が生成した右走行指令値ε1*及び左走行指令値ε2*の入力に基づくフィードバックループが構成される。当該フィードバックループからは、右側のクローラ及び左側のクローラの駆動輪の回転位置(回転角度)を表す右駆動輪回転角度ε1及び左駆動輪回転角度ε2がバケット現在位置算出部F10にフィードバックされる。
このように、コントローラ30は、被駆動要素(作業体)ごとに、3段のフィードバックループを構成する。即ち、コントローラ30は、スプール変位量に関するフィードバックループ、被駆動要素(作業体)の回動角度に関するフィードバックループ、及び、バケット6の作業部位の位置(例えば、爪先の位置)に関するフィードバックループを構成する。これにより、コントローラ30は、自動制御の際に、バケット6の作業部位の動きを高精度に制御できる。
学習部F100(実績情報取得部、生成部、及び出力部の一例)は、機械学習機能及び運転支援機能を実現する。つまり、学習部F100は、上述の管理装置300(制御装置310)の情報取得部3101X、段取り・作業パターン生成部3102X、及び最適制御部3103Xと同様の機能を有する。
具体的には、学習部F100は、上述の管理装置300と異なり、自機(ショベル100)に実際の作業及び段取りを行わせながら、実際の作業及び段取りの中で取得される実績情報に基づき、強化学習を行う。当該実績情報には、段取り・作業設定部F5、動作内容判定部F6、及び動作指令生成部F7からフィードバックされるショベル100の段取り、作業、及び動作に関する実績情報が含まれる。また、実績情報には、比較部F3を介して現在地形形状取得部F1から入力されるショベル100の周囲の現在地形形状情報等の環境条件に関する実績情報が含まれる。また、実績情報には、比較部F3から差分情報等のショベル100の段取り、作業、及び動作等の結果に関する実績情報が含まれる。これにより、学習部F100は、作業種別或いは作業内容の組み合わせごと(の種別)且つ環境条件ごとに、実績情報を起点として、目標指標が相対的に高くなるような作業パターン(最適作業パターン)や段取りパターン(最適段取りパターン)を生成することができる。そして、学習部F100は、比較部F3から入力される差分情報に基づき、現在の環境条件(即ち、現在地形形状)下での最適作業パターンや最適段取りパターンに対応する指令を段取り・作業設定部F5、動作内容判定部F6、及び動作指令生成部F7に出力する。これにより、コントローラ30(動作指令生成部F7)は、最適作業パターンや最適段取りパターンに基づき、自機(ショベル100)を自動或いは半自動で制御することができる。
[運転支援システムの作用]
次に、図10を参照して、本実施形態に係る運転支援システムSYS(具体的には、図8、図9に示す運転支援システムSYS)の作用について説明する。
図10は、運転支援システムSYSの作用を説明する図である。具体的には、図8、図9に示す運転支援システムSYS(ショベル100に搭載される学習部F100)の作用を説明する図である。
本例では、ショベル100が盛土により法面(目標施工面1001)を施工する作業を行っている。通常、法面の施工は、紙面に対して奥行きへ向かって連続的に施工される。このため、施工領域は、ショベル100の進行方向に向かって複数の区間に分けられる。そして、一の区間において、法尻から法肩、或いは、法尻から法肩を施工が完了すると、隣接する次の区間へ走行移動し、次の区間の施工が開始される。
ショベル100は、目標施工面1001と現在の斜面の形状との差分を埋めるため、バケット6に収容した土砂を斜面に沿って排土している。
しかしながら、本例では、排土された土砂が斜面の麓側に崩落してしまい、想定形状1002とは異なる態様の形状(実際形状1003)になってしまっている。この要因として、例えば、土砂特性の相違や天候の変化等が考えられる。
ここで、ショベル100の学習部F100は、今回の動作内容、作業内容、及び段取りと、その結果(実際形状1003)とを実績情報として強化学習を行う。
例えば、ショベル100の学習部F100は、同様の環境条件下での排土作業時において、掬い上げ動作を追加する形で、最適作業パターン及び最適段取りパターンを更新する。これにより、復帰のための掬い上げ動作を行われ、土砂形状が想定形状1002に形成される。その後、次の区間における施工を開始する際には、類似する土砂特性の相違や天候等の環境情報において報酬が高い作業パターンが抽出され、抽出された作業パターンに基づき施工作業が継続される。よって、復帰作業においても学習部F100による強化学習により復帰を迅速に行うことができる。更に、一の区間における実績を次の区間において用いることができる。
このように、ショベル100は、同様の環境条件下の作業において、コントローラ30(学習部F100)の制御下で、排土時に掬い上げ動作を同時に行うようになる。そのため、ショベル100(コントローラ30)は、自律的に、目標指標(例えば、作業効率)が相対的に高くなるように自機の作業を改善していくことができる。
[変形・改良]
以上、本発明を実施するための形態について詳述したが、本発明はかかる特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
例えば、上述した実施形態では、操作装置26は、オペレータによる操作状態に応じたパイロット圧を出力する油圧式であったが、電気信号を出力する電気式であってもよい。この場合、コントロールバルブ17は、電磁パイロット方式の制御弁を含む態様であってよい。また、コントローラ30は、電気式の操作装置から入力される電気信号から操作状態を直接的に把握しながら、マシンガイダンス機能或いはマシンコントロール機能に関する制御を行うことができる。
また、上述した実施形態及び変形例では、ショベル100は、作業パターン実績情報等を管理装置300にアップロードすると共に、管理装置300から最適作業パターンを取得し、最適作業パターンに基づくマシンコントロール機能に関する制御が実行されるが、当該態様には、限定されない。例えば、作業パターン実績情報等を管理装置300にアップロードするショベルと、運転支援システムSYS(管理装置300)による運転支援の対象であるショベルとは、別であってもよい。この場合、作業パターン実績情報等を管理装置300にアップロードするショベルは、マシンガイダンス機能やマシンコントロール機能を有している必要がない。
また、上述した実施形態及び変形例では、作業パターン実績情報及び環境条件実績情報や作業現場画像等は、ショベル100や飛行体200から管理装置300にアップロードされるが、当該態様には限定されない。例えば、ショベル100や飛行体200に記録された作業パターン実績情報及び環境条件実績情報や作業現場画像等を、サービスマン等が所定の方法で、ショベル100や飛行体200の外部の記憶装置に読み出す。そして、サービスマン等が管理装置300に対応する施設に出向いて、当該記憶装置から管理装置300に作業パターン実績情報及び環境条件実績情報や作業現場画像等のデータを転送させる態様であってもよい。
また、上述した実施形態及び変形例では、ショベル100に搭載される状態検出装置S1から出力される検出情報等に基づき、作業パターン実績情報が構成されるが、当該態様には限定されない。例えば、ショベル100の作業を外部から観測するセンサ(例えば、カメラ、LIDAR、ミリ波レーダ等)の検出情報等に基づき、作業パターン実績情報が構成されてもよい。この場合、当該センサの検出情報は、アップロードされたり、所定の記憶装置に記録され、管理装置300に対応する施設に出向いた作業者等により、管理装置300にデータ転送されたりしてよい。
また、上述した実施形態及び変形例では、最適制御部3103の機能が管理装置300に設けられるが、ショベル100に設けられてもよい。この場合、管理装置300からショベル100に、最適作業パターンDB3100Dに相当するデータセットが予め配信される。また、管理装置300で最適作業パターンDB3100Dが更新されると、上記データセットの更新版が管理装置300からショベル100に配信される。
また、上述した実施形態及び変形例では、ショベル100は、下部走行体1、上部旋回体3、ブーム4、アーム5、及びバケット6等の各種動作要素を全て油圧駆動する構成であったが、その一部が電気駆動される構成であってもよい。つまり、上述した実施形態で開示される構成等は、ハイブリッドショベルや電動ショベル等に適用されてもよい。
尚、本願は、2018年3月30日に出願した日本国特許出願2018−070359号に基づく優先権を主張するものであり、これらの日本国特許出願の全内容を本願に参照により援用する。
30 コントローラ
31 操作バルブ
40 表示装置
42 入力装置
80 撮像装置
80B,80F,80L,80R カメラ
100 ショベル(建設機械)
200 飛行体
300 管理装置
301 情報送信部
302 作業パターン取得部
303 マシンガイダンス部
310 制御装置
320 通信機器
330 操作入力装置
340 表示装置
3100 記憶部
3100A ショベル作業関連情報DB
3100B 教師DB
3100C 教師あり学習作業パターンDB
3100D 最適作業パターンDB
3101,3101X 情報取得部(実績情報取得部)
3102 作業パターン生成部(生成部)
3102A 作業評価部
3102AX 段取り・作業評価部
3102B,3102BX 教師あり学習部
3102C,3102CX 強化学習部
3102D,3102DX シミュレータ部
3102X 段取り・作業パターン生成部(生成部)
3103,3103X 最適制御部(環境条件取得部、出力部)
F1 現在地形形状取得部(環境条件取得部)
F7 動作指令生成部(制御部)
F100 学習部(実績情報取得部、生成部、出力部)
S1 状態検出装置
SYS 運転支援システム
T1 通信機器
特許文献1:特開2016−156193号公報

Claims (4)

  1. 所定の目標指標に関する評価が相対的に高くなるように、建設機械の複数の作業パターン又は段取りパターンを生成する生成部と、
    支援対象の建設機械の環境情報を取得する環境情報取得部と、
    前記生成部により生成される複数の作業パターン又は段取りパターンに基づき、前記環境情報取得部により取得される環境情報に対応する環境下において、支援対象の建設機械の作業の前記目標指標に関する評価が相対的に高くなるような作業パターン又は段取りパターンを出力する出力部と、を備える、
    建設機械の運転支援システム。
  2. 建設機械の過去の作業実績又は段取り実績に関する実績情報を取得する実績情報取得部を更に備え、
    前記生成部は、前記実績情報取得部により取得される実績情報のうちの前記目標指標に関する評価が相対的に高い実績情報に基づき、前記複数の作業パターン又は段取りパターンを生成する、
    請求項1に記載の建設機械の運転支援システム。
  3. 前記生成部は、前記生成部により生成され、支援対象の作業機械で用いられた作業パターン又は段取りパターンに基づき、前記複数の作業パターン又は段取りパターンを更新する、
    請求項1に記載の建設機械の運転支援システム。
  4. 所定の目標指標に関する評価が相対的に高くなるように、自機の複数の作業パターン又は段取りパターンを生成する生成部と、
    自機の周囲の環境情報を取得する環境情報取得部と、
    前記生成部により生成される複数の作業パターン又は段取りパターンに基づき、前記環境情報取得部により取得される環境情報に対応する環境下において、前記目標指標に関する評価が相対的に高くなるような作業パターン又は段取りパターンを出力する出力部と、
    前記出力部により出力される作業パターン又は段取りパターンに基づき、自機の動作を制御する制御部と、を備える、
    建設機械。
JP2020509360A 2018-03-30 2019-03-29 建設機械の運転支援システム、建設機械 Active JP7328212B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018070359 2018-03-30
JP2018070359 2018-03-30
PCT/JP2019/014344 WO2019189888A1 (ja) 2018-03-30 2019-03-29 建設機械の運転支援システム、建設機械

Publications (2)

Publication Number Publication Date
JPWO2019189888A1 true JPWO2019189888A1 (ja) 2021-03-25
JP7328212B2 JP7328212B2 (ja) 2023-08-16

Family

ID=68060209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020509360A Active JP7328212B2 (ja) 2018-03-30 2019-03-29 建設機械の運転支援システム、建設機械

Country Status (6)

Country Link
US (1) US20210012163A1 (ja)
EP (1) EP3779071B1 (ja)
JP (1) JP7328212B2 (ja)
KR (1) KR102602383B1 (ja)
CN (1) CN112004975A (ja)
WO (1) WO2019189888A1 (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7088691B2 (ja) * 2018-02-28 2022-06-21 株式会社小松製作所 積込機械の制御装置、制御方法および遠隔操作システム
US11709495B2 (en) * 2019-03-29 2023-07-25 SafeAI, Inc. Systems and methods for transfer of material using autonomous machines with reinforcement learning and visual servo control
JP7419348B2 (ja) * 2019-04-04 2024-01-22 株式会社小松製作所 作業機械を含むシステム、コンピュータによって実行される方法、および学習済みの姿勢推定モデルの製造方法
US20220220709A1 (en) * 2019-05-24 2022-07-14 Kawasaki Jukogyo Kabushiki Kaisha Construction machinery with learning function
US11440680B2 (en) * 2019-07-09 2022-09-13 United States Of America As Represented By The Secretary Of The Navy Tether management system for a tethered UAV
JP2021095718A (ja) * 2019-12-16 2021-06-24 住友重機械工業株式会社 ショベル、情報処理装置
US20230063004A1 (en) * 2020-03-09 2023-03-02 Danfoss A/S System and method for control of heavy machinery
JP6997823B2 (ja) * 2020-03-16 2022-01-18 日立建機株式会社 作業機械
WO2021187206A1 (ja) * 2020-03-17 2021-09-23 日立建機株式会社 作業車両
JP2021156086A (ja) * 2020-03-30 2021-10-07 住友重機械工業株式会社 ショベルの管理装置
JP7481908B2 (ja) * 2020-05-29 2024-05-13 株式会社小松製作所 掘削計画作成装置、作業機械および掘削計画作成方法
US11774959B2 (en) 2020-07-30 2023-10-03 Caterpillar Paving Products Inc. Systems and methods for providing machine configuration recommendations
CN116249813A (zh) * 2020-09-28 2023-06-09 神钢建机株式会社 作业区域设定系统和操作目标检测系统
CN116490655A (zh) * 2020-11-09 2023-07-25 国立大学法人广岛大学 工程机械的自动运行装置
EP4317607A1 (en) * 2021-05-20 2024-02-07 Komatsu Ltd. Display system, work machine, and display method
IT202200000293A1 (it) * 2022-01-11 2023-07-11 Cnh Ind Italia Spa Veicolo da lavoro
US11906981B2 (en) 2022-02-08 2024-02-20 Caterpillar Inc. System and method for updating virtual worksite
JP2024005910A (ja) * 2022-06-30 2024-01-17 株式会社小松製作所 作業車両の経路計画生成システム、作業車両の経路計画生成方法
WO2024090618A1 (ko) * 2022-10-28 2024-05-02 볼보 컨스트럭션 이큅먼트 에이비 학습 정보를 이용하여 굴착기의 동작 패턴을 결정하는 방법 및 디바이스

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11315556A (ja) * 1997-12-19 1999-11-16 Carnegie Mellon Univ 土工機械の自律制御を最適化する学習システムおよび方法
JP2016156193A (ja) * 2015-02-25 2016-09-01 株式会社日立製作所 操作支援システムおよび操作支援システムを備えた作業機械
WO2017170968A1 (ja) * 2016-03-30 2017-10-05 株式会社小松製作所 シミュレーションシステム及びシミュレーション方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6076030A (en) * 1998-10-14 2000-06-13 Carnegie Mellon University Learning system and method for optimizing control of autonomous earthmoving machinery
US20050021245A1 (en) * 2002-06-12 2005-01-27 Yoshinori Furuno Information providing system of construction machine and information providing method of construction machine
SI3372605T1 (sl) 2008-10-22 2022-03-31 Array Biopharma, Inc. Substituirane pirazolo(1,5-a)pirimidinske spojine kot zaviralci TRK-kinaze
KR101799101B1 (ko) * 2010-08-23 2017-11-20 두산인프라코어 주식회사 건설기계의 작업 패턴 인식 장치 및 작업 패턴 인식 방법
US10248133B2 (en) * 2011-06-27 2019-04-02 Caterpillar Inc. Method and system for mapping terrain and operating autonomous machines using machine parameters
US9624650B2 (en) * 2015-05-05 2017-04-18 Caterpillar Inc. System and method for implement control
US20160349733A1 (en) 2015-05-29 2016-12-01 Caterpillar Inc. Machine Performance Evaluation and Feedback System
JP6397135B2 (ja) * 2016-03-31 2018-09-26 日立建機株式会社 建設機械の出力特性変更システム
JP6840430B2 (ja) 2016-11-02 2021-03-10 株式会社京都製作所 振分け装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11315556A (ja) * 1997-12-19 1999-11-16 Carnegie Mellon Univ 土工機械の自律制御を最適化する学習システムおよび方法
JP2016156193A (ja) * 2015-02-25 2016-09-01 株式会社日立製作所 操作支援システムおよび操作支援システムを備えた作業機械
WO2017170968A1 (ja) * 2016-03-30 2017-10-05 株式会社小松製作所 シミュレーションシステム及びシミュレーション方法

Also Published As

Publication number Publication date
KR20200130376A (ko) 2020-11-18
JP7328212B2 (ja) 2023-08-16
EP3779071A4 (en) 2021-10-20
EP3779071B1 (en) 2024-02-21
KR102602383B1 (ko) 2023-11-14
CN112004975A (zh) 2020-11-27
US20210012163A1 (en) 2021-01-14
EP3779071A1 (en) 2021-02-17
WO2019189888A1 (ja) 2019-10-03

Similar Documents

Publication Publication Date Title
JP7328212B2 (ja) 建設機械の運転支援システム、建設機械
US10968597B2 (en) Shovel and control method thereof
US20200165799A1 (en) Excavator
EP3521515B1 (en) Grading control system using machine linkages
WO2020080538A1 (ja) ショベル
US9322148B2 (en) System and method for terrain mapping
EP3112967B1 (en) Site management system, in-flight detection method, and nontransitory computer readable medium storing program of site management system
JPWO2018164172A1 (ja) ショベル及び建設機械の作業支援システム
US20230071015A1 (en) Construction assist system for shovel
US20210309352A1 (en) Systems and methods for generating earthmoving prescriptions
US11634887B2 (en) Method and system for controlling construction machinery
WO2021193839A1 (ja) 建設機械の情報通信システム、建設機械の表示装置、機械学習装置
US11226627B2 (en) System for modifying a spot location
JP7463158B2 (ja) 作業管理システム
US20240011252A1 (en) Shovel and shovel control device
US20240167245A1 (en) Shovel, shovel control device, and machine learning device
JP2024073207A (ja) ショベル、ショベルの制御装置、及び機械学習装置
JP2022157635A (ja) 建設機械の管理システム
CN115877800A (zh) 机上远程控制

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200929

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A527

Effective date: 20200929

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230803

R150 Certificate of patent or registration of utility model

Ref document number: 7328212

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150