JP6320185B2 - ショベル支援装置 - Google Patents

ショベル支援装置 Download PDF

Info

Publication number
JP6320185B2
JP6320185B2 JP2014122997A JP2014122997A JP6320185B2 JP 6320185 B2 JP6320185 B2 JP 6320185B2 JP 2014122997 A JP2014122997 A JP 2014122997A JP 2014122997 A JP2014122997 A JP 2014122997A JP 6320185 B2 JP6320185 B2 JP 6320185B2
Authority
JP
Japan
Prior art keywords
excavator
cumulative damage
damage degree
value
evaluation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014122997A
Other languages
English (en)
Other versions
JP2016003462A (ja
Inventor
正樹 小川
正樹 小川
ライ 申
ライ 申
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2014122997A priority Critical patent/JP6320185B2/ja
Priority to CN201510187735.4A priority patent/CN105275043B/zh
Publication of JP2016003462A publication Critical patent/JP2016003462A/ja
Application granted granted Critical
Publication of JP6320185B2 publication Critical patent/JP6320185B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Component Parts Of Construction Machinery (AREA)
  • Operation Control Of Excavators (AREA)

Description

本発明は、作業内容及び作業環境と、稼働中のショベルとの組み合わせの不適合(ミスマッチ)の検出を支援するショベル支援装置に関する。
稼働中の油圧ショベルが最適機種であるかどうかを判別するショベルの管理システムが公知である(例えば、下記の特許文献1)。この管理システムにおいては、油圧ショベルのエンジン、フロント作業機(ブーム、アーム、バケット)、旋回体、走行体のそれぞれの累積稼働時間が、油圧ショベルごとにデータベースに格納される。データベースに格納されたデータに基づいて、特定の油圧ショベルの使用状態に関する指標(例えば走行比率)と、同機種の油圧ショベルについての指標に対する稼働台数の分布が求められる。両者を比較することによって、特定の油圧ショベルが最適機種であるか否かが判別される。
国際公開第2001/73226号
上述の従来方法では、特定の油圧ショベルが、現在の作業内容や作業環境に適合しているか否かを精度よく判別することが困難である。本発明の目的は、稼働中のショベルが、現在の作業内容や作業環境に適合しているか否かを精度よく判別することが可能となるショベル支援装置を提供することである。
本発明の一観点によると、
画像を表示する表示画面と、
前記表示画面に画像を表示する処理装置と
を有し、
前記処理装置は、評価対象のショベルの複数の部品ごとに蓄積された累積損傷度に基づいて、前記評価対象のショベルに対する評価値の時刻歴を取得し、累積損傷度の前記評価値を、評価対象の前記ショベルがミスマッチ状態であるか否かを判定するための、稼働時間とともに増加する判定閾値と比較し、前記評価値が前記判定閾値を超えている場合に、評価対象の前記ショベルがミスマッチ状態であることを通知するショベル支援装置が提供される。
本発明の他の観点によると、
画像を表示する表示画面と、
前記表示画面に画像を表示する処理装置と
を有し、
前記処理装置は、評価対象のショベルの複数の部品ごとに蓄積された累積損傷度に基づいて、前記評価対象のショベルに対する評価値の時刻歴を取得し、累積損傷度の前記評価値を、評価対象の前記ショベルがミスマッチ状態であるか否かを判定するための、稼働時間とともに増加する判定閾値とともに、前記表示画面に時系列で表示するショベル支援装置が提供される。
累積損傷度の評価値が、評価対象のショベルがミスマッチ状態であるか否かを判定するための、稼働時間とともに増加する判定閾値とともに時系列で表示されるため、稼働中の
ショベルが、現在の作業内容や作業環境に適合しているか否かを精度よく判別することが可能となる。
図1は、実施例によるショベル支援装置を含むシステム構成図である。 図2A及び図2Bは、ショベル支援装置の支援対象となるショベルの側面図である。 図3は、ショベルのブロック図である。 図4は、実施例によるショベル支援装置、ショベル、及び管理装置の間で行われる通信のシーケンスを示す図である。 図5は、ショベル支援装置の表示画面に表示された画像を示す図である。 図6は、ショベル支援装置の表示画面に表示された画像を示す図である。 図7は、ショベル支援装置の表示画面に表示された画像を示す図である。 図8は、ショベル支援装置の表示画面に表示された画像を示す図である。 図9は、ショベル支援装置の表示画面に表示された画像を示す図である。 図10は、実施例によるショベル支援装置、ショベル、及び管理装置の間で行われる通信の他のシーケンスを示す図である。 図11は、ショベル支援装置の表示画面に表示された画像を示す図である。 図12は、ショベル支援装置の表示画面に表示された画像を示す図である。 図13は、他の実施例によるショベル支援装置、ショベル、及び管理装置の間で行われる通信のシーケンスを示す。 図14は、さらに他の実施例によるショベル支援装置とショベルとの間で行われる通信のシーケンスを示す。 図15は、累積損傷度の評価値を算出する方法のフローチャートである。 図16A〜図16Dは、ショベルで繰り返される一連の動作の一例を示す図である。 図17A〜図17Cは、それぞれショベルの動作中におけるブーム用の油圧シリンダ内の油圧、アームの先端の高さ、及び旋回角度の時間波形(時間変化)の一例を示すグラフである。 図18は、ある解析時刻においてブームに加わる応力の分布の算出結果を示す図である。 図19は、ショベルの部品の1つの評価点Epに加わる応力の時間波形の一例を示すグラフである。 図20は、S−N線図の一例を示すグラフである。
図1に、実施例によるショベル支援装置を含むシステム構成図を示す。このシステムは、管理対象(支援対象)の複数のショベル20、ショベル支援装置30、及び管理装置60を含む。ショベル20、ショベル支援装置30、及び管理装置60が、通信回線70を介して相互に通信を行う。ショベル20とショベル支援装置30とが、通信回線70を経由せず、直接通信することも可能である。
ショベル20に、車両コントローラ21、通信装置22、GPS(全地球測位システム)受信機23、表示装置24、近距離無線通信装置25、及びセンサ群26が搭載されている。センサ群26は、ショベル20の種々の稼働情報を検出する。センサ群26の検出値が車両コントローラ21に入力される。稼働情報には、例えば、油圧ポンプ圧力、冷却水温度、油圧負荷、アタッチメントの姿勢、油圧シリンダ伸縮長、旋回角、運転時間、累積稼働時間等が含まれる。
車両コントローラ21は、ショベル20の機体識別情報(機体番号)、種々の稼働情報の検出値、及びGPS受信機23で算出された現在位置情報を、通信装置22から、通信回線70を介して管理装置60に送信する。GPS受信機23は、ショベル20の現在位置を検出する位置センサとしての役割を有する。さらに、車両コントローラ21は、ショベル20に関する種々の情報を表示装置24に表示する。近距離無線通信装置25は、通信回線70を介することなく、直接、ショベル支援装置30と通信する。
ショベル支援装置30は、表示画面31、入力装置32、処理装置33、送受信回路34、近距離無線通信回路35、及び記憶装置36を含む。送受信回路34は、通信回線70を介して管理装置60と通信する機能を有する。近距離無線通信回路35は、直接、近隣のショベル20と通信する機能を有する。記憶装置36に、処理装置33が実行するプログラム、及びショベルに関する種々の情報が記憶されている。処理装置33は、管理装置60から通信回線70を経由し、送受信回路34を通して受信したデータに基づいて、データ処理を行い、処理結果を表示画面31に表示する。ショベル支援装置30の利用者(以下、単に「利用者」という。)が、入力装置32から処理装置33にコマンドを入力する。ショベル支援装置30には、例えばタブレット端末、携帯電話端末等が用いられる。表示画面31及び入力装置32には、例えばタッチパネルが使用される。タッチパネルは、表示画面31と入力装置32とを兼ねる。
管理装置60は、入力装置61、出力装置62、記憶装置63、処理装置64、及び通信装置65を含む。ショベル20から通信回線70を経由して送信された種々の情報が、通信装置65を介して処理装置64に入力される。記憶装置63に、処理装置64が実行するプログラム、種々の管理情報が記憶されている。処理装置64は、ショベル20から受信した機体識別情報、種々の稼働情報、現在位置情報、及び記憶装置63に記憶されている管理情報に基づいて、ショベル20の支援情報を生成する。生成された支援情報は、出力装置62に出力される。さらに、処理装置64は、機体識別情報、現在位置情報、及び支援情報を、通信装置65から通信回線70を経由して、ショベル支援装置30に送信する。
図2Aに、ショベル20の側面図を示す。下部走行体80に、旋回軸受81を介して上部旋回体82が旋回可能に搭載されている。旋回モータ83が、上部旋回体82を下部走行体80に対して、時計回り、または反時計周りに旋回させる。旋回モータ83に取り付けられた旋回角センサ84が、上部旋回体82の旋回角を測定する。上部旋回体82に、ブーム85、アーム86、バケット87を含むアタッチメントが取り付けられている。ブーム85、アーム86、及びバケット87は、それぞれ油圧シリンダ88、89、及び90により油圧駆動される。さらに、上部旋回体82に車両コントローラ21が搭載されている。
油圧シリンダ88、89、及び90に、それぞれ油圧シリンダの伸縮量を測定する変位センサ91が取り付けられている。変位センサ91で測定された伸縮量に基づいてアタッチメントの姿勢を求めることができる。本明細書において、3つの変位センサ91をまとめて、姿勢センサ91という場合がある。姿勢センサ91は、図1に示したセンサ群26に含まれる。姿勢センサ91の測定結果が、車両コントローラ21に入力される。姿勢センサ91として、上部旋回体82とブーム85とのなす角度、ブーム85とアーム86とのなす角度、及びアーム86とバケット87とのなす角度を測定する角度センサを用いてもよい。
さらに、油圧シリンダ88、89、及び90に、それぞれ圧力センサ92が取り付けられている。圧力センサ92は、油圧シリンダ88、89、及び90のボトム側の圧力及び
ロッド側の圧力を測定する。圧力センサ92により、油圧シリンダ88、89、及び90に加わる荷重(アタッチメントに加わる荷重)を求めることができる。圧力センサ92の測定結果、及びアタッチメントの姿勢に基づいて、バケット87に加わる荷重を求めることができる。本明細書において、圧力センサ92を荷重センサ92という場合がある。荷重センサ92は、センサ群26(図1)に含まれる。荷重センサ92の測定結果が車両コントローラ21に入力される。
図2Bに示すように、バケット87(図2A)に代えて、油圧駆動されるブレーカ87Aが取付けられる場合もある。バケット87とブレーカ87Aとは、作業内容に応じて、適切に選択される。
図3に、ショベル20(図1、図2A、図2B)のブロック図を示す。エンジン110の駆動軸がトルクコンバータ121を介してメインポンプ122の駆動軸に連結されている。メインポンプ122は、高圧油圧ライン123を介して、コントロールバルブ124に油圧を供給する。コントロールバルブ124は、運転者からの指令により、油圧モータ109A、109B、旋回モータ83、油圧シリンダ88、89、及び90に油圧を分配する。油圧モータ109A及び109Bは、それぞれ下部走行体80(図2A、図2B)に備えられた左右の2本のクローラを駆動する。
油圧シリンダ88、89、及び90の各々に、姿勢センサ91及び荷重センサ92が取り付けられている。
パイロットポンプ125が、油圧操作系に必要なパイロット圧を発生する。発生したパイロット圧は、パイロットライン126を介して操作装置128に供給される。操作装置128は、レバーやペダルを含み、運転者によって操作される。操作装置128は、パイロットライン126から供給される1次側の油圧を、運転者の操作に応じて、2次側の油圧に変換する。2次側の油圧は、油圧ライン129を介してコントロールバルブ124に伝達されると共に、他の油圧ライン130を介して圧力センサ127に伝達される。
圧力センサ127で検出された圧力の検出結果が、車両コントローラ21に入力される。これにより、車両コントローラ21は、下部走行体80、旋回モータ83、及びバケット87(図2A)またはブレーカ87A(図2B)を含むアタッチメントに対する操作の状況を検知することができる。
図4に、実施例によるショベル支援装置30、ショベル20、及び管理装置60の間で行われる通信のシーケンスを示す。ショベル20から管理装置60に稼働情報が送信される。稼働情報には、姿勢センサ91(図2A、図2B)、荷重センサ92(図2A、図2B)、及び旋回角センサ84(図2A、図2B)の測定結果、GPS受信機23(図1)で取得された現在位置情報、機体番号、作業年月日、作業内容等が含まれる。
作業内容には、平地掘削、高所掘削、岩盤掘削、積込み、地面の均し、法面の均し、解体等が含まれる。ショベル20から管理装置60に送信される稼働情報に含まれる作業内容は、ショベル20の運転者によって、ショベル20の車両コントローラ21に入力される。なお、管理装置60が、アタッチメントの姿勢等の時刻歴に基づいて、作業内容を推定することも可能である。管理装置60が作業内容を推定する機能を持っている場合には、運転者は、作業内容を車両コントローラ21に入力しなくてもよい。
管理装置60は、ショベル20から収集された稼働情報に基づいて、ショベル20の各部品に蓄積される累積損傷度を算出する。累積損傷度の算出には、記憶装置63に格納されている現時点までの稼働情報または累積損傷度等が利用される。累積損傷度は、例えば
、部品の各評価箇所に加わる応力波形を、累積疲労損傷則に基づいて解析することにより求めることができる。ショベルの部品内の評価箇所ごとに求められた累積損傷度は、記憶装置63に格納される。記憶装置63には、過去の評価時点及び現時点の累積損傷度が格納されている。算出された累積損傷度の結果を、「評価値DE」ということとする。累積損傷度の具体的な算出方法の一例については、後に、図15〜図20を参照して説明する。
記憶装置63には、累積損傷度の評価値DEの時刻歴の他に、ショベルの機体ごとに、メンテナンス時期情報、及び評価時点における作業内容が格納されている。さらに、評価時点ごとに、累積損傷度の評価値DEが最大値を示す評価箇所の情報が、記憶装置63に格納されている。
ショベル支援装置30から管理装置60に、データ転送要求コマンドが送信される。管理装置60は、データ転送要求コマンドを受信すると、累積損傷度の評価値DEの時刻歴、メンテナンス時期情報、作業内容履歴、及び累積損傷度が最大値を示す部品内の評価箇所の情報を、ショベル支援装置30に送信する。
ショベル支援装置30の入力装置32(図1)から、ショベルの目標寿命が入力される。ショベル支援装置30は、入力された目標寿命に基づいて、累積損傷度の指標値DTの推移を算出する。例えば、累積損傷度の指標値DTは、累積稼働時間に対して線形に増加する。累積損傷度の指標値DTは、累積稼働時間が目標寿命に達した時点で、疲労破壊が発生すると考えられる値(以下、「限界値DL」という。)に達する。
さらに、ショベル支援装置30は、あるメンテナンス時期における累積損傷度の評価値DE、その次のメンテナンス時期までの稼働時間、及び累積損傷度の限界値DLに基づき、累積損傷度の上限値DUの推移を算出する。累積損傷度の上限値DUは、あるメンテナンス時期において、累積損傷度の評価値DEに一致し、稼働時間に対して線形に増加する。その次のメンテナンス時期において、累積損傷度の上限値DUが、限界値DLに到達する。上限値DUは、次回のメンテナンス時期までに、累積損傷度が限界値DLに到達するか否かの判定基準となる
目標寿命が入力されると、ショベル支援装置30は、累積損傷度の評価値DEを、指標値DT及び上限値DUと共に、表示画面31(図1)に時系列で表示する。さらに、累積稼働時間と対応付けて、作業内容、累積損傷度が最大値を示す部品及び評価箇所が表示される。
図5に、ショベル支援装置30の表示画面31に表示された画像を示す。ショベルの機体番号が文字で表示されるとともに、累積損傷度の評価値DE、指標値DT、上限値DUが、グラフで表示される。このグラフの横軸はショベルの累積稼働時間を表し、縦軸は累積損傷度を表す。累積稼働時間を表す横軸に、メンテナンス時期T0〜T3、及び目標寿命TLが表示されている。現時点が、メンテナンス時期T1に相当する。累積損傷度を表す縦軸に、初期値及び累積損傷度の限界値DLが表されている。初期値は0であり、限界値DLは1である。メンテナンス時期T0は、ショベルの出荷時に対応する。従って、メンテナンス時期T0における累積損傷度の評価値DEは、初期値0に等しい。累積損傷度の評価値DEは、稼働時間の経過とともに単調に増加する。
累積損傷度の指標値DT及び上限値DUは、メンテナンス時期T0において初期値0に等しく、累積稼働時間の増加にともなって線形に増加する。目標寿命TLにおいて、累積損傷度の指標値DTが限界値DLに達する。メンテナンス時期T0からT1までの期間の累積損傷度の上限値DUは、メンテナンス時期T0において評価値DEに一致し、次のメ
ンテナンス時期T1において限界値DLに一致する。メンテナンス時期T1からT2までの期間の累積損傷度の上限値DUは、メンテナンス時期T1において評価値DEに一致し、次のメンテナンス時期T2において限界値DLに一致する。
累積損傷度の評価値DEが、指標値DT以下の領域で推移している場合には、現在の作業内容を継続することにより、支援対象のショベル20を目標寿命TLまで安全に使用可能であると予測される。累積損傷度の評価値DEが指標値DTを超えると、ショベルを目標寿命TLまで使用できない可能性が高まる。累積損傷度の評価値DEが上限値DUを超えると、次回のメンテナンス時期までにショベルの部品が破損してしまう危険性が高くなる。図5に示した例では、メンテナンス時期T0からT1までの全期間に亘って、累積損傷度の評価値DEが指標値DT以下である。このため、現在の作業内容をこのまま継続することにより、目標寿命TLまでショベル20を使用できる可能性が高いと判断される。
累積稼働時間に対応させて、作業内容、累積損傷度の評価値DEが最大値を示す部品及び評価箇所が表示される。図5では、メンテナンス時期T0からT1までの間の作業内容が「平地掘削」であり、評価値DEが最大値を示す部品及び評価箇所が、それぞれ「ブーム」及び「ブラケット部」である例を示している。
図6に、図5に示した時点から、次のメンテナンス時期T2までショベルを稼働させたときに、メンテナンス時期T2においてショベル支援装置30の表示画面31に表示される画像を示す。直前のメンテナンス時期T1から、その次のメンテナンス時期T2までの期間において、累積損傷度の上限値DUは、メンテナンス時期T1における評価値DE、その次のメンテナンス時期T2、及び限界値DLに基づいて算出される。具体的には、メンテナンス時期T1において、上限値DUが評価値DEに一致し、累積稼働時間とともに線形に増加し、メンテナンス時期T2において、上限値DUが限界値DLに一致する。
図6に示したように、メンテナンス時期T1からT2までの期間においても、累積損傷度の評価値DEが、指標値DT以下である。このため、メンテナンス時期T2以降も、同一の作業内容を継続することにより、ショベル20を目標寿命TLまで使用できる可能性が高いと判断される。
図7に、他の作業を行っているショベル20に対応するショベル支援装置30の表示画面31に表示される画像の例を示す。以下、図5に示した例との相違点について説明する。図7に示した例では、メンテナンス時期T0からT1までの期間の作業内容が「高所掘削」である。高所掘削を行う場合には、図5に示した平地掘削を行う場合に比べて、アタッチメントの部位によっては、より大きな負荷が加わる。例えば、ブーム85(図2A、図2B)のブラケット部に、より大きな負荷が加わる。この場合、累積損傷度の評価値DEの増加の傾きが、図5に示した例に比べて大きくなる。
図7に示した例では、メンテナンス時期T0からT1までの期間において、累積損傷度の評価値DEが、指標値DTを超えている。このため、現在の作業内容を継続すると、累積稼働時間が目標寿命TLに到達する前に、ショベル20のブームのブラケット部が破損してしまう可能性が高い。このように、評価値DEが指標値DTを超えている場合、ショベルの機種が、作業環境及び作業内容に対してミスマッチであると判定される。ミスマッチであると判定された場合には、ショベル支援装置30は、操作者またはショベルの管理者に、ミスマッチであることを通知する。例えば、表示画面31に、「ミスマッチ状態」という文字列が表示される。ショベル20を目標寿命TLまで使用するためには、ショベル20の作業内容を、ブームのブラケット部に加わる負荷がより小さい作業内容に変更することが好ましい。
図8に、図7に示したメンテナンス時期T1において、ショベルの作業内容を「積み込み」に変更した場合に、ショベル支援装置30の表示画面31に表示される画像の例を示す。表示画面31に表示された作業内容が、メンテナンス時期T1において、「高所掘削」から「積み込み」に変わっている。積み込み作業では、高所掘削作業に比べて、ブームのブラケット部に加わる負荷が小さい。このため、メンテナンス時期T1以降は、メンテナンス時期T0からT1までの期間に比べて、累積損傷度の評価値DEの増加の傾きが緩やかになる。
積み込み作業においては、ブームのブラケット部に加わる負荷より、フート部に加わる負荷の方が大きくなる場合がある。この場合、累積稼働時間がTaに達した時点で、フート部の累積損傷度の評価値DEが、ブラケット部の累積損傷度の評価値DEを超える。累積稼働時間がTaを超えた期間においては、グラフに表示される累積損傷度の評価値DEとして、フート部の評価値DEが採用される。
図8に示した例では、メンテナンス時期T1からT2までの期間、累積損傷度の評価値DEが指標値DTを超えているが、評価値DEの傾きは、指標値DTの傾きより小さい。このため、累積稼働時間の増加とともに、評価値DEが指標値DTに近づくと予測される。このため、メンテナンス時期T2以降も、メンテナンス時期T2以前と同じ積み込み作業を継続することが可能であると判断される。このように、指標値DTと評価値DEとの大小関係のみならず、評価値DEの傾きと指標値DTの傾きとを比較して、ミスマッチの有無を判定してもよい。例えば、図8の例では、ショベルの機種は、現在の作業環境及び作業内容に対してミスマッチではないと判定される。
図9に、メンテナンス時期T3まで作業を継続した場合に、ショベル支援装置30の表示画面31に表示される画像の例を示す。累積稼働時間がTbに達した時点で、累積損傷度の評価値DEが、指標値DTに一致し、それ以降は、評価値DEが指標値DTを下回っている。このため、目標寿命TLまで積み込み作業を継続することが可能であると予測される。
図7〜図9に示した例では、メンテナンス時期T1の段階で、現在稼働中のショベル20の機種と、現在の作業内容及び作業環境とが不適合(ミスマッチ)であると判定される。すなわち、現在の作業環境で現在の作業内容を継続すると、目標寿命TLまでショベル20を使用することができないと予測される。しかしながら、このショベル20を、より軽負荷の作業に配置転換すれば、目標寿命TLまで使用することが可能になる。作業内容が掘削である場合、作業環境には、掘削対象の硬さ等が含まれる。作業内容が積み込みである場合、作業環境には、積み込み対象物の重量等が含まれる。
図7に示したメンテナンス時期T0からT1までの累積損傷度の評価値DEの推移から、現在使用しているショベル20の機種では、現在の作業環境で高所掘削作業を行うには、耐久性が不足していることがわかる。高所掘削作業に、より耐久性の高い機種を割り当てることにより、作業環境及び作業内容と、ショベルの機種とのミスマッチを解消することが可能になる。
ショベル20の機種を変更する代わりに、累積損傷度の評価値DEが最大値を示している部品、例えばブームを、より耐久性の高い高剛性タイプのものに取り替えることも有効である。または、累積損傷度の評価値DEが最大値を示している評価箇所、例えばブームのブラケット部を補強することも有効である。
図5〜図9では、定期的なメンテナンス時期T1〜T3に、累積損傷度の評価値DEの時刻歴を表示させたが、定期的なメンテナンス時期に限らず、より短い周期で、累積損傷
度の評価値DEの時刻歴を表示させてもよい。ショベル支援装置30の取扱者が、ショベル支援装置30の入力装置32(図1)を操作することにより、図4に示したデータ転送要求コマンドの送信が開始される。
上記実施例では、ショベルが、作業環境及び作業内容に対してミスマッチ状態であるか否かを判定するための判定閾値として指標値DT及び上限値DUを採用した。一例として、累積損傷度の評価値DEが判定閾値を超えている場合に、ミスマッチ状態であると判定することができる。この判定閾値として、上述の指標値DT及び上限値DU以外に、稼働時間とともに増加する他の値を採用してもよい。例えば、指標値DT及び上限値DUは、稼働時間に対して線形に増加するが、判定閾値を、稼働時間に対して曲線的、例えば二次関数的に増加させてもよい。判定閾値の適切な増加の傾向は、経験則から見出すことができる。
図10に、実施例によるショベル支援装置30、ショベル20、及び管理装置60の間で行われる通信の他のシーケンスを示す。以下、図4に示した処理との相違点について説明し、同一の処理については説明を省略する。
管理装置60が、図4に示した処理と同様に、ショベル20から稼働情報を受信し、累積損傷度の評価値DEを求める。管理装置60に、図5に示した累積損傷度の上限値DUが記憶されている。管理装置60は、累積損傷度の評価値DEと、上限値DUとを比較する。累積損傷度の評価値DEが上限値DU以上になったことを検出すると、評価対象のショベル20に対応するショベル支援装置30に、注意喚起メッセージを送信する。注意喚起メッセージには、ショベル20の機体番号、累積損傷度の評価値の時刻歴、累積損傷度の上限値DU、メンテナンス時期情報、作業内容履歴、累積損傷度の評価値が最大値を示す部品と評価箇所の情報を含む。
ショベル支援装置30は、注意喚起メッセージを受信すると、表示画面31(図1)に、注意喚起メッセージを受信したことを通知するとともに、目標寿命TLの入力を促す。ショベル支援装置30に目標寿命TLが入力されると、ショベル支援装置30は表示画面31(図1)に、累積損傷度の評価値DE、指標値DT、及び上限値DUを、グラフで表示する。
図11に、ショベル支援装置30の表示画面31に表示された画像の一例を示す。メンテナンス時期T0から累積稼働時間Ta(現時点)までのショベル20の作業内容は、岩盤掘削であり、ブームのブラケット部において、累積損傷度の評価値DEが最大値を示す。累積稼働時間Taにおいて、直近に算出された累積損傷度の評価値DEが上限値DUに達している。このまま岩盤掘削を継続すると、次回のメンテナンス時期T1よりも前に、累積損傷度の評価値DEが限界値DLを超えてしまう危険性が高い。すなわち、次回のメンテナンス時期T1よりも前に、ブームのブラケット部に損傷が発生してしまう危険性が高い。このように、評価値DEが上限値DUを超えている場合、ショベル支援装置30は、操作者またはショベルの管理者に、ミスマッチであることを通知する。例えば、表示画面に、「ミスマッチ状態」という文字列が表示される。
ショベル支援装置30に表示されたグラフは、ショベル20の管理者に、ブームのブラケット部に加わる負荷が小さな作業内容へ、ショベル20の配置転換を行うよう促す。
図12に、メンテナンス時期T1において、ショベル支援装置30の表示画面31に表示された画像の一例を示す。累積損傷度の評価値DEが上限値DUに達した時点から、ショベル20の作業内容が平地掘削に変更されている。これにより、ブームのブラケット部に蓄積される累積損傷度の上昇の傾きが緩やかになる。メンテナンス時期T1において、
累積損傷度の評価値DEは、限界値DLに達していない。累積稼働時間がTaの時点で、ショベル20の作業内容を岩盤掘削から平地掘削に変更したことにより、ブームのブラケット部の破損が防止されている。
メンテナンス時期T1以降も、平地掘削の作業を継続すると、累積損傷度の評価値DEが指標値DTを超えてしまう。ただし、評価値DEの傾きは、上限値DUの傾きよりも緩やかであることがわかる。従って、累積損傷度の評価値DEが直ちに限界値DLに到達してしまうことはないと予測される。図12に示されたグラフは、ショベル20の管理者が、ショベル20の作業内容を変更すべきか、平地掘削の作業を継続してもよいかを判断するための有益な情報となる。
図13に、他の実施例によるショベル支援装置30、ショベル20、及び管理装置60の間で行われる通信のシーケンスを示す。以下、図4に示した実施例との相違点について説明し、同一の構成については説明を省略する。
図4に示した実施例では、管理装置60が累積損傷度の評価値DEを求める計算を行ったが、図13に示した実施例では、ショベル支援装置30が累積損傷度の評価値DEを求める計算を行う。管理装置60には、ショベル20の機体ごとに、累積損傷度の過去の評価値DEが時系列で蓄積されている。
ショベル支援装置30が、ショベル20から稼働情報を受信する。ショベル支援装置30は、ショベル20から稼働情報を受信すると、管理装置60に、評価対象のショベル20の累積損傷度の過去の評価値DEの転送を要求する。管理装置60は、記憶装置63から累積損傷度の評価値DE等を読み出し、ショベル支援装置30にデータを送信する。このデータには、累積損傷度の評価値DEの時刻歴、メンテナンス時期情報、作業内容履歴、累積損傷度の評価値が最大値を示す部品及び評価箇所の情報が含まれる。
ショベル支援装置30は、ショベル20から受信した稼働情報に基づいて、累積損傷度の評価値DEを求める。さらに、ショベル20の目標寿命TLの入力を促す。ショベル20の目標寿命TLが入力されると、ショベル支援装置30は、累積損傷度の評価値DEを、指標値DT及び上限値DUと共に、表示画面31(図1)に時系列で表示する。さらに、稼働時間と対応付けて、作業内容、累積損傷度が最大値を示す部品及び評価箇所が表示される。
新たに算出された累積損傷度の評価値DEが、ショベル20の機体番号及び累積稼働時間とともに、管理装置60に送信される。管理装置60は、ショベル支援装置30から受信した累積損傷度の評価値DE等を、記憶装置63に格納する。
図14に、さらに他の実施例によるショベル支援装置30とショベル20との間で行われる通信のシーケンスを示す。以下、図4に示した実施例との相違点について説明し、同一の構成については説明を省略する。
図14に示した実施例では、ショベル支援装置30が、図4に示した実施例のショベル支援装置30及び管理装置60の機能を有している。累積損傷度の過去の評価値DEが、ショベル支援装置30の記憶装置36に格納されている。
図13及び図14に示した実施例においても、図4に示した実施例と同様に、現在稼働中のショベル20の機種と、現在の作業内容及び作業環境とが不適合(ミスマッチ)であることを検出することができる。これにより、作業内容及び作業環境と、ショベル20の機種とのミスマッチを解消することが可能になる。
次に、図15〜図20を参照して、累積損傷度の求め方について説明する。
図15に、累積損傷度の評価値DEを算出する方法のフローチャートを示す。図4に示した実施例では、管理装置60により図15の処理が実行される。図13及び図14に示した実施例では、ショベル支援装置30により図15の処理が実行される。以下の説明では、管理装置60が累積損傷度の評価値DEを求める実施例の場合について説明する。
まず、ステップS1において、管理装置60の処理装置64が、ショベル20(図1)によって作業中に繰り返される一連の動作の少なくとも1周期分の測定値を、アタッチメントの姿勢センサ91(図2A、図2B)、アタッチメントの荷重センサ92(図2A、図2B)、及び旋回角センサ84(図2A、図2B)から取得する。これらの測定値と共に、作業種別、作業年月日、機体番号等の情報が取得される。
旋回角センサ84から、上部旋回体82(図2A、図2B)の旋回角が取得される。アタッチメントの姿勢センサ91及び旋回角センサ84の検出値によって、ショベル20の姿勢が特定される。ショベル20の一連の動作のうち、アタッチメントの姿勢センサ91、アタッチメントの荷重センサ92、及び旋回角センサ84で測定値を取得する時間の範囲は、管理装置60の管理オペレータが設定してもよいし、ショベル20の運転者または保守要員が設定してもよい。
図16A〜図16Dに、ショベル20で繰り返される一連の動作の一例を示す。図16A〜図16Dは、それぞれ一連の動作の1周期内の各工程、具体的には掘削開始、持ち上げ旋回、排土、戻り旋回の各工程中の任意の時点におけるショベル20の姿勢を概略的に示す。ショベル20の運転時には、例えば、一連の動作が繰り返されることにより、図16A〜図16Dに示した姿勢が順番に出現する。
図17A〜図17Cに、それぞれショベル20の動作中におけるブーム用の油圧シリンダ内の油圧、アームの先端の高さ、及び旋回角度の時間波形(時間変化)の一例を示す。図17Aに示した実線L1及びL2は、それぞれ油圧シリンダ内のロッド側の油圧及びボトム側の油圧を示す。図17A〜図17Cにおいて、時刻t1は、図16Aに示した掘削開始に対応する。時刻t1からt2までの期間に、掘削が行われる。時刻t2からt3までの期間に、図16Bに示したブームの持ち上げ及び旋回の動作が行われる。時刻t3からt4までの期間に、図16Cに示した排土及び戻り旋回の動作が行われる。一連の動作の繰返しに対応して、時刻t1からt4までの波形と近似する波形が周期的に現れる。
ステップS2(図15)において、一連の動作の1周期内で、解析すべき複数の時刻(以下、「解析時刻」という。)を抽出する。一例として、図17Aに示したように、1周期内から、時刻t1〜t4の4個の解析時刻が抽出される。例えば、油圧シリンダ内の油圧、旋回角度の時間波形のピーク、変曲点等の特徴的な時刻を、解析時刻として抽出する。抽出する解析時刻の個数を多くすると、解析精度が向上するが、解析に要する計算時間は長くなる。処理装置64(図1)が、図17A〜図17Cに示した時間波形に基づいて解析時刻を自動的に抽出するようにしてもよいし、オペレータが時間波形を観察して解析時刻を決定し、入力装置61(図1)から解析時刻を入力するようにしてもよい。
ステップS3(図15)において、解析時刻の各々において、解析モデルを用い、ブーム、アーム等の部品の各々に加わっている応力の分布を算出する。応力の分布は、解析時刻ごとに決定されているショベルの特定の姿勢に基づいて計算される。すなわち、繰り返される一連の動作の1周期内に現れる種々のショベルの姿勢ごとに、ショベルの部品に加わっている荷重に基づいて、応力の分布を算出する。応力の分布の算出には、例えば有限
要素法等の数値解析手法を適用することができる。このとき、ショベルの姿勢及びショベルの部品に加わる荷重が解析条件として用いられる。ここで、荷重はベクトルで表される。荷重の大きさ及び向きは、油圧シリンダ内の油圧、油圧シリンダの軸方向(アタッチメントの姿勢)、及び旋回角加速度により求まる。旋回角加速度は、旋回角を2回微分することにより算出される。
図18に、ある解析時刻においてブームに加わる応力の分布の算出結果を示す。応力は、解析モデルを構成する要素及び節点ごとに算出される。図18において、応力が相対的に大きな箇所が、相対的に濃い色で示されている。図18に示したような応力分布の解析結果が、解析時刻ごとに、かつ部品ごとに算出される。
図19に、ショベルの部品の1つの評価点Ep(図18)に加わる応力の時間波形の一例を示す。解析時刻t1〜t4の各々において応力が算出されている。図19に示した応力の時間波形は、ブーム、アーム、バケット等の部品ごとに、複数の評価点(有限要素法を用いた場合には、複数の要素及び節点)について求められる。
ステップS4(図15)において、各部品の評価点ごとに、1周期の動作期間中に蓄積される損傷度(以下、「単周期損傷度」という。)を算出する。これにより、部品内における単周期損傷度の分布が得られる。単周期損傷度は、応力の時間変化から抽出される応力の極値に基づいて算出される。以下、単周期損傷度を算出する方法の一例について説明する。まず、図19に示した応力の時間波形の極大値と極小値とを検出する。極大値と極小値とに基づいて、応力が変動する範囲である応力範囲Δσを求めるとともに、応力範囲Δσごとの出現頻度を求める。応力範囲Δσiの出現頻度をniで表す。
図20に、S−N線図の一例を示す。例えば、図20に示したS−N線図では、応力範囲Δσiの疲労寿命(破断繰返し回数)がNi回である。累積疲労損傷則(別名、線形被害則)により、単周期損傷度Dは、以下の式で表される。
Figure 0006320185
例えば、部品の保証寿命をTg(時間)とし、一連の動作の1周期あたりの平均時間をTp(時間)とすると、保証される繰り返し回数は、Tg/Tpで表される。単周期損傷度の想定値は、この逆数、すなわちTp/Tgで表される。単周期損傷度Dがこの想定値に一致する条件、または想定値を下回る条件でショベル20を使用している場合、部品の保証寿命Tgを保証することができる。
ステップS5(図15)において、部品の累積損傷度の分布を算出する。以下、累積損傷度の算出方法について説明する。管理装置60(図1)は、管理対象のショベル20の機体ごと、及び部品ごとに、機体の稼働開始時点から現時点までの単周期損傷度の総和(累積損傷度)を算出する。今回のデータ収集の対象となる動作を開始するまでに蓄積された累積損傷度は、記憶装置63(図1)に記憶されている。ショベル20の部品の、ある箇所の累積損傷度が1になると、その箇所で破断が生じる可能性が高くなる。
ステップS6(図15)において、ステップS5で求められた累積損傷度が、機体番号等の情報と関連付けられて、記憶装置63(図1)に記憶される。このようにして、ショベルの機体ごと、及び部品の評価箇所ごとに、累積損傷度が求まる。
以上実施例に沿って本発明を説明したが、本発明はこれらに制限されるものではない。例えば、種々の変更、改良、組み合わせ等が可能なことは当業者に自明であろう。
20 ショベル
21 車両コントローラ
22 通信装置
23 GPS(全地球測位システム)受信機
24 表示装置
25 近距離無線通信装置
26 センサ群
30 ショベル支援装置
31 表示画面
32 入力装置
33 処理装置
34 送受信回路
35 近距離無線通信回路
36 記憶装置
60 管理装置
61 入力装置
62 出力装置
63 記憶装置
64 処理装置
65 通信装置
70 通信回線
80 下部走行体
81 旋回軸受
82 上部旋回体
83 旋回モータ
84 旋回角センサ
85 ブーム
86 アーム
87 バケット
87A ブレーカ
88、89、90 油圧シリンダ
91 変位センサ(姿勢センサ)
92 圧力センサ(荷重センサ)
109A、109B 油圧モータ
110 エンジン
121 トルクコンバータ
122 メインポンプ
123 高圧油圧ライン
124 コントロールバルブ
125 パイロットポンプ
126 パイロットライン
127 圧力センサ
128 操作装置
129、130 油圧ライン
D 単周期損傷度
DE 累積損傷度の評価値
DL 累積損傷度の限界値
DT 累積損傷度の指標値
DU 累積損傷度の上限値
TL 目標寿命

Claims (8)

  1. 画像を表示する表示画面と、
    前記表示画面に画像を表示する処理装置と
    を有し、
    前記処理装置は、評価対象のショベルの複数の部品ごとに蓄積された累積損傷度に基づいて、前記評価対象のショベルに対する評価値の時刻歴を取得し、累積損傷度の前記評価値を、評価対象の前記ショベルがミスマッチ状態であるか否かを判定するための、稼働時間とともに増加する判定閾値と比較し、前記評価値が前記判定閾値を超えている場合に、評価対象の前記ショベルがミスマッチ状態であることを通知するショベル支援装置。
  2. 画像を表示する表示画面と、
    前記表示画面に画像を表示する処理装置と
    を有し、
    前記処理装置は、評価対象のショベルの複数の部品ごとに蓄積された累積損傷度に基づいて、前記評価対象のショベルに対する評価値の時刻歴を取得し、累積損傷度の前記評価値を、評価対象の前記ショベルがミスマッチ状態であるか否かを判定するための、稼働時間とともに増加する判定閾値とともに、前記表示画面に時系列で表示するショベル支援装置。
  3. 前記判定閾値は、評価対象の前記ショベルの目標寿命と、部品が寿命に達したと考えられる累積損傷度である累積損傷度の限界値とによって定義される指標値を含み、
    前記処理装置は、前記表示画面に前記指標値を時系列で表示する請求項1または2に記載のショベル支援装置。
  4. 前記判定閾値は累積損傷度が、部品が寿命に達したと考えられる累積損傷度である累積損傷度の限界値に、次回のメンテナンス時期までに到達するか否かの判定基準となる累積損傷度の上限値を含み、
    前記処理装置は、直前のメンテナンス時期における前記ショベルの累積損傷度の前記評価値、次回のメンテナンス時期、及び部品が寿命に達したと考えられる累積損傷度である累積損傷度の限界値に基づいて、累積損傷度の前記上限値を求め、前記上限値を、累積損傷度の前記評価値とともに、前記表示画面に時系列で表示する請求項1乃至3のいずれか1項に記載のショベル支援装置。
  5. 前記処理装置は、直近に算出された累積損傷度の前記評価値と、前記上限値とを比較し、前記評価値が前記上限値を超えていると、前記ショベルが次回のメンテナンス時期までに寿命に到達する危険性があることを通知する請求項4に記載のショベル支援装置。
  6. 前記処理装置によって前記表示画面に表示される累積損傷度の前記評価値として、前記ショベルの複数の部品の各々について複数の評価箇所ごとに算出された累積損傷度の最大値が採用される請求項1乃至5のいずれか1項に記載のショベル支援装置。
  7. 前記処理装置は、前記ショベルの作業内容、累積損傷度の前記最大値を示す部品、及び部品内の評価箇所を、前記ショベルの累積稼働時間と対応付けて前記表示画面に表示する請求項6に記載のショベル支援装置。
  8. 前記処理装置は、累積損傷度の前記評価値及び前記判定閾値を、前記ショベルの累積稼働時間と対応付けてグラフ形式で表示する請求項1乃至7のいずれか1項に記載のショベル支援装置。
JP2014122997A 2014-06-16 2014-06-16 ショベル支援装置 Active JP6320185B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014122997A JP6320185B2 (ja) 2014-06-16 2014-06-16 ショベル支援装置
CN201510187735.4A CN105275043B (zh) 2014-06-16 2015-04-20 挖土机支援装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014122997A JP6320185B2 (ja) 2014-06-16 2014-06-16 ショベル支援装置

Publications (2)

Publication Number Publication Date
JP2016003462A JP2016003462A (ja) 2016-01-12
JP6320185B2 true JP6320185B2 (ja) 2018-05-09

Family

ID=55144798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014122997A Active JP6320185B2 (ja) 2014-06-16 2014-06-16 ショベル支援装置

Country Status (2)

Country Link
JP (1) JP6320185B2 (ja)
CN (1) CN105275043B (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10480157B2 (en) * 2016-09-07 2019-11-19 Caterpillar Inc. Control system for a machine
CN112334924A (zh) * 2018-07-10 2021-02-05 住友重机械工业株式会社 施工机械的显示方法及施工机械的支持装置
JP7171488B2 (ja) * 2019-03-27 2022-11-15 住友重機械工業株式会社 建設機械のシステム、及び支援装置
JP7235631B2 (ja) * 2019-09-26 2023-03-08 日立建機株式会社 建設機械向け稼働記録分析システム
EP4008841A4 (en) 2019-09-30 2023-05-03 Hitachi Construction Machinery Co., Ltd. MOVEMENT IDENTIFICATION DEVICE
CN113396437B (zh) 2019-09-30 2024-04-09 日立建机株式会社 疲劳管理系统
JP7355624B2 (ja) * 2019-12-02 2023-10-03 株式会社小松製作所 作業機械および作業機械の制御方法
JP7460414B2 (ja) * 2020-03-25 2024-04-02 住友重機械工業株式会社 ショベルの管理システム
JP2022124929A (ja) * 2021-02-16 2022-08-26 株式会社クボタ 作業機の寿命予測システム
JP7214780B2 (ja) * 2021-04-06 2023-01-30 日立建機株式会社 性能診断装置、性能診断方法
JP7377391B1 (ja) 2023-04-28 2023-11-09 株式会社Earthbrain 推定装置、推定方法及びプログラム

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3788901B2 (ja) * 2000-09-27 2006-06-21 株式会社日立製作所 発電設備の損傷診断装置
JP2005163370A (ja) * 2003-12-02 2005-06-23 Hitachi Constr Mach Co Ltd 建設機械の画像表示装置
JP2005163470A (ja) * 2003-12-05 2005-06-23 Komatsu Ltd 作業機械の表示装置
CN1954122B (zh) * 2004-04-28 2010-12-08 株式会社小松制作所 建筑机械的维护支援系统
US7328625B2 (en) * 2005-04-28 2008-02-12 Caterpillar Inc. Systems and methods for determining fatigue life
JP4990309B2 (ja) * 2009-02-20 2012-08-01 株式会社小松製作所 作業機械の表示装置
US8360167B2 (en) * 2010-08-11 2013-01-29 Caterpillar Inc. Composite seal for a hydraulic hammer
JP5367665B2 (ja) * 2010-09-17 2013-12-11 日立建機株式会社 作業機械の表示システム
US8528675B2 (en) * 2011-03-02 2013-09-10 Deere & Company Electrical cabinet
CN110056021A (zh) * 2011-05-16 2019-07-26 住友重机械工业株式会社 挖土机及其监控装置及挖土机的输出装置
JP2013007289A (ja) * 2011-06-23 2013-01-10 Nissan Motor Co Ltd 内燃機関の燃料噴射制御装置
JP5887405B2 (ja) * 2012-05-14 2016-03-16 日立建機株式会社 作業機械の応力演算システム
JP5968189B2 (ja) * 2012-10-26 2016-08-10 住友重機械工業株式会社 ショベル管理装置及びショベル管理方法

Also Published As

Publication number Publication date
JP2016003462A (ja) 2016-01-12
CN105275043A (zh) 2016-01-27
CN105275043B (zh) 2020-09-18

Similar Documents

Publication Publication Date Title
JP6320185B2 (ja) ショベル支援装置
JP6333598B2 (ja) ショベル支援装置及びショベル
JP6675809B2 (ja) ショベル支援装置
JP5968189B2 (ja) ショベル管理装置及びショベル管理方法
US9315970B2 (en) Stress and/or accumulated damage monitoring system
US8838331B2 (en) Payload material density calculation and machine using same
CN111501896B (zh) 挖土机及挖土机的诊断系统
JP6430272B2 (ja) 作業機械の操作支援装置
JP2009235819A (ja) 作業車両の作業量推定システム及び作業車両
EP3985183A1 (en) Construction machine work information generation system and work information generation method
JP2016103301A (ja) ショベル、ショベル管理システム、及び携帯通信端末
JP2024028566A (ja) ショベルの管理システム
JP6120669B2 (ja) ショベルの状態表示装置
JP2023004865A (ja) 建設機械および建設機械管理システム
JP6425618B2 (ja) 作業機械の操作支援装置
WO2021019949A1 (ja) 建設機械の作業内容判定システム及び作業判定方法
JP6775906B2 (ja) ショベル支援装置
JP7171488B2 (ja) 建設機械のシステム、及び支援装置
JP2021155995A (ja) ショベルの支援装置、ショベルの管理装置
JP2020122371A (ja) 作業機械
JP7069945B2 (ja) 建設機械の作動油量測定装置
WO2022270392A1 (ja) 建設機械および建設機械管理システム
CN113423897B (zh) 损害推定装置以及机器学习装置
JP2021156086A (ja) ショベルの管理装置
KR101491006B1 (ko) 굴삭기용 센서 데이터 처리장치 및 그 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180403

R150 Certificate of patent or registration of utility model

Ref document number: 6320185

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150