WO2005096711A2 - 乳化分散剤及びこれを用いた乳化分散方法、乳化物、並びにエマルション燃料 - Google Patents

乳化分散剤及びこれを用いた乳化分散方法、乳化物、並びにエマルション燃料 Download PDF

Info

Publication number
WO2005096711A2
WO2005096711A2 PCT/JP2005/005795 JP2005005795W WO2005096711A2 WO 2005096711 A2 WO2005096711 A2 WO 2005096711A2 JP 2005005795 W JP2005005795 W JP 2005005795W WO 2005096711 A2 WO2005096711 A2 WO 2005096711A2
Authority
WO
WIPO (PCT)
Prior art keywords
oil
emulsifying
emulsion
chi
derivative
Prior art date
Application number
PCT/JP2005/005795
Other languages
English (en)
French (fr)
Other versions
WO2005096711A3 (ja
Inventor
Kazuo Tajima
Yoko Imai
Teruo Horiuchi
Original Assignee
Kanagawa University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005091081A external-priority patent/JP3858230B2/ja
Priority claimed from JP2005091080A external-priority patent/JP3855203B2/ja
Application filed by Kanagawa University filed Critical Kanagawa University
Priority to EP05727301.3A priority Critical patent/EP1754532B1/en
Priority to CA2563267A priority patent/CA2563267C/en
Priority to CN200580018350XA priority patent/CN1964778B/zh
Priority to US11/547,625 priority patent/US9506001B2/en
Publication of WO2005096711A2 publication Critical patent/WO2005096711A2/ja
Publication of WO2005096711A3 publication Critical patent/WO2005096711A3/ja
Priority to US15/360,235 priority patent/US10202556B2/en
Priority to US15/360,183 priority patent/US11708538B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/32Liquid carbonaceous fuels consisting of coal-oil suspensions or aqueous emulsions or oil emulsions
    • C10L1/328Oil emulsions containing water or any other hydrophilic phase
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/32Liquid carbonaceous fuels consisting of coal-oil suspensions or aqueous emulsions or oil emulsions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • C09K23/017Mixtures of compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • C09K23/14Derivatives of phosphoric acid
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • C09K23/16Amines or polyamines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • C09K23/42Ethers, e.g. polyglycol ethers of alcohols or phenols
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/198Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds homo- or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon to carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid
    • C10L1/1985Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds homo- or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon to carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid polyethers, e.g. di- polygylcols and derivatives; ethers - esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/12Inorganic compounds
    • C10L1/1233Inorganic compounds oxygen containing compounds, e.g. oxides, hydroxides, acids and salts thereof
    • C10L1/125Inorganic compounds oxygen containing compounds, e.g. oxides, hydroxides, acids and salts thereof water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/222Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
    • C10L1/2222(cyclo)aliphatic amines; polyamines (no macromolecular substituent 30C); quaternair ammonium compounds; carbamates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0407Specifically defined hydrocarbon fractions as obtained from, e.g. a distillation column
    • C10L2200/0415Light distillates, e.g. LPG, naphtha
    • C10L2200/0423Gasoline
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0407Specifically defined hydrocarbon fractions as obtained from, e.g. a distillation column
    • C10L2200/043Kerosene, jet fuel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2250/00Structural features of fuel components or fuel compositions, either in solid, liquid or gaseous state
    • C10L2250/04Additive or component is a polymer
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2250/00Structural features of fuel components or fuel compositions, either in solid, liquid or gaseous state
    • C10L2250/06Particle, bubble or droplet size
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2250/00Structural features of fuel components or fuel compositions, either in solid, liquid or gaseous state
    • C10L2250/08Emulsion details
    • C10L2250/084Water in oil (w/o) emulsion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • the present invention relates to an emulsifying dispersant excellent in stability over time regardless of the type of an emulsified substance, an emulsifying dispersion method using the emulsifying dispersant, an emulsion, and an emulsion fuel.
  • a surfactant is selected according to the required HLB of the functional oily base or the surface properties of the granules, and emulsification and dispersion are performed. I was going.
  • the required HLB value of the surfactant used as an emulsifier must be used separately for the case of making an OZW emulsion and the case of making a WZO emulsion. was not sufficient, so that a wide variety of surfactants were used as a mixture! / Pita (see Non-Patent Documents 1 to 4).
  • heavy oil with high viscosity refers to the residual oil S, which is a highly viscous oil that cannot be handled at room temperature, such as distillation residue oil (tar, pitch, asphalt, etc.), oil sand, natural bitumen, orinoco tar, etc. It is also known to adjust with a low-viscosity petroleum fraction or the like in order to convert the oil, and to emulsify the adjusted heavy oil with a surfactant (Patent Document 7).
  • Tokubi 1 Emulsion Science Edited by P. Snerman, Academic Press Inc.
  • Non-Patent Document 2 "Microemulsions- Theory and Practice- Edited by Leon M. price, Academic Press Inc. (1977)
  • Non-Patent Document 3 “Emulsification and Solubilization Techniques” Recommended by Tsuji, Kogaku Tosho Publishing (1976)
  • Non-Patent Document 4 “Development Technology of Functional Surfactants” CM-Shichi Publishing (1998)
  • Non-Patent Reference 5 "Effects of Exhaust Gas on Reduction of Nitrogen Oxidation and Black Smoke by Water Emulsion Fuel", [Search August 25, 2004], Internet URL:
  • Non-Patent Document 6 "Study on application of water emulsion fuel to diesel engine", Kawasaki Heavy Industries Technical Report No. 132, [Search August 25, 2004], Internet URL:
  • Patent Document 7 JP-A-07-70574
  • surfactants have low biodegradability and cause foaming, and thus pose a serious problem such as environmental pollution.
  • physicochemical emulsification methods such as HLB method, phase inversion emulsification method, phase inversion temperature emulsification method, and gel emulsification method are generally used as methods for preparing emulsified preparations of functional oily bases.
  • the effect of lowering the interfacial energy at the oil-Z water interface and thermodynamically stabilizing the system is the basis of emulsion preparation, so that it is extremely complicated and enormous effort to select the most suitable amide. When many types of oils were mixed, it was almost impossible to stably emulsify.
  • the adjusted heavy oil fluidized with a low-viscosity petroleum fraction or the like has not been widely used because of sedimentation, attachment, or environmental pollution due to incomplete combustion in a transport line.
  • the emulsion fuel obtained by emulsifying the adjusted heavy oil with a surfactant has a remarkable difference in component properties, so that satisfactory stability can be obtained even when a large amount of various surfactants are used.
  • an emulsified dispersion system having excellent heat stability and stability over time is formed at an interface between a functional oily base and water or a functional granule and water. That also The main issues are to provide an emulsifying and dispersing agent capable of emulsifying and dispersing irrespective of the required HLB value of a functional oily base or the surface state of functional granules, and an emulsifying and dispersing method and an emulsion using the same. I have. Another object of the application of the emulsion is to provide an emulsion fuel with excellent stability over time that can reduce the influence on the environmental load.
  • the basic principle of the emulsification / dispersion method is that the surfactant is adsorbed on the interface between oil and water and the interfacial energy is reduced. In order to reduce the surface tension, a large amount of emulsifier was required.
  • the present inventors have conducted intensive studies to develop a novel emulsification technique, and as a result, have found that the amphipathic acid existing as an independent phase in the oil / amphiphilic conjugate / water system.
  • a three-phase emulsification method for emulsification by attaching nanoparticles of the ligated product to the oily base surface by van der Waalska was found, and according to such an emulsification method, regardless of the required HLB value of the oily component, We have found that the magnitude of the interfacial tension at the oily component / water interface is important for the adhesion of the emulsifier nanoparticles. Furthermore, the present inventors have found that this three-phase emulsified emulsion shows much higher stability than ordinary two-phase emulsified emulsions such as OZW type and WZO type. It is completed.
  • the emulsifying dispersant according to the present invention is characterized in that the emulsifying dispersant is mainly composed of a closed vesicle formed of an amphiphilic substance having a self-assembling ability.
  • the closed vesicle has an average particle diameter of 8 nm to 500 nm when forming an emulsion, and 200 ⁇ ! When adjusting a dispersant. It is preferable to set it to 800 nm.
  • amphipathic substance having the self-organizing ability as described above include, for example, a polyoxyethylene-hardened castor oil derivative represented by the following general formula (I-Shadow 1), which has an average ethylene oxide content and a molar ratio of ethylene oxide.
  • an ionic surfactant is further added in a molar fraction of 0.1 l ⁇ Xs ⁇ 0.33 to ionize closed vesicles (forced thione). ).
  • the ratio of the oily component to be emulsified to the emulsifying and dispersing agent is 1 to L000, and that the components are contacted and mixed.
  • the emulsifying dispersant according to the present invention may be one containing a monopolymerized monopolymer as a main component.
  • the biopolymer one or more selected from the group consisting of polysaccharides, phospholipids, polyesters, microbial polysaccharides such as starch, and chitosan produced by microorganisms can be considered.
  • polysaccharides produced by microorganisms monosaccharides such as ribose, xylose, rhamnose, fucose, glucose, mannose, glucuronic acid, and dalconic acid! /, which are produced by microorganisms with some sugars as constituents Is raised.
  • microbial species that produce polysaccharides of a particular structure are known, but some polysaccharides may also be in mixtures.
  • Examples of the biological starch include potato, glutinous rice flour, tapio flour, kelp flour, and the like, but are not limited thereto, and any starch having a single or composite structure and exhibiting amphiphilicity may be used. .
  • the ratio of the oily component to be emulsified to the emulsifying and dispersing agent is 50 to 2000, and the mixture is brought into contact and mixed.
  • the method preferably includes a step of causing the amphiphilic substance dispersed or converted into single particles in the closed vesicles to be dropped into water at a temperature lower than a predetermined temperature to make the amphiphilic substance fine.
  • the step of dispersing the amphipathic substance having self-organizing ability into closed vesicles or the step of forming into single particles requires various measures depending on the material used.For castor oil derivatives, water at 60 ° C or lower is required. This is achieved by dropwise addition with stirring.
  • the emulsion obtained by contacting and mixing the emulsifying dispersant and the fat and oil described above forms an emulsifying dispersant phase at the interface between oil and water, so that coalescence does not easily occur. It is extremely excellent in thermal stability and aging stability without depending on the temperature.
  • An example of such an emulsion is an emulsion fuel.
  • This emulsion fuel is characterized in that it contains an emulsifying dispersant, which is mainly composed of a closed vesicle formed by an amphiphilic substance having a self-organizing ability in a fuel to which water is added, as an essential component.
  • the fuel may be light oil, heavy oil (A-heavy oil, C heavy oil), kerosene, gasoline, etc., or high-viscosity heavy oil whose viscosity has been adjusted (distillation residue oil, oil sand, natural bitumen). , Orinoco tar, etc.), and the amphiphilic substance having self-organizing ability is the average addition of ethylene oxide among the derivatives of polyoxyethylene hydrogenated castor oil represented by the following general formula (Isha 3). It is better to use a derivative having a molar number (E) of 5 to 15. [0024] [Formula 3]
  • the composition is based on the amphiphilic substance 0.1 to 15.0%, the fuel 1 to 95%, and the water balance by weight. It is preferable.
  • HCO 10 When A-heavy oil is used as the fuel and a derivative (HCO-10) having an average addition mole number of ethylene oxide (E) of 10 is used as the amphipathic substance, HCO 10 is used. 0.1-14.25%, A-Heavy oil 5-95%, water balance, more preferably HCO-10 5-14.25%, A-Heavy oil 5-50%, water balance It is good.
  • the composition of HCO-10 is 0.4 to: L0.0%, light oil is 5 to 95%, and water balance. More preferably, the composition of HCO-10 is 0.8 to: L 0.0%, light oil is 5 to 60%, and water balance.
  • the HCO-10 is adjusted to 0.3 to 9% by an adjustment weight of 0.3% to 9%.
  • Additives such as anti-corrosive agents, anti-seizure agents, and preservatives can be arbitrarily added to the emulsion fuel according to the purpose.
  • the three-phase emulsification technique described above is also applicable to mixed oils with synthetic oils other than light oil and heavy oil, vegetable oils, and the like.
  • the method for producing the emulsion fuel described above includes a step of fluidizing and adjusting the feedstock oil.
  • temperature control is important. The heavy oil is allowed to flow. Heat it to around 80 ° C and add the required amount of viscosity adjusting oil to make it even. The viscosity at this time can be controlled by the amount of the adjusting oil. However, when combined with an emulsifying dispersant, the temperature must be lowered to about 60 ° C.
  • the thus-prepared heavy oil, light oil, heavy oil, or the like is added little by little to a liquid of water and an emulsifying dispersant according to the composition of the emulsion fuel, and the mixture is agitated to form an emulsion fuel.
  • the interface between the functional oily base and water, or the interface between the functional granules and water can be improved in thermal stability and temporal stability.
  • An excellent emulsified dispersion can be formed. For this reason, it has been difficult to form a stable emulsion with the conventional hydrocarbon-based surfactant, but when the emulsifying dispersant of the present invention is used, it is possible to stabilize the emulsion over a wide temperature range over a long period of time. Can be achieved.
  • the concentration of the emulsifying dispersant required for emulsification is 1/10 to that of a conventional surfactant.
  • the fuel emulsion of the present invention emulsification mainly comprising closed vesicles formed by a light oil to which water is added or an amphipathic substance having self-organizing ability in heavy oil is provided. Since a dispersant is included as an essential component, a fuel emulsion with extremely excellent stability over time can be formed, and the concentration of NO, CO, and SO generated can be reduced.
  • the emulsion fuel according to the present invention it is expected that the durability of the combustion engine will be improved. Further, by using the emulsion fuel according to the present invention, the weight of the fuel component can be reduced. It can generate more CO than expected from the mass ratio and increase the oxygen concentration
  • FIG. 1 is a diagram illustrating an emulsification mechanism
  • FIG. 1 (a) is a diagram illustrating a conventional monolayer adsorption mechanism of a surfactant
  • FIG. 1 (b) is a nanoparticle adhesion mechanism.
  • FIG. 2 (a) is a diagram illustrating a phenomenon due to thermal collision in a conventional adsorbed molecule type
  • FIG. 2 (b) is a diagram illustrating a phenomenon due to thermal collision in an emulsifier phase adhesion type. .
  • Figure 4 shows the results when the average particle size of DMPC-C14TAB emulsifier particles is 390.0 nm (
  • Fig. 5 is a diagram showing the results of observing the XRD peak when oil was added to a liquid crystal mixture of DMPC-TTAB of 0.5wt% with respect to water and emulsified with oil.
  • FIG. 6 is a block diagram illustrating a method for producing an emulsifying dispersant.
  • FIG. 7 is a diagram schematically illustrating a difference in an emulsified state depending on an amount of an oil phase.
  • FIG. 8 is a block diagram illustrating a method for producing an emulsion fuel.
  • FIG. 9 (a) is a diagram showing a state in which a light oil and an A-heavy oil emulsion using a conventional surfactant is prepared and left for 2 days.
  • FIG. 9 (b) is a diagram showing a three-phase emulsification.
  • FIG. 2 is a view showing a state in which an emulsion of light oil and A-heavy oil is prepared and left for 30 days after preparation.
  • FIG. 10 is a photograph showing the emulsified state in Table 2.
  • FIG. 11 is a photograph showing the emulsified state in Table 5.
  • FIG. 12 is a photograph showing the emulsified state in Table 6.
  • Figure 13 shows the results of viscosity adjustment with kerosene, light oil, A-heavy oil, and liquid paraffin
  • FIG. 14 shows test results obtained by measuring the change in the concentration of each component of exhaust gas after shifting to the combustion of light oil combustion of light oil.
  • FIG. 15 shows test results obtained by measuring the change in the concentration of each component of exhaust gas by shifting the combustion power of heavy fuel oil A to combustion of heavy fuel oil emulsion.
  • FIG. 1 shows a conceptual diagram of a conventional emulsification method using a surfactant and the three-phase emulsification method adopted this time.
  • the surfactant has a hydrophilic group and a lipophilic group having different properties in the same molecule.
  • hydrophilic emulsifiers the lipophilic group of the surfactant is compatible with the oil particles and the hydrophilic groups are aligned outside the oil particles so that they are easily compatible with water. And uniformly mixed in an aqueous medium to produce an oZw emulsion.
  • lipophilic surfactants have a hydrophilic group oriented toward water particles, and the lipophilic group is easily aligned with the oil with the lipophilic group facing outward. Evenly mixed, wZo emulsion is formed.
  • the surfactant is adsorbed on the oil surface to form a monomolecular emulsified film while forming the emulsion.
  • the physical properties of the interface change.
  • the size of the oil droplet gradually increases due to coalescence due to thermal collision of the oil droplet, and finally the oil and the surfactant aqueous solution are separated. In order to prevent this, it is necessary to form a microemulsion, which has the disadvantage that a large amount of surfactant must be used.
  • nanoparticles of the emulsifier phase are attached to the oil and water particles, whereby the water phase, the emulsifying dispersant phase, and the oil phase are dispersed.
  • Forming a phase structure and reducing the interfacial energy due to compatibility unlike conventional surfactants As shown in Fig. 2 (b), coalescence due to thermal collision is unlikely to occur and the We are working on long-term stability. Further, based on such a mechanism, a new emulsification method (three-phase emulsification method) capable of forming an emulsion with a small amount of an emulsifying dispersant will be adopted.
  • Examples of the emulsifying dispersant for realizing such three-phase emulsification include an emulsifying dispersant mainly composed of closed vesicles (vesicles) formed by an amphiphilic substance having self-organizing ability. , Emulsifying and dispersing agents containing monopolymerized monopolymer as a main component have been considered.
  • the closed vesicle formed by the amphiphilic substance has an average particle diameter of 8 ⁇ ! It is preferable to set it to 500 nm. If the particle size is smaller than 8 nm, the suction effect caused by the van der Waals force is reduced, and the closed vesicles are less likely to adhere to the surface of the oil droplet. If the particle size is larger than 500 nm, This is because a stable emulsion cannot be maintained.
  • Figure 3 shows a TEM photograph showing a particle size of 8 nm. On the other hand, if the particle diameter is larger than 500 nm, needle-like particles will be generated, and a stable emulsion cannot be formed.
  • Figure 4 shows the average particle diameter of 390.0 nm (500 nm or less: (A) side in the figure) and the average particle diameter of 20877.8 mm (larger than 500 mm, case: (B) side in the figure). Photographs of scattering intensity distribution and TEM are shown.
  • the particle size of the closed vesicles in this range at the time of emulsion formation may be 200 nm to 800 nm at the time of adjusting the dispersant. This is because the closed vesicles are refined during the emulsion formation process. It can be confirmed by observing the XRD peak in FIG. 5 that the closed endoplasmic reticulum has not been destroyed in this step. In the figure, X is the mole fraction of the oil phase relative to the emulsifier.
  • the amphipathic substance forming such closed vesicles is a derivative of polyoxyethylene hydrogenated castor oil represented by the following general formula (Idani 4) or represented by the following general formula (Chemical Formula 5).
  • R l, R 2 an alkyl group or alkeno of c 8 to c 22
  • R 3 , R 4 H, alkiso of
  • a derivative having an average number of moles of ethylene oxide ( ⁇ ) of 5 to 15 can be used as a derivative of hydrogenated castor oil.
  • Table 1 shows examples in which the average number of moles of ethylene oxide was varied from 5 to 20. In the range of 5 to 15, a stable force can be formed with a stable force of 20. The force cannot be kept stable. The resulting closed vesicles may be ionized to increase adhesion.
  • an alkyl or alkenyltrimethylammonium salt carbon chain length of 12 to 22
  • preferably a carbon chain is used as a ionic surfactant for cationizing.
  • CAB Hexadecyltrimethylammonium bromide
  • CnSO-M + alkyl sulfate
  • Elemental chain length 8-22 M: alkali metal, alkaline earth, ammodim salt, etc., alkyl sulfonate (CnSO—M + carbon chain length 8-22, M: alkali metal, alkaline earth, amo- Pum
  • HCO-10 and CTAB are mixed using an ethanol solvent, and after vigorous removal of ethanol, a mixed substance of HCO-10 and CTAB is formed. It is advisable to boil the distilled water so that the HCO-10 becomes 10 wt%, stir, and ripen it in a constant temperature bath.
  • Mixture of HCO-10 and CTAB When the molar fraction (Xs) of CTAB in the vehicle is Xs ⁇ 0.1, the cationicity of the mixed vesicle cannot be kept constant, and when it is 0.33 x Xs, a stable mixed vesicle can be obtained. In order to cationize, it is preferable to set the range of 0.1.l ⁇ Xs ⁇ 0.33.
  • phospholipids or phospholipid derivatives may be used as amphipathic substances that form closed vesicles.
  • Is DLPC (1,2-Dilauroy sn-glycero-3- 3-phospho-rac-1-choline) having a carbon chain length of 12, and a carbon chain length of the structure represented by the following general formula (I-Dani 6).
  • DMPG 1-Dimyristoyl-sn-glycero-3-phospho-rac-1-glycerol
  • DPPG 16 carbon chain length
  • Egg yolk lecithin or soybean lecithin may be used as the phospholipid.
  • the weight ratio of the emulsifiable oil component to the emulsifying dispersant is 4 to 200, and the mixture is contacted and mixed. Good.
  • biopolymers formed into single particles include, among monosaccharides such as ribose, xylose, rhamnose, fucose, glucose, mannose, glucuronic acid, and dalconic acid! Examples include those produced by microorganisms using sugar as a constituent element.
  • Microbial species that produce polysaccharides of a specific structure include the genera Alcaligenes, Xanthomonas, Earth bacterium, Bacillus, Hansenula and Brunaria, and any of the polysaccharides or mixtures can be used. It may be. Gelatin or block copolymers may be used instead of biopolymers.
  • the weight ratio of the emulsified oil-based component to the emulsified dispersant is set to 50 to 50. It is advisable to mix 2000 with insects.
  • a step of dispersing (vesicle-forming) an amphipathic substance having a self-organizing ability in closed vesicles or a step of forming single particles (Step I) ) is necessary.
  • step 1-1 heating and adjusting to about 80 ° C (step 1-2), adding a cutting agent such as urea to break hydrogen bonds (step 1-3), and adjusting pH
  • a cutting agent such as urea to break hydrogen bonds
  • step 1-3 adding a cutting agent such as urea to break hydrogen bonds
  • step 1-3 adding a cutting agent such as urea to break hydrogen bonds
  • step 1-3 adding a cutting agent such as urea to break hydrogen bonds
  • step adjusting pH can be achieved by any one of the steps (steps 1-4) or a combination of steps of adjusting the number to 5 or less.
  • this can be achieved by adding dropwise to water at 60 ° C or lower while stirring.
  • An emulsifying dispersant is produced through a step (Step III) and a step of stirring to make the particles finer (Step III).
  • the stirring is desirably high-speed stirring (up to 16000 rpm), but if it is an experimental device, it can be processed in a short time by stirring at about 1,200 rpm. Further, it is better to perform the steps of dropping in water and making the particles finer at the same time. For biopolymers, etc., the process becomes complicated because the network structure is broken down into single particles, but these are described separately in each of the examples (Examples 6, 8, 9, and 9). Ten).
  • a vesicle of hydrogenated castor oil a derivative of polyoxyethylene hydrogenated castor oil, a derivative of ethylene oxide (EO) having an average addition mole number (E) of 10 (hereinafter referred to as HCO
  • the HCO-10 is self-organized in water having almost no solubility in water, and is closed vesicles.
  • Vehicle-forming properties of poly (oxyethylene) -hardened castor oil-based nonionic surfactants Oil Chemistry, Vol. 41, No. 12, P1191-1196, (1992); (Oxyethylene) Thermal Properties of Hardened Castor Oil Vesicle Dispersion "Oil Chemistry, Vol. 41, No. 12, P1197-1202, (1992)
  • the average particle size depends on the concentration as shown in Table 2 At the stage of 200nm 800nm. The concentration range was set to 520 wt% in consideration of the stability in the dispersion.
  • the concentration of HCO-10 in water was determined using an A-heavy oil and water system.
  • the mixture was emulsified by using tap water at room temperature and stirring at 8,000 rpm for about 5 minutes at room temperature using a homomixer at 10 wt%.
  • the emulsified state was examined by changing the weight ratio of A-heavy oil.
  • Table 3 shows the composition ratios of the hardened castor oil (HCO-10), water, and heavy oil A after emulsification in emulsification and the results of the emulsified state.
  • Nos. 6 and 7 were redispersed by agitation with a weak force where a coacervation (tarrying) due to gravity was partially observed in appearance.
  • the one obtained by emulsifying with a surfactant was different from the emulsified state with a surfactant, and no coalescence of oil droplets was observed even after being left for a long period of time.
  • HCO-10 example of milky dangling2 Figures are wt%, oil content 30wt%
  • Table 7 shows the emulsified state of the phospholipids (DMPC, DMPG, DPPC) when the type of oil was changed and the emulsified state was examined.
  • the oil content was set in the range of 0.1 to 35 wt%, and tap water was used as water, and the mixture was stirred for about 5 minutes at room temperature with a normal stirrer.
  • the concentration of the phospholipid was set in the range of 0.005 to 0.5 wt%.
  • the value is t oil 0.1 ⁇ 35w «
  • Egg yolk lecithin was used as a phospholipid, and emulsified states of yolk lecithin and silicone oil, and yolk lecithin and hexadecane were examined.
  • Table 8 shows the results. In the table, (1) is the case where hydrogenation is performed, and (2) is the case where hydrogenation is not performed. Also in this case, an emulsion having excellent heat stability and stability over time could be obtained.
  • a biopolymer aqueous solution is prepared by dispersing a powder of biopolymer 0 in a predetermined amount of water, leaving it to stand for one day to swell, heating at 80 ° C for 30 minutes, and adding urea to this. The hydrogen bonds of the Noo polymer were broken to make it a single particle.
  • Biopolymers up to 0. LWT% could be single particle by 4 mol / dm 3 aqueous urea solution.
  • Liquid paraffin one of hydrocarbon oils, was examined in order to examine whether the aqueous dispersion of the monopolymerized biopolymer had the same emulsifying ability as an ordinary surfactant in an oil agent.
  • the emulsifying ability according to the dispersion concentration of the biopolymer was examined as shown in Table 9, and it was found that 0.05% by weight of the biopolymer in water was used to disperse liquid paraffin to 70% by weight (water: 30% by weight). did it.
  • the strength was extremely stable over time, with no change in the state of the solution.
  • the biopolymer was set at 0.04 wt% and liquid paraffin at 30%, and the temperature for emulsification was changed from 25 to 75 ° C.
  • the prepared emulsified state was stable at any temperature.
  • the concentration of the liquid polymer was fixed at 30%, and the concentration of the biopolymer was changed. By examining the emulsifying ability of the biopolymer after emulsification, it was found that it could emulsify 0.04 wt%.
  • the oils used here are hexadecane, silicone, isopropyl myristate, squalane, olive oil, jojoba oil, cetostearyl alcohol, oleyl alcohol, and oleic acid. Oleic acid separated after a few days, but other oils could be emulsified.
  • the biopolymer has an excellent emulsifying ability, and that the emulsion is stable even at a low concentration of 0.04 wt%, and that the single particle of the biopolymer becomes This is considered to be due to the formation of an emulsifying dispersant phase by adhering to the surroundings, and the formation of three phases of an aqueous phase, an emulsifying dispersant phase, and an oil phase on the emulsion surface.
  • Potato starch, rice cake powder, tapioca powder (cassava potato powder) were used as starch seeds, and liquid paraffin and hexadecane were used as oils.
  • the starch was dispersed in water, heated to 90 ° C with stirring, and cooled to room temperature to obtain a good dispersion state in order to make the starch into single particles.
  • the sugar polymer dispersion was used as an emulsifier.
  • an oil phase was added to the starch water dispersion liquid after the monoparticulation operation at room temperature, and the emulsion was prepared by stirring.
  • Emulsified state by starch Emulsified state by starch.
  • No phase separation
  • Separation due to difference in specific gravity with 0 / W emulsion (core cell basis)
  • Liquid paraffin was used as the oil.
  • chitosan is dispersed in water to make chitosan into single particles. And adjusted to an acidic pH of 5 or less. By this operation, it became visually transparent, chitosan was converted into single particles, and a good dispersion was obtained.
  • the pH was adjusted thereafter.
  • an oil phase was added to the chitosan dispersion liquid after the single-particle forming operation, and the emulsion was prepared by stirring.
  • Table 14 shows the results.
  • Table 15 shows the results of adjusting the pH to 4, 7, and 10.
  • kelp powder which is a biological polysaccharide, is used as the noopolymer is shown below.
  • Fucoidan contained in kelp flour was used as the sugar polymer component.
  • kelp powder was dispersed in water and adjusted to an acidic pH of 5 or less in order to convert fucoidan into single particles.
  • the oil phase was added to the kelp powder dispersion liquid after the single-particle forming operation, and the emulsion was prepared by stirring.
  • the emulsification method (three-phase emulsification method) described above using an emulsifying dispersant containing a closed vesicle formed by an amphiphilic substance or a monopolymerized biopolymer as a main component is used as a conventional interface. As compared with the emulsification method using an activator, the following characteristics were commonly observed.
  • a surfactant is adsorbed on the interface between oil and water, and emulsification is performed based on a reduction in interfacial energy at the oil / water interface.
  • the method is characterized in that the nanoparticles adhere to the interface between oil and water by van der Waals forces to form an emulsifying dispersant phase, and therefore, regardless of the required HLB value of the oil base to be emulsified, It is possible to emulsify without changing the energy.
  • the three-phase emulsion described above is capable of 1) stably forming large oil droplets in the shape of ikura, and 2) removing the continuous external phase by biasing due to the difference in specific gravity. Even though the emulsified state did not change. Also, 3) it was possible to form a three-phase emulsified emulsion by adding an additive to the aqueous phase or the oil phase.
  • the emulsion fuel of the present invention is a fuel such as light oil, heavy oil (A-heavy oil, C heavy oil), heavy oil, kerosene, gasoline, or the like to which water is added, in which the emulsifying dispersant is included as an essential component. .
  • the closed vesicle formed by the amphiphilic substance has an average particle diameter of 8 ⁇ ! It is preferable to set it to 500 nm. If the particle diameter is smaller than 8 nm, the suction effect caused by the Van der Waals force is reduced, and the closed vesicles are less likely to adhere to the surface of the oil droplets. Then, as described above, a stable emulsion cannot be maintained.
  • the particle size of the closed vesicle In order to make the particle size of the closed vesicle within this range at the time of emulsion formation, it may be 200 nm to 800 nm at the time of adjusting the dispersant. This is because the closed vesicles are refined during the emulsion formation process.
  • amphipathic substance forming such a closed vesicle a (polyoxyethylene) hydrogenated castor oil derivative represented by the above-mentioned general formula (Idani 4) is employed.
  • a derivative of hydrogenated castor oil a derivative having an average number of moles of ethylene oxide (E) of 5 to 15 can be used.
  • E ethylene oxide
  • step IV the step of adjusting fluidization
  • step V the temperature of the highly-viscous oil that has been fluidized to a predetermined temperature or lower (60 ° C or lower).
  • the fluidization adjustment step is a step of adjusting the temperature to about 80 ° C so that the feedstock oil can flow (Step IV-1).
  • the required amount of viscosity adjusting oil (Step IV-2) and in the step of stirring and homogenizing (Step IV-3) Achieved.
  • the viscosity at the time of homogenization can be controlled by the amount of the adjusting oil added.
  • the temperature of the heating adjustment in Step IV-1 may not be 80 ° C as long as it can be mixed with the adjusting oil.
  • the emulsifying dispersant When combined with the temperature must be reduced to below 60 ° C.
  • Step V a temperature adjustment step for lowering the temperature of the fluidized oil to below a predetermined temperature (60 ° C or less) is required. It becomes. Steps IV and V can be omitted depending on the feedstock.
  • an emulsion fuel is produced through a step of dropping the fluidized and adjusted raw material oil into the emulsifying and dispersing agent liquid (step VI) and a step of stirring to make the particles finer (step VII). That is, heavy oil or light oil, heavy oil, or the like, which has been fluidized, is added little by little to water and an emulsifying dispersant according to the emulsion fuel composition, and the mixture is agitated to form an emulsion fuel.
  • the stirring is desirably high-speed stirring (up to 16000 rpm), but the stirring may be performed at such a speed that no temperature rise is observed.
  • it is preferable that the steps of dropping in water and making the particles finer are performed simultaneously.
  • the emulsifier uses a normal homogenizer, and the combustion experiment uses a combustion experiment device that uses a kerosene-specific parner to measure the five components (NO, CO, SO, CO, O) in the combustion exhaust gas. Automatically monitored.
  • the fuel was added to the aqueous dispersion of HCO-10, and the mixture was stirred with a homogenizer at 16000 rpm for 10 minutes to prepare an emulsion.
  • the composition of the emulsion is as follows: 1% 0-10: 5% by weight, oil phase 50%, water 45%.
  • FIG. 9 shows a conventional emulsion of light oil and A-heavy oil prepared by a surfactant and an emulsion of light oil and A-heavy oil prepared by the three-phase emulsification method of the present invention.
  • the state after 2 days is the state after 30 days in the emulsion by the three-phase emulsification method (this state is the same even after 2 months).
  • the emulsion using the conventional surfactant is completely phase-separated, but the emulsion using the three-phase emulsification method requires no additives other than the emulsifying and dispersing agent of HCO-10. Was also very stable over time.
  • the emulsion was prepared by stirring while changing the weight ratio of HCO-10, the oil phase (A-heavy oil, light oil), and water, and the state after one week and one month at room temperature was observed. .
  • Tables 17 to 19 show examples of emulsification of A-heavy oil.
  • FIG. 10 shows a photograph of the emulsified state in Table 18. In a short time, even if HCO-10: 0.5% and oil phase: 95%, the emulsion formed will change with time when the oil phase becomes more than 80%.
  • CD o w type emulsion 2 w / o type emulsion, 3 w / o micro emulsion
  • Tables 20 to 23 show examples of emulsification of light oil. Further, a photograph of the emulsified state in Table 22 is shown in FIG. 11, and a photograph of the emulsified state in Table 23 is shown in FIG. In this case, the emulsion with an oil phase of 80% or more did not stably form. However, there is no change over time!
  • Example of light oil emulsification with lWt% HCO-10 aqueous dispersionCO Values are weight ⁇ 1 ⁇ 2
  • HCO-10 should be composed of 0.4-: L0.0%, light oil 5-95%, and water balance, more preferably, HCO-10 should be composed of 0.8-: L0. 0%, light oil 5-60%, It is better to formulate with water balance.
  • a step of adjusting the viscosity is performed.
  • the viscosity modifier used at this time is preferably light oil or heavy fuel oil A, which is a low-viscosity distillate obtained in the process of petroleum refining, etc. There is no need to limit.
  • Table 25 and Fig. 13 show the results of viscosity adjustment using kerosene, light oil, Fuel Oil A and liquid paraffin.
  • Kerosene 10 20 30 40 50 60 70 80 90 Residual brewing oil 90 80 70 60 50 40 30 20 10 Viscosity (mPa)-33 383 2250 341 122 76 65 61 61 Viscosity of oil adjusted for heavy oil
  • Tables 26 and 27 show the results of emulsifying with adjusted heavy oil to which 30% of heavy oil A was added as a viscosity modifier and 10 wt% HCO-10 water dispersion.
  • Table 28, Table 29, and Table 30 show examples of emulsification experiments using kerosene, light oil, and liquid paraffin as viscosity modifiers.
  • HCO-10 is composed of 2 to 9%, adjusted heavy oil 80 to 10%, and water balance, more preferably, HCO-10 is 3 to 9%, It is advisable to make 70-30% adjusted heavy oil with water balance.
  • Fig. 14 shows the measurement results for exhaust gas during combustion of light oil
  • Fig. 15 shows the measurement results for exhaust gas during combustion of A-heavy oil.
  • the oxygen concentration in the exhaust gas increases and the CO concentration is lower than that of the 50% fuel component.
  • the oxygen concentration in the exhaust gas increases, and the CO concentration is 50% fuel component.
  • A-fuel oil is more completely burned than fuel alone.
  • the combustion temperatures of A-heavy oil and its emulsion were about 1050 degrees and 900 degrees, respectively, which was about 150 degrees lower.
  • Cosmetic products, pharmaceuticals, foods, agricultural chemicals, paints, fuel emulsions, soil improvers, and other functional oil-based bases and emulsified preparations in which fine particles are emulsified and dispersed, and applications using dispersions are also applicable.

Description

乳化分散剤及びこれを用いた乳化分散方法、乳化物、並びにエマルショ ン燃料
技術分野
[0001] 本発明は、被乳化物の種類を問わない経時安定性に優れた乳化分散剤及びこれ を用いた乳化分散法、乳化物、並びにエマルシヨン燃料に関する。
背景技術
[0002] 従来、機能性油性基剤または機能性顆粒を水に乳化分散させる場合には、機能性 油性基剤の所要 HLBや顆粒表面の性質に応じて界面活性剤を選択し、乳化分散を 行っていた。また、乳化剤として用いられる界面活性剤の所要 HLB値は、 OZW型ェ マルシヨンを作る場合と WZO型エマルシヨンを作る場合とのそれぞれに応じて使い 分ける必要があり、しかも、熱安定性や経時安定性が十分でないため、多種多様な 界面活性剤を混合して用いて!/ヽた (非特許文献 1〜4等参照)。
[0003] また、従来、軽油等を燃料とした熱機関(自動車、発電、船舶、航空機など)力もの 排気ガス中には、 PM (炭素微粒子)や VOC ( a -Biphenylなど)以外に燃焼に伴!ヽ 必然的に発生する COや NOxの問題がある。このため、各自治体においては、独自 に厳格な規制値を設定しており(例えば 100〜110ppm以下)、この問題の技術的 解決策としては、燃料に水を 50%添加したエマルシヨン燃料によって可能になること が報告されている (非特許文献 5、非特許文献 6等)。さらに、高粘度の重質油とは、 蒸留残渣油(タール、ピッチ、アスファルト等)、オイルサンド、天然ビチューメン、オリ ノコタール等の常温では扱えないような高粘性油である力 S、これを流動化するために 低粘度の石油留分等で調整すること、また、この調整重質油を界面活性剤によって エマルシヨンィ匕することも知られて 、る(特許文献 7)。
[0004] 特干文献 1: Emulsion Science Edited by P. Snerman, Academic Press Inc.
(1969)
非特許文献 2 : "Microemulsions- Theory and Practice- Edited by Leon M. price, Academic Press Inc. (1977) 非特許文献 3 :「乳化 ·可溶化の技術」 辻 薦,工学図書出版(1976) 非特許文献 4:「機能性界面活性剤の開発技術」 シー ·ェム 'シ一出版 (1998) 非特許文献 5: "水ェマルジヨン燃料による排気ガスの窒素酸ィ匕物および黒煙の低減 効果"、 [平成 16年 8月 25日検索]、インターネット URL:
http://www.naro.affix.go.jp/top/seika/2002/kanto/kan019.html
非特許文献 6 : "水ェマルジヨン燃料のディーゼル機関への適用ィヒ研究"、川崎重工 技報 第 132号、 [平成 16年 8月 25日検索]、インターネット URL:
http: // www.khi xo.jp/ tech/ njl32g05.ntm
特許文献 7:特開平 07— 70574号公報
発明の開示
発明が解決しょうとする課題
[0005] し力しながら、界面活性剤は、生分解性が低ぐ泡立ちの原因となるので、環境汚 染などの深刻な問題となっている。また、機能性油性基剤の乳化製剤の調製法とし て、 HLB法、転相乳化法、転相温度乳化法、ゲル乳化法等の物理化学的な乳化方 法が一般に行われている力 いずれも油 Z水界面の界面エネルギーを低下させ、熱 力学的に系を安定ィ匕させる作用をエマルシヨン調製の基本としているので、最適な乳 ィ匕剤を選択するために非常に煩雑かつ多大な労力を有しており、まして、多種類の 油が混在していると、安定に乳化させることは殆ど不可能であった。
[0006] また、軽油等の燃料は、多種の炭化水素油の混合物であるため、水を添加した燃 料を従来の界面活性剤により乳化することは困難であり、界面活性剤による経時安 定的なエマルシヨン燃料は未だ開発されて ヽな 、。
[0007] さらに、低粘度の石油留分等で流動化された調整重質油は搬送ラインでの沈降、 附着あるいは不完全燃焼による環境汚染などのため幅広く利用されるまでになって いない。しかも、調整重質油を界面活性剤によってエマルシヨンィ匕したエマルシヨン 燃料は、成分性状に著しい差異があるため、多量多種の界面活性剤を使っても満足 できる安定性が得られて 、な 、。
[0008] そこで、この発明にお 、ては、機能性油性基剤と水、または機能性顆粒と水などの 界面に対して、熱安定性や経時安定性に優れた乳化分散系を形成すること、また、 機能性油性基剤の所要 HLB値又は機能性顆粒の表面状態に関わりなぐ乳化分散 させることが可能な乳化分散剤、及び、これを用いた乳化分散法並びに乳化物を提 供することを主たる課題としている。また、乳化物の応用例として、環境負荷への影響 を低減することが可能な経時安定性に優れたエマルシヨン燃料を提供することをも課 題としている。
課題を解決するための手段
[0009] 従来の界面活性剤を用いた乳化法では、油と水との界面に界面活性剤が吸着し、 その界面エネルギーを低下させることを乳化 ·分散法の基本として 、たので、その界 面張力を低下させるために多量の乳化剤を必要とするものであった。これに対して、 本発明者らは、新規な乳化技術を開発するために鋭意研究を重ねた結果、油/両親 媒性ィ匕合物/水系の中で独立相として存在する両親媒性ィ匕合物のナノ粒子をファン デルワールスカによって油性基剤表面に付着させることで乳化を行なう三相乳化法 を見出し、また、このような乳化法によれば、油性成分の所要 HLB値によらず、油性 成分/水界面の界面張力の大きさが乳化剤のナノ粒子の付着に重要であることを知 見した。さらに、本発明者らは、この三相乳化エマルシヨンは通常の OZW型や WZ O型などの二相乳化エマルシヨンに比べて非常に高い安定性を示すことを見い出し 、これらの知見に基づき本発明を完成したものである。
[0010] 即ち、前記課題を達成するために、この発明に係る乳化分散剤は、自己組織能を 有する両親媒性物質により形成される閉鎖小胞体を主成分とすることを特徴としてい る。
[0011] ここで、閉鎖小胞体は、平均粒子径を、エマルシヨン形成時に 8nm〜500nm、分散 剤調整時に 200ηπ!〜 800nmとすることが好ましい。また、上述のような自己組織能を 有する両親媒性物質としては、例えば、下記の一般式 (ィ匕 1)で表されるポリオキシェ チレン硬化ひまし油の誘導体のうちエチレンォキシドの平均付カ卩モル数(E)が 5〜1 5である誘導体や、一般式 (ィ匕 2)で表されるようなジアルキルアンモ-ゥム誘導体、ト リアルキルアンモ-ゥム誘導体、テトラアルキルアンモ-ゥム誘導体、ジァルケ-ルァ ンモ -ゥム誘導体、トリァルケ-ルアンモ -ゥム誘導体、又はテトラアルケ-ルアンモ -ゥム誘導体のハロゲン塩の誘導体を採用するとよい。また、リン脂質並びにリン脂 質誘導体から作成される粒子を用いてもょ '
[0012] [化 1]
O O -(CH2 CH2 C ^H
II I
CHs -0-(CHi CHz O).- C -(CH2)IQCH(CH2)5CHS
O 0-(CHi CHz 0)γΗ
II I
CHz -0- (CH2 CH2 O) - C-(CHj)ioCH(CH2)5CH3
〇 0-(CH2 CH2 O)^
II I
CHi 一〇一(CHz CHt O)„-C-(CH2)l0CH(CHz)5CH3
E=L+ +N+X+Y+ Z
[0013] [化 2] アルケニル基
Figure imgf000006_0001
[0014] ここで、ポリオキシエチレン硬化ひまし油の誘導体にあっては、イオン性界面活性 剤をモル分率で 0. l≤Xs≤0.33の範囲でさらに付加し、閉鎖小胞体をイオン化 (力 チオン化もァ-オン化)してもょ ヽ。
[0015] 上述した乳化分散剤を用いた乳化分散方法としては、被乳化油性成分と前記乳化 分散剤との比を 1〜: L000として接触、混和させることが好ましい。
[0016] また、上記課題を達成するために、この発明に係る乳化分散剤としては、単粒子化 されたノィォポリマーを主成分とするものであってもよい。
[0017] ここで、バイオポリマーとしては、微生物産生による多糖類、リン脂質、ポリエステル 類や、生物由来の澱粉等の多糖類、キトサンよりなる群力 選ばれた 1又は 2以上の ものが考えられる。例えば微生物産生の多糖類として、リボース、キシロース、ラムノ ース、フコース、グルコース、マンノース、グルクロン酸、ダルコン酸などの単糖類の中 から!/、くつかの糖を構成要素として微生物が産生するものがあげられる。特定の構造 の多糖類を産生する幾つかの微生物種が知られて 、るが、 、ずれの多糖類でもまた 混合物になっていてもよい。 [0018] 更に 生物由来の澱粉としては、馬鈴薯、もち米粉、タピオ力粉、昆布粉等があるが 、これに限定されるものではなく単体もしくは複合構造で両親媒性を示すものであれ ばよい。
[0019] このような乳化分散剤を用いた乳化分散方法としては、被乳化油性成分と前記乳 化分散剤との比を 50〜2000として接触、混和させることが好ま 、。
[0020] 尚、上述した乳化分散剤を製造する方法としては、自己組織能を有する両親媒性 物質を閉鎖小胞体に分散させる工程、又は、自己組織能を有する両親媒性物質を 単粒子化させる工程と、閉鎖小胞体に分散又は単粒子化された両親媒性物質を所 定温度以下の水に滴下し微細化する工程とを含むことが好ましい。自己組織能を有 する両親媒性物質を閉鎖小胞体に分散させる工程、又は、単粒子化させる工程は、 使用する材料によってさまざまな工夫が必要である力 ひまし油誘導体では 60°C以 下の水に、攪拌しながら滴下することで達成される。
[0021] 上述した乳化分散剤と油脂とを接触し混和させて得られる乳化物は、油と水との界 面に乳化分散剤相が形成されるので、合一が起こりにくぐ油脂の種類に依存するこ となぐ極めて熱安定性、経時安定性に優れている。
[0022] このような乳化物の一例としてエマルシヨン燃料が挙げられる。このエマルシヨン燃 料は、水を添加した燃料に自己組織能を有する両親媒性物質により形成された閉鎖 小胞体を主成分とする乳化分散剤を必須成分として含むことを特徴としている。
[0023] ここで、燃料は、軽油、重油 (A—重油、 C一重油)、灯油、ガソリン等、又は粘度調 整を施した高粘度の重質油 (蒸留残渣油、オイルサンド、天然ビチューメン、オリノコ タール等)を想定しており、自己組織能を有する両親媒性物質としては、下記の一般 式 (ィ匕 3)で表されるポリオキシエチレン硬化ひまし油の誘導体のうちエチレンォキシ ドの平均付加モル数 (E)が 5〜 15である誘導体を用いるとよ 、。 [0024] [化 3]
O 0-(CH2 CH2 〇)χΗ
II I
CHi - 0-(CHi CHz 0)L- C-(CHz)iDCH(CH¾)iCHi
O O -(CHi CHz 0)γΗ
II I
CHz - 0-(CHz CH2 0)M- C- (CH2)IDCH(CHJ)5CH3
O 0-(CH2 CHz 0 ^i
II I
CHi -O-CCHi CHs 0)N-C-(CH2)lDCH(CHz)5CH3 E = L+M+N + X + Y+ Z
[0025] また、燃焼ガスの COや NOxの値を上述した規制値以下とするためには、重量比で 、両親媒性物質 0.1〜15.0%、前記燃料 1〜95%、水バランスで組成することが好 ましい。
[0026] 燃料として A—重油を用い、両親媒性物質として上記誘導体のうちエチレンォキシ ドの平均付加モル数 (E)が 10である誘導体 (HCO— 10)を用いた場合には、 HCO 10を0. 1〜14.25%、 A—重油を 5〜95%、水バランスで組成すること、より好ま しくは、 HCO— 10を 5〜14.25%、 A—重油を 5〜50%、水バランスで組成すると よい。
[0027] また、燃料として軽油を用い、両親媒性物質として前記 HCO— 10を用いた場合で あれば、 HCO— 10を 0.4〜: L0.0%、軽油 5〜95%、水バランスで組成すること、 より好ましくは、 HCO— 10を 0.8〜: L0.0%、軽油を 5〜60%、水バランスで組成 するとよ 、。
[0028] さらに、燃料として重質油を用い、粘度調整剤で流動化する工程を経て両親媒性 物質として前記 HCO— 10を用いた場合には、 HCO— 10を 0.3〜9%、調整重質 油 80〜10%、水バランスで組成すること、より好ましくは、 HCO— 10を 0.3〜9%。 調整重質油を 70〜30%、水バランスで組成すると良い。
[0029] また、上記のエマルシヨン燃料に防鲭剤、焼き付き防止剤、防腐剤などの添加物を 目的に応じ任意に配合できる。上記の三相乳化技術は、軽油、重油以外の合成油、 植物油等との混合油にも適用可能である。
[0030] 尚、上述したエマルシヨン燃料を製造する方法は、原料油を流動化調整する工程と 、流動化調整された原料油を所定温度以下まで温度を下げる温度調節工程と、前記 温度調節工程で温度調節された原料油を前記乳化分散剤液中に滴下し微細化する 工程とを含むとよい。特に重質油においては温度管理が重要である。重質油が流動 可能になる 80°C前後に加温した上で粘度調整用油を所要量加えて均一化する。こ のときの粘度は調整用油の量によって管理可能である。しかし乳化分散剤と併せると きには 60°Cぐらい迄温度を下げておく必要がある。このように調整した重質油または 軽油、重油等はエマルシヨン燃料組成にあわせた水と乳化分散剤の液中に少量ず つ加えて 、く形で、攪拌されてエマルシヨン燃料が形成される。
発明の効果
[0031] 以上述べたように、この発明に係る乳化分散剤を用いることで、機能性油性基剤と 水、または機能性顆粒と水などの界面に対して、熱安定性や経時安定性に優れた乳 化分散系を形成することが可能となる。このため、従来の炭化水素系界面活性剤で は安定した乳化物を形成することが困難であつたが、本発明の乳化分散剤を用いれ ば、長期間に亘り、幅広い温度領域で乳化安定化を図ることが可能となる。
[0032] また、一種類の乳化分散剤を用いて、被乳化油剤の所要 HLB値又は機能性顆粒 の表面状態に関係なぐ油脂成分を乳化分散させることが可能となるので、炭化水素 系油剤やシリコン系油剤の乳化も可能となる。このため、乳化剤を選択する煩わしさ や労力を最小限にすることができ、また、多種類の混在している油を同時に乳化させ ることち可會となる。
[0033] さらに、乳化に必要な乳化分散剤の濃度は、従来型の界面活性剤の 1/10〜
1/1000で済むので、環境に与える負荷を著しく低減できる。
[0034] さらにまた、本発明に係る燃料エマルシヨンによれば、水を添加した軽油、又は、重 油に自己組織能を有する両親媒性物質により形成された閉鎖小胞体を主成分とす る乳化分散剤を必須成分として含むようにしたので、極めて経時安定性に優れた燃 料エマルシヨンを形成することができ、また、 NO, CO, SO の発生濃度を低減する
2
ことができる。
[0035] また、本発明にかかるエマルシヨン燃料を用いることで、燃焼機関の耐久年数の向 上が望める。さらに、本発明にかかるエマルシヨン燃料を用いることで、燃料成分の重 量比から予測される以上の COを発生させ、また酸素濃度を増カロさせることができる
2
ことから、完全燃焼を促進することが可能となり、不完全燃焼によって生じる炭素微粒 子 (PM)を低減することが可能となる。
図面の簡単な説明
[図 1]図 1は、乳化メカニズムを説明する図であり、図 1 (a)は従来の界面活性剤の単 分子膜吸着メカニズムを説明する図、図 1 (b)はナノ粒子の付着メカニズムを説明す る図である。
[図 2]図 2 (a)は従来の吸着分子型での熱衝突による現象を説明する図であり、図 2 ( b)は乳化剤相付着型での熱衝突による現象を説明する図である。
[図 3]図 3は、 DMPC— C14TAB系乳化剤粒子の TEM写真(Xs=0. 5、等モル混 合)である。
[図 4]図 4は、 DMPC— C14TAB系乳化剤粒子の平均粒子径が 390.0nmの場合(
A)と 2097. 8nmの場合 (B)の散乱強度分布と TEM写真である。
[図 5]図 5は、水に対して 0. 5wt%の DMPC— TTAB混合液晶に油を添カ卩して乳化 した場合の XRDピークを観測した結果を示す図である。
[図 6]図 6は、乳化分散剤の製造方法を説明するブロック図である。
[図 7]図 7は、油相分量による乳化状態の相違を模式的に書いた図である。
[図 8]図 8は、エマルシヨン燃料の製造方法を説明するブロック図である。
[図 9]図 9 (a)は、従来の界面活性剤を用いた軽油と A—重油のエマルシヨンを調製 後 2日間置いた状態を示す図であり、図 9 (b)は、三相乳化法を用いた軽油と A—重 油のエマルシヨンを調製後 30日間置いた状態を示す図である。
[図 10]図 10は、表 2の乳化状態を示す写真である。
[図 11]図 11は、表 5の乳化状態を示す写真である。
[図 12]図 12は、表 6の乳化状態を示す写真である。
[図 13]図 13は、灯油、軽油、 A—重油、流動パラフィンによる粘度調整の結果を示す
[図 14]図 14は、軽油の燃焼力 軽油エマルシヨンの燃焼へ移行させて排気ガスの各 成分の濃度変化を測定した試験結果を示す。 [図 15]図 15は、 A 重油の燃焼力も A—重油エマルシヨンの燃焼へ移行させて排気 ガスの各成分の濃度変化を測定した試験結果を示す。
発明を実施するための最良の形態
[0037] 以下、この発明の最良の実施形態を説明する。
[0038] 図 1において、従来型の界面活性剤による乳化法と今回採用した三相乳化法の概 念図が示されている。
[0039] 従来の界面活性剤による乳化法においては、図 1 (a)に示されるように、界面活性 剤は同一分子内に性質の異なる親水基と親油基を持つ。親水性乳化剤は、油の粒 子に対しては、界面活性剤の親油基が油に相溶し、また、親水基は油粒子の外側に 配向した状態で並んでいるので水になじみやすくなり、水媒体中に均一に混ざり合 い、 oZw型エマルシヨンを生成する。また、親油性界面活性剤は、水の粒子に対し ては、界面活性剤の親水基が配向し、親油基が外側に向いた状態で並んで油にな じみやすくなり、油媒体中に均一に混ざり合い、 wZo型エマルシヨンが生成する。
[0040] し力しながら、従来型のこのような乳化法によると、界面活性剤が油表面に吸着し、 単分子膜状の乳化膜を形成して ヽるために、界面活性剤の種類により界面の物性が 変化する不都合がある。また、図 2 (a)に示されるように、油滴の熱衝突による合一に よって油滴のサイズは次第に大きくなり、遂には油と界面活性剤水溶液とに分離する 。これを防ぐためには、マイクロエマルシヨンを形成させる必要があり、これには、多量 の界面活性剤を用いなければならな ヽ不都合がある。
[0041] そこで、本件においては、図 1 (b)に示されるように、油や水の粒子に対して乳化剤 相のナノ粒子を付着させ、これにより、水相 乳化分散剤相 油相の三相構造を形 成し、従来の界面活性剤と異なって相溶性による界面エネルギーの低下をさせること なぐ図 2 (b)に示されるように、熱衝突による合一を起こりにくくして乳化物の長期安 定化を図っている。また、このような機構に基づき、少量の乳化分散剤によってエマ ルシヨンを形成することが可能な新規な乳化法 (三相乳化法)を採用するようにして!/、 る。
[0042] このような三相乳化を実現するための乳化分散剤としては、自己組織能を有する両 親媒性物質により形成される閉鎖小胞体 (べシクル)を主成分とする乳化分散剤や、 単粒子化されたノィォポリマーを主成分とする乳化分散剤が考えられている。
[0043] ここで、両親媒性物質により形成される閉鎖小胞体は、平均粒子径を 8ηπ!〜 500 nmとすることが好ましい。粒子径を 8nmより小さくすると、ファンデルワールス力に起 因する吸引作用が小さくなり、閉鎖小胞体が油滴の表面に付着しにくくなるからであ り、また、粒子径を 500nmよりも大きくすると、安定したエマルシヨンを維持できなくな るためである。図 3に粒子径 8nmを表す TEMの写真を示す。また、粒子径が 500nm より大きくなると、針状粒子が生じるようになり、安定したエマルシヨンを形成できなくな る。図 4に平均粒子径 390.0nmの場合(500nm以下の場合:図中(A)側)と平均粒 子径 2087. 8應の場合(500應より大き 、場合:図中(B)側)の散乱強度分布と TE Mの写真を示す。
[0044] 閉鎖小胞体の粒子径をエマルシヨン形成時にこの範囲にするには分散剤の調整時 には 200nm〜800nmにあってもよい。これはエマルシヨン形成の工程で閉鎖小胞体 が細粒化されるためである。この工程で閉鎖小胞体が破壊されていないことは図 5の XRDピークを観察することで確認できる。図中、 Xは乳化剤に対する油相のモル分
H
率を示す。
[0045] このような閉鎖小胞体を形成する両親媒性物質としては、下記の一般式 (ィ匕 4)で表 されるポリオキシエチレン硬化ひまし油の誘導体、もしくは一般式 (化 5)で表されるよ うなジアルキルアンモ-ゥム誘導体、トリアルキルアンモ-ゥム誘導体、テトラアルキル アンモ-ゥム誘導体、ジァルケ-ルアンモ -ゥム誘導体、トリァルケ-ルアンモ -ゥム 誘導体、又はテトラアルケニルアンモ -ゥム誘導体のハロゲン塩の誘導体を採用する とよい。
[0046] [化 4]
O 0-(CH2 CH2 O^H
II I
CHE - 0- (CH¾ CHZ 0)L- C-(CH2)iaCH(CHi)5CHs
O 0-(CH¾ CH2 O)
II I
CH2 —〇—(CHi CH2 0)M- C-(CHi)ioCH(CH2)5CH| 〇—(CHz CHs O)N-
Figure imgf000013_0001
L+M+N + X + Y+ Z
[0047] [化 5]
R l, R 2 : c 8〜 c 22のアルキル基又はアルケニノ
R3,R4 : H, 〜 のアルキゾ
X : F, CI, Br, I
Figure imgf000013_0002
[0048] 硬化ひまし油の誘導体としては、エチレンォキシドの平均付カ卩モル数(Ε)が 5〜 15 である誘導体が使用可能である。エチレンォキシドの平均付加モル数を 5〜20に変 動させた例を表 1に示す。 5〜15の範囲は安定している力 20では短時間のェマル シヨン形成は可能だ力 安定に保つことができない。付着力を高めるために、これに よって得られる閉鎖小胞体をイオン化してもよ 、。このようなイオンィ匕べシクルを形成 するにあたり、イオン性界面活性剤として、カチオンィ匕のためにはアルキルまたはァ ルケニルトリメチルアンモ-ゥム塩 (炭素鎖長 12〜22)、好ましくは、炭素鎖長 16の へキサテシノレトリメチノレアンモ-ゥムブロミド (Hexadecyltrimethylammonium Bromide: 以下、 CTABという)、ァ-オン化のためにはアルキル硫酸エステル塩(CnSO— M+炭
4 素鎖長 8〜22、 M:アルカリ金属、アルカリ土族、アンモ-ゥム塩など)、アルキルスル ホン酸塩(CnSO— M+炭素鎖長 8〜22、 M:アルカリ金属、アルカリ土族、アンモ-ゥム
3
塩など)などを用いると良い。イオンィ匕の方法は、例えば HCO— 10と CTABとをエタ ノール溶媒を用いて混合し、し力る後にエタノールを除去して HCO— 10と CTABと の混合物質を形成し、その後、この混合物質に HCO— 10が 10wt%になるように蒸 留水をカ卩えて攪拌し、恒温槽で熟成させるとよい。 HCO— 10と CTABとの混合べシ クル中の CTABのモル分率 (Xs)は、 Xs < 0. 1にすると、混合べシクルのカチオン性 が一定に保てなくなり、 0. 33く Xsにすると、安定した混合べシクルを得られなくなる ので、カチオン化するためには、 0. l≤Xs≤0. 33の範囲にすることが好ましい。
[表 1]
HCO-5による A-重油乳化例 数値は重量%
Figure imgf000014_0001
〇 相分離無、 △ 比重差による分離 コアセルべ一シヨン 、 X 分離
HCO-15による A-重油乳化例
Figure imgf000014_0002
〇 相分離無、 △ X 分離
HCO-20による A-重油乳化例 数値は重量《½
Figure imgf000014_0003
〇 相分離無、 △ 比重差による分離 (コアセルべ一シヨン 、 X 分離 また、閉鎖小胞体を形成する両親媒性物質としては、リン脂質やリン脂質誘導体等 を採用してもよい。リン脂質としては、下記の一般式 (ィ匕 6)で示される構成のうち、炭 素鎖長 12の DLPC (1 ,2- Dilauroy卜 sn- glycero- 3- phospho- rac- 1- choline)、炭素鎖 長 14の DMPC (1 , 2— Dimyristoy卜 sn— glycero— 3— phospho— rac— 1 -choline)、炭素鎖長 1 6の DPPC (1 ,2- Dipalmitoy卜 sn- glycero- 3- phospho- rac- 1- choline )が採用可能であ る。 [0051] [ィ匕 6]
Figure imgf000015_0001
[0052] また、下記の一般式 (ィ匕 7)で示される構成のうち、炭素鎖長 12の DLPG (
1 , 2-Dilauroyl-sn-glycero-3-phospho-rac- 1 -glycerol)の Na塩又は NH塩、炭素鎖長
4
14の DMPG ( 1 , 2-Dimyristoyl-sn-glycero-3-phospho-rac- 1 -glycerol)の Na塩又は NH塩、炭素鎖長 16の DPPG (
4
1 , 2— Dipalmitoyト sn— glycero— 3— phospho— rac— 1 -glycerol)の Na塩又 ίま NH塩を ¾用し
4 てもよい。
[0053] [化 7]
Figure imgf000015_0002
[0054] さらに、リン脂質として卵黄レシチンまたは大豆レシチンなどを採用してもよい。
尚、被乳化油性成分を上記閉鎖小胞体により形成される乳化分散剤を用いて乳化 分散する場合には、被乳化油性成分と前記乳化分散剤との重量比を 4〜200として 接触、混和させるとよい。
[0055] これに対して、単粒子化されたバイオポリマーとしては、リボース、キシロース、ラムノ ース、フコース、グルコース、マンノース、グルクロン酸、ダルコン酸などの単糖類の中 から!/、くつかの糖を構成要素として微生物が産生するものがあげられる。特定の構造 の多糖類を産生する微生物種としてはアルカリゲネス属、キサントモナス属、アース口 パクター属、バチルス属、ハンゼヌラ属ゃブルナリア属が知られており、いずれの多 糖類を用いても、また混合物になっていてもよい。バイオポリマーに代えてゼラチンや ブロックコポリマーを用いてもょ ヽ。 [0056] 単粒子化されたバイオポリマーを主成分とする乳化分散剤を用いて被乳化油性成 分を乳化分散する場合には、被乳化油性成分と前記乳化分散剤との重量比を 50〜 2000として接虫、混和させるとよい。
[0057] 尚、上述した乳化分散剤を製造する方法としては、自己組織能を有する両親媒性 物質を閉鎖小胞体に分散させる(ベシクルイ匕する)工程、あるいは単粒子化させるェ 程 (ステップ I)が必要である。これは、使用する材料によってさまざまな工夫が必要で あるが、単粒子化又はべシクルイ匕するためには、図 6に示されるように、両親媒性物 質を水分散及び/又は水膨潤させる工程 (ステップ 1—1)、 80°C程度に加温調整する 工程 (ステップ 1— 2)、水素結合を破壊するために尿素などの切断剤を添加する工程 (ステップ 1— 3)、 pHを 5以下迄に調整する工程 (ステップ 1—4)のいずれか、又は、 組み合わせによって達成される。特に、ひまし油誘導体においては、 60°C以下の水 に、攪拌しながら滴下することで達成される。
[0058] その後、所定の温度以下(60°C以下)の水中に滴下して設定濃度に調整する工程
(ステップ Π)、粒子を微細化するために攪拌する工程 (ステップ III)を経て乳化分散剤 を生成する。攪拌は、高速攪拌 (〜16000rpm)であることが望ましいが、実験装置で あれば l,200rpmぐらい迄の攪拌で短時間に処理できる。また、水中滴下と粒子の微 細化の工程は、同時に実施した方がよい。バイオポリマーなどは網目構造を壊して 単粒子化させるために工程が複雑になるが、これらはそれぞれの実施例の中で個別 に記載する(実施例 6、実施例 8、実施例 9、実施例 10)。
[0059] 以下において、両親媒性物質により形成される閉鎖小胞体を主成分とする乳化分 散剤の実施例と、単粒子化されたバイオポリマーを主成分とする乳化分散剤の実施 例を示す。
実施例 1
[0060] (乳化分散剤として硬化ひまし油によるべシクルを用いた場合)
硬化ひまし油によるべシクルとして、ポリオキシエチレン硬化ひまし油の誘導体のう ち、エチレンォキシド (EO)の平均付加モル数 (E)が 10である誘導体(以下、 HCO
- 10という;分子量 1380g/mol)を使用した。
[0061] この HCO— 10は、水への溶解性がほとんどなぐ水中で自己組織ィ匕して閉鎖小胞 体を形成することが判っており(「ポリ(ォキシエチレン)硬化ひまし油系非イオン界面 活性剤のべシクル形成性について」 油化学, 41卷,第 12号, P1191-1196, (1992)、 「ポリ(ォキシエチレン)硬化ひまし油べシクル分散溶液の熱的性質」 油化学, 41 卷,第 12号, P1197-1202, (1992)参照)、平均粒子径は表 2に示すように濃度による 力 水分散液の段階で 200nm 800nmである。分散液中での安定性を考慮して 5 20wt%の濃度範囲に設定した。
[0062] [表 2]
HCO-10濃度による平均粒子径の変化
Figure imgf000017_0001
[0063] このような乳化分散剤を用いて通常の界面活性剤と同等以上の乳化能があるかど うかを調べるために、 A—重油と水の系を用い、 HCO— 10の水に対する濃度を 10w t%とし、水には水道水を用い、室温でホモミキサーを用いて、 8000 rpmで約 5分間 攪拌して乳化した。その乳化状態を、 A—重油の重量比を変化させて調べた。エマ ルシヨンに乳化した後の硬化ひまし油 (HCO-10)〜水〜 A重油の各組成割合と乳化 状態の結果を表 3に示す。
[0064] [表 3]
HCO-10による乳化例① 数値は重量%
Figure imgf000017_0002
〇 相分離無、 △ 比重差による分離 (コアセルべーシヨン)、 X 分離
① 0/W型エマルシヨン、 ② w/o型エマルシヨン、 ③ w/oマイクロエマルシヨンと分離水相
[0065] この結果から分かるように、少量の HCO— 10で 70wt%までの A重油を乳化させる ことが可能であった。ここで、 A重油と水の割合を変化させた場合の乳化状態の変化 を模式的に表すと、図 7に示されるように、水に対する A重油の割合を多くしていくと、 (a)の希薄 OZW型エマルシヨン状態から (b)の濃厚 OZW型エマルシヨン状態とな り、(c)の遷移状態を経て、(d)の沈降 WZOエマルシヨン状態なり、 A重油の割合が 多くなりすぎると、(e)の逆マイクロエマルシヨン状態と分離水相が形成される。上記 No.l〜No.5は(a)ないし(b)の状態であり、 No.6と No.7は(d)の状態であり、 No.8〜 No.10は (e)の状態に対応する。また、特徴的なことは No.6, 7は外観上一部重力に よるコアセルべーシヨン (タリーミング)が観察された力 弱く撹拌することで再分散した 。また、タリーミングイ匕したものは界面活性剤で乳化したもののタリーミング状態と異な り、長期間放置しても油滴の合一は観察されなかった。
実施例 2
[0066] また、流動パラフィンなどの各種油剤と水の系に対し、 HCO— 10による乳化状態 を調べるために、乳化分散剤である HCO— 10の水に対する濃度を 10wt%、系全 体に対する濃度を 7%で固定し、水には水道水を用い、室温で通常の攪拌機により 約 5分間攪拌した後の乳化状態を各油剤で調べると、表 4に示される結果が得られた
[0067] [表 4]
HCO-10による乳ィ匕例② 数値は wt%、 油分 30wt%
Figure imgf000018_0001
[0068] この結果力 わ力るように、油剤の種類に依存せず、良好な乳化状態が得られた。
しカゝも、この乳化状態は、室温で 1ヶ月経ても変化せず、優れた乳化物を得ることが できた。 実施例 3
[0069] (乳化分散剤としてジステアリルジメチルアンモ -ゥムクロライドを用いた場合)
次に、乳化分散剤としてジステアリルジメチルアンモ -ゥムクロライドを用いた実施 例について説明する。この乳化分散剤を用いて流動パラフィンの乳化状態を調べる と、表 5に示されるようになった。およそ 0. 5wt% 以上で良好な乳化状態を得ることが できた。また、シリコン油においても、表 6に示されるように、良好な乳化状態を得るこ とができた。
[0070] [表 5]
Figure imgf000019_0001
〇 相分離無、 X 分離、 数値は wt%
△ 比重差による分離 (コアセルべ一シヨン)
[0071] [表 6]
Figure imgf000019_0002
実施例 4
[0072] (乳化分散剤としてリン脂質を用いた場合)
次に、乳化分散剤としてリン脂質を用いた実施例について説明する。
前記リン脂質 (DMPC、 DMPG、 DPPC)を用いて油剤の種類を変化させて乳化 状態を調べると、表 7に示されるようになった。それぞれの油剤において、油分は 0. 1 〜35wt%の範囲で設定し、水には水道水を用い、室温で通常の攪拌機により約 5 分間攪拌した。また、リン脂質の濃度は 0. 005〜0. 5wt%の範囲で設定した。
[0073] [表 7] 乳化安定性
油種類 リン脂質 水 ( 1ヶ月/室 乳化状態
温)
流動パラフィン 0.005~0.5 64.5~99 〇 0/W型
オリ一ブ油 0.005〜0.5 64.5〜99 〇 0 W型 シリコン 2CS 0.005〜0.5 64.5〜99 o O/W型 シリコン 5CS 0.005 ~0.5 64.5~99 〇 0 W型 シリコン 100CS 0.005〜0.5 64.5〜99 o 0/W型
オクタン 0.005~0.5 64.5〜99 o 0 W型 デカン 10.005〜0.5 64.5~99 〇 0 W型 ドデカン 0.005 ~0.5 64.5~99 〇 0/W型 テトラ " "カン 0.005~0.5 64.5〜99 〇 O/W型 へキサデカン 0.005~0.5 64.5〜99 o 0/W型 ォク夕デカン 0.005〜0.5 64.5〜99 o O/W型
ベンゼン 0.005-0.5 64.5〜99 〇 0/W型 ノニルフエニル [J 0.005〜0.5 64.5〜99 〇 0/W型
リモネン 關 0.005〜0.5 64.5〜99 o O/W型 トコフエロール(ビタミン E)| 0.005~0.5 64.5〜99 〇 0 W型
数値は t 油分 0.1 ~35w«
[0074] この結果から、リン脂質(DMPC、 DMPG、 DPPC)による乳化の場合も油剤の種 類に依存せず、少量のリン脂質で良好な乳化状態が得られた。しかも、得られた乳化 物は、熱安定性に優れ、室温で 1ヶ月経ても乳化状態が変化しない経時安定性に優 れたものであった。
実施例 5
[0075] また、リン脂質として卵黄レシチンを用い、卵黄レシチンとシリコン油、卵黄レシチン とへキサデカンについて、乳化状態を調べた。結果を表 8に示す。表中、(1)は水素 添加した場合、(2)は水素添加していない場合である。この場合にも、熱安定性、経時 安定性に優れた乳化物を得ることができた。
[0076] [表 8] 乳化安定性
油種類 リン脂質 油分量 水 乳化状態
( 1ヶ月/室温)
シリコン 2CS (1) 0.3 33.8 65.9 o 0/W型
へキサデカン (2) 0.9 33 66.1 〇 o/w型 実施例 6
[0077] (乳化分散剤として単粒子化されたバイオポリマーを用いた場合)
次に、単粒子化されたノィォポリマーを主成分とする乳化分散剤の実施例を示す。 ノィォポリマーとしては、前述した微生物産生の内、アルカリゲネス属の産生する多 糖類を用いた。この多糖類は水に分散させると網目構造を形成し、粘稠な液体となる ので、網目構造を単粒子化する必要がある。そこで、バイオポリマー水溶液をバイオ ポリマー 0の粉体を所定量の水に分散させ、一日放置して膨潤させた後、 80°Cで 30 分加熱して調製し、これに尿素を添加してノィォポリマーの水素結合を破壊し、単粒 子化を図った。 0. lwt%までのバイオポリマーは、 4mol/dm3尿素水溶液によって単 粒子化させることができた。
[0078] 単粒子化されたバイオポリマーの水分散液が油剤に対して通常の界面活性剤と同 様の乳化能があるかどうかを調べるために、炭化水素油のひとつである流動パラフィ ンを用いてバイオポリマーの分散濃度による乳化能を調べると、表 9に示されるように なり、バイオポリマー 0. 05wt%水分散液で流動パラフィンを 70wt% (水 30wt%)まで乳 ィ匕させることができた。し力も、経日させたところ、溶液の状態に変化は見られず、極 めて安定だった。また、バイオポリマー 0. 04wt%、流動パラフィン 30%—定とし、乳化 するときの温度を 25〜75°Cまで変化させたが、調製された乳化状態は、どの温度で も安定であった。
[0079] [表 9]
Figure imgf000021_0001
[0080] さらに、油剤の流動パラフィン濃度を 30%で一定とし、バイオポリマーの濃度を変 化させてバイオポリマーの乳化能を調べると、 0. 04wt%力も乳化できることがわ力つ た。
実施例 7
[0081] 次に、バイオポリマーの濃度を 0. 04wt%、油剤の濃度を 30%で一定とし、油剤の 種類を変化させて乳化状態を調べた。結果を表 10に示す。ここで用いた油剤は、へ キサデカン、シリコーン、ミリスチン酸イソプロピル、スクァラン、ォリーブオイル、ホホ バオイル、セトステアリルアルコール、ォレイルアルコール、ォレイン酸である。ォレイ ン酸は経日後分離したが、他の油剤は乳化することができた。
[0082] [表 10]
Figure imgf000022_0001
数値は wt%、 油分 30wt%
[0083] 以上の結果から、バイオポリマーには優れた乳化能があり、 0. 04wt%という低濃 度においても乳液は安定であることが明ら力となり、バイオポリマーの単粒子が油滴 の周りに付着して乳化分散剤相をつくり、エマルシヨン表面で水相〜乳化分散剤相 〜油相の三相を形成したことによるものと考えられる。
実施例 8
[0084] ノィォポリマーとして、生物由来の澱粉を用いた場合の例を以下に示す。
澱粉種としては、馬鈴薯澱粉、餅米紛、タピオカ紛 (キヤッサバ芋紛)を用い、油とし ては、流動パラフィン、へキサデカンを用いた。
乳化剤の調製にあたっては、澱粉を単粒子にするために、水に澱粉を分散させ、 攪拌しながら 90°Cまで加熱した後、室温まで冷却して良好な分散状態とし、この操作 により得られた糖ポリマー分散液を用いて乳化剤とした。 また、エマルシヨンの調製にあたっては、室温下にて、単粒子化操作後の澱粉水分 散液に対して、油相を添加して攪拌によりエマルシヨンを調製した。
結果を表 11乃至 13に示す。
[表 11]
澱粉による乳化状態① 数値は重量%
Figure imgf000023_0001
〇:相分離無、 △: 0/W型エマルシヨンで比重差による分離 (コアセルべーシヨン)
▽ : w/o型エマルシヨンで比重差による分離 (コアセルべ一シヨン)
X: W/O型エマルションと水の分離状態
[0086] [表 12] 澱粉による乳化状態② 数値は
Figure imgf000023_0002
厶: o/w型エマルシヨンで比重差による分離 (コアセルべ一シヨン)
▽: w/o型エマルシヨンで比重差による分離 (コアセルべ一シヨン)
X: w/O型エマルションと水の分離状態
[0087] [表 13] 澱粉種の相違による乳化状態③
Figure imgf000023_0003
数値は重量% 油:大豆油 50wt% 実施例 9
[0088] ノィォポリマーとして、キトサンを用いた場合の例を以下に示す。
油としては、流動パラフィンを用いた。
乳化剤の調製にあたっては、キトサンを単粒子にするために、水にキトサンを分散さ せ、 pH5以下の酸性に調整した。この操作により目視的には透明になり、キトサンは 単粒子化され、良好な分散液が得られた。 pHを変えてエマルシヨンを調製する場合 は、此の後 pH調整を行った。
また、エマルシヨンの調製にあたっては、単粒子化操作後のキトサン分散液に対し て油相を添加し、攪拌によりエマルシヨンを調製した。
結果を表 14に示す。また、 pHを 4, 7, 10に調整した結果を表 15に示す。
[0089] [表 14]
キトサンによる乳化状態 数値は重量%
Figure imgf000024_0001
O :相分離無、 Δ: 0/W型エマルシヨンで比重差による分離 (コアセルべ'
V: W/O型エマルシヨンで比重差による分離 (コアセルべーシヨン)
X: w/O型エマルションと水の分離状態
[0090] [表 15]
Figure imgf000024_0002
Δ: 0 W型エマルシヨンで比重差による分離 (コアセルぺ一シヨン)
O:相分離無 実施例 10
ノィォポリマーとして、生物由来の多糖類である昆布粉を用いた場合の例を以下に 示す。
糖ポリマー成分としては昆布粉に含まれるフコィダンを用いた。
乳化剤の調製にあたっては、フコィダンを単粒子化するために、水に昆布の粉を分 散させ、 pH5以下の酸性に調整した。
また、エマルシヨンの調製にあたっては、単粒子化操作後の昆布粉分散液に対して 油相を添加し、攪拌によりエマルシヨンを調製した。
結果を表 16に示す。 [0092] [表 16]
昆布粉による乳化状態
Figure imgf000025_0001
△: 0/W型エマルシヨンで比重差による分離 (コアセルべーシヨン)
V: W/0型エマルシヨンで比重差による分離 (コアセルぺーシヨン)
X: W/0型エマルションと水の分離状態
[0093] 以上に示した、両親媒性物質により形成される閉鎖小胞体や単粒子化されたバイ ォポリマーを主成分とする乳化分散剤を用いた乳化法 (三相乳化法)を従来の界面 活性剤による乳化法と比較すると、共通して次のような特徴が認められた。
[0094] まず、従来の乳化法においては、オイルと水との界面に界面活性剤が吸着し、油/ 水界面の界面エネルギーを低下させることで乳化させることを基本とした力 三相乳 化法においては、ナノ粒子がオイルと水との界面にファンデルワールス力により付着 して乳化分散剤相を形成することを特徴とするので、被乳化油性基剤の所要 HLB値 に関わらず、界面エネルギーを変化させずに乳化させることが可能である。
[0095] その結果、従来の界面活性剤による乳化では、油滴の熱衝突により合一を誘起させ る力 三相乳化による場合には、油滴の表面に乳化剤相としてのナノ粒子が付着し ているので、衝突しても合一が極めて起こりにくぐ熱的にも経時的にも安定ィ匕させる ことが可能であった。
[0096] また、従来の界面活性剤による乳化では、油滴の性質に応じて適切な界面活性剤 を随時選択する必要があつたが、三相乳化法による乳化では、ー且ナノ粒子を選定 すれば、油滴の種類に関わらず同じ乳化剤を利用できるので、異種油剤エマルショ ンの共存、混合も可能となる。
[0097] さらに、従来の乳化法では、油滴がマイクロエマルシヨンを形成するために、多量の 界面活性剤が必要であつたが、三相乳化法では、僅かな濃度の乳化分散剤で乳化 が可能であった。
[0098] さらにまた、上述した三相エマルシヨンは、 1)イクラ状の巨大油滴を安定に形成す ることも可能であり、 2)タリーミングは比重の違いによる偏りで、連続の外相を取り除 いても乳化状態に変化はな力つた。また、 3)水相または油相に添加物をカ卩えても三 相乳化型エマルシヨンを形成することが可能であった。
[0099] 以下において、上述した三相乳化を実現する乳化分散剤をエマルシヨン燃料に応 用した例を以下において説明する。
本発明のエマルシヨン燃料は、水を添加した軽油、重油 (A—重油、 C一重油)、 重質油、灯油、又はガソリン等の燃料に前記乳化分散剤を必須成分として含ませた ものである。
[0100] ここで、両親媒性物質により形成される閉鎖小胞体は、平均粒子径を 8ηπ!〜 500 nmとすることが好ましい。粒子径を 8nmより小さくすると、ファンデルワールス力に起 因する吸引作用が小さくなり、閉鎖小胞体が油滴の表面に付着しにくくなるからであ り、また、粒子径を 500應よりも大きくすると、前述したごとく安定したエマルシヨンを 維持できなくなるためである。
閉鎖小胞体の粒子径をエマルシヨン形成時にこの範囲にするには分散剤の調整時 には 200nm〜800nmにあってもよい。これはエマルシヨン形成の工程で閉鎖小胞体 が細粒化されるためである。
[0101] このような閉鎖小胞体を形成する両親媒性物質としては、前記の一般式 (ィ匕 4)で表 される(ポリオキシエチレン)硬化ひまし油誘導体が採用される。
[0102] 硬化ひまし油の誘導体としては、エチレンォキシドの平均付カ卩モル数(E)が 5〜 15 である誘導体が使用可能である。また、目的に応じて上記の閉鎖小胞体の熱安定性 の向上を図るため、上記の乳化分散剤と他のイオン性界面活性剤 ·両性界面活性剤 その他の非イオン界面活性剤を併用することもできる。
[0103] 尚、上述したエマルシヨン燃料を製造する方法は、特に重質油においては温度管 理が重要である。即ち、重質油等の高粘性油を利用したエマルシヨン燃料において は、流動化調整する工程 (ステップ IV)と流動化調整した高粘性油を所定温度以下 (6 0°C以下)まで温度を下げる温度調節工程 (ステップ V)が必要となる。
[0104] 流動化調整の工程 (ステップ IV)は、図 8に示されるように、原料油が流動可能にな るよう 80°C程度に加温調整する工程 (ステップ IV— 1)、その上で粘度調整用油を所 要量添加する工程 (ステップ IV— 2)、攪拌し均一化する工程 (ステップ IV— 3)により 達成される。均一化する際の粘度は調整用油の添加量によって管理可能である。ま た、ステップ IV— 1の加温調整の温度は、調整用油と混合可能であれば 80°Cでなく てもよいが、重質油等の高粘性油の場合には、乳化分散剤と併せるときに 60°C以下 迄温度を下げておかなくてはならない。このため、高粘性油の場合には、流動化調 整する工程の後に、流動化調整された原料油を所定温度以下 (60°C以下)まで温度 を下げる温度調節工程 (ステップ V)が必要となる。このステップ IV、及び、ステップ V の工程は、原料油によっては省略可能である。
[0105] その後、流動化調整された原料油を乳化分散剤液中に滴下する工程 (ステップ VI) 、粒子を微細化するために攪拌する工程 (ステップ VII)を経てエマルシヨン燃料を生 成する。即ち、流動化調整した重質油または軽油、重油等はエマルシヨン燃料組成 にあわせた水と乳化分散剤の液に少量ずつ加えて 、く形で、攪拌されてエマルショ ン燃料が形成される。攪拌は、高速攪拌 (〜16000rpm)であることが望ましいが、攪 拌については温度上昇が観察されない程度の速度であればよい。また、水中滴下と 粒子の微細化の工程は、同時に実施した方が好ましい。
実施例 11
[0106] 以下において、両親媒性物質により形成される閉鎖小胞体を主成分とする乳化分 散剤を用いて水と軽油および A—重油を乳化し、エマルシヨン燃料を調製する実施 例を示す。
[0107] 市販品の軽油、 A—重油を水道水にて乳化させることを試みた。乳化分散剤として は、親水性のナノ微粒子を形成するポリオキシエチレン硬化ひまし油の誘導体のうち 、エチレンォキシド(EO)の平均付加モル数 (E)が 10である誘導体(以下、 HCO— 1 0という;分子量 1380g/mol)を水で分散させた分散液を使用した。この HCO— 10は 、前述した如ぐ水への溶解性がほとんどなぐ水中で自己糸且織ィ匕して閉鎖小胞体を 形成することが判っており、平均粒子径は前記表 2に示すように濃度によるが、水分 散液の段階で 200nm〜800nmである。分散液中での安定性を考慮して 5〜20wt% の濃度範囲に設定した。界面活性剤は全く使用しな力つた。
乳化機は通常のホモジナイザーを使用し、燃焼実験は灯油仕様のパーナを使用し た燃焼実験装置を使用し、燃焼排気ガス中の 5成分 (NO, CO, SO , CO , O )を 自動モニターした。
[0108] HCO— 10水分散液に燃料を添カ卩し、ホモジナイザーで 16000rpm、 10分間攪拌 してエマルシヨンを調製した。エマルシヨンの組成は、重量比で1« 0— 10 : 5%、油 相 50%、水 45%である。
[0109] 図 9に、従来の界面活性剤による軽油と A—重油のエマルシヨンと本発明の三相乳 化法による軽油と A—重油のエマルシヨンを調製した後、界面活性剤によるエマルシ ヨンにあっては 2日経過した状態を、三相乳化法によるエマルシヨンにあっては 30日 経過した状態 (この状態は、 2ヶ月経過しても同じであった)を示す。この図から判るよ うに、従来の界面活性剤によるエマルシヨンは完全に相分離しているが、三相乳化法 によるエマルシヨンにあっては、 HCO— 10の乳化分散剤以外に添加物を用いなくて も経時的に極めて安定に存在した。
[0110] 次に、 HCO— 10、油相(A—重油、軽油)、水の重量比を変化させて攪拌によりェ マルシヨンを調製した後、室温で 1週間及び 1ヶ月経過した状態を観測した。
A—重油の乳化例を表 17乃至表 19に示す。また、表 18の乳化状態の写真を図 1 0に示す。短時間であれば、 HCO— 10 : 0. 5%、油相: 95%でもエマルシヨンは形 成される力 油相が 80%以上になると経時変化がみられる。
[0111] [表 17]
10Wt%HCO-10水分散液による A-重油乳化例①
Figure imgf000028_0001
〇 相分離無、 △ 比重差による分離 (コアセルべ一シヨン) 、 X 分離
(D o/w型エマルシヨン、 ② w/o型エマルシヨン、 ③ w/oマイクロエマルシヨン
[0112] [表 18] 15Wt%HCO-10水分散液による A-重油乳化例②
Figure imgf000029_0001
〇 相分離無、 Δ 比重差による分離 コアセルべ一シヨン 、 X 分
CD o w型エマルシヨン、 ② w/o型エマルシヨン、 ③ w/oマイクロエマルシヨン
[0113] [表 19]
HCO-10 の濃度変化による Α-重油乳化例⑥ 数値は
Figure imgf000029_0002
〇 相分離無、 △ 比重差による分離 (コアセルべーシヨン)
[0114] 上記結果から判るように、 1« 0—10を0. 1〜14. 25%、 A—重油を 5〜95%、水 バランスで組成すること、より好ましくは、 HCO— 10を 5〜14. 25%、 A—重油を 5 〜60%、水バランスで組成するとよい。
[0115] 軽油の乳化例を表 20乃至表 23に示す。また、表 22の乳化状態の写真を図 11に示 し、表 23の乳化状態の写真を図 12に示す。この場合には、油相 80%以上のェマル シヨンは安定に形成されな力つた。しかし経時的な変化はみられな!/、。
[0116] [表 20] 10Wt%HCO-10水分散液による軽油乳化例③
Figure imgf000030_0001
〇 相分離無、 △ 比重差による分離 (コアセルべーシヨン) 、 X 分離 ① 0/W型エマルシヨン、 ② w/o型エマルシヨン、 ③ w/oマイクロエマルシヨンと分離水相
[0117] [表 21]
5Wt%HCO-10水分散液による軽油乳化例④ 数値は重量《½
Figure imgf000030_0002
〇相分離無、 △比重差による分 (コアセルべーシヨン 、 X分
[0118] [表 22]
lWt%HCO-10水分散液による軽油乳化例⑤ 数値は重量《½
Figure imgf000030_0003
〇 相分離無、 △ 比重差による分離 コアセルべーシヨン X 分
[0119] [表 23]
Figure imgf000030_0004
上記結果から判るように、 HCO—10を 0. 4〜: L0. 0%、軽油 5〜95%、水バラン スで組成すること、より好ましくは、 HCO— 10を 0. 8〜: L0. 0%、軽油を 5〜60%、 水バランスで組成するとよ ヽ。
[0121] 尚、以上においては、油種として軽油と A—重油を用いた場合について示したが、 ガソリン、灯油、 C—重油を乳化する場合についても、表 24に示されるように、僅かな 乳化分散剤で、安定した乳化状態が確認された。
[0122] [表 24]
Figure imgf000031_0001
数値は wt%、 油分 50wt%
[0123] 高粘度の重質油を乳化する場合には粘度を調整する工程を経る。この時使われる 粘度調整剤は石油精製等の工程カゝら得られる留出分の低粘度油である軽油や A重 油が好適であるが、重質油と均一に混ざるものであれば特に限定する必要はない。 表 25及び図 13に灯油、軽油、 A重油および流動パラフィンによる粘度調整の結果を 示す。
[0124] [表 25]
各種謂整重質油の粘度 一は測定不能 (20°C、 B—型粘度計、ロータ一 No.3使用) 灯油謂整重質油の粘度
灯油 10 20 30 40 50 60 70 80 90 残淹油 90 80 70 60 50 40 30 20 10 粘度 (mPa) - 33383 2250 341 122 76 65 61 61 輊油調整重質油の粘度
軽油 10 20 30 40 50 60 70 80 90 残渣油 90 80 70 60 50 40 30 20 10 粘度 (mPa) - 98980 7005 922 230 112 71 61 61
A-重油調整重質油の粘度
A—重油 10 20 30 40 50 60 70 80 90 残渣油 90 80 70 60 50 40 30 20 10 粘度 (mPa) - 16900 6536 1794 317 147 92 75 66 流動パラフィン調整重質油の
粘度
流動パラフィン 10 20 30 40 50 60 70 80 90 残淹油 90 80 70 60 50 40 30 20 10 粘度 (mPa) - - - 95064 19788 10384 1461 849 339 [0125] 図 13で 3万 mPaぐらいまでは次工程での取扱いに支障はない。粘度調整剤として 流動パラフィンを 40重量部用いた場合の乳化例は乳化自体は可能であつたが流動 '性不良のため取扱いがたい。
[0126] また、粘度調整剤として A重油を 30%加えた調整重質油と 10wt%HCO— 10水分 散液とでェマルジヨンィ匕した結果を、表 26及び表 27に示す。
[0127] [表 26]
Figure imgf000032_0001
O 相分離無、 △ 比重差による分離 (コアセルべーシヨン)、 分離
[0128] [表 27]
HCO-10濃度変化による調整重質油乳化例
数値は重量%
Figure imgf000032_0002
〇 相分離無、 厶 比重差による分離 (コアセルべ一シヨン)
粘度調整剤: A-重油、 A-重油/重莨油霣量比 =3/7
[0129] 更に粘度調整剤として灯油、軽油、流動パラフィンを用いた場合の乳化実験例を、 表 28、表 29、表 30に示す。
[0130] [表 28] 10wt%HCO-10分散液による各種調整重 油の乳化例①
数値は重量%
Figure imgf000033_0001
[0131] [表 29]
10wt%HCO-10分散液による各種調整重質油の乳化例②
Figure imgf000033_0002
[0132] [表 30]
10wt%HCO-10分散液による各種調整重質油の乳化例③
Figure imgf000033_0003
〇 相分離無 (流動性良)、 Δ 相分離無 (流動性不良)
[0133] 上記の結果力も判るように、 HCO— 10を 2〜9%、調整重質油 80〜10%、水バラ ンスで組成すること、より好ましくは、 HCO— 10を 3〜9%、調整重質油を 70〜30% 、水バランスで組成すると良い。
[0134] 次に、軽油エマノレシヨンと A—重油ェマノレシヨンの燃焼実験をそれぞれ行なった。
灯油仕様の燃焼装置を使用し、バーナーの改造を施さなくても、エマルシヨン燃料は 消火することなく燃焼した。 [0135] 軽油の燃焼時の排気ガスについての測定結果を図 14に、 A—重油の燃焼時の排 気ガスにつ 、ての測定結果を図 15に示す。
[0136] 図 14から明らかなように、燃料を軽油からそのエマルシヨンに切り換えると、排気ガ ス中の NOx濃度が著しく減少し、燃焼が安定すると通常の約 1Z10になった。また、 CO濃度はー且増加するものの、 SO濃度と共に減少する傾向が見られた。これに対
2
し、排気ガス中の酸素濃度は増加し、 CO濃度も燃料成分が 50%であることから比
2
ベて増加しているので、軽油単独での燃料よりも完全燃焼していると考えられる。軽 油とそのエマルシヨンのそれぞれの燃焼温度は、それぞれ約 1150度と 950度であり 、約 200度低下した。
[0137] また、図 15から明らかなように、燃料を A—重油からそのエマルシヨンに切り換えた 場合にも、排気ガス中の NOx濃度は著しく減少し、燃焼が安定すると通常の約 1Z6 になった。 CO濃度はー且増加するものの、 SO濃度と共に減少する傾向が見られた
2
。これに対し、排気ガス中の酸素濃度は増加し、 CO濃度も燃料成分が 50%である
2
ことから比べて増加しているので、 A—重油単独での燃料よりも完全燃焼していると 考えられる。 A—重油とそのエマルシヨンのそれぞれの燃焼温度は、それぞれ約 105 0度と 900度であり、約 150度低下した。
[0138] よって、上述したエマルシヨン燃料を使用することにより、大気汚染が改善され、環 境負荷を著しく低減させることが可能になると予期される。
産業上の利用可能性
[0139] 香粧品、医薬品、食品、農薬、ペイント、燃料ヱマルシヨン、土壌改良剤など機能性 油性基剤や顆粒微粒子を乳化分散させた乳化製剤ならびに分散液などを利用する 用途にも適用可能である。

Claims

請求の範囲
[1] 自己組織能を有する両親媒性物質により形成される閉鎖小胞体を主成分とすること を特徴とする乳化分散剤。
[2] 前記閉鎖小胞体の平均粒子径がエマルシヨン形成時に 8應〜 500應、分散剤調整 時に 200應〜 800應であることを特徴とする請求項 1記載の乳化分散剤。
[3] 前記両親媒性物質は、下記の一般式 (ィ匕 1)で表されるポリオキシエチレン硬化ひま し油の誘導体のうちエチレンォキシドの平均付加モル数 (E)が 5〜15である誘導体 である請求項 1又は 2記載の乳化分散剤。
[化 1]
0 M
O Ο-(0Ηϊ CH2 〇)~Η
II I "
CHs -O-CCHi CHi 0)L- C-(CH2)ioCH(CHi)5CHs
O -(CH2 CH20)yH
I
CH2 -O-CCH! CH2 O) -C-(CHi)l0CH(CH2)5CH3
CHi -0-(CHi CHi 〇) ■
Figure imgf000035_0001
E = L+M+N + X + Y+ Z
[4] 前記ポリオキシエチレン硬化ひまし油の誘導体に界面活性剤をモル分率で 0.1≤X s≤0.33の範囲でさらに付加することを特徴とする請求項 3記載の乳化分散剤。
[5] 前記両親媒性物質は、下記の一般式 (ィ匕 2)で表されるジアルキルアンモ-ゥム誘導 体、トリアルキルアンモ-ゥム誘導体、テトラアルキルアンモ-ゥム誘導体、ジァルケ 二ルアンモ -ゥム誘導体、トリァルケ-ルアンモ -ゥム誘導体、又はテトラアルケ-ル アンモ-ゥム誘導体のハロゲン塩である請求項 1又は 2記載の乳化分散剤。
[化 2]
Figure imgf000035_0002
[6] 前記両親媒性物質は、リン脂質並びにリン脂質誘導体力も作成される粒子である請 求項 1又は 2記載の乳化分散剤。
[7] 請求項 1又は 2記載の乳化分散剤を用いた乳化分散方法にぉ 、て、被乳化油性成 分と前記乳化分散剤との比を 1〜: LOOOとして接触、混和させることを特徴とする乳化 分散方法。
[8] 単粒子化されたノィォポリマーを主成分とすることを特徴とする乳化分散剤。
[9] 前記バイオポリマーは、微生物産生による多糖類、リン脂質、ポリエステル類や、生物 由来の澱粉等の多糖類、キトサンよりなる群力も選ばれた 1又は 2以上のものである 請求項 8記載の乳化分散剤。
[10] 請求項 8又は 9記載の乳化分散剤を用いた乳化分散方法において、被乳化油性成 分と前記乳化分散剤との比を 50〜2000として接触、混和させることを特徴とする乳 化分散方法。
[11] 自己組織能を有する両親媒性物質を閉鎖小胞体に分散させる工程、又は、自己組 織能を有する両親媒性物質を単粒子化させる工程と、閉鎖小胞体に分散又は単粒 子化された両親媒性物質を所定温度以下の水に滴下し微細化する工程とを含むこ とを特徴とする乳化分散剤の製造方法。
[12] 請求項 1〜6、及び、請求項 8〜9のいずれかに記載の乳化分散剤と被乳化油性成 分とを接触し混和させてなることを特徴とする乳化物。
[13] 水を添加した燃料に自己組織能を有する両親媒性物質により形成された閉鎖小胞 体を主成分とする乳化分散剤を必須成分として含むことを特徴とするエマルシヨン燃 料。
[14] 前記閉鎖小胞体の平均粒子径がエマルシヨン形成時に 8應〜 500應、分散剤調整 時に 200nm〜800nmであることを特徴とする請求項 13記載のエマルシヨン燃料。
[15] 前記両親媒性物質は、下記の一般式 (ィ匕 3)で表されるポリオキシエチレン硬化ひま し油の誘導体のうちエチレンォキシドの平均付加モル数 (E)が 5〜15である誘導体 である請求項 13又は 14記載のエマルシヨン燃料。
[化 3] O 0-(CH2 CH2 OJ^H
II I
CHi -0-(CHi CH! 0)L- C- (CHi)ioCH(CH2)5CH,
O 0-(CH: CHz 0)γΗ
II I
CHi 一〇—(CHi CH2 0)M- C-(CH!)ioCH(CHj)5CHa
O 0-(CHi CH2 0)^i
II I
CHi -0-(CHi CHi O)N-C-(CHz)i0CH(CHi)5CH3 E = L+M+N + X + Y+ Z
[16] 燃料ベースとして軽油、重油又は粘度調整を施した高粘度重質油を用いた請求項 1
3乃至 15のいずれかに記載のエマルシヨン燃料。
[17] 前記両親媒性物質 0. 1〜15.0%、前記燃料 1〜95%、水バランスで組成されるこ とを特徴とする請求項 13乃至 16のいずれか〖こ記載のエマルシヨン燃料。
[18] 原料油を流動化調整する工程と、流動化調整された原料油を所定温度以下まで温 度を下げる温度調節工程と、前記温度調節工程で温度調節された原料油を請求項 1乃至 6及び請求項 8乃至 9のいずれかに記載の乳化分散剤の溶液中に滴下し微細 化する工程とを含むことを特徴とするエマルシヨン燃料の製造方法。
PCT/JP2005/005795 2004-04-05 2005-03-29 乳化分散剤及びこれを用いた乳化分散方法、乳化物、並びにエマルション燃料 WO2005096711A2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP05727301.3A EP1754532B1 (en) 2004-04-05 2005-03-29 Emulsifying dispersants, method for emusification and dispersion with the same, emulsions, and emulsion fuels
CA2563267A CA2563267C (en) 2004-04-05 2005-03-29 Emulsification dispersants, a method for emulsification and dispersion using the emulsification dispersants, emulsions, and emulsion fuels
CN200580018350XA CN1964778B (zh) 2004-04-05 2005-03-29 乳化分散剂及使用其的乳化分散方法、乳化物及乳液燃料
US11/547,625 US9506001B2 (en) 2004-04-05 2005-03-29 Emulsification dispersants, a method for emulsification and dispersion using the emulsification dispersants, emulsions, and emulsion fuels
US15/360,235 US10202556B2 (en) 2004-04-05 2016-11-23 Emulsification dispersants, a method for emulsification and dispersion using the emulsification dispersants, emulsions, and emulsion fuels
US15/360,183 US11708538B2 (en) 2004-04-05 2016-11-23 Emulsification dispersants, a method for emulsification and dispersion using the emulsification dispersants, emulsions, and emulsion fuels

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
JP2004-110915 2004-04-05
JP2004110915 2004-04-05
JP2004-254384 2004-09-01
JP2004254384 2004-09-01
JP2004257363 2004-09-03
JP2004-257363 2004-09-03
JP2004327915 2004-11-11
JP2004-327915 2004-11-11
JP2005024792 2005-02-01
JP2005-024792 2005-02-01
JP2005024794 2005-02-01
JP2005-024794 2005-02-01
JP2005-091080 2005-03-28
JP2005091081A JP3858230B2 (ja) 2004-09-03 2005-03-28 エマルション燃料
JP2005091080A JP3855203B2 (ja) 2004-04-05 2005-03-28 乳化分散剤及びこれを用いた乳化分散方法並びに乳化物
JP2005-091081 2005-03-28

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US11/547,625 A-371-Of-International US9506001B2 (en) 2004-04-05 2005-03-29 Emulsification dispersants, a method for emulsification and dispersion using the emulsification dispersants, emulsions, and emulsion fuels
US15/360,235 Division US10202556B2 (en) 2004-04-05 2016-11-23 Emulsification dispersants, a method for emulsification and dispersion using the emulsification dispersants, emulsions, and emulsion fuels
US15/360,183 Division US11708538B2 (en) 2004-04-05 2016-11-23 Emulsification dispersants, a method for emulsification and dispersion using the emulsification dispersants, emulsions, and emulsion fuels

Publications (2)

Publication Number Publication Date
WO2005096711A2 true WO2005096711A2 (ja) 2005-10-20
WO2005096711A3 WO2005096711A3 (ja) 2005-12-15

Family

ID=35125499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/005795 WO2005096711A2 (ja) 2004-04-05 2005-03-29 乳化分散剤及びこれを用いた乳化分散方法、乳化物、並びにエマルション燃料

Country Status (6)

Country Link
US (3) US9506001B2 (ja)
EP (1) EP1754532B1 (ja)
KR (1) KR100854832B1 (ja)
CN (2) CN102258959B (ja)
CA (4) CA2708437C (ja)
WO (1) WO2005096711A2 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008055250A (ja) * 2006-08-29 2008-03-13 Univ Kanagawa 乳化分散剤及びその製造方法
JP2011011134A (ja) * 2009-06-30 2011-01-20 Kanagawa Univ 汚染除去方法および汚染除去剤
CN101695642B (zh) * 2009-11-09 2011-09-21 蚌埠丰原医药科技发展有限公司 一种阳离子表面活性剂及其制备方法
WO2011162094A1 (ja) * 2010-06-23 2011-12-29 学校法人神奈川大学 乳化剤製造用材料の製造方法、乳化剤の製造方法、経口投与組成物用乳化剤、及び経口投与組成物
JP2012006890A (ja) * 2010-06-28 2012-01-12 Kanagawa Univ 化粧料及び化粧料製造用原料
WO2012035978A1 (ja) * 2010-09-14 2012-03-22 学校法人神奈川大学 乳化剤及びその製造方法、並びに乳化物の製造方法
WO2012081546A1 (ja) * 2010-12-13 2012-06-21 ミヨシ油脂株式会社 粉末油脂組成物及びその製造方法、並びにo/w型乳化物の官能性の改善方法
CN101695641B (zh) * 2009-11-09 2012-09-26 蚌埠丰原医药科技发展有限公司 一种阳离子表面活性剂及其制备方法
JPWO2011162093A1 (ja) * 2010-06-23 2013-08-19 学校法人神奈川大学 乳化物製造用親水性ナノ粒子の製造方法
WO2019218032A1 (pt) 2018-05-17 2019-11-21 Fmt Serviços Indústria E Comércio Ltda Composição modificadora de viscosidade, demulsificante e melhoradora de fluxo, seu processo de fabricação, seus usos e método para aumentar a produção em poços de petróleo pesado e extrapesado

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2359801B1 (en) * 2008-12-03 2017-06-14 Shiseido Co., Ltd. Oil-in-water cosmetic
JP4472013B2 (ja) 2009-01-30 2010-06-02 進 稲澤 油中水滴型エマルジョン燃料
US20110277376A1 (en) * 2009-02-04 2011-11-17 Archer-Daniels-Midland Company Incorporation of biologically derived carbon into petroleum products
WO2012081722A1 (ja) 2010-12-17 2012-06-21 学校法人神奈川大学 被保護対象物質の保護構造体、被保護対象物質の保護方法、酵素反応方法、反応産物の製造方法、酵素反応の速度を調節する方法、及び酵素物質の使用キット
EP2691496A2 (en) 2011-03-29 2014-02-05 Fuelina, Inc. Hybrid fuel and method of making the same
CN102250653A (zh) * 2011-05-20 2011-11-23 黄龙哲 一种生物燃料油节能剂
JP6417181B2 (ja) * 2014-10-10 2018-10-31 学校法人神奈川大学 エアゾール作製用乳化組成物、及びエアゾール剤
ES2719875T3 (es) 2014-11-10 2019-07-16 Eme Finance Ltd Dispositivo para mezclar agua y gasoil, aparato y proceso para producir una microemulsión de agua/gasoil
ES2746549T3 (es) * 2014-11-10 2020-03-06 Eme Finance Ltd Microemulsiones de agua en combustible diésel
US10308885B2 (en) 2014-12-03 2019-06-04 Drexel University Direct incorporation of natural gas into hydrocarbon liquid fuels
CN104745251B (zh) * 2015-03-12 2016-08-17 黄龙哲 一种生物燃料油节能剂的制备方法
EP3552495A4 (en) 2016-12-08 2019-12-11 Mitsubishi-Chemical Foods Corporation OIL-IN-WATER EMULSION COMPOSITION AND METHOD FOR PRODUCING THE OIL-IN-WATER EMULSION COMPOSITION
IT201600132801A1 (it) 2016-12-30 2018-06-30 Eme International Ltd Apparato e processo per produrre liquido derivante da biomassa, biocarburante e biomateriale
CN113025208B (zh) * 2021-03-16 2022-09-16 天津中晶建筑材料有限公司 一种水性植物基砂感漆及其制备方法与应用
KR102580224B1 (ko) * 2022-09-02 2023-09-19 유니온정유(주) 폐유를 이용한 재활용 연료 조성물 및 이를 포함하는 에멀젼형 연료유
KR102580222B1 (ko) * 2022-09-02 2023-09-19 유니온정유(주) 폐유기용매를 이용한 재활용 연료 조성물 및 이를 포함하는 에멀젼형 연료유

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS498503A (ja) * 1972-05-13 1974-01-25
DE2609104A1 (de) 1976-03-05 1977-09-15 Basf Ag Verfahren zur herstellung von styrol-suspensionspolymerisaten
US5439672A (en) 1980-07-01 1995-08-08 L'oreal Cosmetic composition based on an aqueous dispersion of small lipid spheres
EP0043327B1 (fr) 1980-07-01 1984-01-18 L'oreal Procédé d'obtention de dispersions stables dans une phase aqueuse d'au moins une phase liquide non miscible à l'eau et dispersions correspondantes
FR2485921A1 (fr) 1980-07-01 1982-01-08 Oreal Composition cosmetique a base d'une dispersion aqueuse de spherules lipidiques
US4670185A (en) * 1982-07-19 1987-06-02 Lion Corporation Aqueous vesicle dispersion having surface charge
US4911928A (en) * 1987-03-13 1990-03-27 Micro-Pak, Inc. Paucilamellar lipid vesicles
US5160669A (en) * 1988-03-03 1992-11-03 Micro Vesicular Systems, Inc. Method of making oil filled paucilamellar lipid vesicles
US5643600A (en) * 1991-09-17 1997-07-01 Micro-Pak, Inc. Lipid vesicles containing avocado oil unsaponifiables
WO1993025302A1 (en) * 1992-06-16 1993-12-23 Fuji Oil Co., Ltd Emulsifier, emulsifying composition and powdery composition
JPH06121922A (ja) 1992-06-16 1994-05-06 Fuji Oil Co Ltd 乳化剤及び乳化組成物
JPH0770574A (ja) * 1993-09-03 1995-03-14 Kao Corp 重質油エマルジョン燃料組成物およびその製造方法
FR2730928B1 (fr) * 1995-02-23 1997-04-04 Oreal Composition a base de vesicules lipidiques a ph acide et son utilisation en application topique
DE69613647T2 (de) * 1995-09-29 2002-05-08 Shiseido Co Ltd Wasser-in-Öl-Emulsion enthaltendes kosmetisches Präparat
JPH09234357A (ja) * 1996-03-01 1997-09-09 Ezaki Glico Co Ltd 金属イオン存在下及び/又は酸性条件下において乳化能のある界面活性剤
CN1116862C (zh) * 1997-11-14 2003-08-06 藤泽药品工业株式会社 油包水型乳化剂组合物
DE19842788A1 (de) * 1998-09-18 2000-03-23 Beiersdorf Ag Emulgatorfreie feindisperse Systeme vom Typ Öl-in-Wasser und Wasser-in-Öl
US6264741B1 (en) * 1998-11-25 2001-07-24 Sandia Corporation Self-assembly of nanocomposite materials
US6080211A (en) * 1999-02-19 2000-06-27 Igen, Inc. Lipid vesicle-based fuel additives and liquid energy sources containing same
JP2002087903A (ja) 2000-09-08 2002-03-27 Kiwako Miyazawa 希釈用可溶化組成物
AU2002352113B2 (en) * 2001-12-21 2005-10-20 Unilever Plc Kit for preparing a spread
JP2007520555A (ja) * 2004-02-05 2007-07-26 バクスター・インターナショナル・インコーポレイテッド 自己安定化剤の使用により調製された分散剤
US20050232974A1 (en) * 2004-04-19 2005-10-20 Gore Makarand P System and a method for pharmaceutical dosage preparation using jettable microemulsions
EP1748032A4 (en) * 2004-04-30 2012-03-21 Japan Science & Tech Agency INORGANIC MESOPOROUS SUBSTANCE WITH CHIRAL DRILLED STRUCTURE AND METHOD OF MANUFACTURING THEREOF

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of EP1754532A4 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008055250A (ja) * 2006-08-29 2008-03-13 Univ Kanagawa 乳化分散剤及びその製造方法
JP2011011134A (ja) * 2009-06-30 2011-01-20 Kanagawa Univ 汚染除去方法および汚染除去剤
CN101695642B (zh) * 2009-11-09 2011-09-21 蚌埠丰原医药科技发展有限公司 一种阳离子表面活性剂及其制备方法
CN101695641B (zh) * 2009-11-09 2012-09-26 蚌埠丰原医药科技发展有限公司 一种阳离子表面活性剂及其制备方法
JPWO2011162094A1 (ja) * 2010-06-23 2013-08-19 学校法人神奈川大学 乳化剤製造用材料の製造方法、乳化剤の製造方法、経口投与組成物用乳化剤、及び経口投与組成物
WO2011162094A1 (ja) * 2010-06-23 2011-12-29 学校法人神奈川大学 乳化剤製造用材料の製造方法、乳化剤の製造方法、経口投与組成物用乳化剤、及び経口投与組成物
JP5881042B2 (ja) * 2010-06-23 2016-03-09 学校法人神奈川大学 乳化物製造用親水性ナノ粒子の製造方法
JP5652920B2 (ja) * 2010-06-23 2015-01-14 学校法人神奈川大学 乳化剤製造用材料の製造方法、乳化剤の製造方法、経口投与組成物用乳化剤、及び経口投与組成物
JPWO2011162093A1 (ja) * 2010-06-23 2013-08-19 学校法人神奈川大学 乳化物製造用親水性ナノ粒子の製造方法
JP2012006890A (ja) * 2010-06-28 2012-01-12 Kanagawa Univ 化粧料及び化粧料製造用原料
JP2012061385A (ja) * 2010-09-14 2012-03-29 Kanagawa Univ 乳化剤及びその製造方法、並びに乳化物の製造方法
KR101562316B1 (ko) * 2010-09-14 2015-10-21 각고우호우진 가나가와 다이가쿠 유화제 및 그 제조방법, 및 유화물의 제조방법
WO2012035978A1 (ja) * 2010-09-14 2012-03-22 学校法人神奈川大学 乳化剤及びその製造方法、並びに乳化物の製造方法
US9637559B2 (en) 2010-09-14 2017-05-02 Kanagawa University Emulsifier and production method therefor, and production method for emulsion
WO2012081546A1 (ja) * 2010-12-13 2012-06-21 ミヨシ油脂株式会社 粉末油脂組成物及びその製造方法、並びにo/w型乳化物の官能性の改善方法
WO2019218032A1 (pt) 2018-05-17 2019-11-21 Fmt Serviços Indústria E Comércio Ltda Composição modificadora de viscosidade, demulsificante e melhoradora de fluxo, seu processo de fabricação, seus usos e método para aumentar a produção em poços de petróleo pesado e extrapesado

Also Published As

Publication number Publication date
WO2005096711A3 (ja) 2005-12-15
CA2708434A1 (en) 2005-10-20
CA2708434C (en) 2013-02-05
US20170073597A1 (en) 2017-03-16
CA2708440C (en) 2013-05-14
US20170073596A1 (en) 2017-03-16
KR20070009668A (ko) 2007-01-18
US11708538B2 (en) 2023-07-25
CA2708437A1 (en) 2005-10-20
KR100854832B1 (ko) 2008-08-27
EP1754532B1 (en) 2018-06-20
CA2563267A1 (en) 2005-10-20
US10202556B2 (en) 2019-02-12
CN1964778B (zh) 2011-10-19
CA2708440A1 (en) 2005-10-20
EP1754532A2 (en) 2007-02-21
CN102258959B (zh) 2015-09-23
US20070261293A1 (en) 2007-11-15
US9506001B2 (en) 2016-11-29
CA2708437C (en) 2013-05-14
CA2563267C (en) 2011-10-11
CN1964778A (zh) 2007-05-16
CN102258959A (zh) 2011-11-30
EP1754532A4 (en) 2010-01-13

Similar Documents

Publication Publication Date Title
WO2005096711A2 (ja) 乳化分散剤及びこれを用いた乳化分散方法、乳化物、並びにエマルション燃料
JP3855203B2 (ja) 乳化分散剤及びこれを用いた乳化分散方法並びに乳化物
Fu et al. Stabilization of water-in-octane nano-emulsion. Part I: Stabilized by mixed surfactant systems
US9366387B2 (en) Process of preparing improved heavy and extra heavy crude oil emulsions by use of biosurfactants in water and product thereof
Querol et al. Asphalt emulsion formulation: State of the art of formulation, properties and results of HIPR emulsions
JP2006241424A (ja) エマルション燃料
Zhang et al. Efficient emulsifying properties of glycerol-based surfactant
RU2331464C1 (ru) Эмульгирующие диспергирующие средства, способ эмульгирования и диспергирования с использованием эмульгирующих диспергирующих средств, эмульсии и эмульсионные топлива
CN115428934B (zh) 一种应用于食品和医药领域的双连续乳液及其制备方法
JPS641173B2 (ja)
CN112871075B (zh) 一种co2/n2刺激响应型胆汁盐复合乳化剂
Masalova et al. Is the combination of two particles with different degrees of hydrophobicity an alternative method for tuning the average particle hydrophobicity?
WO2011162093A1 (ja) 乳化物製造用親水性ナノ粒子の製造方法
JP5831828B2 (ja) W/oエマルションの製造方法及び乳化物
JPH1118697A (ja) 含油ゲル状組成物及び水中油型乳化組成物
CA2803770A1 (en) Process for producing emulsifier-producing material, process for producing emulsifier, emulsifier for orally administered composition, and orally administered composition
JPH08209157A (ja) 油中水滴型重質油エマルジョンの製造方法
JPS63162034A (ja) 水及び水性物のゲル化物とその製造方法
JPH1118696A (ja) 含油ゲル状組成物及び水中油型乳化組成物
Board Emulsion Properties of Mixed Tween20-Span20 in Non-Aqueous System
JPH1118695A (ja) 含油ゲル状組成物及び水中油型乳化組成物
JPH06145678A (ja) 超重質油エマルション燃料の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 11547625

Country of ref document: US

Ref document number: 2563267

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2005727301

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020067023183

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006139072

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 200580018350.X

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020067023183

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2005727301

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11547625

Country of ref document: US