WO2005094845A1 - 経口投与用吸着剤、並びに腎疾患治療又は予防剤、及び肝疾患治療又は予防剤 - Google Patents

経口投与用吸着剤、並びに腎疾患治療又は予防剤、及び肝疾患治療又は予防剤 Download PDF

Info

Publication number
WO2005094845A1
WO2005094845A1 PCT/JP2005/006622 JP2005006622W WO2005094845A1 WO 2005094845 A1 WO2005094845 A1 WO 2005094845A1 JP 2005006622 W JP2005006622 W JP 2005006622W WO 2005094845 A1 WO2005094845 A1 WO 2005094845A1
Authority
WO
WIPO (PCT)
Prior art keywords
activated carbon
spherical activated
adsorbent
pitch
modified
Prior art date
Application number
PCT/JP2005/006622
Other languages
English (en)
French (fr)
Inventor
Naohiro Sonobe
Takashi Wakahoi
Mieko Kuwahara
Original Assignee
Kureha Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corporation filed Critical Kureha Corporation
Priority to US11/547,043 priority Critical patent/US8357366B2/en
Priority to KR1020067020462A priority patent/KR101183046B1/ko
Priority to CA2561731A priority patent/CA2561731C/en
Priority to CN2005800101124A priority patent/CN1942196B/zh
Priority to EP05728870A priority patent/EP1745793A4/en
Priority to JP2006511863A priority patent/JP4641304B2/ja
Publication of WO2005094845A1 publication Critical patent/WO2005094845A1/ja
Priority to US13/490,405 priority patent/US8865161B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/44Elemental carbon, e.g. charcoal, carbon black
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/18Drugs for disorders of the alimentary tract or the digestive system for pancreatic disorders, e.g. pancreatic enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated

Definitions

  • the present invention relates to an adsorbent for oral administration comprising a surface-modified spherical activated carbon having a small average particle diameter and a small bulk density.
  • the present invention also relates to a therapeutic or preventive agent for renal disease and a therapeutic or preventive agent for liver disease, comprising the above-mentioned adsorbent for oral administration as an active ingredient.
  • the adsorbent for oral administration according to the present invention has a high ability to adsorb toxic toxins (Toxin) in the body, the oral uptake capacity is within a certain period for adsorbing the toxic substances within the period of stay in the body until the body is excreted. Can adsorb many toxic substances.
  • Toxin toxic toxins
  • an oral adsorbent that can be taken orally and can treat kidney and liver dysfunction has been developed and used (Patent Document 1).
  • the oral adsorbent consists of a porous spherical carbonaceous material with specific functional groups (i.e., surface-modified spherical activated carbon), which is safer and more stable for living organisms and at the same time the presence of bile acids in the intestine. It has excellent adsorptivity for toxic substances even under the skin, and has a beneficial selective adsorptivity with little absorption of intestinal beneficial components such as digestive enzymes, and as an oral therapeutic drug with few side effects such as constipation.
  • Patent Literature 1 Is widely used clinically in patients with hepatorenal dysfunction ing.
  • the adsorbent described in Patent Literature 1 was manufactured by preparing spherical activated carbon using pitches such as petroleum pitch as a carbon source, and then performing an oxidation treatment and a reduction treatment.
  • the aforementioned selective adsorptivity that is, excellent adsorptivity to toxic substances, and less adsorption of beneficial components in the intestine, the oral selective administration further improving the selective adsorptive properties.
  • Adsorbents are also known (Patent Document 2).
  • the adsorbent for oral administration described in Patent Document 2 has the above-described selective adsorptivity improved in a specific range of pore volumes in which the pore volume at a pore diameter of 20 to 15000 nm is 0.04 mLZg or more and less than 0.1 mLZg. It is based on the discovery of a phenomenon that causes toxic substances to be sufficiently adsorbed and is particularly effective for diseases in which it is desirable to suppress the adsorption of beneficial components in the intestine.
  • Patent Document 3 The pharmaceutical adsorbent described in Patent Document 3 is made of activated carbon having a specific surface area and pore volume, an average pore diameter, a particle diameter, and a surface oxide amount which are adjusted. It is said that it is possible to selectively adsorb ionic organic compounds while suppressing the adsorption of high molecules required for water.
  • Patent Document 1 Japanese Patent Publication No. 62-11611
  • Patent Document 2 Patent No. 3522708 (Japanese Unexamined Patent Publication No. 2002-308785)
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2004-244414
  • an oral adsorbent comprising surface-modified spherical activated carbon or activated carbon
  • the above-mentioned selective adsorption is an extremely important property, but on the other hand, the amount of a toxic substance in a living body is as large as possible. It is also important to quickly and quickly adsorb and remove. That is, the residence time of the surface-modified spherical activated carbon or the oral adsorbent made of activated carbon is generally about 3 to 5 hours in the upper small intestinal tract. Therefore, surface-modified spherical activated carbon or activated carbon that has high adsorption capacity within about 3 hours after contact with harmful substances and has excellent initial adsorption performance is desirable. Yes.
  • the oral adsorbents described in Patent Document 1 and Patent Document 2 necessarily have high adsorption capacity when contacted with harmful substances and the force is also up to about 3 hours. It is sent to the lower intestine and the large intestine with sufficient adsorption capacity, without exhausting the adsorption capacity, and is further discharged outside the body.
  • the inventor of the present invention has developed an oral adsorbent which has a high adsorptivity and can adsorb and remove a relatively large amount of harmful substances, and also has an excellent initial adsorbing speed.
  • the average particle size ie, small particle size
  • Patent Document 1 or Patent Document 2 excellent adsorption capacity and excellent adsorption capacity are obtained.
  • an oral adsorbent exhibiting an initial adsorption rate can be obtained.
  • the dosage can be reduced or reduced.
  • the present inventor has found that even in the average particle size range (i.e., the small particle size range) found by the present inventor, the bulk density range different from the bulk density of the activated carbon described in Patent Document 3 (that is, In the low bulk density range), it was found that the excretion of urinary protein was significantly reduced.
  • the present invention is based on these findings.
  • the present invention has an average particle diameter of 50 to 200 ⁇ m, a specific surface area of 700 m 2 / g or more determined by the BET method, and a bulk density of less than 0.54 g / mL. Acid groups are 0.
  • the present invention relates to an adsorbent for oral administration, comprising a surface-modified spherical activated carbon which is Zg.
  • the present invention also relates to a therapeutic or preventive agent for renal disease, or a therapeutic or preventive agent for liver disease, comprising any of the above-mentioned adsorbents for oral administration as an active ingredient.
  • the adsorbent for oral administration according to the present invention has a high adsorptivity, and thus is also excellent in the initial adsorptivity, and extremely rapidly removes toxic toxic substances in a living body during a general upper intestinal retention period. Can be adsorbed. Therefore, a therapeutic or preventive agent for renal disease, or liver disease It is effective as a therapeutic or prophylactic agent. Furthermore, the dosage can be reduced compared to conventional sorbents for oral administration.
  • the average particle size is small, the jarring feeling when it is contained in the mouth is eliminated or reduced, so that it is easy to take.
  • the present inventor administered the compound to rats and then performed laparotomy, it was confirmed that adhesion to the inner wall of the intestinal tract was hardly observed. Rather, the average particle size was large, and a conventional adsorbent for oral administration (for example, It has also been observed that the adhesion to the inner wall of the intestinal tract may be reduced as compared with the oral administration adsorbent described in Patent Document 1). That is, adhesion to the inner wall surface of the intestinal tract is at least as high as that of the conventional adsorbent for oral administration.
  • the surface-modified spherical activated carbon has a low bulk density, the amount of urinary protein excreted is significantly reduced.
  • FIG. 1 shows DL- ⁇ -aminoaminobutyric acid adsorption amounts of the surface-modified spherical activated carbon according to the present invention obtained in Examples 1 and 7 and the surface-modified spherical activated carbon of Comparative Example 3.
  • 6 is a graph showing the result of comparing the relationship between and the adsorption time.
  • FIG. 2 shows a comparison of protein excretion in urine in a rat model of renal failure with respect to the surface-modified spherical activated carbon of the present invention obtained in Example 1 and the surface-modified spherical activated carbon of Comparative Example 3.
  • 9 is a graph showing the results of a test performed.
  • Fig. 3 compares the amount of protein excreted in urine in a renal failure rat model for the surface-modified spherical activated carbon according to the present invention obtained in Example 1 and the surface-modified spherical activated carbon of Comparative Example 3. 9 is a graph showing the results of another test performed.
  • FIG. 4 is a graph showing cumulative pore volumes of the surface-modified spherical activated carbon according to the present invention obtained in Example 1 and the surface-modified spherical activated carbon of Comparative Example 3.
  • the surface-modified spherical activated carbon used as the adsorbent for oral administration according to the present invention means a spherical activated carbon having an acidic point of 0.30 meqZg or more.
  • the surface-unmodified spherical activated carbon means a spherical activated carbon having an acidic point of less than 0.30 meqZg.
  • the surface-modified spherical activated carbon is subjected to activation treatment after heat treatment of the carbon precursor, and It is a porous body obtained by performing a surface modification treatment by an oxidation treatment and a reduction treatment, and can exhibit an appropriate interaction with an acid and a base.
  • non-modified spherical activated carbon is, for example, a porous body obtained by performing an activation treatment after a heat treatment of a carbon precursor, and is subjected to a surface modification treatment by an oxidation treatment and a reduction treatment. It is a spherical activated carbon that has not been performed, or a spherical activated carbon obtained by performing a heat treatment in a non-oxidizing atmosphere after the activation treatment.
  • the surface-modified spherical activated carbon used as an adsorbent for oral administration according to the present invention has a specific range of average particle diameter and a specific range of bulk density. That is, the average particle diameter force. 200200 ⁇ m, preferably 50-180 ⁇ m, more preferably 50-150 m.
  • the average particle diameter (Dv50) is a particle diameter at a particle size accumulation rate of 50% in a volume-based particle size accumulation diagram.
  • the bulk density is less than 0.54 gZmL.
  • the upper limit of the bulk density is preferably 0.50 gZmL (that is, 0.50 g / mL or less, or less than 0.50 gZmL), and more preferably 0.49 ZmL.
  • the lower limit of the bulk density is not particularly limited, but is preferably 0.30 gZmL.
  • the bulk density P is the dry weight of the spherical activated carbon when the spherical activated carbon is filled in a container.
  • surface-modified spherical activated carbon or spherical activated carbon used as an adsorbent for oral administration has an average particle diameter of 50 to 200 / ⁇ and a bulk density of 0.54 g ZmL.
  • Spherical activated carbons less than the above have not been known at all.
  • the average particle diameter of the porous spherical carbonaceous materials specifically prepared in Examples 1 to 5 of Patent Document 2 is 350 m.
  • Patent Document 2 generally describes a porous spherical carbonaceous material having a diameter of 0.01 to: Lmm (10 to 1,000 ⁇ m) (for example, claim 1).
  • the range of 0.01 to lmm is described as a diameter, and the average particle diameter is It is not described as.
  • the adsorbent specifically disclosed in Examples 1 to 5 of Patent Document 2 is only a porous spherical carbonaceous substance having an average particle diameter of 350 m as described above, However, there is no description that the spherical activated carbon having a particle size of 50 to 200 / ⁇ has an increased adsorption amount and an improved initial adsorption speed.
  • a carbonaceous material having an average particle diameter of 20 m (Comparative Example 3) and a carbonaceous material having an average particle diameter of 40 m (Comparative Example 6) are described. .
  • the carbonaceous material having an average particle diameter of 20 m is obtained by crushing the porous spherical carbonaceous material prepared in Example 1 with a crusher, and is not spherical.
  • the carbonaceous material having an average particle size of 40 m is powdered medicinal coal.
  • Patent Document 1 generally describes a spherical carbonaceous material having a diameter of 0.05 to: ⁇ (50 to 1000 / ⁇ m) (for example, claim 1). ) And Examples 1 to 3 also specifically describe carbonaceous adsorbents having a particle size of 0.05 to 1111111 or 0.01 to 1 mm. It is clear, however, that these ranges are not the average particle size, and the minimum particle size forces also indicate the maximum particle size range.
  • the surface-modified spherical activated carbon used as the adsorbent for oral administration according to the present invention is, as described above, a surface-modified spherical activated carbon having an average particle diameter in a specific range (50 to 200 ⁇ m).
  • the average particle size is, for example, smaller than the average particle size (350 / zm) of the porous spherical carbonaceous substance specifically described in Patent Document 2, and moreover,
  • the surface-modified spherical activated carbon used as the adsorbent for oral administration according to the present invention is characterized in that it has a higher adsorptivity than the conventional surface-modified spherical activated carbon or spherical activated carbon, and is also superior in terms of initial adsorptivity. I have. However, this reduction in average particle size does not involve a substantial increase in specific surface area (outer surface area), but the adsorption characteristics are substantially changed by the surface-modified spherical activated carbon used in the present invention. Is a phenomenon that cannot be explained solely by the perspective of increasing the specific surface area (outer surface area).
  • the specific surface area (outer surface area) of surface-modified activated carbon lg having an average particle diameter of 350 ⁇ m and surface-modified activated carbon lg having an average particle diameter of 50 ⁇ m will be calculated.
  • the density of the surface-modified activated carbon is p (g / m 3 ) and the particle size is d (m)
  • the outer surface area (S) per 1 g of the surface-modified activated carbon is represented by the following formula:
  • the density of the surface-modified activated carbon is l x 10 6 g / m 3 (lg / cm 3 ) and the particle diameter (d) is 350 x 10 " 6 m (350 ⁇ m)
  • the outer surface area ( S) is 0.03 m 2 Zg.
  • the particle diameter (d) is 50 ⁇ 10 ′′ 6 m (50 ⁇ m)
  • the outer surface area (S) is 0.21 m 2 Zg
  • the difference is 0. 18m 2 Zg.
  • the specific surface area of the spherical activated carbon of the present invention is 700 m 2 Zg, and the increase in the external surface area due to the decrease in the particle diameter is 0.1% or less of the whole specific surface area.
  • the surface-modified spherical activated carbon used as the adsorbent for oral administration according to the present invention preferably has a narrow particle size distribution.
  • the surface-modified spherical activated carbon used as the adsorbent for oral administration according to the present invention has the above-mentioned ratio (D / ⁇ ), preferably 3 or less, more preferably 2 or less, and still more preferably.
  • D is a representative particle diameter of the measured particle diameter section
  • n is the number.
  • a spherical activated carbon having an average particle size of 50 to 200 ⁇ m is described in the example of Patent Document 3 described above.
  • Patent Document 3 generally only specifies the average particle diameter to be 350 m or less, and there is no description at all that the specific effect can be obtained by setting the average particle diameter to 200 m or less.
  • spherical activated carbon having a particle diameter of 50 to 200 m is superior in terms of initial adsorption capacity. That is, in the example of Patent Document 3, spherical activated carbon having an average particle diameter in the range of 60 to 117 m is merely produced.
  • the range of the bulk density of the spherical activated carbon actually manufactured in the example of Patent Document 3 is 0.54 to 0.61 gZmL.
  • the bulk density (packing density) is 0.5 gZmL or less, the pore diameter of the activated carbon becomes large, and proteins (enzymes) such as trypsin, etc., and polysaccharides such as pullulan etc.
  • proteins enzymes
  • polysaccharides such as pullulan etc.
  • the polymer compound may be adsorbed, and the amount to be taken is increased, which is clearly not preferable.
  • Patent Document 3 does not substantially describe a spherical activated carbon having a bulk density of less than 0.54 gZmL, and at least a spherical activated carbon having a bulk density of 0.50 gZmL or less (or less than 0.50 gZmL). It's listed!
  • the bulk density is a good index indicating the degree of activation. That is, the smaller the bulk density, the more the activation is advanced.
  • the step of producing the surface-modified spherical activated carbon or the spherical activated carbon in the steam activation described later, relatively small pores are formed in the early stage of the activation, and as the activation proceeds, the pore diameter increases, and as a result, the bulk density decreases.
  • the surface structure is important for adsorbing an ionic compound such as ⁇ -aminodibutyric acid.
  • an ionic compound such as ⁇ -aminodibutyric acid.
  • the outer surface area is small and the outer surface area is increased!], So that the contact area between the urinary toxin molecule and the adsorbent for oral administration is increased!].
  • the small particle size reduces the mean free path of the urinary toxin substance when diffusing within the particles of the orally administered sorbent, increasing the rate of adsorption.
  • the pore density is low and the pore diameter is large, it is possible to adsorb relatively large molecules. As a result, it becomes possible to adsorb a compound having a wide molecular weight.
  • the surface-modified spherical activated carbon used as the adsorbent for oral administration of the present invention can use any carbon-containing material as a carbon source.
  • a usable carbon-containing material for example, synthetic resin or pitch can be used.
  • synthetic resin a heat-fusible resin or a heat-infusible resin can be used.
  • a hot-melt resin is a resin that melts and decomposes with an increase in temperature when an activation treatment is performed without performing an infusibilization treatment, and a resin from which activated carbon cannot be obtained. It is.
  • Activated carbon can be obtained by performing the infusibilization treatment in advance while performing the force activation treatment.
  • a heat-infusible resin means that even if the activation treatment is performed without performing the infusibilization treatment, the carbonization proceeds without melting as the temperature increases, and activated carbon can be obtained. It is fat.
  • the infusibilizing treatment is, for example, performing an oxidizing treatment at 150 ° C. to 400 ° C. in an atmosphere containing oxygen, as described later.
  • a typical example of the heat-meltable resin is a thermoplastic resin, and examples thereof include cross-linked resin.
  • a typical example of the heat-infusible resin is a thermosetting resin, such as phenol resin or furan resin.
  • thermoplastic resins or thermosetting resins any thermoplastic resin or thermosetting resin capable of forming a spherical body can be used.
  • surface-modified spherical activated carbon is obtained from crosslinked vinyl resin, the above-mentioned infusibilization treatment is required, whereas ion exchange resin produced by adding a functional group to crosslinked vinyl resin is required.
  • the above-mentioned infusibilization treatment is unnecessary. This is thought to be due to the modification of the crosslinked vinyl resin from heat-meltable resin to heat-infusible resin by the functional group-imparting treatment and the introduced functional groups.
  • the crosslinked resin is included in the hot-melt resin in the present specification, whereas the ion-exchange resin is included in the heat-insoluble resin in the present specification.
  • the carbon source in the present invention it is more preferable to use an ion exchange resin, a crosslinked vinyl resin or a pitch, and it is more preferable to use an ion exchange resin or a crosslinked vinyl resin.
  • pitches are used. Operations substantially the same as the production method of the above can be used. For example, first, a sphere made of a heat-infusible resin is activated in a gas stream reactive with carbon (for example, steam or carbon dioxide) at a temperature of 700 to: LOOO ° C to obtain a sphere. Activated carbon can be obtained.
  • carbon for example, steam or carbon dioxide
  • activated carbon means a porous body obtained by subjecting a carbon precursor such as a spherical heat-infusible resin to heat treatment and then performing an activation treatment.
  • a carbon precursor such as a spherical heat-infusible resin
  • the Te present invention odor, a specific surface area of 700 meters 2 Zg or more, more preferably 1300 m 2 Zg or more, particularly preferably using the surface modification spherical activated carbon is 1650 m 2 Zg above.
  • the spherical body of the heat-infusible resin used as a starting material has an average particle diameter of about 100 to 300 ⁇ m, preferably about 70 to 500 / ⁇ .
  • the spherical body made of fusible resin is softened by heat treatment and deformed into a non-spherical shape or the spherical bodies are fused together, before the activation treatment, oxygen is added as infusibility treatment.
  • oxygen is added as infusibility treatment.
  • spherical activated carbon having an average particle size of 50 to 200 / ⁇ is an example.
  • it can be prepared by the following method.
  • a pitch such as a petroleum pitch or a coal pitch
  • a bicyclic or tricyclic aromatic compound having a boiling point of 200 ° C or more or a mixture thereof is added as an additive, heated and mixed, and then molded to obtain a pitch molded product.
  • the size of the pitch compact can be controlled by the nozzle diameter at the time of extrusion molding, or the pulverization condition of the pitch compact. As the volume of the pitch formed body is smaller, a smaller spherical pitch can be produced, and a spherical activated carbon having a smaller particle diameter can be obtained.
  • the pitch compact is dispersed in hot water at 50 to 120 ° C. with stirring, granulated into microspheres, and then cooled to obtain a spherical pitch compact.
  • the average particle size of the spherical pitch molded product is preferably from 60 to 350 ⁇ m force ⁇ , from 60 to 300 ⁇ m force ⁇ more preferred! / ⁇ .
  • the additive is extracted and removed from the spherical pitch compact with a solvent having a low solubility in the pitch and a high solubility in the additive, and the obtained porous pitch is acidified with an oxidizing agent.
  • the resulting infusible porous pitch is made into an infusible porous pitch, and the obtained infusible porous pitch is further reacted with carbon in a gas stream, such as steam or carbon dioxide, at a temperature of 800 to 1000 ° C. If activated, spherical activated carbon can be obtained.
  • a gas stream such as steam or carbon dioxide
  • the purpose of the above aromatic additive is to extract and remove the additive from the pitch molded body after molding to make the molded body porous, to control the structure of the carbonaceous material by oxidizing in a later step and to control the structure of the carbonaceous material
  • the purpose is to facilitate firing.
  • Such an additive is selected from, for example, one or a mixture of two or more aromatic compounds such as naphthalene, methylnaphthalene, phenylnaphthalene, benzylnaphthalene, methylanthracene, phenanthrene, and biphenyl. It is preferable that the amount of added kamitsu per pitch is in the range of 10 to 50 parts by weight per 100 parts by weight of the pitch.
  • Mixing of the pitch and the additive is performed in a heated and molten state in order to achieve uniform mixing.
  • the molding may be performed in the molten state, or the mixture may be cooled and pulverized, etc. This is preferable because the diameter distribution can be controlled in a narrower range.
  • the particle diameter can be controlled by the nozzle diameter at the time of extruding the mixing pitch, and a small mixture molded article can be obtained by using fine nozzles.
  • Solvents for extracting and removing additives from the mixture of pitch and additives include butane, Preferred are aliphatic hydrocarbons such as pentane, hexane or heptane, mixtures mainly composed of aliphatic hydrocarbons such as naphtha or kerosene, and aliphatic alcohols such as methanol, ethanol, propanol or butanol.
  • aliphatic hydrocarbons such as pentane, hexane or heptane
  • mixtures mainly composed of aliphatic hydrocarbons such as naphtha or kerosene
  • aliphatic alcohols such as methanol, ethanol, propanol or butanol.
  • the additive By extracting the additive with a mixture of pitch and additive with such a solvent, the additive can be removed from the molded product while maintaining the shape of the molded product. At this time, it is presumed that holes for the additive are formed in the molded article, and a pitch molded article having uniform porosity is obtained.
  • porous pitch-formed body is then infusibilized, that is, subjected to heat treatment using an oxidizing agent, preferably at a temperature of 150 ° C to 400 ° C.
  • an oxidizing agent preferably at a temperature of 150 ° C to 400 ° C.
  • a mixed gas diluted with nitrogen or the like can be used.
  • pitch When pitch is used as a carbon source for the preparation of the surface-modified spherical activated carbon used as the adsorbent for oral administration of the present invention, the amount and type of the aromatic additive and the precipitation conditions in the pitch must be controlled. Thereby, the pore volume can be controlled.
  • the pore volume can be controlled.
  • a surface-modified spherical activated carbon having a pore volume force of pore diameter 7.5 to 15000 nm .25 to: L OmLZg can be prepared by the following method.
  • the metal-containing spherical carbon for example, (1) addition to pitch, (2) impregnation to porous pitch, (3) impregnation to porous infusible pitch, (4) porosity
  • the method include impregnating the infusible pitch with the spherical carbon that has been heat-treated, or (5) impregnating the activated carbon with the activation treatment.
  • the metal compound is added and impregnated by dissolving the metal compound with a solvent to form a metal compound solution.
  • the solvent is removed by heating and evaporating to form a metal-containing pitch and a metal-containing spherical porous material.
  • Pitch, metal-containing spherical porous infusible pitch, or metal-containing spherical activated carbon can be obtained.
  • an air stream reactive with carbon for example, steam or carbonic acid
  • a porous metal-containing spherical activated carbon is obtained.
  • the spherical activated carbon can be obtained by removing the metal by acid washing.
  • the activation is performed again after the metal compound is attached to the spherical activated carbon, and the metal is removed by acid washing. Can be obtained.
  • any metal can be used as long as it has a catalytic effect in steam activation, and particularly preferably, cobalt, iron, nickel or the like is used.
  • a transition metal, a rare earth metal such as yttrium, a compound thereof, or a salt thereof can be used.
  • the metal compound or compound salt for example, an inorganic compound such as a hydroxide, chloride, nitrate or sulfate containing the metal element, an organic salt such as an acetylacetone salt or an acetate, or an organic salt Inorganic composite salts can be used.
  • the amount of metal introduced into carbon is preferably such that the metal atom concentration in the carbonaceous material before activation is in the range of 0.001 to 10% by weight, more preferably 0.001 to 5% by weight. It is.
  • the washing treatment is performed to ensure sufficient purity of the surface-modified spherical activated carbon for oral administration for safety, and the washing method is, for example, water or hydrochloric acid, nitric acid, sulfuric acid, or It is necessary to remove metals by washing with an acidic solution such as hydrofluoric acid.
  • the metal content in the spherical activated carbon after washing is preferably 150 ppm or less, more preferably 100 ppm or less, and particularly preferably 50 ppm or less.
  • the above-mentioned heat-infusible resin used as a starting material is a material capable of forming a spherical body, and is not deformed or deformed by heat treatment at 500 ° C. or less without deforming. It is important that they do not occur.
  • the heat-fusible resin can be suitably used by being modified by a so-called infusibilization treatment such as an oxidation treatment into a state in which the molten oxidization can be avoided.
  • the heat-infusible resin used as a starting material desirably has a high carbonization yield by heat treatment. If the carbonization yield is low, the strength as a spherical activated carbon is weakened. In addition, since unnecessary pores are formed, the bulk density of the spherical activated carbon is reduced, and the specific surface area per volume is reduced. Therefore, there is a problem that the administration volume increases and oral administration becomes difficult. Therefore, the higher the carbonization yield of the heat-infusible resin, the more preferable the non-oxidizing gas.
  • the preferred value of the yield by heat treatment at 800 ° C. in an atmosphere is 30% by weight or more, more preferably 35% by weight or more.
  • the heat-infusible resin used as a starting material is preferably an ion-exchange resin because it has a high ability to adsorb toxic substances to be removed and can produce an adsorbent for oral administration.
  • Ion-exchange resins are generally made from copolymers of dibutylbenzene with styrene, Atari-tolyl, acrylic acid, or methacrylic acid (i.e., cross-linked vinyl resins that are hot-melt resins). Basically, it has a structure in which an ion exchange group is bonded to a copolymer matrix having a three-dimensional network skeleton.
  • ion exchange resins include strongly acidic ion exchange resins having sulfonic acid groups, weakly acidic ion exchange resins having carboxylic acid groups or sulfonic acid groups, and quaternary ammonium salts. Strongly basic ion-exchange resins having a primary or tertiary amine and weakly basic ion-exchange resins.Other special resins have both acid and base ion-exchange groups. There are all hybrid ion exchange resins, and in the present invention, all of these ion exchange resins can be used as raw materials.
  • a pitch can be used as described above. It is desirable that the pitch used as a starting material has a high carbonization yield by heat treatment. If the carbonization yield is low, the strength of the spherical activated carbon becomes weak. In addition, since unnecessary pores are formed, the bulk density of the spherical activated carbon decreases, and the specific surface area per volume decreases, which causes a problem that the administration volume increases and oral administration becomes difficult. . Therefore, the higher the carbonization yield of the pitch, the more preferable the value of the yield by heat treatment at 800 ° C. in a preferable non-oxidizing gas atmosphere is 50% by weight or more, more preferably 60% by weight or more. .
  • Crosslinked vinyl resin which is a hot-melt resin, is softened and melted by heat treatment in a non-oxidizing gas atmosphere, and the carbonization yield is less than 10%.
  • an oxidizing treatment at 150 ° C. to 400 ° C. in an atmosphere containing, it is possible to obtain a spherical carbonaceous material with a high carbonization yield of 30% or more without softening and melting.
  • the heat infusible Spherical activated carbon can be obtained by performing the activation treatment in the same manner as in the case of the natural resin.
  • the crosslinked vinyl resin used as a starting material for example, a spherical polymer obtained by emulsion polymerization, bulk polymerization, or solution polymerization, or preferably a spherical polymer obtained by suspension polymerization can be used.
  • a spherical polymer obtained by emulsion polymerization, bulk polymerization, or solution polymerization or preferably a spherical polymer obtained by suspension polymerization
  • the pore formation of the resin can be achieved by adding a porogen during polymerization.
  • Crosslinked bi - required to uniformly infusibilized Le ⁇ the surface area of the crosslinked Bulle ⁇ is more preferably preferably fixture or more 10 m 2 Zg is 50 m 2 Zg above.
  • an organic phase containing a vinyl monomer, a crosslinker, a porogen and a polymerization initiator is added to an aqueous dispersion medium containing a dispersion stabilizer, After forming a large number of organic droplets suspended in an aqueous phase by stirring and mixing, the monomer in the organic droplets is polymerized by heating, whereby a spherical crosslinked vinyl resin can be prepared.
  • any vinyl monomer that can be formed into a spherical shape can be used.
  • an aromatic vinyl monomer such as styrene, or a vinyl or hydrogen group can be used.
  • a hydrogen-substituted styrene derivative such as a compound having a heterocyclic ring instead of a fuel group, or a compound having a polycyclic compound bonded to a vinyl group can be used.
  • examples of the aromatic vinyl monomer include ⁇ - or j8-methinolestyrene, ⁇ - or 13-ethylstyrene, methoxystyrene, phenylenostyrene, or chlorostyrene, or ⁇ —, m—, or p —Methylstyrene, ethylstyrene, methoxystyrene, methylsilylstyrene, hydroxysiloxystyrene, chlorostyrene, cyanostyrene, nitrostyrene, aminostyrene, canoleboxystyrene, or sulfoxystyrene, sodium styrenesulfonate, or vinyl Examples thereof include pyridine, vinyl thiophene, vinyl pyrrolidone, vinyl naphthalene, vinyl anthracene, and vinyl biphenyl.
  • aliphatic vinyl monomers can also be used.
  • vinyl esters such as ethylene, propylene, isobutylene, diisobutylene, chloride butyl, acrylate, methacrylate, and acetate butyl Ketones such as butyl methyl ketone, butyl ethyl ketone, acrolein
  • examples thereof include butyl aldehydes such as tacrolein, and butyl ethers such as butyl methyl ether and butyl ether, and butyl-tolyls such as acrylonitrile, ethyl acrylonitrile, diphenyl acrylonitrile, and chloroacrylonitrile.
  • any cross-linking agent that can be used for cross-linking the above-mentioned bullet-based monomer can be used.
  • crosslinkers include polyvinyl aromatic hydrocarbons (eg, dibutyl benzene), glycol trimethatalylate (eg, ethylene glycol dimetharate), or polybutyl hydrocarbons (eg, tributyl). Cyclohexane). Dibutylbenzene is most preferred because of its excellent thermal decomposition properties.
  • Suitable porogens include alkinol having 4 to 10 carbon atoms (for example, ⁇ -butanol, sec-butanol, 2-ethylhexanol, decanol, or 4-methyl-2-pentanol), Alkyl esters having at least 7 carbon atoms (eg, n-hexyl acetate, 2-ethylhexyl acetate, methyl oleate, dibutyl sebasate, dibutyl adipate, or dibutyl carbonate), alkyl ketones having 4 to 10 carbon atoms ( For example, dibutyl ketone or methyl isobutyl ketone), or alkyl carboxylic acid (E.g., heptanoic acid), aromatic hydrocarbons (e.g., toluene, xylene, or benzene), higher saturated aliphatic hydrocarbons (e.g., hexane, heptane, or is
  • the polymerization initiator is not particularly limited, and those generally used in this field can be used, but an oil-soluble polymerization initiator which is soluble in a polymerizable monomer is preferable.
  • the polymerization initiator include dialkyl peroxide, diacyl peroxide, peroxyster, peroxydicarbonate, and azodioxide.
  • dialkyl peroxides such as methylethyl peroxide, di-butyl peroxide, and dicumyl peroxide; isobutyl peroxide, benzoyl peroxide, 2,4-dichloro mouth benzoyl peroxide, 3,5 , 5 Dimethyl peroxide such as trimethylhexyl oxyperoxide; t-butyl peroxybivalate, t-hexyl oxybivalate, t-butyl peroxy neodecanoate, t-hexyl peroxy neo Decanoate, 1-cyclohexyl 1-methylethyl peroxy neodecanoate, 1,1,3,3-tetramethylbutyl peroxy neodecanoate, cumylpa monoxeo neodecanoate, ( ⁇ , ⁇ —Peroxyesters such as bis neodecanoyl baroxy) diisopropy
  • the physical properties of the surface-modified spherical activated carbon can be controlled in a variety of ways.
  • the average particle size and particle size distribution of the resin depend on the size of the droplets in the aqueous phase, and the size of the droplets depends on the amount of the suspending agent, the number of rotations of the stirring, the shape of the stirring blade, or the water.
  • Monomer ratio in the phase water Of the monomer and the amount of the monomer).
  • the droplets can be made smaller, and if the number of revolutions of the stirring is increased, the droplets can be made smaller. It is preferable from the viewpoint that the heat of polymerization is easily removed, because it is possible to control the coalescence of the polymerization, but if the monomer ratio is too small, the amount of monomer per batch will be reduced, so that it is obtained.
  • the amount of synthetic resin decreases
  • the pore volume and specific surface area can be controlled mainly by the amount and type of porogen when the controlled pore diameter is lOnm or more, and when the controlled pore diameter is less than lOnm. It can be controlled by activation conditions with steam.
  • the microstructure of the surface-modified spherical activated carbon can be controlled by the type of the resin, the type and amount of the crosslinking agent, the infusibilizing conditions, the Z or the activation temperature, and the like.
  • the spherical activated carbon having desired pores obtained as described above is treated with an atmosphere having an oxygen content of 0.1 to 50% by volume, preferably 1 to 30% by volume, particularly preferably 3 to 20% by volume under an atmosphere of 300 to 800. C, preferably at a temperature of 320 to 600 ° C., and further subjected to a reduction treatment at a temperature of 800 to 1200 ° C., preferably 800 to 1000 ° C. in a non-oxidizing gas atmosphere.
  • the surface-modified spherical activated carbon of the invention can be obtained.
  • the specific oxygen-containing atmosphere pure oxygen, oxidized nitrogen, air, or the like can be used as an oxygen source.
  • the atmosphere inert to carbon means nitrogen, argon, helium, or the like alone or a mixed system thereof.
  • the surface-modified spherical activated carbon is a porous body obtained by subjecting the above-mentioned spherical activated carbon to the above-mentioned oxidation treatment and reduction treatment, and adding an acidic point and a basic point to the surface of the spherical activated carbon in a well-balanced manner. By doing so, the adsorption characteristics of toxic substances in the upper small intestine are improved. For example, by subjecting the spherical activated carbon to an oxidation treatment and a reduction treatment, the specificity for the toxic substance to be adsorbed can be improved.
  • the surface-modified spherical activated carbon used as an adsorbent for oral administration according to the present invention has a specific surface area (hereinafter sometimes abbreviated as "SSA") determined by the BET method of 700 m 2 Zg or more. If the SSA is smaller than 700 m 2 Zg, the surface-modified spherical activated carbon is not preferred because the performance of adsorbing toxic substances is reduced.
  • the SSA is preferably at least 1300 m 2 / g, particularly preferably at least 1650 m 2 Zg. Although the upper limit of SSA is not particularly limited, bulk density and strength In light of the above, the SSA is preferably 3000 m 2 Zg or less.
  • the pore volume of the surface-modified spherical activated carbon used as the adsorbent for oral administration according to the present invention is not particularly limited.
  • the pore volume with a pore diameter of 20 to 15000 nm according to the mercury intrusion method is preferably 0.01 to 1 mLZg, and more preferably the pore volume is greater than 0.04 mLZg and 1 mLZg or less.
  • the crushing strength of the surface-modified spherical activated carbon used as the adsorbent for oral administration according to the present invention is preferably at least 10 NZ particles, more preferably at least 25 NZ particles, particularly preferably at least 30 NZ particles. Although the upper limit is not particularly limited, for example, about 80 NZ particles is sufficient. If the crushing strength is less than 10 NZ granules, it is not preferable because the possibility of crushing into powder due to handling or oral penetration increases. That is, it is known that oral administration of powdered activated carbon tends to cause a passage obstacle, and it is preferable to maintain a spherical shape.
  • the total acidic group in the constitution of the functional group, is 0.30 to: L20meqZg and the total basic group is 0.20-0. 9meqZg.
  • the surface-modified spherical activated carbon in which the total acidic group is 0.30 to L20meqZg and the total basic group does not satisfy the condition of 0.20 to 0.9meqZg, adsorbs the above-mentioned toxic substances. It is not preferable because the performance becomes low.
  • the total acidic group is preferably 0.30-1.OOmeqZg, and the total basic group is preferably 0.30-0.7 OmeqZg.
  • Each physical property value of the surface-modified spherical activated carbon used as the adsorbent for oral administration according to the present invention that is, the average particle diameter, bulk density, specific surface area, pore volume, particle size distribution, compressive strength, total acidic group , And all basic groups are measured by the following method.
  • the specific surface area can be calculated by the following equation by measuring the gas adsorption amount of the spherical activated carbon sample using a specific surface area measuring device by gas adsorption method (for example, “ASAP2010” manufactured by MICROMERITICS). Specifically, a sample tube is filled with spherical activated carbon as a sample, dried under reduced pressure at 300 ° C., and the weight of the dried sample is measured. Next, the sample tube is cooled to ⁇ 196 ° C., nitrogen is introduced into the sample tube, nitrogen is adsorbed on the spherical activated carbon sample, and the relationship between the nitrogen partial pressure and the adsorbed amount (adsorption isotherm) is measured.
  • a specific surface area measuring device for example, “ASAP2010” manufactured by MICROMERITICS.
  • BET plot is performed with the relative pressure of nitrogen as p and the amount of adsorption at that time as v (cm 3 Zg STP). That is, ⁇ / ( ⁇ (1 ⁇ p)) is plotted on the vertical axis and p is plotted on the horizontal axis, and the ⁇ force is plotted in the range of SO.02 to 0.20, and the slope b From the specific surface area S Is determined by the following equation.
  • MA used the cross-sectional area of nitrogen molecule of 0.162 nm 2 .
  • the specific surface area can be calculated by the Langmuir equation by measuring the gas adsorption amount of the surface-modified spherical activated carbon sample using a specific surface area measuring device (for example, "ASAP2010" manufactured by MICROMERITICS) by a gas adsorption method. Specifically, the sample-modified surface-activated spherical activated carbon is filled in a sample tube, dried under reduced pressure at 300 ° C, and the weight of the dried sample is measured.
  • a specific surface area measuring device for example, "ASAP2010” manufactured by MICROMERITICS
  • the sample tube was cooled to -196 ° C, nitrogen was introduced into the sample tube, nitrogen was adsorbed on the surface-modified spherical activated carbon sample, and the relationship between the nitrogen partial pressure and the adsorption amount (adsorption isotherm) was measured. I do.
  • MA used the cross-sectional area of nitrogen molecules as O. 162 nm 2 .
  • the relationship between the nitrogen partial pressure and the adsorption amount of the surface-modified spherical activated carbon sample at liquid nitrogen temperature (1196 ° C) using a specific surface area measurement device by gas adsorption method (ASAP2010: manufactured by Micromeritics) (adsorption isotherm) was measured. From the obtained adsorption isotherm, the calculation formula of Horverth-Kawazoe [Horvath, G. and Kawazoe, K., J. Chem. Eng. Japan 16 (6 , 470 (1983)]. The original Horverth-Kawazoe calculation method is based on the analysis of the pore shape by slit geometry.However, since the carbon structure is three-dimensionally disordered by non-graphitizing carbon, Cylinder geometry [Saito,
  • the pressure (0.06 MPa) corresponding to a pore diameter of 21 ⁇ m and the volume of mercury injected into the surface-modified spherical activated carbon sample up to the maximum pressure (414 MPa: equivalent to a pore diameter of 3 nm) were measured. I do.
  • the surface tension of mercury is defined as “ ⁇ ”, and the contact angle between mercury and the pore wall is determined.
  • “0” is set, the following equation is obtained from the balance between the surface tension and the pressure acting on the pore cross section.
  • the surface tension of mercury is set to 484 dyne Zcm
  • the contact angle between mercury and carbon is set to 130 degrees
  • the pressure P is set to MPa
  • the pore diameter D is expressed by / zm. . 27 / P
  • the pore volume in the range of pore diameter of 20 to 15000 nm corresponds to the volume of mercury injected from a pressure of 0.08 MPa to a pressure of 63.5 MPa.
  • the surface-modified spherical activated carbon used as the adsorbent for oral administration of the present invention has a very small particle size, voids between sample particles filled in a sample container are also small. Therefore, in the operation of measuring the pore volume by the mercury intrusion method described above, there is a stage in which mercury is injected into the interparticle space, and in the intrusion stage, the force is also reduced to a pore having a pore diameter of 8000 to 15000 nm. Behave as if they exist.
  • the absence of pores having a pore diameter of 8000 to 15000 nm in the surface-modified spherical activated carbon used as the adsorbent for oral administration of the present invention can be confirmed, for example, by observation with an electron microscope. Therefore, in this specification, the “pore volume in the range of pore diameter of 20 to 15000 nm” includes the amount of mercury injected into the interparticle gap.
  • the number-based particle size distribution is measured, the representative particle size 0 of the measured particle size class, and the value of the number n in the measured particle size class are determined, and the length average particle size D and the weight average are calculated by the following formulas. Calculate the average particle size D.
  • a powder hardness tester for example, a simple powder hardness tester manufactured by Tsutsui Chemical Chemical Instruments Co., Ltd.
  • the force required to crush one sample of the surface-modified spherical activated carbon sample is measured.
  • one sample of the surface-modified spherical activated carbon sample is sandwiched between two plates (if necessary, the sample particles are fixed with double-sided tape), and while applying a load, the force at which the sample particles break is measured. I do.
  • 0.05 g of surface-modified spherical activated carbon sample lg pulverized to 200 mesh or less is added to 50 mL of a specified NaOH solution and shaken for 48 hours.Then, the surface-modified spherical activated carbon sample is filtered off and subjected to neutralization titration. This is the required NaOH consumption.
  • the surface-modified spherical activated carbon used as the adsorbent for oral administration of the present invention is excellent in adsorbing hepatic disease aggravating factors and toxic substances in kidney disease, as shown in Examples described later. It can be used as an adsorbent for oral administration for treating or preventing a disease, or as an adsorbent for oral administration for treating or preventing a liver disease.
  • renal diseases include chronic renal failure, acute renal failure, chronic pyelonephritis, acute pyelonephritis, chronic nephritis, acute nephritis syndrome, acute progressive nephritis syndrome, chronic nephritis syndrome, Syndrome, renal sclerosis, interstitial nephritis, renal tubulopathy, lipoid nephrosis, diabetic nephropathy, renal vascular hypertension, or hypertension syndrome, or secondary renal disease associated with the above-mentioned underlying disease, and dialysis Can be used to improve the condition of mild renal failure before dialysis and to improve the condition during dialysis (Clinical Nephrology, Asakura Shoten, Nishio Honda, Kenkichi Koiso, Kiyoshi Kurokawa 1990 edition and “Nephrology”, Medical Shoin, edited by Teruo Omae and Satoshi Fujimi, 1981 edition).
  • liver diseases include fulminant hepatitis, chronic hepatitis, viral hepatitis, alcoholic hepatitis, liver fibrosis, cirrhosis, liver cancer, autoimmune hepatitis, drug allergic liver injury, primary biliary cirrhosis, Mention may include tremor, encephalopathy, metabolic abnormalities, or functional abnormalities. In addition, it can also be used to treat diseases caused by harmful substances present in the body, ie, mental illness.
  • the adsorbent for oral administration according to the present invention contains the above-mentioned surface-modified spherical activated carbon as an active ingredient when used as a therapeutic agent for kidney disease.
  • the dosage depends on whether the subject is a human or other animal, and depends on the age and individual. In some cases, a dose outside the following range may be appropriate.However, in general, the oral dose for human subjects is 1 to 20 g per day, 3 to 4 times. The dose may be taken separately, and the dose may be increased or decreased according to the symptoms.
  • Dosage forms can be powders, granules, tablets, dragees, capsules, suspensions, sticks, divided packages, emulsions and the like.
  • enteric capsules When taken as a capsule, enteric capsules can be used, if necessary, in addition to ordinary gelatin. When used as a tablet, it must be released into the original microparticles in the body. Further, it can be used in the form of a composite agent mixed with an electrolyte regulator such as an aluminum gel or a calyxate as another agent.
  • the surface-modified spherical activated carbon according to the present invention having an average particle diameter of 50 to 200 / ⁇ and a bulk density of less than 0.54 gZmL is a conventionally known spherical activated carbon (that is, an average particle diameter of 0 to As a therapeutic or prophylactic agent for renal disease, or as a therapeutic or prophylactic agent for liver disease, in the form of a mixture with a spherical activated carbon or a surface-modified spherical activated carbon having a volume density outside the range of 200 m and Z or bulk density of 0.54 gZmL or more). Can be used.
  • the average particle size is 5
  • Surface-modified spherical activated carbon according to the present invention having a volume density of 0 to 200 / 0m and a bulk density of less than 0.54 gZmL
  • a conventionally known spherical activated carbon i.e., having an average particle size of 50 to 200; Z or a spherical activated carbon having a bulk density of 0.54 gZmL or more or a surface-modified spherical activated carbon
  • a therapeutic or preventive agent for renal disease or a therapeutic or preventive agent for liver disease can be used in combination as a therapeutic or preventive agent for renal disease or a therapeutic or preventive agent for liver disease.
  • the obtained spherical porous synthetic resin lOOg was charged into a reaction tube with a perforated plate, and infusibilized in a vertical tubular furnace.
  • the infusibilization conditions were as follows: dry air was flowed from the lower part of the reaction tube to the upper part at 3 LZmin, the temperature was raised to 260 ° C at 5 ° CZh, and then maintained at 260 ° C for 4 hours. A fat was obtained.
  • activation treatment was performed at 820 ° C for 10 hours in a nitrogen gas atmosphere containing 64.5 vol% steam using a fluidized bed.
  • spherical activated carbon was obtained.
  • the obtained spherical activated carbon was further subjected to oxidizing treatment in a fluidized bed at 470 ° C. for 3 hours and 15 minutes in a mixed gas atmosphere of nitrogen and oxygen having an oxygen concentration of 18.5 vol%, and then in a fluidized bed.
  • Reduction treatment was performed at 900 ° C for 17 minutes in a nitrogen gas atmosphere to obtain surface-modified spherical activated carbon.
  • Tables 1 and 2 show the properties of the obtained surface-modified spherical activated carbon.
  • a surface-modified spherical activated carbon was obtained by repeating the procedure of Example 1 except that the two-phase system was stirred at 100 rpm instead of stirring at 200 rpm.
  • Tables 1 and 2 show the properties of the obtained surface-modified spherical activated carbon.
  • a surface-modified spherical activated carbon was obtained by repeating the procedure of Example 1 except that the two-phase system was stirred at 150 rpm instead of stirring at 200 rpm.
  • Tables 1 and 2 show the properties of the obtained surface-modified spherical activated carbon.
  • Example 1 The procedure of Example 1 was repeated, except that the two-phase system was stirred at 300 rpm instead of stirring at 200 rpm, to obtain a surface-modified spherical activated carbon.
  • Tables 1 and 2 show the properties of the obtained surface-modified spherical activated carbon.
  • a surface-modified spherical activated carbon was obtained by repeating the procedure of Example 1 except that the activation treatment time was changed to 6 hours instead of 10 hours in Example 1.
  • Tables 1 and 2 show the characteristics of the obtained surface-modified spherical activated carbon.
  • a surface-modified spherical activated carbon was obtained by repeating the operation of Example 1 except that the activation treatment time was changed to 13 hours instead of 10 hours in Example 1 described above.
  • Tables 1 and 2 show the characteristics of the obtained surface-modified spherical activated carbon.
  • a softening point of 210 ° C, a quinoline insoluble content of 1% by weight or less, a petroleum pitch 680g with an HZC atomic ratio of 0.63, and 80g of naphthalene are charged into a 3 liter pressure-resistant container equipped with stirring blades and 180 ° After melt-mixing at C, the mixture was cooled to 140 to 160 ° C and extruded with a 0.5 mm nozzle to obtain a cord-like compact.
  • the porous spherical pitch thus obtained is heated to 235 ° C using a fluidized bed while passing heated air, kept at 235 ° C for 1 hour, oxidized, and heated.
  • An infusible porous spherical oxide pitch was obtained.
  • the porous spherical oxide pitch was activated in a nitrogen gas atmosphere containing 64.5 vol% of steam at 900 ° C. for 174 minutes using a fluidized bed to obtain a spherical activated carbon.
  • the obtained spherical activated carbon is further subjected to an oxidizing treatment in a fluidized bed at 470 ° C for 3 hours and 15 minutes in a mixed gas atmosphere of nitrogen and oxygen having an oxygen concentration of 18.5 vol%, and then in a fluidized bed.
  • Reduction treatment was performed at 900 ° C for 17 minutes in a nitrogen gas atmosphere to obtain surface-modified spherical activated carbon.
  • Tables 1 and 2 show the characteristics of the obtained surface-modified spher
  • the porous spherical pitch thus obtained was heated to 235 ° C using a fluidized bed while passing heated air, kept at 235 ° C for 1 hour, oxidized, and heated.
  • An infusible, porous, spherical siding pitch was obtained.
  • the porous spherical oxide pitch was activated at 820 ° C. for 400 minutes in a nitrogen gas atmosphere containing 64.5 vol% water vapor using a fluidized bed to obtain a spherical activated carbon.
  • Tables 1 and 2 show the properties of the obtained spherical activated carbon.
  • the spherical activated carbon obtained in Comparative Example 2 was further subjected to oxidizing treatment in a fluidized bed at 470 ° C. for 3 hours and 15 minutes in a mixed gas atmosphere of nitrogen and oxygen having an oxygen concentration of 18.5 vol%, and then a fluidized bed To In a nitrogen gas atmosphere, a reduction treatment was performed at 900 ° C. for 17 minutes to obtain a surface-modified spherical activated carbon.
  • the properties of the obtained surface-modified spherical activated carbon are shown in Tables 1 and 2 (and Table 4).
  • Example 1 The procedure of Example 1 was repeated, except that the two-phase system was stirred at 80 rpm instead of stirring at 200 rpm, to obtain a surface-modified spherical activated carbon.
  • Tables 1 and 2 show the properties of the obtained surface-modified spherical activated carbon.
  • Example 1 the operation of Example 1 was repeated except that the spherical activated carbon obtained by the activation was pulverized with a rod mill for 10 seconds, and then oxidized and reduced. Got. Tables 1 and 2 show the properties of the obtained surface-modified activated carbon.
  • Example 1 a spherical activated carbon was obtained by repeating the operation of Example 1 except that the oxidation-reduction treatment of the spherical activated carbon was not performed.
  • Tables 1 and 2 show the characteristics of the obtained spherical activated carbon.
  • Example 1 the reduction treatment was not performed after the oxidation treatment of the spherical activated carbon! Other than the above, the procedure of Example 1 was repeated to obtain a surface-modified spherical activated carbon.
  • Tables 1 and 2 show the properties of the obtained surface-modified spherical activated carbon.
  • a surface-modified spherical activated carbon was obtained by repeating the procedure of Example 6 except that the oxidation-reduction treatment of the spherical activated carbon was not performed in Example 6.
  • Tables 1 and 2 show the properties of the obtained surface-modified spherical activated carbon.
  • Spherical phenol resin (trade name: Marilyn HF500; Gunei Chemical Industry Co., Ltd.) is sieved with a 250 ⁇ m sieve to remove fine powder, and 150 g of spherical phenol resin is meshed.
  • a vertical reaction tube made of quartz and heated to 350 ° C in 1.5 hours under nitrogen gas flow, and further heated to 900 ° C in 6 hours, then at 900 ° C for 1 hour By holding, a spherical carbonaceous material was obtained. Then, in a mixed gas atmosphere of nitrogen gas (3NLZmin) and steam (2.5NLZmin) Activated at 900 ° C.
  • Spherical activated carbon was obtained by repeating the same operation as in Comparative Example 8 except that the activation treatment was terminated when the packed density of the spherical activated carbon was reduced to 0.63 gZmL.
  • Tables 1 and 2 show the properties of the obtained spherical activated carbon.
  • the obtained spherical activated carbon is further subjected to an oxidizing treatment in a fluidized bed at 470 ° C. for 3 hours and 15 minutes in a mixed gas atmosphere of nitrogen and oxygen having an oxygen concentration of 18.5 vol%, and then to a fluidized bed.
  • reduction treatment was performed at 900 ° C for 17 minutes to obtain surface-modified spherical activated carbon.
  • Tables 3 and 4 show the characteristics of the obtained surface-modified spherical activated carbon.
  • Example 8 In Example 7, instead of performing the activation treatment at 820 ° C. for 11.5 hours, the operation of Example 7 was repeated, except that the activation treatment was performed for 9.5 hours. Got. Tables 3 and 4 show the properties of the obtained surface-modified spherical activated carbon.
  • Example 7 the operation of Example 7 was repeated except that the activation treatment was performed for 8 hours instead of performing the activation treatment at 820 ° C. for 11.5 hours, whereby the surface-modified spherical activated carbon was obtained. Obtained. Tables 3 and 4 show the properties of the obtained surface-modified spherical activated carbon.
  • a surface-modified spherical activated carbon was obtained by repeating the operation of Example 8 except that the two-phase system was stirred at 150 rpm instead of stirring at 200 rpm.
  • Tables 3 and 4 show the properties of the obtained surface-modified spherical activated carbon.
  • a softening point of 210 ° C, a quinoline-insoluble content of 1% by weight or less, a petroleum pitch of 80g with an HZC atomic ratio of 0.63, and 80g of naphthalene and 320g of naphthalene were charged into a pressure-resistant container with a 3L internal volume equipped with stirring blades, at 180 ° C. After melt-mixing the mixture at 140 to 160 ° C., the mixture was cooled and extruded with a 0.5 mm nozzle to obtain a cord-like molded product.
  • this cord-like molded product was crushed, fractionated by a sieve having a mesh size of 125 ⁇ m to 212 m, and the obtained crushed product was treated with 0.23% by weight of polyvinyl alcohol (Ken-I-Dan-88). %) Dissolved in an aqueous solution, and stirred and dispersed at 95 ° C for 50 minutes to form a sphere, then cooled to 40 ° C in 90 minutes to solidify the pitch and precipitate naphthalene crystals to form a sphere. A pitch compact slurry was obtained.
  • naphthalene in the pitch compact was extracted and removed with about 6 times the weight of n-hexane of the spherical pitch compact.
  • the porous spherical pitch obtained in this manner was heated to 235 ° C using a fluidized bed while passing heated air, kept at 235 ° C for 1 hour and oxidized.
  • a fusible, porous spherical acid-shadow pitch was obtained.
  • the porous spherical oxide pitch was activated in a nitrogen gas atmosphere containing 64.5 vol% of steam at 900 ° C for 174 minutes using a fluidized bed to obtain spherical activated carbon.
  • the obtained spherical activated carbon is further subjected to an oxidizing treatment in a fluidized bed at 470 ° C. for 3 hours and 15 minutes in a mixed gas atmosphere of nitrogen and oxygen having an oxygen concentration of 18.5 vol%, and then a nitrogen gas in a fluidized bed.
  • a reduction treatment was performed at 900 ° C. for 17 minutes in an atmosphere to obtain a surface-modified spherical activated carbon.
  • Obtained surface modified sphere Table 3 and Table 4 show the characteristics of the activated carbon
  • Example 7 the operation of Example 7 was repeated except that the activation treatment was performed at 820 ° C. for 11.5 hours instead of performing the activation treatment for 11.5 hours.
  • Tables 3 and 4 show the properties of the obtained surface-modified spherical activated carbon.
  • Example 7 the operation of Example 7 was repeated except that the activation treatment was performed for 5 hours instead of performing the activation treatment at 820 ° C. for 11.5 hours, whereby the surface-modified spherical activated carbon was obtained. Obtained. Tables 3 and 4 show the properties of the obtained surface-modified spherical activated carbon.
  • a spherical activated carbon was obtained by repeating the operation of Example 7 except that the oxidation treatment and the reduction treatment of the spherical activated carbon were not performed in Example 7 described above.
  • Tables 3 and 4 show the properties of the obtained spherical activated carbon.
  • Example 7 The procedure of Example 7 was repeated, except that the spherical activated carbon was not subjected to the reduction treatment, to obtain a surface-modified spherical activated carbon.
  • Tables 3 and 4 show the properties of the obtained surface-modified spherical activated carbon.
  • Comparative Example 12 a surface-modified spherical activated carbon was obtained by repeating the operation of Comparative Example 12 except that the two-phase system was stirred at 75 rpm instead of stirring at 200 rpm.
  • Tables 3 and 4 show the properties of the obtained surface-modified spherical activated carbon.
  • Spherical phenol resin (trade name: Marilyn HF500; Gunei Chemical Industry Co., Ltd.) was sieved to remove fine powder, and 150 g of spherical phenol resin was placed in a vertical quartz reaction tube with a plate. The sample was kept at 700 ° C for 1 hour under a nitrogen gas stream, allowed to cool, washed with deionized water, and dried * to obtain a spherical carbonaceous material. The spherical carbonaceous material was subjected to activation treatment at 820 ° C. for 6 hours in a nitrogen gas atmosphere containing 64.5 vol% of steam using a fluidized bed to obtain a spherical activated carbon. Tables 3 and 4 show the properties of the obtained spherical activated carbon. [Evaluation method of oral adsorbent]
  • the relationship between the nitrogen partial pressure and the adsorption amount of the surface-modified spherical activated carbon sample at liquid nitrogen temperature (1196 ° C) was measured using a specific surface area measuring device by gas adsorption method (ASAP2010: manufactured by Micromeritics). (Adsorption isotherm) was measured.
  • the force required to crush one spherical activated carbon sample is measured using a powder hardness tester (for example, a simple powder hardness tester manufactured by Tsutsui Physical and Chemical Instruments Co., Ltd.). Specifically, one spherical activated carbon sample is sandwiched between two plates (when necessary, sample particles are fixed with double-sided tape), and the force at which the sample particles break while applying a load is measured. Since the crushing strength increases as the particle diameter increases, particles with an average particle diameter Dv50 of 200 ⁇ m or more used clogged sieves with a mesh size of 425 ⁇ m. Other samples with an average particle diameter of 200 m or less were sieved to a particle diameter of 75 m to 180 m, and the crushing strength was measured. The measurement was performed 20 times, and the average value was defined as the crushing strength of the sample. The results are shown in Tables 2 and 4.
  • 0.05 g of a surface-modified spherical activated carbon sample lg pulverized to 200 mesh or less is added to 50 mL of NaOH solution (total acidic groups) or 50 mL of HC1 solution (total basic groups), and shaken for 48 hours.
  • the surface-modified spherical activated carbon sample was filtered off, and the consumption of NaOH (total acidic groups) or the consumption of HC1 (total basic groups) was determined by neutralization titration. The results are shown in Tables 2 and 4.
  • the same operation is performed using a phosphate buffer of pH 7.4, and the filtrate is used as a correction solution.
  • the calibration curve was obtained by accurately dispensing the at-amylase stock solution in OmL, 25mL, 50mL, 75mL, and 100mL into a volumetric flask, and measuring the volume to 100mL with pH 7.4 phosphate buffer. It was created by measuring the absorbance at 282 nm.
  • the amount of a-amylase adsorbed was calculated from the test absorbance and the calibration curve. The results are shown in Tables 2 and 4.
  • the contents of the flask were subjected to suction filtration with a membrane filter having a filtration hole of 0.65 / zm, and about 20 mL of the first filtrate was removed, and about 10 mL of the next filtrate was used as a sample solution.
  • the DL- ⁇ -aminoisobutyric acid stock solution was made up to 100 mL with OmL, 15 mL, 50 mL, 75 mL, and 100 mL and pH 7.4 phosphate buffer, stirred, filtered, and 0.1 mL of the filtrate was tested. Take exactly into a tube, add exactly 5 mL of pH 8.0 phosphate buffer, mix, and add exactly 1 mL of a solution of 0.10 g of fluorescamine in 100 mL of acetone for non-aqueous titration and mix. Later, it was left for 15 minutes.
  • the initial concentration of DL- ⁇ -aminoisobutyric acid is lOmgZdL, and the contact shaking time is 0.5 hours, 1.5 hours, 3 hours, 6 hours, 16 hours, and 24 hours.
  • the amount was determined in the same manner as in the operation of the above item (7). The results are shown in Figure 1.
  • a pharmacological effect test was performed on renal insufficiency by administration of the orally administered sorbent of the present invention.
  • the surface-modified spherical activated carbon obtained in Example 1 and Comparative Example 3 was used.
  • Model rat production ability At 6 weeks, the control group (10 animals; hereinafter referred to as R1 group) and the orally administered sorbent-administered group of Example 1 (10 animals; hereinafter referred to as E1 group) so that there is no bias between the groups. ) And Comparative Example 3 were divided into the orally administered sorbent administration group (10 animals; hereinafter referred to as C1 group).
  • the control group (R1 group) was fed a normal powder diet for 7 weeks after the model rat was produced and for the next 15 weeks thereafter, and the rats were orally administered with the sorbent group administered orally (Groups E1 and C1).
  • a mixed feed was prepared in an amount of 0.25 gZday per 1 kg of body weight and administered freely for 24 hours for 15 weeks.
  • FIG. 2 shows the relationship between the administration period and urinary excretion.
  • group E1; In () the group to which the orally administered sorbent of the present invention was administered
  • a pharmacological effect test was performed on renal insufficiency by administration of the orally administered sorbent of the present invention.
  • the surface-modified spherical activated carbon obtained in Example 7 and Comparative Example 12 was used.
  • Model rat production ability At 6 weeks, the control group (7 rats; hereinafter referred to as R2 group) and the orally administered adsorbent administration group of Example 7 (7 rats; hereinafter referred to as E2 group) so that there is no deviation between the groups.
  • Comparative Example 12 were divided into orally administered adsorbent administration groups (7 animals; hereinafter referred to as C2 group).
  • the cumulative pore volume of the surface-modified spherical activated carbon obtained in Example 7 and Comparative Example 12 was used.
  • Figure 4 shows the product.
  • the surface modified spherical activated carbon obtained in Example 7 has a smaller cumulative pore volume than the surface modified spherical activated carbon obtained in Comparative Example 12.
  • the cumulative pore volume was measured by the Horverth-Kawazoe method described above.
  • the adsorbent for oral administration of the present invention can be used as an adsorbent for oral administration for treatment or prevention of renal diseases, or as an adsorbent for treatment or prevention of liver diseases.
  • Renal diseases include, for example, chronic renal failure, acute renal failure, chronic pyelonephritis, acute pyelonephritis, chronic nephritis, acute nephritis syndrome, acute progressive nephritis syndrome, chronic nephritis syndrome, nephrotic syndrome, renal sclerosis , Interstitial nephritis, renal tubulopathy, lipoid nephrosis, diabetic nephropathy, renal vascular hypertension, or hypertension syndrome, or secondary renal disease associated with the above primary disease, and mild renal failure before dialysis It can also be used to improve the condition of mild renal failure before dialysis or during dialysis (Clinical Nephrology, Asakura Shoten, Hyundai Nishio, Koiso Kenkichi, Kurokawa Kiyoshi, 1990 edition, and Gakuin, Medical Shoin, Teruo Omae, Satoshi Fujimi, 1981 edition).
  • liver diseases include fulminant hepatitis, chronic hepatitis, viral hepatitis, alcoholic hepatitis, liver fibrosis, cirrhosis, liver cancer, autoimmune hepatitis, drug allergic liver injury, primary biliary cirrhosis, Mention may include tremor, encephalopathy, metabolic abnormalities, or functional abnormalities. In addition, it can also be used to treat diseases caused by harmful substances present in the body, ie, mental illness.

Landscapes

  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Urology & Nephrology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

 平均粒子径が50~200μmであり、BET法により求められる比表面積が700m2/g以上であり、嵩密度が0.54g/mL未満であり、全酸性基が0.30meq/g~1.20meq/gであり、そして全塩基性基が0.20meq/g~0.9meq/gである表面改質球状活性炭からなることを特徴とする経口投与吸着剤を記載する。この経口投与吸着剤は、吸着能が高く、腸管内滞留期間内の毒性物質吸着量が多く、尿中タンパク質の排泄量が顕著に減少する。

Description

明 細 書
経口投与用吸着剤、並びに腎疾患治療又は予防剤、及び肝疾患治療又 は予防剤
技術分野
[0001] 本発明は、平均粒子径が小さぐしかも嵩密度が小さい表面改質球状活性炭から なる経口投与用吸着剤に関する。また、本発明は、前記の経口投与用吸着剤を有効 成分とする腎疾患治療又は予防剤、及び肝疾患治療又は予防剤に関する。
本発明による経口投与用吸着剤は、体内の有毒な毒性物質 (Toxin)に対する吸 着能が高ぐ従って、経口摂取力も体外排出までの体内滞留期間内において、毒性 物質を吸着すべき一定時間内に多くの毒性物質を吸着することができる。
背景技術
[0002] 腎機能や肝機能の欠損患者らは、それらの臓器機能障害に伴って、血液中等の体 内に有害な毒性物質が蓄積したり生成したりするので、尿毒症や意識障害等の脳症 をひきおこす。これらの患者数は年々増加する傾向を示しているため、これら欠損臓 器に代わって毒性物質を体外へ除去する機能をもつ臓器代用機器あるいは治療薬 の開発が重要な課題となっている。現在、人工腎臓としては、血液透析による有毒物 質の除去方式が最も普及している。し力しながら、このような血液透析型人工腎臓で は、特殊な装置を用いるために、安全管理上から専門技術者を必要とし、また血液 の体外取出しによる患者の肉体的、精神的及び経済的負担が高いなどの欠点を有 していて、必ずしも満足すべきものではない。
[0003] これらの欠点を解決する手段として、経口的な服用が可能で、腎臓や肝臓の機能 障害を治療することができる経口吸着剤が開発され、利用されている (特許文献 1)。 その経口吸着剤は、特定の官能基を有する多孔性の球形炭素質物質 (すなわち、 表面改質球状活性炭)からなり、生体に対する安全性や安定性が高ぐ同時に腸内 での胆汁酸の存在下でも有毒物質の吸着性に優れ、しかも、消化酵素等の腸内有 益成分の吸着が少ないという有益な選択吸着性を有し、また、便秘等の副作用の少 ない経口治療薬として、例えば、肝腎機能障害患者に対して広く臨床的に利用され ている。なお、前記特許文献 1に記載の吸着剤は、石油ピッチなどのピッチ類を炭素 源とし、球状活性炭を調製した後、酸化処理、及び還元処理を行うことにより製造さ れていた。
[0004] 前記の選択吸着性、すなわち、有毒物質に対しては優れた吸着性を示し、腸内有 益成分の吸着が少な 、と 、う有益な選択吸着性を更に向上させた経口投与用吸着 剤も知られている(特許文献 2)。この特許文献 2に記載の経口投与用吸着剤は、細 孔直径 20〜15000nmの細孔容積が 0. 04mLZg以上で 0. lOmLZg未満という 特定範囲の細孔容積において、前記の選択吸着性が向上する現象を発見したこと に基づくものであり、有毒物質を充分に吸着すると共に、特に、腸内有益成分の吸着 を抑制することが望ましい疾患に対して極めて有効である。
[0005] また、比表面積 500〜2000m2Zg、細孔容積 0. 2〜1. OmL/g,及び充填密度 0. 5〜0. 75gZmLを有し、球状フエノール榭脂を炭化及び賦活することにより得ら れた活性炭力 なる医薬用吸着剤も知られている (特許文献 3)。この特許文献 3〖こ 記載の医薬用吸着剤は、比表面積及び細孔容積、平均細孔直径、粒子径、表面酸 化物量を調整した活性炭からなるため、多糖類及び酵素等のような生体に必要な高 分子の吸着を抑制しつつイオン性有機化合物を選択的に吸着することができるとさ れている。
[0006] 特許文献 1 :特公昭 62— 11611号公報
特許文献 2:特許第 3522708号 (特開 2002— 308785号公報)
特許文献 3:特開 2004— 244414号公報
発明の開示
発明が解決しょうとする課題
[0007] 表面改質球状活性炭又は活性炭からなる経口吸着剤にお ヽては、前記の選択吸 着性は極めて重要な特性であるが、その一方で、生体内の毒性物質をできる限り大 量にしかも迅速に吸着 ·除去することも重要である。すなわち、表面改質球状活性炭 又は活性炭力 なる経口吸着剤は、一般に上部小腸管内での滞留時間が 3〜5時 間程度である。従って、有害物質と接触してから約 3時間までの期間内での吸着能 力が高ぐしかも初期吸着性能が優れた表面改質球状活性炭又は活性炭が望まし い。
ところが、後述する実施例に示すとおり、前記特許文献 1や前記特許文献 2に記載 の経口吸着剤は、有害物質と接触して力も約 3時間までの期間では、吸着能力が必 ずしも高くなぐしかも吸着能力を完全には使い尽くさず、依然として充分な吸着能力 を有した状態で小腸下部や大腸へ送られ、更に体外に排出される。
[0008] 本発明者は、吸着能力が高ぐ従って、比較的大量の有害物質の吸着'除去が可 能で、しカゝも初期吸着速度の点で優れて ヽる経口吸着剤を鋭意開発して ヽたところ 、特許文献 1又は特許文献 2に記載の従来公知の経口吸着剤が有する平均粒子径 の範囲とは異なる平均粒子径 (すなわち、小粒子径)において、優れた吸着能力及 び初期吸着速度を示す経口吸着剤が得られることを見出した。また、約 3時間の上 部小腸管内滞留期間内に多量の有害物質を吸着することができるので、服用量を減 少、させることが可會 になる。
更に、本発明者は、本発明者が見出した前記の平均粒子径範囲 (すなわち、小粒 子径範囲)においても、特許文献 3に記載の活性炭が有する嵩密度とは異なる嵩密 度範囲 (すなわち、低い嵩密度範囲)において、尿中タンパク質の排泄量が顕著に 減少することを見出した。
本発明は、こうした知見に基づくものである。
課題を解決するための手段
[0009] 従って、本発明は、平均粒子径が 50〜200 μ mであり、 BET法により求められる比 表面積が 700m2/g以上であり、嵩密度が 0. 54g/mL未満であり、全酸性基が 0.
30meqZg〜l . 20meqZgであり、そして全塩基性基力 sO. 20meqZg〜0. 9meq
Zgである表面改質球状活性炭からなることを特徴とする経口投与吸着剤に関する。
[0010] 更に、本発明は、前記の経口投与用吸着剤のいずれかを有効成分とする、腎疾患 治療又は予防剤、あるいは肝疾患治療又は予防剤にも関する。
発明の効果
[0011] 本発明による経口投与用吸着剤は、吸着能が高いので、初期吸着能の点でも優れ ており、一般的な上部小腸管内滞留期間内において、生体内の有毒な毒性物質を 極めて迅速に吸着することができる。従って、腎疾患治療又は予防剤、あるいは肝疾 患治療又は予防剤として有効である。更に、服用量を従来の経口投与用吸着剤より ち減少、させることがでさる。
また、平均粒子径が小さいので、口に含んだ際のジャリジャリ感が解消ないし軽減 されるため、服用が容易になる。しかも、本発明者がラットに投与してから、開腹して 確認したところ、腸管内壁表面への付着もほとんど観察されず、むしろ、平均粒子径 が大き 、従来の経口投与用吸着剤(例えば、前記特許文献 1に記載の経口投与用 吸着剤)よりも、腸管内壁表面への付着が減少する場合があることも観察されている。 すなわち、腸管内壁表面への付着も、従来の経口投与用吸着剤と少なくとも同程度 である。
更に、嵩密度が低い範囲の表面改質球状活性炭力もなるので、尿中タンパク質の 排泄量が顕著に減少する。
図面の簡単な説明
[0012] [図 1]図 1は、実施例 1及び実施例 7で得られた本発明による表面改質球状活性炭と 、比較例 3の表面改質球状活性炭との DL— βーァミノイソ酪酸吸着量と、吸着時間 との関係を比較した結果を示すグラフである。
[図 2]図 2は、実施例 1で得られた本発明による表面改質球状活性炭と、比較例 3の 表面改質球状活性炭とに関して、腎不全ラットモデルにおける尿中の蛋白排泄量を 比較した試験の結果を示すグラフである。
[図 3]図 3は、実施例 1で得られた本発明による表面改質球状活性炭と、比較例 3の 表面改質球状活性炭とに関して、腎不全ラットモデルにおける尿中の蛋白排泄量を 比較した別の試験の結果を示すグラフである。
[図 4]図 4は、実施例 1で得られた本発明による表面改質球状活性炭と、比較例 3の 表面改質球状活性炭との累積細孔容積を示すグラフである。
発明を実施するための最良の形態
[0013] 本発明〖こよる経口投与用吸着剤として用いる表面改質球状活性炭は、酸性点が 0 . 30meqZg以上の球状活性炭を意味する。これに対して、表面非改質球状活性炭 とは、酸性点が 0. 30meqZg未満の球状活性炭を意味する。表面改質球状活性炭 は、後述するとおり、炭素前駆体を熱処理した後に、賦活処理を行い、更にその後で 、酸化処理及び還元処理による表面改質処理を実施することによって得られる多孔 質体であり、酸及び塩基に対して適度な相互作用を示すことができる。一方、表面非 改質球状活性炭は、例えば、炭素前駆体を熱処理した後に、賦活処理を行うこと〖こ よって得られる多孔質体であり、その後の酸化処理及び還元処理による表面改質処 理を実施していない球状活性炭、あるいは、前記賦活処理の後に非酸化性雰囲気 での熱処理を実施して得られる球状活性炭である。
[0014] 本発明による経口投与用吸着剤として用いる表面改質球状活性炭は、前記のとお り、特定範囲の平均粒子径を有すると共に、特定範囲の嵩密度を有する。すなわち、 平均粒子径力 。〜 200 μ mであり、好ましくは 50〜180 μ mであり、より好ましくは 5 0〜150 mである。なお、本明細書において平均粒子径(Dv50)とは、体積基準の 粒度累積線図において粒度累積率 50%における粒径である。また、嵩密度が 0. 54 gZmL未満である。嵩密度の上限は、好ましくは 0. 50gZmL (すなわち、 0. 50g/ mL以下、もしくは 0. 50gZmL未満)であり、より好ましくは 0. 49ZmLである。嵩密 度の下限は特に限定されないが、好ましくは 0. 30gZmLである。なお、本明細書に おいて嵩密度 P とは、容器に球状活性炭を充填したときの球状活性炭の乾燥重量
W (g)を充填された球状活性炭の体積 V (mL)で除した値であり、以下の計算式から 得ることができる。
[0015] [数 1]
W
' B(g/mL)
V {mL)
[0016] 本発明者の知る限り、経口投与用吸着剤として用いる表面改質球状活性炭又は球 状活性炭において、平均粒子径が 50〜200 /ζ πιであって、しかも嵩密度が 0. 54g ZmL未満である球状活性炭は従来全く知られていない。例えば、前記特許文献 2 の実施例 1〜5で具体的に調製されている多孔性球状炭素質物質の平均粒子径は 、全てが 350 mである。なお、前記特許文献 2には、直径が 0. 01〜: Lmm(10〜l 000 μ m)の多孔性球状炭素質物質が一般的に記載されて 、る(例えば、請求項 1) しかしながら、この 0. 01〜lmmの範囲は直径として記載されており、平均粒子径 として記載されているわけではない。また、その特許文献 2の実施例 1〜5で具体的 に開示されている吸着剤は、前記の通り、平均粒子径が 350 mの多孔性球状炭素 質物質のみであり、しかも、平均粒子径が 50〜200 /ζ πιの球状活性炭において、吸 着量が増加し、初期吸着速度が向上することは全く記載されていない。なお、前記特 許文献 2の比較例には、平均粒子径が 20 mの炭素質材料 (比較例 3)及び平均粒 子径が 40 mの炭素質材料 (比較例 6)が記載されている。し力しながら、平均粒子 径が 20 mの炭素質材料 (比較例 3)は、実施例 1で調製した多孔性球状炭素質物 質を粉砕機によって粉砕したものであり、球状ではない。また、平均粒子径が 40 m の炭素質材料 (比較例 6)は、粉末状の薬用炭である。
[0017] また、前記特許文献 1にも、直径 0. 05〜: ίπιπι (50〜1000 /ζ m)の球形炭素質物 質が一般的に記載されており(例えば、特許請求の範囲第 1項)、更に、実施例 1〜3 にも粒径が 0. 05〜1111111又は0. 07〜 lmmの炭素質吸着剤が具体的に記載されて いる。し力しながら、これらの範囲が平均粒子径でないことは明らかであり、最小粒径 力も最大粒径の範囲を示していると思われる。
[0018] なお、前記特許文献 1や前記特許文献 2に記載されて 、る種々の物性を有する多 孔性球状炭素質物質を製造する技術は近年になって急速に進歩しており、後述する 実施例に示すとおり、例えば、合成樹脂を炭素源として用いることなどにより、目的と する種々の物性値を有する多孔性球状炭素質物質を製造することが容易になってき ている。例えば、平均粒子径の制御も比較的に容易に実施可能になっている。これ に対して、ピッチを炭素源として用いて、例えば、平均粒子径が 50〜 200 mである 球状活性炭を製造することは、技術的には必ずしも容易ではなぐ少なくとも、平均 粒子径 50〜200 mの球状活性炭を製造する動機がなければ、製造することはな い。従って、少なくとも、前記特許文献 1の出願当時においては、平均粒子径が 50〜 200 mである球状活性炭をピッチ力も製造することは、あり得ないことであった。
[0019] なお、本発明による経口投与用吸着剤として用いる表面改質球状活性炭は、前記 のとおり、特定範囲の平均粒子径(50〜200 μ m)を有する表面改質球状活性炭で あり、その平均粒子径は、例えば、前記特許文献 2に具体的に記載されている多孔 性球状炭素質物質の平均粒子径 (350 /z m)と比較すると小さくなつており、しかも、 本発明による経口投与用吸着剤として用いる表面改質球状活性炭は、従来の表面 改質球状活性炭又は球状活性炭に比較して吸着能が高ぐ初期吸着能の点でも優 れていることを特徴としている。し力しながら、この程度の平均粒子径の低下は、実質 的な比表面積 (外表面積)の増加を伴うものではなぐ本発明で用いる表面改質球状 活性炭によって吸着特性が実質的に変化することは、比表面積 (外表面積)の増加 の観点力ものみでは説明することのできない現象である。
[0020] ちなみに、平均粒子径が 350 μ mの表面改質活性炭 lgと、平均粒子径が 50 μ m の表面改質活性炭 lgとについて、それらの比表面積 (外表面積)を計算してみる。表 面改質活性炭の密度を p (g/m3)とし、粒子径を d (m)とすると、表面改質活性炭 1 gあたりの外表面積 (S)は次式:
[0021] [数 2]
32
3p d で求めることができる。ここで、表面改質活性炭の密度 )を l X 106g/m3 (lg/c m3)とし、粒子径(d)を 350 X 10"6m (350 μ m)とすると、外表面積(S)は 0. 03m2 Zgとなる。同様にして粒子径 (d)を 50 X 10"6m (50 μ m)とすると外表面積(S)は 0 . 21m2Zgとなり、その差異は 0. 18m2Zgである。ここで、本発明の球状活性炭の 比表面積は 700m2Zgであり、粒子径の低下に伴う外表面積の増加量は、全体の比 表面積の 0. 1%以下である。
[0022] 本発明による経口投与用吸着剤として用いる表面改質球状活性炭は、その粒度分 布が狭いことが好ましい。例えば、個数基準平均の長さ平均粒子径 D ( = Σ ηΌ/ Σ η)と、重量基準分布の重量平均粒子径 D ( =∑ (nD4) /∑ (nD3) )との比 (D /Ό
4 4 1
)によって表した場合、本発明による経口投与用吸着剤として用いる表面改質球状 活性炭は、前記の比(D /Ό )が、好ましくは 3以下、より好ましくは 2以下、更に好ま
4 1
しくは 1. 5以下である。ここで、前記の比(D ZD )が 1に近いほど粒度分布が狭いこ
4 1
とを示している。なお、前記の計算式で、 Dは測定粒子径区分の代表粒子径であり、 nは個数である。 [0023] 平均粒子径が 50〜200 μ mである球状活性炭は、前記特許文献 3の実施例に記 載されている。もっとも、前記特許文献 3では、一般的には平均粒子径を 350 m以 下と規定しているのみで、 200 m以下にすることによって特定の効果を得ることが できることについては全く記載がなぐ平均粒子径が 50〜200 mである球状活性 炭が初期吸着能の点で優れていることについての記載はない。すなわち、前記特許 文献 3の実施例において、平均粒子径が 60〜117 mの範囲になる球状活性炭が 製造されているに過ぎない。しカゝしながら、前記特許文献 3の実施例で実際に製造さ れている球状活性炭の嵩密度の範囲は、 0. 54〜0. 61gZmLである。し力も、前記 特許文献 3には、嵩密度(充填密度)が 0. 5gZmL以下であると、活性炭の細孔直 径が大きくなり、トリプシン等のタンパク質 (酵素)等、プルラン等の多糖類等の高分子 化合物を吸着してしまうおそれがあり、服用する容量が多くなつてしまうため好ましく ないことが明記されている。従って、前記特許文献 3には、嵩密度が 0. 54gZmL未 満の球状活性炭は実質的に記載されておらず、少なくとも嵩密度が 0. 50gZmL以 下 (あるいは 0. 50gZmL未満)の球状活性炭は記載されて 、な!/、。
[0024] 表面改質球状活性炭又は球状活性炭において、嵩密度は賦活の程度を示す良い 指標である。すなわち、嵩密度が小さいほど、賦活が進んでいることを示す。表面改 質球状活性炭又は球状活性炭の製造工程において、後述する水蒸気賦活では、賦 活初期に比較的小さな細孔が形成され、賦活が進むに従って細孔径が拡大し、その 結果嵩密度が低下する。
[0025] 本発明〖こよる経口投与用吸着剤が前記のような優れた効果を有する理由は、現在 のところ不明であるが、以下のように推定することもできる。もっとも、本発明は、以下 の推定に限定されるものではな 、。
人は、タンパク質あるいはアミノ酸を必須栄養物として体内に摂取する。しかしなが ら、その必要量は、成長と身体の構成成分の維持に要求される量をはるかに上回り、 結果として身体全体としては、摂取した窒素化合物を分解し、排出させる。ここで、肝 機能及び腎機能に障害を有する場合、窒素化合物の代謝及び排出が不十分となり 、体内に蓄積され尿毒素物質となる。従って、尿毒素物質を吸着するための経口投 与吸着剤の吸着特性を向上させるには、分子量が数十〜数百にいたる幅広い分子 を吸着する物性を有することが好ましい。特に、 β—アミノィ酪酸などのイオン性ィ匕合 物を吸着するには、表面構造が重要である。更に、尿毒素物質を吸着するには、分 子量の異なる分子を幅広く吸着する必要がある。本発明の経口投与用吸着剤では、 粒子径が小さぐ外表面積が増力!]しているので、尿毒素分子と経口投与吸着剤との 接触面積が増力!]している。更に、粒子径が小さいので、尿毒素物質が経口投与吸着 剤の粒子内を拡散する際の平均自由行程が短くなり、吸着速度が早くなる。また、嵩 密度が低ぐ細孔径が拡大しているため、比較的大きな分子の吸着が可能となる。そ の結果、幅広 、分子量を有する化合物の吸着が可能になる。
[0026] 本発明の経口投与用吸着剤として用いる表面改質球状活性炭は、炭素源として、 任意の炭素含有材料を用いることができる。使用可能な炭素含有材料としては、例え ば、合成樹脂又はピッチを用いることができる。合成樹脂としては、熱溶融性榭脂又 は熱不融性榭脂を用いることができる。ここで、熱溶融性榭脂とは、不融化処理を行 わずに賦活処理を行うと、温度上昇に伴って溶融'分解してしまう榭脂であり、活性 炭を得ることができない榭脂である。し力しながら、予め不融化処理を実施して力 賦 活処理を行うと、活性炭とすることができる。これに対して、熱不融性榭脂とは、不融 化処理を行わずに賦活処理を行っても、温度上昇に伴って溶融することなく炭素化 が進み、活性炭を得ることができる榭脂である。なお、不融化処理とは、後述するよう に、例えば、酸素を含有する雰囲気にて、 150°C〜400°Cで酸ィ匕処理を行うことであ る。
[0027] 熱溶融性榭脂の代表例は、熱可塑性榭脂であり、例えば、架橋ビュル榭脂を挙げ ることができる。一方、熱不融性榭脂の代表例は、熱硬化性榭脂であり、フエノール 榭脂又はフラン榭脂を挙げることができる。公知の熱可塑性榭脂又は熱硬化性榭脂 の中から、球状体を形成することのできる任意の熱可塑性榭脂又は熱硬化性榭脂を 使用することができる。なお、架橋ビニル榭脂から表面改質球状活性炭を得る場合 には、前記の不融化処理が必要であるのに対し、架橋ビニル榭脂に官能基を付与 することによって製造されるイオン交換樹脂から表面改質球状活性炭を得る場合に は、前記の不融化処理が不要である。これは、官能基付与処理や導入された官能基 によって架橋ビニル榭脂が熱溶融性榭脂から熱不融性榭脂に変性されるものと考え られる。すなわち、架橋ビュル榭脂は本明細書における熱溶融性榭脂に含まれるの に対し、イオン交換榭脂は、本明細書における熱不融性榭脂に含まれる。
[0028] 本発明における炭素源としては、イオン交換榭脂、架橋ビュル榭脂又はピッチを用 いることが好ましぐイオン交換榭脂又は架橋ビニル榭脂を用いることがより好ましい
[0029] 本発明の経口投与用吸着剤として用いる表面改質球状活性炭の調製に、炭素源 として熱不融性榭脂 (例えば、イオン交換榭脂)を用いる場合には、ピッチ類を用いる 従来の製造方法と実質的に同様の操作を利用することができる。例えば、最初に、 熱不融性榭脂からなる球状体を、炭素と反応性を有する気流 (例えば、スチーム又は 炭酸ガス)中で、 700〜: LOOO°Cの温度で賦活処理して、球状活性炭を得ることがで きる。本明細書において、「活性炭」とは、球状の熱不融性榭脂などの炭素前駆体を 熱処理した後に、賦活処理を行うことによって得られる多孔質体を意味し、「球状活 性炭」とは、球状で比表面積が 100m2Zg以上であるものを意味する。本発明におい ては、比表面積が 700m2Zg以上、更に好ましくは 1300m2Zg以上、特に好ましく は 1650m2Zg以上である表面改質球状活性炭を使用する。出発材料として用いる 熱不融性榭脂の前記球状体は、平均粒子径が約 70〜500 /ζ πιが好ましぐ 100-3 00 μ mであることが更に好ましい。
[0030] 一方、熱溶融性榭脂 (例えば、架橋ビニル榭脂)を炭素源として用いる場合には、 熱溶
融性榭脂からなる前記球状体が、熱処理により軟化して形状が非球形に変形するか 、あるいは球状体同士が融着するので、前記の賦活処理の前に、不融化処理として 、酸素を含有する雰囲気にて、 150°C〜400°Cで酸化処理を行うことにより軟化を抑 ff¾することができる。
また、不融処理後の熱溶融性榭脂ゃ熱不融性榭脂の球状体を熱処理すると、多く の熱分解ガスなどが発生する場合には、賦活操作を行う前に適宜予備焼成を行 、、 予め熱分解生成物を除去することができる。
[0031] 本発明の経口投与用吸着剤として用いる表面改質球状活性炭の調製に、炭素源 としてピッチを用いる場合に、平均粒子径が 50〜200 /ζ πιである球状活性炭は、例 えば以下の方法で調製することができる。
石油ピッチ又は石炭ピッチ等のピッチに対し、添加剤として沸点 200°C以上の 2環 又は 3環の芳香族化合物又はその混合物を加えて加熱混合した後、成形してピッチ 成形体を得る。ピッチ成形体の大きさは、押出し成形時のノズル径、あるいは、ピッチ 成形体の粉砕条件によって制御することができる。ピッチ成形体の体積が小さいほど 、小さい球状ピッチを作ることができ、より小さい粒子径を有する球状活性炭を得るこ とがでさる。
[0032] 次に、ピッチ成形体を 50〜120°Cの熱水中で撹拌下に分散し、造粒して微小球体 化したのちに冷却し、球状ピッチ成形体を得る。球状ピッチ成形体の平均粒子径は 6 0〜350 μ m力好まし <、 60〜300 μ m力 ^更に好まし!/ヽ。更に、ピッチに対し低溶解 度を有しかつ添加剤に対して高溶解度を有する溶剤で、球状ピッチ成形体から添加 剤を抽出除去し、得られた多孔性ピッチを、酸化剤を用いて酸ィ匕して不融性多孔性 ピッチとし、得られた熱に対し不融性の多孔性ピッチを、更に炭素と反応性を有する 気流、例えばスチーム又は炭酸ガス中、 800〜1000°Cの温度で処理すれば、球状 活性炭を得ることができる。
[0033] 上記した芳香族添加剤の目的は、成形後のピッチ成形体から前記添加剤を抽出 除去させて成形体を多孔質とし、後工程の酸ィ匕による炭素質材料の構造制御ならび に焼成を容易にすることにある。このような添加剤は、例えば、ナフタレン、メチルナフ タレン、フエ二ルナフタレン、ベンジルナフタレン、メチルアントラセン、フエナンスレン 、又はビフエ-ル等の芳香族化合物の 1種又は 2種以上の混合物力 選択される。ピ ツチに対する添カ卩量は、ピッチ 100重量部に対し 10〜50重量部の範囲が好ましい。
[0034] ピッチと添加剤の混合は、均一な混合を達成するため、加熱し溶融状態で行う。成 形は溶融状態で行ってもよぐまた混合物を冷却後粉砕する等の方法によってもよい 力 溶融状態で糸状に混合ピッチを押し出し、その後これを等間隔で切断もしくは粉 砕する方法が、粒子径分布をより狭い範囲で制御できるので好ましい。粒子径は混 合ピッチを押し出す時のノズル径により制御することができ、細 ゾズルを使用するこ とにより小さな混合物成形体とすることができる。
ピッチと添加剤の混合物から添加剤を抽出除去するための溶剤としては、ブタン、 ペンタン、へキサン、又はヘプタン等の脂肪族炭化水素、ナフサ、又はケロシン等の 脂肪族炭化水素主体の混合物、メタノール、エタノール、プロパノール、又はブタノー ル等の脂肪族アルコール類等が好適である。
[0035] このような溶剤でピッチと添加剤の混合物成形体力 添加剤を抽出することによつ て、成形体の形状を維持したまま添加剤を成形体から除去することができる。この際 に成形体中に添加剤の抜け穴が形成され、均一な多孔性を有するピッチ成形体が 得られるものと推定される。
こうして得られた多孔性を示すピッチ成形体を、次いで不融化処理、すなわち酸ィ匕 剤を用いた、好ましくは 150°C〜400°Cまでの温度での酸ィ匕処理により、熱に対して 不融の多孔性不融性ピッチ成形体とする。酸化剤としては O、あるいはこれらを空気
2
又は窒素等で希釈した混合ガスを用いることができる。
[0036] 本発明の経口投与用吸着剤として用いる表面改質球状活性炭の調製に炭素源と してピッチを用いる場合、芳香族添加剤の量、種類、ピッチ内での析出条件を制御 することにより、細孔容積を制御することができる。
また、金属含有球状炭素を賦活することによつても、細孔容積を制御することができ る。例えば、細孔直径 7. 5〜15000nmの細孔容積力 . 25〜: L OmLZgである表 面改質球状活性炭を以下の方法で調製することができる。
[0037] 金属含有球状炭素の調製方法としては、例えば、 (1)ピッチへの添加、 (2)多孔性 ピッチへの添着、(3)多孔性不融ピッチへの添着、(4)多孔性不融ピッチを加熱処理 した球状炭素への添着、又は(5)賦活処理を施した球状活性炭への添着等の方法 を挙げることができる。金属化合物の添加及び添着は、金属化合物を溶剤により溶 解して金属化合物溶液とした後、炭素前駆体へ添加及び添着した後に溶媒を加熱 蒸発により除去し、金属含有ピッチ、金属含有球状多孔性ピッチ、金属含有球状多 孔性不融化ピッチ、又は金属含有球状活性炭などを得ることができる。ピッチへの金 属化合物の添加及び球状多孔性ピッチへの金属化合物の添着の場合、上記方法に より金属含有球状多孔性不融化ピッチとした後、炭素と反応性を有する気流、例えば スチーム又は炭酸ガス、あるいはそれらのガスを主成分とする混合ガス中、 800〜10 00°Cの温度で賦活処理することで、多孔性の金属含有球状活性炭とした後、これを 酸洗浄により金属を除去することにより、前記の球状活性炭を得ることができる。また 、金属化合物の添着を球状活性炭に対して行う場合、金属化合物を球状活性炭に 添着した後、再度賦活操作を行い、更にこれを酸洗浄により金属を除去することによ り、前記の球状活性炭を得ることができる。
[0038] 前記金属含有球状炭素の調製に用いる金属としては、水蒸気賦活において触媒 効果を示す金属であればいずれの金属も使用することができ、特に好ましくは、コバ ルト、鉄、又はニッケルなどの遷移金属、イットリウムなどの希土類金属、又はそれら の化合物、更にはそれらの化合物塩のいずれも使用することができる。金属化合物 又は化合物塩としては、例えば、該金属元素を含む水酸化物、塩化物、硝酸塩、又 は硫酸塩などの無機化合物、ァセチルアセトン塩、又は酢酸塩などの有機塩、ある いは有機無機複合塩を使用することができる。炭素に導入する金属量は、賦活前の 炭素質物質における金属原子濃度が、 0. 001〜10重量%の範囲となるよう導入す ることが好ましぐ更に好ましくは 0. 001〜5重量%である。
[0039] 前記洗浄処理は、経口投与用である表面改質球状活性炭の安全上十分な純度を 確保するために行うものであり、洗浄方法は、例えば、水又は塩酸、硝酸、硫酸、又 はフッ化水素酸などの酸性溶液による洗浄により、金属分を除去する必要がある。洗 浄後の球状活性炭中の金属含有量は、好ましくは 150ppm以下、より好ましくは 100 ppm以下、特に好ましくは 50ppm以下である。
[0040] 出発材料として用いる前記の熱不融性榭脂は、球状体を成形することが可能な材 料であり、 500°C以下の熱処理においては溶融又は軟ィ匕せずに、形状変形も起こさ ないことが重要である。また、熱溶融性榭脂も、酸化処理などのいわゆる不融化処理 により、溶融酸ィ匕を回避することのできる状態に変性して力 好適に使用することが できる。
出発材料として用いる前記の熱不融性榭脂としては、熱処理による炭素化収率が 高いことが望ましい。炭素化収率が低いと、球状活性炭としての強度が弱くなる。また 、不必要な細孔が形成されるため、球状活性炭の嵩密度が低下して、体積あたりの 比表面積が低下するので、投与体積が増加し、経口投与が困難になるという問題を 引き起こす。従って、熱不融性榭脂の炭素化収率は高いほど好ましぐ非酸ィ匕性ガス 雰囲気中 800°Cでの熱処理による収率の好ましい値は 30重量%以上であり、更に 好ましくは 35重量%以上である。
[0041] 出発材料として用いる前記の熱不融性榭脂としては、除去すべき毒性物質に対す る吸着能が高 、経口投与用吸着剤を製造することができる点でイオン交換樹脂が好 ましい。イオン交換榭脂は、一般的に、ジビュルベンゼンと、スチレン、アタリ口-トリ ル、アクリル酸、又はメタクリル酸との共重合体 (すなわち、熱溶融性榭脂である架橋 ビニル榭脂)からなり、基本的には三次元網目骨格をもつ共重合体母体に、イオン交 換基が結合した構造を有する。イオン交換榭脂は、イオン交換基の種類により、スル ホン酸基を有する強酸性イオン交換榭脂、カルボン酸基又はスルホン酸基を有する 弱酸性イオン交換榭脂、第四級アンモ-ゥム塩を有する強塩基性イオン交換榭脂、 第一級又は第三級ァミンを有する弱塩基性イオン交換樹脂に大別され、このほか特 殊な榭脂として、酸及び塩基両方のイオン交換基を有する ヽゎゆるハイブリッド型ィ オン交換樹脂があり、本発明においては、これらのすべてのイオン交換榭脂を原料と して使用することができる。
[0042] 炭素源として熱不融性榭脂 (特には、イオン交換榭脂)を用いて、前記の方法によ つて賦活処理を実施すると、細孔直径 7. 5〜15000nmの細孔容積が 0. 25mL/g 〜 1. OmL/gである球状活性炭を得ることができる。
[0043] また、出発材料としては、前記の通り、ピッチを用いることもできる。出発材料として 用いるピッチとしては、熱処理による炭素化収率が高いことが望ましい。炭素化収率 が低いと、球状活性炭としての強度が弱くなる。また、不必要な細孔が形成されるた め、球状活性炭の嵩密度が低下して、体積あたりの比表面積が低下するので、投与 体積が増加し、経口投与が困難になるという問題を引き起こす。従って、ピッチの炭 素化収率は高いほど好ましぐ非酸ィ匕性ガス雰囲気中 800°Cでの熱処理による収率 の好ましい値は 50重量%以上、更に好ましくは 60重量%以上である。
[0044] 熱溶融性榭脂である架橋ビニル榭脂は、非酸ィ匕性ガス雰囲気中での熱処理により 軟化、溶融して炭素化収率が 10%に満たないが、不融化処理として酸素を含有する 雰囲気にて、 150°C〜400°Cで酸ィ匕処理を行うことにより軟化、溶融することなぐ 30 %以上の高い炭素化収率で球状の炭素質材料を得るができ、これを前記の熱不融 性榭脂の場合と同様にして賦活処理を行うことにより球状活性炭を得ることができる。
[0045] 出発原料として用いる前記の架橋ビニル榭脂は、例えば、乳化重合、塊状重合、 若しくは溶液重合によって得られる球状ポリマー、又は好ましくは懸濁重合によって 得られる球状ポリマーを用いることができる。直径 50 m以上の球状の架橋ビニル榭 脂を均一に不融化するには、架橋ビニル榭脂に予め細孔形成を行うことが不可欠で ある。榭脂の細孔形成は、重合時にポロゲンを添加することにより可能となる。架橋ビ -ル榭脂を均一に不融化するために必要な、架橋ビュル榭脂の表面積は 10m2Zg 以上が好ましぐ更に好ましくは 50m2Zg以上である。
例えば、架橋ビュル榭脂を懸濁重合によって調製する場合には、ビニル系モノマ 一、架橋剤、ポロゲン及び重合開始剤を含む有機相を、分散安定剤を含有する水系 分散媒体中に添加し、攪拌混合により水相中に懸濁された多数の有機液滴を形成し た後、加熱して有機液滴中のモノマーを重合させることにより、球状の架橋ビニル榭 脂を調製することができる。
[0046] ビュル系モノマーとしては、球形に成型することができる任意のビュル系モノマーを 用いることができ、例えば、芳香族ビニル系モノマー、例えば、スチレン、あるいはビ -ル基水素やフエ-ル基水素が置換されたスチレン誘導体、ある 、はフエ-ル基の かわりに複素環式ある 、は多環式ィ匕合物がビニル基に結合したィ匕合物などを用いる ことができる。芳香族ビュル系モノマーとしては、より具体的には、 α—あるいは j8— メチノレスチレン、 α—あるいは 13ーェチルスチレン、メトキシスチレン、フエニノレスチレ ン、あるいはクロロスチレンなど、あるいは、 ο—、 m—、あるいは p—メチルスチレン、 ェチルスチレン、メトキシスチレン、メチルシリルスチレン、ヒドキロシスチレン、クロロス チレン、シァノスチレン、ニトロスチレン、アミノスチレン、カノレボキシスチレン、あるい はスルホキシスチレン、スチレンスルホン酸ソーダなど、あるいは、ビニルピリジン、ビ 二ルチオフェン、ビニルピロリドン、ビニルナフタレン、ビニルアントラセン、又はビニル ビフエ-ル等を挙げることができる。また、脂肪族ビニル系モノマーも使用することが でき、具体的には、例えば、エチレン、プロピレン、イソブチレン、ジイソブチレン、塩 化ビュル、アクリル酸エステル、メタクリル酸エステル、酢酸ビュルなどのビュルエステ ル類、ビュルメチルケトン、ビュルェチルケトンなどのビ-ルケトン類、ァクロレイン、メ タァクロレインなどのビュルアルデヒド類、あるいは、ビュルメチルエーテル、又はビ- ルェチルエーテルなどのビュルエーテル類、アクリロニトリル、ェチルアクリロニトリル 、ジフヱ-ルアクリロニトリル、クロ口アクリロニトリルなどのビュル-トリル類を挙げること ができる。
[0047] また、架橋剤としては、前記のビュル系モノマーの架橋化に用いることができる任意 の架橋剤を用いることができ、例えば、ジビュルベンゼン、ジビュルピリジン、ジビ- ルトルエン、ジビ-ルナフタレン、ジァリルフタラート、エチレングリコールジアタリラー ト、エチレングリコールジメチラート、ジビュルキシレン、ジビュルェチルベンゼン、ジ ビュルスルホン、グリコール又はグリセロールのポリビュル又はポリアリルエーテル類 、ペンタエリトリトールのポリビュル又はポリアリルエーテル類、グリコールのモノ又は ジチォ誘導体のポリビュル又はポリアリルエーテル類、あるいはレゾルシノールのポリ ビュル又はポリアリルエーテル類、ジビ-ルケトン、ジビニルスルフイド、ァリルァクリラ ート、ジァリルマレアート、ジァリルフマラート、ジァリルスクシナート、ジァリルカルボナ ート、ジァリルマロナート、ジァリルォキサラート、ジァリルアジパート、ジァリルセバサ ート、トリアリルトリカルバリラート、トリアリルアコ-タート、トリアリルシトラート、トリアリル ホスフアート、 N, N, 一メチレンジアクリルアミド、 1, 2—ジ(α—メチルメチレンスルホ ンアミド)エチレン、トリビニルベンゼン、トリビニルナフタレン、ポリビニルアントラセン、 あるいはトリビニルシクロへキサンを用いることができる。特に好ま 、架橋剤の例に 含まれるものは、ポリビニル芳香族炭化水素(例えば、ジビュルベンゼン)、グリコー ルトリメタタリラート (例えば、エチレングリコールジメタタリラート)、又はポリビュル炭化 水素(例えば、トリビュルシクロへキサン)である。ジビュルベンゼンは、その熱分解特 性が優れているので、最も好ましい。
[0048] 適当なポロゲンとしては、炭素原子数 4〜10のアル力ノール(例えば、 η—ブタノ一 ル、 sec—ブタノール、 2—ェチルへキサノール、デカノール、又は、 4ーメチルー 2— ペンタノール)、炭素原子数が少なくとも 7のアルキルエステル(例えば、 n—へキシル ァセタート、 2—ェチルへキシルァセタート、メチルォレアート、ジブチルセバサート、 ジブチルアジパート、又はジブチルカルボナート)、炭素原子数 4〜 10のアルキルケ トン(例えば、ジブチルケトン又はメチルイソブチルケトン)、又はアルキルカルボン酸 (例えば、ヘプタン酸)、芳香族炭化水素(例えば、トルエン、キシレン、又はベンゼン )、高級飽和脂肪族炭化水素(例えば、へキサン、ヘプタン、又はイソオクタン)、ある いは環式脂肪族炭化水素 (例えば、シクロへキサン)を挙げることができる。
[0049] 重合開始剤としては、特に限定されず、この分野で一般に使用されているものを使 用することができるが、重合性単量体に可溶性である油溶性重合開始剤が好ま ヽ 。重合開始剤としては、例えば、過酸ィ匕ジアルキル、過酸化ジァシル、パーォキシェ ステル、パーォキシジカーボネート、又はァゾィ匕合物を挙げることができる。より具体 的には、例えば、メチルェチルパーオキサイド、ジー t ブチルパーオキサイド、ジクミ ルパーオキサイドなどの過酸化ジアルキル;イソブチルパーオキサイド、ベンゾィルパ 一オキサイド、 2, 4ージクロ口ベンゾィルパーオキサイド、 3, 5, 5 トリメチルへキサ ノィルパーオキサイドなどの過酸化ジァシル; t ブチルパーォキシビバレート、 t一へ キシルバーォキシビバレート、 t ブチルパーォキシネオデカノエート、 t一へキシル パーォキシネオデカノエート、 1ーシクロへキシルー 1 メチルェチルパーォキシネオ デカノエート、 1, 1, 3, 3—テトラメチルブチルパーォキシネオデカノエート、クミルパ 一ォキシネオデカノエート、 ( α , α—ビス ネオデカノィルバーオキシ)ジイソプロピ ルベンゼンなどのパーォキシエステル;ビス(4—tーブチルシクロへキシル)パーォキ シジカーボネート、ジー n プロピルーォキシジカーボネート、ジーイソプロピルパー ォキシジカーボネート、ジ(2—ェチルェチルパーォキシ)ジカーボネート、ジーメトキ シブチルバ一才キシジカーボネート、ジ(3—メチルー 3—メトキシブチルバ一才キシ) ジカーボネートなどのパーォキシジカーボネート; 2, 2'ーァゾビスイソブチ口-トリル 、 2, 2'—ァゾビス(4—メトキシ一 2, 4 ジメチルバレ口-トリル、 2, 2'—ァゾビス(2 , 4 ジメチルバレ口-トリル)、 1, 1 '—ァゾビス(1—シクロへキサンカルボ-トリル) などのァゾィ匕合物;などを挙げることができる。
[0050] 前記の熱溶融性榭脂又は熱不融性榭脂を用いて本発明による表面改質球状活性 炭を調製する場合には、表面改質球状活性炭の物性 (例えば、平均粒子径、細孔容 積、粒度分布、又は比表面積など)を、種々の方法で制御することができる。例えば、 榭脂の平均粒子径及び粒度分布は、水相中の液滴の大きさに依存し、液滴の大きさ は懸濁剤の量、攪拌の回転数、攪拌羽根の形状、あるいは水相中のモノマー比(水 の量とモノマー量の比)により制御することができる。例えば、懸濁剤の量を多くすると 液滴を小さくすることができ、攪拌の回転数を大きくすると、液滴を小さくすることがで き、更に、水相中のモノマー量を少なくすると液滴の合一化を制御することができるだ けでなぐ重合熱の除熱が容易になるなどの観点で好ましいが、モノマー比が少なす ぎると、 1バッチ当たりのモノマー量が少なくなるため、得られる合成樹脂量が減少し
、生産性の観点からは好ましくない。
また、細孔容積と比表面積は、制御する細孔直径が lOnm以上の場合には、主に ポロゲンの量及び種類によって制御することができ、制御する細孔直径が lOnm以 下の場合には、水蒸気による賦活条件により制御することができる。更に、それ以外 に、表面改質球状活性炭としての微細組織は、榭脂の種類、架橋剤の種類と量、不 融化条件、及び Z又は賦活温度などにより、制御することができる。
[0051] こうして得られた所望の細孔を有する球状活性炭を、酸素含量 0. 1〜50容量%、 好ましくは 1〜30容量%、特に好ましくは 3〜20容量%の雰囲気の下、 300〜800 。C、好ましくは 320〜600°Cの温度で酸化処理し、更に、 800〜1200°C、好ましくは 800〜1000°Cの温度下、非酸化性ガス雰囲気下で還元処理を行うことにより、本発 明の表面改質球状活性炭を得ることができる。特定の酸素含有の雰囲気は純粋な酸 素、酸ィ匕窒素又は空気等を酸素源として用いることができる。また、炭素に対して不 活性な雰囲気とは、窒素、アルゴン、又はヘリウム等単独、又はそれらの混合系を意 味する。ここで、表面改質球状活性炭とは、前記の球状活性炭を、前記の酸化処理 及び還元処理して得られる多孔質体であり、球状活性炭の表面に酸性点と塩基性点 とをバランスよく付加することにより上部小腸管内の有毒物質の吸着特性を向上させ たものである。例えば、前記球状活性炭を、酸化処理及び還元処理することにより、 吸着されるべき毒性物質に対する特異性を向上することができる。
[0052] 本発明による経口投与用吸着剤として用いる表面改質球状活性炭は、 BET法によ り求められる比表面積(以下「SSA」と省略することがある)が 700m2Zg以上である。 SSAが 700m2Zgより小さ 、表面改質球状活性炭では、毒性物質の吸着性能が低 くなるので好ましくない。 SSAは、好ましくは 1300m2/g以上、特に好ましくは 1650 m2Zg以上である。 SSAの上限は特に限定されるものではないが、嵩密度及び強度 の観点から、 SSAは、 3000m2Zg以下であることが好ましい。
[0053] 本発明による経口投与用吸着剤として用いる表面改質球状活性炭における細孔 容積は、特に限定されない。例えば、水銀圧入法による細孔直径 20〜15000nmの 細孔容積は、 0. 01〜lmLZgであることが好ましぐ更に好ましい細孔容積は 0. 04 mLZgより大きく lmLZg以下である。
[0054] 本発明による経口投与用吸着剤として用いる表面改質球状活性炭における圧潰 強力は、好ましくは 10NZ粒以上、更に好ましくは 25NZ粒以上、特に好ましくは 30 NZ粒以上である。上限は特に限定されないが、例えば、 80NZ粒程度で充分であ る。圧潰強力が 10NZ粒未満になると、取り扱いや経口時の嚙み込みなどによって 砕けて粉末になる可能性が高くなるので好ましくない。すなわち、粉末の活性炭を経 口投与すると通過障害を起こしやすいことが知れており、球状の形態を保持すること が好ましい。
[0055] 本発明による経口投与用吸着剤として用いる表面改質球状活性炭では、官能基の 構成において、全酸性基が 0. 30〜: L 20meqZgであり、全塩基性基が 0. 20-0. 9meqZgである。官能基の構成において、全酸性基が 0. 30〜: L 20meqZgであり 、全塩基性基が 0. 20〜0. 9meqZgの条件を満足しない表面改質球状活性炭では 、前述した有毒物質の吸着能が低くなるので好ましくない。官能基の構成において、 全酸性基は 0. 30-1. OOmeqZgであることが好ましぐ全塩基性基は 0. 30-0. 7 OmeqZgであることが好まし 、。
[0056] 本発明による経口投与用吸着剤として用いる表面改質球状活性炭が有する各物 性値、すなわち、平均粒子径、嵩密度、比表面積、細孔容積、粒度分布、圧搾強力 、全酸性基、及び全塩基性基は、以下の方法によって測定する。
(1)平均粒子径 (Dv50)
レーザー回折式粒度分布測定装置〔 (株)島津製作所: SALAD— 3000S〕を用い
、体積基準の粒度累積線図を作成し、粒度累積率 50%における粒子径を平均粒子 径(Dv50)とした。
[0057] (2)嵩密度
JIS K 1474— 5. 7. 2の充てん密度測定法に準じ、測定を行った。 [0058] (3)比表面積 (BET法による比表面積の計算法)
ガス吸着法による比表面積測定器 (例えば、 MICROMERITICS社製「ASAP20 10」)を用いて、球状活性炭試料のガス吸着量を測定し、下記の式により比表面積を 計算することができる。具体的には、試料である球状活性炭を試料管に充填し、 300 °Cで減圧乾燥した後、乾燥後の試料重量を測定する。次に、試料管を— 196°Cに冷 却し、試料管に窒素を導入し球状活性炭試料に窒素を吸着させ、窒素分圧と吸着量 の関係 (吸着等温線)を測定する。
窒素の相対圧を p、その時の吸着量を v(cm3Zg STP)とし、 BETプロットを行う。 すなわち、縦軸に ρ/ (ν(1— p) )、横軸に pを取り、 ρ力 SO. 02〜0. 20の範囲でプロッ トし、そのときの傾き b
Figure imgf000022_0001
から、比表面積 S
Figure imgf000022_0002
は下記の式により求められる。
[数 3] n MAx {6.02 1023)
~ 22414 x l018 x (b + c)
ここで、 MAは窒素分子の断面積で 0. 162nm2を用いた。
[0059] (4)比表面積 (ラングミュアの式による比表面積の計算法)
ガス吸着法による比表面積測定器 (例えば、 MICROMERITICS社製「ASAP20 10」)を用いて、表面改質球状活性炭試料のガス吸着量を測定し、ラングミュアの式 により比表面積を計算することができる。具体的には、試料である表面改質球状活性 炭を試料管に充填し、 300°Cで減圧乾燥した後、乾燥後の試料重量を測定する。次 に、試料管を— 196°Cに冷却し、試料管に窒素を導入し、表面改質球状活性炭試 料に窒素を吸着させ、窒素分圧と吸着量の関係 (吸着等温線)を測定する。
窒素の相対圧を p、その時の吸着量を v(cm3Zg STP)とし、ラングミュアプロットを 行う。すなわち、縦軸に ρ/ν、横軸に ρを取り、 ρ力 SO. 02〜0. 20の範囲でプロットし 、そのときの傾きを b (g/cm3)とすると比表面積 S
Figure imgf000022_0003
は下記の式により 求められる。
[数 4] s _ MAx (6.02 x lO23)
22414x l0]8 x b
ここで、 MAは窒素分子の断面積で O. 162nm2を用いた。
[0060] (5)細孔分布(Horverth— Kawazoeの計算式)
ガス吸着法による比表面積測定装置 (ASAP2010: Micromeritics社製)を用い て、液体窒素温度(一 196°C)で、窒素分圧と表面改質球状活性炭試料の吸着量の 関係 (吸着等温線)を測定した。得られた吸着等温線より、前記比表面積測定装置( ASAP2010)付属の解析ソフトを用い、 Horverth— Kawazoeの計算式〔Horvath, G. and Kawazoe, K., J. Chem. Eng. Japan 16 (6),470 (1983)〕により細孔分布を計算 した。細孔の形状をスリット幾何学で解析したものがオリジナルの Horverth— Kawa zoeの計算法であるが、炭素の構造が難黒鉛ィ匕性炭素で三次元的に乱れた構造で あるため、ここではシリンダー幾何学〔Saito,
A. and Foley, H. C, AlChE Journal 37 (3), 429 (1991)〕による計算を選択し計算した 計算に使用した各種パラメータを以下に示す。
相互作用パラメータ(Interaction Parameter): 1.56 X 10— 43
4
ergs · cm
吸着ガスの分子径(Diameter of Adsorptive Molecule) : 0.3000nm
サンプルの原子直径(Diameter of Sample Molecule) : 0.3400nm
密度変換係数(Density Conversion Factor) : 0.001547 (cm3液体/ cm TP)
[0061] (6)水銀圧入法による細孔容積
水銀ポロシメーター(例えば、 MICROMERITICS社製「AUTOPORE 9200」) を用いて細孔容積を測定することができる。試料である表面改質球状活性炭を試料 容器に入れ、 2. 67Pa以下の圧力で 30分間脱気する。次いで、水銀を試料容器内 に導入し、徐々に加圧して水銀を表面改質球状活性炭試料の細孔へ圧入する(最 高圧力 =414MPa)。このときの圧力と水銀の圧入量との関係から以下の各計算式 を用いて表面改質球状活性炭試料の細孔容積分布を測定する。 具体的には、細孔直径 21 μ mに相当する圧力(0. 06MPa)力も最高圧力(414M Pa:細孔直径 3nm相当)までに表面改質球状活性炭試料に圧入された水銀の体積 を測定する。細孔直径の算出は、直径 (D)の円筒形の細孔に水銀を圧力(P)で圧 入する場合、水銀の表面張力を「γ」とし、水銀と細孔壁との接触角を「 0」とすると、 表面張力と細孔断面に働く圧力の釣り合いから、次式:
- π Ό γ οοΆ θ = π (D/2) 2 - P
が成り立つ。従って
D= ( -4 y cos Θ ) /Ρ
となる。
本明細書においては、水銀の表面張力を 484dyneZcmとし、水銀と炭素との接 触角を 130度とし、圧力 Pを MPaとし、そして細孔直径 Dを/ z mで表示し、下記式: D= l . 27/P
により圧力 Pと細孔直径 Dの関係を求める。例えば、細孔直径 20〜15000nmの範 囲の細孔容積とは、水銀圧入圧 0. 08MPa力ら 63. 5MPaまでに圧入された水銀の 体積に相当する。
[0062] なお、本発明の経口投与用吸着剤として用いる表面改質球状活性炭は、その粒子 径が非常に小さいので、試料容器内に充填された試料粒子間の空隙も小さくなる。 従って、前記の水銀圧入法による細孔容積の測定操作においては、その粒子間空 隙に水銀が圧入される段階が存在し、その圧入段階では、あた力も細孔直径 8000 〜15000nmの細孔が存在するかのような挙動を示す。本発明の経口投与用吸着剤 として用 ヽる表面改質球状活性炭に、細孔直径 8000〜 15000nmの細孔が存在し ないことは、例えば、電子顕微鏡による観察で確認することができる。従って、本明細 書において「細孔直径 20〜15000nmの範囲の細孔容積」には、前記の粒子間空 隙に圧入される水銀量も含まれる。
[0063] (7)粒度分布
レーザー回折式粒度分布測定装置〔 (株)島津製作所: SALAD— 3000S〕を用い
、個数基準の粒度分布を測定し、測定粒子径区分の代表粒子径0、及びその測定 粒子径区分内の個数 nの値を求め、以下の式により長さ平均粒子径 D、及び重量平 均粒子径 Dを計算する。
4
[数 5]
Figure imgf000025_0001
[数 6] D — Σ ("が)
[0064] (8)圧潰強力
粉体硬度計〔例えば、筒井理化学器械 (株)製の簡易粉体硬度計〕を用いて表面改 質球状活性炭試料 1粒を圧潰するのに必要な力を測定する。具体的には、表面改質 球状活性炭試料 1粒を 2枚の板に挟み (必要に応じて試料粒子を両面テープで固定 し)、加重を加えながら、試料粒子が破壊するときの力を測定する。
[0065] (9)全酸性基
0. 05規定の NaOH溶液 50mL中に、 200メッシュ以下に粉砕した表面改質球状 活性炭試料 lgを添加し、 48時間振とうした後、表面改質球状活性炭試料をろ別し、 中和滴定により求められる NaOHの消費量である。
[0066] (10)全塩基性基
0. 05規定の HC1溶液 50mL中に、 200メッシュ以下に粉砕した表面改質球状活 性炭試料 lgを添加し、 24時間振とうした後、表面改質球状活性炭試料をろ別し、中 和滴定により求められる HC1の消費量である。
[0067] 本発明の経口投与用吸着剤として用いる表面改質球状活性炭は、後述する実施 例において示すように、肝疾患憎悪因子や腎臓病での毒性物質の吸着性に優れて いるので、腎疾患の治療用又は予防用経口投与用吸着剤として用いる力、あるいは 、肝疾患の治療用又は予防用経口投与用吸着剤として用いることができる。
腎疾患としては、例えば、慢性腎不全、急性腎不全、慢性腎盂腎炎、急性腎盂腎 炎、慢性腎炎、急性腎炎症候群、急性進行型腎炎症候群、慢性腎炎症候群、ネフ口 ーゼ症候群、腎硬化症、間質性腎炎、細尿管症、リポイドネフローゼ、糖尿病性腎症 、腎血管性高血圧、若しくは高血圧症候群、あるいは前記の原疾患に伴う続発性腎 疾患、更に、透析前の軽度腎不全を挙げることができ、透析前の軽度腎不全の病態 改善や透析中の病態改善にも用いることができる(「臨床腎臓学」朝倉書店、本田西 男、小磯謙吉、黒川清、 1990年版及び「腎臓病学」医学書院、尾前照雄、藤見惺編 集、 1981年版参照)。
また、肝疾患としては、例えば、劇症肝炎、慢性肝炎、ウィルス性肝炎、アルコール 性肝炎、肝線維症、肝硬変、肝癌、自己免疫性肝炎、薬剤アレルギー性肝障害、原 発性胆汁性肝硬変、振せん、脳症、代謝異常、又は機能異常を挙げることができる。 その他、体内に存在する有害物質による病気、すなわち、精神病等の治療にも用い ることがでさる。
[0068] 従って、本発明による経口投与用吸着剤は、腎臓疾患治療薬として用いる場合に は、前記の表面改質球状活性炭を有効成分として含有する。本発明の経口投与用 吸着剤を腎臓疾患治療薬又は肝臓疾患治療薬として用いる場合、その投与量は、 投与対象がヒトであるかあるいはその他の動物であるかにより、また、年令、個人差、 又は病状などに影響されるので、場合によっては下記範囲外の投与量が適当なこと もあるが、一般にヒトを対象とする場合の経口投与量は 1日当り l〜20gを 3〜4回に 分けて服用し、更に症状によって適宜増減することができる。投与形態は、散剤、顆 粒、錠剤、糖衣錠、カプセル剤、懸濁剤、スティック剤、分包包装体、又は乳剤等で あることができる。カプセル剤として服用する場合は、通常のゼラチンの他に、必要に 応じて腸溶性のカプセルを用いることもできる。錠剤として用いる場合は、体内でもと の微小粒体に解錠されることが必要である。更に他の薬剤であるアルミゲルやケィキ サレートなどの電解質調節剤と配合した複合剤の形態で用いることもできる。
[0069] 平均粒子径が 50〜200/ζ πιであると共に嵩密度が 0. 54gZmL未満である本発 明による表面改質球状活性炭は、従来公知の球状活性炭 (すなわち、平均粒子径 力 0〜200 mの範囲以外及び Z又は嵩密度が 0. 54gZmL以上の球状活性炭 又は表面改質球状活性炭)と混合した混合物の形で、腎疾患治療又は予防剤、ある いは肝疾患治療又は予防剤として使用することができる。あるいは、平均粒子径が 5 0〜200 /ζ mであると共に嵩密度が 0. 54gZmL未満である本発明による表面改質 球状活性炭と、従来公知の球状活性炭 (すなわち、平均粒子径が 50〜200 ;ζ ΐηの 範囲以外及び Z又は嵩密度が 0. 54gZmL以上の球状活性炭又は表面改質球状 活性炭)とを併用して、腎疾患治療又は予防剤、あるいは肝疾患治療又は予防剤と して使用することができる。
実施例
[0070] 以下、実施例によって本発明を具体的に説明する力 これらは本発明の範囲を限 定するものではない。
[0071] 《実施例 1》
脱イオン交換水 220g、及びメチルセルロース 58gを 1Lのセパラブルフラスコに入 れ、これにスチレン 105g、純度 57%ジビュルベンゼン(57%のジビュルベンゼンと 4 3%のェチルビニルベンゼン) 184g、 2, 2,—ァゾビス(2, 4—ジメチルバレロニトリル ) 1. 68g、及びポロゲンとして 1ーブタノール 63gを適宜カ卩えたのち、窒素ガスで系内 を置換し、この二相系を 200rpmで攪拌し、 55°Cに加熱して力もそのまま 20時間保 持した。得られた榭脂を濾過し、ロータリーエバポレーターで乾燥させたのち、減圧 乾燥機にて 1―ブタノールを榭脂から蒸留により除去してから、 90°Cにお 、て 12時 間減圧乾燥させ、平均粒子径 180 mの球状の多孔性合成樹脂を得た。多孔性合 成榭脂の比表面積は約 90m2Zgであった。
得られた球状の多孔性合成樹脂 lOOgを目皿付き反応管に仕込み、縦型管状炉に て不融化処理を行った。不融化条件は、 3LZminで乾燥空気を反応管下部より上 部に向かって流し、 5°CZhで 260°Cまで昇温したのち、 260°Cで 4時間保持すること により球状の多孔性酸化榭脂を得た。球状の多孔性酸化榭脂を窒素雰囲気中 600 °Cで 1時間熱処理したのち、流動床を用い、 64. 5vol%の水蒸気を含む窒素ガス雰 囲気中、 820°Cで 10時間賦活処理を行い、球状活性炭を得た。得られた球状活性 炭を、更に流動床にて、酸素濃度 18. 5vol%の窒素と酸素の混合ガス雰囲気下 47 0°Cで 3時間 15分間酸ィ匕処理し、次に流動床にて窒素ガス雰囲気下 900°Cで 17分 間還元処理を行い、表面改質球状活性炭を得た。得られた表面改質球状活性炭の 特性を表 1及び表 2に示す。 [0072] 《実施例 2》
前記実施例 1において、二相系を 200rpmで攪拌する代わりに、 lOOrpmで攪拌す ること以外は、前記実施例 1の操作を繰り返すことにより、表面改質球状活性炭を得 た。得られた表面改質球状活性炭の特性を表 1及び表 2に示す。
[0073] 《実施例 3》
前記実施例 1において、二相系を 200rpmで攪拌する代わりに、 150rpmで攪拌す ること以外は、前記実施例 1の操作を繰り返すことにより、表面改質球状活性炭を得 た。得られた表面改質球状活性炭の特性を表 1及び表 2に示す。
[0074] 《実施例 4》
前記実施例 1において、二相系を 200rpmで攪拌する代わりに、 300rpmで攪拌す ること以外は、前記実施例 1の操作を繰り返すことにより、表面改質球状活性炭を得 た。得られた表面改質球状活性炭の特性を表 1及び表 2に示す。
[0075] 《比較例 1》
前記実施例 1において、賦活処理時間を 10時間とする代わりに、 6時間とすること 以外は、前記実施例 1の操作を繰り返すことにより、表面改質球状活性炭を得た。得 られた表面改質球状活性炭の特性を表 1及び表 2に示す。
[0076] 《実施例 5》
前記実施例 1において、賦活処理時間を 10時間とする代わりに、 13時間とすること 以外は、前記実施例 1の操作を繰り返すことにより、表面改質球状活性炭を得た。得 られた表面改質球状活性炭の特性を表 1及び表 2に示す。
[0077] 《実施例 6》
軟化点 210°C、キノリン不溶分 1重量%以下、 HZC原子比 0. 63の石油系ピッチ 6 80gと、ナフタレン 320gとを、攪拌翼のついた内容積 3リットルの耐圧容器に仕込み 、 180°Cで溶融混合を行った後、 140〜160°Cに冷却し, 0. 5mmのノズルで押し出 し、紐状成形体を得た。次いで、この紐状成形体を破砕し,篩にて目開き 100 m— 200 m分画を分取し、得られた破砕物を 0. 23重量0 /0のポリビュルアルコール(ケ ン化度 88%)を溶解した水溶液中に投入し、 95°Cで 50分間攪拌分散して球状化し たのち、 40°Cまで 90分で冷却し、ピッチの固化及びナフタレン結晶の析出を行い、 球状ピッチ成形体スラリーを得た。大部分の水をろ過により除いた後、球状ピッチ成 形体の約 6倍重量の n—へキサンでピッチ成形体中のナフタレンを抽出除去した。こ の様にして得た多孔性球状ピッチを、流動床を用いて、加熱空気を通じながら、 235 °Cまで昇温し、 235°Cに 1時間保持して酸ィ匕し、熱に対して不融性の多孔性球状酸 化ピッチを得た。多孔性球状酸化ピッチを、流動床を用い 64. 5vol%の水蒸気を含 む窒素ガス雰囲気中、 900°Cで 174分間賦活処理を行い、球状活性炭を得た。得ら れた球状活性炭を、更に流動床にて、酸素濃度 18. 5vol%の窒素と酸素の混合ガ ス雰囲気下 470°Cで 3時間 15分間酸ィ匕処理し、次に流動床にて窒素ガス雰囲気下 900°Cで 17分間還元処理を行い、表面改質球状活性炭を得た。得られた表面改質 球状活性炭の特性を表 1及び表 2に示す。
[0078] 《比較例 2》
軟化点 210°C、キノリン不溶分 1重量%以下、 HZC原子比 0. 63の石油系ピッチ 6 8kgと、ナフタレン 32kgとを、攪拌翼のついた内容積 300リットルの耐圧容器に仕込 み、 180°Cで溶融混合を行った後、 140〜160°Cに冷却して押し出し、紐状成形体 を得た。次いで、この紐状成形体を直径と長さの比が約 1〜2になるように破砕し、得 られた破砕物を 93°Cに加熱した 0. 23重量0 /0のポリビュルアルコール(ケン化度 88 %)を溶解した水溶液中に投入し、攪拌分散により球状ィ匕したのち、水溶液を水で置 換することにより冷却し 20°Cで 3時間冷却し、ピッチの固化及びナフタレン結晶の析 出を行い、球状ピッチ成形体スラリーを得た。大部分の水をろ過により除いた後、球 状ピッチ成形体の約 6倍重量の n—へキサンでピッチ成形体中のナフタレンを抽出除 去した。この様にして得た多孔性球状ピッチを、流動床を用いて、加熱空気を通じな がら、 235°Cまで昇温し、 235°Cに 1時間保持して酸ィ匕し、熱に対して不融性の多孔 性球状酸ィ匕ピッチを得た。多孔性球状酸化ピッチを、流動床を用い 64. 5vol%の水 蒸気を含む窒素ガス雰囲気中、 820°Cで 400分間賦活処理を行い、球状活性炭を 得た。得られた球状活性炭の特性を表 1及び表 2に示す。
[0079] 《比較例 3》
前記比較例 2で得られた球状活性炭を更に流動床にて、酸素濃度 18. 5vol%の 窒素と酸素の混合ガス雰囲気下 470°Cで 3時間 15分間酸ィ匕処理し、次に流動床に て窒素ガス雰囲気下 900°Cで 17分間還元処理を行 、、表面改質球状活性炭を得た 。得られた表面改質球状活性炭の特性を表 1及び表 2 (並びに表 4)に示す。
[0080] 《比較例 4》
前記実施例 1において、二相系を 200rpmで攪拌する代わりに、 80rpmで攪拌す ること以外は、前記実施例 1の操作を繰り返すことにより、表面改質球状活性炭を得 た。得られた表面改質球状活性炭の特性を表 1及び表 2に示す。
[0081] 《比較例 5》
前記実施例 1にお ヽて、賦活により得られた球状活性炭をロッドミルにて 10秒間粉 砕したのち、酸化、還元すること以外は、前記実施例 1の操作を繰り返すことにより、 表面改質活性炭を得た。得られた表面改質活性炭の特性を表 1及び表 2に示す。
[0082] 《比較例 6》
前記実施例 1において、球状活性炭の酸化'還元処理を行わないこと以外は、前記 実施例 1の操作を繰り返すことにより、球状活性炭を得た。得られた球状活性炭の特 性を表 1及び表 2に示す。
[0083] 《比較例 7》
前記実施例 1にお ヽて、球状活性炭の酸化処理後に還元処理を行わな!/ヽこと以外 は、前記実施例 1の操作を繰り返すことにより、表面改質球状活性炭を得た。得られ た表面改質球状活性炭の特性を表 1及び表 2に示す。
[0084] 《比較例 8》
前記実施例 6において、球状活性炭の酸化'還元処理を行わないこと以外は、前記 実施例 6の操作を繰り返すことにより、表面改質球状活性炭を得た。得られた表面改 質球状活性炭の特性を表 1及び表 2に示す。
[0085] 《比較例 9》
球状のフエノール榭脂 (商品名:マリリン HF500;群栄化学工業株式会社)を、目開 き 250 μ mの篩で篩分して微粉末を除去した後、球状フ ノール榭脂 150gを目皿付 き石英製縦型反応管に入れ、窒素ガス気流下にて 1. 5時間で 350°Cまで昇温し、更 に 900°Cまで 6時間で昇温した後、 900°Cで 1時間保持して球状炭素質材料を得た 。その後、窒素ガス(3NLZmin)と水蒸気(2. 5NLZmin)との混合ガス雰囲気中 にて 900°Cで賦活処理を行った。球状活性炭の充填密度が 0. 5g/mLまで減少し た時点で賦活処理を終了し、球状活性炭を得た。得られた球状活性炭の特性を表 1 及び表 2に示す。
[0086] 《比較例 10》
球状活性炭の充填密度が 0. 63gZmLまで減少した時点で賦活処理を終了したこ と以外は比較例 8と同様の操作を繰り返すことにより、球状活性炭を得た。得られた 球状活性炭の特性を表 1及び表 2に示す。
[0087] 《実施例 7》
脱イオン交換水 3003g、及び 1. 4%のメチルセルロース水溶液 530gを 10Lのステ ンレススチール製重合缶に入れ、これにスチレン 813g、純度 57%ジビュルベンゼン (57%のジビュルベンゼンと 43%のェチルビ-ルベンゼン) 1427g、 2, 2'—ァゾビ ス(2, 4—ジメチルバレロニトリル) 13g、及びポロゲンとして 1—ブタノール 634gを適 宜加えたのち、窒素ガスで系内を置換し、この二相系を 220rpmで攪拌し、 55°Cに 加熱してカゝらそのまま 20時間保持した。得られた榭脂を濾過し、ロータリーエバポレ 一ターで乾燥させたのち、減圧乾燥機にて 1—ブタノールを榭脂から蒸留により除去 してから、 90°Cにおいて 12時間減圧乾燥させ、平均粒子径 200 mの球状の多孔 性合成樹脂を得た。多孔性合成樹脂の比表面積は約 100m2/gであった。
得られた球状の多孔性合成樹脂 100gを目皿付き反応管に仕込み、縦型管状炉に て不融化処理を行った。不融化条件は、 3LZminで乾燥空気を反応管下部より上 部に向かって流し、 5°CZhで 260°Cまで昇温したのち、 260°Cで 4時間保持すること により球状の多孔性酸化榭脂を得た。球状の多孔性酸化榭脂を窒素雰囲気中 600 °Cで 1時間熱処理したのち、流動床を用い、 64. 5vol%の水蒸気を含む窒素ガス雰 囲気中、 820°Cで 11. 5時間賦活処理を行い、球状活性炭を得た。得られた球状活 性炭を、更に流動床にて、酸素濃度 18. 5vol%の窒素と酸素の混合ガス雰囲気下 4 70°Cで 3時間 15分間酸ィ匕処理し、次に流動床にて窒素ガス雰囲気下 900°Cで 17 分間還元処理を行い、表面改質球状活性炭を得た。得られた表面改質球状活性炭 の特性を表 3及び表 4に示す。
[0088] 《実施例 8》 前記実施例 7において、 820°Cで 11. 5時間賦活処理を行う代わりに、 9. 5時間賦 活処理を行うこと以外は、前記実施例 7の操作を繰り返すことにより、表面改質球状 活性炭を得た。得られた表面改質球状活性炭の特性を表 3及び表 4に示す。
[0089] 《実施例 9》
前記実施例 7において、 820°Cで 11. 5時間賦活処理を行う代わりに、 8時間賦活 処理を行うこと以外は、前記実施例 7の操作を繰り返すことにより、表面改質球状活 性炭を得た。得られた表面改質球状活性炭の特性を表 3及び表 4に示す。
[0090] 《実施例 10》
前記実施例 8において、二相系を 200rpmで攪拌する代わりに、 150rpmで攪拌す ること以外は、前記実施例 8の操作を繰り返すことにより、表面改質球状活性炭を得 た。得られた表面改質球状活性炭の特性を表 3及び表 4に示す。
[0091] 《実施例 11》
軟化点 210°C、キノリン不溶分 1重量%以下、 HZC原子比 0. 63の石油系ピッチ 6 80gと、ナフタレン 320gとを、攪拌翼のついた内容積 3Lの耐圧容器に仕込み、 180 °Cで溶融混合を行った後、 140〜160°C〖こ冷却し、 0. 5mmのノズルで押し出し、紐 状成形体を得た。次 、で、この紐状成形体を破砕し、目開き 125 μ m〜212 mの 篩で分画を分取し、得られた破砕物を 0. 23重量%のポリビニルアルコール (ケンィ匕 度 88%)を溶解した水溶液中に投入し、 95°Cで 50分間攪拌分散して球状化したの ち、 40°Cまで 90分間で冷却し、ピッチの固化及びナフタレン結晶の析出を行い、球 状ピッチ成形体スラリーを得た。大部分の水をろ過により除いた後、球状ピッチ成形 体の約 6倍重量の n—へキサンでピッチ成形体中のナフタレンを抽出除去した。この 様にして得た多孔性球状ピッチを、流動床を用いて、加熱空気を通じながら、 235°C まで昇温し、 235°Cに 1時間保持して酸ィ匕し、熱に対して不融性の多孔性球状酸ィ匕 ピッチを得た。多孔性球状酸化ピッチを、流動床を用い 64. 5vol%の水蒸気を含む 窒素ガス雰囲気中、 900°Cで 174分間賦活処理を行い、球状活性炭を得た。得られ た球状活性炭を、更に流動床にて、酸素濃度 18. 5vol%の窒素と酸素の混合ガス 雰囲気下 470°Cで 3時間 15分間酸ィ匕処理し、次に流動床にて窒素ガス雰囲気下 90 0°Cで 17分間還元処理を行い、表面改質球状活性炭を得た。得られた表面改質球 状活性炭の特性を表 3及び表 4に示す
[0092] 《比較例 11》
前記実施例 7において、 820°Cで 11. 5時間賦活処理を行う代わりに、 6. 5時間賦 活処理を行うこと以外は、前記実施例 7の操作を繰り返すことにより、表面改質球状 活性炭を得た。得られた表面改質球状活性炭の特性を表 3及び表 4に示す。
[0093] 《比較例 12》
前記実施例 7において、 820°Cで 11. 5時間賦活処理を行う代わりに、 5時間賦活 処理を行うこと以外は、前記実施例 7の操作を繰り返すことにより、表面改質球状活 性炭を得た。得られた表面改質球状活性炭の特性を表 3及び表 4に示す。
[0094] 《比較例 13》
前記実施例 7にお ヽて、球状活性炭の酸化処理及び還元処理を行わな!/ヽこと以外 は、前記実施例 7の操作を繰り返すことにより、球状活性炭を得た。得られた球状活 性炭の特性を表 3及び表 4に示す。
[0095] 《比較例 14》
前記実施例 7において、球状活性炭の還元処理を行わないこと以外は、前記実施 例 7の操作を繰り返すことにより、表面改質球状活性炭を得た。得られた表面改質球 状活性炭の特性を表 3及び表 4に示す。
[0096] 《比較例 15》
前記比較例 12において、二相系を 200rpmで攪拌する代わりに、 75rpmで攪拌す ること以外は、前記比較例 12の操作を繰り返すことにより、表面改質球状活性炭を得 た。得られた表面改質球状活性炭の特性を表 3及び表 4に示す。
[0097] 《比較例 16》
球状のフ ノール榭脂 (商品名:マリリン HF500;群栄化学工業株式会社)を篩分 して微粉末を除去した後、球状フエノール榭脂 150gを目皿付き石英製縦型反応管 に入れ、窒素ガス気流下、 700°Cで 1時間保持し、放冷したのち、脱イオン交換水で 水洗 *乾燥し、球状炭素質材料とした。球状炭素質材料を、流動床を用い 64. 5vol %の水蒸気を含む窒素ガス雰囲気中、 820°Cで 6時間賦活処理を行い、球状活性 炭を得た。得られた球状活性炭の特性を表 3及び表 4に示す。 [0098] 〔経口吸着剤の評価方法〕
以下の各表に示す各種の特性は、以下の方法で測定した。
(1)平均粒子径
前記のレーザー回折式粒度分布測定装置を用いて、測定した。結果を表 1及び表 3に示す。
[0099] (2)細孔容積
前記実施例及び比較例で得られた各球状活性炭及び表面改質球状活性炭の細 孔容積は、前記の水銀圧入法により求めた。結果を表 1及び表 3に示す。
[0100] (3) BET法及びラングミュア(Langmuir)法による比表面積
前記の BET法及びラングミュア(Langmuir)法によって測定した。結果を表 1及び表 3に示す。
[0101] (4)嵩密度
50mLのメスシリンダに試料を 50mLになるまで充填し、 50回タップした後で、試料 重量を体積で除算して嵩密度とした。結果を表 1及び表 3に示す。なお、この方法に よって得られた測定値は、 JIS K 1474- 5. 7. 2の充てん密度測定法によって得 られた測定値と、表 1及び表 3に示す有効数字範囲内で全く差異がな力つた。
[0102] (5)細孔分布(Horverth— Kawazoeの計算式)
前記の通り、ガス吸着法による比表面積測定装置 (ASAP2010 : Micromeritics 社製)を用いて、液体窒素温度(一 196°C)で、窒素分圧と表面改質球状活性炭試 料の吸着量の関係 (吸着等温線)を測定した。
[0103] (6)圧潰強力
粉体硬度計〔例えば、筒井理化学器械 (株)製の簡易粉体硬度計〕を用いて球状活 性炭試料 1粒を圧潰するのに必要な力を測定する。具体的には、球状活性炭試料 1 粒を 2枚の板に挟み (必要に応じて試料粒子を両面テープで固定し)、加重を加えな がら、試料粒子が破壊するときの力を測定する。圧潰強力は、粒子径が大きいほど 強くなるため、平均粒子径 Dv50が 200 μ m以上の粒子に関しては、目開き 425 μ m の篩目詰まり品を使用した。また、平均粒子径が 200 m以下のその他の試料につ いては、粒子径が 75 m〜180 mになるように篩い分けし、圧潰強力を測定した。 測定は 20回実施し、その平均値を試料の圧潰強力とした。結果を表 2及び表 4に示 す。
[0104] (7)全酸性基及び全塩基性基
0. 05規定の NaOH溶液 50mL (全酸性基)又は HC1溶液 50mL (全塩基性基)中 に、 200メッシュ以下に粉砕した表面改質球状活性炭試料 lgを添加し、 48時間振と うした後、表面改質球状活性炭試料をろ別し、中和滴定により、 NaOHの消費量 (全 酸性基)又は HC1の消費量 (全塩基性基)を求めた。結果を表 2及び表 4に示す。
[0105] (8) a アミラーゼ吸着試験
前記実施例 1〜 11及び比較例 1〜 16で得られた各表面改質球状活性炭及び活 性炭試料を乾燥した後、乾燥試料 0. 500gを正確に量って共栓付三角フラスコにと る。一方、 α—アミラーゼ (液ィ匕型) 0. 100gを正確に秤量して、 ρΗ7. 4のリン酸塩緩 衝液をカ卩えて溶かし、正確に lOOOmLとした液 (原液) 50mLを、前記の共栓付三角 フラスコに正確に加え、 37 ± 1°Cで 3時間振り混ぜる。フラスコの内容物をろ孔 0. 65 /z mのメンブランフィルターで吸引ろ過し、はじめのろ液約 20mLを除き、次のろ液約 10mLを取って試料溶液とする。
一方、 pH7. 4のリン酸塩緩衝液を用いて同じ操作を行い、そのろ液を補正液とす る。試料溶液及び補正液につき、 pH7. 4のリン酸塩緩衝液を対照とし、吸光度測定 法により試験を行い、波長 282nmにおける吸光度を測定する。試料溶液の吸光度と 補正液の吸光度の差を試験吸光度とする。
[0106] 検量線は at—アミラーゼ原液を OmL、 25mL、 50mL、 75mL、及び lOOmLの量 でメスフラスコに正確に分取し、 pH7. 4リン酸塩緩衝液で lOOmLにメスアップして波 長 282nmにおける吸光度を測定することにより作成した。
試験吸光度と検量線より、 a—アミラーゼ吸着量 (mgZdL)を計算した。結果を表 2及び表 4に示す。
[0107] (9) DL— βーァミノイソ酪酸吸着量試験(平均粒子径との関係)
前記実施例 1〜 11及び比較例 1〜 16で得られた各表面改質球状活性炭及び活 性炭に関して、 DL - βーァミノイソ酪酸吸着試験を以下の方法で実施した。
球状活性炭試料又は表面改質球状活性炭試料を乾燥した後、乾燥試料 0. 500g を正確に量って共栓付三角フラスコにとった。一方、 DL— |8—ァミノイソ酪酸 0. 100 gを正確に量り、 pH7. 4のリン酸塩緩衝液をカ卩えて溶かし、正確に lOOOmLとした液 (原液) 50mLを、前記の共栓付三角フラスコに正確に加え、 37± 1°Cで 3時間振り 混ぜた。フラスコの内容物を、ろ孔 0. 65 /z mのメンブランフィルターで吸引ろ過し、 はじめのろ液約 20mLを除き、次のろ液約 10mLを取って試料溶液とした。
試料溶液 0. lmLを試験管に正確に取り、 pH8. 0のリン酸塩緩衝液 5mLを正確に 加えて混合した後、フルォレスカミン 0. 100gを非水滴定用アセトン lOOmLに溶かし た液 lmLを正確に加えて混合した後で、 15分間静置した。この液につき、蛍光光度 法により試験を行い、励起波長 390nm、及び蛍光波長 475nmで蛍光強度を測定し た。
[0108] DL- β—ァミノイソ酪酸原液を OmL、 15mL、 50mL、 75mL、及び lOOmLの量 と pH7. 4リン酸塩緩衝液とで lOOmLにして攪拌し、ろ過し、ろ液 0. lmLを試験管 に正確に取り、 pH8. 0のリン酸塩緩衝液 5mLを正確に加えて混合した後、フルォレ スカミン 0. 100gを非水滴定用アセトン lOOmLに溶かした液 lmLを正確に加えて混 合した後で、 15分間静置した。これらの液につき、蛍光光度法により試験を行い、励 起波長 390nm、及び蛍光波長 475nmで蛍光強度を測定し、検量線を作成した。最 後に DL— βーァミノイソ酪酸の吸着量 (mgZdL)について上記検量線を用いて計 算し、この値より試料 lg当たりの DL— β—ァミノイソ酪酸の吸着量 (mg/g)を計算 した。結果を表 2及び表 4に示す。
[0109] (10) DL- βーァミノイソ酪酸吸着量の試験 (経時変化)
前項 (7)の「DL— βーァミノイソ酪酸吸着量試験」では、各種活性炭試料と DL— βーァミノイソ酪酸とを接触させて振とうさせる時間を一定時間(3時間)として実験を 行ったが、実施例 実施例 7及び比較例 3で得られた表面改質球状活性炭に関し て、接触振とう時間を変化させた場合の吸着速度の変化を調べた。
DL- β—ァミノイソ酪酸の初期濃度は lOmgZdLとし、接触振とう時間が、 0. 5時 間、 1. 5時間、 3時間、 6時間、 16時間、及び 24時間における DL— βーァミノイソ酪 酸残量を前項 (7)の操作と同様にして調べた。結果を図 1に示す。
[0110] (11)トリブトファンの吸着試験 実施例 7〜11、並びに比較例 3及び比較例 11〜16で得られた各種表面改質球状 活性炭及び活性炭に関して、トリブトファン吸着試験を以下の方法で実施した。 球状活性炭又は表面改質活性炭試料を乾燥させたのち、乾燥試料 0. Olgを秤量 し、共栓付き三角フラスコにいれる。 pH7. 4のリン酸塩緩衝溶液を加えて溶解したト リブトフアン水溶液(トリブトファン濃度 100mgZL) 50mLを前記の共栓付き三角フラ スコに加え、 40°Cにて振とう機を用いて 3時間振とうした。振とうを終えたフラスコの内 容物を濾過し、そのろ液の紫外吸光度(280nm)を測定し、トリブトファン吸着量を算 出した。結果を表 4に示す。
[表 1]
Figure imgf000038_0001
Figure imgf000039_0001
α—アミラーゼ
DL- ァミノイソ酪酸
全酸性基 全塩基性基 圧滇強力 着
吸着残存量
(meq/g) (meq/g) (N/粒) (吸着残存量)
(mg/dL) (mg/dL) 実施例 1 架橋ビニル樹脂 0.59 0.61 >40 4.70 2.09 (7.91) 実施例 2 架橋ビニル樹脂 0.60 0.58 >40 5.05 1.90 (8.10) 実施例 3 架橋ビニル樹脂 0.62 0.63 >40 4.90 1.85 (8.15) 実施例 4 架橋ビニル樹脂 0.55 0.60 >40 4.55 2.25 (7.75) 比較例 1 架橘ビニル樹脂 0.53 0.57 〉40 4.82 1.81 (8.19) 実施例 5 架橋ビニル樹脂 0.65 0.60 >40 4.68 2.30 (7.70) 実施例 6 ピッチ 0.65 0.55 1.4 4.65 3.45 (6.55) 比較例 2 ピッチ 0.18 0.58 2.0 8.46 2.32 (7.68) 比較例 3 ピッチ 0.67 0.54 2.0 6.80 2.81 (7.19) 比較例 4 架橋ビニル樹脂 0.62 0.59 >40 6.20 1.50 (8.50) 比較例 5 架橋ビニル樹脂 0.68 0.55 測定不能 5.12 4.90 (5.10) 比較例 6 架橋ビニル樹脂 0.18 0.58 〉40 8.70 1.87 (8.13) 比較例 7 架橋ビニル樹脂 2.01 0.17 〉40 7.40 2.05 (7.95) 比較例 8 架橋ビニル樹脂 0.15 0.58 >40 8.40 1.80 (8.20) 比較例 9 フエノール樹脂 0.27 0.82 9.5 5, 90 0.95 (9.05) 比較例 10 フエノール樹脂 0.28 0.85 21.7 6.30 0.84 (9.16)
〔〕0114
Figure imgf000040_0001
Figure imgf000041_0001
残腎率 25%となるように腎臓を摘出して作製した腎不全ラットモデルを用い、本発 明の経口投与吸着剤の投与による腎不全に対する薬理効果試験を行った。試料とし ては、前記実施例 1及び比較例 3で得られた表面改質球状活性炭を使用した。
モデルラット作製力 6週間経過時点で群間に偏りの無いように対照群( 10匹;以 下 R1群と呼ぶ)、実施例 1の経口投与吸着剤投与群(10匹;以下 E1群と呼ぶ)、比 較例 3の経口投与吸着剤投与群(10匹;以下 C1群と呼ぶ)に分けた。モデルラット作 製から 7週間経過後、これ以降 15週間に亘り、対照群 (R1群)には通常粉末飼料を 与え、経口投与吸着剤投与群 (E1群及び C1群)に対しては、ラットの体重 lkgあたり 0. 25gZdayの量で混餌飼料を作製し、 24時間自由摂取により 15週間投与した。 投与開始後、 3週間ごとに 24時間蓄尿による尿中の蛋白排泄量を測定した。図 2に 投与期間と尿中排泄量の関係を示す。対照群 (R1群;図 2の口)及び比較例 3の投 与群 (C1群;図 2の△)と比較し、本発明の経口投与吸着剤の投与群 (E1群;図 2の 參)では尿中タンパク質量が有意に改善した。
(13)尿中タンパク質量の試験:その 2
残腎率 20%となるように腎臓を摘出して作製した腎不全ラットモデルを用い、本発 明の経口投与吸着剤の投与による腎不全に対する薬理効果試験を行った。試料とし ては、前記実施例 7及び比較例 12で得られた表面改質球状活性炭を使用した。 モデルラット作製力 6週間経過時点で群間に偏りの無いように対照群(7匹;以下 R2群と呼ぶ)、実施例 7の経口投与吸着剤投与群(7匹;以下 E2群と呼ぶ)、及び比 較例 12の経口投与吸着剤投与群(7匹;以下 C2群と呼ぶ)に分けた。モデルラット作 製から 7週間経過後、これ以降 15週間に亘り、対照群 (R2群)には通常粉末飼料を 与え、経口投与吸着剤投与群 (E2群及び C2群)に対しては、ラットの体重 lkgあたり 0. 25gZdayの量で混餌飼料を作製し、 24時間自由摂取により 9週間投与した。投 与開始後、 3週間ごとに 24時間蓄尿による尿中の蛋白排泄量を測定した。図 3に投 与期間と尿中排泄量の関係を示す。対照群 (R2群;図 3の口)及び比較例 12の投与 群 (C2群;図 3の♦)と比較し、本発明の経口投与吸着剤の投与群 (E2群;図 3の參) では尿中タンパク質量が有意に改善した。
なお、前記実施例 7及び比較例 12で得られた表面改質球状活性炭の累積細孔容 積を図 4に示す。図 4から明らかなとおり、前記実施例 7で得られた表面改質球状活 性炭は、前記比較例 12で得られた表面改質球状活性炭と比較して、累積細孔容積 は小さい。なお、累積細孔容積は、前記の Horverth—Kawazoe法によって測定し た。
産業上の利用可能性
本発明の経口投与用吸着剤は、腎疾患の治療用又は予防用経口投与用吸着剤と して用いる力、あるいは、肝疾患の治療用又は予防用吸着剤として用いることができ る。
腎疾患としては、例えば、慢性腎不全、急性腎不全、慢性腎盂腎炎、急性腎盂腎 炎、慢性腎炎、急性腎炎症候群、急性進行型腎炎症候群、慢性腎炎症候群、ネフ口 ーゼ症候群、腎硬化症、間質性腎炎、細尿管症、リポイドネフローゼ、糖尿病性腎症 、腎血管性高血圧、若しくは高血圧症候群、あるいは前記の原疾患に伴う続発性腎 疾患、更に、透析前の軽度腎不全を挙げることができ、透析前の軽度腎不全の病態 改善や透析中の病態改善にも用いることができる(「臨床腎臓学」朝倉書店、本田西 男、小磯謙吉、黒川清、 1990年版及び「腎臓病学」医学書院、尾前照雄、藤見惺編 集、 1981年版参照)。
また、肝疾患としては、例えば、劇症肝炎、慢性肝炎、ウィルス性肝炎、アルコール 性肝炎、肝線維症、肝硬変、肝癌、自己免疫性肝炎、薬剤アレルギー性肝障害、原 発性胆汁性肝硬変、振せん、脳症、代謝異常、又は機能異常を挙げることができる。 その他、体内に存在する有害物質による病気、すなわち、精神病等の治療にも用い ることがでさる。
以上、本発明を特定の態様に沿って説明したが、当業者に自明の変形や改良は 本発明の範囲に含まれる。

Claims

請求の範囲
[1] 平均粒子径が 50〜200 μ mであり、 BET法により求められる比表面積が 700m2Z g以上であり、嵩密度が 0. 54gZmL未満であり、全酸性基が 0. 30meqZg〜l . 20 meqZgであり、そして全塩基性基が 0. 20meq/g~0. 9meqZgである表面改質 球状活性炭からなることを特徴とする経口投与吸着剤。
[2] 請求項 1に記載の経口投与用吸着剤を有効成分とする、腎疾患治療又は予防剤。
[3] 請求項 1に記載の経口投与用吸着剤を有効成分とする、肝疾患治療又は予防剤。
PCT/JP2005/006622 2004-04-02 2005-04-04 経口投与用吸着剤、並びに腎疾患治療又は予防剤、及び肝疾患治療又は予防剤 WO2005094845A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US11/547,043 US8357366B2 (en) 2004-04-02 2005-04-04 Adsorbent for an oral administration, and agent for treating or preventing renal or liver disease
KR1020067020462A KR101183046B1 (ko) 2004-04-02 2005-04-04 경구 투여용 흡착제 및 신질환 치료 또는 예방제 및 간질환치료 또는 예방제
CA2561731A CA2561731C (en) 2004-04-02 2005-04-04 Adsorbent for an oral administration, and agent for treating or preventing renal or liver disease
CN2005800101124A CN1942196B (zh) 2004-04-02 2005-04-04 口服给药用吸附剂、肾病治疗或预防剂、及肝病治疗或预防剂
EP05728870A EP1745793A4 (en) 2004-04-02 2005-04-04 ADSORBENS FOR ORAL ADMINISTRATION; MEANS FOR THE PREVENTION OR TREATMENT OF KIDNEY DISORDERS AND MEANS FOR THE PREVENTION OR TREATMENT OF LIVER DISEASES
JP2006511863A JP4641304B2 (ja) 2004-04-02 2005-04-04 経口投与用吸着剤、並びに腎疾患治療又は予防剤、及び肝疾患治療又は予防剤
US13/490,405 US8865161B2 (en) 2004-04-02 2012-06-06 Adsorbent for an oral administration, and agent for treating or preventing renal or liver disease

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-110576 2004-04-02
JP2004110576 2004-04-02

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/547,043 A-371-Of-International US8357366B2 (en) 2004-04-02 2005-04-04 Adsorbent for an oral administration, and agent for treating or preventing renal or liver disease
US13/490,405 Division US8865161B2 (en) 2004-04-02 2012-06-06 Adsorbent for an oral administration, and agent for treating or preventing renal or liver disease

Publications (1)

Publication Number Publication Date
WO2005094845A1 true WO2005094845A1 (ja) 2005-10-13

Family

ID=35063511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/006622 WO2005094845A1 (ja) 2004-04-02 2005-04-04 経口投与用吸着剤、並びに腎疾患治療又は予防剤、及び肝疾患治療又は予防剤

Country Status (9)

Country Link
US (2) US8357366B2 (ja)
EP (1) EP1745793A4 (ja)
JP (2) JP4641304B2 (ja)
KR (1) KR101183046B1 (ja)
CN (2) CN1942196B (ja)
CA (1) CA2561731C (ja)
RU (1) RU2396965C2 (ja)
TW (1) TWI370013B (ja)
WO (1) WO2005094845A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007169274A (ja) * 2005-12-19 2007-07-05 Bluecher Gmbh 活性炭の使用及び活性炭を用いた薬剤調合品
WO2008152994A1 (ja) * 2007-06-11 2008-12-18 Teikokumedix Co., Ltd. 医療用吸着剤
JP2011037749A (ja) * 2009-08-10 2011-02-24 Mylan Seiyaku Ltd 吸着特性に優れた経口投与用吸着剤
WO2014129616A1 (ja) * 2013-02-22 2014-08-28 株式会社クレハ 経口投与用吸着剤並びに腎疾患治療剤及び肝疾患治療剤
WO2014129618A1 (ja) * 2013-02-22 2014-08-28 株式会社クレハ 経口投与用吸着剤並びに腎疾患治療剤及び肝疾患治療剤
JP2015516373A (ja) * 2012-03-16 2015-06-11 ユーシーエル ビジネス ピーエルシー 肝疾患の治療及び予防における使用のための多孔性炭素粒子
JPWO2014129617A1 (ja) * 2013-02-22 2017-02-02 株式会社クレハ 経口投与用吸着剤並びに腎疾患治療剤及び肝疾患治療剤

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005120458A1 (ja) 2004-06-07 2005-12-22 Kureha Corporation 乾燥形態経口摂取用組成物及び用時調製形ゲル状経口摂取用組成物
US9387974B2 (en) 2010-06-03 2016-07-12 Kureha Corporation Single dose package
EP2684561B1 (en) * 2011-03-04 2022-09-14 Kureha Corporation Tablet-type composition for oral administration and method for producing same
TWI544935B (zh) * 2013-02-22 2016-08-11 吳羽股份有限公司 經口投予用吸附劑及腎疾病治療劑及肝疾病治療劑
TWI607765B (zh) * 2014-08-27 2017-12-11 Kureha Corp Adsorbents for oral administration, and nephropathy therapeutic agents and liver disease therapeutic agents
CN107262035A (zh) * 2017-07-24 2017-10-20 淄博康贝医疗器械有限公司 用于吸附肾功能衰竭患者体内毒素的吸附剂及其制备方法
CN110734059B (zh) * 2018-07-19 2021-08-17 深圳市环球绿地新材料有限公司 一种低比表面积活性炭及其制备方法和用途
CN109052398B (zh) * 2018-09-25 2021-10-22 湖南曦威新材料有限公司 一种沥青基球形活性炭表面微裂纹的控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS565313A (en) * 1979-06-26 1981-01-20 Kureha Chem Ind Co Ltd Detoxificating spherical active carbon and preparing the same
JPH06135841A (ja) * 1992-10-29 1994-05-17 Kureha Chem Ind Co Ltd 抗ネフローゼ症候群剤
JP2002308785A (ja) * 2001-04-11 2002-10-23 Kureha Chem Ind Co Ltd 経口投与用吸着剤
JP2004123673A (ja) * 2002-10-07 2004-04-22 Kureha Chem Ind Co Ltd 経口投与用腎疾患治療又は予防剤
JP2004123672A (ja) * 2002-10-07 2004-04-22 Kureha Chem Ind Co Ltd 経口投与用肝疾患治療又は予防剤
JP2004131406A (ja) * 2002-10-09 2004-04-30 Sekisui Chem Co Ltd 尿毒症性物質特異的認識ポリマー及び経口吸着剤
JP2004244414A (ja) * 2003-01-22 2004-09-02 Meruku Hoei Kk 医薬用吸着剤及びその製法

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5545485B2 (ja) * 1973-01-05 1980-11-18
US4063912A (en) * 1975-02-18 1977-12-20 Rohm And Haas Company Gaseous phase adsorption using partially pyrolyzed polymer particles
US4040990A (en) * 1975-02-18 1977-08-09 Rohm And Haas Company Partially pyrolyzed macroporous polymer particles having multimodal pore distribution with macropores ranging from 50-100,000 angstroms
US4064043A (en) * 1975-02-18 1977-12-20 Rohm And Haas Company Liquid phase adsorption using partially pyrolyzed polymer particles
US4064042A (en) * 1975-02-18 1977-12-20 Rohm And Haas Company Purification of blood using partially pyrolyzed polymer particles
US4761284A (en) 1977-12-27 1988-08-02 Kureha Kagaku Kogy Kabushiki Kaisha Antidote including activated carbon particles
JPS5489010A (en) 1977-12-27 1979-07-14 Kureha Chem Ind Co Ltd Spherical activated charcoal antidote
JPS6022947B2 (ja) 1979-08-17 1985-06-05 住友ベークライト株式会社 血液清浄化用活性炭
JPS5910930B2 (ja) * 1979-11-02 1984-03-12 呉羽化学工業株式会社 球状炭素成形体の製造方法
JPS5673542A (en) * 1979-11-22 1981-06-18 Kureha Chem Ind Co Ltd Adsorbent
JPS57136455A (en) 1981-02-17 1982-08-23 Sumitomo Bakelite Co Activated carbon for purifying blood
JPS58213613A (ja) 1982-06-03 1983-12-12 Sumitomo Bakelite Co Ltd 球型活性炭の製造方法
JPS596208A (ja) 1982-07-02 1984-01-13 Gunei Kagaku Kogyo Kk 硬化した球状フエノ−ル樹脂の製造方法
JPS5976535A (ja) * 1982-10-22 1984-05-01 Kureha Chem Ind Co Ltd 収着剤およびその製造法
US4761294A (en) * 1985-08-20 1988-08-02 J. R. Simplot Company Process for preparing parfried and frozen potato strips
JPS6456141A (en) 1987-08-25 1989-03-03 Kureha Chemical Ind Co Ltd Novel adsorbent
US5187141A (en) * 1990-08-24 1993-02-16 Jha Mahesh C Process for the manufacture of activated carbon from coal by mild gasification and hydrogenation
RU1836138C (ru) 1991-05-13 1993-08-23 В. В. Стрелке, Н. Т. Картель, А. М. Пузий. С. В. Михайловский и А П. Козынченко Синтетический углеродный материал сферической гранул ции дл сорбции веществ из растворов и биологических жидкостей и способ его получени
JP2888499B2 (ja) 1991-05-15 1999-05-10 クラレケミカル株式会社 球状活性炭の製法
IT1273678B (it) 1993-08-12 1997-07-09 Bluecher Hasso Von Processo per la produzione di carbone attivo
AU2027695A (en) * 1994-05-27 1995-12-07 Kureha Kagaku Kogyo Kabushiki Kaisha Pharmaceutical composition for treating stoma-peripheral inflammation diseases
JP2561228B2 (ja) 1994-05-27 1996-12-04 呉羽化学工業株式会社 抗炎症性腸疾患剤
JPH08128766A (ja) 1994-10-31 1996-05-21 Keiichiro Asaoka 超低温冷凍方法とその装置
CA2162086A1 (en) * 1994-11-15 1996-05-16 Michihito Ise Agent for reducing nephrotoxicity due to medicine
JPH08208491A (ja) 1994-11-15 1996-08-13 Kureha Chem Ind Co Ltd 薬剤の腎毒性軽減剤
JPH10316578A (ja) 1997-05-13 1998-12-02 Kureha Chem Ind Co Ltd リポタンパク質リパーゼ低血症改善剤
JP3390649B2 (ja) 1997-06-02 2003-03-24 カネボウ株式会社 球状炭素材及びその製造方法
JPH111314A (ja) 1997-06-10 1999-01-06 Dainippon Ink & Chem Inc 球状活性炭素材及びその製造方法
JPH1129485A (ja) 1997-07-10 1999-02-02 Kureha Chem Ind Co Ltd 抗肥満剤
JPH1160664A (ja) 1997-08-18 1999-03-02 Gun Ei Chem Ind Co Ltd 感圧熱自硬化性球状フェノール樹脂の製造方法
JPH11116648A (ja) 1997-10-15 1999-04-27 Sumitomo Durez Kk 球状フェノール樹脂の製造方法
JPH11217278A (ja) 1998-01-28 1999-08-10 Gun Ei Chem Ind Co Ltd 活性炭素多孔体の製造方法
JPH11292770A (ja) 1998-04-10 1999-10-26 Kureha Chem Ind Co Ltd マトリックス形成亢進抑制剤
JP4230005B2 (ja) 1998-04-10 2009-02-25 株式会社クレハ 活性型ビタミンd代謝の改善剤
JP4046914B2 (ja) 1998-12-18 2008-02-13 フタムラ化学株式会社 球状活性炭の製造方法
JP3576433B2 (ja) 1999-10-18 2004-10-13 群栄化学工業株式会社 球状フェノール樹脂の製造方法
JP2001288238A (ja) 2000-04-05 2001-10-16 Sumitomo Durez Co Ltd フェノール樹脂硬化物及びそれを用いた活性炭
EP1276694B1 (de) 2000-04-28 2004-11-24 Blücher GmbH Verfahren zur herstellung kugelförmiger aktivkohle
US6830753B2 (en) * 2001-04-11 2004-12-14 Kureha Chemical Industry Co., Ltd. Adsorbent for oral administration
KR100515593B1 (ko) * 2001-04-17 2005-09-16 주식회사 엘지화학 구형 탄소 및 이의 제조방법
DK1407772T3 (da) * 2002-10-09 2006-12-11 Kureha Corp Farmaceutisk præparat, der omfatter poröst sfærisk carbonholdigt stof, og dets anvendelse til behandling af nyre- og leversygdomme
US7651974B2 (en) * 2002-11-01 2010-01-26 Kureha Chemical Industry Co., Ltd. Adsorbent for oral administration
KR101135260B1 (ko) * 2003-10-22 2012-04-12 가부시키가이샤 쿠레하 경구투여용 흡착제, 신질환 치료 또는 예방제 및 간질환치료 또는 예방제

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS565313A (en) * 1979-06-26 1981-01-20 Kureha Chem Ind Co Ltd Detoxificating spherical active carbon and preparing the same
JPH06135841A (ja) * 1992-10-29 1994-05-17 Kureha Chem Ind Co Ltd 抗ネフローゼ症候群剤
JP2002308785A (ja) * 2001-04-11 2002-10-23 Kureha Chem Ind Co Ltd 経口投与用吸着剤
JP2004123673A (ja) * 2002-10-07 2004-04-22 Kureha Chem Ind Co Ltd 経口投与用腎疾患治療又は予防剤
JP2004123672A (ja) * 2002-10-07 2004-04-22 Kureha Chem Ind Co Ltd 経口投与用肝疾患治療又は予防剤
JP2004131406A (ja) * 2002-10-09 2004-04-30 Sekisui Chem Co Ltd 尿毒症性物質特異的認識ポリマー及び経口吸着剤
JP2004244414A (ja) * 2003-01-22 2004-09-02 Meruku Hoei Kk 医薬用吸着剤及びその製法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1745793A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007169274A (ja) * 2005-12-19 2007-07-05 Bluecher Gmbh 活性炭の使用及び活性炭を用いた薬剤調合品
WO2008152994A1 (ja) * 2007-06-11 2008-12-18 Teikokumedix Co., Ltd. 医療用吸着剤
JP2011037749A (ja) * 2009-08-10 2011-02-24 Mylan Seiyaku Ltd 吸着特性に優れた経口投与用吸着剤
JP2015516373A (ja) * 2012-03-16 2015-06-11 ユーシーエル ビジネス ピーエルシー 肝疾患の治療及び予防における使用のための多孔性炭素粒子
US9844568B2 (en) 2012-03-16 2017-12-19 Ucl Business Plc Porous carbon particles for use in the treatment or prevention of liver disease
JP2018111699A (ja) * 2012-03-16 2018-07-19 ユーシーエル ビジネス ピーエルシー 肝疾患の治療及び予防における使用のための多孔性炭素粒子
WO2014129616A1 (ja) * 2013-02-22 2014-08-28 株式会社クレハ 経口投与用吸着剤並びに腎疾患治療剤及び肝疾患治療剤
WO2014129618A1 (ja) * 2013-02-22 2014-08-28 株式会社クレハ 経口投与用吸着剤並びに腎疾患治療剤及び肝疾患治療剤
JPWO2014129618A1 (ja) * 2013-02-22 2017-02-02 株式会社クレハ 経口投与用吸着剤並びに腎疾患治療剤及び肝疾患治療剤
JPWO2014129617A1 (ja) * 2013-02-22 2017-02-02 株式会社クレハ 経口投与用吸着剤並びに腎疾患治療剤及び肝疾患治療剤
US9877987B2 (en) 2013-02-22 2018-01-30 Kureha Corporation Orally administered adsorbent, therapeutic agent for renal disease, and therapeutic agent for liver disease

Also Published As

Publication number Publication date
EP1745793A4 (en) 2012-05-23
JP3865400B2 (ja) 2007-01-10
RU2396965C2 (ru) 2010-08-20
EP1745793A1 (en) 2007-01-24
CN101904867A (zh) 2010-12-08
CA2561731A1 (en) 2005-10-13
US20080081073A1 (en) 2008-04-03
KR20060135012A (ko) 2006-12-28
TWI370013B (en) 2012-08-11
JPWO2005094845A1 (ja) 2008-02-14
CA2561731C (en) 2014-05-27
RU2006138602A (ru) 2008-05-10
US8357366B2 (en) 2013-01-22
CN1942196B (zh) 2012-09-26
JP4641304B2 (ja) 2011-03-02
KR101183046B1 (ko) 2012-09-20
TW200536605A (en) 2005-11-16
CN1942196A (zh) 2007-04-04
JP2005314416A (ja) 2005-11-10
US8865161B2 (en) 2014-10-21
US20120244195A1 (en) 2012-09-27

Similar Documents

Publication Publication Date Title
JP3865399B2 (ja) 経口投与用吸着剤、並びに腎疾患治療又は予防剤、及び肝疾患治療又は予防剤
WO2005094845A1 (ja) 経口投与用吸着剤、並びに腎疾患治療又は予防剤、及び肝疾患治療又は予防剤
KR101135260B1 (ko) 경구투여용 흡착제, 신질환 치료 또는 예방제 및 간질환치료 또는 예방제
WO2014129615A1 (ja) 経口投与用吸着剤並びに腎疾患治療剤及び肝疾患治療剤
WO2014129618A1 (ja) 経口投与用吸着剤並びに腎疾患治療剤及び肝疾患治療剤
WO2014129614A1 (ja) 経口投与用吸着剤並びに腎疾患治療剤及び肝疾患治療剤
JP4382629B2 (ja) 経口投与用吸着剤、並びに腎疾患治療又は予防剤、及び肝疾患治療又は予防剤
JP6431475B2 (ja) 経口投与用吸着剤並びに腎疾患治療剤及び肝疾患治療剤
WO2014129616A1 (ja) 経口投与用吸着剤並びに腎疾患治療剤及び肝疾患治療剤

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006511863

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200580010112.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2561731

Country of ref document: CA

Ref document number: 1020067020462

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 11547043

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 5888/DELNP/2006

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2006138602

Country of ref document: RU

Ref document number: 2005728870

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067020462

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005728870

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11547043

Country of ref document: US