WO2014129614A1 - 経口投与用吸着剤並びに腎疾患治療剤及び肝疾患治療剤 - Google Patents

経口投与用吸着剤並びに腎疾患治療剤及び肝疾患治療剤 Download PDF

Info

Publication number
WO2014129614A1
WO2014129614A1 PCT/JP2014/054261 JP2014054261W WO2014129614A1 WO 2014129614 A1 WO2014129614 A1 WO 2014129614A1 JP 2014054261 W JP2014054261 W JP 2014054261W WO 2014129614 A1 WO2014129614 A1 WO 2014129614A1
Authority
WO
WIPO (PCT)
Prior art keywords
activated carbon
spherical activated
less
adsorbent
spherical
Prior art date
Application number
PCT/JP2014/054261
Other languages
English (en)
French (fr)
Inventor
直弘 園部
尚志 若穂囲
恭弘 秋田
Original Assignee
株式会社クレハ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クレハ filed Critical 株式会社クレハ
Priority to JP2015501527A priority Critical patent/JPWO2014129614A1/ja
Priority to US14/767,971 priority patent/US20150374743A1/en
Priority to EP14754624.6A priority patent/EP2959906A4/en
Publication of WO2014129614A1 publication Critical patent/WO2014129614A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/74Synthetic polymeric materials
    • A61K31/765Polymers containing oxygen
    • A61K31/77Polymers containing oxygen of oxiranes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/40Peroxides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P39/00General protective or antinoxious agents
    • A61P39/02Antidotes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28066Surface area, e.g. B.E.T specific surface area being more than 1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • B01J20/28071Pore volume, e.g. total pore volume, mesopore volume, micropore volume being less than 0.5 ml/g
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/336Preparation characterised by gaseous activating agents

Definitions

  • the present invention has a low bulk density, a large specific surface area, a total acidic group of less than 0.30 meq / g, a pore volume of 20 to 10,000 nm in pore volume of 0.21 mL / g or less, and a micropore (
  • the present invention relates to an adsorbent for oral administration containing spherical activated carbon having a high pore volume ratio of 1.1 nm or more and a pore diameter of 2 nm or less.
  • the present invention also relates to a renal disease treatment or prevention agent, and a liver disease treatment or prevention agent comprising the above-mentioned adsorbent for oral administration as an active ingredient.
  • the adsorbent for oral administration according to the present invention has high adsorbability for indoxyl sulfate, which is a toxic toxic substance (Toxin) in the body, and tryptophan, which is a precursor thereof, in the presence of a high concentration of bile acid. Many toxic substances can be adsorbed within the in-vivo period from when the body is discharged to outside the body.
  • indoxyl sulfate which is a toxic toxic substance (Toxin) in the body
  • tryptophan which is a precursor thereof
  • an oral adsorbent that can be taken orally and can treat renal or liver dysfunction has been developed and used (Patent Document 1).
  • the oral adsorbent consists of a porous spherical carbonaceous material (that is, spherical activated carbon) having a specific functional group, and is highly safe and stable to the living body. At the same time, it is toxic even in the presence of bile acids in the intestine.
  • Excellent selective adsorptive properties such as excellent adsorption of substances (ie ⁇ -aminoisobutyric acid, ⁇ -amino-n-butyric acid, dimethylamine, and octopamine) and less intestinal beneficial components such as digestive enzymes
  • substances ie ⁇ -aminoisobutyric acid, ⁇ -amino-n-butyric acid, dimethylamine, and octopamine
  • intestinal beneficial components such as digestive enzymes
  • the adsorbent described in Patent Document 1 was manufactured by preparing spherical activated carbon using pitches such as petroleum pitch as a carbon source, and then performing oxidation treatment and reduction treatment.
  • adsorbing toxic substances is a very important property, but especially in the intestinal environment, it is indoxyl sulfate and its precursor, which are toxic substances in patients with chronic renal failure It is important that tryptophan be adsorbed and removed as quickly as possible. That is, a large amount of various substances are present in the human intestine, and in particular, a large amount of bile acid (15 mM) is present. Therefore, spherical activated carbon having an excellent ability to adsorb toxic substances in the small intestine where a large amount of bile acid is present is desirable.
  • An object of the present invention is to provide an adsorbent for oral administration capable of adsorbing a large amount of tryptophan or indoxyl sulfate in the presence of bile acid.
  • the present inventor has intensively developed an oral adsorbent capable of adsorbing and removing a large amount of harmful substances in the presence of a high concentration of bile acid, and has a low bulk density, a large specific surface area, and a total acidic group.
  • the above-mentioned spherical activated carbon found by the present inventor is capable of adsorbing a large amount of harmful substances (especially indoxyl sulfate and its precursor tryptophan) even in the presence of a high concentration of bile acid.
  • the dose can be reduced.
  • the present invention is based on these findings.
  • the present invention [1] Bulk density is 0.30 to 0.46 g / mL, specific surface area determined by BET method is 2000 m 2 / g or more, total acidic groups are less than 0.30 meq / g, pore diameter
  • V 2.0 , V 1.1 , and V 0.64 are pore diameters of 2.0 nm or less, 1.1 nm or less, and 0.64 nm or less calculated from the nitrogen adsorption amount by the SF method, respectively.
  • An agent for treating or preventing renal disease comprising the adsorbent for oral administration according to any one of [1] to [3] as an active ingredient, and any one of [5] [1] to [3] It is related with the liver disease treatment or prevention agent which uses the adsorbent for oral administration of this as an active ingredient.
  • a method for preventing or treating renal disease or liver disease comprising administering an effective amount of the adsorbent for oral administration according to any one of [1] to [3] to a subject to be treated for renal disease or liver disease, [7]
  • the bulk density is 0.30 to 0.46 g / mL
  • the specific surface area determined by the BET method is 2000 m 2 / g or more
  • the total acidic groups are less than 0.30 meq / g
  • the pore diameter is 20 to 10,000 nm.
  • Vm (V 2.0 -V 1.1) / (V 1.1 -V 0.64) (1)
  • V 2.0 , V 1.1 , and V 0.64 are pore diameters of 2.0 nm or less, 1.1 nm or less, and 0.64 nm or less calculated from the nitrogen adsorption amount by the SF method, respectively.
  • a spherical activated carbon whose micropore volume ratio (Vm) is 1.0 or more [8] The spherical activated carbon according to [7], wherein the spherical activated carbon has an average particle size of 50 to 200 ⁇ m, [9] The spherical activated carbon according to [7] or [8], wherein the spherical activated carbon is prepared using a crosslinked vinyl resin as a carbon source, [10]
  • the bulk density is 0.30 to 0.46 g / mL
  • the specific surface area determined by the BET method is 2000 m 2 / g or more
  • the total acidic groups are less than 0.30 meq / g
  • the pore diameter is 20 to 10,000 nm.
  • Vm (V 2.0 -V 1.1) / (V 1.1 -V 0.64) (1)
  • V 2.0 , V 1.1 , and V 0.64 are pore diameters of 2.0 nm or less, 1.1 nm or less, and 0.64 nm or less calculated from the nitrogen adsorption amount by the SF method, respectively.
  • Vm micropore volume ratio
  • spherical activated carbon according to [10] or [11], wherein the spherical activated carbon is prepared using a cross-linked vinyl resin as a carbon source.
  • the bulk density is 0.30 to 0.46 g / mL
  • the specific surface area determined by the BET method is 2000 m 2 / g or more
  • the total acidic groups are less than 0.30 meq / g
  • the pore diameter is 20 to 10,000 nm.
  • Vm (V 2.0 -V 1.1) / (V 1.1 -V 0.64) (1)
  • V 2.0 , V 1.1 , and V 0.64 are pore diameters of 2.0 nm or less, 1.1 nm or less, and 0.64 nm or less calculated from the nitrogen adsorption amount by the SF method, respectively.
  • Use of spherical activated carbon having a micropore volume ratio (Vm) of 1.0 or more Use of the spherical activated carbon according to [13], wherein the spherical activated carbon has an average particle size of 50 to 200 ⁇ m.
  • the adsorbent for oral administration according to the present invention has a small bulk density, a large specific surface area, a small number of total acidic groups, a pore volume with a pore diameter of 20 to 10,000 nm of 0.21 mL / g or less, and a micropore (
  • spherical activated carbon with a high proportion of pore volume with a pore diameter of 1.1 nm or more among the pores of 2 nm or less
  • Toxic substances can be adsorbed very quickly. Therefore, it is effective as a therapeutic or preventive agent for renal diseases or a therapeutic or preventive agent for liver diseases.
  • the dose can be reduced over conventional adsorbents for oral administration.
  • the number of particles per unit weight is large and widely dispersed. Therefore, the distance of the toxic substance to the adsorbent for oral administration is shortened, so that the toxic toxic substance is adsorbed very quickly. be able to.
  • the extra-particle surface area per unit weight that must pass for toxic substances to adsorb increases, so that toxic toxic substances are adsorbed very quickly. be able to.
  • FIG. 3 is a graph showing the results of the indoxyl potassium sulfate adsorption test in the presence of bile acids of the spherical activated carbon obtained in Examples 1 to 3 and Comparative Example 1.
  • FIG. 3 is a view showing the results of a tryptophan adsorption test of spherical activated carbon obtained in Examples 1 to 3 and Comparative Example 1 in the presence of bile acid.
  • Adsorbent for oral administration As described above, the spherical activated carbon used as the adsorbent for oral administration according to the present invention has a specific range of bulk density, specific surface area, total acidic groups, pore volume of pore diameter of 20 to 10,000 nm, And having a micropore volume ratio.
  • the bulk density is 0.30 to 0.46 g / mL
  • the specific surface area determined by the BET method is 2000 m 2 / g or more
  • the total acidic groups are less than 0.30 meq / g
  • the pore diameter is 20
  • the pore volume of ⁇ 10000 nm is 0.21 mL / g or less
  • the formula (1) Vm (V 2.0 -V 1.1) / (V 1.1 -V 0.64) (1)
  • V 2.0 , V 1.1 , and V 0.64 are pore diameters of 2.0 nm or less, 1.1 nm or less, and 0.64 nm or less calculated from the nitrogen adsorption amount by the SF method, respectively.
  • the micropore volume ratio (Vm) determined in the above is 1.0 or more.
  • the bulk density of the spherical activated carbon used in the present invention is 0.30 to 0.46 g / mL.
  • the upper limit of the bulk density is preferably less than 0.44 g / mL, more preferably less than 0.42 g / mL, and most preferably 0.40 g / mL or less. This is because the spherical activated carbon having a small bulk density has an excellent ability to adsorb indoxyl sulfuric acid and its precursor tryptophan in the presence of bile acids.
  • the minimum of a bulk density is 0.30 g / mL, More preferably, it is 0.31 g / mL, Most preferably, it is 0.32 g / mL.
  • spherical activated carbon having a small bulk density has an excellent ability to adsorb harmful substances, but on the other hand, as the bulk density decreases, the yield of the spherical activated carbon deteriorates, and the economic efficiency in the production of activated carbon decreases.
  • the bulk density is too low, it is not preferable because the strength of the spherical activated carbon is reduced and the spherical shape cannot be maintained.
  • the bulk density ⁇ B is a value obtained by dividing the dry weight W (g) of the spherical activated carbon when the container is filled with the spherical activated carbon by the volume V (mL) of the spherical activated carbon filled, It can be obtained from the following calculation formula.
  • the bulk density of the spherical activated carbon is a good index indicating the degree of activation. That is, it shows that activation is progressing, so that a bulk density is small.
  • relatively small pores are formed at the initial stage of activation, and the pore diameter increases as the activation proceeds, resulting in a decrease in bulk density.
  • the specific surface area of the spherical activated carbon can be determined by the BET method or the Langmuir method.
  • the specific surface area of the spherical activated carbon used as the adsorbent for oral administration according to the present invention the specific surface area (hereinafter sometimes abbreviated as “SSA”) determined by the BET method is 2000 m 2 / g or more.
  • Spherical activated carbon having an SSA smaller than 2000 m 2 / g is not preferable because the adsorption performance of toxic substances in the presence of bile acids is lowered.
  • the upper limit of SSA is not particularly limited, SSA is preferably 3000 m 2 / g or less from the viewpoint of bulk density and strength.
  • the spherical activated carbon used as the adsorbent for oral administration according to the present invention is a non-surface modified spherical activated carbon.
  • the surface non-modified spherical activated carbon means a spherical activated carbon having a total acidic group of less than 0.30 meq / g.
  • the surface-modified spherical activated carbon means a spherical activated carbon having a total acidic group of 0.30 meq / g or more.
  • the surface non-modified spherical activated carbon is a porous body obtained by, for example, heat-treating a carbon precursor and then performing an activation treatment, and thereafter performing surface modification treatment by oxidation treatment and reduction treatment.
  • the surface-modified spherical activated carbon is a porous body obtained by performing an activation treatment after heat-treating the carbon precursor, and then performing a surface modification treatment by an oxidation treatment and a reduction treatment. And moderate interactions with bases.
  • the spherical activated carbon used in the adsorbent for oral administration of the present invention is a surface non-modified spherical activated carbon, and therefore the total acidic group is less than 0.30 meq / g, preferably 0.25 meq / g or less, more preferably. Is 0.20 meq / g or less.
  • the spherical activated carbon used in the adsorbent for oral administration of the present invention has a pore volume of 20 to 10,000 nm in pore volume of 0.21 mL / g or less, more preferably 0.20 mL / g or less, and still more preferably 0. 19 mL / g or less. If the pore volume with a pore diameter of 20 to 10,000 nm exceeds 0.21 mL / g, the amount of adsorption of useful substances such as digestive enzymes may increase, which is not preferable. Although a minimum is not specifically limited, 0.04 mL / g or more is preferable.
  • the pore volume having a pore diameter of 20 to 10,000 nm is measured using a mercury intrusion method.
  • the spherical activated carbon used in the adsorbent for oral administration of the present invention has a pore volume of 7.5 to 15000 nm having a pore volume of 0.01 mL / g or more, preferably 0.1 mL / g or more, more preferably It is 0.2 mL / g or more, more preferably 0.4 mL / g or more, and most preferably 0.5 mL / g or more. Due to the large pore volume with a pore diameter of 7.5 to 15000 nm, the adsorption rate of toxic substances is excellent.
  • the upper limit of the pore volume having a pore diameter of 7.5 to 15000 nm is not particularly limited, but is preferably 1.0 mL / g or less. If the pore volume with a pore diameter of 7.5 to 15000 nm exceeds 1.0 mL / g, the amount of adsorption of useful substances such as digestive enzymes may increase, which is not preferable.
  • micropore volume ratio In IUPAC (International Union of Pure and Applied Chemistry), pores of 2 nm or less are defined as micropores, 2 to 50 nm as mesopores, and 50 nm or more as macropores.
  • the spherical activated carbon used as the adsorbent for oral administration according to the present invention mainly forms relatively small micropores by gas activation. The formation of the micropores reduces the density of the spherical activated carbon and increases the specific surface area, thereby increasing the adsorption performance of the toxic substance in the presence of bile acids.
  • the pore volume of micropores of 2 nm or less can be measured by a nitrogen adsorption method, and can be measured by the Saito-Foley method (hereinafter referred to as “SF method”), the Horverth-Kawazoe method, the Density Functional Theory method, or the like. In the present invention, it is assumed that the pore shape is cylindrical, and the pore volume obtained by the SF method for analysis is used.
  • SF method Saito-Foley method
  • Vm (V 2.0 -V 1.1) / (V 1.1 -V 0.64) (1)
  • V 2.0 , V 1.1 , and V 0.64 are pore diameters of 2.0 nm or less, 1.1 nm or less, and 0.64 nm or less calculated from the nitrogen adsorption amount by the SF method, respectively.
  • the micropore volume ratio (Vm) obtained by the above formula is 1.0 or more, preferably 1.1 or more, and more preferably 1.2 or more.
  • the spherical activated carbon used in the adsorbent for oral administration of the present invention has a high proportion of pore volume having a pore diameter of 1.1 nm to 2 nm in micropores having pores of 2 nm or less.
  • the micropore volume ratio is 1.0 or less, relatively large bile acid molecules cause pore occlusion, which is not preferable because adsorption of uremic substances and their precursors smaller than the molecular size is hindered.
  • the upper limit is not particularly limited, but is preferably 1.5 or less.
  • the diameter of the spherical activated carbon used as the adsorbent for oral administration according to the present invention is not particularly limited, but is preferably 0.01 to 1 mm, more preferably 0.02 to 0.8 mm.
  • the diameter of the spherical activated carbon is less than 0.01 mm, the outer surface area of the spherical activated carbon increases, and adsorption of beneficial substances such as digestive enzymes tends to occur.
  • the diameter exceeds 1 mm the diffusion distance of the toxic substance into the spherical activated carbon increases, and the adsorption rate decreases, which is not preferable.
  • the average particle diameter means a particle diameter (Dv50) at a particle size accumulation ratio of 50% in a volume-based particle size accumulation diagram.
  • the range of the average particle diameter of the spherical activated carbon used as the adsorbent for oral administration according to the present invention is not particularly limited, but is 0.01 to 1 mm. If the average particle diameter of the spherical activated carbon is less than 0.01 mm, the outer surface area of the spherical activated carbon increases, and adsorption of beneficial substances such as digestive enzymes tends to occur.
  • the average particle diameter exceeds 1 mm, the diffusion distance of the toxic substance into the spherical activated carbon increases, and the adsorption rate decreases, which is not preferable.
  • the average particle diameter is preferably 0.02 to 0.8 mm, and the spherical activated carbon having an average particle diameter of 50 to 200 ⁇ m is particularly excellent in initial adsorption capacity, and within a general residence time in the upper small intestine, This is because toxic toxic substances in the living body can be adsorbed very quickly.
  • a more preferable range of the average particle diameter is 50 to 170 ⁇ m, and a further preferable range is 50 to 150 ⁇ m.
  • the spherical activated carbon used as the adsorbent for oral administration according to the present invention preferably has a narrow particle size distribution.
  • the ratio (D 4 / D 1 ) of the spherical activated carbon used as the adsorbent for oral administration according to the present invention is preferably 3 or less, more preferably 2 or less, still more preferably 1.5 or less.
  • D is the representative particle size of the measured particle size category
  • n is the number.
  • Patent Document 1 discloses a carbonaceous adsorbent capable of adsorbing ⁇ -aminoisobutyric acid, ⁇ -amino-n-butyric acid, dimethylamine, and octopamine in a 0.5% by weight aqueous solution of bile salts. Is described.
  • the carbonaceous adsorbents of Examples 1 to 3 in Patent Document 1 are activated at 900 ° C. for 2 hours.
  • the specific surface area is considered to be less than 2000 m 2 / g, and the spherical activated carbon described in Patent Document 1 is different from the spherical activated carbon of the present invention in specific surface area.
  • the spherical activated carbon described in Patent Document 1 is a surface-modified spherical activated carbon that has undergone oxidation reduction, the numerical values of the spherical activated carbon of the present invention and the total acidic groups thereof are different.
  • Patent Document 2 generally describes activated carbon having a packing density of 0.3 g / mL or more (for example, claim 1).
  • activated carbon having a bulk density (packing density) of 0.306 to 0.460 g / mL is described.
  • These activated carbons do not have a BET specific surface area, and it is unclear whether the activated carbon is 2000 m 2 / g or more, and whether the pore volume with a pore diameter of 20 to 10,000 nm is 0.21 mL / g or less. It is unclear whether the micropore volume ratio is 1.0 or less, and the physical properties are completely different from the spherical activated carbon used as the adsorbent for oral administration of the present invention.
  • Patent Document 2 discloses a spherical shape having a small bulk density, a large specific surface area, a micropore volume ratio of 1.0 or more, and a pore volume of 20 to 10,000 nm in pore diameter of 0.21 mL / g or less. It is not described at all that the adsorbent for oral administration containing activated carbon has a high ability to adsorb toxic substances in the presence of bile acids.
  • Patent Document 3 describes activated carbon having a packing density of 0.345 to 0.455 g / mL in Examples (Examples 1, 3, 5, 9, 10, and 13, etc.). Although this activated carbon has no total acidic groups and micropore volume ratio, the specific surface area or pore volume of 20 to 10,000 nm in pore diameter is completely different from the spherical activated carbon used as the adsorbent for oral administration of the present invention. Is different. Furthermore, Patent Document 4 describes activated carbons having packing densities of 0.42 and 0.44 g / mL in Examples 1 and 2.
  • This activated carbon has an unknown micropore volume ratio, but its specific surface area or total acidic group is completely different from the spherical activated carbon used as the adsorbent for oral administration of the present invention.
  • the bulk density is small, the specific surface area is large, the micropore volume ratio is 1.0 or more, and the pore volume with a pore diameter of 20 to 10,000 nm is 0.21 mL / g or less. It is not described at all that an adsorbent for oral administration containing a certain spherical activated carbon has a high ability to adsorb toxic substances in the presence of bile acids.
  • the adsorbent for oral administration according to the present invention has such excellent effects is not clear at present, but it can also be estimated as follows.
  • the present invention is not limited to the following estimation.
  • Bile acid is a type of surfactant that helps absorb lipids that are difficult to dissolve in water. Therefore, in order for bile acids to form micelles of lipids, a concentration higher than the critical micelle concentration is necessary, and it exists in the human small intestine at a concentration of 15 mM at the time of satiety.
  • Typical examples of bile acids are sodium cholate, sodium deoxycholate, sodium taurocholate, sodium glycocholate, etc., which are relatively large molecules having a molecular weight of about 400 to 600.
  • the micelle size increases to several nanometers, compared to indoxyl sulfate and its precursor tryptophan, which are attracting attention as a toxic toxic substance (Toxin) in the body. Will be present in a large size.
  • the spherical activated carbon of the present invention has a specific bulk density, specific surface area, has a high adsorption capacity for uremic toxins and their precursors, and has a high micropore volume ratio, so that a large size bile acid molecule And bile acid micelles do not cause adsorption inhibition such as pore clogging, and can effectively adsorb small-sized uremic toxins such as indoxyl sulfate and its precursor tryptophan. I think. Further, since the pore volume with a pore diameter of 20 to 10,000 nm is low, adsorption of useful substances such as digestive enzymes can be prevented.
  • the spherical activated carbon used as the adsorbent for oral administration of the present invention can use any carbon-containing material as a carbon source.
  • the carbon-containing material that can be used for example, synthetic resin or pitch can be used.
  • the synthetic resin a heat-meltable resin or a heat-infusible resin can be used.
  • the heat-meltable resin is a resin that melts and decomposes as the temperature rises when an activation process is performed without performing an infusibilization process, and is a resin from which activated carbon cannot be obtained.
  • the activation treatment is performed after the infusibilization treatment is performed in advance, the activated carbon can be obtained.
  • the heat infusible resin is a resin that can be activated without obtaining melting, and can be activated without melting as the temperature rises, even if the activation treatment is performed.
  • the infusibilization treatment is, for example, an oxidation treatment at 150 ° C. to 400 ° C. in an atmosphere containing oxygen, as will be described later.
  • thermoplastic resin examples thereof include a crosslinked vinyl resin.
  • thermofusible resin is a thermosetting resin, and examples thereof include a phenol resin and a furan resin.
  • thermoplastic resins or thermosetting resins any thermoplastic resin or thermosetting resin capable of forming a spherical body can be used.
  • the above-mentioned infusibilization treatment is required, whereas when obtaining spherical activated carbon from an ion exchange resin produced by adding a functional group to the cross-linked vinyl resin. Does not require the infusibilization process described above.
  • cross-linked vinyl resin is modified from the heat-meltable resin to the heat-infusible resin by the functional group imparting treatment or the introduced functional group. That is, the crosslinked vinyl resin is included in the heat-meltable resin in the present specification, whereas the ion exchange resin is included in the heat-infusible resin in the present specification.
  • the carbon source of the spherical activated carbon used in the present invention is not particularly limited, but it is preferable to use a synthetic resin because it is easy to handle.
  • the synthetic resin include thermosetting resins (for example, phenol resins and furan resins) and ion exchange resins that are thermofusible resins; and thermoplastic resins (for example, cross-linked vinyl resins) that are thermomeltable resins. be able to.
  • the thermosetting resin tends to form a hollow in the spherical activated carbon, and has a risk of being pierced into the intestine when crushed because the strength is weak.
  • ion exchange resins contain sulfur, etc., care is required when used for oral administration. Therefore, it is more preferable to use a thermoplastic resin (for example, a cross-linked vinyl resin) as the carbon source of the spherical activated carbon.
  • a heat-meltable resin for example, a cross-linked vinyl resin
  • an operation substantially similar to a conventional manufacturing method using pitches can be used.
  • the spherical body made of a heat-meltable resin is softened by heat treatment and deformed into a non-spherical shape, or the spherical bodies are fused with each other.
  • Softening can be suppressed by performing oxidation treatment at 150 ° C. to 400 ° C. using As the oxidizing agent, O 2 or a mixed gas obtained by diluting these with air or nitrogen can be used.
  • the cross-linked vinyl resin that is a heat-meltable resin is softened and melted by heat treatment in a non-oxidizing gas atmosphere and the carbonization yield is less than 10%, but in an atmosphere containing oxygen as an infusible treatment,
  • a spherical carbonaceous material can be obtained with a high carbonization yield of 30% or more by performing an oxidation treatment at 150 ° C. to 400 ° C. without being softened or melted. Obtainable.
  • pre-baking is performed appropriately before performing activation operation to remove the pyrolysis products in advance. can do.
  • a spherical activated carbon can be obtained by activation treatment at a temperature of 700 to 1000 ° C. in an air stream having reactivity with carbon (for example, steam or carbon dioxide gas).
  • activated carbon means a porous body obtained by heat treatment of a carbon precursor such as a spherical heat-meltable resin and then activation treatment
  • spherical activated carbon means spherical The specific surface area is 100 m 2 / g or more.
  • the average particle diameter of the spherical body of the heat-meltable resin used as a starting material is not particularly limited, but is preferably about 0.02 to 1.5 mm, more preferably 50 ⁇ m to 800 ⁇ m, and further preferably 70 ⁇ m to 500 ⁇ m. .
  • the crosslinked vinyl resin used as a starting material for example, a spherical polymer obtained by emulsion polymerization, bulk polymerization or solution polymerization, or preferably a spherical polymer obtained by suspension polymerization can be used.
  • a spherical polymer obtained by emulsion polymerization, bulk polymerization or solution polymerization, or preferably a spherical polymer obtained by suspension polymerization can be used.
  • a spherical crosslinked vinyl resin having a diameter of 50 ⁇ m or more uniformly it is indispensable to previously form pores in the crosslinked vinyl resin. Formation of pores in the resin is possible by adding porogen during polymerization.
  • the surface area of the cross-linked vinyl resin necessary for infusibilizing the cross-linked vinyl resin uniformly is preferably 10 m 2 / g or more, more preferably 50 m 2 / g or more.
  • a crosslinked vinyl resin is prepared by suspension polymerization
  • an organic phase containing a vinyl monomer, a crosslinking agent, a porogen and a polymerization initiator is added to an aqueous dispersion medium containing a dispersion stabilizer, and mixed by stirring.
  • a spherical crosslinked vinyl resin can be prepared.
  • any vinyl monomer that can be molded into a spherical shape can be used.
  • an aromatic vinyl monomer such as styrene, or a styrene derivative substituted with vinyl group hydrogen or phenyl group hydrogen.
  • a compound in which a heterocyclic or polycyclic compound is bonded to a vinyl group instead of a phenyl group can be used.
  • aromatic vinyl monomers include ⁇ - or ⁇ -methylstyrene, ⁇ - or ⁇ -ethylstyrene, methoxystyrene, phenylstyrene, or chlorostyrene, or o-, m-, or p-methylstyrene, ethylstyrene, methoxystyrene, methylsilylstyrene, hydroxystyrene, chlorostyrene, cyanostyrene, nitrostyrene, aminostyrene, carboxystyrene, sulfoxystyrene, sodium styrenesulfonate, or vinylpyridine , Vinyl thiophene, vinyl pyrrolidone, vinyl naphthalene, vinyl anthracene, or vinyl biphenyl.
  • Aliphatic vinyl monomers can also be used. Specifically, for example, vinyl esters such as ethylene, propylene, isobutylene, diisobutylene, vinyl chloride, acrylic acid ester, methacrylic acid ester, vinyl acetate, vinyl Vinyl ketones such as methyl ketone and vinyl ethyl ketone, vinyl aldehydes such as acrolein and methacrolein, vinyl ethers such as vinyl methyl ether and vinyl ethyl ether, vinyl nitriles such as acrylonitrile, ethyl acrylonitrile, diphenyl acrylonitrile and chloroacrylonitrile There can be mentioned.
  • vinyl esters such as ethylene, propylene, isobutylene, diisobutylene, vinyl chloride, acrylic acid ester, methacrylic acid ester, vinyl acetate, vinyl Vinyl ketones such as methyl ketone and vinyl ethyl ketone, vinyl aldehydes such as
  • any crosslinking agent that can be used for crosslinking of the above-mentioned vinyl monomers can be used.
  • crosslinking agents examples include polyvinyl aromatic hydrocarbons (eg, divinylbenzene), glycol trimethacrylate (eg, ethylene glycol dimethacrylate), or polyvinyl hydrocarbons (eg, trivinylcyclohexane). is there. Divinylbenzene is most preferred because of its excellent thermal decomposition characteristics.
  • Suitable porogens include alkanols having 4 to 10 carbon atoms (eg, n-butanol, sec-butanol, 2-ethylhexanol, decanol, or 4-methyl-2-pentanol), having at least 7 carbon atoms.
  • Alkyl esters eg, n-hexyl acetate, 2-ethylhexyl acetate, methyl oleate, dibutyl sebacate, dibutyl adipate, or dibutyl carbonate
  • alkyl ketones having 4 to 10 carbon atoms eg, dibutyl ketone
  • methyl isobutyl ketone or alkyl carboxylic acids (eg, heptanoic acid)
  • aromatic hydrocarbons eg, toluene, xylene, or benzene
  • higher saturated aliphatic hydrocarbons eg, hexane, heptane, or isooctane
  • Cycloaliphatic hydrocarbons eg If, cyclohexane
  • the polymerization initiator is not particularly limited, and those generally used in this field can be used, but an oil-soluble polymerization initiator that is soluble in the polymerizable monomer is preferable.
  • the polymerization initiator include dialkyl peroxide, diacyl peroxide, peroxyester, peroxydicarbonate, and azo compound.
  • dialkyl peroxides such as methyl ethyl peroxide, di-t-butyl peroxide, dicumyl peroxide; isobutyl peroxide, benzoyl peroxide, 2,4-dichlorobenzoyl peroxide, 3, Diacyl peroxide such as 5,5-trimethylhexanoyl peroxide; t-butyl peroxypivalate, t-hexyl peroxypivalate, t-butyl peroxyneodecanoate, t-hexylperoxyneodecanoate 1-cyclohexyl-1-methylethylperoxyneodecanoate, 1,1,3,3-tetramethylbutylperoxyneodecanoate, cumylperoxyneodecanoate, ( ⁇ , ⁇ -bis-neo Decanoyl peroxy) diisopropylbenzene -Oxyester; bis (4-
  • thermofusible resin for example, thermosetting resin or ion exchange resin
  • a conventional production method using pitches Substantially similar operations can be used. For example, first, a spherical body made of a heat infusible resin is activated at a temperature of 700 to 1000 ° C. in an air stream reactive with carbon (for example, steam or carbon dioxide) to obtain a spherical activated carbon. be able to.
  • the thermal decomposition product can be removed in advance.
  • the average particle diameter of the spherical body of the heat infusible resin used as a starting material is not particularly limited, but is preferably about 0.02 to 1.5 mm, more preferably 50 ⁇ m to 800 ⁇ m, and further 70 ⁇ m to 500 ⁇ m. preferable.
  • the heat infusible resin used as a starting material is a material capable of forming a spherical body, and it is important that it does not melt or soften during heat treatment at 500 ° C. or lower and does not cause shape deformation. .
  • the heat infusible resin used as a starting material desirably has a high carbonization yield by heat treatment. When the carbonization yield is low, the strength as the spherical activated carbon becomes weak. In addition, since unnecessary pores are formed, the bulk density of the spherical activated carbon is lowered, and the specific surface area per volume is lowered, so that the administration volume is increased and oral administration becomes difficult. Therefore, the higher the carbonization yield of the heat infusible resin, the better.
  • the preferable value of the yield by heat treatment at 800 ° C. in a non-oxidizing gas atmosphere is 30% by weight or more, more preferably 35% by weight or more. is there.
  • thermosetting resin used as a starting material examples include phenol resins, such as novolac type phenol resins, resol type phenol resins, novolac type alkyl phenol resins, or resole type alkyl phenol resins, and others.
  • furan resin, urea resin, melamine resin, epoxy resin and the like can be used.
  • thermosetting resin a copolymer of divinylbenzene and styrene, acrylonitrile, acrylic acid, or methacrylic acid can be further used.
  • an ion exchange resin can be used as the heat infusible resin.
  • An ion exchange resin is generally composed of a copolymer of divinylbenzene and styrene, acrylonitrile, acrylic acid, or methacrylic acid (that is, a cross-linked vinyl resin that is a heat-meltable resin), and is basically three-dimensional. It has a structure in which an ion exchange group is bonded to a copolymer matrix having a network skeleton.
  • the ion exchange resin is a strongly acidic ion exchange resin having a sulfonic acid group, a weak acid ion exchange resin having a carboxylic acid group or a sulfonic acid group, and a strong basic ion exchange having a quaternary ammonium salt.
  • Resins broadly divided into weakly basic ion exchange resins having primary or tertiary amines, and other special resins include so-called hybrid ion exchange resins having both acid and base ion exchange groups. In the invention, all these ion exchange resins can be used as raw materials.
  • the SF method is performed by a nitrogen adsorption method.
  • a spherical activated carbon having a ratio of the pore volume with a pore diameter of 1.1 to 2 nm to the pore volume with a pore diameter of 0.64 to 1.1 nm obtained by use of 1.0 or more can be obtained.
  • the physical properties of the spherical activated carbon (for example, average particle diameter, pore volume, particle size distribution, specific surface area, etc.) Can be controlled in various ways.
  • the average particle size and particle size distribution of the resin depend on the size of the droplets in the aqueous phase, and the size of the droplets depends on the amount of the suspending agent, the number of stirring rotations, the shape of the stirring blades, It can be controlled by the monomer ratio (the ratio of the amount of water and the amount of monomer).
  • the droplet can be made smaller, if the rotation speed of stirring is increased, the droplet can be made smaller, and if the amount of the monomer in the aqueous phase is decreased, the droplet is reduced.
  • This is preferable from the standpoint of not only controlling the coalescence but also facilitating heat removal from the polymerization heat.
  • the monomer ratio is too small, the amount of monomer per batch decreases, and the resulting synthetic resin. The amount is reduced, which is not preferable from the viewpoint of productivity.
  • the pore volume and specific surface area can be controlled mainly by the amount and type of porogen when the controlled pore diameter is 10 nm or more, and when the controlled pore diameter is 10 nm or less, It can control by the activation conditions by water vapor
  • the fine structure of the spherical activated carbon can be controlled by the type of resin, the type and amount of the crosslinking agent, the infusibilizing conditions, the firing conditions, and / or the activation temperature.
  • a spherical activated carbon used as an adsorbent for oral administration of the present invention is obtained by activation treatment at a temperature of 700 to 1000 ° C. in an air stream having reactivity with carbon (for example, steam or carbon dioxide gas).
  • carbon for example, steam or carbon dioxide gas
  • the bulk density can be controlled by the activation conditions. For example, it is possible to reduce the bulk density by increasing the activation time, increasing the activation temperature, or increasing the concentration of the air stream having reactivity with carbon. It is.
  • pitch When pitch is used as the carbon source for the preparation of the spherical activated carbon used as the adsorbent for oral administration of the present invention, it can be prepared, for example, by the following method. To a pitch such as petroleum pitch or coal pitch, a bicyclic or tricyclic aromatic compound having a boiling point of 200 ° C. or higher or a mixture thereof is added as an additive, mixed by heating, and then molded to obtain a pitch molded body. The size of the pitch formed body can be controlled by the nozzle diameter at the time of extrusion molding or the pulverizing conditions of the pitch formed body. The smaller the volume of the pitch formed body, the smaller the spherical pitch can be made, and the spherical activated carbon having a smaller particle diameter can be obtained.
  • a pitch such as petroleum pitch or coal pitch
  • a bicyclic or tricyclic aromatic compound having a boiling point of 200 ° C. or higher or a mixture thereof is added as an additive, mixed by heating, and then molded to obtain
  • the pitch molded body is dispersed in hot water at 50 to 120 ° C. with stirring, granulated to form a microsphere, and then cooled to obtain a spherical pitch molded body.
  • the average particle diameter of the spherical pitch molded body is not particularly limited, but is preferably about 0.02 to 1.5 mm, more preferably 60 to 350 ⁇ m, and further preferably 60 to 300 ⁇ m.
  • the additive is extracted and removed from the spherical pitch molded body with a solvent having low solubility with respect to pitch and high solubility with respect to the additive, and the resulting porous pitch is oxidized using an oxidizing agent.
  • porous pitch is infusible with respect to the obtained heat and further processed in an air stream reactive with carbon, for example, steam or carbon dioxide, at a temperature of 800 to 1000 ° C.
  • carbon for example, steam or carbon dioxide
  • a spherical activated carbon can be obtained.
  • the temperature at which naphthalene and pitch are spun is increased, the amount of polyvinyl alcohol is increased, or the cooling step is performed in a short time. It is preferable to perform such control.
  • aromatic additive The purpose of the aromatic additive described above is to make the molded body porous by extracting and removing the additive from the pitch-formed body after molding, and to facilitate structural control and firing of the carbonaceous material by subsequent oxidation. It is in.
  • additives are selected from, for example, one or a mixture of two or more aromatic compounds such as naphthalene, methylnaphthalene, phenylnaphthalene, benzylnaphthalene, methylanthracene, phenanthrene, or biphenyl.
  • the amount added to the pitch is preferably in the range of 10 to 50 parts by weight with respect to 100 parts by weight of the pitch.
  • the pitch and additive are mixed in a molten state by heating in order to achieve uniform mixing. Molding may be performed in a molten state, or may be performed by a method such as pulverizing the mixture after cooling, but the method of extruding the mixed pitch into a thread form in the molten state and then cutting or pulverizing the mixture at equal intervals is used. This is preferable because the distribution can be controlled in a narrower range.
  • the particle diameter can be controlled by the nozzle diameter at the time of extruding the mixing pitch, and a small mixture molded body can be obtained by using a thin nozzle.
  • Solvents for extracting and removing the additive from the mixture of pitch and additive include aliphatic hydrocarbons such as butane, pentane, hexane, or heptane, mixtures mainly composed of aliphatic hydrocarbons such as naphtha or kerosene, methanol, Aliphatic alcohols such as ethanol, propanol or butanol are preferred.
  • the additive By extracting the additive from the pitch and additive mixture molded body with such a solvent, the additive can be removed from the molded body while maintaining the shape of the molded body. At this time, it is presumed that a through hole for the additive is formed in the molded body, and a pitch molded body having uniform porosity is obtained. The resulting pitch-formed body showing porosity is then infusibilized, that is, insoluble to heat by an oxidation treatment using an oxidizing agent, preferably at a temperature of 150 ° C. to 400 ° C. An infusible pitch molded body is used.
  • the oxidizing agent O 2 or a mixed gas obtained by diluting these with air or nitrogen can be used.
  • the pore volume is controlled by controlling the amount, type and precipitation conditions within the pitch of the aromatic additive.
  • Spherical activated carbon having a pore volume of 0.21 mL / g or less at a pore diameter of 20 to 10,000 nm can be prepared.
  • the pitch used as a starting material has a high carbonization yield by heat treatment.
  • the carbonization yield is low, the strength as the spherical activated carbon becomes weak.
  • the bulk density of the spherical activated carbon is lowered, and the specific surface area per volume is lowered, so that the administration volume is increased and oral administration becomes difficult. Therefore, the higher the carbonization yield of the pitch, the better.
  • the preferred yield value by heat treatment at 800 ° C. in a non-oxidizing gas atmosphere is 50% by weight or more, more preferably 60% by weight or more.
  • Spherical activated carbon obtained using a heat-meltable resin, heat-infusible resin, or pitch as a carbon source has an oxygen content of 0.1 to 50% by volume, preferably 1 to 30% by volume, particularly preferably 3 to 20% by volume.
  • an atmosphere of 300 to 800 ° C., preferably 320 to 600 ° C. and further in a non-oxidizing gas atmosphere at a temperature of 800 to 1200 ° C., preferably 800 to 1000 ° C.
  • the surface-modified spherical activated carbon is a porous body obtained by subjecting the spherical activated carbon to the oxidation treatment and the reduction treatment.
  • the spherical activated carbon used as the adsorbent for oral administration of the present invention can be used as it is without performing the oxidation step and the reduction step for supporting the functional group as the subsequent steps.
  • Each physical property value of the spherical activated carbon used as the adsorbent for oral administration according to the present invention is measured by the following methods.
  • Average particle diameter (Dv50) Using a laser diffraction particle size distribution analyzer (Shimadzu Corporation: SALAD-3000S), a volume-based particle size cumulative diagram was prepared, and the particle size at a particle size cumulative rate of 50% was defined as the average particle size (Dv50).
  • Specific surface area (calculation method of specific surface area by BET method)
  • the specific surface area can be calculated by the following formula by measuring the gas adsorption amount of the spherical activated carbon sample using a specific surface area measuring instrument (for example, “ASAP2010” or “ASAP2020” manufactured by MICROMERITICS) by gas adsorption method.
  • a spherical activated carbon as a sample is filled in a sample tube, dried under reduced pressure at 350 ° C., and the weight of the sample after drying is measured.
  • the sample tube is cooled to ⁇ 196 ° C., nitrogen is introduced into the sample tube, nitrogen is adsorbed on the spherical activated carbon sample, and the relationship between nitrogen partial pressure and adsorption amount (adsorption isotherm) is measured.
  • MA were used 0.162Nm 2 in cross-sectional area of nitrogen molecules.
  • Specific surface area (calculation method of specific surface area by Langmuir's formula)
  • the specific surface area can be calculated by Langmuir's equation by measuring the amount of gas adsorbed on the spherical activated carbon sample using a specific surface area measuring instrument (for example, “ASAP2010” or “ASAP2020” manufactured by MICROMERITICS). Specifically, a spherical activated carbon as a sample is filled in a sample tube, dried under reduced pressure at 350 ° C., and the weight of the sample after drying is measured.
  • a specific surface area measuring instrument for example, “ASAP2010” or “ASAP2020” manufactured by MICROMERITICS.
  • the sample tube is cooled to ⁇ 196 ° C.
  • nitrogen is introduced into the sample tube
  • nitrogen is adsorbed on the spherical activated carbon sample
  • the relationship between nitrogen partial pressure and adsorption amount is measured.
  • MA were used 0.162Nm 2 in cross-sectional area of nitrogen molecules.
  • Pore volume by mercury porosimetry The pore volume can be measured using a mercury porosimeter (for example, “AUTOPORE 9200” manufactured by MICROMERITICS).
  • Spherical activated carbon as a sample is put in a sample container and deaerated at a pressure of 2.67 Pa or less for 30 minutes.
  • the volume of mercury injected into the spherical activated carbon sample from a pressure corresponding to a pore diameter of 21 ⁇ m (0.06 MPa) to a maximum pressure (414 MPa: corresponding to a pore diameter of 3 nm) is measured.
  • D ( ⁇ 4 ⁇ cos ⁇ ) / P It becomes.
  • the surface tension of mercury is 484 dyne / cm
  • the contact angle between mercury and carbon is 130 degrees
  • the pressure P is MPa
  • the pore diameter D is expressed in ⁇ m.
  • D 1.24 / P
  • the pore volume in the range of pore diameters of 20 to 10000 nm corresponds to the volume of mercury that is injected from a mercury intrusion pressure of 0.124 MPa to 62 MPa.
  • the pore volume in the range of the pore diameter of 7.5 to 15000 nm corresponds to the volume of mercury injected from a mercury intrusion pressure of 0.083 MPa to 165 MPa.
  • the spherical activated carbon used as the adsorbent for oral administration of the present invention has a very small particle size, the gap between the sample particles filled in the sample container is also reduced. Therefore, in the pore volume measurement operation by the mercury intrusion method, there is a stage in which mercury is intruded into the interparticle voids, and in the intrusion stage, pores having a pore diameter of 8000 to 15000 nm exist. Behaves like The presence of pores having a pore diameter of 8000 to 15000 nm in the spherical activated carbon used as the adsorbent for oral administration of the present invention can be confirmed, for example, by observation with an electron microscope.
  • pore volume in the range of pore diameter of 20 to 15000 nm” or “pore volume in the range of pore diameter of 7.5 to 15000 nm” includes mercury injected into the interparticle void. The amount is also included.
  • the adsorbent for oral administration of the present invention contains the spherical activated carbon as an active ingredient, it may be composed of only spherical activated carbon, and may contain a pharmaceutically acceptable additive in addition to the spherical activated carbon.
  • additives include excipients, disintegrants, surfactants, binders, lubricants, acidulants, foaming agents, sweeteners, fragrances, colorants, stabilizers, and flavoring agents. be able to.
  • Examples of the dosage form when the adsorbent for oral administration is made of spherical activated carbon include powders, granules, capsules, and packaged packages.
  • the adsorbent for oral administration contains spherical activated carbon and additives
  • examples of the dosage form include powders, granules, tablets, dragees, capsules, suspensions, sticks, sachets, and emulsions. Can be mentioned.
  • Adsorbent for oral administration for the treatment or prevention of kidney disease or liver disease The spherical activated carbon used as the adsorbent for oral administration of the present invention is excellent in adsorbability of toxic substances in liver disease aversion factor and kidney disease. Therefore, it can be used as an adsorbent for oral administration for the treatment or prevention of renal diseases, or as an adsorbent for oral administration for the treatment or prevention of liver diseases.
  • renal diseases include chronic renal failure, acute renal failure, chronic pyelonephritis, acute pyelonephritis, chronic nephritis, acute nephritic syndrome, acute progressive nephritic syndrome, chronic nephritic syndrome, nephrotic syndrome, nephrosclerosis, interstitial Nephritis, ureteropathy, lipoid nephrosis, diabetic nephropathy, renovascular hypertension, or hypertension syndrome, or secondary kidney disease associated with the above-mentioned primary disease, further, mild renal failure before dialysis, It can also be used to improve the condition of mild renal failure before dialysis and to improve the condition during dialysis ("clinical nephrology" Asakura Shoten, Nishio Honda, Kenkichi Ogura, Kiyoshi Kurokawa, 1990 edition and "Nephrology” medical bookstore (See Teruo Omae and Satoshi Fujimi, 1981 edition).
  • Liver diseases include, for example, fulminant hepatitis, chronic hepatitis, viral hepatitis, alcoholic hepatitis, liver fibrosis, liver cirrhosis, liver cancer, autoimmune hepatitis, drug allergic liver disorder, primary biliary cirrhosis, vibration Mental, encephalopathy, metabolic abnormalities, or functional abnormalities can be mentioned.
  • it can be used for treatment of diseases caused by harmful substances existing in the body, that is, psychosis.
  • the adsorbent for oral administration according to the present invention contains the spherical activated carbon as an active ingredient when used as a therapeutic agent for kidney diseases.
  • the dosage depends on whether the subject of administration is a human or other animal, and varies depending on age, individual difference. In some cases, dosages outside the following range may be appropriate depending on the medical condition, etc.
  • the oral dosage for human subjects is 1 to 20 g per day, 3 to 4 times. It can be taken separately and further increased or decreased depending on the symptoms.
  • the dosage form can be powders, granules, tablets, dragees, capsules, suspensions, sticks, sachets or emulsions.
  • an enteric capsule can be used as required in addition to normal gelatin.
  • a tablet it is necessary that the tablet is unlocked into fine particles.
  • it can also be used in the form of a composite agent blended with other chemicals such as an aluminum gel and an electrolyte regulator such as silicaxate.
  • the bulk density is 0.30 to 0.46 g / mL
  • the specific surface area determined by the BET method is 2000 m 2 / g or more
  • the total acidic groups are less than 0.30 meq / g
  • the pore diameter is 20 to 10,000 nm.
  • the spherical activated carbon having a pore volume of 0.21 mL / g or less and a micropore volume ratio (Vm) of 1.0 or more is a conventionally known surface-modified spherical activated carbon or spherical activated carbon (that is, the bulk density is 0).
  • the bulk density is 0.30 to 0.46 g / mL
  • the specific surface area determined by the BET method is 2000 m 2 / g or more
  • the acidic group is less than 0.30 meq / g
  • the pore diameter is 20 to
  • a spherical activated carbon having a pore volume of 10,000 nm of 0.21 mL / g or less and a micropore volume ratio (Vm) of 1.0 or more
  • Vm micropore volume ratio
  • the density exceeds 0.46 g / mL
  • the specific surface area is less than 2000 m 2 / g
  • the total acidic groups are 0.30 meq / g or more
  • the pore volume with a pore diameter of 20 to 10,000 nm is 0
  • Vm micropore volume ratio
  • the spherical activated carbon used in the adsorbent for oral administration according to the present invention can be used in a method for preventing or treating kidney disease or liver disease. Therefore, the method for treating renal disease or liver disease according to the present invention is characterized in that the adsorbent for oral administration containing the spherical activated carbon is administered to a subject to be treated for renal disease or liver disease in an effective amount. .
  • the administration route, dosage, and administration interval of the spherical activated carbon can be appropriately determined according to the type of illness, the patient's age, sex, weight, symptom level, or administration method.
  • Spherical activated carbon for use in a method for treating kidney disease or liver disease
  • the spherical activated carbon used in the adsorbent for oral administration according to the present invention can be used in a method for preventing or treating kidney disease or liver disease.
  • the spherical activated carbon of the present invention is for use in a method for preventing or treating kidney disease or liver disease.
  • the amount of spherical activated carbon used in the prevention or treatment can be appropriately determined according to the type of illness, the age, sex, weight, symptom level, or administration method of the patient.
  • spherical activated carbon for the treatment of renal disease or liver disease for the manufacture of a medicament for treatment
  • the spherical activated carbon used in the adsorbent for oral administration according to the present invention is used for the manufacture of a medicament for the prevention or treatment of renal disease or liver disease.
  • Can be used. Therefore, the use of the present invention is the use of spherical activated carbon for the manufacture of a medicament for the prevention or treatment of kidney disease or liver disease.
  • the content of the spherical activated carbon in the preventive or therapeutic drug can be appropriately determined according to the type of disease, the age, sex, weight, symptom level, or administration method of the patient.
  • spherical activated carbon for treatment of renal disease or liver disease
  • the spherical activated carbon used for the adsorbent for oral administration according to the present invention can be used for the treatment of renal disease or liver disease. Therefore, the use of the present invention is the use of spherical activated carbon for the prevention or treatment of kidney disease or liver disease.
  • the amount of spherical activated carbon used in the prevention or treatment can be appropriately determined according to the type of illness, the age, sex, weight, symptom level, or administration method of the patient.
  • Example 1 4800 g of deionized water, 7.2 g of methylcellulose, and 1.0 g of sodium nitrite are placed in a 10 L polymerization can. 481 g of styrene and 57% divinylbenzene (57% divinylbenzene and 43% ethylvinylbenzene) 1119 g, 2,2′-azobis (2,4-dimethylvaleronitrile) 9.3 g, and 560 g of hexane as a porogen were added as appropriate, the inside of the system was replaced with nitrogen gas, and the two-phase system was stirred at 140 rpm. The mixture was heated to 55 ° C. and held for 20 hours.
  • the obtained resin was filtered, and hexane was removed from the resin by distillation under reduced pressure, and then dried under reduced pressure at 90 ° C. for 12 hours to obtain a spherical porous synthetic resin having an average particle size of 246 ⁇ m.
  • the specific surface area of the porous synthetic resin was about 240 m 2 / g.
  • the obtained spherical porous synthetic resin was charged into a reactor equipped with a sieve pan and subjected to infusibilization treatment in a vertical tubular furnace.
  • the infusible condition was that dry air was flowed from the lower part of the reaction tube to the upper part, and after heating up to 190 ° C., the temperature was raised from 190 ° C.
  • Example 2 In Example 1, instead of performing the activation treatment until the bulk density reaches 0.46 g / mL, except that the activation treatment is performed until the bulk density is 0.40 g / mL, the operation of Example 1 is repeated, Spherical activated carbon was obtained.
  • Example 3 In Example 1, instead of performing the activation treatment until the bulk density becomes 0.46 g / mL, except that the activation treatment is performed until the bulk density is 0.30 g / mL, the operation of Example 1 is repeated, Spherical activated carbon was obtained.
  • Example 4 Put spherical phenolic resin (trade name “Industrial Phenol Resin Resin Top (Marilyn HF-100, Manufacture No. 60303); manufactured by Gunei Chemical Co., Ltd.”) into a quartz vertical reaction tube with an eye plate and run under nitrogen gas flow The temperature was raised to 300 ° C. in 5 hours, raised to 700 ° C. in 2 hours, and held for 30 minutes. Thereafter, activation treatment was further performed in a nitrogen gas atmosphere containing water vapor at 850 ° C. to a bulk density of 0.40 g / mL to obtain spherical activated carbon.
  • spherical phenolic resin trade name “Industrial Phenol Resin Resin Top (Marilyn HF-100, Manufacture No. 60303); manufactured by Gunei Chemical Co., Ltd.”
  • Example 5 A 695 g petroleum pitch having a softening point of 210 ° C., an insoluble content of quinoline of 1% by weight or less, and an H / C atomic ratio of 0.63, and 305 g of naphthalene were charged into a pressure vessel with an inner volume of 3 L with a stirring blade at 180 ° C. After melt mixing, the mixture was cooled to 155 ° C. and extruded with a 0.75 mm nozzle to obtain a string-like molded body.
  • the string-like molded body was crushed, and a fraction having an opening of 150 ⁇ m to 212 ⁇ m was collected with a sieve, and the obtained crushed product was dissolved in 0.46% by weight of polyvinyl alcohol (saponification degree: 88%).
  • the solution was put into an aqueous solution, stirred and dispersed at 90 ° C. for 50 minutes to be spheroidized, cooled to 40 ° C. in 3 minutes, solidified pitch, and precipitated naphthalene crystals to obtain a spherical pitch formed body slurry.
  • naphthalene in the pitch formed body was extracted and removed with n-hexane, which was about 6 times the weight of the spherical pitch formed body.
  • the porous spherical pitch obtained in this manner was heated to 240 ° C. while passing through heated air using a fluidized bed, and maintained at 240 ° C. for 1 hour to oxidize the porous spherical pitch.
  • a spherical oxidation pitch was obtained.
  • activation treatment is performed at 850 ° C. to a bulk density of 0.38 g / mL in a nitrogen gas atmosphere containing water vapor using a fluidized bed to obtain spherical activated carbon. It was.
  • Example 1 instead of performing the activation treatment until the bulk density reaches 0.46 g / mL, except that the activation treatment is performed until the bulk density is 0.50 g / mL, the operation of Example 1 is repeated, Spherical activated carbon was obtained.
  • Example 2 instead of performing the activation treatment until the bulk density was 0.46 g / mL, the operation of Example 1 was repeated except that the activation treatment was performed until the bulk density was 0.25 g / mL. Since it was weak, it was crushed and spherical activated carbon could not be obtained.
  • Example 5 Petroleum pitch and naphthalene were melt-mixed at 180 ° C., and then cooled to 140 ° C. instead of 155 ° C., and the crushed material of the string-like formed body was 0.46 wt% polyvinyl. Instead of putting it in an aqueous solution in which alcohol is dissolved, it is put in an aqueous solution in which 0.23% by weight of polyvinyl alcohol is dissolved. Instead of doing this, the procedure of Example 5 was repeated except that it was cooled to 40 ° C. in 3 minutes. However, since the strength was weak, it was crushed and spherical activated carbon could not be obtained.
  • Comparative Example 4 The spherical activated carbon obtained in Comparative Example 1 was oxidized in a fluidized bed at 470 ° C. for 3 hours in air.
  • Pore volume The micropore pore volume of each spherical activated carbon obtained in the examples and comparative examples was determined by the SF method using the nitrogen adsorption method, and the pore volume having a pore diameter of 20 to 10,000 nm, The pore volume with a pore diameter of 7.5 to 15000 nm was determined by the mercury intrusion method.
  • Total acidic group 1 g of spherical activated carbon sample is added to 50 mL of 0.05 N NaOH solution, and 8 parts of shaker (“TRIPLE SHAKER NR-80” manufactured by Taitec Co., Ltd.) is used. This is the consumption of NaOH obtained by neutralization titration after filtering the spherical activated carbon sample after shaking for 48 hours at 37 ° C. with an amplitude of 3 cm and an amplitude of 76 cycles / min.
  • shaker (“TRIPLE SHAKER NR-80” manufactured by Taitec Co., Ltd.)
  • a sample solution was obtained.
  • the calibration curve was prepared by accurately dispensing an indoxyl potassium sulfate stock solution into volumetric flasks in amounts of 0 mL, 25 mL, 50 mL, 75 mL, and 100 mL, and measuring up to 100 mL with pH 7.4 phosphate buffer.
  • Tryptophan adsorption test With respect to the various spherical activated carbons and surface-modified spherical activated carbons obtained in Examples 1 to 5 and Comparative Examples 1, 4 and 5, a tryptophan adsorption test was carried out by the following method. After the spherical activated carbon sample was dried, 0.01 g of the dried sample was weighed and placed in a 50 mL screw mouth sample bottle. On the other hand, 100 mg of tryptophan and 6458 mg of sodium cholate were accurately weighed and dissolved by adding a phosphate buffer solution of PH 7.4 to make exactly 1000 mL (tryptophan stock solution) 50 mL of the above 50 mL screw mouth.
  • the mixture was shaken for 2 hours using a mix rotor (“Mix Rotor Variable VMR-5R” manufactured by As One Co., Ltd.) at 10 rpm and 37 ⁇ 1 ° C.
  • a sample solution was obtained.
  • the adsorbent for oral administration of the present invention can be used as an adsorbent for oral administration for the treatment or prevention of kidney disease, or as an adsorbent for treatment or prevention of liver disease.
  • renal diseases include chronic renal failure, acute renal failure, chronic pyelonephritis, acute pyelonephritis, chronic nephritis, acute nephritic syndrome, acute progressive nephritic syndrome, chronic nephritic syndrome, nephrotic syndrome, nephrosclerosis, interstitial Nephritis, ureteropathy, lipoid nephrosis, diabetic nephropathy, renovascular hypertension, or hypertension syndrome, or secondary kidney disease associated with the above-mentioned primary disease, further, mild renal failure before dialysis, It can also be used to improve the condition of mild renal failure before dialysis and to improve the condition during dialysis ("clinical nephrology" Asakura Shoten
  • Liver diseases include, for example, fulminant hepatitis, chronic hepatitis, viral hepatitis, alcoholic hepatitis, liver fibrosis, liver cirrhosis, liver cancer, autoimmune hepatitis, drug allergic liver disorder, primary biliary cirrhosis, vibration Mental, encephalopathy, metabolic abnormalities, or functional abnormalities can be mentioned.
  • it can be used for treatment of diseases caused by harmful substances existing in the body, that is, psychosis.
  • this invention was demonstrated along the specific aspect, the deformation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Analytical Chemistry (AREA)
  • Epidemiology (AREA)
  • Inorganic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Toxicology (AREA)
  • Urology & Nephrology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

 本発明の目的は、胆汁酸の存在下において、トリプトファン又はインドキシル硫酸を大量に吸着することのできる経口投与用吸着剤を提供することである。 前記課題は、嵩密度が0.30~0.46g/mLであり、BET法により求められる比表面積が2000m/g以上であり、全酸性基が0.30meq/g未満であり、細孔直径20~10000nmの細孔容積が0.21mL/g以下であり、そして式(1)Vm=(V2.0-V1.1)/(V1.1-V0.64)(1)[式中、V2.0、V1.1、及びV0.64は、それぞれ窒素吸着量からSF法により計算された細孔直径2.0nm以下、1.1nm以下、及び0.64nm以下の累積細孔容積である]で求められるミクロ孔容積比(Vm)が1.0以上である球状活性炭を含むことを特徴とする、経口投与用吸着剤によって解決することができる。

Description

経口投与用吸着剤並びに腎疾患治療剤及び肝疾患治療剤
 本発明は、嵩密度が小さく、比表面積が大きく、全酸性基が0.30meq/g未満であり、細孔直径20~10000nmの細孔容積が0.21mL/g以下であり、ミクロ孔(2nm以下の細孔)の中でも細孔直径1.1nm以上の細孔容積の割合が高い球状活性炭を含む経口投与用吸着剤に関する。また、本発明は、前記の経口投与用吸着剤を有効成分とする腎疾患治療又は予防剤、及び肝疾患治療又は予防剤に関する。本発明による経口投与用吸着剤は、高濃度の胆汁酸存在下において、体内の有毒な毒性物質(Toxin)であるインドキシル硫酸及びその前駆体であるトリプトファンに対する吸着能が高く、従って、経口摂取から体外排出までの体内滞留期間内において、多くの毒性物質を吸着することができる。
 腎機能や肝機能の欠損患者らは、それらの臓器機能障害に伴って、血液中等の体内に有害な毒性物質が蓄積したり生成したりするので、尿毒症や意識障害等の脳症をひきおこす。これらの患者数は年々増加する傾向を示しているため、これら欠損臓器に代わって毒性物質を体外へ除去する機能をもつ臓器代用機器あるいは治療薬の開発が重要な課題となっている。現在、人工腎臓としては、血液透析による有毒物質の除去方式が最も普及している。しかしながら、このような血液透析型人工腎臓では、特殊な装置を用いるために、安全管理上から専門技術者を必要とし、また血液の体外取出しによる患者の肉体的、精神的及び経済的負担が高いなどの欠点を有していて、必ずしも満足すべきものではない。
 これらの欠点を解決する手段として、経口的な服用が可能で、腎臓や肝臓の機能障害を治療することができる経口吸着剤が開発され、利用されている(特許文献1)。その経口吸着剤は、特定の官能基を有する多孔性の球形炭素質物質(すなわち、球状活性炭)からなり、生体に対する安全性や安定性が高く、同時に腸内での胆汁酸の存在下でも有毒物質(すなわち、β-アミノイソ酪酸、γ-アミノ-n-酪酸、ジメチルアミン、及びオクトパミン)の吸着性に優れ、しかも、消化酵素等の腸内有益成分の吸着が少ないという有益な選択吸着性を有し、また、便秘等の副作用の少ない経口治療薬として、例えば、肝腎機能障害患者に対して広く臨床的に利用されている。なお、前記特許文献1に記載の吸着剤は、石油ピッチなどのピッチ類を炭素源とし、球状活性炭を調製した後、酸化処理、及び還元処理を行うことにより製造されていた。
 一方、慢性腎不全患者では、血清中のインドキシル硫酸濃度が、正常者の約60倍に増加する場合があることが知られており、前記特許文献1に記載の経口吸着剤の投与によって、前記の血清中インドキシル硫酸濃度が低下し、腎不全の進行が遅延されることも知られている(非特許文献1及び2)。
特公昭62-11611号公報 特開2006-131461号公報 特開2006-15334号公報 特開2011-37749号公報
日腎誌,第XXXII巻第6号(1990)第65-71頁 臨床透析,Vol.14,No.4(1998),第433-438頁
 球状活性炭を含む経口吸着剤においては、毒性物質を吸着することがきわめて重要な特性であるが、特に、腸内環境において、慢性腎不全患者における毒性物質であるインドキシル硫酸及びその前駆体であるトリプトファンを、できる限り大量にしかも迅速に吸着・除去することが重要である。すなわち、人の腸内には様々な物質が大量に存在し、特に大量の胆汁酸(15mM)が存在している。従って、大量の胆汁酸が存在する小腸内における毒性物質の吸着能力に優れた球状活性炭が望ましい。
 本発明の目的は、胆汁酸の存在下において、トリプトファン又はインドキシル硫酸を大量に吸着することのできる経口投与用吸着剤を提供することである。
 本発明者は、高濃度の胆汁酸共存下において、大量の有害物質の吸着・除去が可能な経口吸着剤を鋭意開発していたところ、嵩密度が小さく、比表面積が大きく、全酸性基が0.30meq/g未満であり、細孔直径20~10000nmの細孔容積が0.21mL/g以下であり、ミクロ孔(2nm以下の細孔)の中でも細孔直径1.1nm以上の細孔容積の割合が高い球状活性炭によって、胆汁酸共存下においても優れた吸着能力を示す経口吸着剤が得られることを見出した。本発明者が見出した前記の球状活性炭は、高濃度の胆汁酸存在下においても、多量の有害物質(特には、インドキシル硫酸及びその前駆体であるトリプトファン)を吸着することが可能であり、服用量を減少させることができる。
 本発明は、こうした知見に基づくものである。
 従って、本発明は、
[1]嵩密度が0.30~0.46g/mLであり、BET法により求められる比表面積が2000m/g以上であり、全酸性基が0.30meq/g未満であり、細孔直径20~10000nmの細孔容積が0.21mL/g以下であり、そして
式(1)
Vm=(V2.0-V1.1)/(V1.1-V0.64)   (1)
[式中、V2.0、V1.1、及びV0.64は、それぞれ窒素吸着量からSF法により計算された細孔直径2.0nm以下、1.1nm以下、及び0.64nm以下の累積細孔容積である]で求められるミクロ孔容積比(Vm)が1.0以上である球状活性炭を含むことを特徴とする、経口投与用吸着剤、
[2]前記球状活性炭の平均粒子径が50~200μmである、[1]に記載の経口投与用吸着剤、
[3]前記球状活性炭が、架橋ビニル樹脂を炭素源として用いて調製された球状活性炭である、[1]又は[2]に記載の経口投与用吸着剤、
[4][1]~[3]のいずれかに記載の経口投与用吸着剤を有効成分とする、腎疾患治療又は予防剤、及び
[5][1]~[3]のいずれかに記載の経口投与用吸着剤を有効成分とする、肝疾患治療又は予防剤
に関する。
 更に、本明細書は、
[6][1]~[3]のいずれかに記載の経口投与用吸着剤を、腎疾患又は肝疾患の治療対象に有効量で投与する、腎疾患又は肝疾患の予防又は治療方法、
[7]腎疾患又は肝疾患の治療(方法)における使用のための、
嵩密度が0.30~0.46g/mLであり、BET法により求められる比表面積が2000m/g以上であり、全酸性基が0.30meq/g未満であり、細孔直径20~10000nmの細孔容積が0.21mL/g以下であり、そして
式(1)
Vm=(V2.0-V1.1)/(V1.1-V0.64)   (1)
[式中、V2.0、V1.1、及びV0.64は、それぞれ窒素吸着量からSF法により計算された細孔直径2.0nm以下、1.1nm以下、及び0.64nm以下の累積細孔容積である]で求められるミクロ孔容積比(Vm)が1.0以上である球状活性炭、
[8]前記球状活性炭の平均粒子径が50~200μmである、[7]に記載の球状活性炭、
[9]前記球状活性炭が、架橋ビニル樹脂を炭素源として用いて調製された[7]又は[8]に記載の球状活性炭、
[10]腎疾患又は肝疾患の予防又は治療用医薬の製造のための、
嵩密度が0.30~0.46g/mLであり、BET法により求められる比表面積が2000m/g以上であり、全酸性基が0.30meq/g未満であり、細孔直径20~10000nmの細孔容積が0.21mL/g以下であり、そして
式(1)
Vm=(V2.0-V1.1)/(V1.1-V0.64)   (1)
[式中、V2.0、V1.1、及びV0.64は、それぞれ窒素吸着量からSF法により計算された細孔直径2.0nm以下、1.1nm以下、及び0.64nm以下の累積細孔容積である]で求められるミクロ孔容積比(Vm)が1.0以上である球状活性炭の使用、
[11]前記球状活性炭の平均粒子径が50~200μmである、[10]に記載の球状活性炭の使用、
[12]前記球状活性炭が、架橋ビニル樹脂を炭素源として用いて調製された[10]又は[11]に記載の球状活性炭の使用、
[13]腎疾患又は肝疾患の予防又は治療のための、
嵩密度が0.30~0.46g/mLであり、BET法により求められる比表面積が2000m/g以上であり、全酸性基が0.30meq/g未満であり、細孔直径20~10000nmの細孔容積が0.21mL/g以下であり、そして
式(1)
Vm=(V2.0-V1.1)/(V1.1-V0.64)   (1)
[式中、V2.0、V1.1、及びV0.64は、それぞれ窒素吸着量からSF法により計算された細孔直径2.0nm以下、1.1nm以下、及び0.64nm以下の累積細孔容積である]で求められるミクロ孔容積比(Vm)が1.0以上である球状活性炭の使用、
[14]前記球状活性炭の平均粒子径が50~200μmである、[13]に記載の球状活性炭の使用、
[15]前記球状活性炭が、架橋ビニル樹脂を炭素源として用いて調製された[13]又は[14]に記載の球状活性炭の使用、
を開示する。  
 本発明による経口投与用吸着剤は、嵩密度が小さく、比表面積が大きく、全酸性基が少さく、細孔直径20~10000nmの細孔容積が0.21mL/g以下であり、ミクロ孔(2nm以下の細孔)の中でも細孔直径1.1nm以上の細孔容積の割合が高い球状活性炭を用いることにより、胆汁酸存在下における毒性物質の吸着能が高いので、腸管内において、有毒な毒性物質を極めて迅速に吸着することができる。従って、腎疾患治療又は予防剤、あるいは肝疾患治療又は予防剤として有効である。更に、服用量を従来の経口投与用吸着剤よりも減少させることができる。
 特に、嵩密度が小さいので、単位重量当たりの粒子個数が多く、広く分散するため、毒性物質の経口投与用吸着剤までの移動距離が短くなることで、有毒な毒性物質を極めて迅速に吸着することができる。更に、単位重量当たりの粒子数が増加することにより、毒性物質が吸着するために通過しなくてはならない単位重量当たりの粒子外表面積が増加することにより、有毒な毒性物質を極めて迅速に吸着することができる。
実施例1~3及び比較例1で得られた球状活性炭の胆汁酸存在下におけるインドキシル硫酸カリウム吸着試験の結果を示した図である。 実施例1~3及び比較例1で得られた球状活性炭の胆汁酸存在下におけるトリプトファン吸着試験の結果を示した図である。
[1]経口投与用吸着剤
 本発明による経口投与用吸着剤として用いる球状活性炭は、前記のとおり、特定範囲の嵩密度、比表面積、全酸性基、細孔直径20~10000nmの細孔容積、及びミクロ孔容積比を有するものである。すなわち、嵩密度が0.30~0.46g/mLであり、BET法により求められる比表面積が2000m/g以上であり、全酸性基が0.30meq/g未満であり、細孔直径20~10000nmの細孔容積が0.21mL/g以下であり、そして式(1)
Vm=(V2.0-V1.1)/(V1.1-V0.64)   (1)
[式中、V2.0、V1.1、及びV0.64は、それぞれ窒素吸着量からSF法により計算された細孔直径2.0nm以下、1.1nm以下、及び0.64nm以下の累積細孔容積である]で求められるミクロ孔容積比(Vm)が1.0以上である。
(嵩密度)
 本発明に用いる球状活性炭の嵩密度は、0.30~0.46g/mLである。
 嵩密度の上限は、好ましくは0.44g/mL未満であり、より好ましくは0.42g/mL未満であり、最も好ましくは0.40g/mL以下である。嵩密度が小さい球状活性炭が、胆汁酸共存下におけるインドキシル硫酸及びその前駆体であるトリプトファンの吸着能が優れているからである。また、嵩密度の下限は、0.30g/mLであり、より好ましくは0.31g/mLであり、最も好ましくは0.32g/mLである。嵩密度の小さい球状活性炭は有害物質の吸着能が優れているが、一方で嵩密度が小さくなるにつれて、球状活性炭の収率が悪くなるため、活性炭の製造における経済性が低下するからである。また、嵩密度が低下しすぎると、球状活性炭の強度が低下することにより破砕してしまい、球状を保てないため好ましくない。なお、本明細書において嵩密度ρBとは、容器に球状活性炭を充填したときの球状活性炭の乾燥重量W(g)を充填された球状活性炭の体積V(mL)で除した値であり、以下の計算式から得ることができる。
Figure JPOXMLDOC01-appb-M000001
 球状活性炭の嵩密度は、賦活の程度を示す良い指標である。すなわち、嵩密度が小さいほど、賦活が進んでいることを示す。球状活性炭の製造工程において、後述する水蒸気賦活では、賦活初期に比較的小さな細孔が形成され、賦活が進むに従って細孔径が拡大し、その結果嵩密度が低下する。
(比表面積)
 球状活性炭の比表面積は、BET法又はラングミュア(Langmuir)法により求めることができる。本発明による経口投与用吸着剤として用いる球状活性炭の比表面積は、BET法により求められる比表面積(以下「SSA」と省略することがある)が2000m/g以上である。SSAが2000m/gより小さい球状活性炭では、胆汁酸存在下における毒性物質の吸着性能が低くなるので好ましくない。SSAの上限は特に限定されるものではないが、嵩密度及び強度の観点から、SSAは、3000m/g以下であることが好ましい。
(全酸性基)
 本発明による経口投与用吸着剤として用いる球状活性炭は、表面非改質の球状活性炭である。ここで、表面非改質球状活性炭とは、全酸性基が0.30meq/g未満の球状活性炭を意味する。これに対して、表面改質球状活性炭とは、全酸性基が0.30meq/g以上の球状活性炭を意味する。表面非改質球状活性炭は、後述するとおり、例えば、炭素前駆体を熱処理した後に、賦活処理を行うことによって得られる多孔質体であり、その後の酸化処理及び還元処理による表面改質処理を実施していない球状活性炭、あるいは、前記賦活処理の後に非酸化性雰囲気での熱処理を実施して得られる球状活性炭である。一方、表面改質球状活性炭は、炭素前駆体を熱処理した後に、賦活処理を行い、更にその後で、酸化処理及び還元処理による表面改質処理を実施することによって得られる多孔質体であり、酸及び塩基に対して適度な相互作用を示すことができる。
 本発明の経口投与用吸着剤に用いる球状活性炭は、表面非改質球状活性炭であり、従って、全酸性基は、0.30meq/g未満であり、好ましくは0.25meq/g以下、より好ましくは0.20meq/g以下である。
(細孔容積)
 本発明の経口投与用吸着剤に用いる球状活性炭は、細孔直径20~10000nmの細孔容積が0.21mL/g以下であり、より好ましくは0.20mL/g以下であり、更に好ましくは0.19mL/g以下である。細孔直径20~10000nmの細孔容積が0.21mL/gを超えると消化酵素等の有用物質の吸着量が増加することがあるので好ましくない。下限は、特に限定されるものではないが、0.04mL/g以上が好ましい。
 細孔直径20~10000nmの細孔容積は、水銀圧入法を用いて測定する。
 本発明の経口投与用吸着剤に用いる球状活性炭は、細孔直径7.5~15000nmの細孔容積が0.01mL/g以上であり、好ましくは0.1mL/g以上であり、より好ましくは0.2mL/g以上であり、更に好ましくは0.4mL/g以上であり、最も好ましくは0.5mL/g以上である。細孔直径7.5~15000nmの細孔容積が大きいことにより、有毒物質の吸着速度が優れている。また、細孔直径7.5~15000nmの細孔容積の上限は特に限定されるものではないが、1.0mL/g以下が好ましい。細孔直径7.5~15000nmの細孔容積が1.0mL/gを超えると、消化酵素等の有用物質の吸着量が増加してしまうことがあるので好ましくない。
(ミクロ孔容積比)
 IUPAC(International Union of Pure and Applied Chemistry)では、2nm以下の細孔をミクロ孔、2~50nmをメソ孔、50nm以上をマクロ孔と規定している。本発明による経口投与用吸着剤として用いる球状活性炭は、ガス賦活により比較的小さなミクロ孔を主に形成している。そして、そのミクロ孔が形成されることによって、球状活性炭が低密度化し、比表面積を増加させて、それによって、胆汁酸共存下における毒性物質の吸着性能が高くなっている。
 2nm以下のミクロ孔の細孔容積は、窒素吸着法により測定することが可能であり、Saito-Foley法(以下、「SF法」と称する)、Horverth-Kawazoe法、及びDensity Functional Theory法などにより解析することができるが、本発明においては、細孔形状をシリンダー状と仮定し、解析を行うSF法によって得られた細孔容積を用いる。
 具体的には、本発明の経口投与用吸着剤に用いる球状活性炭においては、式(1)
Vm=(V2.0-V1.1)/(V1.1-V0.64)   (1)
[式中、V2.0、V1.1、及びV0.64は、それぞれ窒素吸着量からSF法により計算された細孔直径2.0nm以下、1.1nm以下、及び0.64nm以下の累積細孔容積である]で求められるミクロ孔容積比(Vm)が1.0以上であり、好ましくは、1.1以上であり、より好ましくは1.2以上である。すなわち、本発明の経口投与用吸着剤に用いる球状活性炭は、2nm以下の細孔であるミクロ孔において、細孔直径1.1nm~2nmの細孔容積の割合が高い。前記ミクロ孔容積比が1.0以下では、比較的大きな胆汁酸分子が細孔閉塞を起こしてしまい、分子サイズより小さい尿毒症物質やその前駆体の吸着が阻害されてしまうため好ましくない。そして、ミクロ孔容積比が増大すると共に、比較的大きな胆汁酸分子が細孔閉塞を起こすことがなくなり、分子サイズのより小さい尿毒症物質やその前駆体の吸着に優れる。従って、上限は特に限定されるものではないが、1.5以下が好ましい。
(直径)
 本発明による経口投与用吸着剤として用いる球状活性炭における直径は、特に限定されるものではないが、好ましくは0.01~1mmであり、より好ましくは0.02~0.8mmである。球状活性炭の直径が0.01mm未満になると、球状活性炭の外表面積が増加し、消化酵素等の有益物質の吸着が起こり易くなるので好ましくない。また、直径が1mmを超えると、球状活性炭の内部への毒性物質の拡散距離が増加し、吸着速度が低下するので好ましくない。
(平均粒子径)
 本明細書において平均粒子径とは、体積基準の粒度累積線図において粒度累積率50%における粒子径(Dv50)を意味する。
 本発明による経口投与用吸着剤として用いる球状活性炭における平均粒子径の範囲は、特に限定されるものではないが、0.01~1mmである。球状活性炭の平均粒子径が0.01mm未満になると、球状活性炭の外表面積が増加し、消化酵素等の有益物質の吸着が起こり易くなるので好ましくない。また平均粒子径が1mmを超えると球状活性炭の内部への毒性物質の拡散距離が増加し、吸着速度が低下するため好ましくない。平均粒子径は好ましくは、0.02~0.8mmであり、特に平均粒子径が50~200μmである球状活性炭は、初期吸着能に優れており、一般的な上部小腸管内滞留時間内において、生体内の有毒な毒性物質を極めて迅速に吸着することができるからである。平均粒子径のより好ましい範囲は50~170μmであり、更に好ましい範囲は50~150μmである。
(粒度分布)
 本発明による経口投与用吸着剤として用いる球状活性炭は、その粒度分布が狭いことが好ましい。例えば、個数基準平均の長さ平均粒子径D(=ΣnD/Σn)と、重量基準分布の重量平均粒子径D(=Σ(nD)/Σ(nD))との比(D/D)によって表した場合、本発明による経口投与用吸着剤として用いる球状活性炭は、前記の比(D/D)が、好ましくは3以下、より好ましくは2以下、更に好ましくは1.5以下である。ここで、前記の比(D/D)が1に近いほど粒度分布が狭いことを示している。なお、前記の計算式で、Dは測定粒子径区分の代表粒子径であり、nは個数である。
(作用)
 従来、前記の嵩密度、比表面積、全酸性基、細孔容積、及びミクロ孔容積比を有する球状活性炭が、胆汁酸存在下において毒性物質(特に、慢性腎不全患者における毒性物質であるインドキシル硫酸及びその前駆体であるトリプトファン)の吸着能が高いことは、全く知られていなかった。例えば、前記特許文献1には、胆汁酸塩の0.5重量%水溶液中において、β-アミノイソ酪酸、γ-アミノ-n-酪酸、ジメチルアミン、及びオクトパミンを吸着することのできる炭素質吸着剤が記載されている。しかしながら、特許文献1における実施例1~3の炭素質吸着剤は、900℃で2時間の賦活を行っている。このような温度条件及び時間条件の賦活では、比表面積は2000m/g未満になると考えられ、特許文献1に記載の球状活性炭は、本発明の球状活性炭と比表面積において異なるものである。
 また、特許文献1に記載の球状活性炭は、酸化還元を行った表面改質球状活性炭であるため、本発明の球状活性炭と、その全酸性基の数値が異なっている。
 また、特許文献2には、充填密度が0.3g/mL以上である活性炭が一般的に記載されている(例えば、請求項1)。そして、実施例及び比較例には、0.306~0.460g/mLの嵩密度(充填密度)を有する活性炭が記載されている。これらの活性炭は、BET比表面積が記載されておらず、2000m/g以上であるか否かは不明であり、細孔直径20~10000nmの細孔容積が0.21mL/g以下であるか否かも不明であるが、ミクロ孔容積比は1.0以下であることは明らかであり、本発明の経口投与用吸着剤として用いる球状活性炭とは、物性が全く異なるものである。しかも、特許文献2には、嵩密度が小さく、比表面積が大きく、ミクロ孔容積比が1.0以上であり、細孔直径20~10000nmの細孔容積が0.21mL/g以下である球状活性炭を含む経口投与用吸着剤が胆汁酸存在下において毒性物質の吸着能が高いことは、全く記載されていない。
 更に、特許文献3には、充填密度が0.345~0.455g/mLである活性炭が実施例(実施例1、3、5、9、10、及び13など)に記載されている。この活性炭は、全酸性基、及びミクロ孔容積比が不明であるが、比表面積又は細孔直径20~10000nmの細孔容積が、本発明の経口投与用吸着剤として用いる球状活性炭とは、全く異なるものである。
 更に、特許文献4には、充填密度が0.42及び0.44g/mLである活性炭が実施例1及び2に記載されている。この活性炭は、ミクロ孔容積比が不明であるが、比表面積又は全酸性基が、本発明の経口投与用吸着剤として用いる球状活性炭とは、全く異なるものである。しかも、特許文献3及び4には、嵩密度が小さく、比表面積が大きく、ミクロ孔容積比が1.0以上であり、細孔直径20~10000nmの細孔容積が0.21mL/g以下である球状活性炭を含む経口投与用吸着剤が胆汁酸存在下において毒性物質の吸着能が高いことは、全く記載されていない。
 本発明による経口投与用吸着剤が前記のような優れた効果を有する理由は、現在のところ明確ではないが、以下のように推定することもできる。もっとも、本発明は、以下の推定に限定されるものではない。
 生体内には高濃度の胆汁酸が存在している。胆汁酸とは、水に溶けにくい脂質の吸収を手助けするための界面活性剤の一種である。従って、胆汁酸が脂質をミセル化するためには臨界ミセル濃度以上の濃度が必要であり、人の小腸内には飽食時で15mMの濃度で存在している。胆汁酸の代表例としては、コール酸ナトリウム、デオキシコール酸ナトリウム、タウロコール酸ナトリウム、グリココール酸ナトリウムなどであり、分子量400~600程度の比較的大きな分子である。また、胆汁酸分子同士が会合しミセル化すると、ミセルサイズは数nmと大きくなり、体内の有毒な毒性物質(Toxin)として注目されているインドキシル硫酸やその前駆体であるトリプトファンと比較して、大きなサイズで存在していることになる。本発明の球状活性炭は、特定の嵩密度、比表面積を有することにより、尿毒症毒素及びその前駆体の高い吸着容量を有し、かつミクロ孔容積比が高いことにより、大きなサイズの胆汁酸分子や胆汁酸ミセルが細孔閉塞などの吸着阻害を引き起こすことなく、小さいサイズの尿毒症毒素であるインドキシル硫酸や、その前駆体であるトリプトファンなどの吸着を可能とするため優れた効果を有するものと考える。また、細孔直径20~10000nmの細孔容積が低いことから、消化酵素等の有用物質の吸着を防止できる。
(炭素源)
 本発明の経口投与用吸着剤として用いる球状活性炭は、炭素源として、任意の炭素含有材料を用いることができる。使用可能な炭素含有材料としては、例えば、合成樹脂又はピッチを用いることができる。合成樹脂としては、熱溶融性樹脂又は熱不融性樹脂を用いることができる。ここで、熱溶融性樹脂とは、不融化処理を行わずに賦活処理を行うと、温度上昇に伴って溶融・分解してしまう樹脂であり、活性炭を得ることができない樹脂である。しかしながら、予め不融化処理を実施してから賦活処理を行うと、活性炭とすることができる。これに対して、熱不融性樹脂とは、不融化処理を行わずに賦活処理を行っても、温度上昇に伴って溶融することなく炭素化が進み、活性炭を得ることができる樹脂である。なお、不融化処理とは、後述するように、例えば、酸素を含有する雰囲気にて、150℃~400℃で酸化処理を行うことである。
 熱溶融性樹脂の代表例は、熱可塑性樹脂であり、例えば、架橋ビニル樹脂を挙げることができる。一方、熱不融性樹脂の代表例は、熱硬化性樹脂であり、フェノール樹脂又はフラン樹脂を挙げることができる。公知の熱可塑性樹脂又は熱硬化性樹脂の中から、球状体を形成することのできる任意の熱可塑性樹脂又は熱硬化性樹脂を使用することができる。なお、架橋ビニル樹脂から球状活性炭を得る場合には、前記の不融化処理が必要であるのに対し、架橋ビニル樹脂に官能基を付与することによって製造されるイオン交換樹脂から球状活性炭を得る場合には、前記の不融化処理が不要である。これは、官能基付与処理や導入された官能基によって架橋ビニル樹脂が熱溶融性樹脂から熱不融性樹脂に変性されるものと考えられる。すなわち、架橋ビニル樹脂は本明細書における熱溶融性樹脂に含まれるのに対し、イオン交換樹脂は、本明細書における熱不融性樹脂に含まれる。
 本発明に用いる球状活性炭の炭素源は、特に限定されるものではないが、取り扱いが容易であることから合成樹脂を用いることが好ましい。合成樹脂としては、熱不融性樹脂である熱硬化性樹脂(例えば、フェノール樹脂、及びフラン樹脂)及びイオン交換樹脂;並びに熱溶融性樹脂である熱可塑性樹脂(例えば、架橋ビニル樹脂)を挙げることができる。ここで熱硬化性樹脂は球状活性炭に中空が形成され易くなり、強度が弱く破砕したとき腸内に突き刺さる危険性がある。また、イオン交換樹脂は硫黄分などを含むことから経口投与に用いる場合は、注意が必要である。従って、球状活性炭の炭素源としては、熱可塑性樹脂(例えば、架橋ビニル樹脂)を用いることが、より好ましい。
(熱溶融性樹脂)
 熱溶融性樹脂(例えば、架橋ビニル樹脂)を炭素源として用いる場合には、ピッチ類を用いる従来の製造方法と実質的に同様の操作を利用することができる。例えば、熱溶融性樹脂からなる前記球状体は、熱処理により軟化して形状が非球形に変形するか、あるいは球状体同士が融着するので、賦活処理の前に、不融化処理として、酸化剤を用いて、150℃~400℃で酸化処理を行うことにより軟化を抑制することができる。酸化剤としてはO、あるいはこれらを空気又は窒素等で希釈した混合ガスを用いることができる。
 熱溶融性樹脂である架橋ビニル樹脂は、非酸化性ガス雰囲気中での熱処理により軟化、溶融して炭素化収率が10%に満たないが、不融化処理として酸素を含有する雰囲気にて、150℃~400℃で酸化処理を行うことにより軟化、溶融することなく、30%以上の高い炭素化収率で球状の炭素質材料を得るができ、これを賦活処理を行うことにより球状活性炭を得ることができる。
 また、不融処理後の熱溶融性樹脂の球状体を熱処理すると、多くの熱分解ガスなどが発生する場合には、賦活操作を行う前に適宜予備焼成を行い、予め熱分解生成物を除去することができる。
 続いて、炭素と反応性を有する気流(例えばスチーム又は炭酸ガス)中で、700~1000℃の温度で賦活処理して、球状活性炭を得ることができる。本明細書において、「活性炭」とは、球状の熱溶融性樹脂などの炭素前駆体を熱処理した後に、賦活処理を行うことによって得られる多孔質体を意味し、「球状活性炭」とは、球状で比表面積が100m/g以上であるものを意味する。出発材料として用いる熱溶融性樹脂の前記球状体の平均粒子径は、特に限定されないが、約0.02~1.5mmであることが好ましく、50μm~800μmがより好ましく、70μm~500μmが更に好ましい。
 出発原料として用いる前記の架橋ビニル樹脂は、例えば、乳化重合、塊状重合、若しくは溶液重合によって得られる球状ポリマー、又は好ましくは懸濁重合によって得られる球状ポリマーを用いることができる。直径50μm以上の球状の架橋ビニル樹脂を均一に不融化するには、架橋ビニル樹脂に予め細孔形成を行うことが不可欠である。樹脂の細孔形成は、重合時にポロゲンを添加することにより可能となる。架橋ビニル樹脂を均一に不融化するために必要な、架橋ビニル樹脂の表面積は10m/g以上が好ましく、更に好ましくは50m/g以上である。
 例えば、架橋ビニル樹脂を懸濁重合によって調製する場合には、ビニル系モノマー、架橋剤、ポロゲン及び重合開始剤を含む有機相を、分散安定剤を含有する水系分散媒体中に添加し、攪拌混合により水相中に懸濁された多数の有機液滴を形成した後、加熱して有機液滴中のモノマーを重合させることにより、球状の架橋ビニル樹脂を調製することができる。
 ビニル系モノマーとしては、球形に成型することができる任意のビニル系モノマーを用いることができ、例えば、芳香族ビニル系モノマー、例えば、スチレン、あるいはビニル基水素やフェニル基水素が置換されたスチレン誘導体、あるいはフェニル基のかわりに複素環式あるいは多環式化合物がビニル基に結合した化合物などを用いることができる。芳香族ビニル系モノマーとしては、より具体的には、α-あるいはβ-メチルスチレン、α-あるいはβ-エチルスチレン、メトキシスチレン、フェニルスチレン、あるいはクロロスチレンなど、あるいは、o-、m-、あるいはp-メチルスチレン、エチルスチレン、メトキシスチレン、メチルシリルスチレン、ヒドキロシスチレン、クロロスチレン、シアノスチレン、ニトロスチレン、アミノスチレン、カルボキシスチレン、あるいはスルホキシスチレン、スチレンスルホン酸ソーダなど、あるいは、ビニルピリジン、ビニルチオフェン、ビニルピロリドン、ビニルナフタレン、ビニルアントラセン、又はビニルビフェニル等を挙げることができる。また、脂肪族ビニル系モノマーも使用することができ、具体的には、例えば、エチレン、プロピレン、イソブチレン、ジイソブチレン、塩化ビニル、アクリル酸エステル、メタクリル酸エステル、酢酸ビニルなどのビニルエステル類、ビニルメチルケトン、ビニルエチルケトンなどのビニルケトン類、アクロレイン、メタアクロレインなどのビニルアルデヒド類、あるいは、ビニルメチルエーテル、又はビニルエチルエーテルなどのビニルエーテル類、アクリロニトリル、エチルアクリロニトリル、ジフェニルアクリロニトリル、クロロアクリロニトリルなどのビニルニトリル類を挙げることができる。
 また、架橋剤としては、前記のビニル系モノマーの架橋化に用いることができる任意の架橋剤を用いることができ、例えば、ジビニルベンゼン、ジビニルピリジン、ジビニルトルエン、ジビニルナフタレン、ジアリルフタラート、エチレングリコールジアクリラート、エチレングリコールジメチラート、ジビニルキシレン、ジビニルエチルベンゼン、ジビニルスルホン、グリコール又はグリセロールのポリビニル又はポリアリルエーテル類、ペンタエリトリトールのポリビニル又はポリアリルエーテル類、グリコールのモノ又はジチオ誘導体のポリビニル又はポリアリルエーテル類、あるいはレゾルシノールのポリビニル又はポリアリルエーテル類、ジビニルケトン、ジビニルスルフィド、アリルアクリラート、ジアリルマレアート、ジアリルフマラート、ジアリルスクシナート、ジアリルカルボナート、ジアリルマロナート、ジアリルオキサラート、ジアリルアジパート、ジアリルセバサート、トリアリルトリカルバリラート、トリアリルアコニタート、トリアリルシトラート、トリアリルホスファート、N,N’-メチレンジアクリルアミド、1,2-ジ(α-メチルメチレンスルホンアミド)エチレン、トリビニルベンゼン、トリビニルナフタレン、ポリビニルアントラセン、あるいはトリビニルシクロヘキサンを用いることができる。特に好ましい架橋剤の例に含まれるものは、ポリビニル芳香族炭化水素(例えば、ジビニルベンゼン)、グリコールトリメタクリラート(例えば、エチレングリコールジメタクリラート)、又はポリビニル炭化水素(例えば、トリビニルシクロヘキサン)である。ジビニルベンゼンは、その熱分解特性が優れているので、最も好ましい。
 適当なポロゲンとしては、炭素原子数4~10のアルカノール(例えば、n-ブタノール、sec-ブタノール、2-エチルヘキサノール、デカノール、又は、4-メチル-2-ペンタノール)、炭素原子数が少なくとも7のアルキルエステル(例えば、n-ヘキシルアセタート、2-エチルヘキシルアセタート、メチルオレアート、ジブチルセバサート、ジブチルアジパート、又はジブチルカルボナート)、炭素原子数4~10のアルキルケトン(例えば、ジブチルケトン又はメチルイソブチルケトン)、又はアルキルカルボン酸(例えば、ヘプタン酸)、芳香族炭化水素(例えば、トルエン、キシレン、又はベンゼン)、高級飽和脂肪族炭化水素(例えば、ヘキサン、ヘプタン、又はイソオクタン)、あるいは環式脂肪族炭化水素(例えば、シクロヘキサン)を挙げることができる。
 重合開始剤としては、特に限定されず、この分野で一般に使用されているものを使用することができるが、重合性単量体に可溶性である油溶性重合開始剤が好ましい。重合開始剤としては、例えば、過酸化ジアルキル、過酸化ジアシル、パーオキシエステル、パーオキシジカーボネート、又はアゾ化合物を挙げることができる。より具体的には、例えば、メチルエチルパーオキサイド、ジ-t-ブチルパーオキサイド、ジクミルパーオキサイドなどの過酸化ジアルキル;イソブチルパーオキサイド、ベンゾイルパーオキサイド、2,4-ジクロロベンゾイルパーオキサイド、3,5,5-トリメチルヘキサノイルパーオキサイドなどの過酸化ジアシル;t-ブチルパーオキシピバレート、t-ヘキシルパーオキシピバレート、t-ブチルパーオキシネオデカノエート、t-ヘキシルパーオキシネオデカノエート、1-シクロヘキシル-1-メチルエチルパーオキシネオデカノエート、1,1,3,3-テトラメチルブチルパーオキシネオデカノエート、クミルパーオキシネオデカノエート、(α,α-ビス-ネオデカノイルパーオキシ)ジイソプロピルベンゼンなどのパーオキシエステル;ビス(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、ジ-n-プロピル-オキシジカーボネート、ジ-イソプロピルパーオキシジカーボネート、ジ(2-エチルエチルパーオキシ)ジカーボネート、ジ-メトキシブチルパーオキシジカーボネート、ジ(3-メチル-3-メトキシブチルパーオキシ)ジカーボネートなどのパーオキシジカーボネート;2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、1,1’-アゾビス(1-シクロヘキサンカルボニトリル)などのアゾ化合物;などを挙げることができる。
(熱不融性樹脂)
 本発明の経口投与用吸着剤として用いる球状活性炭の調製に、炭素源として熱不融性樹脂(例えば、熱硬化性樹脂やイオン交換樹脂)を用いる場合には、ピッチ類を用いる従来の製造方法と実質的に同様の操作を利用することができる。例えば、最初に、熱不融性樹脂からなる球状体を、炭素と反応性を有する気流(例えば、スチーム又は炭酸ガス)中で、700~1000℃の温度で賦活処理して、球状活性炭を得ることができる。なお、前記の熱溶融性樹脂の場合と同様に、熱不融性樹脂の球状体を熱処理すると、多くの熱分解ガスなどが発生する場合には、賦活操作を行う前に適宜予備焼成を行い、予め熱分解生成物を除去することができる。
 出発材料として用いる熱不融性樹脂の前記球状体の平均粒子径は、特に限定されないが、約0.02~1.5mmであることが好ましく、50μm~800μmがより好ましく、70μm~500μmが更に好ましい。
 出発材料として用いる前記の熱不融性樹脂は、球状体を成形することが可能な材料であり、500℃以下の熱処理においては溶融又は軟化せずに、形状変形も起こさないことが重要である。
 出発材料として用いる前記の熱不融性樹脂としては、熱処理による炭素化収率が高いことが望ましい。炭素化収率が低いと、球状活性炭としての強度が弱くなる。また、不必要な細孔が形成されるため、球状活性炭の嵩密度が低下して、体積あたりの比表面積が低下するので、投与体積が増加し、経口投与が困難になるという問題を引き起こす。従って、熱不融性樹脂の炭素化収率は高いほど好ましく、非酸化性ガス雰囲気中800℃での熱処理による収率の好ましい値は30重量%以上であり、更に好ましくは35重量%以上である。
 出発材料として用いる前記の熱硬化性樹脂としては、具体的には、フェノール樹脂、例えば、ノボラック型フェノール樹脂、レゾール型フェノール樹脂、ノボラック型アルキルフェノール樹脂、若しくはレゾール型アルキルフェノール樹脂を挙げることができ、その他にもフラン樹脂、ユリア樹脂、メラミン樹脂、エポキシ樹脂などを用いることができる。熱硬化性樹脂としては、更に、ジビニルベンゼンと、スチレン、アクリロニトリル、アクリル酸、又はメタクリル酸との共重合体を用いることができる。
 また、前記の熱不融性樹脂としては、イオン交換樹脂を用いることができる。イオン交換樹脂は、一般的に、ジビニルベンゼンと、スチレン、アクリロニトリル、アクリル酸、又はメタクリル酸との共重合体(すなわち、熱溶融性樹脂である架橋ビニル樹脂)からなり、基本的には三次元網目骨格をもつ共重合体母体に、イオン交換基が結合した構造を有する。イオン交換樹脂は、イオン交換基の種類により、スルホン酸基を有する強酸性イオン交換樹脂、カルボン酸基又はスルホン酸基を有する弱酸性イオン交換樹脂、第四級アンモニウム塩を有する強塩基性イオン交換樹脂、第一級又は第三級アミンを有する弱塩基性イオン交換樹脂に大別され、このほか特殊な樹脂として、酸及び塩基両方のイオン交換基を有するいわゆるハイブリッド型イオン交換樹脂があり、本発明においては、これらのすべてのイオン交換樹脂を原料として使用することができる。
 炭素源として熱不融性樹脂を用いて、炭素と反応性を有する気流(例えば、スチーム又は炭酸ガス)中で、700~1000℃の温度で賦活処理を実施すると、窒素吸着法によりSF法を用いて求められる細孔直径0.64~1.1nmの細孔容積に対する、細孔直径1.1~2nmの細孔容積の比が1.0以上である球状活性炭を得ることができる。
(合成樹脂における物性の制御)
 前記の熱溶融性樹脂又は熱不融性樹脂を用いて本発明による球状活性炭を調製する場合には、球状活性炭の物性(例えば、平均粒子径、細孔容積、粒度分布、又は比表面積など)を、種々の方法で制御することができる。例えば、樹脂の平均粒子径及び粒度分布は、水相中の液滴の大きさに依存し、液滴の大きさは懸濁剤の量、攪拌の回転数、攪拌羽根の形状、あるいは水相中のモノマー比(水の量とモノマー量の比)により制御することができる。例えば、懸濁剤の量を多くすると液滴を小さくすることができ、攪拌の回転数を大きくすると、液滴を小さくすることができ、更に、水相中のモノマー量を少なくすると液滴の合一化を制御することができるだけでなく、重合熱の除熱が容易になるなどの観点で好ましいが、モノマー比が少なすぎると、1バッチ当たりのモノマー量が少なくなるため、得られる合成樹脂量が減少し、生産性の観点からは好ましくない。
 また、細孔容積と比表面積は、制御する細孔直径が10nm以上の場合には、主にポロゲンの量及び種類によって制御することができ、制御する細孔直径が10nm以下の場合には、水蒸気による賦活条件により制御することができる。更に、それ以外に、球状活性炭としての微細組織は、樹脂の種類、架橋剤の種類と量、不融化条件、焼成条件、及び/又は賦活温度などにより、制御することができる。
 賦活反応としては、炭素と反応性を有する気流(例えば、スチーム又は炭酸ガス)中で、700~1000℃の温度で賦活処理することで、本発明の経口投与用吸着剤として用いる球状活性炭を得ることができる。嵩密度は、賦活条件によって制御することができ、例えば、賦活時間を長くする、賦活温度を高くする、炭素と反応性を有する気流の濃度を増加させることによって、嵩密度を小さくすることが可能である。
(ピッチ)
 本発明の経口投与用吸着剤として用いる球状活性炭の調製に、炭素源としてピッチを用いる場合は、例えば以下の方法で調製することができる。
 石油ピッチ又は石炭ピッチ等のピッチに対し、添加剤として沸点200℃以上の2環又は3環の芳香族化合物又はその混合物を加えて加熱混合した後、成形してピッチ成形体を得る。ピッチ成形体の大きさは、押出し成形時のノズル径、あるいは、ピッチ成形体の粉砕条件によって制御することができる。ピッチ成形体の体積が小さいほど、小さい球状ピッチを作ることができ、より小さい粒子径を有する球状活性炭を得ることができる。
 次に、ピッチ成形体を50~120℃の熱水中で撹拌下に分散し、造粒して微小球体化したのちに冷却し、球状ピッチ成形体を得る。球状ピッチ成形体の平均粒子径は特に限定されないが、約0.02~1.5mmが好ましく、60~350μmがより好ましく、60~300μmが更に好ましい。更に、ピッチに対し低溶解度を有しかつ添加剤に対して高溶解度を有する溶剤で、球状ピッチ成形体から添加剤を抽出除去し、得られた多孔性ピッチを、酸化剤を用いて酸化して不融性多孔性ピッチとし、得られた熱に対し不融性の多孔性ピッチを、更に炭素と反応性を有する気流、例えばスチーム又は炭酸ガス中、800~1000℃の温度で処理すれば、球状活性炭を得ることができる。
 特に、平均粒子径50~200μm程度の微小球の球状活性炭を作製するためには、ナフタレンとピッチを紡糸する際の温度を高くする、ポリビニルアルコール量を増量する、又は冷却工程を短時間で行うなどの制御を行うことが好ましい。
 上記した芳香族添加剤の目的は、成形後のピッチ成形体から前記添加剤を抽出除去させて成形体を多孔質とし、後工程の酸化による炭素質材料の構造制御ならびに焼成を容易にすることにある。このような添加剤は、例えば、ナフタレン、メチルナフタレン、フェニルナフタレン、ベンジルナフタレン、メチルアントラセン、フェナンスレン、又はビフェニル等の芳香族化合物の1種又は2種以上の混合物から選択される。ピッチに対する添加量は、ピッチ100重量部に対し10~50重量部の範囲が好ましい。
 ピッチと添加剤の混合は、均一な混合を達成するため、加熱し溶融状態で行う。成形は溶融状態で行ってもよく、また混合物を冷却後粉砕する等の方法によってもよいが、溶融状態で糸状に混合ピッチを押し出し、その後これを等間隔で切断若しくは粉砕する方法が、粒子径分布をより狭い範囲で制御できるので好ましい。粒子径は混合ピッチを押し出す時のノズル径により制御することができ、細いノズルを使用することにより小さな混合物成形体とすることができる。
 ピッチと添加剤の混合物から添加剤を抽出除去するための溶剤としては、ブタン、ペンタン、ヘキサン、又はヘプタン等の脂肪族炭化水素、ナフサ、又はケロシン等の脂肪族炭化水素主体の混合物、メタノール、エタノール、プロパノール、又はブタノール等の脂肪族アルコール類等が好適である。
 このような溶剤でピッチと添加剤の混合物成形体から添加剤を抽出することによって、成形体の形状を維持したまま添加剤を成形体から除去することができる。この際に成形体中に添加剤の抜け穴が形成され、均一な多孔性を有するピッチ成形体が得られるものと推定される。
 こうして得られた多孔性を示すピッチ成形体を、次いで不融化処理、すなわち酸化剤を用いた、好ましくは150℃~400℃までの温度での酸化処理により、熱に対して不融の多孔性不融性ピッチ成形体とする。酸化剤としてはO、あるいはこれらを空気又は窒素等で希釈した混合ガスを用いることができる。
 本発明の経口投与用吸着剤として用いる球状活性炭の調製に炭素源としてピッチを用いる場合、芳香族添加剤の量、種類、ピッチ内での析出条件を制御することにより、細孔容積を制御することができ、細孔直径20~10000nmにおける細孔容積が、0.21mL/g以下の球状活性炭を調整することができる。
 出発材料として用いるピッチとしては、熱処理による炭素化収率が高いことが望ましい。炭素化収率が低いと、球状活性炭としての強度が弱くなる。また、不必要な細孔が形成されるため、球状活性炭の嵩密度が低下して、体積あたりの比表面積が低下するので、投与体積が増加し、経口投与が困難になるという問題を引き起こす。従って、ピッチの炭素化収率は高いほど好ましく、非酸化性ガス雰囲気中800℃での熱処理による収率の好ましい値は50重量%以上、更に好ましくは60重量%以上である。
(表面改質)
 熱溶融性樹脂、熱不融性樹脂、又はピッチを炭素源として得られた球状活性炭を、酸素含量0.1~50容量%、好ましくは1~30容量%、特に好ましくは3~20容量%の雰囲気の下、300~800℃、好ましくは320~600℃の温度で酸化処理し、更に、800~1200℃、好ましくは800~1000℃の温度下、非酸化性ガス雰囲気下で還元処理を行うことにより、表面改質球状活性炭を得ることができる。ここで、表面改質球状活性炭とは、前記の球状活性炭を、前記の酸化処理及び還元処理して得られる多孔質体である。
 しかしながら、本発明の経口投与用吸着剤として用いる球状活性炭は、この後の工程として、官能基を担持させるための酸化工程及び還元工程を実施しないで、このままの状態で使用することができる。
(球状活性炭の物性)
 本発明による経口投与用吸着剤として用いる球状活性炭が有する各物性値、すなわち、平均粒子径、嵩密度、比表面積、細孔容積、及び粒度分布、は、以下の方法によって測定する。
(1)平均粒子径(Dv50)
 レーザー回折式粒度分布測定装置〔(株)島津製作所:SALAD-3000S〕を用い、体積基準の粒度累積線図を作成し、粒度累積率50%における粒子径を平均粒子径(Dv50)とした。
(2)嵩密度
 JIS K 1474-5.7.2の充てん密度測定法に準じ、測定を行った。
(3)比表面積(BET法による比表面積の計算法)
 ガス吸着法による比表面積測定器(例えば、MICROMERITICS社製「ASAP2010」又は「ASAP2020」)を用いて、球状活性炭試料のガス吸着量を測定し、下記の式により比表面積を計算することができる。具体的には、試料である球状活性炭を試料管に充填し、350℃で減圧乾燥した後、乾燥後の試料重量を測定する。次に、試料管を-196℃に冷却し、試料管に窒素を導入し球状活性炭試料に窒素を吸着させ、窒素分圧と吸着量の関係(吸着等温線)を測定する。
 窒素の相対圧をp、その時の吸着量をv(cm/g STP)とし、BETプロットを行う。すなわち、縦軸にp/(v(1-p))、横軸にpを取り、pが0.05~0.20の範囲でプロットし、そのときの傾きb(単位=g/cm)、及び切片c(単位=g/cm)から、比表面積S(単位=m/g)は下記の式により求められる。
Figure JPOXMLDOC01-appb-M000002
 ここで、MAは窒素分子の断面積で0.162nmを用いた。
(4)比表面積(ラングミュアの式による比表面積の計算法)
 ガス吸着法による比表面積測定器(例えば、MICROMERITICS社製「ASAP2010」又は「ASAP2020」)を用いて、球状活性炭試料のガス吸着量を測定し、ラングミュアの式により比表面積を計算することができる。具体的には、試料である球状活性炭を試料管に充填し、350℃で減圧乾燥した後、乾燥後の試料重量を測定する。次に、試料管を-196℃に冷却し、試料管に窒素を導入し、球状活性炭試料に窒素を吸着させ、窒素分圧と吸着量の関係(吸着等温線)を測定する。
 窒素の相対圧力をp、その時の吸着量をv(cm/g STP)とし、ラングミュアプロットを行う。すなわち、縦軸にp/v、横軸にpを取り、pが0.05~0.20の範囲でプロットし、そのときの傾きをb(g/cm)とすると比表面積S(単位=m/g)は下記の式により求められる。
Figure JPOXMLDOC01-appb-M000003
 ここで、MAは窒素分子の断面積で0.162nmを用いた。
(5)細孔分布(Saito-Foleyの計算式)
 ガス吸着法による比表面積測定装置(ASAP2010又はASAP2020:Micromeritics社製)を用いて、液体窒素温度(-196℃)で、窒素分圧と球状活性炭試料の吸着量の関係(吸着等温線)を測定した。得られた吸着等温線より、前記比表面積測定装置(ASAP2010又はASAP2020)付属の解析ソフトを用い、Saito-Foleyの計算式〔Saito,A. and Foley, H. C., AlChE Journal 37 (3), 429 (1991)〕により細孔分布を計算した。細孔の形状をスリット幾何学で解析したものがオリジナルのHorverth-Kawazoeの計算法〔Horvath, G. and Kawazoe, K., J. Chem. Eng. Japan 16 (6), 470 (1983)〕であるが、炭素の構造が難黒鉛化性炭素で三次元的に乱れた構造であるため、ここではシリンダー幾何学〔Saito, A. and Foley, H. C., AlChE Journal 37 (3), 429 (1991)〕による計算を選択し計算した。
 計算に使用した各種パラメータを以下に示す。
相互作用パラメータ(Interaction Parameter):1.56×10-43ergs・cm4
吸着ガスの分子径(Diameter of Adsorptive Molecule):0.3000nm
サンプルの原子直径(Diameter of Sample Molecule):0.3400nm
密度変換係数(Density Conversion Factor):0.001547(cm3液体/cm3STP)
(6)水銀圧入法による細孔容積
 水銀ポロシメーター(例えば、MICROMERITICS社製「AUTOPORE 9200」)を用いて細孔容積を測定することができる。試料である球状活性炭を試料容器に入れ、2.67Pa以下の圧力で30分間脱気する。次いで、水銀を試料容器内に導入し、徐々に加圧して水銀を球状活性炭試料の細孔へ圧入する(最高圧力=414MPa)。このときの圧力と水銀の圧入量との関係から以下の各計算式を用いて球状活性炭試料の細孔容積分布を測定する。
 具体的には、細孔直径21μmに相当する圧力(0.06MPa)から最高圧力(414MPa:細孔直径3nm相当)までに球状活性炭試料に圧入された水銀の体積を測定する。細孔直径の算出は、直径(D)の円筒形の細孔に水銀を圧力(P)で圧入する場合、水銀の表面張力を「γ」とし、水銀と細孔壁との接触角を「θ」とすると、表面張力と細孔断面に働く圧力の釣り合いから、次式:
-πDγcosθ=π(D/2)・P
が成り立つ。従って
D=(-4γcosθ)/P
となる。
 本明細書においては、水銀の表面張力を484dyne/cmとし、水銀と炭素との接触角を130度とし、圧力PをMPaとし、そして細孔直径Dをμmで表示し、下記式:
D=1.24/P
により圧力Pと細孔直径Dの関係を求める。例えば、細孔直径20~10000nmの範囲の細孔容積とは、水銀圧入圧0.124MPaから62MPaまでに圧入された水銀の体積に相当する。また、細孔直径7.5~15000nmの範囲の細孔容積とは、水銀圧入圧0.083MPaから165MPaまでに圧入された水銀の体積に相当する。
 なお、本発明の経口投与用吸着剤として用いる球状活性炭は、その粒子径が非常に小さいので、試料容器内に充填された試料粒子間の空隙も小さくなる。従って、前記の水銀圧入法による細孔容積の測定操作においては、その粒子間空隙に水銀が圧入される段階が存在し、その圧入段階では、あたかも細孔直径8000~15000nmの細孔が存在するかのような挙動を示す。本発明の経口投与用吸着剤として用いる球状活性炭に、細孔直径8000~15000nmの細孔が存在しないことは、例えば、電子顕微鏡による観察で確認することができる。従って、本明細書において「細孔直径20~15000nmの範囲の細孔容積」又は「細孔直径7.5~15000nmの範囲の細孔容積」には、前記の粒子間空隙に圧入される水銀量も含まれる。
(7)粒度分布
 レーザー回折式粒度分布測定装置〔(株)島津製作所:SALAD-3000S〕を用い、個数基準の粒度分布を測定し、測定粒子径区分の代表粒子径D、及びその測定粒子径区分内の個数nの値を求め、以下の式により長さ平均粒子径D、及び重量平均粒子径Dを計算する。
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
(8)全酸性基
 0.05規定のNaOH溶液50mL中に、球状活性炭試料1gを添加し、8の字振とう器(タイテック(株)製「TRIPLE SHAKER NR-80」)を用いて、8の字振とう、振幅3cm、76サイクル/minにより37℃で48時間振とうした後、球状活性炭試料をろ別し、中和滴定により求められるNaOHの消費量である。
 本発明の経口投与用吸着剤は、前記球状活性炭を有効成分として含むものであるが、球状活性炭のみからなるものでもよく、球状活性炭以外に薬学的に許容可能な添加剤を含んでもよい。添加剤としては、例えば賦形剤、崩壊剤、界面活性剤、結合剤、滑沢剤、酸味料、発泡剤、甘味剤、香料、着色剤、安定化剤、又は矯味剤着香剤を挙げることができる。
 経口投与用吸着剤が、球状活性炭からなるものである場合の投与形態としては、例えば散剤、顆粒、カプセル剤、又は分包包装体を挙げることができる。また、経口投与用吸着剤が、球状活性炭及び添加剤を含む場合の投与形態としては、例えば散剤、顆粒、錠剤、糖衣錠、カプセル剤、懸濁剤、スティック剤、分包包装体、又は乳剤を挙げることができる。
[2]腎疾患又は肝疾患の治療用又は予防用経口投与用吸着剤
 本発明の経口投与用吸着剤として用いる球状活性炭は、肝疾患憎悪因子や腎臓病での毒性物質の吸着性に優れているので、腎疾患の治療用又は予防用経口投与用吸着剤として用いるか、あるいは、肝疾患の治療用又は予防用経口投与用吸着剤として用いることができる。
 腎疾患としては、例えば、慢性腎不全、急性腎不全、慢性腎盂腎炎、急性腎盂腎炎、慢性腎炎、急性腎炎症候群、急性進行型腎炎症候群、慢性腎炎症候群、ネフローゼ症候群、腎硬化症、間質性腎炎、細尿管症、リポイドネフローゼ、糖尿病性腎症、腎血管性高血圧、若しくは高血圧症候群、あるいは前記の原疾患に伴う続発性腎疾患、更に、透析前の軽度腎不全を挙げることができ、透析前の軽度腎不全の病態改善や透析中の病態改善にも用いることができる(「臨床腎臓学」朝倉書店、本田西男、小磯謙吉、黒川清、1990年版及び「腎臓病学」医学書院、尾前照雄、藤見惺編集、1981年版参照)。
 また、肝疾患としては、例えば、劇症肝炎、慢性肝炎、ウイルス性肝炎、アルコール性肝炎、肝線維症、肝硬変、肝癌、自己免疫性肝炎、薬剤アレルギー性肝障害、原発性胆汁性肝硬変、振せん、脳症、代謝異常、又は機能異常を挙げることができる。その他、体内に存在する有害物質による病気、すなわち、精神病等の治療にも用いることができる。
 従って、本発明による経口投与用吸着剤は、腎臓疾患治療薬として用いる場合には、前記の球状活性炭を有効成分として含有する。本発明の経口投与用吸着剤を腎臓疾患治療薬又は肝臓疾患治療薬として用いる場合、その投与量は、投与対象がヒトであるかあるいはその他の動物であるかにより、また、年令、個人差、又は病状などに影響されるので、場合によっては下記範囲外の投与量が適当なこともあるが、一般にヒトを対象とする場合の経口投与量は1日当り1~20gを3~4回に分けて服用し、更に症状によって適宜増減することができる。投与形態は、散剤、顆粒、錠剤、糖衣錠、カプセル剤、懸濁剤、スティック剤、分包包装体、又は乳剤等であることができる。カプセル剤として服用する場合は、通常のゼラチンの他に、必要に応じて腸溶性のカプセルを用いることもできる。錠剤として用いる場合は、体内でもとの微小粒体に解錠されることが必要である。更に他の薬剤であるアルミゲルやケイキサレートなどの電解質調節剤と配合した複合剤の形態で用いることもできる。
 嵩密度が0.30~0.46g/mLであり、BET法により求められる比表面積が2000m/g以上であり、全酸性基が0.30meq/g未満であり、細孔直径20~10000nmの細孔容積が0.21mL/g以下であり、ミクロ孔容積比(Vm)が1.0以上である球状活性炭は、従来公知の表面改質球状活性炭又は球状活性炭(すなわち、嵩密度が0.46g/mLを超えているか、比表面積が2000m/g未満であるか、全酸性基が0.30meq/g以上であるか、細孔直径20~10000nmの細孔容積が0.21mL/gを超えているか、又はミクロ孔容積比(Vm)が1.0未満のいずれか、或いはそれらの物性の組み合わされた球状活性炭)と混合した混合物の形で、腎疾患治療又は予防剤、あるいは肝疾患治療又は予防剤として使用することができる。
 あるいは、嵩密度が0.30~0.46g/mLであり、BET法により求められる比表面積が2000m/g以上であり、酸性基が0.30meq/g未満であり、細孔直径20~10000nmの細孔容積が0.21mL/g以下であり、ミクロ孔容積比(Vm)が1.0以上である球状活性炭と、従来公知の表面改質球状活性炭又は球状活性炭(すなわち、すなわち、嵩密度が0.46g/mLを超えているか、比表面積が2000m/g未満であるか、全酸性基が0.30meq/g以上であるか、細孔直径20~10000nmの細孔容積が0.21mL/gを超えているか、又はミクロ孔容積比(Vm)が1.0未満のいずれか、或いはそれらの物性の組み合わされた球状活性炭)とを併用して、腎疾患治療又は予防剤、あるいは肝疾患治療又は予防剤として使用することができる。
[3]腎疾患又は肝疾患の治療方法
 本発明による経口投与用吸着剤に用いる球状活性炭は、腎疾患又は肝疾患の予防又は治療方法に用いることができる。従って、本発明の腎疾患又は肝疾患の治療方法は、前記球状活性炭を含む経口投与用吸着剤を、腎疾患又は肝疾患の治療対象に、有効量で投与することを特徴とするものである。
 前記球状活性炭の投与経路、投与量、及び投与間隔などは、病気の種類、患者の年齢、性別、体重、症状の程度、又は投与方法などに応じて適宜決定することができる。
[4]腎疾患又は肝疾患の治療方法における使用のための球状活性炭
 本発明による経口投与用吸着剤に用いる球状活性炭は、腎疾患又は肝疾患の予防又は治療方法において用いることができる。従って、本発明の球状活性炭は、腎疾患又は肝疾患の予防又は治療方法における使用のためのものである。
 前記球状活性炭の予防又は治療における使用量などは、病気の種類、患者の年齢、性別、体重、症状の程度、又は投与方法などに応じて適宜決定することができる。
[5]腎疾患又は肝疾患の球状活性炭の治療用医薬の製造のための使用
 本発明による経口投与用吸着剤に用いる球状活性炭は、腎疾患又は肝疾患の予防又は治療用医薬の製造のために用いることができる。従って、本発明の使用は、球状活性炭の、腎疾患又は肝疾患の予防又は治療用医薬の製造のための使用である。
 前記球状活性炭の予防又は治療用医薬における含有量などは、病気の種類、患者の年齢、性別、体重、症状の程度、又は投与方法などに応じて適宜決定することができる。
[6]腎疾患又は肝疾患の治療のための球状活性炭の使用
 本発明による経口投与用吸着剤に用いる球状活性炭は、腎疾患又は肝疾患の治療のために用いることができる。従って、本発明の使用は、球状活性炭の、腎疾患又は肝疾患の予防又は治療のための使用である。
 前記球状活性炭の予防又は治療における使用量などは、病気の種類、患者の年齢、性別、体重、症状の程度、又は投与方法などに応じて適宜決定することができる。
 以下、実施例によって本発明を具体的に説明するが、これらは本発明の範囲を限定するものではない。
《実施例1》
 脱イオン交換水4800g、及びメチルセルロース7.2g、亜硝酸ナトリウム1.0gを10Lの重合缶に入れ、これにスチレン481g、純度57%ジビニルベンゼン(57%のジビニルベンゼンと43%のエチルビニルベンゼン)1119g、2,2’-アゾビス(2,4-ジメチルバレロニトリル)9.3g、及びポロゲンとしてヘキサン560gを適宜加えたのち、窒素ガスで系内を置換し、この二相系を140rpmで攪拌し、55℃に加熱してからそのまま20時間保持した。得られた樹脂を濾過し、減圧乾燥にてヘキサンを樹脂から蒸留により除去してから、90℃において12時間減圧乾燥させ、平均粒子径246μmの球状の多孔性合成樹脂を得た。多孔性合成樹脂の比表面積は約240m/gであった。
 得られた球状の多孔性合成樹脂を目皿付き反応装置に仕込み、縦型管状炉にて不融化処理を行った。不融化条件は、乾燥空気を反応管下部より上部に向かって流し、190℃まで昇温後、190℃から290まで10℃/hで昇温することにより球状の多孔性酸化樹脂を得た。球状の多孔性酸化樹脂を窒素雰囲気中850℃で焼成した後、流動床を用い、水蒸気を含む窒素ガス雰囲気中、850℃で嵩密度が0.46g/mLまで賦活処理を行い、球状活性炭を得た。
《実施例2》
 前記実施例1において、嵩密度を0.46g/mLになるまで賦活処理をする代わりに、嵩密度0.40g/mLまで賦活処理すること以外は、前記実施例1の操作を繰り返すことにより、球状活性炭を得た。
《実施例3》
 前記実施例1において、嵩密度を0.46g/mLになるまで賦活処理をする代わりに、嵩密度0.30g/mLまで賦活処理すること以外は、前記実施例1の操作を繰り返すことにより、球状活性炭を得た。
《実施例4》
 球状のフェノール樹脂(商品名「工業用フェノールレヂン レヂトップ(マリリンHF-100、製造番号60303);群栄化学株式会社製」)を目皿付き石英製縦型反応管に入れ、窒素ガス気流下0.5時間で300℃まで昇温し、2時間で700℃まで昇温した後30分保持した。その後更に水蒸気を含む窒素ガス雰囲気中、850℃で嵩密度が0.40g/mLまで賦活処理を行い、球状活性炭を得た。
《実施例5》
 軟化点210℃、キノリン不溶分1重量%以下、H/C原子比0.63の石油系ピッチ695gと、ナフタレン305gとを、攪拌翼のついた内容積3Lの耐圧容器に仕込み、180℃で溶融混合を行った後、155℃に冷却し、0.75mmのノズルで押し出し、紐状成形体を得た。次いで、この紐状成形体を破砕し、篩にて目開き150μm~212μm分画を分取し、得られた破砕物を0.46重量%のポリビニルアルコール(ケン化度88%)を溶解した水溶液中に投入し、90℃で50分間攪拌分散して球状化したのち、40℃まで3分で冷却し、ピッチの固化及びナフタレン結晶の析出を行い球状ピッチ成形体スラリーを得た。大部分の水をろ過により除いた後、球状ピッチ成形体の約6倍重量のn-ヘキサンでピッチ成形体中のナフタレンを抽出除去した。この様にして得た多孔性球状ピッチを流動床を用いて、加熱空気を通じながら、240℃まで昇温し、240℃に1時間保持して酸化し、熱に対して不融性の多孔性球状酸化ピッチを得た。多孔性球状酸化ピッチを窒素雰囲気中850℃で焼成した後、流動床を用いて水蒸気を含む窒素ガス雰囲気中、850℃で嵩密度が0.38g/mLまで賦活処理を行い、球状活性炭を得た。
《比較例1》
 前記実施例1において、嵩密度を0.46g/mLになるまで賦活処理をする代わりに、嵩密度0.50g/mLまで賦活処理すること以外は、前記実施例1の操作を繰り返すことにより、球状活性炭を得た。
《比較例2》
 前記実施例1において、嵩密度を0.46g/mLになるまで賦活処理をする代わりに、嵩密度0.25g/mLまで賦活処理すること以外は、前記実施例1の操作を繰り返したが、強度が弱いため破砕してしまい、球状活性炭を得ることはできなかった。
《比較例3》
 前記実施例5において、石油ピッチとナフタレンを180℃で溶融混合を行った後、155℃に冷却する代わりに140℃に冷却すること、紐状成形体の破砕物を0.46重量%のポリビニルアルコールを溶解した水溶液中に投入する代わりに0.23重量%のポリビニルアルコールを溶解した水溶液中に投入すること、及び95℃で50分間攪拌分散して球状化したのち40℃まで90分で冷却する代わりに、40℃まで3分で冷却すること以外は、前記実施例5の操作を繰り返したが、強度が弱いため破砕してしまい、球状活性炭を得ることはできなかった。
《比較例4》
 前記比較例1で得られた球状活性炭を流動床にて、空気中470℃で3時間酸化処理した。
《比較例5》
 球状のフェノール樹脂(商品名「工業用フェノールレヂン レヂトップ(マリリンHF-100、製造番号60303);群栄化学株式会社製」)を500℃の目皿付き石英製縦型反応管に入れ、窒素ガス気流下30分保持し、700℃まで20分で昇温し、700℃で1時間保持した。その後900℃で嵩密度0.46g/mLまで賦活処理を行い、球状活性炭を得た。
〔経口吸着剤の評価方法〕
 以下の表1及び表2に示す各種の特性は、以下の方法で測定した。
(1)平均粒子径
 前記のレーザー回折式粒度分布測定装置を用いて、測定した。
(2)細孔容積
 前記実施例及び比較例で得られた各球状活性炭のミクロ孔細孔容積は、前記窒素吸着法によるSF法により求め、細孔直径20~10000nmの細孔容積、及び細孔直径7.5~15000nmの細孔容積は、前記の水銀圧入法により求めた。
(3)BET法及びラングミュア(Langmuir)法による比表面積
 前記のBET法及びラングミュア(Langmuir)法によって測定した。
(4)嵩密度
 50mLのメスシリンダに試料を50mLになるまで充填し、50回タップした後で、試料重量を体積で除算して嵩密度とした。結果を表1及び表2に示す。なお、この方法によって得られた測定値は、JIS K 1474-5.7.2の充てん密度測定法によって得られた測定値と、表1及び表2に示す有効数字範囲内で全く差異がなかった。
(5)全酸性基
 0.05規定のNaOH溶液50mL中に、球状活性炭試料1gを添加し、8の字振とう器(タイテック(株)製「TRIPLE SHAKER NR-80」)を用いて、8の字振とう、振幅3cm、76サイクル/minにより37℃で48時間振とうした後、球状活性炭試料をろ別し、中和滴定により求められるNaOHの消費量である。
(6)インドキシル硫酸カリウム吸着試験
 球状活性炭試料を乾燥した後、乾燥試料0.05gを秤量し、50mL用ねじ口サンプル瓶に取った。一方、インドキシル硫酸カリウム100mg、及びコール酸ナトリウム6458gを正確に秤量して、pH7.4のリン酸塩緩衝液を加えて溶かし、正確に1000mLとした液(インドキシル硫酸カリウム原液)50mLを、前記の50mL用ねじ口サンプル瓶に正確に加え、10rpm、37±1℃でミックスローター(アズワン(株)製「ミックスローターバリアブルVMR-5R」)を用いて2時間振とうした。ねじ口サンプル瓶の内容物をろ孔0.65μmのメンブランフィルターで吸引ろ過し、はじめのろ液約20mLを除き、次のろ液約10mLをアセトニトリルで希釈し、ろ液:アセトニトリル=1:1の試料溶液とした。
 検量線は、インドキシル硫酸カリウム原液を0mL、25mL、50mL、75mL、及び100mLの量でメスフラスコに正確に分取し、pH7.4リン酸塩緩衝液で100mLにメスアップした検量線原液を調製した後、アセトニトリルで希釈し、検量線原液:アセトニトリル=1:1の検量線溶液とした。
 HPLC(高速液体クロマトグラフィー)を用いて、試料溶液及び検量線溶液の波長278nmにおける吸光度を測定し、インドキシル硫酸カリウム吸着量(mg/g)を計算した。結果を表2に示す。また、実施例1~3及び比較例1の結果を図1に示す。図1から明らかなように、胆汁酸存在下において、球状活性炭の嵩密度が低下するに従って、インドキシル硫酸カリウム吸着量が急激に上昇することが分かる。
(7)トリプトファン吸着試験
 実施例1~5及び比較例1、4及び5で得られた各種球状活性炭及び表面改質球状活性炭に関して、トリプトファン吸着試験を以下の方法で実施した。
 球状活性炭試料を乾燥させた後、乾燥試料0.01gを秤量し、50mL用ねじ口サンプル瓶に取った。一方、トリプトファン100mg、及びコール酸ナトリウム6458mgを正確に秤量して、PH7.4のリン酸塩緩衝溶液を加えて溶かし、正確に1000mLとした液(トリプトファン原液)50mLを、前記の50mL用ねじ口サンプル瓶に加え、10rpm、37±1℃でミックスローター(アズワン(株)製「ミックスローターバリアブルVMR-5R」)を用いて2時間振とうした。ねじ口サンプル瓶の内容物をろ孔0.65μmのメンブランフィルターで吸引ろ過し、はじめのろ液約20mLを除き、次のろ液約10mLをアセトニトリルで希釈し、ろ液:アセトニトリル=1:1の試料溶液とした。
 検量線は、トリプトファン原液を0mL、25mL、50mL、75mL、及び100mLの量でメスフラスコに正確に分取し、pH7.4リン酸塩緩衝液で100mLにメスアップした検量線原液を調製した後、アセトニトリルで希釈し、検量線原液:アセトニトリル=1:1の検量線溶液とした。
 HPLC(高速液体クロマトグラフィー)を用いて、試料溶液及び検量線溶液の波長278nmにおける吸光度を測定し、トリプトファン吸着量(mg/g)を計算した。結果を表2に示す。また、実施例1~3及び比較例1の結果を図2に示す。図2から明らかなように、胆汁酸存在下において、球状活性炭の嵩密度が低下するに従って、トリプトファン吸着量が急激に上昇することが分かる。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 本発明の経口投与用吸着剤は、腎疾患の治療用又は予防用経口投与用吸着剤として用いるか、あるいは、肝疾患の治療用又は予防用吸着剤として用いることができる。
 腎疾患としては、例えば、慢性腎不全、急性腎不全、慢性腎盂腎炎、急性腎盂腎炎、慢性腎炎、急性腎炎症候群、急性進行型腎炎症候群、慢性腎炎症候群、ネフローゼ症候群、腎硬化症、間質性腎炎、細尿管症、リポイドネフローゼ、糖尿病性腎症、腎血管性高血圧、若しくは高血圧症候群、あるいは前記の原疾患に伴う続発性腎疾患、更に、透析前の軽度腎不全を挙げることができ、透析前の軽度腎不全の病態改善や透析中の病態改善にも用いることができる(「臨床腎臓学」朝倉書店、本田西男、小磯謙吉、黒川清、1990年版及び「腎臓病学」医学書院、尾前照雄、藤見惺編集、1981年版参照)。
 また、肝疾患としては、例えば、劇症肝炎、慢性肝炎、ウイルス性肝炎、アルコール性肝炎、肝線維症、肝硬変、肝癌、自己免疫性肝炎、薬剤アレルギー性肝障害、原発性胆汁性肝硬変、振せん、脳症、代謝異常、又は機能異常を挙げることができる。その他、体内に存在する有害物質による病気、すなわち、精神病等の治療にも用いることができる。
 以上、本発明を特定の態様に沿って説明したが、当業者に自明の変形や改良は本発明の範囲に含まれる。

Claims (5)

  1.  嵩密度が0.30~0.46g/mLであり、BET法により求められる比表面積が2000m/g以上であり、全酸性基が0.30meq/g未満であり、細孔直径20~10000nmの細孔容積が0.21mL/g以下であり、そして
    式(1)
    Vm=(V2.0-V1.1)/(V1.1-V0.64)   (1)
    [式中、V2.0、V1.1、及びV0.64は、それぞれ窒素吸着量からSF法により計算された細孔直径2.0nm以下、1.1nm以下、及び0.64nm以下の累積細孔容積である]で求められるミクロ孔容積比(Vm)が1.0以上である球状活性炭を含むことを特徴とする、経口投与用吸着剤。
  2.  前記球状活性炭の平均粒子径が50~200μmである、請求項1に記載の経口投与用吸着剤。
  3.  前記球状活性炭が、架橋ビニル樹脂を炭素源として用いて調製された球状活性炭である、請求項1又は2に記載の経口投与用吸着剤。
  4.  請求項1~3のいずれか一項に記載の経口投与用吸着剤を有効成分とする、腎疾患治療又は予防剤。
  5.  請求項1~3のいずれか一項に記載の経口投与用吸着剤を有効成分とする、肝疾患治療又は予防剤。
PCT/JP2014/054261 2013-02-22 2014-02-24 経口投与用吸着剤並びに腎疾患治療剤及び肝疾患治療剤 WO2014129614A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015501527A JPWO2014129614A1 (ja) 2013-02-22 2014-02-24 経口投与用吸着剤並びに腎疾患治療剤及び肝疾患治療剤
US14/767,971 US20150374743A1 (en) 2013-02-22 2014-02-24 Orally administered adsorbent, therapeutic agent for renal disease, and therapeutic agent for liver disease
EP14754624.6A EP2959906A4 (en) 2013-02-22 2014-02-24 ADSORBENT FOR ORAL ADMINISTRATION, MEDICAMENT FOR RENAL DISEASE, AND MEDICAMENT FOR LIVER DISEASE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013033615 2013-02-22
JP2013-033615 2013-02-22

Publications (1)

Publication Number Publication Date
WO2014129614A1 true WO2014129614A1 (ja) 2014-08-28

Family

ID=51391393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/054261 WO2014129614A1 (ja) 2013-02-22 2014-02-24 経口投与用吸着剤並びに腎疾患治療剤及び肝疾患治療剤

Country Status (5)

Country Link
US (1) US20150374743A1 (ja)
EP (1) EP2959906A4 (ja)
JP (1) JPWO2014129614A1 (ja)
TW (1) TW201440819A (ja)
WO (1) WO2014129614A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016031908A1 (ja) * 2014-08-27 2016-03-03 株式会社クレハ 経口投与用吸着剤並びに腎疾患治療剤及び肝疾患治療剤
WO2018116947A1 (ja) * 2016-12-21 2018-06-28 株式会社クレハ 球状活性炭およびその製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101588768B1 (ko) * 2014-10-27 2016-01-26 현대자동차 주식회사 활성탄소 및 그 제조방법
CA3086051A1 (en) * 2017-12-19 2019-06-27 ImMutriX Therapeutics, Inc. Tailored porosity materials and methods of making and using same
JP7008540B2 (ja) * 2018-03-01 2022-01-25 株式会社クレハ 毒素分離器具

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6211611B2 (ja) 1979-11-22 1987-03-13 Kureha Chemical Ind Co Ltd
WO2005094844A1 (ja) * 2004-04-02 2005-10-13 Kureha Corporation 経口投与用吸着剤、並びに腎疾患治療又は予防剤、及び肝疾患治療又は予防剤
JP2006015334A (ja) 2004-05-31 2006-01-19 Japan Enviro Chemicals Ltd 吸着剤およびその製造法
JP2006131461A (ja) 2004-11-08 2006-05-25 Japan Organo Co Ltd 活性炭及びその製造方法並びに腎疾患治療薬
WO2008152994A1 (ja) * 2007-06-11 2008-12-18 Teikokumedix Co., Ltd. 医療用吸着剤
WO2010001485A1 (ja) * 2008-07-04 2010-01-07 旭有機材工業株式会社 経口投与用吸着剤
JP2011037749A (ja) 2009-08-10 2011-02-24 Mylan Seiyaku Ltd 吸着特性に優れた経口投与用吸着剤
JP2012102072A (ja) * 2010-10-12 2012-05-31 Futamura Chemical Co Ltd 医薬用吸着剤及びその製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103491949B (zh) * 2011-03-04 2017-02-08 株式会社吴羽 片剂型的口服给药用组合物及其制造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6211611B2 (ja) 1979-11-22 1987-03-13 Kureha Chemical Ind Co Ltd
WO2005094844A1 (ja) * 2004-04-02 2005-10-13 Kureha Corporation 経口投与用吸着剤、並びに腎疾患治療又は予防剤、及び肝疾患治療又は予防剤
JP2006015334A (ja) 2004-05-31 2006-01-19 Japan Enviro Chemicals Ltd 吸着剤およびその製造法
JP2006131461A (ja) 2004-11-08 2006-05-25 Japan Organo Co Ltd 活性炭及びその製造方法並びに腎疾患治療薬
WO2008152994A1 (ja) * 2007-06-11 2008-12-18 Teikokumedix Co., Ltd. 医療用吸着剤
WO2010001485A1 (ja) * 2008-07-04 2010-01-07 旭有機材工業株式会社 経口投与用吸着剤
JP2011037749A (ja) 2009-08-10 2011-02-24 Mylan Seiyaku Ltd 吸着特性に優れた経口投与用吸着剤
JP2012102072A (ja) * 2010-10-12 2012-05-31 Futamura Chemical Co Ltd 医薬用吸着剤及びその製造方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
"Nephrology", 1981, IGAKU SHOIN
HORVATH, G.; KAWAZOE, K., J. CHEM. ENG. JAPAN, vol. 16, no. 6, 1983, pages 470
JAPANESE JOURNAL OF CLINICAL DIALYSIS, vol. 14, no. 4, 1998, pages 433 - 438
JAPANESE JOURNAL OF NEPHROLOGY, vol. 32, no. 6, 1990, pages 65 - 71
N. HONDA; K. KOISO; K. KUROGAWA: "Clinical Nephrology", 1990, ASAKURA PUBLISHING
SAITO, A.; FOLEY, H.C., ACHE JOURNAL, vol. 37, no. 3, 1991, pages 429
SAITO, A.; FOLEY, H.C., ALCHE JOURNAL, vol. 37, no. 3, 1991, pages 429

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016031908A1 (ja) * 2014-08-27 2016-03-03 株式会社クレハ 経口投与用吸着剤並びに腎疾患治療剤及び肝疾患治療剤
WO2018116947A1 (ja) * 2016-12-21 2018-06-28 株式会社クレハ 球状活性炭およびその製造方法
JPWO2018116947A1 (ja) * 2016-12-21 2019-10-24 株式会社クレハ 球状活性炭およびその製造方法

Also Published As

Publication number Publication date
US20150374743A1 (en) 2015-12-31
TW201440819A (zh) 2014-11-01
EP2959906A1 (en) 2015-12-30
EP2959906A4 (en) 2016-11-23
JPWO2014129614A1 (ja) 2017-02-02

Similar Documents

Publication Publication Date Title
JP3865399B2 (ja) 経口投与用吸着剤、並びに腎疾患治療又は予防剤、及び肝疾患治療又は予防剤
JP3865400B2 (ja) 経口投与用吸着剤、並びに腎疾患治療又は予防剤、及び肝疾患治療又は予防剤
JP3941962B2 (ja) 球状活性炭の製造方法
ES2301915T3 (es) Adsorbente para la administracion por via oral y agente para el tratamiento o la prevencion de una enfermedad renal o hepatica.
US20170143763A1 (en) Orally administered adsorbent, therapeutic agent for renal disease, and therapeutic agent for liver disease
WO2014129614A1 (ja) 経口投与用吸着剤並びに腎疾患治療剤及び肝疾患治療剤
WO2014129618A1 (ja) 経口投与用吸着剤並びに腎疾患治療剤及び肝疾患治療剤
WO2014129616A1 (ja) 経口投与用吸着剤並びに腎疾患治療剤及び肝疾患治療剤
JP4382629B2 (ja) 経口投与用吸着剤、並びに腎疾患治療又は予防剤、及び肝疾患治療又は予防剤
JP6431475B2 (ja) 経口投与用吸着剤並びに腎疾患治療剤及び肝疾患治療剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14754624

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015501527

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14767971

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014754624

Country of ref document: EP