WO2014129618A1 - 経口投与用吸着剤並びに腎疾患治療剤及び肝疾患治療剤 - Google Patents

経口投与用吸着剤並びに腎疾患治療剤及び肝疾患治療剤 Download PDF

Info

Publication number
WO2014129618A1
WO2014129618A1 PCT/JP2014/054265 JP2014054265W WO2014129618A1 WO 2014129618 A1 WO2014129618 A1 WO 2014129618A1 JP 2014054265 W JP2014054265 W JP 2014054265W WO 2014129618 A1 WO2014129618 A1 WO 2014129618A1
Authority
WO
WIPO (PCT)
Prior art keywords
activated carbon
spherical activated
resin
modified spherical
adsorbent
Prior art date
Application number
PCT/JP2014/054265
Other languages
English (en)
French (fr)
Inventor
尚志 若穂囲
恭弘 秋田
直弘 園部
三恵子 桑原
Original Assignee
株式会社クレハ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クレハ filed Critical 株式会社クレハ
Priority to CA2897944A priority Critical patent/CA2897944A1/en
Priority to KR1020157024219A priority patent/KR20150113207A/ko
Priority to US14/760,879 priority patent/US20150352150A1/en
Priority to RU2015137937A priority patent/RU2015137937A/ru
Priority to JP2015501531A priority patent/JPWO2014129618A1/ja
Priority to CN201480007257.8A priority patent/CN104968355A/zh
Priority to EP14754829.1A priority patent/EP2959908A4/en
Publication of WO2014129618A1 publication Critical patent/WO2014129618A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/74Synthetic polymeric materials
    • A61K31/785Polymers containing nitrogen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/44Elemental carbon, e.g. charcoal, carbon black
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P39/00General protective or antinoxious agents
    • A61P39/02Antidotes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • B01J20/28019Spherical, ellipsoidal or cylindrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28064Surface area, e.g. B.E.T specific surface area being in the range 500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28066Surface area, e.g. B.E.T specific surface area being more than 1000 m2/g

Definitions

  • the present invention relates to an adsorbent for oral administration containing surface-modified spherical activated carbon containing 0.5% by weight or more of nitrogen atoms.
  • the present invention also relates to a renal disease treatment or prevention agent, and a liver disease treatment or prevention agent comprising the above-mentioned adsorbent for oral administration as an active ingredient.
  • the adsorbent for oral administration according to the present invention has an excellent ability to adsorb uremic substances in vivo, particularly ⁇ -aminoisobutyric acid.
  • an oral adsorbent that can be taken orally and can treat renal or liver dysfunction has been developed and used (Patent Document 1).
  • the oral adsorbent consists of a porous spherical carbonaceous material (that is, spherical activated carbon) having a specific functional group, and is highly safe and stable to the living body. At the same time, it is toxic even in the presence of bile acids in the intestine.
  • Excellent selective adsorptive properties such as excellent adsorption of substances (ie ⁇ -aminoisobutyric acid, ⁇ -amino-n-butyric acid, dimethylamine, and octopamine) and less intestinal beneficial components such as digestive enzymes
  • substances ie ⁇ -aminoisobutyric acid, ⁇ -amino-n-butyric acid, dimethylamine, and octopamine
  • intestinal beneficial components such as digestive enzymes
  • the adsorbent described in Patent Document 1 is produced by preparing spherical activated carbon using pitches such as petroleum pitch as a carbon source, and then performing oxidation treatment and reduction treatment.
  • the treated spherical activated carbon was called surface-modified spherical activated carbon.
  • Patent Document 2 discloses that surface-modified spherical activated carbon having an average particle diameter of 50 ⁇ m to 200 ⁇ m is excellent in terms of initial adsorption capacity.
  • toxic toxic substances especially ⁇ -aminoisobutyric acid
  • I was able to.
  • the surface-modified spherical activated carbons described in Patent Documents 1 and 2 are excellent in the ability to adsorb uremic substances in vivo, particularly the ability to adsorb ⁇ -aminoisobutyric acid.
  • the adsorptive capacity of the surface-modified spherical activated carbon described in Patent Documents 1 and 2 for uremic substances is not sufficient, and further improvement has been expected.
  • An object of the present invention is to provide a surface-modified spherical activated carbon that has an excellent ability to adsorb uremic substances in vivo, particularly ⁇ -aminoisobutyric acid.
  • the present inventors have surprisingly found that the surface-modified spherical carbon containing 0.5% by weight or more of nitrogen atoms. It has been found that activated carbon exhibits an excellent ability to adsorb uremic substances, particularly an ability to adsorb ⁇ -aminoisobutyric acid.
  • the present invention [1] Contains 0.5% by weight or more of nitrogen atoms, has a specific surface area determined by the BET method of 800 m 2 / g to 3000 m 2 / g, and has an average particle size of 0.01 mm to 1 mm.
  • An adsorbent for oral administration comprising a surface-modified spherical activated carbon having a group of 0.30 meq / g or more
  • the surface-modified spherical activated carbon has a total acidic group of 0.30 meq / g to 1.20 meq / g and a total basic group of 0.20 meq / g to 1.20 meq / g.
  • thermoplastic resin or ion exchange resin contains a monomer selected from the group consisting of acrylonitrile, ethylacrylonitrile, methylacrylonitrile, diphenylacrylonitrile, and chloroacrylonitrile.
  • thermosetting resin contains a monomer selected from the group consisting of melamine and urea
  • a therapeutic or prophylactic agent for renal diseases comprising the oral adsorbent according to any one of [1] to [6] as an active ingredient, and any one of [8] [1] to [6]
  • the present invention relates to a therapeutic or preventive agent for liver diseases comprising an adsorbent for oral administration as an active ingredient.
  • a method for preventing or treating renal disease or liver disease comprising administering an effective amount of the adsorbent for oral administration according to any one of [1] to [6] to a subject to be treated for renal disease or liver disease, [10]
  • kidney disease or liver disease It contains 0.5% by weight or more of nitrogen atoms, has a specific surface area determined by the BET method of 800 m 2 / g to 3000 m 2 / g, an average particle size of 0.01 mm to 1 mm, and 0% of all acidic groups.
  • the surface-modified spherical activated carbon has a total acidic group of 0.30 meq / g to 1.20 meq / g and a total basic group of 0.20 meq / g to 1.20 meq / g.
  • thermoplastic resin or ion exchange resin includes a monomer selected from the group consisting of acrylonitrile, ethylacrylonitrile, methylacrylonitrile, diphenylacrylonitrile, and chloroacrylonitrile.
  • thermosetting resin includes a monomer selected from the group consisting of melamine and urea.
  • thermosetting resin includes a monomer selected from the group consisting of melamine and urea.
  • thermoplastic resin or ion exchange resin contains a monomer selected from the group consisting of acrylonitrile, ethylacrylonitrile, methylacrylonitrile, diphenylacrylonitrile, and chloroacrylonitrile.
  • thermosetting resin includes a monomer selected from the group consisting of melamine and urea.
  • thermosetting resin includes a monomer selected from the group consisting of melamine and urea.
  • the surface-modified spherical activated carbon has a total acidic group of 0.30 meq / g to 1.20 meq / g and a total basic group of 0.20 meq / g to 1.20 meq / g.
  • the adsorption ability for uremic substances is remarkably excellent. Large amounts can be adsorbed. Therefore, a higher medicinal effect can be obtained by taking the same amount as conventional adsorbents for oral administration. Or the dosage for obtaining the same medicinal effect as before can be reduced as compared with the conventional adsorbent for oral administration.
  • FIG. 6 is a graph showing the amount of ⁇ -aminoisobutyric acid adsorbed (24 hours) of the orally administered adsorbents obtained in Examples 1 to 11 and Comparative Examples 1 and 2.
  • the spherical activated carbon of Examples (Examples 1, 2, 3, 4, and 8) having a BET specific surface area of about 1500 m 2 / g
  • the relationship between nitrogen content and ⁇ -aminoisobutyric acid adsorption amount (24 hours) was shown.
  • FIG. 5 is a graph showing the relationship between the average particle diameter and the amount of ⁇ -aminoisobutyric acid adsorbed (3 hours) for spherical activated carbons of Examples (Examples 8, 9, 10, and 11) having a BET specific surface area of about 1300 m 2 / g. is there.
  • Adsorbent for oral administration means a spherical activated carbon having an acid point of 0.30 meq / g or more.
  • a surface non-modified spherical activated carbon means a spherical activated carbon having an acid point of less than 0.30 meq / g.
  • the surface-modified spherical activated carbon is a porous body obtained by heat-treating the carbon precursor, performing an activation treatment, and then performing a surface modification treatment by oxidation treatment and reduction treatment. Moderate interaction with acids and bases.
  • the surface non-modified spherical activated carbon is, for example, a porous body obtained by performing an activation treatment after heat-treating a carbon precursor, and performing surface modification treatment by subsequent oxidation treatment and reduction treatment.
  • spherical activated carbon obtained by performing heat treatment in a non-oxidizing atmosphere after the activation treatment.
  • the surface-modified spherical activated carbon used for the adsorbent for oral administration of the present invention contains 0.5% by weight or more of nitrogen atoms, has a specific surface area determined by the BET method of 800 m 2 / g to 3000 m 2 / g, and The average particle size is 0.01 mm to 1 mm, the total acidic groups are 0.30 meq / g to 1.20 meq / g, and the total basic groups are 0.20 meq / g to 1.20 meq / g.
  • the nitrogen atom content of the surface-modified spherical activated carbon is 0.5% by weight or more, more preferably 0.7% by weight or more, still more preferably 0.9% by weight, still more preferably 0.95. % By weight, more preferably 1.0% by weight or more.
  • the upper limit of the nitrogen atom content is not particularly limited, but is preferably 20% by weight or less.
  • the nitrogen content is 0.5% by weight or more, and the amount of ⁇ -aminoisobutyric acid adsorbed increases as the nitrogen content increases.
  • FIG. 2 shows the relationship between nitrogen content and ⁇ -aminoisobutyric acid adsorption amount (24 hours) for spherical activated carbons (Examples 1, 2, 3, 4, and 8) having a BET specific surface area of about 1500 m 2 / g. Indicated.
  • the amount of ⁇ -aminoisobutyric acid increased as the nitrogen content increased.
  • the nitrogen content was 0.5 wt% to 3 wt%, a significant correlation was observed between the nitrogen content and the amount of ⁇ -aminoisobutyric acid adsorbed.
  • the carbon source of the surface-modified spherical activated carbon is not limited as long as it contains a nitrogen atom, and examples thereof include a heat-meltable resin and a heat-infusible resin.
  • thermoplastic resin containing a nitrogen atom produced using a monomer containing a nitrogen atom
  • a monomer containing a nitrogen atom for example, a crosslinked vinyl resin containing a nitrogen atom
  • the monomer containing a nitrogen atom for producing a crosslinked vinyl resin containing a nitrogen atom include acrylonitrile, methylacrylonitrile (for example, 2-methylacrylonitrile), ethylacrylonitrile (for example, 2-hydroxyethyl acrylonitrile, 2- (1 -Hydroxyethyl) acrylonitrile, 2- (2-fluoroethyl) acrylonitrile), diphenylacrylonitrile (eg 2,3-diphenylacrylonitrile, 3,3-diphenylacrylonitrile) or chloroacrylonitrile (eg 2-chloroacrylonitrile) be able to. It is good also as a vinyl resin of the polymer of the monomer single containing these nitrogen atom
  • the crosslinked vinyl resin used as the carbon source for example, a spherical polymer obtained by emulsion polymerization, bulk polymerization, or solution polymerization, or preferably a spherical polymer obtained by suspension polymerization can be used.
  • a spherical polymer obtained by emulsion polymerization, bulk polymerization, or solution polymerization or preferably a spherical polymer obtained by suspension polymerization
  • the BET specific surface area of the cross-linked vinyl resin necessary for uniformly infusifying the cross-linked vinyl resin is preferably 5 m 2 / g or more, more preferably 10 m 2 / g or more.
  • a crosslinked vinyl resin is prepared by suspension polymerization
  • an organic phase containing a vinyl monomer, a crosslinking agent, a porogen and a polymerization initiator is added to an aqueous dispersion medium containing a dispersion stabilizer, and mixed by stirring.
  • a spherical crosslinked vinyl resin can be prepared.
  • any vinyl monomer that can be formed into a spherical shape can be used, for example, an aromatic vinyl monomer such as styrene, Alternatively, a styrene derivative in which a vinyl group hydrogen or a phenyl group hydrogen is substituted, or a compound in which a heterocyclic or polycyclic compound is bonded to a vinyl group in place of the phenyl group can be used.
  • aromatic vinyl monomers include ⁇ - or ⁇ -methylstyrene, ⁇ - or ⁇ -ethylstyrene, methoxystyrene, phenylstyrene, or chlorostyrene, or o-, m-, or p-methylstyrene, ethylstyrene, methoxystyrene, methylsilylstyrene, hydroxystyrene, chlorostyrene, cyanostyrene, nitrostyrene, aminostyrene, carboxystyrene, sulfoxystyrene, sodium styrenesulfonate, or vinylpyridine , Vinyl thiophene, vinyl pyrrolidone, vinyl naphthalene, vinyl anthracene, or vinyl biphenyl.
  • Aliphatic vinyl monomers can also be used.
  • vinyl esters such as ethylene, propylene, isobutylene, diisobutylene, vinyl chloride, acrylic acid ester, methacrylic acid ester, vinyl acetate, vinyl
  • vinyl ketones such as methyl ketone and vinyl ethyl ketone
  • vinyl aldehydes such as acrolein and methacrolein
  • vinyl ethers such as vinyl methyl ether and vinyl ethyl ether.
  • One or more of these vinyl monomers can be used to prepare a crosslinked vinyl resin with a monomer containing a nitrogen atom, but preferably methylstyrenes ( ⁇ -methylstyrene, ⁇ -methylstyrene, o -Methyl styrene, m-methyl styrene, or p-methyl styrene), ethyl styrenes ( ⁇ -ethyl styrene or ⁇ -ethyl styrene) or styrene.
  • methylstyrenes ⁇ -methylstyrene, ⁇ -methylstyrene, o -Methyl styrene, m-methyl styrene, or p-methyl styrene
  • ethyl styrenes ⁇ -ethyl styrene or ⁇ -ethyl styrene
  • any crosslinking agent that can be used for crosslinking of the above-mentioned vinyl monomers can be used.
  • crosslinking agents examples include polyvinyl aromatic hydrocarbons (eg, divinylbenzene), glycol trimethacrylate (eg, ethylene glycol dimethacrylate), or polyvinyl hydrocarbons (eg, trivinylcyclohexane). is there. Divinylbenzene is most preferred because of its excellent thermal decomposition characteristics.
  • Suitable porogens include alkanols having 4 to 10 carbon atoms (eg, n-butanol, sec-butanol, 2-ethylhexanol, decanol, or 4-methyl-2-pentanol), having at least 7 carbon atoms.
  • Alkyl esters eg, n-hexyl acetate, 2-ethylhexyl acetate, methyl oleate, dibutyl sebacate, dibutyl adipate, or dibutyl carbonate
  • alkyl ketones having 4 to 10 carbon atoms eg, dibutyl ketone
  • methyl isobutyl ketone or alkyl carboxylic acids (eg, heptanoic acid)
  • aromatic hydrocarbons eg, toluene, xylene, or benzene
  • higher saturated aliphatic hydrocarbons eg, hexane, heptane, or isooctane
  • Cycloaliphatic hydrocarbons eg If, cyclohexane
  • the polymerization initiator is not particularly limited, and those generally used in this field can be used, but an oil-soluble polymerization initiator that is soluble in the polymerizable monomer is preferable.
  • the polymerization initiator include dialkyl peroxide, diacyl peroxide, peroxyester, peroxydicarbonate, and azo compound.
  • dialkyl peroxides such as methyl ethyl peroxide, di-t-butyl peroxide, dicumyl peroxide; isobutyl peroxide, benzoyl peroxide, 2,4-dichlorobenzoyl peroxide, 3, Diacyl peroxide such as 5,5-trimethylhexanoyl peroxide; t-butyl peroxypivalate, t-hexyl peroxypivalate, t-butyl peroxyneodecanoate, t-hexylperoxyneodecanoate 1-cyclohexyl-1-methylethylperoxyneodecanoate, 1,1,3,3-tetramethylbutylperoxyneodecanoate, cumylperoxyneodecanoate, ( ⁇ , ⁇ -bis-neo Decanoyl peroxy) diisopropylbenzene -Oxyester; bis (4-
  • thermofusible resin used in the present invention is not limited as long as it contains a nitrogen atom.
  • thermosetting resin containing a nitrogen atom for example, a melamine resin or a phenol resin
  • Mention may be made of ion exchange resins containing nitrogen atoms.
  • melamine resin is a thermosetting resin belonging to an amino resin and is produced by polycondensation of melamine and formaldehyde. Specifically, methylol melamine obtained by condensing melamine and formaldehyde under alkaline conditions is used as a raw material. By heating methylol melamine, polycondensation is caused and crosslinked into a network to form a thermosetting resin.
  • the melamine resin can also be used as a single melamine resin. Furthermore, it can also be used as a resin of a copolymer of melamine resin and urea or phenol.
  • Urea resins are produced by polycondensation of urea and formaldehyde. Specifically, urea and formaldehyde can be subjected to a dehydration condensation reaction under alkaline conditions or acidic conditions to obtain a condensate.
  • the urea resin can also be used as a single urea resin. Furthermore, it can also be used as a resin of a copolymer of urea resin and polyurethane, melamine resin or phenol.
  • the ion exchange resin is not limited as long as it contains a nitrogen atom.
  • the ion exchange resin has a structure in which an ion exchange group is bonded to a copolymer matrix having a three-dimensional network skeleton of the crosslinked vinyl resin containing the nitrogen atom. Resin can be used.
  • the ion exchange resin is a strongly acidic ion exchange resin having a sulfonic acid group, a weak acid ion exchange resin having a carboxylic acid group or a sulfonic acid group, and a strong basic ion exchange having a quaternary ammonium salt.
  • Resins broadly divided into weakly basic ion exchange resins having primary or tertiary amines, and other special resins include so-called hybrid ion exchange resins having both acid and base ion exchange groups.
  • an ion exchange resin containing all these nitrogen atoms can be used as a carbon source.
  • the diameter of the surface-modified spherical activated carbon used as the adsorbent for oral administration according to the present invention is not particularly limited, but is preferably 0.005 to 1.5 mm, more preferably 0.01 to 1 mm. More preferably, it is 0.02 to 0.8 mm. If the diameter of the surface-modified spherical activated carbon is less than 0.005 mm, the outer surface area of the surface-modified spherical activated carbon increases, and adsorption of beneficial substances such as digestive enzymes tends to occur. On the other hand, if the diameter exceeds 1.5 mm, the diffusion distance of the toxic substance into the surface-modified spherical activated carbon increases, and the adsorption rate decreases, which is not preferable.
  • the particle size at a particle size cumulative rate of 50% is defined as the average particle size (Dv50).
  • the range of the average particle diameter of the surface-modified spherical activated carbon used as the adsorbent for oral administration according to the present invention is not particularly limited as long as it is 0.01 to 1 mm (10 ⁇ m to 1000 ⁇ m). If the average particle diameter of the surface-modified spherical activated carbon is less than 0.01 mm, the outer surface area of the surface-modified spherical activated carbon increases, and adsorption of beneficial substances such as digestive enzymes tends to occur.
  • the average particle diameter exceeds 1 mm, the diffusion distance of the toxic substance to the inside of the surface-modified spherical activated carbon increases, and the adsorption rate decreases.
  • the average particle diameter is preferably 20 ⁇ m to 800 ⁇ m, more preferably 30 ⁇ m to 500 ⁇ m.
  • the surface-modified spherical activated carbon having an average particle diameter of 50 to 200 ⁇ m is excellent in initial adsorption capacity, and is a toxic toxic substance in the living body (especially ⁇ -aminoisosodium) within a general residence time in the upper small intestine. Butyric acid) is most preferred because it can be adsorbed very quickly.
  • the specific surface area of the surface-modified spherical activated carbon can be determined by the BET method or the Langmuir method.
  • the specific surface area of the surface-modified spherical activated carbon used as the adsorbent for oral administration according to the present invention is such that the specific surface area obtained by the BET method (hereinafter sometimes abbreviated as “SSA”) is 800 m 2 / g to 3000 m 2 / g. is there.
  • SSA specific surface area obtained by the BET method
  • a surface-modified spherical activated carbon having an SSA of less than 800 m 2 / g is not preferable because the adsorption performance of toxic substances is lowered.
  • the lower limit of SSA is more preferably 1000 m 2 / g or more.
  • the upper limit of SSA is not particularly limited, but SSA is preferably 3000 m 2 / g or less from the viewpoint of strength.
  • FIG. 3 shows the relationship between the BET specific surface area and the amount of ⁇ -aminoisobutyric acid adsorbed. As can be seen from FIG. 3, when the BET specific surface area is less than 800 m 2 / g, the ⁇ -aminoisobutyric acid adsorption amount decreases even if the nitrogen content is 0.5% by weight or more, which is not preferable.
  • the total acidic groups are 0.30 to 1.20 meq / g and the total basic groups are 0.20 to 1. 20 meq / g.
  • the surface modified spherical activated carbon satisfying the condition that the total acidic group is 0.30 to 1.20 meq / g and the total basic group is 0.20 to 1.20 meq / g in the constitution of the functional group is DL-
  • the adsorption performance of water-soluble toxins such as ⁇ -aminoisobutyric acid is high, the adsorption ability of DL- ⁇ -aminoisobutyric acid is further improved by containing 0.5% by weight or more of nitrogen atoms.
  • the total acidic group is preferably 0.30 to 1.00 meq / g.
  • the lower limit of all basic groups is preferably 0.30 meq / g, and the upper limit is preferably 1.10 meq / g, more preferably 1.00 meq / g, and 0.90 meq / g. More preferably it is.
  • the surface non-modified spherical activated carbon obtained is subjected to only the oxidation treatment or the oxidation treatment and the reduction treatment, thereby surface modification used in the present invention.
  • Spherical activated carbon can be obtained.
  • the oxidation treatment is performed under an atmosphere having an oxygen content of 0.1 to 50% by volume, preferably 1 to 30% by volume, particularly preferably 3 to 20% by volume, at a temperature of 300 to 800 ° C., preferably 320 to 600 ° C. be able to.
  • the reduction treatment can be performed in a non-oxidizing gas atmosphere at a temperature of 800 to 1200 ° C., preferably 800 to 1000 ° C.
  • the atmosphere inert to carbon means nitrogen, argon, helium alone, or a mixed system thereof.
  • the surface-modified spherical activated carbon is a porous body obtained by subjecting the spherical activated carbon to the oxidation treatment alone or the oxidation treatment and reduction treatment.
  • the adsorption characteristics of toxic substances in the upper small intestinal tract are improved by adding acid points and basic points in a balanced manner to the surface of the spherical activated carbon.
  • the specificity for the toxic substance to be adsorbed can be improved by subjecting the spherical activated carbon to oxidation treatment and reduction treatment.
  • the surface-modified spherical activated carbon manufactured in Example 12 is a surface-modified spherical activated carbon that is subjected only to oxidation treatment and not subjected to reduction treatment.
  • the surface-modified spherical activated carbon of Example 12 is superior in the adsorption amount of ⁇ -aminoisobutyric acid for 24 hours or 3 hours as compared with the surface-modified spherical activated carbon containing only nitrogen treatment and not containing nitrogen atoms.
  • the pore volume of the spherical activated carbon used in the adsorbent for oral administration of the present invention having a pore diameter of 20 to 15000 nm is not particularly limited, but is preferably 1.00 mL / g or less, more preferably 0.00. 80 mL / g or less. Although a minimum is not specifically limited, 0.01 mL / g or more is preferable.
  • the spherical volume of the spherical activated carbon used in the adsorbent for oral administration of the present invention is not particularly limited, but is preferably 1.00 mL / g or less, more preferably. 0.80 mL / g or less. Although a minimum is not specifically limited, 0.01 mL / g or more is preferable.
  • the pore volume is measured using a mercury intrusion method.
  • a heat-meltable resin for example, a cross-linked vinyl resin
  • the spherical body made of the heat-meltable resin is softened by heat treatment and deformed into a non-spherical shape, or the spherical bodies are Since it is fused, softening can be suppressed by performing an oxidation treatment at 150 ° C. to 400 ° C. in an atmosphere containing oxygen as an infusible treatment before the activation treatment. That is, the heat-meltable resin can be used for the production of the surface-modified spherical activated carbon after being modified by a so-called infusibilization treatment such as an oxidation treatment so that the melt-oxidation can be avoided.
  • the cross-linked vinyl resin that is a heat-meltable resin is softened and melted by heat treatment in a non-oxidizing gas atmosphere and the carbonization yield is less than 10%, but in an atmosphere containing oxygen as an infusible treatment,
  • a spherical carbonaceous material can be obtained with a high carbonization yield of 30% or more without being softened or melted. This is the case of the above heat infusible resin.
  • Spherical activated carbon can be obtained by performing the activation treatment in the same manner as described above.
  • a heat infusible resin for example, ion exchange resin
  • a spherical body made of a heat infusible resin is activated at a temperature of 700 to 1000 ° C. in an air stream reactive with carbon (for example, steam or carbon dioxide) to obtain a spherical activated carbon. be able to.
  • the heat infusible resin used as a starting material is a material capable of forming a spherical body, and it is important that it does not melt or soften during heat treatment at 500 ° C. or lower and does not cause shape deformation. .
  • the heat infusible resin used as a starting material desirably has a high carbonization yield by heat treatment. When the carbonization yield is low, the strength as the surface-modified spherical activated carbon becomes weak. In addition, since unnecessary pores are formed, the bulk density of the surface-modified spherical activated carbon is reduced, and the specific surface area per volume is reduced, which increases the administration volume and makes oral administration difficult. cause. Therefore, the higher the carbonization yield of the heat infusible resin, the better.
  • the preferable value of the yield by heat treatment at 800 ° C. in a non-oxidizing gas atmosphere is 30% by weight or more, more preferably 35% by weight or more. is there.
  • the spherical activated carbon obtained by the activation treatment described above is 300 to 800 ° C., preferably under an atmosphere having an oxygen content of 0.1 to 50% by volume, preferably 1 to 30% by volume, particularly preferably 3 to 20% by volume.
  • the surface-modified spherical activated carbon of the present invention is oxidized at a temperature of 320 to 600 ° C., and further subjected to a reduction treatment in a non-oxidizing gas atmosphere at a temperature of 800 to 1200 ° C., preferably 800 to 1000 ° C. Can be obtained.
  • pure oxygen, nitric oxide, air, or the like can be used as an oxygen source.
  • the atmosphere inert to carbon means nitrogen, argon, helium alone, or a mixed system thereof.
  • the surface-modified spherical activated carbon is a porous material obtained by subjecting the spherical activated carbon to the oxidation treatment and reduction treatment described above, and adds acidic and basic points in a balanced manner to the surface of the spherical activated carbon. This improves the adsorption characteristics of toxic substances in the upper small intestine. For example, the specificity for the toxic substance to be adsorbed can be improved by subjecting the spherical activated carbon to oxidation treatment and reduction treatment.
  • the surface-modified spherical activated carbon according to the present invention is prepared using the heat-meltable resin or the heat-infusible resin
  • the physical properties for example, average particle diameter, pore volume, or ratio
  • the surface area etc. can be controlled in various ways.
  • the average particle size of the resin depends on the size of the droplets in the aqueous phase
  • the size of the droplets depends on the amount of the suspending agent, the number of rotations of stirring, the shape of the stirring blades, or the monomer in the aqueous phase.
  • the ratio ratio of the amount of water and the amount of monomer. For example, if the amount of the suspending agent is increased, the droplet can be made smaller, if the rotation speed of stirring is increased, the droplet can be made smaller, and if the amount of the monomer in the aqueous phase is decreased, the droplet is reduced. This is preferable from the standpoint of not only controlling the coalescence but also facilitating heat removal from the polymerization heat. However, if the monomer ratio is too small, the amount of monomer per batch decreases, and the resulting synthetic resin. The amount is reduced, which is not preferable from the viewpoint of productivity.
  • the pore volume and specific surface area can be controlled mainly by the amount and type of porogen when the controlled pore diameter is 10 nm or more, and when the controlled pore diameter is 10 nm or less, It can control by the activation conditions by water vapor
  • a spherical activated carbon can be obtained by performing an activation treatment at a temperature of 700 to 1000 ° C. in an air stream (for example, steam or carbon dioxide gas) having reactivity with carbon as an activation reaction.
  • the specific surface area can be controlled by the activation conditions. For example, the specific surface area can be increased by increasing the activation time, increasing the activation temperature, or increasing the concentration of the air stream having reactivity with carbon. is there.
  • the microstructure of the surface-modified spherical activated carbon can be controlled by the type of resin, the type and amount of the crosslinking agent, the infusibilization conditions, and / or the activation temperature.
  • Adsorbent for oral administration for the treatment or prevention of kidney disease or liver disease The surface-modified spherical activated carbon used as the adsorbent for oral administration of the present invention is an adsorbent of toxic substances in liver disease aversion factor and kidney disease. Therefore, it can be used as an adsorbent for oral administration for the treatment or prevention of renal diseases, or as an adsorbent for oral administration for the treatment or prevention of liver diseases.
  • renal diseases include chronic renal failure, acute renal failure, chronic pyelonephritis, acute pyelonephritis, chronic nephritis, acute nephritic syndrome, acute progressive nephritic syndrome, chronic nephritic syndrome, nephrotic syndrome, nephrosclerosis, interstitial Nephritis, ureteropathy, lipoid nephrosis, diabetic nephropathy, renovascular hypertension, or hypertension syndrome, or secondary kidney disease associated with the above-mentioned primary disease, further, mild renal failure before dialysis, It can also be used to improve the condition of mild renal failure before dialysis and to improve the condition during dialysis ("clinical nephrology" Asakura Shoten, Nishio Honda, Kenkichi Ogura, Kiyoshi Kurokawa, 1990 edition and "Nephrology” medical bookstore (See Teruo Omae and Satoshi Fujimi, 1981 edition).
  • Liver diseases include, for example, fulminant hepatitis, chronic hepatitis, viral hepatitis, alcoholic hepatitis, liver fibrosis, liver cirrhosis, liver cancer, autoimmune hepatitis, drug allergic liver disorder, primary biliary cirrhosis, vibration Mental, encephalopathy, metabolic abnormalities, or functional abnormalities can be mentioned.
  • it can be used for treatment of diseases caused by harmful substances existing in the body, that is, psychosis.
  • the adsorbent for oral administration according to the present invention contains the surface-modified spherical activated carbon as an active ingredient when used as a therapeutic agent for kidney diseases.
  • the dosage depends on whether the subject of administration is a human or other animal, and varies depending on age, individual difference. In some cases, dosages outside the following range may be appropriate depending on the medical condition, etc.
  • the oral dosage for human subjects is 1 to 20 g per day, 3 to 4 times. It can be taken separately and further increased or decreased depending on the symptoms.
  • the dosage form can be powders, granules, tablets, dragees, capsules, suspensions, sticks, sachets or emulsions.
  • an enteric capsule can be used as required in addition to normal gelatin.
  • a tablet it is necessary that the tablet is unlocked into fine particles.
  • it can also be used in the form of a composite agent blended with other chemicals such as an aluminum gel and an electrolyte regulator such as silicaxate.
  • the surface modified spherical activated carbon having a total basic group of 0.20 meq / g to 1.20 meq / g is known as a surface modified spherical activated carbon or non-surface Kidney disease treatment or prevention agent, or liver disease treatment or prevention in the form of a mixture mixed with modified spherical activated carbon (ie, surface-modified or non-surface-modified spherical activated carbon having less than 0.5% by weight of nitrogen atoms) It can be used as an agent.
  • it contains 0.5% by weight or more of nitrogen atoms, has a specific surface area determined by the BET method of 800 m 2 / g to 3000 m 2 / g, and an average particle diameter of 0.01 mm to 1 mm.
  • non-surface-modified spherical activated carbon that is, surface-modified or non-surface-modified spherical activated carbon whose nitrogen atom is less than 0.5% by weight
  • treatment or prevention of kidney disease or treatment or prevention of liver disease It can be used as an agent.
  • the surface-modified spherical activated carbon used in the adsorbent for oral administration according to the present invention can be used in a method for preventing or treating kidney disease or liver disease. Therefore, the method for treating renal disease or liver disease of the present invention is characterized in that an effective amount of the adsorbent for oral administration containing the surface-modified spherical activated carbon is administered to a subject to be treated for renal disease or liver disease. It is.
  • the administration route, dosage, and administration interval of the surface-modified spherical activated carbon can be appropriately determined according to the type of illness, patient age, sex, weight, symptom level, administration method, and the like.
  • the surface-modified spherical activated carbon used for the adsorbent for oral administration according to the present invention is used in a method for preventing or treating kidney disease or liver disease. be able to. Accordingly, the surface-modified spherical activated carbon of the present invention is for use in a method for preventing or treating kidney disease or liver disease.
  • the amount of the surface-modified spherical activated carbon used in the prevention or treatment can be appropriately determined according to the type of illness, the age, sex, weight, symptom level, or administration method of the patient.
  • the surface-modified spherical activated carbon used for the adsorbent for oral administration according to the present invention is used for the prevention or treatment of kidney disease or liver disease. It can be used for the manufacture of medicinal drugs. Therefore, the use of the present invention is the use of the surface-modified spherical activated carbon for the manufacture of a medicament for the prevention or treatment of kidney disease or liver disease.
  • the content of the surface-modified spherical activated carbon in the preventive or therapeutic drug can be appropriately determined according to the type of illness, the age, sex, weight, symptom level, or administration method of the patient.
  • the surface-modified spherical activated carbon used for the adsorbent for oral administration according to the present invention may be used for the treatment of kidney disease or liver disease. it can. Therefore, the use of the present invention is the use of the surface-modified spherical activated carbon for the prevention or treatment of kidney disease or liver disease.
  • the fee for use in the prevention or treatment of the surface-modified spherical activated carbon can be appropriately determined according to the type of disease, the age, sex, weight, symptom level, or administration method of the patient.
  • Example 1 4500 g of ion-exchanged water, 0.9 g of sodium nitrite, and 6.8 g of Metrolose 60SH-15 (manufactured by Shin-Etsu Chemical Co., Ltd.) were placed in a 10 L polymerization reactor. To this, 376 g of styrene, 1049 g of divinylbenzene (57% divinylbenzene and 43% ethylvinylbenzene), 75 g of acrylonitrile, 8.7 g of 2,2′-azobis (2,4-dimethylvaleronitrile), and 525 g of hexane as a porogen was added as appropriate.
  • the inside of the system was replaced with nitrogen gas, and this two-phase system was heated to 55 ° C. while stirring at 180 rpm, and maintained as it was for 20 hours.
  • the obtained resin was washed with water and filtered, and dried at 180 ° C. for 16 hours under a nitrogen flow to obtain a spherical porous synthetic resin having an average particle diameter of 197 ⁇ m.
  • the obtained spherical porous synthetic resin was charged into a reaction tube with a pan and subjected to infusibilization treatment in a vertical tubular furnace. As an infusibilization treatment, dry air is allowed to flow from the lower part of the reaction tube to the upper part, and after raising the temperature to 180 ° C., the temperature is raised from 180 ° C.
  • Example 2 A spherical porous synthetic resin was prepared by repeating the resin preparation operation of Example 1 except that 301 g of styrene and 150 g of acrylonitrile were used and the rotational speed of the two-phase system was 180 rpm. The average particle diameter of the obtained spherical porous synthetic resin was 193 ⁇ m. Using the spherical porous synthetic resin, the infusibilization treatment and the activation treatment in Example 1 were repeated except that the activation treatment was performed until the BET specific surface area reached 1630 m 2 / g. Was prepared. Table 1 shows the characteristics of the obtained surface-modified spherical activated carbon.
  • Example 3 4500 g of deionized water, 6.0 g of sodium nitrite, and 6.8 g of Metrose 60SH-15 (manufactured by Shin-Etsu Chemical Co., Ltd.) were placed in a 10 L polymerization reactor. There are 582 g of styrene, 393 g of divinylbenzene (57% divinylbenzene and 43% ethylvinylbenzene), 525 g of acrylonitrile, 8.7 g of 2,2′-azobis (2,4-dimethylvaleronitrile), and 375 g of hexane as a porogen. Then, the system was replaced with nitrogen gas. The two-phase system was heated to 55 ° C.
  • the obtained resin was washed with water, filtered, and dried at 180 ° C. for 16 hours under a nitrogen flow to obtain a spherical porous synthetic resin having an average particle diameter of 171 ⁇ m.
  • the obtained spherical porous synthetic resin was charged into a reaction tube with a pan and subjected to infusibilization treatment in a vertical tubular furnace. As an infusibilization treatment, dry air is allowed to flow from the lower part of the reaction tube to the upper part. Was heated at 260 ° C. for 5 hours, heated from 260 ° C. to 300 ° C. for 2 hours, and held at 300 ° C.
  • Example 4 A spherical porous synthetic resin was prepared by repeating the resin preparation operation of Example 3 except that 432 g of styrene and 675 g of acrylonitrile were used, and the stirring rotation speed of the two-phase system was 147 rpm.
  • the obtained spherical porous synthetic resin had an average particle size of 190 ⁇ m.
  • the obtained spherical porous synthetic resin was charged into a reaction tube with a pan and subjected to infusibilization treatment in a vertical tubular furnace. As an infusibilization treatment, dry air is allowed to flow from the lower part of the reaction tube to the upper part. The temperature was raised in 1 hour and held at 260 ° C.
  • Example 5 A spherical porous synthetic resin was prepared by repeating the resin preparation procedure of Example 4 except that styrene was 207 g, acrylonitrile was 900 g, and hexane was 450 g, and the two-phase stirring speed was 135 rpm. The average particle diameter of the obtained spherical porous synthetic resin was 172 ⁇ m. Furthermore, using the spherical porous synthetic resin, the surface modification was repeated by repeating the infusibilization treatment and the activation treatment in Example 4 except that the activation treatment was performed until the BET specific surface area reached 1280 m 2 / g. Spherical activated carbon was prepared. Table 1 shows the characteristics of the obtained surface-modified spherical activated carbon.
  • Example 6 The procedure for preparing the resin of Example 4 except that 1500 g of acrylonitrile, 0 g of styrene, and 0 g of divinylbenzene (57% divinylbenzene and 43% ethylvinylbenzene) were used, and the two-phase stirring speed was 140 rpm. Was repeated to prepare a synthetic resin.
  • the obtained spherical porous synthetic resin had an average particle size of 255 ⁇ m.
  • the obtained spherical porous synthetic resin was charged into a reaction tube with a pan and subjected to infusibilization treatment in a vertical tubular furnace. As an infusibilization treatment, dry air is allowed to flow from the lower part of the reaction tube to the upper part.
  • the temperature was raised in 1 hour and held at 260 ° C. for 4 hours to obtain a spherical porous oxidized resin.
  • activation treatment was performed using a fluidized bed at 850 ° C. in a nitrogen gas atmosphere containing water vapor until the BET specific surface area reached 1030 m 2 / g, to obtain spherical activated carbon.
  • This was oxidized in a fluidized bed at 470 ° C. for 3 hours in an air atmosphere diluted with nitrogen, and then reduced in a fluidized bed at 900 ° C. for 17 minutes in a nitrogen gas atmosphere to obtain surface-modified spherical activated carbon.
  • Table 1 shows the characteristics of the obtained surface-modified spherical activated carbon.
  • Example 7 A surface-modified spherical activated carbon was prepared by repeating the procedure of Example 3 except that the activation temperature was changed to 900 ° C. at 850 ° C. and the BET specific surface area was 1080 m 2 / g. Table 1 shows the characteristics of the obtained surface-modified spherical activated carbon.
  • Example 8 A surface-modified spherical activated carbon was prepared by repeating the operation of Example 3 except that the activation treatment was performed until the BET specific surface area became 1280 m 2 / g. Table 1 shows the characteristics of the obtained surface-modified spherical activated carbon.
  • Example 9 A spherical porous synthetic resin was prepared by repeating the resin preparation operation of Example 3 except that 13.5 g of Metroze 60SH-15 was used and the rotational speed of the two-phase system was 186 rpm.
  • the obtained spherical porous synthetic resin had an average particle size of 135 ⁇ m.
  • the surface modification was repeated by repeating the infusibilization treatment and activation treatment operations of Example 2 except that the activation treatment was performed until the BET specific surface area reached 1200 m 2 / g.
  • Spherical activated carbon was prepared. Table 1 shows the characteristics of the obtained surface-modified spherical activated carbon.
  • Example 10 The procedure for preparing the resin of Example 3 was followed except that 6.8 g of Metrose SM-400 (manufactured by Shin-Etsu Chemical Co., Ltd.) was used instead of 6.8 g of Metrose 60SH-15, and the two-phase stirring speed was 110 rpm. Repeatedly, a spherical porous synthetic resin was prepared. The average particle diameter of the obtained spherical porous synthetic resin was 367 ⁇ m. The obtained spherical porous synthetic resin was charged into a reaction tube with a pan and subjected to infusibilization treatment in a vertical tubular furnace. The infusibilization condition is that dry air is allowed to flow from the lower part of the reaction tube to the upper part.
  • the infusibilization condition is that dry air is allowed to flow from the lower part of the reaction tube to the upper part.
  • Example 11 The procedure for preparing the resin of Example 10 was changed to 3.4 g instead of 6.8 g of Metrows SM-400 and 3.4 g of Metrows SM-100 (manufactured by Shin-Etsu Chemical Co., Ltd.) and the stirring rotation speed of the two-phase system was 75 rpm. Repeatedly, a spherical porous synthetic resin was prepared. The average particle diameter of the obtained spherical porous synthetic resin was 735 ⁇ m. The obtained spherical porous synthetic resin was charged into a reaction tube with a pan and subjected to infusibilization treatment in a vertical tubular furnace.
  • the infusibilization condition is that dry air is allowed to flow from the lower part of the reaction tube to the upper part.
  • activation treatment was performed using a fluidized bed at 850 ° C. in a nitrogen gas atmosphere containing water vapor until the BET specific surface area reached 1240 m 2 / g to obtain spherical activated carbon. This was oxidized in a fluidized bed at 470 ° C.
  • Table 1 shows the characteristics of the obtained surface-modified spherical activated carbon.
  • Comparative Example 1 >> 4800 g of deionized water, 1.0 g of sodium nitrite, and 7.2 g of Metrose 60SH-15 (manufactured by Shin-Etsu Chemical Co., Ltd.) were placed in a 10 L polymerization reactor. To this, 481 g of styrene, 1119 g of divinylbenzene (57% divinylbenzene and 43% ethylvinylbenzene), 9.3 g of 2,2′-azobis (2,4-dimethylvaleronitrile), and 560 g of hexane as a porogen are appropriately added. After that, the inside of the system was replaced with nitrogen gas.
  • the two-phase system was heated to 55 ° C. with stirring at 140 rpm and held there for 20 hours.
  • the obtained resin was washed with water, filtered, and hexane was removed from the resin by distillation under reduced pressure, followed by drying under reduced pressure at 90 ° C. for 12 hours to obtain a spherical porous synthetic resin having an average particle size of 246 ⁇ m.
  • the obtained spherical porous synthetic resin was charged into a reaction tube with a pan and subjected to infusibilization treatment in a vertical tubular furnace.
  • a spherical porous oxidized resin is obtained by flowing dry air from the lower part of the reaction tube to the upper part, raising the temperature to 190 ° C., and then raising the temperature from 190 ° C. to 290 ° C. at 10 ° C./min. It was. After firing this at 850 ° C. in a nitrogen atmosphere, activation treatment was performed using a fluidized bed at 850 ° C. in a nitrogen atmosphere containing water vapor until the BET specific surface area reached 1790 m 2 / g to obtain spherical activated carbon. This was oxidized in a fluidized bed at 470 ° C.
  • Table 1 shows the characteristics of the obtained surface-modified spherical activated carbon.
  • Comparative Example 2 The surface-modified spherical activated carbon was prepared by repeating the operation of Example 3 except that the firing temperature was changed to 850 ° C. instead of 690 ° C. and the activation treatment was not performed. Table 1 shows the characteristics of the obtained surface-modified spherical activated carbon.
  • Comparative Example 3 A surface-modified spherical activated carbon was prepared by repeating the operation of Example 8 except that the reduction treatment was not performed after the oxidation treatment. Table 1 shows the characteristics of the obtained surface-modified spherical activated carbon.
  • Specific surface area (Calculation method of specific surface area by BET method)
  • the specific surface area can be calculated by the following formula by measuring the gas adsorption amount of the spherical activated carbon sample using a specific surface area measuring instrument (for example, “ASAP2010” or “ASAP2020” manufactured by MICROMERITICS) by gas adsorption method.
  • a spherical activated carbon as a sample is filled in a sample tube, dried under reduced pressure at 350 ° C., and the weight of the sample after drying is measured.
  • the sample tube is cooled to ⁇ 196 ° C.
  • nitrogen is introduced into the sample tube, nitrogen is adsorbed on the spherical activated carbon sample, and the relationship between nitrogen partial pressure and adsorption amount (adsorption isotherm) is measured.
  • BET plotting is performed with the relative pressure of nitrogen as p and the adsorption amount at that time as v (cm 3 / g STP).
  • Specific surface area (Calculation method of specific surface area by Langmuir's formula)
  • the specific surface area can be calculated by Langmuir's equation by measuring the amount of gas adsorbed on the spherical activated carbon sample using a specific surface area measuring instrument (for example, “ASAP2010” or “ASAP2020” manufactured by MICROMERITICS).
  • a specific surface area measuring instrument for example, “ASAP2010” or “ASAP2020” manufactured by MICROMERITICS.
  • a spherical activated carbon as a sample is filled in a sample tube, dried under reduced pressure at 350 ° C., and the weight of the sample after drying is measured.
  • the sample tube is cooled to ⁇ 196 ° C.
  • nitrogen is introduced into the sample tube
  • nitrogen is adsorbed on the spherical activated carbon sample
  • the relationship between nitrogen partial pressure and adsorption amount is measured.
  • MA were used 0.162Nm 2 in cross sectional area of nitrogen molecules.
  • the organic element composition of the spherical activated carbon sample can be determined using an organic element analyzer (“2400SERIES II CHNS / O” manufactured by PerkinElmer). Specifically, 1.7 mg of the sample is accurately weighed and wrapped in a tin capsule, and the sample is completely burned in a 975 ° C. combustion tube mounted on the organic element analyzer, so that carbon dioxide, water in the generated gas By measuring the amount of nitrogen dioxide, the content (wt%) of carbon, hydrogen and nitrogen atoms in the sample was determined. The calculated value obtained by subtracting the total content (wt%) of carbon, hydrogen and nitrogen atoms of the sample from 100 wt% was defined as the oxygen content (wt%).
  • Pore volume by mercury porosimetry The pore volume can be measured using a mercury porosimeter (for example, “AUTOPORE 9200” manufactured by MICROMERITICS).
  • Spherical activated carbon as a sample is put in a sample container and deaerated at a pressure of 2.67 Pa or less for 30 minutes.
  • the volume of mercury injected into the spherical activated carbon sample from a pressure corresponding to a pore diameter of 21 ⁇ m (0.06 MPa) to a maximum pressure (414 MPa: corresponding to a pore diameter of 3 nm) is measured.
  • D ( ⁇ 4 ⁇ cos ⁇ ) / P It becomes.
  • the surface tension of mercury is 484 dyne / cm
  • the contact angle between mercury and carbon is 130 degrees
  • the pressure P is MPa
  • the pore diameter D is expressed in ⁇ m.
  • D 1.24 / P
  • the pore volume having a pore diameter in the range of 20 to 15000 nm corresponds to the volume of mercury that is injected from a mercury intrusion pressure of 0.124 MPa to 165 MPa.
  • the pore volume in the range of the pore diameter of 7.5 to 15000 nm corresponds to the volume of mercury injected from a mercury intrusion pressure of 0.083 MPa to 165 MPa.
  • the spherical activated carbon used as the adsorbent for oral administration of the present invention has a very small particle size, the gap between the sample particles filled in the sample container is also reduced. Therefore, in the pore volume measurement operation by the mercury intrusion method, there is a stage in which mercury is intruded into the interparticle voids, and in the intrusion stage, pores having a pore diameter of 8000 to 15000 nm exist. Behaves like The presence of pores having a pore diameter of 8000 to 15000 nm in the spherical activated carbon used as the adsorbent for oral administration of the present invention can be confirmed, for example, by observation with an electron microscope.
  • pore volume in the range of pore diameter of 20 to 15000 nm” or “pore volume in the range of pore diameter of 7.5 to 15000 nm” includes mercury injected into the interparticle void. The amount is also included.
  • Total acidic groups 1 g of spherical activated carbon sample was added to 50 mL of 0.05N NaOH solution, and 8 pieces of shaker (“TRIPLE SHAKER NR-80” manufactured by Taitec Co., Ltd.) was used. After shaking for 48 hours at an amplitude of 3 cm and an amplitude of 76 cycles / min, the spherical activated carbon sample was filtered, and the consumption of NaOH determined by neutralization titration was defined as the total acidic group.
  • TriPLE SHAKER NR-80 manufactured by Taitec Co., Ltd.
  • Total basic group 1 g of spherical activated carbon sample was added to 50 mL of 0.05N HCl solution, and using an 8-shaped shaker (“TRIPLE SHAKER NR-80” manufactured by Taitec Corporation), After shaking for 24 hours at 37 ° C. with a figure 8 shake, amplitude 3 cm, 76 cycles / min, the surface-modified spherical activated carbon sample was filtered and the consumption of HCl determined by neutralization titration was determined based on total acid basicity. Based on.
  • TriPLE SHAKER NR-80 manufactured by Taitec Corporation
  • the contents of the screw mouth vial after shaking were suction filtered with a membrane filter having a filter hole of 0.80 ⁇ m to obtain a sample solution.
  • a stock solution, a mixture of the stock solution and a pH 7.4 phosphate buffer solution at a ratio of 1: 1, and a pH 7.4 phosphate buffer solution were each placed in a 50 mL screw-cap vial. 50 mL each was added, and shaken at 30 rpm at 37 ° C. for 3 hours or 24 hours using a mix rotor.
  • the contents of the screw mouth vial after shaking were suction filtered with a membrane filter having a filter hole of 0.80 ⁇ m to obtain a standard sample solution.
  • the amount of organic carbon was measured with a total organic carbon meter (“TOC-L CPN” manufactured by Shimadzu Corporation).
  • TOC-L CPN total organic carbon meter
  • a calibration curve of DL- ⁇ -aminoisobutyric acid was prepared from the theoretical concentration of DL- ⁇ -aminoisobutyric acid with respect to the amount of organic carbon in the standard sample solution, and used to prepare a DL- ⁇ -aminoisobutyric acid concentration Ct (mg / L) was determined.
  • the amount of DL- ⁇ -aminoisobutyric acid adsorbed on the spherical activated carbon was determined by the following equation.
  • DL- ⁇ -aminoisobutyric acid adsorption amount (C0 ⁇ Ct) ⁇ V / Mt
  • C0 DL- ⁇ -aminoisobutyric acid concentration in stock solution (mg / L)
  • Ct DL- ⁇ -aminoisobutyric acid concentration in sample solution (mg / L)
  • V Initial amount of sample solution (L)
  • Mt Spherical Activated carbon amount (g)
  • the adsorbent for oral administration of the present invention can be used as an adsorbent for oral administration for the treatment or prevention of kidney disease, or as an adsorbent for treatment or prevention of liver disease.
  • renal diseases include chronic renal failure, acute renal failure, chronic pyelonephritis, acute pyelonephritis, chronic nephritis, acute nephritic syndrome, acute progressive nephritic syndrome, chronic nephritic syndrome, nephrotic syndrome, nephrosclerosis, interstitial Nephritis, ureteropathy, lipoid nephrosis, diabetic nephropathy, renovascular hypertension, or hypertension syndrome, or secondary kidney disease associated with the above-mentioned primary disease, further, mild renal failure before dialysis, It can also be used to improve the condition of mild renal failure before dialysis and to improve the condition during dialysis ("clinical nephrology" Asakura Shoten
  • Liver diseases include, for example, fulminant hepatitis, chronic hepatitis, viral hepatitis, alcoholic hepatitis, liver fibrosis, liver cirrhosis, liver cancer, autoimmune hepatitis, drug allergic liver disorder, primary biliary cirrhosis, vibration Mental, encephalopathy, metabolic abnormalities, or functional abnormalities can be mentioned.
  • it can be used for treatment of diseases caused by harmful substances existing in the body, that is, psychosis.
  • this invention was demonstrated along the specific aspect, the deformation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Inorganic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Toxicology (AREA)
  • Urology & Nephrology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

 本発明の目的は、生体内の尿毒症性物質、特にβ-アミノイソ酪酸に対する吸着能が優れた表面改質球状活性炭を提供することである。 前記課題は、窒素原子を0.5重量%以上含有し、BET法により求められる比表面積が800m/g~3000m/gであり、そして平均粒子径が0.01mm~1mmであり、全酸性基が0.30meq/g以上である表面改質球状活性炭を含むことを特徴とする経口投与用吸着剤によって解決することができる。

Description

経口投与用吸着剤並びに腎疾患治療剤及び肝疾患治療剤
 本発明は窒素原子を0.5重量%以上含有する表面改質球状活性炭を含む経口投与用吸着剤に関する。また、本発明は、前記の経口投与用吸着剤を有効成分とする腎疾患治療又は予防剤、及び肝疾患治療又は予防剤に関する。
 本発明による経口投与用吸着剤は、生体内の尿毒症性物質、特にβ-アミノイソ酪酸に対する吸着能が優れている。
 腎機能や肝機能の欠損患者らは、それらの臓器機能障害に伴って、血液中等の体内に有害な毒性物質が蓄積したり生成したりするので、尿毒症や意識障害等の脳症をひきおこす。これらの患者数は年々増加する傾向を示しているため、これら欠損臓器に代わって毒性物質を体外へ除去する機能をもつ臓器代用機器あるいは治療薬の開発が重要な課題となっている。現在、人工腎臓としては、血液透析による有毒物質の除去方式が最も普及している。しかしながら、このような血液透析型人工腎臓では、特殊な装置を用いるために、安全管理上から専門技術者を必要とし、また血液の体外取出しによる患者の肉体的、精神的及び経済的負担が高いなどの欠点を有していて、必ずしも満足すべきものではない。
 これらの欠点を解決する手段として、経口的な服用が可能で、腎臓や肝臓の機能障害を治療することができる経口吸着剤が開発され、利用されている(特許文献1)。その経口吸着剤は、特定の官能基を有する多孔性の球形炭素質物質(すなわち、球状活性炭)からなり、生体に対する安全性や安定性が高く、同時に腸内での胆汁酸の存在下でも有毒物質(すなわち、β-アミノイソ酪酸、γ-アミノ-n-酪酸、ジメチルアミン、及びオクトパミン)の吸着性に優れ、しかも、消化酵素等の腸内有益成分の吸着が少ないという有益な選択吸着性を有し、また、便秘等の副作用の少ない経口治療薬として、例えば、肝腎機能障害患者に対して広く臨床的に利用されている。なお、前記特許文献1に記載の吸着剤は、石油ピッチなどのピッチ類を炭素源とし、球状活性炭を調製した後、酸化処理、及び還元処理を行うことにより製造されており、この酸化及び還元処理を行った球状活性炭は、表面改質球状活性炭と称されていた。
 更に、特許文献2には、平均粒子径が50μm~200μmの表面改質球状活性炭が、初期吸着能の点で優れていることが開示されている。すなわち、経口投与用吸着剤を摂取後の、一般的な上部小腸管内滞留期間内(3時間以内)において、生体内の有毒な毒性物質(特には、β-アミノイソ酪酸)を極めて迅速に吸着することができた。
特公昭62-11611号公報 特開2005-314416号公報
 前記の特許文献1及び2に記載の表面改質球状活性炭は、生体内の尿毒症性物質に対する吸着能、特にβ-アミノイソ酪酸に対する吸着能が、優れていた。しかしながら、特許文献1及び2に記載の表面改質球状活性炭の尿毒症性物質に対する吸着能も十分なものではなく、更なる改良が期待されていた。
 本発明の目的は、生体内の尿毒症性物質、特にβ-アミノイソ酪酸に対する吸着能が優れた表面改質球状活性炭を提供することである。
 本発明者は、生体内の尿毒症性物質に対する吸着能の優れた表面改質球状活性炭について、鋭意研究した結果、驚くべきことに、窒素原子を0.5重量%以上含有する表面改質球状活性炭が、優れた尿毒症性物質に対する吸着能、特にβ-アミノイソ酪酸に対する吸着能を示すことを見出した。窒素原子量の増加に伴う球状活性炭のβ-アミノイソ酪酸に対する吸着能の増加は著しいものであり、表面改質球状活性炭の窒素原子が尿毒症性物質に対する吸着能に関連していることは、驚くべきことである。
 本発明は、こうした知見に基づくものである。
 従って、本発明は、
[1]窒素原子を0.5重量%以上含有し、BET法により求められる比表面積が800m/g~3000m/gであり、そして平均粒子径が0.01mm~1mmであり、全酸性基が0.30meq/g以上である表面改質球状活性炭を含むことを特徴とする経口投与用吸着剤、
[2]前記表面改質球状活性炭の平均粒子径が50~200μmである、[1]に記載の経口投与用吸着剤、
[3]前記表面改質球状活性炭が、0.30meq/g~1.20meq/gの全酸性基、及び0.20meq/g~1.20meq/gの全塩基性基を有する、[1]又は[2]に記載の経口投与用吸着剤、
[4]前記表面改質球状活性炭が、窒素原子を含む熱可塑性樹脂、熱硬化性樹脂、又はイオン交換樹脂を炭素源として調製される、[1]~[3]のいずれかに記載の経口投与用吸着剤、
[5]前記熱可塑性樹脂又はイオン交換樹脂が、アクリロニトリル、エチルアクリロニトリル、メチルアクリロニトリル、ジフェニルアクリロニトリル、及びクロロアクリロニトリルからなる群から選択されるモノマーを含む、[4]に記載の経口投与用吸着剤、
[6]前記熱硬化性樹脂が、メラミン及び尿素からなる群から選択されるモノマーを含む、[4]に記載の経口投与用吸着剤、
[7][1]~[6]のいずれかに記載の経口投与用吸着剤を有効成分とする腎疾患治療又は予防剤、及び
[8][1]~[6]のいずれかに記載の経口投与用吸着剤を有効成分とする肝疾患治療又は予防剤
に関する。
 更に、本明細書は、
[9][1]~[6]のいずれかに記載の経口投与用吸着剤を、腎疾患又は肝疾患の治療対象に有効量投与する、腎疾患又は肝疾患の予防又は治療方法、
[10]腎疾患又は肝疾患の治療(方法)における使用のための、
窒素原子を0.5重量%以上含有し、BET法により求められる比表面積が800m/g~3000m/gであり、そして平均粒子径が0.01mm~1mmであり、全酸性基が0.30meq/g以上である表面改質球状活性炭、
[11]前記表面改質球状活性炭の平均粒子径が50~200μmである、[10]に記載の球状活性炭、
[12]前記表面改質球状活性炭が、0.30meq/g~1.20meq/gの全酸性基、及び0.20meq/g~1.20meq/gの全塩基性基を有する、[10]又は[11]に記載の球状活性炭、
[13]前記表面改質球状活性炭が、窒素原子を含む熱可塑性樹脂、熱硬化性樹脂、又はイオン交換樹脂を炭素源として調製される、[10]~[12]のいずれかに記載の表面改質球状活性炭、
[14]前記熱可塑性樹脂又はイオン交換樹脂が、アクリロニトリル、エチルアクリロニトリル、メチルアクリロニトリル、ジフェニルアクリロニトリル、及びクロロアクリロニトリルからなる群から選択されるモノマーを含む、[13]に記載の表面改質球状活性炭、
[15]前記熱硬化性樹脂が、メラミン及び尿素からなる群から選択されるモノマーを含む、[13]に記載の表面改質球状活性炭、
[16]腎疾患又は肝疾患の予防又は治療用医薬の製造のための、
窒素原子を0.5重量%以上含有し、BET法により求められる比表面積が800m/g~3000m/gであり、そして平均粒子径が0.01mm~1mmであり、全酸性基が0.30meq/g以上である表面改質球状活性炭の使用、
[17]前記表面改質球状活性炭の平均粒子径が50~200μmである、[16]に記載の球状活性炭の使用、
[18]前記表面改質球状活性炭が、0.30meq/g~1.20meq/gの全酸性基、及び0.20meq/g~1.20meq/gの全塩基性基を有する、[16]又は[17]に記載の表面改質球状活性炭の使用、
[19]前記表面改質球状活性炭が、窒素原子を含む熱可塑性樹脂、熱硬化性樹脂、又はイオン交換樹脂を炭素源として調製される、[16]~[18]のいずれかに記載の表面改質球状活性炭の使用、
[20]前記熱可塑性樹脂又はイオン交換樹脂が、アクリロニトリル、エチルアクリロニトリル、メチルアクリロニトリル、ジフェニルアクリロニトリル、及びクロロアクリロニトリルからなる群から選択されるモノマーを含む、[19]に記載の表面改質球状活性炭の使用、
[21]前記熱硬化性樹脂が、メラミン及び尿素からなる群から選択されるモノマーを含む、[19]に記載の表面改質球状活性炭の使用、
[22]腎疾患又は肝疾患の予防又は治療のための、
窒素原子を0.5重量%以上含有し、BET法により求められる比表面積が800m/g~3000m/gであり、そして平均粒子径が0.01mm~1mmであり、全酸性基が0.30meq/g以上である表面改質球状活性炭、の使用、
[23]前記表面改質球状活性炭の平均粒子径が50~200μmである、[22]に記載の表面改質球状活性炭の使用、
[24]前記表面改質球状活性炭が、0.30meq/g~1.20meq/gの全酸性基、及び0.20meq/g~1.20meq/gの全塩基性基を有する、[22]又は[23]に記載の表面改質球状活性炭の使用、
[25]前記表面改質球状活性炭が、窒素原子を含む熱可塑性樹脂、熱硬化性樹脂、又はイオン交換樹脂を炭素源として調製される、[22]~[24]のいずれかに記載の表面改質球状活性炭の使用、
[26]記熱可塑性樹脂又はイオン交換樹脂が、アクリロニトリル、エチルアクリロニトリル、メチルアクリロニトリル、ジフェニルアクリロニトリル、及びクロロアクリロニトリルからなる群から選択されるモノマーを含む、[25]に記載の表面改質球状活性炭の使用、
[27]前記熱硬化性樹脂が、メラミン及び尿素からなる群から選択されるモノマーを含む、[25]に記載の表面改質球状活性炭の使用、
を開示する。
 本発明の経口投与用吸着剤によれば、尿毒症性物質に対する吸着能、特にβ-アミノイソ酪酸に対する吸着能が顕著に優れているため、少量の経口投与用吸着剤により、有毒な毒性物質を大量に吸着することができる。従って、従来の経口投与用吸着剤と同量の服用にてより高い薬効を得ることができる。又は、従来と同様の薬効を得るための服用量を従来の経口投与用吸着剤よりも減少させることができる。
実施例1~11及び比較例1及び2で得られた経口投与用吸着剤のβ-アミノイソ酪酸吸着量(24時間)を示したグラフである。 BET比表面積1500m/g程度の実施例(実施例1、2、3、4、及び8)の球状活性炭について、窒素含有量とβ-アミノイソ酪酸吸着量(24時間)との関連を示したグラフである。 実施例1~11及び比較例1及び2で得られた経口投与用吸着剤のBET比表面積とβ-アミノイソ酪酸吸着量(24時間)との関連を示したグラフである。 BET比表面積1300m/g程度の実施例(実施例8、9、10、及び11)の球状活性炭について、平均粒子径とβ-アミノイソ酪酸吸着量(3時間)との関連を示したグラフである。
[1]経口投与用吸着剤
 本発明による経口投与用吸着剤として用いる表面改質球状活性炭は、酸性点が0.30meq/g以上の球状活性炭を意味する。これに対して、表面非改質球状活性炭とは、酸性点が0.30meq/g未満の球状活性炭を意味する。表面改質球状活性炭は、後述するとおり、炭素前駆体を熱処理した後に、賦活処理を行い、更にその後で、酸化処理及び還元処理による表面改質処理を実施することによって得られる多孔質体であり、酸及び塩基に対して適度な相互作用を示すことができる。一方、表面非改質球状活性炭は、例えば、炭素前駆体を熱処理した後に、賦活処理を行うことによって得られる多孔質体であり、その後の酸化処理及び還元処理による表面改質処理を実施していない球状活性炭、あるいは、前記賦活処理の後に非酸化性雰囲気での熱処理を実施して得られる球状活性炭である。
 本発明の経口投与用吸着剤に用いる表面改質球状活性炭は、窒素原子を0.5重量%以上含有し、BET法により求められる比表面積が800m/g~3000m/gであり、そして平均粒子径が0.01mm~1mmであり、全酸性基が0.30meq/g~1.20meq/gであり、そして全塩基性基が0.20meq/g~1.20meq/gである。
(窒素原子量)
 表面改質球状活性炭の窒素原子含有量は、0.5重量%以上であり、より好ましくは0.7重量%以上であり、更に好ましくは0.9重量%であり、更に好ましくは0.95重量%であり、更に好ましくは1.0重量%以上である。窒素原子含有量が0.5重量%以上であると、尿毒症性物質に対する吸着能の上昇が顕著であり好ましい。窒素原子含有量の上限は、特に限定されるものではないが、20重量%以下が好ましい。窒素含有量が0.5重量%以上であり、窒素含有量が多くなるに従って、β-アミノイソ酪酸吸着量が多くなる。β-アミノイソ酪酸吸着量は比表面積にも影響を受ける。そのため、図2にBET比表面積1500m/g程度の球状活性炭(実施例1、2、3、4、及び8)について、窒素含有量とβ-アミノイソ酪酸吸着量(24時間)との関連を示した。図2から明らかなように、窒素含有量が多くなるにつれて、β-アミノイソ酪酸吸着量が増加した。特に、窒素含有量が0.5重量%~3重量%では、窒素含有量とβ-アミノイソ酪酸吸着量の顕著な相関が見られた。
(炭素源)
 表面改質球状活性炭の炭素源は、窒素原子を含むものである限り、限定されるものではないが、熱溶融性樹脂、又は熱不融性樹脂を挙げることができる。
(熱溶融性樹脂)
 熱溶融性樹脂としては、窒素原子を含むモノマーを用いて製造された窒素原子を含む熱可塑性樹脂(例えば、窒素原子を含む架橋ビニル樹脂)を挙げることができる。
 窒素原子を含む架橋ビニル樹脂を製造するための、窒素原子を含むモノマーとしては、アクリロニトリル、メチルアクリロニトリル(例えば、2-メチルアクリロニトリル)、エチルアクリロニトリル(例えば、2-ヒドロキシエチル・アクリロニトリル、2-(1-ヒドロキシエチル)アクリロニトリル、2-(2-フルオロエチル)アクリロニトリル)、ジフェニルアクリロニトリル(例えば、2、3-ジフェニルアクリロニトリル、3、3-ジフェニルアクリロニトリル)、又はクロロアクリロニトリル(例えば、2-クロロアクリロニトリル)を挙げることができる。これらの窒素原子を含むモノマー単独の重合体のビニル樹脂としてもよく、又は他のモノマーとの共重合体の架橋ビニル樹脂としてもよい。
 炭素源として用いる前記の架橋ビニル樹脂は、例えば、乳化重合、塊状重合、若しくは溶液重合によって得られる球状ポリマー、又は好ましくは懸濁重合によって得られる球状ポリマーを用いることができる。球状の架橋ビニル樹脂を均一に不融化するには、架橋ビニル樹脂に予め細孔形成を行うことが不可欠である。樹脂の細孔形成は、重合時にポロゲンを添加することにより可能となる。架橋ビニル樹脂を均一に不融化するために必要な、架橋ビニル樹脂のBET比表面積は5m/g以上が好ましく、更に好ましくは10m/g以上である。
 例えば、架橋ビニル樹脂を懸濁重合によって調製する場合には、ビニル系モノマー、架橋剤、ポロゲン及び重合開始剤を含む有機相を、分散安定剤を含有する水系分散媒体中に添加し、攪拌混合により水相中に懸濁された多数の有機液滴を形成した後、加熱して有機液滴中のモノマーを重合させることにより、球状の架橋ビニル樹脂を調製することができる。
 前記窒素原子を含むモノマーと共重合体を形成する、他のモノマーとしては、球形に成型することができる任意のビニル系モノマーを用いることができ、例えば、芳香族ビニル系モノマー、例えば、スチレン、あるいはビニル基水素やフェニル基水素が置換されたスチレン誘導体、あるいはフェニル基のかわりに複素環式あるいは多環式化合物がビニル基に結合した化合物などを用いることができる。芳香族ビニル系モノマーとしては、より具体的には、α-あるいはβ-メチルスチレン、α-あるいはβ-エチルスチレン、メトキシスチレン、フェニルスチレン、あるいはクロロスチレンなど、あるいは、o-、m-、あるいはp-メチルスチレン、エチルスチレン、メトキシスチレン、メチルシリルスチレン、ヒドキロシスチレン、クロロスチレン、シアノスチレン、ニトロスチレン、アミノスチレン、カルボキシスチレン、あるいはスルホキシスチレン、スチレンスルホン酸ソーダなど、あるいは、ビニルピリジン、ビニルチオフェン、ビニルピロリドン、ビニルナフタレン、ビニルアントラセン、又はビニルビフェニル等を挙げることができる。また、脂肪族ビニル系モノマーも使用することができ、具体的には、例えば、エチレン、プロピレン、イソブチレン、ジイソブチレン、塩化ビニル、アクリル酸エステル、メタクリル酸エステル、酢酸ビニルなどのビニルエステル類、ビニルメチルケトン、ビニルエチルケトンなどのビニルケトン類、アクロレイン、メタアクロレインなどのビニルアルデヒド類、あるいは、ビニルメチルエーテル、又はビニルエチルエーテルなどのビニルエーテル類を挙げることができる。これらのビニル系モノマーのうちの1つ以上を用いて、窒素原子を含むモノマーとの架橋ビニル樹脂を調整することができるが、好ましくはメチルスチレン類(α-メチルスチレン、β-メチルスチレン、o-メチルスチレン、m-メチルスチレン、又はp-メチルスチレン)、エチルスチレン類(α-エチルスチレン又はβ-エチルスチレン)又はスチレンである。
 また、架橋剤としては、前記のビニル系モノマーの架橋化に用いることができる任意の架橋剤を用いることができ、例えば、ジビニルベンゼン、ジビニルピリジン、ジビニルトルエン、ジビニルナフタレン、ジアリルフタラート、エチレングリコールジアクリラート、エチレングリコールジメチラート、ジビニルキシレン、ジビニルエチルベンゼン、ジビニルスルホン、グリコール又はグリセロールのポリビニル又はポリアリルエーテル類、ペンタエリトリトールのポリビニル又はポリアリルエーテル類、グリコールのモノ又はジチオ誘導体のポリビニル又はポリアリルエーテル類、あるいはレゾルシノールのポリビニル又はポリアリルエーテル類、ジビニルケトン、ジビニルスルフィド、アリルアクリラート、ジアリルマレアート、ジアリルフマラート、ジアリルスクシナート、ジアリルカルボナート、ジアリルマロナート、ジアリルオキサラート、ジアリルアジパート、ジアリルセバサート、トリアリルトリカルバリラート、トリアリルアコニタート、トリアリルシトラート、トリアリルホスファート、N、N’-メチレンジアクリルアミド、1、2-ジ(α-メチルメチレンスルホンアミド)エチレン、トリビニルベンゼン、トリビニルナフタレン、ポリビニルアントラセン、あるいはトリビニルシクロヘキサンを用いることができる。特に好ましい架橋剤の例に含まれるものは、ポリビニル芳香族炭化水素(例えば、ジビニルベンゼン)、グリコールトリメタクリラート(例えば、エチレングリコールジメタクリラート)、又はポリビニル炭化水素(例えば、トリビニルシクロヘキサン)である。ジビニルベンゼンは、その熱分解特性が優れているので、最も好ましい。
 適当なポロゲンとしては、炭素原子数4~10のアルカノール(例えば、n-ブタノール、sec-ブタノール、2-エチルヘキサノール、デカノール、又は、4-メチル-2-ペンタノール)、炭素原子数が少なくとも7のアルキルエステル(例えば、n-ヘキシルアセタート、2-エチルヘキシルアセタート、メチルオレアート、ジブチルセバサート、ジブチルアジパート、又はジブチルカルボナート)、炭素原子数4~10のアルキルケトン(例えば、ジブチルケトン又はメチルイソブチルケトン)、又はアルキルカルボン酸(例えば、ヘプタン酸)、芳香族炭化水素(例えば、トルエン、キシレン、又はベンゼン)、高級飽和脂肪族炭化水素(例えば、ヘキサン、ヘプタン、又はイソオクタン)、あるいは環式脂肪族炭化水素(例えば、シクロヘキサン)を挙げることができる。
 重合開始剤としては、特に限定されず、この分野で一般に使用されているものを使用することができるが、重合性単量体に可溶性である油溶性重合開始剤が好ましい。重合開始剤としては、例えば、過酸化ジアルキル、過酸化ジアシル、パーオキシエステル、パーオキシジカーボネート、又はアゾ化合物を挙げることができる。より具体的には、例えば、メチルエチルパーオキサイド、ジ-t-ブチルパーオキサイド、ジクミルパーオキサイドなどの過酸化ジアルキル;イソブチルパーオキサイド、ベンゾイルパーオキサイド、2,4-ジクロロベンゾイルパーオキサイド、3、5、5-トリメチルヘキサノイルパーオキサイドなどの過酸化ジアシル;t-ブチルパーオキシピバレート、t-ヘキシルパーオキシピバレート、t-ブチルパーオキシネオデカノエート、t-ヘキシルパーオキシネオデカノエート、1-シクロヘキシル-1-メチルエチルパーオキシネオデカノエート、1、1、3、3-テトラメチルブチルパーオキシネオデカノエート、クミルパーオキシネオデカノエート、(α、α-ビス-ネオデカノイルパーオキシ)ジイソプロピルベンゼンなどのパーオキシエステル;ビス(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、ジ-n-プロピル-オキシジカーボネート、ジ-イソプロピルパーオキシジカーボネート、ジ(2-エチルエチルパーオキシ)ジカーボネート、ジ-メトキシブチルパーオキシジカーボネート、ジ(3-メチル-3-メトキシブチルパーオキシ)ジカーボネートなどのパーオキシジカーボネート;2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、1、1’-アゾビス(1-シクロヘキサンカルボニトリル)などのアゾ化合物;などを挙げることができる。
(熱不融性樹脂)
 本発明に用いる熱不融性樹脂は、窒素原子を含むものである限り、限定されるものではないが、具体的には窒素原子を含む熱硬化性樹脂(例えば、メラミン樹脂、又はフェノール樹脂)、又は窒素原子を含むイオン交換樹脂を挙げることができる。
(メラミン樹脂)
 メラミン樹脂は、アミノ樹脂に属する熱硬化性樹脂でメラミンとホルムアルデヒドとの重縮合により製造される。具体的には、メラミン及びホルムアルデヒドをアルカリ条件下で縮合させたメチロールメラミンを原料とする。メチロールメラミンを加熱することにより、重縮合を起こし、網目状に架橋し熱硬化樹脂となる。
 また、メラミン樹脂は単独のメラミン樹脂として用いることもできる。更に、メラミン樹脂と、尿素若しくはフェノールとの共重合体の樹脂として用いることもできる。
(尿素樹脂)
 尿素樹脂は尿素とホルムアルデヒドとの重縮合により製造される。具体的には尿素とホルムアルデヒドとをアルカリ条件下、又は酸性条件下で脱水縮合反応し、縮合物を得ることができる。尿素樹脂は、単独の尿素樹脂として用いることもできる。更に、尿素樹脂と、ポリウレタン、メラミン樹脂若しくはフェノールなどとの共重合体の樹脂として用いることもできる。
(窒素原子を含むイオン交換樹脂)
 イオン交換樹脂は、窒素原子を含む限り限定されるものではないが、前記窒素原子を含む架橋ビニル樹脂の三次元網目骨格をもつ共重合体母体に、イオン交換基が結合した構造を有するイオン交換樹脂を用いることができる。イオン交換樹脂は、イオン交換基の種類により、スルホン酸基を有する強酸性イオン交換樹脂、カルボン酸基又はスルホン酸基を有する弱酸性イオン交換樹脂、第四級アンモニウム塩を有する強塩基性イオン交換樹脂、第一級又は第三級アミンを有する弱塩基性イオン交換樹脂に大別され、このほか特殊な樹脂として、酸及び塩基両方のイオン交換基を有するいわゆるハイブリッド型イオン交換樹脂があり、本発明においては、これらのすべての窒素原子を含むイオン交換樹脂を炭素源として使用することができる。
(直径)
 本発明による経口投与用吸着剤として用いる表面改質球状活性炭における直径は、特に限定されるものではないが、好ましくは0.005~1.5mmであり、より好ましくは0.01~1mmであり、更に好ましくは0.02~0.8mmである。表面改質球状活性炭の直径が0.005mm未満になると、表面改質球状活性炭の外表面積が増加し、消化酵素等の有益物質の吸着が起こり易くなるので好ましくない。また、直径が1.5mmを超えると、表面改質球状活性炭の内部への毒性物質の拡散距離が増加し、吸着速度が低下するので好ましくない。
(平均粒子径)
 レーザー回折式粒度分布測定装置を用い、体積基準の粒度累積線図を作成したときの、粒度累積率50%における粒子径を平均粒子径(Dv50)とする。
 本発明による経口投与用吸着剤として用いる表面改質球状活性炭における平均粒子径の範囲は、0.01~1mm(10μm~1000μm)であれば、特に限定されるものではない。表面改質球状活性炭の平均粒子径が0.01mm未満になると、表面改質球状活性炭の外表面積が増加し、消化酵素等の有益物質の吸着が起こり易くなるので好ましくない。また平均粒子径が1mmを超えると表面改質球状活性炭の内部への毒性物質の拡散距離が増加し、吸着速度が低下するため好ましくない。平均粒子径は好ましくは、20μm~800μmであり、更に好ましくは30μm~500μmである。特に平均粒子径が50~200μmである表面改質球状活性炭は、初期吸着能に優れており、一般的な上部小腸管内滞留時間内において、生体内の有毒な毒性物質(特には、β-アミノイソ酪酸)を極めて迅速に吸着することができることから最も好ましい。
 図4は、BET比表面積1300m/g程度の球状活性炭(実施例8、9、10、及び11)について、平均粒子径とβ-アミノイソ酪酸吸着量(3時間)との関連を示したものである。図4から明らかなように、平均粒子径が50~200μmであると、3時間でのβ-アミノイソ酪酸吸着量が増加した。すなわち、平均粒子径が50~200μmであると、生体内での初期吸着能が優れており、好ましい。
(比表面積)
 表面改質球状活性炭の比表面積は、BET法又はラングミュア(Langmuir)法により求めることができる。本発明による経口投与用吸着剤として用いる表面改質球状活性炭の比表面積は、BET法により求められる比表面積(以下「SSA」と省略することがある)が800m/g~3000m/gである。SSAが800m/gより小さい表面改質球状活性炭では、毒性物質の吸着性能が低くなるので好ましくない。SSAの下限は、より好ましくは1000m/g以上である。SSAの上限は特に限定されるものではないが、強度の観点から、SSAは、3000m/g以下であることが好ましい。
 図3にBET比表面積と、β-アミノイソ酪酸吸着量との関連を示した。図3から分かるように、BET比表面積が800m/g未満であると、窒素含有量が0.5重量%以上であってもβ-アミノイソ酪酸吸着量が低下するため、好ましくない。
(全酸性基及び全塩基性基)
 本発明による経口投与用吸着剤として用いる表面改質球状活性炭では、官能基の構成において、全酸性基が0.30~1.20meq/gであり、全塩基性基が0.20~1.20meq/gである。官能基の構成において、全酸性基が0.30~1.20meq/gであり、全塩基性基が0.20~1.20meq/gの条件を満足する表面改質球状活性炭は、DL-β-アミノイソ酪酸のような水溶性毒素の吸着性能が高いが、窒素原子を0.5重量%以上含有することによって、更にDL-β-アミノイソ酪酸の吸着能が向上する。官能基の構成において、全酸性基は0.30~1.00meq/gであることが好ましい。また、全塩基性基は下限は0.30meq/gであるが好ましく、上限は1.10meq/gであることが好ましく、1.00meq/gであることがより好ましく、0.90meq/gであることが更に好ましい。
(表面改質)
 前記熱溶融性樹脂、又は熱不融性樹脂を炭素源として、得られた表面非改質球状活性炭を、酸化処理のみ、又は酸化処理及び還元処理を行うことにより、本発明に用いる表面改質球状活性炭を得ることができる。酸化処理は、酸素含量0.1~50容量%、好ましくは1~30容量%、特に好ましくは3~20容量%の雰囲気の下、300~800℃、好ましくは320~600℃の温度で行うことができる。還元処理は、800~1200℃、好ましくは800~1000℃の温度下、非酸化性ガス雰囲気下で行うことができる。特定の酸素含有の雰囲気は純粋な酸素、酸化窒素又は空気等を酸素源として用いることができる。また、炭素に対して不活性な雰囲気とは、窒素、アルゴン、又はヘリウム等単独、又はそれらの混合系を意味する。本明細書において、表面改質球状活性炭とは、前記の球状活性炭を前記の酸化処理のみ、又は酸化処理及び還元処理して得られる多孔質体である。特に酸化処理及び還元処理を行うことによって、球状活性炭の表面に酸性点と塩基性点とをバランスよく付加することにより上部小腸管内の有毒物質の吸着特性を向上させたものである。例えば、前記球状活性炭を、酸化処理及び還元処理することにより、吸着されるべき毒性物質に対する特異性を向上することができる。
 なお、実施例12で製造された表面改質球状活性炭は、酸化処理のみが行われ、還元処理が行われていない表面改質球状活性炭である。実施例12の表面改質球状活性炭は、窒素原子を含まない酸化処理のみの表面改質球状活性炭と比較して、24時間又は3時間のβ-アミノイソ酪酸吸着量が優れている。
(細孔容積)
 本発明の経口投与用吸着剤に用いる球状活性炭の細孔直径20~15000nmの細孔容積は、特に限定されるものではないが、好ましくは1.00mL/g以下であり、より好ましくは0.80mL/g以下である。下限は、特に限定されるものではないが、0.01mL/g以上が好ましい。
 本発明の経口投与用吸着剤に用いる球状活性炭の細孔直径7.5~15000nmの細孔容積は、特に限定されるものではないが、好ましくは1.00mL/g以下であり、より好ましくは0.80mL/g以下である。下限は、特に限定されるものではないが、0.01mL/g以上が好ましい。
 細孔容積は、水銀圧入法を用いて測定する。
(表面改質球状活性炭の製造方法)
 熱溶融性樹脂(例えば、架橋ビニル樹脂)を炭素源として用いる場合には、熱溶融性樹脂からなる前記球状体が、熱処理により軟化して形状が非球形に変形するか、あるいは球状体同士が融着するので、前記の賦活処理の前に、不融化処理として、酸素を含有する雰囲気にて、150℃~400℃で酸化処理を行うことにより軟化を抑制することができる。すなわち、熱溶融性樹脂は、酸化処理などのいわゆる不融化処理により、溶融酸化を回避することのできる状態に変性してから表面改質球状活性炭の製造に使用することができる。
 熱溶融性樹脂である架橋ビニル樹脂は、非酸化性ガス雰囲気中での熱処理により軟化、溶融して炭素化収率が10%に満たないが、不融化処理として酸素を含有する雰囲気にて、150℃~400℃で酸化処理を行うことにより軟化、溶融することなく、30%以上の高い炭素化収率で球状の炭素質材料を得るができ、これを前記の熱不融性樹脂の場合と同様にして賦活処理を行うことにより球状活性炭を得ることができる。
 本発明の経口投与用吸着剤として用いる表面改質球状活性炭の調製に、炭素源として熱不融性樹脂(例えば、イオン交換樹脂)を用いる場合には、ピッチ類を用いる従来の製造方法と実質的に同様の操作を利用することができる。例えば、最初に、熱不融性樹脂からなる球状体を、炭素と反応性を有する気流(例えば、スチーム又は炭酸ガス)中で、700~1000℃の温度で賦活処理して、球状活性炭を得ることができる。また、不融処理後の熱溶融性樹脂や熱不融性樹脂の球状体を熱処理すると、多くの熱分解ガスなどが発生する場合には、賦活操作を行う前に適宜予備焼成を行い、予め熱分解生成物を除去することができる。
 出発材料として用いる前記の熱不融性樹脂は、球状体を成形することが可能な材料であり、500℃以下の熱処理においては溶融又は軟化せずに、形状変形も起こさないことが重要である。
 出発材料として用いる前記の熱不融性樹脂としては、熱処理による炭素化収率が高いことが望ましい。炭素化収率が低いと、表面改質球状活性炭としての強度が弱くなる。また、不必要な細孔が形成されるため、表面改質球状活性炭の嵩密度が低下して、体積あたりの比表面積が低下するので、投与体積が増加し、経口投与が困難になるという問題を引き起こす。従って、熱不融性樹脂の炭素化収率は高いほど好ましく、非酸化性ガス雰囲気中800℃での熱処理による収率の好ましい値は30重量%以上であり、更に好ましくは35重量%以上である。
 前記の賦活処理によって得られた球状活性炭を、酸素含量0.1~50容量%、好ましくは1~30容量%、特に好ましくは3~20容量%の雰囲気の下、300~800℃、好ましくは320~600℃の温度で酸化処理し、更に、800~1200℃、好ましくは800~1000℃の温度下、非酸化性ガス雰囲気下で還元処理を行うことにより、本発明の表面改質球状活性炭を得ることができる。特定の酸素含有の雰囲気は純粋な酸素、酸化窒素又は空気等を酸素源として用いることができる。また、炭素に対して不活性な雰囲気とは、窒素、アルゴン、又はヘリウム等単独、又はそれらの混合系を意味する。ここで、表面改質球状活性炭とは、前記の球状活性炭を、前記の酸化処理及び還元処理して得られる多孔質体であり、球状活性炭の表面に酸性点と塩基性点とをバランスよく付加することにより上部小腸管内の有毒物質の吸着特性を向上させたものである。例えば、前記球状活性炭を、酸化処理及び還元処理することにより、吸着されるべき毒性物質に対する特異性を向上することができる。
(表面改質球状活性炭の物性の制御)
 前記の熱溶融性樹脂又は熱不融性樹脂を用いて本発明による表面改質球状活性炭を調製する場合には、表面改質球状活性炭の物性(例えば、平均粒子径、細孔容積、又は比表面積など)を、種々の方法で制御することができる。例えば、樹脂の平均粒子径は、水相中の液滴の大きさに依存し、液滴の大きさは懸濁剤の量、攪拌の回転数、攪拌羽根の形状、あるいは水相中のモノマー比(水の量とモノマー量の比)により制御することができる。例えば、懸濁剤の量を多くすると液滴を小さくすることができ、攪拌の回転数を大きくすると、液滴を小さくすることができ、更に、水相中のモノマー量を少なくすると液滴の合一化を制御することができるだけでなく、重合熱の除熱が容易になるなどの観点で好ましいが、モノマー比が少なすぎると、1バッチ当たりのモノマー量が少なくなるため、得られる合成樹脂量が減少し、生産性の観点からは好ましくない。
 また、細孔容積と比表面積は、制御する細孔直径が10nm以上の場合には、主にポロゲンの量及び種類によって制御することができ、制御する細孔直径が10nm以下の場合には、水蒸気による賦活条件により制御することができる。例えば、賦活反応として、炭素と反応性を有する気流(例えば、スチーム又は炭酸ガス)中で、700~1000℃の温度で賦活処理することで、球状活性炭を得ることができる。比表面積は、賦活条件によって制御することができ、例えば、賦活時間を長くする、賦活温度を高くする、炭素と反応性を有する気流の濃度を増加させることによって、比表面積大きくすることが可能である。更に、それ以外に、表面改質球状活性炭としての微細組織は、樹脂の種類、架橋剤の種類と量、不融化条件、及び/又は賦活温度などにより、制御することができる。
[2]腎疾患又は肝疾患の治療用又は予防用経口投与用吸着剤
 本発明の経口投与用吸着剤として用いる表面改質球状活性炭は、肝疾患憎悪因子や腎臓病での毒性物質の吸着性に優れているので、腎疾患の治療用又は予防用経口投与用吸着剤として用いるか、あるいは、肝疾患の治療用又は予防用経口投与用吸着剤として用いることができる。
 腎疾患としては、例えば、慢性腎不全、急性腎不全、慢性腎盂腎炎、急性腎盂腎炎、慢性腎炎、急性腎炎症候群、急性進行型腎炎症候群、慢性腎炎症候群、ネフローゼ症候群、腎硬化症、間質性腎炎、細尿管症、リポイドネフローゼ、糖尿病性腎症、腎血管性高血圧、若しくは高血圧症候群、あるいは前記の原疾患に伴う続発性腎疾患、更に、透析前の軽度腎不全を挙げることができ、透析前の軽度腎不全の病態改善や透析中の病態改善にも用いることができる(「臨床腎臓学」朝倉書店、本田西男、小磯謙吉、黒川清、1990年版及び「腎臓病学」医学書院、尾前照雄、藤見惺編集、1981年版参照)。
また、肝疾患としては、例えば、劇症肝炎、慢性肝炎、ウイルス性肝炎、アルコール性肝炎、肝線維症、肝硬変、肝癌、自己免疫性肝炎、薬剤アレルギー性肝障害、原発性胆汁性肝硬変、振せん、脳症、代謝異常、又は機能異常を挙げることができる。その他、体内に存在する有害物質による病気、すなわち、精神病等の治療にも用いることができる。
 従って、本発明による経口投与用吸着剤は、腎臓疾患治療薬として用いる場合には、前記の表面改質球状活性炭を有効成分として含有する。本発明の経口投与用吸着剤を腎臓疾患治療薬又は肝臓疾患治療薬として用いる場合、その投与量は、投与対象がヒトであるかあるいはその他の動物であるかにより、また、年令、個人差、又は病状などに影響されるので、場合によっては下記範囲外の投与量が適当なこともあるが、一般にヒトを対象とする場合の経口投与量は1日当り1~20gを3~4回に分けて服用し、更に症状によって適宜増減することができる。投与形態は、散剤、顆粒、錠剤、糖衣錠、カプセル剤、懸濁剤、スティック剤、分包包装体、又は乳剤等であることができる。カプセル剤として服用する場合は、通常のゼラチンの他に、必要に応じて腸溶性のカプセルを用いることもできる。錠剤として用いる場合は、体内でもとの微小粒体に解錠されることが必要である。更に他の薬剤であるアルミゲルやケイキサレートなどの電解質調節剤と配合した複合剤の形態で用いることもできる。
 窒素原子を0.5重量%以上含有し、BET法により求められる比表面積が800m/g~3000m/gであり、そして平均粒子径が0.01mm~1mmであり、全酸性基が0.30meq/g~1.20meq/gであり、そして全塩基性基が0.20meq/g~1.20meq/gである表面改質球状活性炭は、従来公知の表面改質球状活性炭又は非表面改質球状活性炭(すなわち、窒素原子が0.5重量%未満である表面改質又は非表面改質球状活性炭)と混合した混合物の形で、腎疾患治療又は予防剤、あるいは肝疾患治療又は予防剤として使用することができる。
 あるいは、窒素原子を0.5重量%以上含有し、BET法により求められる比表面積が800m/g~3000m/gであり、そして平均粒子径が0.01mm~1mmであり、全酸性基が0.30meq/g~1.20meq/gであり、そして全塩基性基が0.20meq/g~1.20meq/gである表面改質球状活性炭と、従来公知の表面改質球状活性炭又は非表面改質球状活性炭(すなわち、窒素原子が0.5重量%未満である表面改質又は非表面改質球状活性炭)とを併用して、腎疾患治療又は予防剤、あるいは肝疾患治療又は予防剤として使用することができる。
[3]腎疾患又は肝疾患の治療方法
 本発明による経口投与用吸着剤に用いる表面改質球状活性炭は、腎疾患又は肝疾患の予防又は治療方法に用いることができる。従って、本発明の腎疾患又は肝疾患の治療方法は、前記表面改質球状活性炭を含む経口投与用吸着剤を、腎疾患又は肝疾患の治療対象に、有効量投与することを特徴とするものである。
 前記表面改質球状活性炭の投与経路、投与量、及び投与間隔などは、病気の種類、患者の年齢、性別、体重、症状の程度、又は投与方法などに応じて適宜決定することができる。
[4]腎疾患又は肝疾患の治療方法における使用のための表面改質球状活性炭
 本発明による経口投与用吸着剤に用いる表面改質球状活性炭は、腎疾患又は肝疾患の予防又は治療方法において用いることができる。従って、本発明の表面改質球状活性炭は、腎疾患又は肝疾患の予防又は治療方法における使用のためのものである。
 前記表面改質球状活性炭の予防又は治療における使用量などは、病気の種類、患者の年齢、性別、体重、症状の程度、又は投与方法などに応じて適宜決定することができる。
[5]腎疾患又は肝疾患の表面改質球状活性炭の治療用医薬の製造のための使用
 本発明による経口投与用吸着剤に用いる表面改質球状活性炭は、腎疾患又は肝疾患の予防又は治療用医薬の製造のために用いることができる。従って、本発明の使用は、表面改質球状活性炭の、腎疾患又は肝疾患の予防又は治療用医薬の製造のための使用である。
 前記表面改質球状活性炭の予防又は治療用医薬における含有量などは、病気の種類、患者の年齢、性別、体重、症状の程度、又は投与方法などに応じて適宜決定することができる。
[6]腎疾患又は肝疾患の治療のための表面改質球状活性炭の使用
 本発明による経口投与用吸着剤に用いる表面改質球状活性炭は、腎疾患又は肝疾患の治療のために用いることができる。従って、本発明の使用は、表面改質球状活性炭の、腎疾患又は肝疾患の予防又は治療のための使用である。
 前記表面改質球状活性炭の予防又は治療における使用料などは、病気の種類、患者の年齢、性別、体重、症状の程度、又は投与方法などに応じて適宜決定することができる。
 以下、実施例によって本発明を具体的に説明するが、これらは本発明の範囲を限定するものではない。
《実施例1》
 イオン交換水4500g、亜硝酸ナトリウム0.9g、及びメトローズ 60SH-15(信越化学工業株式会社製)6.8gを10Lの重合反応器に入れた。これにスチレン376g、ジビニルベンゼン(57%のジビニルベンゼンと43%のエチルビニルベンゼン)1049g、アクリロニトリル75g、2,2’-アゾビス(2,4-ジメチルバレロニトリル)8.7g、及びポロゲンとしてヘキサン525gを適宜加えた。窒素ガスで系内を置換し、この二相系を180rpmで攪拌しながら55℃に加熱し、そのまま20時間保持した。得られた樹脂を水洗及び濾過し、窒素流通下180℃において16時間乾燥させ、平均粒子径197μmの球状の多孔性合成樹脂を得た。
 得られた球状の多孔性合成樹脂を目皿つき反応管に仕込み、縦型管状炉にて不融化処理を行った。不融化処理として、乾燥空気を反応管下部より上部に向かって流し、180℃まで昇温後、180℃から240℃まで3時間で昇温し、240℃で1時間保持、240℃から250℃まで30分で昇温し、250℃で2時間保持、250℃から260℃まで30分で昇温し260℃に3時間保持、260℃から300℃まで2時間で昇温し、300℃で1時間保持を行い、球状の多孔性酸化樹脂を得た。これを窒素雰囲気中850℃で焼成した後、流動床を用い、水蒸気を含む窒素ガス雰囲気中850℃で、BET比表面積が1440m/gになるまで賦活処理を行い、球状活性炭を得た。これを流動床にて、窒素で希釈した空気雰囲気下470℃で3時間酸化処理した。次に流動床にて窒素ガス雰囲気下900℃で17分間還元処理し、表面改質球状活性炭を得た。得られた表面改質球状活性炭の特性を表1に示す。
《実施例2》
 スチレンを301g、及びアクリロニトリルを150gとし、二相系の攪拌回転数を180rpmとした以外は実施例1の樹脂の調製の操作を繰り返して、球状多孔性合成樹脂を調製した。得られた球状多孔性合成樹脂の平均粒子径は193μmであった。
 前記の球状多孔性合成樹脂を用い、BET比表面積が1630m/gになるまで賦活処理を行ったこと以外は実施例1の不融化処理及び賦活処理の操作を繰り返して、表面改質球状活性炭を調製した。得られた表面改質球状活性炭の特性を表1に示す。
《実施例3》
 脱イオン交換水4500g、亜硝酸ナトリウム6.0g、及びメトローズ 60SH-15(信越化学工業株式会社製)6.8gを10Lの重合反応器に入れた。これにスチレン582g、ジビニルベンゼン(57%のジビニルベンゼンと43%のエチルビニルベンゼン)393g、アクリロニトリル525g、2,2’-アゾビス(2,4-ジメチルバレロニトリル)8.7g、及びポロゲンとしてヘキサン375gを適宜加えたのち、窒素ガスで系内を置換した。この二相系を150rpmで攪拌しながら55℃に加熱し、そのまま20時間保持した。得られた樹脂を水洗、濾過し、窒素流通下180℃において16時間乾燥させ、平均粒子径171μmの球状の多孔性合成樹脂を得た。
 得られた球状の多孔性合成樹脂を目皿つき反応管に仕込み、縦型管状炉にて不融化処理を行った。不融化処理として、乾燥空気を反応管下部より上部に向かって流し、180℃まで昇温後、180℃から240℃まで3時間で昇温し、240℃で1時間保持、240℃から260℃まで1時間で昇温し、260℃で5時間保持、260℃から300℃まで2時間で昇温し、300℃で40分保持することにより球状の多孔性酸化樹脂を得た。これを窒素雰囲気中690℃で焼成した後、流動床を用い、水蒸気を含む窒素雰囲気中900℃で、BET比表面積が1670m/gになるまで賦活処理を行い、球状活性炭を得た。これを流動床にて、窒素で希釈した空気雰囲気下470℃で3時間酸化処理し、次に流動床にて窒素ガス雰囲気下900℃で17分間還元処理し、表面改質球状活性炭を得た。得られた表面改質球状活性炭の特性を表1に示す。
《実施例4》
 スチレンを432g、及びアクリロニトリルを675gとし、二相系の攪拌回転数を147rpmとした以外は実施例3の樹脂の調製の操作を繰り返して、球状多孔性合成樹脂を調製した。得られた球状多孔性合成樹脂の平均粒子径は190μmであった。
 得られた球状の多孔性合成樹脂を目皿つき反応管に仕込み、縦型管状炉にて不融化処理を行った。不融化処理として、乾燥空気を反応管下部より上部に向かって流し、180℃まで昇温後、180℃から240℃まで3時間で昇温し240℃で1時間保持、240℃から260℃まで1時間で昇温し260℃に5時間保持することにより球状の多孔性酸化樹脂を得た。これを窒素雰囲気中850℃で焼成した後、流動床を用い、水蒸気を含む窒素ガス雰囲気中850℃で、BET比表面積が1740m/gになるまで賦活処理を行い、球状活性炭を得た。これを流動床にて、窒素で希釈した空気雰囲気下470℃で3時間酸化処理し、次に流動床にて窒素ガス雰囲気下900℃で17分間還元処理し、表面改質球状活性炭を得た。得られた表面改質球状活性炭の特性を表1に示す。
《実施例5》
 スチレンを207g、アクリロニトリルを900g、及びヘキサンを450gとし、二相系の攪拌回転数を135rpmとした以外は実施例4の樹脂の調製の操作を繰り返して、球状多孔性合成樹脂を調製した。得られた球状多孔性合成樹脂の平均粒子径は172μmであった。
 更に、前記の球状多孔性合成樹脂を用い、BET比表面積が1280m/gになるまで賦活処理を行ったこと以外は実施例4の不融化処理及び賦活処理の操作を繰り返して、表面改質球状活性炭を調製した。得られた表面改質球状活性炭の特性を表1に示す。
《実施例6》
 アクリロニトリルを1500g、スチレンを0g、及びジビニルベンゼン(57%のジビニルベンゼンと43%のエチルビニルベンゼン)0gとし、二相系の攪拌回転数を140rpmとした以外は実施例4の樹脂の調製の操作を繰り返して、合成樹脂を調製した。得られた球状多孔性合成樹脂の平均粒子径は255μmであった。
 得られた球状の多孔性合成樹脂を目皿つき反応管に仕込み、縦型管状炉にて不融化処理を行った。不融化処理として、乾燥空気を反応管下部より上部に向かって流し、180℃まで昇温後、180℃から240℃まで3時間で昇温し240℃で1時間保持、240℃から260℃まで1時間で昇温し260℃に4時間保持することにより球状の多孔性酸化樹脂を得た。これを窒素雰囲気中850℃で焼成した後、流動床を用い、水蒸気を含む窒素ガス雰囲気中850℃で、BET比表面積が1030m/gになるまで賦活処理を行い、球状活性炭を得た。これを流動床にて、窒素で希釈した空気雰囲気下470℃で3時間酸化処理し、次に流動床にて窒素ガス雰囲気下900℃で17分間還元処理し、表面改質球状活性炭を得た。得られた表面改質球状活性炭の特性を表1に示す。
《実施例7》
 賦活の温度を900℃に代えて850℃で、BET比表面積が1080m/gになるまで処理を行ったこと以外は実施例3の操作を繰り返して、表面改質球状活性炭を調製した。得られた表面改質球状活性炭の特性を表1に示す。
《実施例8》
 BET比表面積が1280m/gになるまで賦活処理を行ったこと以外は実施例3の操作を繰り返して、表面改質球状活性炭を調製した。得られた表面改質球状活性炭の特性を表1に示す。
《実施例9》
 メトローズ 60SH-15を13.5gとし、二相系の攪拌回転数を186rpmとした以外は実施例3の樹脂の調製の操作を繰り返して、球状多孔性合成樹脂を調製した。得られた球状多孔性合成樹脂の平均粒子径は135μmであった。
 更に、上記の球状多孔性合成樹脂を用い、BET比表面積が1200m/gになるまで賦活処理を行ったこと以外は実施例2の不融化処理及び賦活処理の操作を繰り返して、表面改質球状活性炭を調製した。得られた表面改質球状活性炭の特性を表1に示す。
《実施例10》
 メトローズ 60SH-15 6.8gに代えてメトローズ SM-400(信越化学工業株式会社製)6.8gとし、二相系の攪拌回転数を110rpmとした以外は実施例3の樹脂の調製の操作を繰り返して、球状多孔性合成樹脂を調製した。得られた球状多孔性合成樹脂の平均粒子径は367μmであった。
 得られた球状の多孔性合成樹脂を目皿つき反応管に仕込み、縦型管状炉にて不融化処理を行った。不融化条件は、乾燥空気を反応管下部より上部に向かって流し、180℃まで昇温後、180℃から240℃まで3時間で昇温し、240℃で1時間保持、240℃から260℃まで1時間で昇温し260℃に5時間40分保持、260℃から300℃まで2時間で昇温し、300℃で1時間30分保持することにより球状の多孔性酸化樹脂を得た。これを窒素雰囲気中850℃で焼成した後、流動床を用い、水蒸気を含む窒素ガス雰囲気中850℃で、BET比表面積が1280m/gになるまで賦活処理を行い、球状活性炭を得た。これを流動床にて、窒素で希釈した空気雰囲気下470℃で3時間酸化処理し、次に流動床にて窒素ガス雰囲気下900℃で17分間還元処理し、表面改質球状活性炭を得た。得られた表面改質球状活性炭の特性を表1に示す。
《実施例11》
 メトローズ SM-400 6.8gに代えてメトローズ SM-100(信越化学工業株式会社製)3.4gとし、二相系の攪拌回転数を75rpmとした以外は実施例10の樹脂の調製の操作を繰り返して、球状多孔性合成樹脂を調製した。得られた球状多孔性合成樹脂の平均粒子径は735μmであった。
 得られた球状の多孔性合成樹脂を目皿つき反応管に仕込み、縦型管状炉にて不融化処理を行った。不融化条件は、乾燥空気を反応管下部より上部に向かって流し、180℃まで昇温後、180℃から240℃まで3時間で昇温し、240℃で1時間保持、240℃から260℃まで1時間で昇温し260℃に5時間40分保持、260℃から300℃まで2時間で昇温し、300℃で1時間保持することにより球状の多孔性酸化樹脂を得た。これを窒素雰囲気中850℃で焼成した後、流動床を用い、水蒸気を含む窒素ガス雰囲気中850℃で、BET比表面積が1240m/gになるまで賦活処理を行い、球状活性炭を得た。これを流動床にて、窒素で希釈した空気雰囲気下470℃で3時間酸化処理し、次に流動床にて窒素ガス雰囲気下900℃で17分間還元処理し、表面改質球状活性炭を得た。得られた表面改質球状活性炭の特性を表1に示す。
《比較例1》
 脱イオン交換水4800g、亜硝酸ナトリウム1.0g、及びメトローズ 60SH-15(信越化学工業株式会社製)7.2gを10Lの重合反応器に入れた。これにスチレン481g、ジビニルベンゼン(57%のジビニルベンゼンと43%のエチルビニルベンゼン)1119g、2,2’-アゾビス(2,4-ジメチルバレロニトリル)9.3g、及びポロゲンとしてヘキサン560gを適宜加えたのち、窒素ガスで系内を置換した。この二相系を140rpmで攪拌しながら55℃に加熱し、そのまま20時間保持した。得られた樹脂を水洗、濾過し、減圧乾燥にてヘキサンを樹脂から蒸留により除去してから、90℃において12時間減圧乾燥させ、平均粒子径246μmの球状の多孔性合成樹脂を得た。
 得られた球状の多孔性合成樹脂を目皿つき反応管に仕込み、縦型管状炉にて不融化処理を行った。不融化処理として、乾燥空気を反応管下部より上部に向かって流し、190℃まで昇温後、190℃から290℃まで10℃/minで昇温することにより、球状の多孔性酸化樹脂を得た。これを窒素雰囲気中850℃で焼成した後、流動床を用い、水蒸気を含む窒素雰囲気中850℃で、BET比表面積が1790m/gになるまで賦活処理を行い、球状活性炭を得た。これを流動床にて、窒素で希釈した空気雰囲気下470℃で3時間酸化処理し、次に流動床にて窒素ガス雰囲気下900℃で17分間還元処理し、表面改質球状活性炭を得た。得られた表面改質球状活性炭の特性を表1に示す。
《比較例2》
 焼成の温度を690℃に代えて850℃で行い、賦活処理を行わなかったこと以外は実施例3の操作を繰り返して、表面改質球状活性炭を調製した。得られた表面改質球状活性炭の特性を表1に示す。
《比較例3》
 酸化処理後に還元処理を行わなかったこと以外は実施例8の操作を繰り返して、表面改質球状活性炭を調製した。得られた表面改質球状活性炭の特性を表1に示す。
〔経口吸着剤の評価方法〕
 以下の表1に示す各種の特性は、以下の方法で測定した。
(1)平均粒子径(Dv50)
 レーザー回折式粒度分布測定装置〔(株)島津製作所:SALAD-3000S〕を用い、体積基準の粒度累積線図を作成し、粒度累積率50%における粒子径を平均粒子径(Dv50)とした。
(2)比表面積(BET法による比表面積の計算法)
 ガス吸着法による比表面積測定器(例えば、MICROMERITICS社製「ASAP2010」又は「ASAP2020」)を用いて、球状活性炭試料のガス吸着量を測定し、下記の式により比表面積を計算することができる。具体的には、試料である球状活性炭を試料管に充填し、350℃で減圧乾燥した後、乾燥後の試料重量を測定する。次に、試料管を-196℃に冷却し、試料管に窒素を導入し球状活性炭試料に窒素を吸着させ、窒素分圧と吸着量の関係(吸着等温線)を測定する。
 窒素の相対圧をp、その時の吸着量をv(cm/g STP)とし、BETプロットを行う。すなわち、縦軸にp/(v(1-p))、横軸にpを取り、pが0.05~0.20の範囲でプロットし、そのときの傾きb(単位=g/cm)、及び切片c(単位=g/cm)から、比表面積S(単位=m/g)は下記の式により求められる。
Figure JPOXMLDOC01-appb-M000001
 ここで、MAは窒素分子の断面積で0.162nmを用いた。
(3)比表面積(ラングミュアの式による比表面積の計算法)
 ガス吸着法による比表面積測定器(例えば、MICROMERITICS社製「ASAP2010」又は「ASAP2020」)を用いて、球状活性炭試料のガス吸着量を測定し、ラングミュアの式により比表面積を計算することができる。具体的には、試料である球状活性炭を試料管に充填し、350℃で減圧乾燥した後、乾燥後の試料重量を測定する。次に、試料管を-196℃に冷却し、試料管に窒素を導入し、球状活性炭試料に窒素を吸着させ、窒素分圧と吸着量の関係(吸着等温線)を測定する。
 窒素の相対圧力をp、その時の吸着量をv(cm/g STP)とし、ラングミュアプロットを行う。すなわち、縦軸にp/v、横軸にpを取り、pが0.05~0.20の範囲でプロットし、そのときの傾きをb(g/cm)とすると比表面積S(単位=m/g)は下記の式により求められる。
Figure JPOXMLDOC01-appb-M000002
 ここで、MAは窒素分子の断面積で0.162nmを用いた。
(4)元素分析(炭素、水素、炭素及び酸素原子含有量)
 有機元素分析装置(PerkinElmer社製「2400SERIES II CHNS/O」)を用いて球状活性炭試料の有機元素組成を求めることができる。具体的には、試料を1.7mg正確に秤量して錫製のカプセルに包み、有機元素分析装置に搭載の975℃の燃焼管において試料を完全に燃焼させ、発生ガス中の二酸化炭素、水、二酸化窒素量を測定することで、試料中の炭素、水素及び窒素原子含有量(wt%)を決定した。また、その試料の炭素、水素及び窒素原子の含有量(wt%)総和を100wt%から減じた計算値を酸素含有量(wt%)とした。
(5)水銀圧入法による細孔容積
 水銀ポロシメーター(例えば、MICROMERITICS社製「AUTOPORE 9200」)を用いて細孔容積を測定することができる。試料である球状活性炭を試料容器に入れ、2.67Pa以下の圧力で30分間脱気する。次いで、水銀を試料容器内に導入し、徐々に加圧して水銀を球状活性炭試料の細孔へ圧入する(最高圧力=414MPa)。このときの圧力と水銀の圧入量との関係から以下の各計算式を用いて球状活性炭試料の細孔容積分布を測定する。
 具体的には、細孔直径21μmに相当する圧力(0.06MPa)から最高圧力(414MPa:細孔直径3nm相当)までに球状活性炭試料に圧入された水銀の体積を測定する。細孔直径の算出は、直径(D)の円筒形の細孔に水銀を圧力(P)で圧入する場合、水銀の表面張力を「γ」とし、水銀と細孔壁との接触角を「θ」とすると、表面張力と細孔断面に働く圧力の釣り合いから、次式:
-πDγcosθ=π(D/2)・P
が成り立つ。従って
D=(-4γcosθ)/P
となる。
 本明細書においては、水銀の表面張力を484dyne/cmとし、水銀と炭素との接触角を130度とし、圧力PをMPaとし、そして細孔直径Dをμmで表示し、下記式:
D=1.24/P
により圧力Pと細孔直径Dの関係を求める。例えば、細孔直径20~15000nmの範囲の細孔容積とは、水銀圧入圧0.124MPaから165MPaまでに圧入された水銀の体積に相当する。また、細孔直径7.5~15000nmの範囲の細孔容積とは、水銀圧入圧0.083MPaから165MPaまでに圧入された水銀の体積に相当する。
 なお、本発明の経口投与用吸着剤として用いる球状活性炭は、その粒子径が非常に小さいので、試料容器内に充填された試料粒子間の空隙も小さくなる。従って、前記の水銀圧入法による細孔容積の測定操作においては、その粒子間空隙に水銀が圧入される段階が存在し、その圧入段階では、あたかも細孔直径8000~15000nmの細孔が存在するかのような挙動を示す。本発明の経口投与用吸着剤として用いる球状活性炭に、細孔直径8000~15000nmの細孔が存在しないことは、例えば、電子顕微鏡による観察で確認することができる。従って、本明細書において「細孔直径20~15000nmの範囲の細孔容積」又は「細孔直径7.5~15000nmの範囲の細孔容積」には、前記の粒子間空隙に圧入される水銀量も含まれる。
(6)全酸性基
 0.05規定のNaOH溶液50mL中に、球状活性炭試料1gを添加し、8の字振とう器(タイテック(株)製「TRIPLE SHAKER NR-80」)を用いて、8の字振とう、振幅3cm、76サイクル/minにより48時間振とうした後、球状活性炭試料をろ別し、中和滴定により求められるNaOHの消費量を全酸性基とした。
(7)全塩基性基
 0.05規定のHCl溶液50mL中に、球状活性炭試料1gを添加し、8の字振とう器(タイテック(株)製「TRIPLE SHAKER NR-80」)を用いて、8の字振とう、振幅3cm、76サイクル/minにより37℃で24時間振とうした後、表面改質球状活性炭試料をろ別し、中和滴定により求められるHClの消費量を全酸塩基性基とした。
(8)DL-β-アミノイソ酪酸吸着量試験
 球状活性炭試料を乾燥させたのち、その0.100gを正確に量り、予めDL-β-アミノイソ酪酸0.100gを正確に量り、pH7.4のリン酸塩緩衝液を加えて溶かして正確に1000mLとした液(原液)50mLを正確に量りとって入れた、容積50mLのねじ口バイアル瓶に加え、ミックスローター(アズワン(株)製「ミックスローターバリアブルVMR-5R」)を用いて10rpm、37℃で3時間、又は24時間振盪した。振盪を終えたねじ口バイアル瓶内容物を、ろ孔0.80μmのメンブランフィルターで吸引ろ過し、試料溶液とした。
 一方、標準試料として、原液、原液とpH7.4のリン酸塩緩衝液を1:1の割合で混合したもの、及びpH7.4のリン酸塩緩衝液をそれぞれ容積50mLのねじ口バイアル瓶に50mLずつ入れ、ミックスローターを用いて30rpm、37℃で3時間、又は24時間振盪した。振盪を終えたねじ口バイアル瓶内容物をろ孔0.80μmのメンブランフィルターで吸引ろ過し、標準試料溶液とした。
 試料溶液、標準試料溶液につき、全有機炭素計(島津製作所製「TOC-L CPN」)により有機体炭素量を測定した。標準試料溶液の有機体炭素量に対する、DL-β-アミノイソ酪酸の理論濃度からDL-β-アミノイソ酪酸の検量線を作成し、それを用いて試料溶液のDL-β-アミノイソ酪酸濃度Ct(mg/L)を決定した。
 球状活性炭のDL-β-アミノイソ酪酸吸着量は次式により求めた。
DL-β-アミノイソ酪酸吸着量(mg/g)=(C0-Ct)×V/Mt
 但し、C0:原液のDL-β-アミノイソ酪酸濃度(mg/L)、Ct:試料溶液のDL-β-アミノイソ酪酸濃度(mg/L)、V:試料溶液初期量(L)、Mt:球状活性炭量(g)
 結果を表1に示す。
Figure JPOXMLDOC01-appb-T000003
 本発明の経口投与用吸着剤は、腎疾患の治療用又は予防用経口投与用吸着剤として用いるか、あるいは、肝疾患の治療用又は予防用吸着剤として用いることができる。
 腎疾患としては、例えば、慢性腎不全、急性腎不全、慢性腎盂腎炎、急性腎盂腎炎、慢性腎炎、急性腎炎症候群、急性進行型腎炎症候群、慢性腎炎症候群、ネフローゼ症候群、腎硬化症、間質性腎炎、細尿管症、リポイドネフローゼ、糖尿病性腎症、腎血管性高血圧、若しくは高血圧症候群、あるいは前記の原疾患に伴う続発性腎疾患、更に、透析前の軽度腎不全を挙げることができ、透析前の軽度腎不全の病態改善や透析中の病態改善にも用いることができる(「臨床腎臓学」朝倉書店、本田西男、小磯謙吉、黒川清、1990年版及び「腎臓病学」医学書院、尾前照雄、藤見惺編集、1981年版参照)。
 また、肝疾患としては、例えば、劇症肝炎、慢性肝炎、ウイルス性肝炎、アルコール性肝炎、肝線維症、肝硬変、肝癌、自己免疫性肝炎、薬剤アレルギー性肝障害、原発性胆汁性肝硬変、振せん、脳症、代謝異常、又は機能異常を挙げることができる。その他、体内に存在する有害物質による病気、すなわち、精神病等の治療にも用いることができる。
 以上、本発明を特定の態様に沿って説明したが、当業者に自明の変形や改良は本発明の範囲に含まれる。

Claims (8)

  1.  窒素原子を0.5重量%以上含有し、BET法により求められる比表面積が800m/g~3000m/gであり、そして平均粒子径が0.01mm~1mmであり、全酸性基が0.30meq/g以上である表面改質球状活性炭を含むことを特徴とする経口投与用吸着剤。
  2.  前記表面改質球状活性炭の平均粒子径が50~200μmである、請求項1に記載の経口投与用吸着剤。
  3.  前記表面改質球状活性炭が、0.30meq/g~1.20meq/gの全酸性基、及び0.20meq/g~1.20meq/gの全塩基性基を有する、請求項1又は2に記載の経口投与用吸着剤。
  4.  前記表面改質球状活性炭が、窒素原子を含む熱可塑性樹脂、熱硬化性樹脂、又はイオン交換樹脂を炭素源として調製される、請求項1~3のいずれか一項に記載の経口投与用吸着剤。
  5.  前記熱可塑性樹脂又はイオン交換樹脂が、アクリロニトリル、エチルアクリロニトリル、メチルアクリロニトリル、ジフェニルアクリロニトリル、及びクロロアクリロニトリルからなる群から選択されるモノマーを含む、請求項4に記載の経口投与用吸着剤。
  6.  前記熱硬化性樹脂が、メラミン及び尿素からなる群から選択されるモノマーを含む、請求項4に記載の経口投与用吸着剤。
  7.  請求項1~6のいずれか一項に記載の経口投与用吸着剤を有効成分とする腎疾患治療又は予防剤。
  8.  請求項1~6のいずれか一項に記載の経口投与用吸着剤を有効成分とする肝疾患治療又は予防剤。
PCT/JP2014/054265 2013-02-22 2014-02-24 経口投与用吸着剤並びに腎疾患治療剤及び肝疾患治療剤 WO2014129618A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CA2897944A CA2897944A1 (en) 2013-02-22 2014-02-24 Orally administered adsorbent, therapeutic agent for renal disease, and therapeutic agent for liver disease
KR1020157024219A KR20150113207A (ko) 2013-02-22 2014-02-24 경구 투여용 흡착제와 신장 질환 치료제 및 간 질환 치료제
US14/760,879 US20150352150A1 (en) 2013-02-22 2014-02-24 Orally administered adsorbent, therapeutic agent for renal disease, and therapeutic agent for liver disease
RU2015137937A RU2015137937A (ru) 2013-02-22 2014-02-24 Перорально вводимый адсорбент, терапевтическое средство при заболевании почек и терапевтическое средство при заболевании печени
JP2015501531A JPWO2014129618A1 (ja) 2013-02-22 2014-02-24 経口投与用吸着剤並びに腎疾患治療剤及び肝疾患治療剤
CN201480007257.8A CN104968355A (zh) 2013-02-22 2014-02-24 经口投药用吸附剂及肾病治疗剂及肝病治疗剂
EP14754829.1A EP2959908A4 (en) 2013-02-22 2014-02-24 ORAL ADMINISTRATIVE ADSORBENT, THERAPEUTIC AGENT AGAINST CHILDING DISEASE AND THERAPEUTIC AGENT AGAINST LIVER DISEASES

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013033619 2013-02-22
JP2013-033619 2013-02-22

Publications (1)

Publication Number Publication Date
WO2014129618A1 true WO2014129618A1 (ja) 2014-08-28

Family

ID=51391397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/054265 WO2014129618A1 (ja) 2013-02-22 2014-02-24 経口投与用吸着剤並びに腎疾患治療剤及び肝疾患治療剤

Country Status (9)

Country Link
US (1) US20150352150A1 (ja)
EP (1) EP2959908A4 (ja)
JP (1) JPWO2014129618A1 (ja)
KR (1) KR20150113207A (ja)
CN (1) CN104968355A (ja)
CA (1) CA2897944A1 (ja)
RU (1) RU2015137937A (ja)
TW (1) TWI532508B (ja)
WO (1) WO2014129618A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017073531A1 (ja) * 2015-10-26 2017-05-04 第一三共株式会社 多孔質材料の大腸または小腸下部へのデリバリー製剤

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107262035A (zh) * 2017-07-24 2017-10-20 淄博康贝医疗器械有限公司 用于吸附肾功能衰竭患者体内毒素的吸附剂及其制备方法
CN114760991A (zh) * 2020-03-17 2022-07-15 株式会社大木工艺 经口摄入用吸附剂及其制造方法
KR102239267B1 (ko) 2021-01-22 2021-04-09 이재호 급등테마주를 분석하는 방법 및 그 시스템
KR102250127B1 (ko) 2021-01-22 2021-05-10 이재성 테마주 관련 정보를 제공하는 서버와 그 시스템

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6211611B2 (ja) 1979-11-22 1987-03-13 Kureha Chemical Ind Co Ltd
JP2004168587A (ja) * 2002-11-19 2004-06-17 Toyota Central Res & Dev Lab Inc 含窒素炭素系多孔体及びその製造方法
WO2005094845A1 (ja) * 2004-04-02 2005-10-13 Kureha Corporation 経口投与用吸着剤、並びに腎疾患治療又は予防剤、及び肝疾患治療又は予防剤
JP2009056449A (ja) * 2007-08-08 2009-03-19 Eiko:Kk 低級アルデヒド類の吸着剤
JP2009269765A (ja) * 2008-04-30 2009-11-19 Kansai Coke & Chem Co Ltd メソポア活性炭の製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6300276B1 (en) * 1996-08-20 2001-10-09 Mhb Filtration Gmbh & Co. Kg Granular activated carbon from distillation residues
EP1392600A4 (en) * 2001-02-28 2005-02-23 Penn State Res Found MICRO-MESOPOROUS ACTIVE CHARCOAL AND METHOD FOR TREATING THE SAME
US7651974B2 (en) * 2002-11-01 2010-01-26 Kureha Chemical Industry Co., Ltd. Adsorbent for oral administration
CN1691949B (zh) * 2002-11-01 2012-10-03 株式会社吴羽 口服用吸附剂、以及肾脏疾病治疗或预防剂和肝脏疾病治疗或预防剂
RU2306941C2 (ru) * 2002-11-01 2007-09-27 Куреха Корпорейшн Адсорбент для перорального введения
CN1615908B (zh) * 2003-10-22 2011-09-28 株式会社吴羽 口服给药用吸附剂、以及肾病治疗或预防剂、和肝病治疗或预防剂
TWI385120B (zh) * 2004-04-02 2013-02-11 Kureha Corp 球狀活性碳之製造方法
TWI370012B (en) * 2004-04-02 2012-08-11 Kureha Corp Adsorbent for oral administration, and agent for treating or preventing renal or liver disease
CA2608447A1 (en) * 2005-05-16 2006-11-23 Kureha Corporation Oxidative stress inhibitor
JP2010208969A (ja) * 2009-03-09 2010-09-24 Kureha Corp 寿命延長剤
CN103491949B (zh) * 2011-03-04 2017-02-08 株式会社吴羽 片剂型的口服给药用组合物及其制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6211611B2 (ja) 1979-11-22 1987-03-13 Kureha Chemical Ind Co Ltd
JP2004168587A (ja) * 2002-11-19 2004-06-17 Toyota Central Res & Dev Lab Inc 含窒素炭素系多孔体及びその製造方法
WO2005094845A1 (ja) * 2004-04-02 2005-10-13 Kureha Corporation 経口投与用吸着剤、並びに腎疾患治療又は予防剤、及び肝疾患治療又は予防剤
JP2005314416A (ja) 2004-04-02 2005-11-10 Kureha Chem Ind Co Ltd 経口投与用吸着剤、並びに腎疾患治療又は予防剤、及び肝疾患治療又は予防剤
JP2009056449A (ja) * 2007-08-08 2009-03-19 Eiko:Kk 低級アルデヒド類の吸着剤
JP2009269765A (ja) * 2008-04-30 2009-11-19 Kansai Coke & Chem Co Ltd メソポア活性炭の製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Nephrology", 1981, IGAKU SHOIN
BOKI, K. ET AL.: "Removal by Adsorption of Hydrogen Sulfide by a New Type of Activated Carbon Containing Nitrogen", JAPANESE JOURNAL OF HYGIENE, vol. 38, no. 5, 1983, pages 877 - 882, XP055273814 *
N. HONDA; K. KOISO; K. KUROGAWA: "Clinical Nephrology", 1990, ASAKURA PUBLISHING
See also references of EP2959908A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017073531A1 (ja) * 2015-10-26 2017-05-04 第一三共株式会社 多孔質材料の大腸または小腸下部へのデリバリー製剤

Also Published As

Publication number Publication date
CN104968355A (zh) 2015-10-07
CA2897944A1 (en) 2014-08-28
RU2015137937A (ru) 2017-03-14
TWI532508B (zh) 2016-05-11
TW201440815A (zh) 2014-11-01
US20150352150A1 (en) 2015-12-10
EP2959908A1 (en) 2015-12-30
KR20150113207A (ko) 2015-10-07
JPWO2014129618A1 (ja) 2017-02-02
EP2959908A4 (en) 2016-08-03

Similar Documents

Publication Publication Date Title
JP3865399B2 (ja) 経口投与用吸着剤、並びに腎疾患治療又は予防剤、及び肝疾患治療又は予防剤
JP3941962B2 (ja) 球状活性炭の製造方法
JP3865400B2 (ja) 経口投与用吸着剤、並びに腎疾患治療又は予防剤、及び肝疾患治療又は予防剤
US8920796B2 (en) Adsorbent for oral administration, and agent for treating or preventing renal or liver disease
WO2014129618A1 (ja) 経口投与用吸着剤並びに腎疾患治療剤及び肝疾患治療剤
US20170143763A1 (en) Orally administered adsorbent, therapeutic agent for renal disease, and therapeutic agent for liver disease
WO2014129614A1 (ja) 経口投与用吸着剤並びに腎疾患治療剤及び肝疾患治療剤
JP6431475B2 (ja) 経口投与用吸着剤並びに腎疾患治療剤及び肝疾患治療剤
JP4382629B2 (ja) 経口投与用吸着剤、並びに腎疾患治療又は予防剤、及び肝疾患治療又は予防剤
WO2014129616A1 (ja) 経口投与用吸着剤並びに腎疾患治療剤及び肝疾患治療剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14754829

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015501531

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014754829

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2897944

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14760879

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157024219

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015137937

Country of ref document: RU

Kind code of ref document: A