WO2005093810A1 - 酸窒化膜及び窒化膜の形成方法、形成装置、酸窒化膜、窒化膜、及び基材 - Google Patents

酸窒化膜及び窒化膜の形成方法、形成装置、酸窒化膜、窒化膜、及び基材 Download PDF

Info

Publication number
WO2005093810A1
WO2005093810A1 PCT/JP2005/006412 JP2005006412W WO2005093810A1 WO 2005093810 A1 WO2005093810 A1 WO 2005093810A1 JP 2005006412 W JP2005006412 W JP 2005006412W WO 2005093810 A1 WO2005093810 A1 WO 2005093810A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
nitrogen
nitride film
pressure
forming
Prior art date
Application number
PCT/JP2005/006412
Other languages
English (en)
French (fr)
Inventor
Norifumi Fujimura
Ryoma Hayakawa
Hiroya Kitahata
Tsuyoshi Uehara
Takuya Yara
Original Assignee
Sekisui Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co., Ltd. filed Critical Sekisui Chemical Co., Ltd.
Priority to CN2005800098314A priority Critical patent/CN1938835B/zh
Priority to EP05727499A priority patent/EP1739732A1/en
Priority to JP2006511597A priority patent/JP4624991B2/ja
Priority to US10/594,252 priority patent/US7507678B2/en
Publication of WO2005093810A1 publication Critical patent/WO2005093810A1/ja
Priority to US11/960,558 priority patent/US20080113519A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/28Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in one step
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/0214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being a silicon oxynitride, e.g. SiON or SiON:H
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02247Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by nitridation, e.g. nitridation of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02249Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by combined oxidation and nitridation performed simultaneously
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/3143Inorganic layers composed of alternated layers or of mixtures of nitrides and oxides or of oxinitrides, e.g. formation of oxinitride by oxidation of nitride layers
    • H01L21/3145Inorganic layers composed of alternated layers or of mixtures of nitrides and oxides or of oxinitrides, e.g. formation of oxinitride by oxidation of nitride layers formed by deposition from a gas or vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/318Inorganic layers composed of nitrides
    • H01L21/3185Inorganic layers composed of nitrides of siliconnitrides

Definitions

  • the present invention relates to a method for forming an oxynitride film or a nitride film which forms an oxynitride film or a nitride film under a pressure condition near atmospheric pressure, an apparatus for forming the same, or an acid manufactured using these forming methods or forming apparatus.
  • the present invention relates to a nitride film, a nitride film, and a substrate on which the oxynitride film or the nitride film is formed.
  • a transistor has a configuration in which a gate electrode, a gate insulating film, a source electrode, a drain electrode, a passivation film (protective film), etc. are formed on a substrate. It has become.
  • a silicon wafer or a glass substrate is used as a substrate (object to be treated), a metal such as A 1 or a silicon is used as an electrode, and an interlayer including a passivation film is used.
  • the insulator silicon nitride, silicon oxide, silicon carbide or the like is used.
  • silicon oxide films are mainly used as the above-mentioned gate insulating film, but as the device dimensions become smaller and the operating speed is increased, etc., the gate insulating film is used as the gate insulating film.
  • the silicon nitride film (dielectric constant 7.9), which has a dielectric constant larger than that of the silicon oxide film (dielectric constant 3.9), Haf Your (H f 0 2 ), and the silicate and aluminate (H f (Ha It has been studied to use one) mixed Si-O and Hf-A1-0) and nitrogen-doped one (dielectric constant differs depending on the composition J).
  • a line-like plasma CVD apparatus comprising a line-like plasma generation part and an introduction part for introducing a reaction gas, and a thin film formed by this plasma CVD as a line-like light.
  • An impurity on the surface of the amorphous silicon can be eliminated by a thin film forming apparatus in which an annealing portion to be annealed and a line-like plasma processing device for processing the thin film surface with plasma are arranged in series.
  • a thin film forming apparatus capable of producing a good device with high reproducibility and good reproducibility. .
  • a silicon nitride film formed by a normal film forming method such as plasma CVD or CVD method has a problem that many electrons or hole traps exist in the film and the reliability is poor.
  • it is necessary to stably form a uniform, approximately several nm thick silicon nitride film but there is a problem that it is difficult to form a uniform film thickness with good reproducibility by the conventional method. Therefore, the present applicant has already applied for a method and apparatus for nitriding silicon wafer to form a silicon nitride film having few electrons or hole traps in the film for forming silicon nitride film on silicon wafer surface (patented) Reference 2).
  • the formation of the nitride film and the oxynitride film is not limited to the silicon wafer, but can be widely applied to a high dielectric constant insulator, a nitride semiconductor, and the like. As a result of intensive studies by the present inventors, it has been possible to analyze the formation method of the optimum nitride film and oxynitride film.
  • an oxynitride film or an oxynitride film capable of forming an oxynitride film or an oxynitride film capable of performing low temperature and high speed nitriding and having excellent device characteristics under pressure near atmospheric pressure.
  • An object of the present invention is to provide an oxynitride film and a nitride film manufactured by a method of forming a nitride film, and a base material on which the oxynitride film or the nitride film is formed.
  • a pressure of about 100 T Torr as an upper limit is preferable.
  • a solid dielectric is placed on at least one of the opposing surfaces of the pair of opposing electrodes under a pressure of 500 to 80 OTorr from the ease of generation of discharge, and between the pair of opposing electrodes.
  • a plasma obtained by introducing nitrogen gas and applying an electric field is brought into contact with an object to be treated, and an oxynitride film or a nitride film is formed on the surface of the object to be treated.
  • the nitrogen gas contains not more than 0.2% and not less than 1 ppm of oxygen or oxide. It is possible to form an oxynitride film excellent in soot properties.
  • nitrogen gas containing an oxide of 0.2% or less and more than 1 PP m is so-called general-purpose nitrogen purity nitrogen gas and it is easy to use as it does not require rare gas mixing or component adjustment. . More preferably, it is nitrogen gas containing not less than 0.1% and not less than 1 ppm of oxide.
  • the nitrogen gas is a high purity nitrogen gas containing oxygen or oxide of 1 ppm or less. Furthermore, if the oxygen or oxide contained in the nitrogen gas is 1 ppb or less, an excellent nitride film can be formed.
  • the oxide is, for example, NO X, C 02, H 20 or the like.
  • N 2 nd ps or N 2 (H.I.R.) active species, and by depositing these nitrogen active species under the pressure that is dominant, it is possible to obtain an excellent nitride film with uniform bonding at room temperature. It can be formed at a low deposition rate and low temperature.
  • the pressure near the atmospheric pressure is 300 T 0 rr It is the above pressure. Also, the 3 0 0 T orr more pressure of nitrogen active species observed by optical emission spectrometry, N 2 (H. I. R. ) or N 2 (2 nd ps) active species is dominant emerging It is a pressure at which more N 2 (2 nd ps) active species appear than N 2 (1 st ps). Nitrogen active species can be deposited under N 2 (2 nd ps) or N 2 (H. I. R.) active species at a pressure that results in uniform bonding and excellent nitride film at room temperature. It can be formed at a low temperature and a high deposition rate.
  • the nitrogen active species, N 2 (2 nd .ps) or is intended to include one or both the least of N 2 (H. I. R.) .
  • the pressure near the atmospheric pressure is a pressure equal to or higher than 300 ° Torr.
  • FIG. 1 shows the effect of pressure on nitrogen plasma.
  • FIG. 5 shows the result of spectrum analysis of nitrogen plasma emission observed by direct plasma method of nitrogen plasma generated at pressure 45 Torr and pressure 450 Torr, respectively.
  • FIG. 6 is a diagram showing the results of the spectrum analysis of nitrogen plasma emission observed in FIG. .
  • FIG. 10 is a diagram comparing and explaining the spectrum analysis results of N 2 plasma emission and He ZN 2 plasma emission.
  • FIG. 11 is a diagram for explaining the origin of the light emission spectrum of the nitrogen active species.
  • FIG. 12 is a diagram showing the result of emission analysis of nitrogen plasma.
  • FIG. 13 is a diagram for explaining the discharge pressure dependency of N 2 plasma light emission and He / N 2 plasma light emission by comparison.
  • FIG. 15 is a view schematically showing a configuration of the oxynitride film forming apparatus according to the present embodiment.
  • FIG. 16 is a view showing a pulse-like voltage waveform output from a power supply.
  • FIG. 17 is a view for explaining the nitriding conditions of the Si substrate.
  • Fig. 18 shows the X-ray photoelectron component of the nitride film formed by the apparatus and method of this embodiment. It is a figure which shows a light measurement result.
  • FIG. 19 is a diagram showing the bonding state in the depth direction of the nitride film formed by the apparatus and method of the present embodiment.
  • FIG. 20 is a diagram showing the dielectric characteristics of each of the nitride films formed under film forming conditions with different nitriding temperatures.
  • FIG. 21 is a comparison diagram of the leakage current characteristics of the nitride film.
  • Fig. 28 is a diagram in which Fig. 2 7 is shown at different scales.
  • FIG. 29 is a diagram showing the relationship between the film thickness of the nitride film and the substrate temperature by comparing the atmospheric pressure plasma method and the RF plasma method.
  • FIG. 30 is a block diagram of an RF plasma nitride film forming apparatus.
  • FIG. 3 1 is a comparison table in the case of forming an oxynitride film of an RF plasma nitride film forming apparatus and a nitride film forming apparatus of the present invention.
  • FIG. 35 shows the results of the spectrum analysis of nitrogen plasma emission observed by the direct plasma method when oxygen gas is not mixed into the introduced nitrogen gas.
  • FIG. 6 is a diagram showing the result of spectrum analysis of nitrogen plasma emission observed by a direct plasma method when oxygen gas is added to nitrogen gas.
  • FIG. 37 shows the amounts of added oxygen gas and N 2 (2 nd p.s.) and NO ⁇ based on the results of spectrum analysis of nitrogen plasma emission for each changed amount of added oxygen gas.
  • FIG. 8 is a diagram showing the relationship between ⁇ / each emission intensity.
  • FIG. 38 is a view showing the relationship between the amount of oxygen gas added and the Si 2 ⁇ binding energy for films formed by respectively changing the amount of oxygen gas added to the nitrogen gas.
  • the present invention provides a method of analyzing nitrogen plasma generated by an atmospheric pressure plasma method, and a method of forming a nitride film and a method of forming an oxynitride film based on the knowledge obtained by the method of analyzing nitrogen plasma. This will be described in the following order.
  • FIG. 1 shows the effect of pressure on nitrogen plasma.
  • the central part in FIG. 2 schematically shows the Si nitride (Si N, Si ON) disclosed in the invention of the prior application described above.
  • the present invention includes the technique of Si nitride (Si N, Si ON), and constructs a nitriding process using nitrogen gas based on the analysis method of the present nitrogen plasma. Further, according to the nitride film forming method and the oxynitride film forming method of the present invention, since the nitriding process can be strictly controlled, for example, as shown in the left block in FIG. As shown in the right block in Fig.
  • the nitride semiconductor of the light emitting diode can be obtained by doping a slight amount of nitrogen N into an oxide (eg, Z r 0 2 , H f 0 2 ) such as It can also be applied to forming (eg, G a N, I n N, A 1 N).
  • an oxide eg, Z r 0 2 , H f 0 2
  • It can also be applied to forming (eg, G a N, I n N, A 1 N).
  • a solid dielectric is placed on at least one of the facing surfaces of a pair of opposing electrodes under pressure near atmospheric pressure by the atmospheric pressure plasma method, and nitrogen gas is introduced between the pair of opposing electrodes.
  • a plasma of a nitrogen gas which is obtained by applying a pulse-like electric field between the electrodes, to contact a nitride target object to form a nitride film on the nitride target object, or It is a method of doping.
  • FIG. 3 is a diagram for explaining a nitrogen plasma emission analysis method by the direct plasma method for directly observing a plasma generation part.
  • the nitrogen plasma emission analyzer 10 D has an alternating electric field (for example, a pulsed electric field) between a pair of discharge electrodes 1 1 having a solid dielectric disposed on the opposite surface and the opposite discharge electrodes 11. ), A nitrogen gas supply unit 1 3 for supplying nitrogen gas, and a probe 1 5 a so that the plasma 14 generated between the discharge electrodes 1 1 can be exposed by the application of a pulsed electric field. And a spectrum detector 1 5 for detecting the emission intensity and the wavelength of the plasmatized nitrogen gas.
  • the nitrogen plasma spectrometer 10 D is installed in the chamber so that nitrogen plasma emission analysis can be performed under any pressure by changing the pressure conditions.
  • This N 2 (2 nd ps) is, together with the N 2 harmon and an infrared system (hereinafter referred to as “Herman's infra-red system”, hereinafter described) of the N 2 plasma.
  • Atmospheric pressure non-equilibrium plasma is a nitrogen active species that increases near atmospheric pressure.
  • Fig. 7 shows the results of the spectrum analysis of nitrogen plasma emission observed by the direct plasma method of nitrogen plasma generated at pressure 45 Torr shown in Fig. 4. It is the figure which showed including the range part other than the designated wavelength range.
  • N 2 (1 nd ps) described later appears around a wavelength of 600 to 900 nm.
  • the present invention relates to a method focusing on nitrogen active species of the plasma, forming a particular N 2 (H. I. R.) and / or N 2 (2 nd ps) is a nitride film and an oxynitride film by conditions prevailing It is characterized by Therefore, the comparison of nitrogen active species based on nitrogen plasma emission analysis will be described later in detail with reference to FIG.
  • a nitrogen plasma emission analyzer 10 R has an alternating electric field (eg, a pulse-like shape) between a pair of discharge electrodes 1 1 on which opposing surfaces are provided with a solid dielectric and the opposite discharge electrodes 1 1.
  • Power supply 1 2 for applying an electric field
  • nitrogen gas supply unit 1 3 for supplying nitrogen gas
  • probe 1 5a installed so as to face the outlet of plasma 14 generated between discharge electrodes 1 1
  • a spectrum detector 15 for detecting the emission intensity and the wavelength of the plasmatized nitrogen gas.
  • the nitrogen plasma emission analyzer 1 O R is installed in a chamber so that nitrogen plasma emission analysis can be performed under any pressure by changing the pressure conditions.
  • FIG. 10 (a) * represents the He signal
  • the emission of N 2 ion N 2 + appears around nm.
  • this N 2 ion N 2 + forms an oxynitride film or a nitride film on a substrate, it is compared with neutral active species N 2 (2 nd ps) and N 2 (H. I. R.).
  • the impact caused by the electric energy increases at the time of the collision, causing plasma damage.
  • H e high concentration rare gas
  • FIG. 11 is a diagram for explaining the origin of the light emission spectrum, and is a potential energy ( e V) diagram of a nitrogen molecule.
  • E CR plasma method under reduced pressure, by Ri generated plasma activated nitrogen species to the RF plasma method is a N 2 (1 st ps)
  • conventional E CR plasma method the N 2 (1 st in the RF plasma method ps) is used as film formation for nitrogen plasma.
  • a pulsed plasma method is used in which a pulsed electric field is applied to a parallel plate cathode to generate plasma under pressure near atmospheric pressure.
  • FIG. 12 is a diagram showing the result of emission analysis of nitrogen plasma, and shows the discharge pressure dependency of nitrogen active species and nitrogen ion N 2 + .
  • the vertical axis is the luminous intensity (kcps) and the horizontal axis is the nitrogen pressure (T orr).
  • the nitrogen pressure was increased under the conditions of a pulse frequency of 10 kH to the discharge electrode and a nitrogen gas flow rate of 1.5 liter / min. It is an observation example of the case.
  • b is a N 2 (1 st ps)
  • c is a N 2 (2 nd ps)
  • d is a N 2 (H. I. R.). It shows the pressure dependency of the luminescence intensity.
  • nitrogen plasma of nitrogen active species N 2 (1 st ps) and N 2 (2 nd ps) is generated together with nitrogen ions N 2 + Nitrogen plasma of nitrogen active species N 2 (H. I. R.) is not generated.
  • N 2 H. I. R.
  • N 2 H. I. R.
  • N 2 2 (H. I. R.)
  • N 2 (2 nd ps) which are neutral nitrogen active species.
  • the amounts of N 2 (1 st ps) and N 2 (H. I. R.) are reversed around the nitrogen pressure of 300 (T orr). From these facts, it is considered that N 2 (1 st ps) generated under low pressure is used as nitrogen plasma in the decompression plasma method by the conventional ECR plasma method and RF plasma method.
  • the nitrogen pressure near atmospheric pressure 3000 (Torr) is dominant at around 500 (Torr). It is characterized by using N 2 (H.I.R.) and N 2 (2 nd ps) as nitrogen plasma.
  • Fig. 13 is a diagram for comparing the discharge pressure dependence of N 2 plasma emission and He / N 2 plasma emission, and Fig. 13 (a) shows the He ZN 2 plasma emission by the RF plasma method. Figure 13 (b) shows the pressure dependence of N 2 plasma emission by the pulsed plasma method. Figure 13 (b) and Figure 12 are identical.
  • Figure 13 (a) shows the He-N 2 plasma emission by the RF plasma method which generates nitrogen plasma under low pressure using a rare gas (here He).
  • a rare gas here He
  • the nitrogen plasma generated by the H e / N 2 plasma emission generates only N 2 (1 st ps) over the entire observation pressure, and nitrogen active species There is almost no nitrogen plasma of neutral active species N 2 (2 nd ps) and N 2 (H. I. R.).
  • N 2 (1 st ps) is dominantly generated as long as the RF plasma method is employed even at a pressure close to the atmospheric pressure.
  • the present invention adopts a remote type using a plasma existing in a diffusion region blown out from the inside of the electrode among pulse plasma methods performed under a pressure near atmospheric pressure, and N 2 (2 nd ps) and N 2 (H. I. R.) a is characterized by using the formation of a nitrogen plasma oxynitride film or a nitride film.
  • N 2 (2 nd ps) is It is also possible to use a direct type using plasma existing in the dominant discharge region for forming an oxynitride film or a nitride film.
  • a nitrogen gas of high purity is used by using a remote type using plasma existing in a diffusion region blown out from the inside of the electrode under a pressure of 500 (Torr) or higher. in, N 2 (H. I. R. ) 1 2 and N 2 (2 nd ps) to generate.
  • FIG. 14 is a graph showing the nitrogen pressure dependence of nitrogen-activated species N 2 +. As shown in FIG. 14, under a pressure of 500 (T 0 rr) or higher, the generation of nitrogen ion N 2 +, which may be correlated with plasma damage, can also be reduced.
  • nitrogen is easily introduced into the object to be treated because nitriding is performed under a pressure close to atmospheric pressure, that is, doping is suppressed.
  • the nitride film forming apparatus and the oxynitride film forming apparatus according to the present embodiment have names basically divided according to the purity of the supplied nitrogen gas, and basically have the same configuration.
  • the gas to be supplied is nitrogen gas containing only trace amounts (eg, 1 ppm or less) of O 2 or water (H 2 O) or oxides as an oxygen source
  • a nitride film forming apparatus in the this called a trace (e.g., 1 ppm) good many 0.2% or less of 0 2 or water Ri (H 2 0) Moshiku the oxynitride film forming apparatus when applying the nitrogen gas containing the oxides Do.
  • an oxynitride film forming apparatus 20 is an apparatus for forming an oxynitride film on a substrate 30, which is an object to be treated such as a wafer or an electronic substrate, using a remote pulse plasma method.
  • it comprises a power supply 23 for applying a pulsed electric field, a nitrogen gas supply unit 24 for supplying nitrogen gas, a chamber 26 which is a reaction vessel, and a pump 27 for exhausting the gas.
  • Reference numeral 25 denotes a plasma generated between the discharge electrodes 21 and 22.
  • nitrogen gas is formed in the inside of the electrodes (between the electrode plates) from the upper side between the electrode plates between the discharge electrodes 21 and 22.
  • the nitrogen gas supplied from the supply unit 24 is plasma-generated by a pulsed electric field and blown out from the lower side between the electrode plates to the lower side of the discharge electrodes 21, 22.
  • the reaction part of the oxynitride film forming apparatus 20 is installed in the chamber 26.
  • the inside of the chamber 26 is once purged with nitrogen gas, and nitriding treatment is performed, for example, maintained at 500 Torr. '
  • the substrate 30 is placed on the wafer tray 31 and the wafer tray 31 is moved by the moving mechanism 32 so that the entire surface of the substrate 30 can be uniformly processed.
  • the moving mechanism may be configured to move on the head side where the discharge electrodes 2 1 and 2 2 are provided instead of the water ray 31 1.
  • the moving mechanism 32 by using one that can arbitrarily adjust the feed speed such as the transfer belt, as described later, the nitriding time taken for the nitrogen plasma can be made variable. This enables control of the formed film thickness.
  • the wafer tray 3 1 may have a heating mechanism for heating the substrate 30. In that case, the heating temperature of the substrate 30 by the wafer tray 31 is preferably 50 ° C. or more, more preferably 100 ° C. or more.
  • a stable bond of nitrogen to the object (base material) can be established, and the substrate on which the oxynitride film is formed Even after being removed from the chamber 26 and transferred to the atmosphere, the unstable nitrogen bonded can be prevented from being replaced with oxygen, and the subsequent oxidation can be suppressed.
  • the oxynitride film forming apparatus 20 blows the nitrogen gas supplied from the nitrogen gas supply unit 24 onto the surface of the substrate 30 which is the object to be processed, and the power supply 23 pulses the discharge electrodes 21 and 22. An electric field is applied to form nitrogen gas into plasma and blow it out on the surface of the substrate 30.
  • the oxynitride film forming apparatus 20 is processed under a pressure near atmospheric pressure.
  • the pressure near atmospheric pressure means that the pressure control is a good odor and the equipment used for discharge plasma treatment becomes simple. It is a pressure of OOOT orr (about 3. 9 9 9 X 1 0 4 to 1 3 3 3 3 X 1 0 4 P a), and in particular, neutral active species N 2 (2 nd ps) and N 2 ( H. I. R.) dominates (see Fig. 12), and plasma damage by nitrogen ion N 2 + species is eliminated (approximately 6. 6 6 5 X 1 0 4 P a ) Over pressure
  • the temperature is preferably 80 0 Torr or less.
  • the surface of the substrate 30 on which the oxynitride film is formed may be heated or kept at a low temperature.
  • the temperature of the substrate 30 is generally set appropriately in consideration of the damage to the substrate, the film forming rate, the force-performing property, the film thickness and the like, but according to the oxynitride film forming apparatus 20 of this embodiment.
  • the formed oxynitride film has almost no nitriding time and temperature dependency, and the oxynitride film is formed uniformly and in a very short time, and the thickness of the formed film is also neutral active species N 2 (H. I. R.) and Z or N 2 (2 nd ps) can be controlled by the amount of formation or the nitriding time.
  • the nitriding temperature is room temperature to 500 ° C.
  • the method of forming an oxynitride film according to this embodiment uses the high purity nitrogen gas to form a film under a high pressure of about 500 T 0 rr or more near the atmospheric pressure. The pressure is adjusted to a pressure close to the atmospheric pressure. In this case, after exhausting the chamber 26 to a high vacuum, a large amount of nitrogen gas is introduced to purge the inside of the chamber 26. Therefore, when the present oxynitride film is formed, it remains even if the inside of the chamber 26 is evacuated to a high vacuum.
  • the high purity nitrogen gas is referred to as high purity nitrogen gas in the conventional thermal nitriding method using a mixed gas of nitrogen gas and a rare gas, and is not a nitrogen gas subjected to special treatment. It is easy to introduce. That is, it is only necessary to use the high purity nitrogen gas without adjusting the mixing condition of nitrogen gas and a rare gas, and strict control of H 2 O and O 2 for the formation of an oxynitride film Is unnecessary. As described later, although the high purity nitrogen gas is used as it is, the dielectric characteristics and the leakage current characteristics are extremely excellent, and a uniform SiO.sub.4 ON film can be obtained. As described above, being able to use high purity nitrogen gas that does not require adjustment of the mixing ratio as it is leads to cost reduction and has the effect of being easy to implement.
  • the discharge electrodes 2 1 and 2 2 are composed of simple metals such as iron, copper and aluminum, alloys such as stainless steel and yellow copper, and intermetallic compounds. At least the electrode facing surface of each electrode has a constant distance between the electrodes in order to prevent arcing, and a solid dielectric is disposed.
  • the solid dielectric various materials can be used, such as general alumina and glass, plastics such as polytetrafluoroethylene and polyethylene terephthalate, and multilayers of these. More preferably, they are aluminum nitride A 1 N, silicon nitride Si 3 N 4 , boron nitride BN, and the like.
  • the thickness of the dielectric layer is preferably about 0.1 to 4 mm.
  • the solid dielectrics 21a and 22a preferably have a relative dielectric constant of 2 or more (under 25.degree. C. environment, the same applies hereinafter). It is also possible to coat the outer peripheral surface of the electrode with a plate-like object such as ceramic or resin, a sheet-like object, or a film-like object. In this embodiment, aluminum nitride A 1 N is used as the solid dielectrics 2 1 a and 2 2 a.
  • the distance between the electrodes to which the voltage is applied is 0.1 to 5 mm, preferably 5 mm or less in consideration of discharge uniformity, and in the case of a direct type using a plasma existing in the discharge region, 0.5
  • a size of 0.1 to 2 mm is preferred.
  • the current density is 1 0 ⁇ 5 0 0 0 m A / cm 2, preferably 5 0 ⁇ 5 0 O mA / cm 2 b pulse voltage waveform which is, in addition to the impulse type shown, FIG.
  • An appropriate waveform such as a square wave type or a modulation type shown in 16 (b) can be used.
  • a so-called wave-like waveform may be used for applying a voltage to either positive or negative polarity side.
  • a bipolar waveform may be used.
  • the falling time of the pulse voltage is also steep, and it is preferable that the falling time is equal to or less than 1003 which is the same as the rising time.
  • the rise time and the rise time are set to be approximately the same time.
  • modulation may be performed using pulses with different pulse waveforms, rise times, and frequencies.
  • the frequency of the pulsed voltage is preferably in the range of 0.5 kHz to 1 MHz. If it is less than 0.5kHz, the plasma density is too low and the treatment takes too long. If it is more than 1MHz, the discharge under high pressure exceeding 500Torr, depending on the size of the electrode, depending on the configuration Adjustment of input power and reflection power such as matching may be required.
  • the processing speed of the plasma processing can be greatly improved.
  • the upper limit of the frequency is not particularly limited, but high frequency bands such as commonly used 13.56 MHz and experimentally used 500 MHz are also possible. In consideration of ease of handling and compatibility with the load, 500 MHz or less is preferable. By applying such a pulse voltage, the processing speed can be greatly improved.
  • the duration of the pulse in the pulse voltage is 0.5 to 200 S if it is less than 0.5 ⁇ s, the discharge becomes unstable, and When it exceeds s, it becomes easy to shift to arc discharge. More preferably, it is 3 MS to 200 ⁇ s.
  • the duration of one pulse which is shown as t in Fig. 16, is the time during which the pulse continues in the pulse voltage consisting of the repetition of ON and OFF.
  • the magnitude of the pulsed discharge voltage shown in FIG. 16 may be determined as appropriate, but in the present embodiment, the magnitude of the electric field between the electrodes is in the range of 10 to 100 k V / cm.
  • the setting is preferably 20 to 300 kV cm. The reason why this range is set is that if the electric field strength is less than 10 kV / cm, processing takes too much time, and if it exceeds 100 kV / cm, arcing is likely to occur.
  • direct current may be superimposed in the application of the pulse voltage.
  • the material to be treated (object to be treated) in this embodiment is a silicon wafer 30, and in the formation of the oxynitride film by plasma treatment of the present invention, the surface temperature of the silicon wafer is the above-mentioned heating of the water ray 31 Although it is related to the temperature, 50 ° C. or higher is preferable, more preferably The temperature is preferably 100 ° C. or more. Needless to say, materials other than silicon wafers may be used as the material.
  • N 2 (H. I. R.) generated at a nitrogen pressure of about 500 (T or r) in the vicinity of the atmospheric pressure as shown in the light emission analysis of FIG. )
  • N 2 H. I. R.
  • plasma generated between the opposing discharge electrodes 21 and 22 is directed toward the silicon wafer 30 disposed outside the discharge space. Make contact.
  • the plasma state gas can be carried only to the target location on the silicon wafer surface to form the oxynitride film, it is possible to It is a preferred method with reduced electrical and thermal burden on the computer.
  • bias can be applied to the silicon side of the substrate to be treated.
  • the gas supply part 24 to the chamber around the electrode
  • nitrogen was also supplied to the inside of the chamber 26 but the gas supplied to the chamber 26 between the electrodes was a gas which does not contain oxygen, it may be a rare gas or a gas introduced between the electrode plates. Is not limited to nitrogen.
  • a transfer system such as a transfer conveyer or a transfer port can be used as a means for transferring silicon wafers.
  • the nitrogenized gas is converted to a pressure of 300 ° (Torr), especially 5
  • N 2 (2 nd ps) and N 2 (H. I. R.) which occur above 00 (T or r) are the dominant neutral active species.
  • a good quality silicon oxynitride film is formed on the substrate surface of 0. This oxynitride film is
  • oxynitridation is completed in a short time, and film formation is stopped at the desired film thickness (for example, 1.6 nm).
  • this oxynitride film is excellent in film quality and excellent in uniformity. Therefore, to create a quantum device using a quantum structure, It is particularly effective.
  • the oxynitride film is formed by supplying the high-purity nitrogen gas, but the gas supplied can be used as an oxygen source without changing the configuration of FIG. 13 at all. it is a child form ultratrace (e.g. 1 ppm or less) of 0 2 and H 2 0 by a good nitride film changed to a nitrogen gas only contains oxides such like.
  • the nitrogen gas is a high purity nitrogen gas preferably containing only oxygen or oxide of 1 ppb or less as an oxygen source, and the nitrogen gas supply unit 24 of the oxynitride film forming apparatus 20 or this nitrogen gas supply unit This can be easily realized by attaching a filter that selectively adsorbs H 2 O or 0 2 to the nitrogen gas introduction path from 2 4.
  • the pressure is 500 Torr
  • the nitrogen gas flow rate is 10 liter / min
  • the applied voltage is 3.36 1 6
  • the pulse frequency is 3 0 3 ⁇ 4: 15 z
  • nitridation time 3 0 sec to: 1 0 min
  • nitridation temperature room temperature to 500 ° C.
  • the treated substrate was P— type (1 1 1) Si.
  • the width L of the discharge electrodes 21 and 22 of the oxynitride film forming apparatus 20 is 20 mm
  • the height of the discharge electrodes 21 and 22 in the gas channel direction is 15 mm
  • the discharge electrodes 21 and 22 The distance between 2 and 2 is 1 mm
  • the discharge ports of discharge electrodes 2 1 and 2 2 if the nozzle is provided, the tip of the nozzle or the nozzle serves as the processing substrate side edge of the electrode plate The distance from the edge to the processing substrate was 5 mm.
  • the neutral active species N 2 (2 nd ps) and N 2 are only in the plasma present in the diffusion region blown out from the inside of the remote electrode.
  • An oxynitride film in which oxygen and nitrogen coexist is formed.
  • an oxide as an impurity contained in a very small amount in a high purity nitrogen gas of 6 nines is used, but even if an oxide as an impurity is used, it is possible to form an oxynitride film. Since the deposition process of the apparatus 20 itself is excellent, as a result, it is possible to form an oxynitride film with excellent characteristics such as high dielectric constant and low leak current which have never existed. The results of quantitative study of the mixing conditions of nitrogen gas and oxide will be described later.
  • Fig. 17 (b) shows how to evacuate the chamber 26 by introducing a large amount of nitrogen gas after evacuating the inside of the chamber 26 to a high vacuum, and performing pressure control of the chamber 26.
  • the back pressure 9 X 1 0 - is an analysis result of the presence of residual gases Champa 2 in 6 in 1 0 T orr.
  • the Cham 2 in 6 oxynitride film forming apparatus 2 0 Ru is installed, 0 2 4.
  • a nitride film is formed using nitrogen gas containing only an oxide.
  • a good nitride film can be formed simply by changing the supplied gas to 100% nitrogen gas without completely changing the configuration of FIG.
  • 100% of nitrogen gas can be easily realized by attaching a filter that selectively adsorbs H 2 O or 0 2 to nitrogen gas supply unit 24 of oxynitride film forming apparatus 20. it can.
  • Figure 18 shows the X-ray photoelectron spectroscopy (XP S) of the nitride film formed on Si substrate under the film forming conditions of nitridation temperature 350 ° C, nitridation time 10 min, by the apparatus and method of this embodiment. It is a figure showing a measurement result.
  • the vertical axis is the peak intensity (au), and the horizontal axis is the binding energy (eV).
  • Figure 18 (a) shows the result of narrow spectrum measurement of Si
  • Figure 18 (b) shows the result of measurement of N peak of Na.
  • FIG. 1 8 (a) sea urchin, the binding energy 1 There was a peak due to Si—N bond around 0 2 (e V), from which it was confirmed that a Si 3 N 4 nitride film was formed.
  • Fig. 19 is a diagram showing the bonding state in the depth direction of the nitride film formed by the apparatus and method of this embodiment, and Fig. 19 (a) shows the narroth spectrum of Si.
  • Figure 19 (b) shows the results of N narrow spectrum measurement, respectively. Measured by X-ray photoelectron spectroscopy, with the peak intensity on the vertical axis and the binding energy (e V) on the horizontal axis.
  • the portions represented by the individual peak curves are closer to the Si substrate from the surface side of the deposited nitride film, as going from the top to the bottom of the figure. .
  • the bottom of the peak curve is that of the Si substrate.
  • the oxidation source H 2 0, 0 2
  • S i 0 The peak due to 2 does not appear.
  • FIG. 19 (b) it can be confirmed that the bond of Si—N is uniformly distributed in the depth direction of the nitride film.
  • the nitriding temperature is made different at room temperature (RT), 350 ° C., 500 ° C., and a film formation with a nitriding time of 10 min is performed. It is a figure which shows the electrical charging characteristic of each nitride film formed on condition.
  • FIG. 20 shows the measurement results of capacitance (/ XF / cm 2 ) per one applied voltage (V) when a voltage of frequency 10 kHz is applied.
  • the nitriding temperature may be different from b. Room temperature (RT), c. 350 ° C., d. 500 ° C.
  • RT Room temperature
  • c. 350 ° C. d. 500 ° C.
  • Id eal curve experimental values b. to d. give device characteristics along the theoretical curve a.
  • Figure 22 illustrates the analysis of the direct tunneling current of the leakage current.
  • Leakage current effects that can be mentioned as conduction mechanism of leakage current are (DP. Ool-Frenkel emission current, (2) choke key emission current, (3) F-N tunnel current, (4) direct tunnel current
  • the present inventors inferred that only the leakage current due to the direct tunneling current is involved (leakage current in the above (1) to (3)). It can be said that the leakage current is of poor quality, and (4) the direct tunneling current is the leakage current that appears in the case of an ideal insulating film, and from this also it was formed by the device and method of this embodiment.
  • the oxynitride film has ideal characteristics as an insulating film.
  • the (4) direct tunnel current is approximated by the Wentzel-Kramers-Brillouin equation, and it is inferred that the increase of the effective mass m * is involved in the (4) direct current due to the leakage current.
  • Figure 23 shows a film formed under the film forming conditions with a nitriding temperature of 350 ° C and a nitriding time of 10 min at a pressure of 50 OT orr near the atmospheric pressure according to the apparatus and method of this embodiment. It is a figure showing a measurement result of applied voltage (V)-leak current (A / cm 2 ) of a nitride film having a thickness of 1.8 nm.
  • V applied voltage
  • a / cm 2 a nitride film having a thickness of 1.8 nm.
  • the experimental value (Experimental Curve) is approximated by the above-mentioned Wentzel-Kramers-Br illouin equation, with no force even in the vicinity of the normal pressure and 500 T T rr near the atmospheric pressure. It almost agrees with the simulated value (simulated curve). From this, it is considered that the nitride film formed by the apparatus and method of the present embodiment has an increased effective mass m * that indicates the movement of
  • the nitride film is excellent in dielectric characteristics and has excellent device characteristics with greatly reduced leakage current
  • the film formation process can be easily performed on the Si substrate etc. by the apparatus and method of this embodiment. It can be easily formed based on existing methods and apparatuses, such as being able to be formed, being able to be carried out under atmospheric pressure at a lower temperature than in the past, and being easily inlined.
  • the nitride film manufactured by the method and apparatus for forming an oxynitride film is excellent in that device characteristics such as leakage current characteristics are not found in the conventional nitride film, or close to theoretical values which can not be achieved by the conventional nitride film. New applications are expected from having characteristics.
  • the nitriding temperature was observed at 25 ° C, 300 ° C, 500 ° C and three points under the condition of 10 min of nitriding time. As a result, it was clarified that the nitrided film thickness was saturated at 1 to 2 nm at each observation temperature, and it was confirmed that the nitriding reaction hardly depends on the nitriding temperature.
  • the nitridation time was observed at three points of 0.5 min, 3 min, and l O min under the conditions of a nitridation temperature of 350 ° C. As a result, it was clarified that the nitride film thickness was saturated around 1 to 2 nm at each observation time, and it was confirmed that the nitriding reaction was hardly dependent on the nitriding time.
  • the nitride film it is considered in consideration of which of the neutral active species N 2 (2 nd ps) and N 2 (H. I. R.) contribute to the formation of the nitride film.
  • the possibility of controlling the thickness of the film and the electrical characteristics (insulation) of the nitride film will be described with reference to Figs. 25 and 26.
  • Figure 25 shows the film thickness-pressure characteristics of the nitride film when the nitriding temperature is 350 ° C, the nitriding time is 10 min, and the pressure of nitrogen gas is changed at 50 to 700 Torr. , and the emission intensity of the N 2 (2 nd ps) is a neutral active species - is a graph showing the pressure characteristics.
  • the composition of the nitride film produced calculated from the structural evaluation (X-ray photoelectron spectroscopy) was S i 3 N 3. 5 00. 7.
  • the film thickness of the nitride film shows a constant value of 1.6 nm in the pressure range of 400 to 700 Torr, and the pressure of 50 to 400 T0 rr is shown. It decreases with the decrease in pressure in the range.
  • the change in film thickness of the honeydeformed film with respect to this pressure is the light intensity of the neutral active species N 2 (2 nd ps) observed by luminescence analysis, and the neutral active species N 2 (2 nd This is consistent with the change in the emission intensity of ps), and it was found that the neutral active species N 2 (2 nd ps) contributes to the nitridation reaction near atmospheric pressure.
  • FIG. 26 is a view showing the film thickness-nitriding temperature characteristic of the nitride film when the pressure of nitrogen gas is changed.
  • the electrical characteristics (insulation properties) of the nitride film are different from the room temperature (RT), 350 ° C., 500 ° C., as described in the case of the nitride film shown in FIG. Even that The capacity-voltage characteristics (C1 characteristics) are almost the same, and as described for the nitride film of FIG. 21, the applied voltage / leakage current characteristics (1 characteristics) are different from the nitriding temperature. It can be understood that they do not depend on the nitriding temperature because they agree with each other. As a result, as explained by FIG.
  • FIG. 6 is a diagram showing the relationship of the above in comparison between an atmospheric pressure plasma method (AP Plasma) by a pulse plasma method and an RF plasma method (RF Plasma).
  • Figures 2 7 and 2 8 represent the same data except that the scale of the nitriding time on the horizontal axis is linear or logarithmic.
  • the atmospheric pressure plasma method and the RF plasma method can control the film thickness range of about 1 nm according to the nitriding time by changing the nitriding time
  • the atmospheric pressure plasma method Although the change of the film thickness depending on the nitriding time is steep relative to the change of the film thickness depending on the nitriding time of the RF plasma method, the change is within the time range of 0.1 lmin to 10 min. , It is easy to control.
  • the film thickness change region depending on the nitriding time by the atmospheric pressure plasma method is thinner than the film thickness change region depending on the nitriding time of the RF plasma method.
  • the atmospheric pressure plasma method is thinner nitrided film even if the pressure of the same nitrogen gas and the same nitriding temperature are used. Can be formed in a short time.
  • Fig.29 in the normal pressure plasma method, the pressure of the above 5000 T 0 rr and the nitriding time 10 0
  • the film thickness of each nitride film formed by changing the temperature of the substrate temperature (nitriding temperature) in the range of RT to 500 ° C. under the film forming conditions of “min” is shown.
  • the substrate temperature (nitriding temperature) is changed in the range of RT to 500 ° C. under film forming conditions of a pressure of 1 ⁇ 10 5 Torr and a nitriding time of 60 minutes.
  • the film thickness of each nitride film formed is shown.
  • the thickness of the nitride film formed by the atmospheric pressure plasma method can be a nitride film having a constant thickness regardless of the nitriding temperature, while the thickness of the nitride film formed by the RF plasma method is The film thickness fluctuates in the range of about 1 nm depending on the magnitude of the nitriding temperature.
  • a nitride film having a constant film thickness can be generated regardless of the temperature of the substrate temperature (nitriding temperature).
  • the generation amount of neutral active species N 2 (2 nd ps) is determined by the magnitude of the pressure of nitrogen gas.
  • the desired film thickness, that is, the electrical properties (insulation) of the formed nitride film can be easily controlled simply by controlling the nitriding time and controlling the nitriding time.
  • an RF plasma nitride film forming apparatus 50 includes a stage 53 in which a substrate 52 as a processing object is installed in a reaction chamber 51, and an RF high frequency is applied to introduce introduced gas.
  • the radical gun 54 is connected to a gas supply source (nitrogen gas) 55, and the reaction chamber 51 is provided with a pump for setting the reaction chamber under a low pressure (for example, a turbo molecular pump; TMP) 56 is connected.
  • a gas supply source nitrogen gas
  • TMP turbo molecular pump
  • a substrate (p-type (P-type (P-type (P-type)) is formed by the RF plasma nitride film forming apparatus 50 configured as described above and the nitride film forming apparatus of the present invention described above.
  • the RF plasma nitride film forming apparatus the RF plasma nitride film forming apparatus
  • a nitride film can be formed.
  • the high purity nitrogen gas is supplied through the high purity gas filter to reduce the oxidation source (H 2 0, 0 2 ) to 1 ppb or less, and nitride film Si 3 N 3 5 O o 7 was formed. In addition, it was confirmed that the formed bonds of Si and N were uniformly distributed in the depth direction of the nitride film.
  • the nitriding reaction does not depend on the nitriding time-nitriding temperature, and since the nitride film thickness is saturated at 1 to 2 nm and nitriding is completed, low temperature ⁇ high speed Nitriding becomes possible.
  • a significant reduction of the nitriding time leads to an increase in the time efficiency of the process steps.
  • oxides such as, for example, the high dielectric constant insulator of the MOS transistor (for example, Z r 0 2 , H f 0 2 ) It is possible to do a slight amount of nitrogen N doping.
  • using the present nitrogen plasma together with a film forming gas containing Ga, In, A 1, etc., as shown in the right-hand side pattern in FIG. , I n N, AIN) can be deposited.
  • 3 2 is a flow rate of nitrogen gas introduced into the electrode plates and fixed with 1 0 s 1 m, exhibited dielectric characteristics of the generated oxynitride film according to the amount of entrained 0 2 FIG. is there.
  • the pressure was adjusted so that the exhaust pressure would be 5 0 0 T 0 rr.
  • C—V characteristics in FIG. 32, when oxygen gas is added to the nitrogen gas with reference to the C—V characteristic curve a of the high purity N 2 gas, It was found that the spread of the hysteresis curve of the characteristic curve becomes smaller as shown in the CV characteristic curves b. To e. As the addition amount increases.
  • FIG. 33 shows the relationship between the additive amount of oxygen gas to nitrogen gas and the flat panel shift (black span voltage shift) of the hysteresis characteristic of the C 1 V characteristic curve shown in Fig. 32.
  • FIG. 32 is a diagram showing the correlation between the amount of oxygen gas added to nitrogen gas and the hysteresis width of the hysteresis characteristic shown in FIG. 32.
  • the flat-band drift of the hysteresis characteristic of the CV characteristic curve indicates that the applied voltage is in the range of 0 to 2 sccm of oxygen addition where little oxygen gas is added to nitrogen gas.
  • the saturation peak of the hysteresis characteristic of the C 1 V characteristic curve shifts to the positive voltage side of the applied voltage when the oxygen addition amount exceeds 2 sccm. Start to shift.
  • the hysteresis width of the C1V characteristic curve is that the hysteresis width of the C1V characteristic curve is increased in the range of 0 to 2 sccm of oxygen addition where little oxygen gas is added to nitrogen gas.
  • the hysteresis width of the C 1 V characteristic curve decreases in the region of 2 to 3.5 sccm of oxygen addition, and decreases in the region of more than 3.5 sccm of oxygen addition. It turned out to be saturated in the condition.
  • the broadening of the hysteresis curve of the CV characteristic curve is preferably smaller as the amount of oxygen added increases, but conversely, the flat-band drift of the hysteresis characteristic of the C and V characteristic curve is oxygenated.
  • a shift (shift) progresses, and the deviation of the applied voltage from the positive voltage side increases.
  • the hysteresis width of its hysteresis characteristics is reduced, and the flat-plate drift is not biased to either positive or negative side. It was found that the state where the gas was added at 5.5 sccm was preferable, and considering the C 1 V characteristics of the oxynitrified film, it was found that it is preferable that oxygen gas be added to nitrogen gas although it is small. .
  • FIG. 34 is a diagram showing the relationship between the insulation voltage (dielectric voltage) and the leak current according to the amount of addition of 0 2 mixed in nitrogen gas introduced between the electrode plates. From Fig. 34, it was found that the leak current decreased as the amount of oxygen gas added to nitrogen gas was increased, and although it is not shown in the figure, it is not acceptable to add too much. .
  • composition of the oxynitride film obtained when the addition amount of O 2 is 5.5 sccm is
  • FIG. 35 is a diagram showing the result of spectrum analysis of nitrogen plasma emission observed by the direct plasma method when oxygen gas is not mixed in the introduced nitrogen gas.
  • FIG. 36 is a diagram showing the result of spectrum analysis of nitrogen plasma emission observed by the direct plasma method when oxygen gas is added by 1.5 scm cm to the introduced nitrogen gas.
  • the vertical axis represents the emission intensity (a. U.)
  • the horizontal axis represents the wavelength (nm), respectively, and the wavelength at which N 2 (2 nd ps) is dominantly observed.
  • the portion of wavelengths 2 0 0 to 3 5 0 (nm) near 0 to 4 0 0 nm is shown.
  • Figure 3-7 shows the amount of added oxygen gas and N 2 (2 nd ps) and NO-y, respectively, based on the results of spectrum analysis of nitrogen plasma emission for each changed amount of added oxygen gas. It is the figure which showed the relationship between the luminescence intensity of this.
  • the ordinate represents the emission intensity (M cps) of N 2 (2 nd ps) and the emission intensity of NO ⁇ ⁇ (kcps), and the abscissa represents the addition amount (sccm) of oxygen gas.
  • the emission intensity (M cps) of N 2 (2 nd ps) is 2.
  • OM cps when oxygen gas is not mixed, but the light emission intensity is the same as oxygen gas mixing (addition) is started. After the oxygen gas is added at 0.5 sccm, the amount of oxygen gas added is up to 3 sccm, but after that, even if the amount of oxygen gas is increased, N 2 It was found that the emission intensity (M cps) of (2 nd ps) saturates to a constant value (in this case, 0.7 M cps).
  • the emission of NO-y is hardly detected when oxygen gas is not mixed, but the emission intensity increases with oxygen gas mixing and (addition) start, and the illustrated oxygen
  • the amount of gas added is up to 3 sccm
  • the emission intensity (kcps) of NO- ⁇ is constant even if the amount of oxygen gas added increases after oxygen gas is added at 3.0 sccm. It was found that (in this case, 2.2 kcps) was saturated.
  • FIG. 38 is a view showing the relationship between the addition amount of oxygen gas and Si 2 p binding energy for the film formed by changing the addition amount of oxygen gas to the nitrogen gas.
  • the amount of oxygen gas added is 0 to 1.5 scm
  • the formed film has a Si
  • the 10 2 0 eV of i 2 p bond energy is an oxynitride film S i 3 N x . 2
  • the nitride film and the oxynitride film are formed by performing the nitriding process based on the light emission intensity of N 0 ⁇ under the plasma conditions where the light emission of this ⁇ ⁇ y is observed. It turned out that the same effect as controlling the amount of oxygen gas added can be obtained.
  • nitride film forming method and the oxynitride film forming method of the present invention since the nitriding process can be strictly controlled, as shown in the left side pattern in FIG. 2, for example, a high dielectric constant insulator of an MOS transistor.
  • Etc. (for example, Z r Z 2 , H f 0 2 ) are slightly doped with nitrogen N.
  • Z r 0 2, H f 0 2 includes depositing the nitrogen in the film With the nitrogen plasma with such a film means that nitrogen is doped is formed.
  • nitrogen is contained in the film even if the process of subjecting the surface to a thin film of an oxide film and performing the present nitrogen plasma treatment is repeated.
  • the former is doped with nitrogen to the surface of the film and the latter is doped into the film. This process can be performed by a CVD film deposition process.
  • the present invention relates to a semiconductor surface control using a nitride film and an oxynitride film, an MO S transistor using nitrogen doping, a nitride semiconductor, a light emitting element, an optical device, and a communication device. It can be used in a wide range of applications such as paste, nitride film and oxynitride film

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Formation Of Insulating Films (AREA)
  • Chemical Vapour Deposition (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

 窒化反応の窒化時間・窒化温度の依存性がなく、かつ低温・高速窒化が可能で均一な窒化膜及び酸窒化膜を形成する。 圧力300(Torr)以上の圧力下で、対向する一対の電極の少なくとも一方の対向面に固体誘電体を設置し、当該一対の対向電極間に0.2%以下の酸化物を含む窒素ガスを導入して電界を印加することにより得られるN2(2ndp.s.)又はN2(H.I.R.)活性種プラズマを被処理物に接触させ、該被処理物表面に窒化膜/酸窒化膜を形成する。

Description

明 細 書 ' · 酸窒化膜及び窒化膜の形成方法、 形成装置、 酸窒化膜、 窒化膜、 及び基材 技術分野
本発明は、 大気圧近傍の圧力条件で酸窒化膜又は窒化膜を形成する酸窒化膜又 は窒化膜の形成方法、 その形成装置、 これら形成方法若しく は形成装置を用いて 製造される酸窒化膜並びに窒化膜、 及びこれら酸窒化膜又は窒化膜が形成された 基材に関する。 · 背景技術
通常、 半導体素子の一般的構成と して、 例えばトランジスタは、 基板上に、 ゲ ー ト電極、 ゲー ト絶縁膜、 ソース電極、 ドレイン電極、 パシベーシヨ ン膜 (保護 膜) 等が形成された構成からなっている。 ここで、 基板 (被処理物) と しては、 シリ コンウェハ又はガラス基板等が用いられ、 電極と しては、 A 1 等の金属又は ポリ シリ コン等が用いられ、 パシベーシヨ ン膜を含む層間絶縁体と しては、 窒化 珪素、 酸化珪素、 炭化珪素等が用いられる。
また、 上記ゲート絶縁膜と しては、 主と してシリ コン酸化膜が用いられている が、 素子寸法の微細化、 動作速度の高速化等による高特性化に伴い、 ゲー ト絶縁 膜には酸化珪素膜 (誘電率 3 . 9 ) よ り も誘電率の大きい窒化珪素膜 (誘電率 7 . 9 ) やハフユア (H f 0 2 ) 、 及びそのシリ ケー ト とアルミネー ト (H f (ハ フニゥム) 一 S i —O及び H f — A 1 — 0混合系)またそれらに窒素ドープした もの (誘電率は組成 Jこよって異なる) を採用する検討がなされている。
特許文献 1 には、 ライン状のプラズマ発生部と、 反応ガスを導入する導入部と からなるライ ン状のプラズマ C V D装置と、 このプラズマ C V Dによ り成膜され た薄膜をライ ン状の光によ り ァニールするァニール部と、 ァニールされた薄膜表 面をプラズマで処理するライ ン状のプラズマ処理装置とが直列に配置された薄膜 形成装置によ り、 アモルファスシリ コン表面の不純物をなくすこ とができ、 再現 性良く 良好な素子が得られる薄膜形成装置が開示されている。. しかし、 プラズマ CVDや CVD法等の通常の成膜法によ り成膜した窒化珪素 膜は、 膜中に電子又はホールトラップが多く存在し、 信頼性に乏しいという問題 がある。 また、 均一で数 n m程度の窒化珪素膜を安定して形成する必要があるが 、 従来の方法では均一な膜厚を再現性良く成膜するのは困難という問題がある。 そこで、 本出願人は、 シリ コンウェハ表面への窒化珪素膜の形成において、 膜 中の電子又はホールトラップの少ない窒化珪素膜を形成するシリ コンウェハの窒 化処理方法及びその装置を既に出願した (特許文献 2参照) 。
上記技術に関連する文献例を以下に挙げる。
1) 特開 2 00 2— 1 0 0 5 7 8号公報
2 ) 特開 2 0 0 2— 3 2 4 7 9 5号公報 発明の開示 ,
上記特許文献 2記載の発明によれば、 大気圧近傍の圧力下で、 処理ガスのブラ ズマをシリ コンウェハに接触させてシリ コンゥェハの表面に窒化珪素膜の形成を 行う ことが可能になり、 低温下において、 膜形成工程をよ り効率的なシステムと することができた。
しかしながら、 窒化膜並びに酸窒化膜の形成はシリ コンウェハに限らず、 高誘 電率絶縁体、 窒化物半導体などに幅広く適用できるものである。 本発明者らの鋭 意研究の結果、 最適な窒化膜及び酸窒化膜の形成方法が解析できた。
本発明は、 このよ う な問題に鑑みてなされたものであって、 その目的とすると ころは、 常圧下において、 窒化反応の窒化時間 * 窒化温度の依存性がなく、 かつ 低温 · 高速窒化が可能で均一な酸窒化膜又は窒化膜を形成することのできる酸窒 化膜又は窒化膜の形成方法、 及びその形成装置を提供することにある。
また、 本発明の目的とする ところは、 大気圧近傍の圧力下において、 低温 · 高 速窒化が可能でかつデバイス特性に優れた酸窒化膜又は酸窒化膜を形成すること ができる酸窒化膜又は窒化膜の形成方法によ り製造された酸窒化膜並びに窒化膜 、 及びこれら酸窒化膜又は窒化膜が形成された基材を提供することにある。 本発明の酸窒化膜及び窒化膜の形成方法では、 大気圧近傍の 3 0 0 T 0 r r以 上の圧力下で、 上限値と しては 1 0 0 0 T o r rの圧力下が好ましく 、 よ り好ま しく は放電の発生のしゃすさから 5 0 0〜 8 0 O T o r rの圧力下で、 対向する 一対の電極の少なく とも一方の対向面に固体誘電体を設置し、 当該一対の対向電 極間に窒素ガスを導入して電界を印加することによ り得られるプラズマを被処理 物に接触させ、 その被処理物表面に酸窒化膜又は窒化膜を形成することを特徴と する。
本発明の酸窒化膜及び窒化膜の形成方法は、 発光分析で観測される窒素活性種 のう ち、 N2 (H. I . R.) 及び Z又は N2 (2 nd p. s.) 活性種が支配的に出現す る圧力下で、 対向する一対の電極の少なく とも一方の対向面に固体誘電体を設置 し、 当該一対の対向電極間に窒素ガスを導入して電界を印加するこ とによ り得ら れるプラズマを被処理物に接触させ、 その被処理物表面に酸窒化膜又は窒化膜を 形成することを特徴とする。
よ り好ましい具体的な態様と して、 酸窒化膜を形成する場合には、 ,前記窒素ガ スは、 0. 2 %以下で 1 p p mよりも多い酸素又は酸化物を含むこ とで、 デパイ ス特性に優れた酸窒化膜を生成することができる。 この場合の、 0. 2 %以下で 1 P P mより も多い酸化物を含む窒素ガスは、 いわゆる汎用の髙純度窒素ガスで あり希ガス混合や成分調整などが不要であるため使用が容易である。 さ らによ り 好ましく は、 0. 1 %以下 1 p p mより も多い酸化物を含む窒素ガスである。 よ り好ましい具体的な態様と して、 窒化膜を形成する場合には、 前記窒素ガス は、 1 p p m以下の酸素又は酸化物を含む高純度窒素ガスである。 さ らに、 窒素 ガスに含まれる酸素又は酸化物が 1 p p b以下であれば優れた窒化膜が形成でき る。 酸化物は、 例えば NO X , C 02 , H20等である。
よ り好ましい具体的な態様と して、 前記プラズマは、 発光分析で観測される窒 素活性種のうち、 N 2 ( 2 nd p. s. ) 、 及び/又は、 N 2 (H. I . R. ) 活性種であ る。 また、 前記プラズマは、 発光分析で観測される窒素活性種のうち、 中性活性 種のみである。 大気圧近傍でプラズマダメージを起こさない窒素活性種は N2 (
2nd p. s. ) 又は N2 (H. I . R. ) 活性種であり、 これらの窒素活性種が支配的な 圧力下で成膜するこ とで、 結合が均一で優れた窒化膜を室温を含む低温で速い成 膜速度で形成できる。
よ り好ましい具体的な態様と して、 前記大気圧近傍の圧力は、 3 0 0 T 0 r r 以上の圧力である。 また、 この 3 0 0 T o r r以上の圧力は、 発光分析で観測さ れる窒素活性種のうち、 N 2 (H. I . R. ) 又は N 2 (2 nd p. s.) 活性種が支配的 に出現する圧力であり、 また、 N 2 ( 1 st p. s. ) よ り N2 ( 2 nd p.s.) 活性種が 多く出現する圧力である。 窒素活性種は N2 (2 nd p. s.) 又は N2 (H. I . R.) 活性種が支配的な圧力下で成膜するこ とで、 結合が均一で優れた窒化膜を室温を 含む低温で速い成膜速度で形成できる。
また、 本発明の酸窒化膜及び窒化膜の形成方法を用いて'、 酸窒化膜又は窒化膜 を成膜する場合、 上記圧力下で成膜するこ とによ り、 誘電特性に優れ、 リ一ク電 流特性の極めて優れた酸窒化膜又は窒化膜を室温を含む低温で速い成膜速度で形 成できる。
前記固体誘電体は、 例えば金属酸化物や金属窒化物等の焼結セラミ ツクスで形 成された誘電体であるこ とが好ましい。 よ り好ましく は酸化物を実質的に含まな い窒化物で、 例えば、 窒化アルミ A 1 N、 窒化珪素 S i 3N4、 又は窒化ホウ素 B Nのいずれかを含む誘電体である。 このよ うな酸化物を実質的に含まない窒化物 で形成された固体誘電体を使用することにすれば、 窒素ガスに含まれる又は添加 した酸化物の量について、 固体誘電体からの酸化物のコンタミに基づく これら酸 化物の量的変動を未然に防ぐこ とができ、 窒素ガスに含まれる又は添加した酸化 物の量を加減することによつて酸窒化膜又は窒化膜を形成する場合に関与する酸 化物の量を容易に調整できる。
前記プラズマは、 前記対向電極間の放電空間の外の拡散領域で前記被処理物に 接触される リモー ト型がよ り好ましい。 拡散領域で N2 (H. I . R.) 及び N2 ( 2nd p. s. ) 活性種が支配的に出現することが確認されたためである。 また、 前記 対向電極間の放電空間で発生するプラズマを被処理物にダイ レク トに接触させる ダイ レク ト型も可能である。 ダイ レク ト型では N2 (H. I . R.) 活性種は確認で きないものの、 N2 ( 2nd p. s. ) 活性種が支配的に出現する。
よ り好ましい具体的な態様と して、 前記窒素活性種は、 N2 (2 nd .p.s.) 、 又 は N2 (H. I . R.) の少なく ともいずれか一つを含むものである。
また、 前記被処理物の表面温度は、 5 0°C以上、 好ましく は 1 0 0 °C以上で済 み、 特に格別な (例えば、 1 0 0 0 °Cを超えるよ うな) 高温に加熱する必要もな い。
また、 本発明の酸窒化膜又は窒化膜の形成装置は、 少なく とも一方の対向面に 固体誘電体が設置された一対の対向電極と、 当該一対の対向電極間に 0 . 2 %以 下の酸素又は酸化物を含む窒素ガスを導入する機構、 この電極間に電界 (交番パ ルス電界でも正弦波電界でもよい) を印加する機構、 この電界により得られるプ ラズマを被処理物に接触させる機構を備えるこ とを特徴と している。
よ り好ましい具体的な態様として、 窒化膜を形成する場合には、 前記窒素ガス は、 1 p p m以下の酸素又は酸化物を含む高純度窒素ガスである。 また、 酸窒化 膜を形成する場合には、 前記窒素ガスは、 0 . 2 %以下で 1 p p inよ り も多い酸 素又は酸化物を含む窒素ガスである。
よ り好ましい具体的な態様として、 前記プラズマは、 発光分析で観測される窒 素活性種のうち、 N 2 ( 2 nd p. s. ) 、 及び/又は、 N 2 ( H . I . R . ) 活性種が支 配的に出現するプラズマである。
また、 前記大気圧近傍の圧力は、 3 0 0 T o r r以上の圧力であるこ とが好ま しい。
さ らに、 前記プラズマを被処理物に接触させる機構が、 対向電極間で発生する プラズマを当該対向電極間の放電空間の外の拡散領域で前記被処理物に接触させ る リモー ト型であることが好ましい。
また、 本 明は、 上記酸窒化膜及び窒化膜の形成方法、 又はその形成装置によ り製造されたこ とを特徴とする酸窒化膜並びに窒化膜、 及びこれら酸窒化膜又は 窒化膜が形成された基材である。
本発明によれば、 大気圧近傍の圧力下において、 窒化時間 · 窒化温度に依存性 しない窒化反応で、 かつ低温 · 高速窒化が可能で均一な窒化膜を形成するこ とが できる。
また、 大気圧近傍の圧力下において、 低温 · 高速窒化が可能で、 かつ誘電特性 及びリーク電流特性に優れた酸窒化膜を形成することができる。
また、 発生プラズマを観測して最適な成膜条件を実現するこ とができる。 図面の簡単な説明 図 1 は、 窒素プラズマにおける圧力の効果を示す図である。
図 2は、 本発明の窒化膜形成方法及び酸窒化膜形成方法の適用分野の一例を示 す図である。
図 3は、 ダイ レク ト方式による窒素プラズマ発光分析方法を説明する図である 図 4は、 図.3で観測した窒素プラズマ発光のスぺク トル分析結果を示す図であ る。
図 5は、 圧力 4 5 T o r r、 圧力 4 5 0 T o r r で生成した窒素プラズマのそ れぞれダイ レク トプラズマ方式で観測した窒素プラズマ発光のスぺク トル分析結 果を重ねて示した図である。
図 6は、 図 3で観測した窒素プラズマ発光のスぺク トル分析結果を示す図であ る。 ,
図 7は、 図 4に示した窒素プラズマ発光のスペク トル分析結果を、 図 4に示さ れた波長範囲以外の範囲部分.を含めて示した図である。
図 8は、 リ モ一 ト方式による窒素プラズマ発光分析方法を説明する図である。 図 9は、 図 6で観測した窒素プラズマ発光のスぺク トル分析結果を示す図であ る。
図 1 0は、 N 2プラズマ発光と H e Z N 2プラズマ発光のスぺク トル分析結果を 比較して説明する図である。
図 1 1 は、 窒素活性種の発光スぺク トルの由来を説明する図である。
図 1 2は、 窒素プラズマの発光分析結果を示す図である。
図 1 3は、 N 2プラズマ発光と H e / N 2プラズマ発光の放電圧力依存性を比較 して説明する図である。
.図 1 4は、 窒素活性種の N 2 +の窒素圧力依存性を示す図である。
図 1 5は、 本実施形態に係る酸窒化膜形成装置の構成を模式的に示す図である 図 1 6は、 電源から出力されるパルス状の電圧波形を示す図である。
図 1 7は、 S i 基板の窒化条件を説明する図である。
図 1 8は、 本実施形態の装置及び方法によ り成膜された窒化膜の X線光電子分 光測定結果を示す図である。
図 1 9は、 本実施形態の装置及び方法によ り成膜された窒化膜の、 深さ方向の 結合状態を示す図である。
図 2 0は、 窒化温度を異ならせた成膜条件で形成された窒化膜それぞれの誘電 特性を示す図である。
図 2 1 は、 窒化膜のリーク電流特性についての比較図である。
図 2 2は、 直接ト ンネル電流の解析を説明する図である。 .
図 2 3は、 本実施例の装置及び方法によ り形成された膜厚 1 . 8 n mの窒化膜 の印加電圧 (V ) —リーク電流 (A / c m 2 ) の測定結果を示した図である。 図 2 4は、 本実施形態の装置及び方法によ り成膜された S i 窒化の力イネティ ックスを説明する図である。
図 2 5は、 窒素ガスの圧力を変化させた場合の、 窒化膜の膜厚—圧力特性、 及 ぴ中性活性種である N 2 ( 2 nd p. s. ) の発光強度一圧力特性を示した図である。 図 2 6は、 窒素ガスの圧力を変化させた場合の、 窒化膜の膜厚一窒化温度特性 を示した図である。
図 2 7は、 窒化時間と、 生成された窒化膜の厚さ との関係を常圧プラズマ法と R Fプラズマ法とで対比して示した図である。
図 2 8は、 図 2 7 をスケールを変えて表した図である。
図 2 9は、 窒化膜の膜厚と基板温度との関係を、 常圧プラズマ法と R Fプラズ マ法とを対比して示した図である。
図 3 0は、 R Fプラズマ窒化膜形成装置の構成図である。
図 3 1 は、 R Fプラズマ窒化膜形成装置と本発明の窒化膜形成装置との酸窒化 膜を形成する場合の比較表である。
.図 3 2は、 電極板間に導入される窒素ガスに混入した 0 2の添加量に応じた生 成された酸窒化膜の誘電特性を示した図である。
図 3 3は、 窒素ガスに対する酸素ガスの添加量と C _ V特性曲線のヒステリ シ ス特性のフラ ッ トパン ドシフ ト) との関係と、 窒素ガスに対する酸素ガスの添加 量とヒステリ シス特性のヒステリ シス幅との関係との相関を示した図である。 図 3 4は、 電極板間に導入される窒素ガスに混入した O 2の添加量に応じた絶 縁電圧 (誘電電圧) と リーク電流との関係を示した図である。
図 3 5は、 導入される窒素ガスに酸素ガスを混入しない場合の、 ダイ レク トプ ラズマ方式で観測した窒素プラズマ発光のスぺク トル分析結果を示した図である 図 3 6は、 導入される窒素ガスに酸素ガスを添加した場合の、 ダイ レク トブラ ズマ方式で観測した窒素プラズマ発光のスぺク トル分析結果を示した図である。 図 3 7は、 この変化させた酸素ガスの添加量毎の窒素プラズマ発光のスぺク ト ル分析結果に基づいて、 酸素ガスの添加量と N 2 ( 2 nd p. s . ) 及び N O— τ/それ ぞれの発光強度との関係を示した図である。
図 3 8は、 この窒素ガスに対する酸素ガスの添加量をそれぞれ変化させて形成 した膜について、 酸素ガスの添加量と S i 2 ρ結合エネルギーとの関係を示した 図である。 , 発明を実施するための最良の形態
〔概要〕
本発明は、 常圧プラズマ法で発生した窒素プラズマの解析方法、 及ぴ、 本窒素 プラズマの解析方法によ り得られた知見を基に窒化膜形成方法及び酸窒化膜形成 方法を提供する。 以下の順に従って説明する。
1 . 窒素プラズマの解析方法
• 発光分析 (0 E S )
窒素活性種の評価
2 . 窒素プラズマによる窒化の方法
• 窒化膜の形成方法
構造評価
窒化の力イネティ ックス (窒化時間 · 温度)
• 酸窒化膜の形成方法 .
構造評価, 誘電特性評価
高圧力下における S i の窒化機構
本発明は、 先願 (特許文献 2参照) の発明と同様に大気圧近傍の圧力条件での 窒素プラズマ法によ り、 酸窒化膜又は蜜化膜を形成する窒化処理方法を用いるた め、 常圧下で行う ことによ り以下の優位性がある。 また、 上記先願の技術との関 連について簡単に説明する。
図 1は、 窒素プラズマにおける圧力の効果を示す図である。
図 1に示すよ うに、 低圧力 1 0— 4〜 1 0— 8T o r r下で行われる E CRブラ ズマ法及び R Fプラズマ法による成膜では、 圧力が低いため窒素が入り にく く、 窒素欠損が生じやすい。 これに対して大気圧近傍の常圧下で行う本発明の窒素プ ラズマ法では、 窒素活性種の量の増加から窒素欠損の抑制と窒化の促進が可能で ある。 また、 プラズマ中のイオン種が減少するため、 プラズマによる損傷が低減 される。
図 2は、 本発明の窒化膜形成方法及び酸窒化膜形成方法の適用分野の一例を示 す図である。 ,
図 2中の中央部分が、 上記先願の発明で開示した S i窒化 ( S i N, S i ON ) を模式化して示している。 本発明は、 この S i窒化 (S i N, S i ON) の技 術を含んだ上で、 本窒素プラズマの解析方法を基に、 窒素ガスを用いた窒化プロ セスを構築する。 また、 本発明の窒化膜形成方法及び酸窒化膜形成方法によれば 、 窒化プロセスを厳密に制御できることから、 図 2中の左側ブロ ックに示すよう に、 例えば MO S トランジスタの高誘電率絶縁体などの酸化物 (例えば Z r 02 , H f 02) に窒素 Nを微量ドーピングするこ とや、 図 2中の右側ブロ ックに示 すよ うに、 例えば発光ダイオー ドの窒化物半導体 (例えば G a N, I n N, A 1 N) を形成することに適用するこ とも可能になる。
〔窒素プラズマの解析方法〕
本発明は、 常圧プラズマ法によ り大気圧近傍の圧力下で、 対向する一対の電極 の少なく とも一方の対向面に固体誘電体を設置し、 当該一対の対向電極間に窒素 ガスを導入し、 当該電極間にパルス状の電界を印加するこ とによ り得られる、 窒 素ガスのプラズマを窒化対象物に接触させて、 該窒化対象物上に窒化膜を形成す る、 又は窒素 ドーピングする方法である。
プラズマをシリ コンウェハに接触させる手段と しては、 ( 1 ) 対向する電極間 で発生するプラズマの放電空間内に被処理物である窒化対象物を配置して、 該窒 化対象物にプラズマを接触させるダイ レク ト型と、 ( 2 ) 対向する電極間で発生 させたプラズマを放電空間の外の拡散領域で被処理物に接触させる リモー ト型と がある。
図 3は、 プラズマ発生部分を直接観察するダイ レク トプラズマ方式による窒素 プラズマ発光分析方法を説明する図である。
図 3 において、 窒素プラズマ発光分析装置 1 0 Dは、 対向面に固体誘電体が設 置された一対の放電電極 1 1 と、 対向する放電電極 1 1間に交番電界 (例えば、 パルス状の電界) を印加する電源 1 2 と、 窒素ガスを供給する窒素ガス供給部 1 3 と、 パルス状の電界の印加によって放電電極 1 1間で発生したプラズマ 1 4に 臨ませるよ う にプローブ 1 5 aが配置され、 プラズマ化した窒素ガスの発光強度 及び波長を検出するスぺク トル検出器 1 5 とを備えている。 この窒素プラズマ発 光分析装置 1 0 Dは、 圧力条件を変えて任意の圧力下で窒素プラズマ発光分析を 行えるようにチヤンパ內に設置されている。
図 4は、 上記窒素プラズマ発光分析装置 1 0 Dを用いて圧力 4 5 T o r r で生 成した窒素プラズマをダイ レク トプラズマ方式で観測した窒素プラズマ発光のス ぺク トル分析結果を示す図であり、 その波長 7 0 0〜 9 5 0 ( n m ) 部分を拡大 した図である。 縦軸が発光強度 ( k c p s ) を、 横軸が波長 ( n m ) をそれぞれ 表している。 図 4の破線で囲んだ部分に示すよ う に、 圧力 4 5 T o r r の比較的 高い真空度で、 すなわち低圧域で生成した窒素プラズマでは、 原子状窒素 Nの励 起種の出現を確認できた。
図 5は、 圧力以外については同条件で、 圧力についてのみ条件を変えて圧力 4 5 0 T o r r で生成した窒素プラズマをダイ レク トプラズマ方式で観測した窒素 プラズマ発光のスぺク トル分析結果のう ちの波長 7 0 0〜 9 5 0 ( n m ) 部分を 、 上記図 4に示した圧力 4 5 T 0 r r で生成した窒素プラズマの窒素プラズマ発 光のスぺク トル分析結果に重ねて示した図である。
同図に示されているよ うに、 圧力が 4 5 T 0 r r で生成した窒素プラズマの場 合では波長 8 2 0 n m付近に出現していた原子状窒素 Νの発光ピークが、 圧力が 4 5 0 T 0 r r で生成した窒素プラズマの場合では出現しなくなつていることが 確認できた。 図 6は、 上記窒素プラズマ発光分析装置 1 0 Dを用いて圧力 5 0 0 T o r r, 放電電極 1 1の印加電圧 3. 3 k Vで生成した窒素プラズマを、 ダイ レク トブラ ズマ方式で観測した窒素プラズマ発光のスぺク トル分析結果を示す図である。 ' 図 6では、 圧力 5 0 0 T 0 r r での観測であり、 縦軸が発光強度 ( k c p s ) を、 横軸が波長 ( n m) をそれぞれ表している。 波長 3 0 0 ~ 4 0 0 n m辺りで N 2セカン ド ' ポジティプ · システム ( 2 nd positive system, 以下、 2 nd p. s. と記述する) と呼ばれるプラズマ化された窒素ガス N 2 ( 2 nd p.s.) が支配的に 観測される。 この N2 ( 2 nd p. s.) は、 N2プラズマのうち、 後述する N 2ハーマ ン , イ ンフラレツ ド - システム (Herman' s infra-red system, 以下、 H . I . R . と記述する) と共に大気圧非平衡プラズマと して、 大気圧近傍で増大する窒素活 性種である。
これに対して、 図 7は、 図 4に示した圧力 4 5 T o r r で生成した窒素プラズ マをダイ レク トプラズマ方式で観測した窒素プラズマ発光のスぺク トル分析結果 を、 図 4に示された波長範囲以外の範囲部分を含めて示した図である。
同図に示されているよ うに、 圧力が 4 5 T o r r の場合では、 波長 3 0 0〜 4 0 0 n m辺りのプラズマ化された窒素ガス N 2 ( 2 nd p. s. ) の発光強度の大きさ 自体が、 上記図 6に示した圧力 5 0 0 T 0 r r での窒素プラズマ発光のスぺク ト ル分析結果による波長 3 0 0〜 4 0 0 n m辺り のプラズマ化された窒素ガス N2 ( 2nd p.s. ) の発光強度の大きさに比し、 桁違いに小さな値に減少してしまって いることが確認できる。
また、 図 7では、 波長 6 0 0〜 9 0 0 n m辺り に後述する N 2 ( 1 nd p. s. ) が 表れていることも確認できる。
本発明は、 プラズマの窒素活性種に着目 し、 特に N 2 (H. I . R.) 及び/又は N2 ( 2nd p. s. ) が支配的な条件で窒化膜及び酸窒化膜を形成する方法に特徴が ある。 そのため、 窒素プラズマ発光分析を基にした窒素活性種の比較については 図 1 2によ り詳細に後述する。
図 8は、 プラズマ発生部分 (電極内部) を直接観察せずに吹き出した窒素ブラ ズマ自体を観察する リモー トプラズマ方式による窒素プラズマ発光分析方法を説 明する図である。 図 3で説明したダイ レク トプラズマ方式による窒素プラズマ発光分析方法の場 合と同一の装置構成部分には同一符号を付している。
図 8において、 窒素プラズマ発光分析装置 1 0 R.は、 対向面に固体誘電体が設 置された一対の放電電極 1 1 と、 対向する放電電極 1 1 間に交番電界 (例えば、 パルス状の電界) を印加する電源 1 2 と、 窒素ガスを供給する窒素ガス供給部 1 3 と、 放電電極 1 1間で発生したプラズマ 1 4の吹き出し口に臨ませるよ う にプ ローブ 1 5 aが設置され、 プラズマ化した窒素ガスの発光強度及ぴ波長を検出す るスぺク トル検出器 1 5 とを備えている。 この窒素プラズマ発光分析装置 1 O R は、 圧力条件を変えて任意の圧力下で窒素プラズマ発光分析を行えるよ うチャン パ内に設置されている。
図 9は、 上記窒素プラズマ発光分析装置 1 0 Rを用いて圧力 5 0 0 T o r r, 放電電極 1 1の印加電圧 3. 3 k V, 窒素ガス流量 5 liter/ m i nの条件で生成 した窒素プラズマをリ モー トプラズマ方式で観測した窒素プラズマ発光のスぺク トル分析結果を示す図である。 縦軸が発光強度 ( k c p s ) を、 横軸が波長 ( n m) をそれぞれ表している。
図 9に示すよ うに、 波長 4 0 0 n m辺りで中性活性種である N—2 ( 2 nd p. s. ) が、 波長 6 0 0〜9 0 0 n m辺りで中性活性種でぁる N 2 (H. I . R.) が支配的 に観測される。 この N 2 ( 2 nd p. s. ) 及び N 2 (H. I . R. ) についても図 1 2に よ り後述する。 リ モー トプラズマ方式によ り観察した電極内部から吹き出した窒 素プラズマのときにのみ、 中性活性種である N 2 ( 2 nd p. s. ) 及び N 2 (H. I . R. ) が支配的となる理由は明らかではないが、 ダイ レク トプラズマ方式によ り観 察した電極內部の放電領域で励起された雑多なプラズマが衝突を繰り返しながら 、 リ モー トプラズマ方式によ り観察したよ うに電極内部から吹き出して拡散され たときに、 ある距離において結果的に必要な窒素活性種が残るものと考えられる なお、 図 9のリモー トプラズマ方式で観測した窒素プラズマ発光のスぺク トル 分析結果における縦軸の発光強度 ( k c p s ) の値が、 図 6のダイ レク トプラズ マ方式で観測した窒素プラズマ発光のスぺク トル分析結果における縦軸の発光強 度 ( k c p s ) の値よ り も低いのは、 リモー トプラズマ方式とダイ レク トプラズ マ方式との観測方式の違いに基づく ことによるもので、 この場合は、 中性活性種 である N2 (2nd p. s.) 自体の量が減少を示しているものではない。
図 1 0は、 N 2プラズマ発光と H e /N 2プラズマ発光のスぺク トル分析結果を 比較して説明する図であり、 図 1 0 ( a) は R Fプラズマ法による H e / N2プ ラズマ発光を、 図 1 0 (b') はパルス状の電界を印加することによ り得られるプ ラズマを用いる常圧パルスプラズマ法による N 2プラズマ発光を示す。 縦軸は発 光強度 ( k c p s ) を、 横軸は波長 (nm) を表している。
図 1 0 (b) は、 例えば図 8の窒素プラズマ発光分析装置 1 0 Rを用いて観測 することができる。 図 1 0 (a) は従来一般的に使用される希ガス (ここでは H e ) を用いてプラズマを発生させる R Fプラズマ法による H e /N2プラズマ発 光である。 図 1 0 (a) の a . , b . , c . は H eの濃度の違いに基づくそれぞ れの H e ZN2プラズマ発光のスぺク トル分析結果を示し、 図中上方,に示された a . のスペク トル分析結果が H e濃度が高く、 b . , c . の順に H e濃度は低く なっている。 図 1 0 (a ) の a . に示す高 度の希ガス (H e ) を用いてプラズ マを発生させる R Fプラズマ法では窒素イオン N 2 +、 N 2 (2nd p. s. ) 、 N2 ( 1 st p. s. ) が現れている。 図 1 0 ( a ) の c . は希ガス (H e ) の濃度は極めて 低く純窒素に近い R Fプラズマ法でのプラズマ発光である。 前述したよ うに、 R Fプラズマ法や E CRプラズマ法のいわゆる減圧プラズマ法による成膜では圧力 が低いため窒素が入りにく く窒素欠損が生じやすい。 また、 プラズマダメージが 発生する、 低圧下での成膜のためスループッ ト向上や膜質向上が図れない。 さら には希ガスを用いるため希ガス管理ゃコス トアップとなる という一般的な不具合 に加えて、 R Fプラズマ法や E C Rプラズマ法の減圧プラズマ法を用いて発生し たプラズマでは、 窒素活性種を観測した場合に、 本発明で着目する窒素プラズマ の中性活性種である N2 ( 2 nd p.s.) 及び N2 (H. I . R. ) 、 特に N2 ( 2 nd p. s. ) が殆ど発生しない。
このこ とは、 図 1 0 ( a ) に示すよ うに、 a . , b . , c . でそれぞれ示した H e ZN2比 (H e濃度) の違いに関係なく、 H e N 2プラズマは、 波長 3 00 〜 4 0 0 n m辺り で N 2 ( 2 nd p. s. ) が、 波長 6 0 0〜 9 0 0 nm辺 り で N2フ アース ト · ポジティブ ' システム ( 1 st positive system, 以下、 1 st p. s.と記 述する) と呼ばれるプラズマ化された窒素ガス N 2 ( 1 st p. s. ) が支配的に観測 されるが、 波長 3 0 0〜 4 0 0 n m辺りで観測される N 2 ( 2 nd p. s. ) は、 希ガ ス (H e ) の濃度は極めて低く純窒素に近い状態では格段に減少してしま う こと からも理解できる。 さ らに、 図 1 0 ( a ) 中、 *は H eシグナルを表すもので、 図 1 0 ( a ) の高濃度の希ガス (H e ) を用いている a . ではその波長 4 3 O n m辺りには N 2イオン N 2 +の発光が現れている。 この N 2イオン N 2 +は、 基板に 対して酸窒化膜又は窒化膜が形成する場合、 中性活性種である N 2 ( 2 nd p. s.) 及び N2 (H. I . R. ) に比べて電気的エネルギーを帯びている分だけ衝突の際の 衝撃が大き くなり、 プラズマダメージの原因になる。 また、 図 1 0 ( a ) の高濃 度の希ガス (H e ) を用いている a . で波長 4 3 0 n m辺りに現れた N 2イオン N 2 +の発光は、 H e /N 2比を変えて希ガス (H e ) 濃度を低く した b , c . ではその発光強度の大きさは極めて低く なるが、 前述したとおり、 N 2 ( 2 nd p. s. ) も発光強度の大きさが低くなつてしまっている。
これに対して、 図 1 0 ( b ) のパルス状の電界を印加するこ とによ り得られる プラズマを用いるパルスプラズマ法では、 N 2 ( 2 nd p. s. ) 及び N 2 (H. I . R. ) が支配的に観測され、 N 2イオン N 2 +はほとんど観測されない。
図 1 0 ( a ) の R Fプラズマ法による H e ZN 2プラズマ発光と、 図 1 0 ( b ) のパルスプラズマ法による N 2プラズマ発光とを比較して明らかなよ う に、 従 来一般的に使用される図 1 0 ( a ) の減圧プラズマ法 (真空プラズマ法ともいう ) では、 発生した窒素プラズマに N 2 ( 1 st p. s. ) が支配的に観測され、 図 1 0 ( b ) のパルスプラズマ法では、 発生した窒素プラズマに N 2 ( 2 nd p. s. ) 及び N 2 (H. I . R. ) が支配的に観測される。 これによ り、 窒素プラズマの中性活性 種である N 2 ( 2 nd p. s. ) 及び N 2 (H. I . R. ) を得るためには、 R Fプラズマ 法や E C Rプラズマ法の減圧プラズマ法では事実上困難であり、 本発明の大気圧 近傍の圧力下で行う交番電界によるプラズマ法を用いて初めて実現できるもので あ ·ο。 .
図 1 1は、 発光スぺク トルの由来を説明する図であり、 窒素分子のポテヱンシ ャルエネルギー ( e V ) 図である。
窒素活性種と して、 N 2 ( 1 st p. s. ) 、 N 2 ( 2 nd p. s. ) 及び N 2 (H. I . R. ) が観測されているが、 それぞれの遷移状態は、 図 1 1矢印に示すよ うである。 減圧下の E CRプラズマ法, R Fプラズマ法によ り発生したプラズマの窒素活性 種は、 N2 ( 1 st p. s. ) であり、 従来の E CRプラズマ法, RFプラズマ法では この N2 ( 1 st p. s. ) を窒素プラズマと して成膜等に使用している。 これに対し て、 本発明では、 平行平板竃極にパルス状の電界を印加して大気圧近傍の圧力下 でプラズマを発生させるパルスプラズマ法を用いる。 このパルスプラズマ法によ り発生する大気圧非平衡プラズマは、 活発な中性窒素励起種である N 2 (2 nd p. s. ) , N 2 (H. I . R.) であり、 この N2 ( 2 nd p. s. ) , N 2 (H. I . R.) を窒 素プラズマとして使用する。
図 1 2は、 窒素プラズマの発光分析結果を示す図であり、 窒素活性種及び窒素 イオン N2 +の放電圧力依存性を表している。 縦軸は発光強度 (k c p s ) 、 横軸 は窒素圧力 (T o r r ) であり、 放電電極へのパルス周波数 1 0 kH , 窒素ガ ス流量 1. 5 liter/m i nの条件で窒素圧力を増加させた場合の観測例である。 図 1 2中、 a . は窒素イオン N2 +、 b . は N2 ( 1 st p. s. ) 、 c . は N2 ( 2 nd p. s. ) 、 d . は N2 (H. I . R.) の発光強度の圧力依存性を示している。
図 1 2に示すよ う に、 真空に近い低圧下では、 窒素イオン N2 +ともに、 窒素活 性種の N2 ( 1 st p. s. ) 及び N2 (2nd p. s. ) の窒素プラズマが発生し、 窒素活 性種の N2 (H. I . R.) の窒素プラズマは発生しない。
.窒素圧力を増加させていく と、 N2 ( 1 st p. s.) 及び窒素イオン N 2 +は漸減し ていき、 窒素圧力 5 0 0 ( T o r r ) 辺りで両者の発光強度 ( k c p s ) は観測 できなく なる。 また、 N2 ( 2 nd p. s. ) は窒素圧力を増加させても発光強度 (k c p s ) は余り変化せず、 窒素圧力 4 0 0 (T o r r ) 辺り を境と して急激に発 光強度 ( k c p s ) は強くなる。
一方、 真空に近い低圧下では、 発生していなかった N 2 (H. I . R.) は、 窒素 圧力を増加させていく と、 漸増していき、 大気圧近傍の窒素圧力 5 0 0 (T o r r ) 近辺では発生する窒素プラズマは殆ど全量が中性窒素活性種である N2 (H. I . R. ) 及ぴN 2 ( 2 nd p. s. ) となる。 図 1 0から明らかなよ う に、 窒素圧力 3 0 0 (T o r r ) 辺りで N2 ( 1 st p. s. ) と N2 (H. I . R.) の発生量が逆転し ている。 これらのことから、 従来の E C Rプラズマ法や R Fプラズマ法による減圧ブラ ズマ法では、 低圧下で発生する N2 ( 1 st p. s. ) を窒素プラズマとして用いられ ている.ものと考えられる。 これに対して、 本発明の大気圧近傍の圧力下で行うパ ルスプラズマ法では、 大気圧近傍の窒素圧力 3 0 0 (T o r r ) さ らには 5 0 0 (T o r r ) 近辺で支配的となる N2 (H. I . R.) 及び N2 (2 nd p. s. ) を窒素 プラズマと して用いるこ とを特徴とする。
図 1 3は、 N2プラズマ発光と H e / N 2プラズマ発光の放電圧力依存性を比較 して説明する図であり、 図 1 3 ( a) は R Fプラズマ法による H e ZN2プラズ マ発光の圧力依存性を、 図 1 3 ( b ) はパルスプラズマ法による N 2プラズマ発 光の圧力依存性を示す。 図 1 3 ( b ) と図 1 2は同一の図である。
図 1 3 ( a) は希ガス (ここでは H e) を用いて低圧下で窒素プラズマを発生 させる R Fプラズマ法による H eノ N 2プラズマ発光である。 図 1 3 ,( a ) に示 すよ うに、 H e /N2プラズマ発光によ り発生する窒素プラズマは、 観測圧力全 域にわたって N2 ( 1 st p. s. ) のみが発生し、 窒素活性種が中性活性種である N 2 ( 2 nd p. s. ) 及び N 2 (H. I . R. ) の窒素プラズマは殆どない。 注目すべきは 、 H e ZN2プラズマでは大気圧に近い圧力下であっても R Fプラズマ法を採る 限り、 N2 ( 1st p. s.) が支配的に発生することである。
図 1 3 ( b ) と比較すれば明らかなよう に、 本発明の大気圧近傍の圧力下で行 うパルスプラズマ法では、 大気圧近傍の窒素圧力 3 0.0 (T o r r ) さ らには 5 0 0 (T o r r ) 近辺で、 N 2 (H. I . R. ) 及び N 2 ( 2 nd p. s. ) を支配的とな るよ う に発生させるこ とができる。
このよ う に、 窒素プラズマ解析結果において、 電極間の放電領域は、 ダイ レク ト方式のプラズマ観察 (図 3〜図 7参照) によ り、 また電極内部から吹き出した 拡散領域は、 リモー ト方式のプラズマ観察 (図 8〜図 1 0 ) によ り実現されるも のである。
本発明は、 大気圧近傍の圧力下で行うパルスプラズマ法のうち、 電極内部から 吹き出した拡散領域に存在するプラズマを用いる リ モート型を採用し、 この拡散 領域で支配的な N 2 ( 2 nd p. s. ) 及び N2 (H. I . R. ) を窒素プラズマと して酸 窒化膜又は窒化膜の形成に用いることを特徴とする。 なお、 N2 (2nd p. s. ) が 支配的な放電領域に存在するプラズマを用いるダイ レク ト型を酸窒化膜又は窒化 膜の形成に用いることも可能である。 よ り好ましい態様と して、 5 0 0 (T o r r ) 以上の圧力下で電極内部から吹き出した拡散領域に存在するプラズマを用い る リモー ト型を使用して純度の高い窒素ガスを用いるこ とで、 図 1 2に示す N2 (H. I . R. ) 及び N2 (2 nd p. s. ) を発生させる。
図 1 4は、 窒素活性種の N2 +の窒素圧力依存性を示す図である。 図 1 4に示す よ うに、 5 0 0 (T 0 r r ) 以上の圧力下では、 プラズマダメージとの相関が考 えられる窒素イオン N2 +の発生も低減できる。
また、 大気圧に近い圧力下で窒化が行われるため窒素が被処理物に入り込みや すい、 すなわち ドーピングしゃすい。
さ らに、 窒素ィオン N 2 +によるプラズマダメージは、 窒素圧力 (T o r r ) と の関係で図 1 4に示したよ う に、 窒素圧力 5 0 0 (T o r r ) で窒素イオン N2 +種の生成がなく なることから、 プラズマダメージの低減の観点からも、 5 0 0 (T o r r ) 以上の圧力下で、 本リ モ一 ト型又はダイ レク ト型パルスプラズマ法 を使用し、 支配的に出現する N 2 (H. I . R. ) 及び Z又は N 2 ( 2 nd p. s. ) 活性 種を利用する効果がある。
以下、 本発明に係る窒化膜形成装置及び酸窒化膜形成装置の一実施形態を図面 に基づき詳細に説明する。
図 1 5は、 本実施形態に係る酸窒化膜形成装置の構成を模式的に示す図であり 、 図 1 5 (a ) はその斜視図、 図 1 5 ( b ) はその断面図である。
本実施形態に係る窒化膜形成装置及び酸窒化膜形成装置は、 供給する窒素ガス の純度に応じて便宜的に分けられた名称であり基本的には同一構成をとる。 供給 するガスが酸素源と して超微量 (例えば 1 p p m以下) の O 2又は水 (H 2 O) も しく は酸化物しか含まれない窒素ガスを適用する場合は窒化膜形成装置、 この超 微量 (例えば 1 p p m) よ り も多く 0. 2 %以下の 02又は水 (H20) もしく は 酸化物が含まれる窒素ガスを適用する場合は酸窒化膜形成装置と呼ぶこ とにする 。 本窒化膜形成装置は、 以下に述べる酸窒化膜形成装置の窒素ガス供給部に、 0 2又は H20も しく は酸化物を選択的に吸着するフィルタを取り付けるこ とで実 現される。 以下、 酸窒化膜形成装置を代表して説明する。 図 1 5において、 酸窒化膜形成装置 2 0は、 リ モー ト型によるパルスプラズマ 方法を用いてウェハ、 電子基板等の被処理物である基板 3 0に酸窒化膜を形成す る装置であり、 対向面に酸化物をほとんど含まない固体誘電体 2 l a , 2 2 aが 設置された一対の平行平板放電電極 2 1, 2 2 と、 対向する放電電極 2 1 , 2 2 間に交番電界 (例えば、 パルス状の電界) を印加する電源 2 3 と、 窒素ガスを供 給する窒素ガス供給部 2 4 と、 反応容器であるチャンパ 2 6 と、 排気を行うボン プ 2 7 とを備えて構成される。 また、 2 5は放電電極 2 1 , 2 2間で発生したプ ラズマであり、 図中、 放電電極 2 1, 2 2間の極板間の上方よ り電極内部 (極板 間) に窒素ガス供給部 2 4から供給された窒素ガスは、 パルス状の電界によ りプ ラズマ化されて、 極板間の下方よ り放電電極 2 1 , 2 2の下方に向かって吹き出 される。 この酸窒化膜形成装置 2 0の反応部は、 チャンパ 2 6内に設置されてい る。 図 1 5 ( b ) において、 基板 3 0に酸窒化膜を形成するにあたっては、 一旦 チヤンパ 2 6内を窒素ガスでパージし、 例えば 5 0 0 T o r r に保って窒化処理 を行う。 '
基板 3 0は、 ウェハ ト レイ 3 1に载置され、 ウェハ ト レイ 3 1は移動機構 3 2 によ り移動され、 基板 3 0の全面を均一に処理するこ とができるよ うに構成され ている。 なお、 移動機構はゥヱハ ト レイ 3 1 の代わりに放電電極 2 1, 2 2 を設 置したヘッ ド側を移動する構成でもよい。 なお、 移動機構 3 2 と して、 搬送ベル ト等の送りスピー ドを任意に調整できるものを用いることによ り、 後述するよ う に窒素プラズマにさ らされる窒化時間を可変にするこ とができ、 形成膜厚の制御 が可能となる。 さ らにウェハ ト レィ 3 1 には基板 3 0を加熱するための加熱機構 を有してもよい。 その場合、 ウェハ ト レィ 3 1 による基板 3 0の加熱温度と して は、 5 0 °C以上が好ましく、 よ り好ましく は 1 0 0 °C以上が好ましい。 このよ う に、 基板 3 0を加熱しながら生成した酸窒化膜では被処理物 (基材) に対する窒 素の安定的な結合をはかるこ とができ、 酸窒化膜が生成された基板 3 0をチャン パ 2 6から取り出して大気雰囲気中に移した後でも不安定に結合した窒素が酸素 に置き換わるこ とを防止でき、 その後の酸化を抑制することができる。
酸窒化膜形成装置 2 0は、 窒素ガス供給部 2 4から供給された窒素ガスを被処 理物である基板 3 0 の表面に吹き出し、 電源 2 3は放電電極 2 1 , 2 2にパルス 状の電界を印加して窒素ガスをプラズマ化して基板 3 0の表面に吹き出すもので ある。
[大気圧]
酸窒化膜形成装置 2 0は、 大気圧近傍の圧力下で処理が行われる。 大気圧近傍 の圧力とは、 圧力調整が容臭で、 かつ放電プラズマ処理に使用される装置が簡便 となる 3 0 0〜:! O O O T o r r (約 3. 9 9 9 X 1 04〜 1 3. 3 3 X 1 04 P a ) の圧力であり、 特に、 中性活性種である N 2 ( 2 nd p. s.) 及び N2 (H. I . R. ) が支配的となり (図 1 2参照) 、 かつ、 窒素イオン N2+種によるプラズマ ダメージがなく なる 5 0 0 T o r r (約 6. 6 6 5 X 1 04 P a) の以上の圧力
(図 1 4参照) が好ましい。 また、 異常放電の発生を避けて安定させるためには 80 0 T o r r以下が好ましい。
また、 酸窒化膜が形成される基板 3 0の表面は加熱されていても、 輋温に保た れていてもよい。 基板 3 0の温度は、 一般的には基板へのダメージ、 成膜速度、 力パレージ性、 膜厚等を考慮して適宜設定されるが、 本実施形態の酸窒化膜形成 装置 2 0によ り形成される酸窒化膜は、 後述するよ う に窒化時間 · 温度依存が殆 どなく、 酸窒化膜が均一でかつ極めて短時間で成膜され、 成膜の厚みも中性活性 種 N2 (H. I . R.) 及び Z又は N2 (2nd p. s. ) の生成量又は窒化時間によって 制御可能である。 さ らに、 プラズマダメージ自体がないため、 窒化時間や窒化温 度の条件は従来の成膜方法に比べて格段に緩い。 本実施形態では、 窒化温度は室 温〜 5 0 0 °Cを使用した。
[窒素ガス]
本発明の酸窒化膜の形成における窒素ガスと しては、 窒素ガス 9 9. 9 9 9 8
〜9 9. 9 9 9 9 %の高純度窒素ガスを使用する。 窒素ガス以外の成分は、 上記 高純度窒素ガスの中に極めて微量に含まれる 02や水 (H20) の混入である。 但 し、 本実施形態の酸窒化膜の形成方法は、 大気圧近傍の 5 0 0 T 0 r r以上の高 い圧力下で成膜するため上記高純度窒素ガスを使用し、 チャンパ 2 6内の圧力を 大気圧近傍の圧力に調整するが、 その際には、 一且チャンパ 2 6內を高真空に排 気した後に多量の窒素ガスを導入してチャンパ 2 6内をパージするこ とになるの で、 本酸窒化膜を形成する際には、 チャンパ 2 6内を高真空に排気しても残存し てしまっている適度な量の 0 2や H 2 0等の酸化物が存在しているこ とが実験に よ り判明した。 実験によれば、 上記高純度窒素ガスを使用してチャンパ 2 6内の 圧力を大気圧近傍の 5 0 0 T 0 r r以上の高い圧力下に調整した場合でも、 チヤ ンパ 2 6内における酸窒化膜形成装置 2 0の系中には不純物と しての水 (H 2 0 ) が分圧で極めて僅かに (例えば、 数 m T 0 r r ) 含まれるこ ともある。
上記高純度窒素ガスは、 窒素ガスと希ガスの混合ガスを使用する従来の熱窒化 法においては、 高純度窒素ガスと呼ばれているもので、 特別な処理を施された窒 素ガスではないため導入は容易である。 すなわち、 窒素ガスと希ガスとの混合条 件を調整するこ となく、 上記高純度窒素ガスを使用するだけでよく、 酸窒化膜の 形成のための厳密な H 2 0や O 2の管理調整は不要である。 後述するよ.う に、 上記 高純度窒素ガスをそのまま使用しているにもかかわらず、 誘電特性ゃリーク電流 特性も極めて優れ、 均一な S i O N膜を得るこ とができた。 このよ う に、 混合比 の調整が不要な高純度窒素ガスをそのまま使用できるこ とはコス ト低減につなが り、 また実施が容易である という効果がある。
[放電電極]
放電電極 2 1 , 2 2は、 鉄, 銅, アルミ二ゥム等の金属単体、 ステンレス、 黄 銅等の合金、 金属間化合物等から構成される。 各電極の少なく とも電極対向面は 、 アーク放電を防止するために、 電極間の距離が一定となっており、 固体誘電体 が配置されている。 固体誘電体と しては、 一般的なアルミナやガラスや、 ポリテ トラフルォロエチレン, ポリエチレンテレフタレー ト等のプラスチック、 これら を複層化したもの等、 種々のものを用いるこ とができる。 よ り好ましく は、 窒化 アルミ A 1 N, 窒化珪素 S i 3 N 4 , 窒化ホウ素 B N等である。 誘電体層の厚さは 0 . 0 1〜 4 m m程度が好ましい。 固体誘電体 2 1 a, 2 2 aは、 比誘電率が 2 以上 ( 2 5 °C環境下、 以下同じ) であるこ とが好ましい。 また、 セラミ ックスや 樹脂等の板状物、 シー ト状物、 フィルム状のものを用いて電極の外周面を被覆す るこ とも可能である。 本実施形態は、 固体誘電体 2 1 a, 2 2 a と して窒化アル ミ A 1 Nを使用した。
放電電極 2 1, 2 2間には、 電源 2 3から高周波、 マイク ロ波からなる交流波
、 パルス波及びこれらの組み合わせ波形等の電圧が印加されプラズマを発生させ るが、 パルス状の電圧を印加するこ とが好ましい。 電源 2 3で形成されるパルス 状の電圧は、 例えば図 1 6 ( a ) に示すよ うな電圧立ち上がり時間、 立ち下がり 時間が 1 0 μ s以下、 好ましく は 1 μ s以下で、 電界強度が 1 0〜: L 0 0 0 k V ノ c m程度、 好ましく は 5 0〜: 1 0 0 0 k V/ c m、 周波数が 0. 5 k H z 〜 1 MH z、 継続時間 0. 5〜 2 0 0 ii s 、 オフ時間 0. 5〜 1 0 0 0 /z s 、 好まし く は 0. 5〜 5 0 0 μ s のイ ンパルス型が好ましい。 窒化膜を形成する処理速度 の調整は、 電極に印加する電圧やパルス周波数を変化させて行う。
前記の電圧が印加される電極間距離は 0. l ~ 5 mm、 好ましく は放電の均一 性を考慮する と 5 mm以下で、 放電領域に存在するプラズマを用いるダイ レク ト 型の場合 0. 5〜 2 mm、 電極内部から吹き出した拡散領域に存在するプラズマ を用いる リモート型の場合 0. 1〜 2 mmが好適である。 また、 電流密度は 1 0 〜 5 0 0 0 m A/ c m 2 , 好ましく は 5 0〜 5 0 O mA/ c m2である b パルス状 の電圧波形は、 図示のイ ンパルス型の他に、 図 1 6 ( b ) に示す方形波型、 変調 型等の適宜の波形を用いることができる。 また、 図 1 6では、 電圧印加が正負の 繰り返しであるものを挙げたが、 正又は負のいずれかの極性側に電圧を印加する 、 いわゆる片波状の波形を用いてもよい。 また、 パイポーラ型の波形を用いても よい。
電源 2 3から出力されるパルス状の電圧波形は、 ここで挙げた波形に限定され ないが、 パルスの立ち上がり時間が短いほどプラズマ発生の際のガスの電離が効 率よく行われる。 パルスの立ち上がり時間が 1 0 0 μ s を超える と放電状態がァ ークに移行しやすく不安定なものとなり、 パルス電圧による高密度プラズマ状態 を期待できなくなる。 また、 立ち上がり時間は早いほうがよいが、 常圧でプラス' マが発生する程度の大きさの電界強度を有し、 かつ、 立ち上がり時間が早い電界 を発生させる装置には制約があり、 現実的には 4 0 n s未満の立ち上がり時間の パルス電圧を実現するこ とは困難である。 よ り好ましく は立ち上がり時間が 5 0 n s〜 5 /i S である。 なお、 ここでいう立ち上がり時間とは、 電圧変化が連続し て正である時間を指す。
また、 パルス状の電圧の立ち下がり時間も急峻であるこ とが好ましく、 立ち上 がり時間と同様の 1 0 0 3以下であるこ とが好ましく、 本実施形態で使用した 図 1 6 ( a) のパルス状電圧では、 立ち上がり時間と立ち上がり時間が略同じ時 間に設定されている。 さ らに、 パルス波形、 立ち上がり時間、 周波数の異なるパ ルスを用いて変調を行ってもよい。 パルス状の電圧の周波数は、 0. 5 k H z〜 1 MH zであることが好ましい。 0. 5 k H z未満である とプラズマ密度が低い ため処理に時間がかかりすぎ、 1MH zを超えると、 5 0 0 T o r rを超える高 圧力下の放電では、 電極の大きさ, 構成によっては、 整合等の投入電力と反射電 力の調整が必要になる場合がある。 よ り好ましく は、 1 kH z以上であり、 この よ うな高周波数のパルス電圧を印加することによ り、 プラズマ処理の処理速度を 大き く向上させるこ とができる。 周波数の上限は特に限定されないが、 常用され ている 1 3. 5 6MH z、 試験的に使用されている 5 0 0MH z といった高周波 帯でも可能である。 負荷との整合性のと り易さや取扱性を考慮する と、 5 00M H z以下が好ましく 、 このよ うなパルス電圧を印加するこ とによ り処理速度を大 きく向上させるこ とができる。
また、 パルス状の電圧におけるパルスの継続時間が、 0. 5〜 2 0 0 S であ ることが好ましいのは、 0. 5 μ s未満である と放電が不安定なものとなり、 2 0 0 sを超えるとアーク放電に移行しやすくなる。 よ り好ましく は、 3 M S〜 20 0 μ sである。 ここで、 1つのパルスの継続時間とは、 図 1 6中に t と して 示してあるが、 ON、 O F Fの繰り返しからなるパルス電圧における、 パルスが 連続する時間をいう。
'— 図 1 6に示されるパルス状の放電電圧の大きさは適宜決められるが、 本実施形 態においては、 電極間の電界強度が 1 0〜 1 0 0 0 k V/ c mとなる範囲に設定 しており、 好ましく は 2 0〜 3 00 k V c mである。 この範囲に設定するのは 、 電界強度が 1 0 k V/ c m未満であると処理に時間がかかりすぎ、 1 0 0 0 k V/ c mを超えるとアーク放電が発生しやすく なるためである。 また、 パルス状 の電圧の印加において、 直流を重畳してもよい。
[S i材料] .
本実施形態の処理材料 (被処理物) は、 シリ コンウェハ 3 0であり、 本発明の プラズマ処理による酸窒化膜の形成は、 シリ コンゥヱハの表面温度は前述のゥヱ ハ ト レイ 3 1の加熱温度に関係するが、 5 0°C以上が好ましく、 よ り好ましく は 1 0 0 °c以上が好ましい。 なお、 シリ コンウェハ以外の被処理物を材料と しても よいこ とは言うまでもない。
[リモート型]
本実施形態の酸窒化膜形成装置 2 0は、 前記図 1 2の発光分析に示すように大 気圧近傍の窒素圧力 5 0 0 ( T o r r ) 以上で発生する N 2 ( H . I . R . ) 及び N
2 ( 2 nd p. s. ) を窒素プラズマと して用いるため、 図 8及び図 9で説明したよう な電極内部から吹き出した拡散領域に存在するプラズマを用いる リ モート型を採 用する。
リ モー ト型では、 図 1 5に示すよ うに対向する放電電極 2 1, 2 2間で発生さ せたプラズマを放電空間の外に配置されたシリ コンウェハ 3 0に向かって導く よ うにして接触させる。
また、 このリモート型は、 固体誘電体が延長されてプラズマ誘導ノズルを形成 しており、 放電空間の外に配置されたシリ コンゥ ハに向けて吹き付ける方法等 が挙げられ、 平行平板型電極とその各電極板のシリ コンゥ ハ 3 0側縁部に装着 された長尺型ノズル (なお、 図 1 5 ( b ) においては、 図示省略した) 、 同軸円 筒型電極とその各電極板のシリ コンウェハ 3 0側縁部に装着された円筒型ノズル の組み合わせを用いることができる。 なお、 ノズル先端の材質は、 必ずしも上記 の固体誘電体である必要がなく、 上記電極と絶縁がとれていれば金属等でもかま わない。
これらの中でも、 ガス吹き出し口ノズルを有する固体誘電体を通して、 対向電 極間で発生したプラズマをシリ コンゥェハに吹き付ける方法は、 シリ コ ンゥェハ
3 0が直接高密度プラズマ空間にさ らされるこ とが少なく、 シリ コンゥヱハ表面 の目的とする箇所にのみにプラズマ状態のガスを運び、 酸窒化膜の形成を行う こ とができるので、 シリ コンゥュハへの電気的熱的負担が軽減された好ましい方法 である。 さ らに、 被処理基材のシリ コンゥヱハ側にバイアス印加するこ ともでき る。 - なお、 本発明のプラズマ処理による酸窒化膜の形成においては、 膜質向上のた めにプラズマの発生直後から放電が安定するまでの間、 予備放電を行い、 その後 被処理材に接触させるとよい。 また、 シリ コンゥェハゃ形成中の酸窒化膜が大気中の湿潤空気やその他の不純 物に接触するこ とを防ぐ意味で、 不活性ガス雰囲気内で処理を行う ようにする必 要があり、 このために、 上記プラズマをシリ コンウェハに接触させて酸窒化膜を 形成する装置に加えて、 図 1 5 ( b ) のチャンパ 2 6に示すよ うに例えばその装 置自体を覆い、 プラズマとシリ コンウェハとの接触部近傍を不活性ガス雰囲気に 保つ機構を付加した装置を用いるこ とができる。 なお、 この不活性ガスと しては 希ガスなどの酸素が結合できず酸素を含まないガスを充満させてもよく、 図 1 5 ( b ) ではガス供給部 2 4から電極間の周りのチャンパ 2 6内にも窒素を供給す るように構成したが、 電極間の周りのチャンパ 26內に供給するガスは、 酸素を 含まないガスであれば、 希ガスや電極板間への導入ガスと しての窒素に限定され るものではない。
また、 シリ コンウェハを搬送する手段と しては、 搬送コンベア、 搬送口ポッ ト 等の搬送系を用いることができる。
以下、 前記の如く構成された本実施形態の酸窒化膜形成装置 2 0の動作につい て説明する。
図 1 5に示すよ うに、 対向する放電電極 2 1 , 2 2間にガス供給部 2 4から窒 素ガス濃度 9 9. 9 9 9 8 - 9 9. 9 9 9 9 %の高純度窒素ガスが供給され、 A 1 Nからなる固定誘電体 2 1 a , 2 2 aによ り被覆された放電電極 2 1., 2 2間 に電源 2 3からパルス状の電圧が印加されてグロ一放電プラズマが発生し、 放電 電極 2 1 , 22間に導入された窒素ガスはプラズマ化されて放電電極 2 1, 22 下方のガス噴出口からシリ コンウェハ基板 3 0の表面に吹き出される。
プラズマ化された窒素ガスは、 拡散領域で圧力 3 0 0 (T o r r ) 、 特には 5
00 (T o r r ) 以上で発生する N 2 ( 2 nd p. s. ) 及び N 2 (H. I . R. ) が支配 的な中性活性種である。 この N2 ( 2 nd p. s. ) 及び N 2 (H. I . R.) と高純度窒 素ガスに極微量含まれる 02や水分 (H20) 等に由来する酸化物によってシリ コ ンウェハ 3 0の基板表面に良質なシリ コン酸窒化膜を形成する。 この酸窒化膜は
、 後述するよ うに短時間で酸窒化が完了し、 所望の膜厚 (例えば、 1. 6 n m) でそのまま成膜がス ト ップする。 また、 この酸窒化膜は膜質が良好で、 均一性に も優れている。 そのため、 量子構造を利用した量子デバイスを作成するために、 特に有効である。
本発明のパルス電界を用いた大気圧近傍下での放電では、 R Fプラズマ法では 安定なプラズマを発生させるために必要であった希ガスを全く必要とせず、 電極 間において直接大気圧下で放電を生じさせるこ とが可能であり、 よ り単純化され た電極構造、 放電手順による大気圧プラズマ装置、 及び処理手法で室温等の低温 下で高速処理を実現するこ とができる。 また、 パルス周波数、 電圧、 電極間隔等 のパラメータによ り酸窒化膜の形成に関するパラメータも調整できる。
ここで、 本実施形態では、 上記高純度窒素ガスを供給するこ とで酸窒化膜を形 成しているが、 図 1 3の構成を全く変えるこ となく 、 供給するガスを酸素源とし て超微量 (例えば 1 p p m以下) の 02や H20等といった酸化物しか含まれない 窒素ガスに変えるだけで良好な窒化膜を形成するこ とができる。
窒素ガスは、 酸素源と して好ましく は 1 p p b以下の酸素又は酸化物しか含ま ない高純度窒素ガスであり、 酸窒化膜形成装置 2 0の窒素ガス供給部 2 4又はこ の窒素ガス供給部 2 4からの窒素ガス導入経路に、 H20又は 02を選択的に吸着 するフィルタを取り付けることで簡単に実現できる。
[実施例 1 ]
前記構成の酸窒化膜形成装置 2 0を使用して、 圧力を 5 0 0 T o r r、 窒素ガ ス流量を 1 0 liter/m i n、 印加電圧を 3. 3 6 1∑ ¥、 パルス周波数を 3 0 ¾: 15 z、 窒化時間を 3 0 s e c〜: 1 0 m i n、 窒化温度を室温〜 5 0 0 °C、 処理基板 を P— t y p e ( 1 1 1 ) S i と して実験を行った。 また、 酸窒化膜形成装置 2 0の放電電極 2 1 , 2 2の幅 Lは 2 0 mm、 放電電極 2 1 , 2 2のガス流路方向 の高さは 1 5 mm、 放電電極 2 1 , 2 2間の距離は 1 m m、 放電電極 2 1, 2 2 の吹き出し口 (ノズルが設けられているものにあってはそのノズル先端、 又はノ ズルを電極板の処理基板側縁部が兼ねているものにあってはその縁部) から処理 基板までの距離は 5 mmと した。 このときの実験結果を以下に説明する。
前記図 9で述べたよ う に、 リモー ト型による電極内部から吹き出した拡散領域 に存在するプラズマのときにのみ、 中性活性種である N2 ( 2 nd p. s.) 及び N2
(H. I . R. ) が支配的となる理由は明らかではないが、 電極内部の放電領域で励 起された雑多なプラズマが衝突を繰り返しながら吹き出し口から拡散されたとき に、 ある距離において結果的に必要な窒素^"性種が残るものと考えられる。 した がって、 放電電極 2 1, 2 2の吹き出し口から処理基板までの距離は、 良好な酸 窒化膜を生成する条件と して重要である。 本実施例では、 上述した酸窒化膜形成 装置 2 0の構成条件において、 放電電極 2 1, 2 2の吹き出し口から処理基板ま での距離を 5 mm、 窒素ガスの流量を 2〜 1 0 liter/ m i n と した。 したがって 、 距離及びガス流量をパラメータ とする拡散領域における窒素プラズマの空間分 布の詳細な実験結果が得られれば更に精密な酸窒化膜形成が可能になる。
本実施例は、 上記リモー ト型の酸窒化膜形成装置 2 0を使用して、 大気圧近傍 の 5 0 0 T o r r 以上の高い圧力下で 9 9. 9 9 9 8〜 9 9. 9 9 9 9 %の高純 度窒素ガスを用いて成膜するので、 02が極めて僅かに含まれた環境であっても
、 酸素と窒素が共存した酸窒化膜が形成される。 本実施例では、 6ナインの高純 度窒素ガスに極微量含まれる不純物としての酸化物を使用しているが、 不純物と しての酸化物を使用する態様であっても、 酸窒化膜形成装置 2 0 自身の成膜プロ セスが優れているために、 結果的には、 高誘電率 · 低リーク電流の今までに存在 しない うな優れた特性の酸窒化膜が形成できた。 なお、 窒素ガスと酸化物との 混合条件を定量的に検討した結果については、 後述する。
図 1 7は、 S i 基板の窒化条件を説明する図であり、 図 1 7 ( a ) は窒素ブラ ズマ照射前の S i 表面の高速電子線回折像を表している。 ここでは、 図 1 7 ( a ) の高速電子線回折像から理解できるよ うに、 処理材料 (被処理物) と して用い た S i基板 (シリ コンウェハ 3 0 ) の表面は、 自然酸化膜がない状態のものを用 レ、た。
また、 図 1 7 ( b ) は、 ー且チヤンパ 2 6内を高真空に排気した後に多量の窒 素ガスを導入してチャンパ 2 6内をパージしてチャンパ 2 6內の圧力調整を行う に当たり、 チャンパ 2 6内を高真空に排気した後の窒素ガスを導入する前の、 背 圧 9 X 1 0 - 1 0 T o r r におけるチャンパ 2 6中の残留ガスの存在の分析結果で ある。 この場合、 図 1 7 ( b ) に示すよ う に、 酸窒化膜形成装置 2 0が設置され るチャンパ 2 6中には、 02が 4. 9 9 X 1 0 — 8 (P a ) すなわち 3. 7 4 X 1 0 - 1 0 T 0 r r , H20が 5 X 1 0— 7 (P a ) すなわち 3. 7 5 X 1 0— 1 0 T o r rだけ残留している。 酸窒化膜形成装置 2 0を使用して、 大気圧近傍の 5 0 0 T 0 r r以上の高い圧 力下で酸素源として超微量 (例えば 1 p p m以下) の 02又は水 (H20) もしく は酸化物しか含まれない窒素ガスを用いて窒化膜を形成する。 図 1 5の構成を全 く変えるこ となく、 供給するガスを窒素ガス 1 0 0 %に変えるだけで良好な窒化 膜を形成するこ とができる。 こ こで、 窒素ガス 1 0 0 %は、 酸窒化膜形成装置 2 0の窒素ガス供給部 24に、 H 2 O又は 02を選択的に吸着するフィルタを取り付 けるこ とで簡単に実現できる。
図 1 8は、 本実施例の装置及び方法によ り S i基板に窒化温度 3 5 0 °C, 窒化 時間 1 0 m i nの成膜条件で形成された窒化膜の X線光電子分光 (XP S) 測定 結果を示す図である。 縦軸にピーク強度 ( a . u . ) 、 横軸に結合エネルギー ( e V) をとつている。 図 1 8 ( a ) は S iのナロースペク トル測定結果を、 図 1 8 ( b ) は Nのナ口一スペク トル測定結果をそれぞれ示す。 ,
図 1 8に示す X P S測定結果は、 高純度窒素ガス ( 9 9. 9 9 9 8 %) を高純 度ガスフィルタ一を通して酸化源 (H20, 02) を I p p b以下と した場合の実 験例である。
高純度窒素ガス ( 9 9. 9 9 9 8 %) 中の酸化源 (H20, O 2) を l p p b以 下にするこ とによって、 図 1 8 (a ) に示すよ うに、 結合エネルギー 1 0 2 ( e V) 辺りに S i — N結合起因のピークがあり、 このこ とから S i 3 N 4窒化膜が形 成されていることが確かめられた。
よ り詳細な分析によ り形成された窒化膜は、 窒化膜 ( S i 3 N 3. 50。 . 7 ) で あるこ とが判明した。
図 1 9は、 本実施例の装置及び方法によ り成膜された窒化膜の、 深さ方向の結 合状態を示す図であり、 図 1 9 ( a ) は S i のナローススぺク トル測定結果を、 図 1 9 ( b ) は Nのナロースペク トル測定結果をそれぞれ示す。 X線光電子分光 によ り測定したもので縦軸にピーク強度、 横軸に結合エネルギー ( e V) をと'る
。 図 1 9において、 複数表したピーク曲線のうち、 個々のピーク曲線が表してい る部分は、 図中上から順に下にいく ほど、 成膜された窒化膜表面側から S i基板 に近づいていく。 ピーク曲線の一番下は、 S i基板のものである。 本例は、 酸化 源 (H20, 02) が実質的にない (酸化源が 1 p p b以下である) ので、 S i 0 2に起因するピークは現れない。 また、 図 1 9 ( b ) から明らかなよ うに S i— Nの結合が窒化膜の深さ方向に均一に分布していることが確認できた。
次に、 本実施例の装置及び方法によ り成膜された窒化膜のデパイス特性につい て説明する。
図 2 0は、 本実施の形態の装置及び方法によ り、 窒化温度を、 室温 (RT) , 3 5 0 °C, 5 0 0 °Cで異ならせて、 窒化時間 1 0 m i nの成膜条件で形成された 窒化膜それぞれの銹電特性を示す図である。
図 2 0は、 周波数 1 0 kH zの電圧を印加した時の前記窒化膜の容量 ( /X F / c m2) 一印加電圧 (V) の測定結果である。
同図に示された C一 V特性測定のよ うに、 窒化温度が、 b . 室温 (R T) , c . 3 5 0 °C , d . 500 °Cと違っていても、 いずれの場合も、 a . 理論曲線 (Id eal curve) に対して、 実験値 b . 〜 d . は、 理論曲線 a . に沿ったデバイス特性 が得られた。
図 2 1は、 窒化膜のリーク電流特性についての比較図である。
図 2 1に示されているよ うに、 窒化温度が室温 (R T) , 3 5 0 °C, 5 0 0 °C と違っても、 本実施例の装置及び方法によ り、 パルスプラズマ法による常圧ブラ ズマ法 (AP Plasma) によって生成された膜厚 1. 8 nmの窒化膜は、 低圧 CVD 法 (L P CVD) により生成した膜厚 3. 0 nmの直接窒化膜 (S i 3N4) や、 ラジカルガンを用いた R Fプラズマ法 (RF Plasma) によ り生成した膜厚 2. 1 η mの直接窒化膜 (S i Ν) と比較しても、 その膜厚が薄いにもかかわらず、 リー ク電流は 1〜 2桁小さくなつており、 電気特性 (絶縁性) に優れたものになって いる。
なお、 リーク電流がなぜこのよ う に大幅に低減するかは現在解析中であるが、 以下リーク電流の解析を通じて考察したい。
図 2 2は、 リーク電流の直接ト ンネル電流の解析を説明する図である。
リーク電流の伝導機構と して挙げられる リーク電流効果は、 (DP.ool-Frenkel 放出電流、 (2)シヨ ッ トキー放出電流、 (3)F— Nトンネル電流、 (4)直接ト ンネル 電流が知られている。本発明者らは理論値と実験結果から(4)直接トンネル電流に よる リーク電流のみが関与しているこ とを推測した。 上記(1)〜(3)のリーク電流 は質の悪いリーク電流という ことができ、(4)直接トンネル電流は理想的な絶縁膜 のとき出現する リーク電流といえ、 このこ とからも本実施例の装置及び方法によ り形成された酸窒化膜は、 絶緣膜と して理想的な特性を持つ。 上記(4)直接トンネ ル電流は、 Wentzel- Kramers- Brillouin式で近似され、 有効質量 m *の増加が(4) 直接 トンネル電流による リーク電流に関与している と推測される。
図 2 3は、 本実施例の装置及び方法によ り、 大気圧近傍の圧力 5 0 O T o r r で、 窒化温度が 3 5 0 °C、 窒化時間 1 0 m i nの成膜条件で形成された膜厚 1 . 8 n mの窒化膜の印加電圧 (V) —リーク電流 (A/ c m2) の測定結果を示し た図である。 この場合も、 大気圧近傍の 5 0 0 T 0 r r とさ らに常圧近傍である にも力 力 わらず、 実験値 (Experimental Curve) は、 上述の Wentzel— Kramers— Br illouin式で近似されたシミ ュ レート値 (simulated Curve) にほぽ一致する。 こ のこ とから、 本実施例の装置及び方法によ り形成された窒化膜は、 電子の動きを 示す有効質量 m*が増大していると考えられる。
このよ うに誘電特性に優れかつリーク電流を大幅に低減した優れたデバイス特 性を有する窒化膜でありながら、 その成膜プロセスは本実施例の装置及び方法に よ り S i 基板などに容易に形成できること、 従来よ り も低温下の大気圧下での実 施が可能であり容易にィンライン化できるこ となど、 既存の方法及び装置を基に 容易に実施が可能である。
本酸窒化膜形成方法及び装置によ り製造された窒化膜は、 リーク電流特性など のデバイス特性が従来の窒化膜にはない、 又は従来の窒化膜では達成できないよ うな理論値に近い優れた特性をもつことなどから新しい用途が期待される。
図 2 4は、 本実施例の装置及び方法によ り成膜された S i 窒化のカイネテイ ツ クスを説明する図であり、 図 2 4 ( a ) は窒化膜厚 (n m) の窒化温度 (°C) 依 存を、 図 2 4 ( b ) は窒化膜厚 (n m) の窒化時間 (m i n) 依存をそれぞれ示 す。
図 2 4 ( a ) に示すよ う に、 窒化時間 1 0 m i nの条件で窒化温度を 2 5 °C、 3 0 0 °C、 5 0 0 °Cと 3点とつて観測した。 その結果、 各観測温度において窒化 膜厚は 1〜 2 n mで飽和するこ とが明らかとなり、 窒化反応は窒化温度に殆ど依 存しないこ とが確かめられた。 また、 図 2 4 ( b ) に示すよ うに、 窒化温度 3 5 0 °Cの条件で窒化時間を 0. 5 m i n、 3 m i n、 l O m i n と 3点とつて観測した。 その結果、 各観測時間 において窒化膜厚は 1〜 2 n m近辺で飽和することが明らかとなり、 窒化反応は 窒化時間に殆ど依存しないこ とが確かめられた。
そこで、 窒化膜の生成において、 中性活性種である N 2 ( 2 nd p. s. ) 、 及び N 2 (H. I . R.) のいずれが窒化膜の生成に寄与しているかを考慮し、 生成する膜 厚の制御の可能性、 並びに窒化膜の電気特性 (絶縁性) について、 図 2 5及び図 2 6によ り説明する。
図 2 5は、 窒化温度を 3 5 0 °C、 窒化時間を 1 0 m i nで、 窒素ガスの圧力を 5 0〜 7 0 0 T o r r で変化させた場合の、 窒化膜の膜厚—圧力特性、 及び中性 活性種である N2 ( 2 nd p.s.) の発光強度—圧力特性を示した図である。 この場 合に、 構造評価 (X線光電子分光測定) から算出した生成された窒化膜の組成は 、 S i 3 N 3. 500. 7であった。
図 2 5に示すよ う に、 4 0 0〜 7 0 0 T o r r の圧力範囲において、 窒化膜の 膜厚は 1 . 6 n mと一定値を示し、 5 0〜 4 0 0 T 0 r r の圧力範囲において圧 力の減少と ともに減少する。 この圧力に対する蜜化膜の膜厚の変化は、 発光分析 によ り観測される中性活性種である N2 ( 2 nd p. s. ) の発光強度一圧力特性の中 性活性種 N 2 ( 2nd p.s. ) の発光強度の変化と一致しており、 中性活性種 N2 ( 2 nd p.s.) が大気圧近傍における窒化反応に寄与していることが判明した。
図 2 6は、 窒素ガスの圧力を変化させた場合の、 窒化膜の膜厚一窒化温度特性 を示した図である。
図 2 6、 及び前述の図 2 4にも示されているよ うに、 同じ窒素ガスの圧力の大 きさであれば、 生成される窒化膜の膜厚は窒化温度に依存せず、 同様の反応機構 によ り窒化膜が形成しているこ とが判明した。
この結果、 中性活性種 N 2 ( 2 nd p. s.) の生成量を窒素ガスの圧力の大きさに よって制御することによって、 生成する窒化膜の膜厚を意図的に制御できること が判明した。
また、 窒化膜の電気特性 (絶縁性) についても、 図 2 0の窒化膜の場合でも説 明したよ うに、 窒化温度が室温 (R T) , 3 5 0 °C , 5 0 0 °Cと違っても、 その 容 ½—電圧特性 (C一 Ϋ特性) はほぼ一致しており、 また図 2 1 の窒化膜の場合 でも説明したよ うに、 印加電圧一 リーク電流特性 ( 1 ー 特性) は窒化温度の違 いにかかわらず一致しているこ とから、 窒化温度に依存しないこ とが理解できる この結果、 図 2 4により説明したように、 窒化反応が蜜化温度に殆ど依存しな いこ と とも関係し、 窒素ガスの圧力の大きさによ り、 中性活性種 N 2 ( 2 nd p. s. ) の生成量を制御することによって、 生成する窒化膜の電気特性 (絶縁性) につ いても意図的に制御するこ とができる。
一方、 図 2 7、 図 2 8は、 上記 5 0 0 T 0 r r の圧力、 3 5 0 °Cの窒化温度で 窒化膜を形成した場合の、 窒化時間と生成された窒化膜の厚さ との関係を、 パル スプラズマ法による常圧プラズマ法 (AP Plasma) と R Fプラズマ法 (RF Pl asma ) とで対比して示した図である。 なお、 図 2 7 と図 2 8 とは、 横軸の窒化時間の スケールが線形か対数かで異なるだけで、 同じデータを表したものである。
図 2 7、 図 2 8において、 常圧プラズマ法と R Fプラズマ法とも、 その窒化時 間によつて約 1 n mの膜厚範囲を窒化時間の変化により制御可能であるが、 常圧 プラズマ法はその窒化時間に依存する膜厚の変化が、 R Fプラズマ法の窒化時間 に依存する膜厚の変化に対して急峻になっているものの、 その変化は 0 . l m i nから 1 0 m i nの時間範囲内なので、 容易に制御できるものである。 そして、 常圧プラズマ法による窒化時間に依存する膜厚の変化領域は、 R Fプラズマ法の 窒化時間に依存する膜厚の変化領域よ り も、 膜厚が薄くなっている。
したがって、 図 2 7、 図 2 8に示されているよ う に、 R Fプラズマ法に対して 、 常圧プラズマ法は、 同じ窒素ガスの圧力、 同じ窒化温度であっても、 よ り薄い 窒化膜を、 短時間で形成することができる。
この結果、 中性活性種 N 2 ( 2 nd p. s. ) の生成量を窒素ガスの圧力の大きさを 一定に保持し窒化時間を制御することによっても、 生成する窒化膜の膜厚を意図 的に制御するこ とができる。 .
次に、 図 2 9 は、 窒化膜の膜厚と基板温度との関係を、 常圧プラズマ法 (AP P lasma) と R Fプラズマ法 (RF Plasma、 ) とを対比して示したものである。
図 2 9では、 常圧プラズマ法では、 上記 5 0 0 T 0 r r の圧力、 窒化時間 1 0 m i nの成膜条件で、 基板温度の温度 (窒化温度) を R T〜 5 0 0 °Cの範囲で変 化させて形成したそれぞれの窒化膜の膜厚を示している。 また、 R Fプラズマ法 では、 圧力 1 X 1 0 5 T o r r の圧力、 窒化時間 6 0 m i nの成膜条件で、 基板 温度の温度 (窒化温度) を R T〜 5 0 0 °Cの範囲で変化させて形成したそれぞれ 窒化膜の膜厚を示している。
常圧プラズマ法で生成した窒化膜の膜厚は、 その窒化温度によ らず、 一定の膜 厚の窒化膜が得られるのに対し、 R Fプラズマ法で生成した窒化膜の膜厚は、 そ の窒化温度の大きさに違いによって、 その膜厚がほぼ 1 n mの範囲で変動してし まう。
したがって、 常圧プラズマ法で生成した窒化膜を生成する場合は、 基板温度の 温度 (窒化温度) によらず一定の膜厚の窒化膜を生成することができる。
上記説明したよ うに、 生成する膜厚の制御を行う場合、 本実施の形態による常 圧プラズマ法では、 中性活性種 N 2 ( 2 nd p. s. ) の生成量を窒素ガスの圧力の大 きさを制御し、 その窒化時間を制御するだけで、 容易に所望の膜厚、 .すなわち生 成した窒化膜の電気特性 (絶縁性) を制御することができる。
なお、 説明において、 本発明と対比した R Fプラズマ法による酸窒化膜及び窒 化膜の生成は、 図 3 0に示す如く の装置を用いて行った。
図 3 0において、 R Fプラズマ窒化膜形成装置 5 0は、 反応室 5 1 內に、 被処 理物と しての基板 5 2が設置されるステージ 5 3 と、 R F高周波が印加され導入 ガスをラジカル化するためのラジカルガン 5 4 とを備え、 ラジカルガン 5 4には ガス供給源 (窒素ガス) 5 5に接続され、 反応室 5 1 には当該反応室を低圧下に するためのポンプ (例えば、 ターボ分子ポンプ ; T M P ) 5 6に接続された構成 となっている。
.図 3 1 は、 このように構成された R Fプラズマ窒化膜形成装置 5 0 と、 上記説 明した本発明の窒化膜形成装置によ り、 被処理物と しての基板 ( p— t y p e ( 1 1 1 ) S i ) に室温〜 5 0 0 °Cの所定の窒化温度範囲で窒化膜を形成する場合 の比較表である。
このよ う に、 本発明の窒化膜形成装置によれば、 R Fプラズマ窒化膜形成装置
5 0 と比べ、 大気圧近傍の圧力下で、 しかも極めて短い処理時間 (窒化時間) で 窒化膜を形成するこ とができる。
本実施例の装置及び方法によ り形成された窒化膜の特徴をまとめると以下のよ うになる。 .
構造評価 (XP S) で表されるよ うに、 高純度窒素ガスを高純度ガスフィルタ 一を通して供給することで酸化源 (H20, 02) を l p p b以下にし、 窒化膜 S i 3N 3. 5 O o. 7が形成された。 また、 形成された S i一 Nの結合は窒化膜の深 さ方向に均一に分布しているこ とが確かめられた。
また、 S i窒化の力イネティ ックスで表されるよ うに、 窒化反応は窒化時間 - 窒化温度に依存せず、 かつ窒化膜厚が 1〜 2 n mで飽和し窒化が完了するので低 温 · 高速窒化が可能になる。
窒化時間の大幅な短縮は、 プロセス工程の時間効率を高めるこ とにつながる。 また、 1. 6 n mの完全な窒化膜が形成でき、 かつその窒化膜厚が 1. 6 nm でス ト ップするこ とは、 例えば C V D膜付けプロセスと組み合わせるこ とで、 量 子デバイスをはじめとする新しい材料の可能性が広がる。
例えば、 窒化プロセスを厳密に制御できることから前記図 2中の左側プロ ック に示すように、 例えば MO S ト ランジスタの高誘電率絶縁体などの酸化物 (例え ば Z r 02, H f 02) に窒素 Nを微量ドーピングすることが可能となる。 また、 G a、 I n, A 1 などを含む成膜ガスと一緒に本窒素プラズマを使って、 前記図 2中の右側プロ ックに示すよ う に、 窒化物半導体膜 (例えば G a N, I n N, A I N) を成膜するこ とが可能になる。
[実施例 2 ]
[窒素ガスと酸化物との混合条件]
次に、 本発明の酸窒化膜並びに窒化膜の形成方法及び装置において、 電極板間 に導入される窒素ガスに混入した 02の添加量 (導入される窒 *ガスに含まれて ガス供給部 2 4から供給される 02の流量) との関係によ り、 窒素ガス と酸化物 との混合条件について説明する。
図 3 2は、 電極板間に導入される窒素ガスの流量を 1 0 s 1 mと固定し、 混入 した 02の添加量に応じた生成された酸窒化膜の誘電特性を示した図である。 圧 力は、 5 0 0 T 0 r rになるよ うに、 排気量を調節した。 図 3 2の C— V特性測定に示すように、 高純度の N 2ガスの C一 V特性曲線 a . を基準と して、 その窒素ガスに対して酸素ガスが添加していく と、 その添加量 の増加に応じて、 C— V特性曲線 b . 〜 e . に示すように、 特性曲線のヒステリ シスカーブの広がりが小さ く なるこ とが判明した。
一方、 図 3 3は、 窒素ガスに対する酸素ガスの添加量と図 3 2に示した C一 V 特性曲線のヒステリ シス特性のフラ ッ トパン ドシフ ト (ブラッ トパン ド電圧シフ ト) との関係と、 窒素ガスに対する酸素ガスの添加量と図 3 2に示したヒステリ シス特性のヒステリシス幅との関係との相関を示した図である。
図 3 3に示されるように、 C— V特性曲線のヒステリ シス特性のフラッ トパン ドシフ トは、 窒素ガスにほとんど酸素ガスが添加していない酸素添加量が 0〜 2 s c c mの領域では、 印加電圧の負電圧側に偏って飽和しており、 酸素添加量が 2 s c c mを超えると、 C一 V特性曲線のヒステリ シス特性のフラ ッ トパン ドシ フ トは、 印加電圧の正電圧側に変移 (シフ ト) し始める。
これに対して、 C一 V特性曲線のヒステリ シス幅は、 窒素ガスにほとんど酸素 ガスが添加していない酸素添加量が 0〜 2 s c c mの領域では、 C一 V特性曲線 のヒステリ シス幅は増大した状態で飽和しているが、 酸素添加量が 2〜 3 . 5 s c c mの領域では、 C一 V特性曲線のヒステリ シス幅は減少し、 酸素添加量が 3 . 5 s c c mよ り大きい領域では減少した状態で飽和するこ とが判明した。 これよ り、 C V特性曲線のヒステリ シスカーブの広がりは、 酸素添加量が増 加すれば小さ くなつて好ましいが、 反対に、 C一 V特性曲線のヒステリ シス特性 のフラッ トパン ドシフ トは、 酸素添加量が増加する と、 変移 (シフ ト) が進行し 、 その値が印加電圧の正電圧側に対するずれが増大してしま う。
そのため、 生成した酸窒化膜の C— V特性を考慮する と、 そのヒステリ シス特 性のヒステリ シス幅が減少し、 フラッ トパン ドシフ トが正負いずれの側にも偏つ ていない、 窒素ガスに酸素ガスを 5 . 5 s c c m添加した状態が好ましく、 酸窒 化膜の C一 V特性を第 1 に考えれば、 窒素ガスに酸素ガスがわずかではあるが添 加されているほうが好ましいこ とが判明した。
図 3 4は電極板間に導入される窒素ガスに混入した 0 2の添加量に応じた絶縁 電圧 (誘電電圧) と リーク電流との関係を示した図である。 図 3 4よ り、 窒素ガスに対する酸素ガスの添加量を増大させていく と、 リ ーク 電流は減少するお、 図中には図示しないが、 添加しすぎてもよく ないこ とが判明 した。
02の添加量が 5 . 5 s c c mの時に得られた酸窒化膜の組成は、 X P Sから
S i 3 N J . 2 O 4. 3と計算された。
したがって、 リーク電流の抑制を考えた場合、 必ずしも高純度の窒素ガスが好 ましいものではないことが判明した。
次に、 上述したリーク電流との関係をも考慮し、 電極板間に導入される窒素ガ スへの酸素ガスの添加について、 さ らに説明する。
図 3 5は、 導入される窒素ガスに酸素ガスを混入しない場合の、 ダイ レク トプ ラズマ方式で観測した窒素プラズマ発光のスぺク トル分析結果を示した図である。 図 3 6は、 導入される窒素ガスに酸素ガスを 1 . 5 s c c mだけ添加した場合 の、 ダイ レク トプラズマ方式で観測した窒素プラズマ発光のスぺク トル分析結果 を示した図である。
図 3 5 , 図 3 6 とも、 縦軸が発光強度 ( a . u . ) を、 横軸が波長 ( n m) を それぞれ表し、 N 2 ( 2 nd p. s. ) が支配的に観測される波長 3 0 0 ~ 4 0 0 n m 近傍の波長 2 0 0〜 3 5 0 ( n m) 部分を示している。
図 3 5に示した窒素ガスに酸素ガスを混入しない場合は、 波長 3 0 0〜 3 5 0 ( n m) 部分に、 プラズマ化された窒素ガス N 2 ( 2 nd p. s. ) が支配的に観測さ れている。 これに対し、 図 3 6に示した窒素ガスに酸素ガスを 1 . 5 s c c m添 加した場合は、 図 3 5に示した窒素ガスに酸素ガスを混入しない場合と同様に、 波長 3 0 0〜 3 5 0 ( n m) 部分に、 プラズマ化された窒素ガス N 2 ( 2 nd p. s. ) が支配的に観測されている。 さ らに、 窒素ガスに酸素ガスを 1 . 5 s c c m添加 した場合は、 波長 2 0 0〜 3 0 0 n m部分に、 窒素ガスに酸素ガスを混入しない 場合には確認できなかった N O— yに由来する発光の発生を確認できた。
このことから、 N 0— Vの発生状態を確認するこ とによって、 電極板間に導入 された窒素ガスに酸素ガスが混入しているか否かを確認できるこ とが判明した。 そこで、 窒素ガスに対して酸素ガスの添加量をそれぞれ変化させた場合につい て、 それぞれダイ レク トプラズマ方式で観測した。 図 3 7は、 この変化させた酸素ガスの添加量毎の窒素プラズマ発光のスぺク ト ル分析結果に基づいて、 酸素ガスの添加量と N2 ( 2 nd p. s. ) 及び NO— yそれ ぞれの発光強度との関係を示した図である。 図 3 7 においては、 縦軸が N 2 ( 2 nd p. s. ) の発光強度 (M c p s ) 及び NO— γの発光強度 ( k c p s ) を、 横軸 が酸素ガスの添加量 ( s c c m) を表す。
この場合、 N 2 ( 2 nd p. s. ) の発光強度 (M c p s ) は、 酸素ガスを混入して いない場合は 2. O M c p s であるが、 酸素ガスの混入 (添加) 開始と ともに発 光強度が減少し、 酸素ガスが 0. 5 s c c m添加された後は、 図示されている酸 素ガスの添加量は 3 s c c mまでであるが、 それ以降は酸素ガスの添加量が増加 しても、 N 2 ( 2 nd p.s.) の発光強度 (M c p s ) は一定値 (この場合、 0. 7 M c p s ) に飽和するこ とが判明した。 これに対し、 N 0— yの発光は、 酸素ガ スを混入していない場合はほとんど検出されないが、 酸素ガスの混入, (添加) 開 始と ともに発光強度が増加し、 図示されている酸素ガスの添加量は 3 s c c mま でであるが、 酸素ガスが 3. 0 s c c m添加された後は、 酸素ガスの添加量が増 加しても、 NO— γの発光強度 ( k c p s ) は一定値 (この場合、 2. 2 k c p s ) に飽和するこ とが判明した。
これよ り、 N2 ( 2 nd p. s.) の発光強度及び NO— γの発光強度とも、 酸素ガ スの添加量がそれぞれ所定の添加量を超える と、 酸素ガスの添加量に依存しない こ とが判明した。
そこで、 S i 基板の窒化温度を 3 5 0 °C, 窒化時間を 1 O.m i nの一定成膜条 件で、 窒素ガスに対する酸素ガスの添加量をそれぞれ変化させて形成した膜の構 造評価 (X P S ) を行った。
図 3 8は、 この窒素ガスに対する酸素ガスの添加量をそれぞれ変化させて形成 した膜について、 酸素ガスの添加量と S i 2 p結合エネルギーとの関係を示した 図である。
この場合、 酸素ガスの添加量が 0〜 1. 5 s c c mまでは、 形成した膜の S i
2 p 結合エネルギーは 1 0 2. 0 e Vで一定であるのに対し、 酸素ガスの添加量 が 1 . 5 s c c mを超える と、 形成した膜の S i 2 p 結合エネルギーは増加し始 め、 酸素ガスの添加量が 3 . 5 s c c mを超えた辺りからは、 形成した膜の S i 2 P 結合エネルギーは 1 0 3. 2 e v近傍で飽和し始めることが判明した。 ところで、 この S i 2 p 結合エネルギーの値に着目 してみると、 酸素ガスの添 加量が 0~ 1. 5 s c c mに対応した S i 2 結合エネルギーの 1 0 2. 0 e v は、 窒化膜 S i 3N 3. 500. 7の結合エネルギーに該当し、酸素ガスの添加量が、 S i 2 p 結合エネルギーが'飽和し始めた後の酸素ガスの添加量が 5.5 s c c m に対応した S i 2 p 結合エネルギーの 1 0 2. 0 e Vは、 酸窒化膜 S i 3 N x . 2
O 4. 3の結合エネルギーに該当している。
これらよ り、 酸窒化膜の酸素比率が高くなる (増加する) 時に、 NO— γの発 光の増加及び飽和の傾向と、 酸素比率 (酸素ガスの添加量) の増加及び飽和の挙 動が一致するので、 この Ν Ο— yの発光が見られるプラズマ条件で N 0— の発 光強度に基づいて窒化処理を行う こ とによって、 窒化膜並びに酸窒化膜を形成す るに当たり、 窒素ガスに混入する酸素ガスの添加量を制御するこ と と同等な効果 が得られるこ とが判明した。
したがって、窒素ガス中に不純物と して極微量の酸化物が含まれている場合や、 電極に配した固体誘電体に含まれている酸化物からのコ ンタ ミ を考慮しなければ ならない場合であっても、 N 0— γの発光強度に基づき、 酸素ガスの添加量を正 確に制御するこ とができる。
本発明の窒化膜形成方法及び酸窒化膜形成方法によれば、 窒化プロセスを厳密 に制御できることから前記図 2中の左側プロ ックに示すよ うに、 例えば MO S ト ランジスタの高誘電率絶縁体などの酸化物 (例えば Z r Ο 2, H f 02) に窒素 N を微量ドーピングする。 Z r 02, H f 02などの成膜と一緒に本窒素プラズマを 使う と膜中に窒素が含まれる、 つま り窒素が ドーピングされた膜が形成される。 また、 酸化膜を薄く成膜して表面を本窒素プラズマ処理する工程を繰り返しても 膜中に窒素が含まれる。 前者は膜の表面に、 後者は膜の中まで窒素が ドーピング される。 この工程を CVD膜付けプロセスで行う ことができる。 産業上の利用可能性
本発明は、 窒化膜 · 酸窒化膜を用いる半導体表面制御、 窒素ドーピングを用い る MO S トランジスタ、 窒化物半導体、 さ らには発光素子、 光デバイス、 通信デ ペイスなど、 窒化膜及ぴ酸窒化膜に用いる幅広い用途に利用するこ とができる

Claims

請 求 の 範 囲
1. 大気圧近傍の圧力下で、 対向する一対の電極の少なく とも一方の対向面に固 体誘電体を設置し、 当該一対の対向電極間に 1 P p mよ り も多く 0. 2 %以下の 酸素又は酸化物を含む窒素ガスを導入して電界を印加するこ とによ り得られるプ ラズマを被処理物に接触させ、 該被処理物表面に酸窒化膜を形成することを特徴 とする酸窒化膜の形成方法。
2. 大気圧近傍の圧力下で、 対向する一対の電極の少なく とも一方の対向面に固 体誘電体を設置し、 当該一対の対向電極間に 1 p p m以下の酸素又は酸化物を含 む窒素ガスを導入して電界を印加することによ り得られるプラズマを被処理物に 接触させ、 該被処理物表面に窒化膜を形成することを特徴とする窒化膜の形成方 法。 ,
3. 前記大気圧近傍の圧力下は、 3 0 0 T o r r以上の圧力下であることを特徴 とする請求の範囲第 1項記載の酸窒化膜の形成方法'。
4. 前記大気圧近傍の圧力下は、 3 00 T o r r以上の圧力下であることを特徴 とする請求の範囲第 2項記載の窒化膜の形成方法。
5. 前記大気圧近傍の圧力下は、 発光分析で観測される窒素活性種のうち、 N2 (H. I . R. ) 及び Z又は N2 (2 nd p. s. ) 活性種が支配的に出現する圧力下であ ることを特徴とする請求の範囲第.1項記載の酸窒化膜の形成方法。
6. 前記プラズマが得られる大気圧近傍のガス雰囲気は、 発光分析で観測した場 合に NO— yに由来する発光が観測されるガス雰囲気であるこ とを特徴とする 請求の範囲第 1項, 第 3項, 第 5項記載の酸窒化膜の形成方法。
7. 前記大気圧近傍の圧力下は、 発光分析で観測される蜜素活性種のう ち、 N2 (H. I . R. ) 及びノ又は N 2 (2 nd p. s. ) 活性種が支配的に出現する圧力下であ るこ とを特徴とする請求の範囲第 2項記載の窒化膜の形成方法。
8. 前記プラズマは、 発光分析で観測される窒素活性種のう ち、 N2. ( 2 nd p. s. ) 、 及び/又は、 N2 (H. I . R. ) 活性種が支配的であるこ とを特徴とする請求 の範囲第 1項記載の酸窒化膜の形成方法。
9. 前記プラズマは、 発光分析で観測される窒素活性種のう ち、 N2 ( 2 nd p. s. ) 、 及び/又は、 N2 (H. I . R.) 活性種が支配的であるこ とを特徴とすること を特徴とする請求の範囲第 2項記載の窒化膜の形成方法。
1 0. 前記プラズマは、 発光分析で観測される窒素活性種のうち、 中性活性種の みであるこ とを特徴とする請求の範囲第 1項, 第 3項, 第 5項, 第 6項, 第 8項 いずれかに記載の酸窒化膜の形成方法。
1 1. 前記プラズマは、 発光分析で観測される窒素活性種のうち、 中性活性種の みであることを特徴とする請求の範囲第 2項, 第 4項, 第 7項, 第 9項いずれか に記載の窒化膜の形成方法。
1 2. 前記プラズマは、 前記対向電極間の放電空間の外の拡散領域で前記被処理 物に接触されることを特徴とする請求の範囲第 1項, 第 3項, 第 5項, 第 6項, 第 8項, 第 1 0項いずれかに記載の酸窒化膜の形成方法。
1 3. 前記プラズマは、 前記対向電極間の放電空間の外の拡散領域で前記被処理 物に接触されることを特徴とする請求の範囲第 2項, 第 4項, 第 7項, 第 9項, 第 1 1項いずれかに記載の窒化膜の形成方法'。
1 4. 前記固体誘電体は、 酸化物を実質的に含まない誘電体であることを特徴と する請求の範囲第 1項, 第 3項, 第 5項, 第 6項, 第 8項, 第 1 0項, 第 1 2項 いずれかに記載の酸窒化膜の形成方法。
1 5. 前記固体誘電体は、 酸化物を実質的に含まない誘電体であることを特徴と する請求の範囲第 2項, 第 4項, 第 7項, 第 9項, 第 1 1項, 第 1 3項記載の窒 化膜の形成方法。
1 6. 前記被処理物の表面温度は、 5 0°C以上、 好ましく は 1 0 0 °C以上である こ とを特徴とする請求の範囲第 1項, 第 3項, 第 5項, 第 6項, 第 8項, 第 1 0 項, 第 1 2項, 第 1 4項いずれかに記載の酸窒化膜の形成方法。
1 7. 前記被処理物の表面温度は、 5 0 °C以上、 好ましく は 1 0 0 °C以上である こ とを特徴とする請求の範囲第 2項, 第 4項, 第 7項, 第 9項, 第 1 1項, 第 1 3項, 第 1 5項いずれかに記載の窒化膜の形成方法。
1 8. 前記窒素ガスは、 好ましく は 1 p p b以下の酸素又は酸化物を含む高純度 窒素ガスであることを特徴とする請求の範囲第 2項, 第 4項, 第 7項, 第 9項, 第 1 1項, 第 1 3項, 第 1 5項, 第 1 7項いずれかに記載の窒化膜及び酸窒化膜 の形成方法。
1 9. l p p mよ り も多く 0. 2 %以下の酸素又は酸化物を含む窒素ガスに電界 を印加して得られるプラズマに被処理物を接触させて、 当該被処理物の表面に形 成してなる酸窒化膜。
2 0. l p p m以下、 よ り好ましく は 1 p p b以下の酸素又は酸化物を含む窒素 ガスに電界を印加して得られるプラズマに被処理物を接触させて、 当該被処理物 の表面に形成してなる窒化膜。
2 1 . l p p mょ り も多く 0. 2 %以下の酸素又は酸化物を含む窒素ガスに電界 を印加して得られるプラズマと接触するこ とによ り形成された酸窒化膜を表面に 有する基材。
2 2. l p p m以下、 よ り好ましく は 1 p p b以下の酸素又は酸化物を含む高純 度窒素ガスに電界を印加して得られるプラズマと接触するこ とによ り形成された 窒化膜を表面に有する基材。
2 3. 少なく とも一方の対向面に酸化物を含まない固体誘電体が設置された一対 の対向電極と、 当該一対の対向電極間に 0. 2 %以下の酸素又は酸化物を含む蜜 素ガスを導入する機構と、 該電極間に電界を印加する機構と、 該電界によ り得ら れるプラズマを被処理物に接触させる機構とを備える
こ とを特徴とする窒化膜及び酸窒化膜の形成装置。
2 4. 前記プラズマを被処理物に接触ざせる機構は、 前記対向電極間の放電空間 で発生するプラズマを被処理物に直接接触させるダイ レク ト型である
こ とを特徴とする請求の範囲第 2 3項記載の窒化膜及び酸窒化膜の形成装置。
2 5. 前記プラズマを被処理物に接触させる機構は、 前記対向電極間の放電空間 で発生するプラズマを当該対向電極間の放電空間の外の拡散領域で前記被処理物 に接触させる リモー ト型である
こ とを特徴とする請求の範囲第 2 3項記載の窒化膜及び酸窒化膜の形成装置。
2 6. 前記リ モー ト型において拡散領域で被処理物にプラズマを接触させるため の機構は、 前記固体誘電体に形成され、 前記対向電極間で発生したプラズマを当 該対向電極間の放電空間外に配置された該被処理物に向けて導く吹き出しロノズ ルを傭えている ことを特徴とする請求の範囲第 2 5項記載の窒化膜形成装置。
PCT/JP2005/006412 2004-03-26 2005-03-25 酸窒化膜及び窒化膜の形成方法、形成装置、酸窒化膜、窒化膜、及び基材 WO2005093810A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2005800098314A CN1938835B (zh) 2004-03-26 2005-03-25 形成氧氮化物膜和氮化物膜的方法和装置、氧氮化物膜、氮化物膜和基材
EP05727499A EP1739732A1 (en) 2004-03-26 2005-03-25 Method and apparatus for forming oxynitride film and nitride film, oxynitride film, nitride film and base material
JP2006511597A JP4624991B2 (ja) 2004-03-26 2005-03-25 酸窒化膜の形成方法、及び形成装置
US10/594,252 US7507678B2 (en) 2004-03-26 2005-03-25 Method and apparatus for forming oxynitride film and nitride film, oxynitride film, nitride film, and substrate
US11/960,558 US20080113519A1 (en) 2004-03-26 2007-12-19 Method and apparatus for forming oxynitride film and nitride film, oxynitride film, nitride film, and substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-093870 2004-03-26
JP2004093870 2004-03-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/960,558 Division US20080113519A1 (en) 2004-03-26 2007-12-19 Method and apparatus for forming oxynitride film and nitride film, oxynitride film, nitride film, and substrate

Publications (1)

Publication Number Publication Date
WO2005093810A1 true WO2005093810A1 (ja) 2005-10-06

Family

ID=35056470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/006412 WO2005093810A1 (ja) 2004-03-26 2005-03-25 酸窒化膜及び窒化膜の形成方法、形成装置、酸窒化膜、窒化膜、及び基材

Country Status (7)

Country Link
US (2) US7507678B2 (ja)
EP (1) EP1739732A1 (ja)
JP (1) JP4624991B2 (ja)
KR (1) KR20070004881A (ja)
CN (1) CN1938835B (ja)
TW (1) TW200614372A (ja)
WO (1) WO2005093810A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007110026A (ja) * 2005-10-17 2007-04-26 Konica Minolta Holdings Inc プラズマ放電処理装置およびプラズマ放電処理方法
JP2011084793A (ja) * 2009-10-19 2011-04-28 Ngk Insulators Ltd プラズマ処理装置
JP2012079877A (ja) * 2010-09-30 2012-04-19 Shibaura Mechatronics Corp プラズマ処理方法及びプラズマ処理装置
WO2012053331A1 (ja) * 2010-10-19 2012-04-26 昭和電工株式会社 Iii族窒化物半導体素子、多波長発光iii族窒化物半導体層及び多波長発光iii族窒化物半導体層の形成方法
JP2013171847A (ja) * 2012-02-17 2013-09-02 Tokyo Electron Ltd プラズマ処理装置及びプラズマのモニタリング方法
JP2015103622A (ja) * 2013-11-22 2015-06-04 富士通株式会社 半導体装置及びその製造方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100589229C (zh) * 2005-08-05 2010-02-10 积水化学工业株式会社 膜沉积第ⅲ族氮化物如氮化镓的方法
DE102005051819B3 (de) * 2005-10-28 2007-06-14 Infineon Technologies Ag Herstellungsverfahren für Halbleiterstrukturen
EP2200077B1 (en) * 2008-12-22 2012-12-05 Soitec Method for bonding two substrates
TWI549163B (zh) * 2011-09-20 2016-09-11 應用材料股份有限公司 減少摻質擴散之表面穩定化製程
FR2993659B1 (fr) * 2012-07-23 2014-08-08 Adixen Vacuum Products Procede et installation de detection pour le controle d'etancheite d'emballages de produits scelles
RU2596554C1 (ru) * 2015-07-22 2016-09-10 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (ТГУ, НИ ТГУ) Способ вакуумно-плазменного азотирования изделий из нержавеющей стали в дуговом несамостоятельном разряде низкого давления
WO2017078082A1 (ja) * 2015-11-04 2017-05-11 国立研究開発法人産業技術総合研究所 窒素化合物の製造方法及び製造装置
MX2018006317A (es) * 2015-11-22 2019-01-31 Atmospheric Plasma Solutions Inc Metodo y dispositivo para promover la adhesion de superficies metalicas.
EP4137604A1 (en) * 2021-08-20 2023-02-22 Vito NV Method for applying a protective layer to a metal or metal alloy surface, and article comprising such protective layer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002155370A (ja) * 2000-11-14 2002-05-31 Sekisui Chem Co Ltd 常圧プラズマ処理方法及びその装置
JP2002324795A (ja) * 2001-04-24 2002-11-08 Sekisui Chem Co Ltd シリコンウェハの窒化処理方法
JP2003203800A (ja) * 2001-09-14 2003-07-18 Sekisui Chem Co Ltd 常圧プラズマ処理方法および装置
JP2003309117A (ja) * 2002-04-12 2003-10-31 Tadahiro Omi 半導体装置及びその製造方法並びに薄膜トランジスタ

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4671813A (en) * 1984-03-29 1987-06-09 Daidousanso Co. Ltd. Highly pure nitrogen gas producing apparatus
JPH0610356B2 (ja) * 1988-02-18 1994-02-09 松下電器産業株式会社 プラズマ処理装置およびプラズマ温度測定方法
JP3899597B2 (ja) * 1997-01-30 2007-03-28 セイコーエプソン株式会社 大気圧プラズマ生成方法および装置並びに表面処理方法
JP3799819B2 (ja) * 1998-05-20 2006-07-19 セイコーエプソン株式会社 表面処理方法及び装置
US6245616B1 (en) * 1999-01-06 2001-06-12 International Business Machines Corporation Method of forming oxynitride gate dielectric
TW527683B (en) 2000-03-13 2003-04-11 Tadahiro Ohmi Formation method of dielectric film
JP2002100578A (ja) 2000-09-25 2002-04-05 Crystage Co Ltd 薄膜形成装置
JP2003306774A (ja) * 2002-04-18 2003-10-31 Konica Minolta Holdings Inc プラズマ放電処理装置
JP4204912B2 (ja) 2003-06-30 2009-01-07 株式会社半導体エネルギー研究所 窒化装置および半導体装置の作製方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002155370A (ja) * 2000-11-14 2002-05-31 Sekisui Chem Co Ltd 常圧プラズマ処理方法及びその装置
JP2002324795A (ja) * 2001-04-24 2002-11-08 Sekisui Chem Co Ltd シリコンウェハの窒化処理方法
JP2003203800A (ja) * 2001-09-14 2003-07-18 Sekisui Chem Co Ltd 常圧プラズマ処理方法および装置
JP2003309117A (ja) * 2002-04-12 2003-10-31 Tadahiro Omi 半導体装置及びその製造方法並びに薄膜トランジスタ

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007110026A (ja) * 2005-10-17 2007-04-26 Konica Minolta Holdings Inc プラズマ放電処理装置およびプラズマ放電処理方法
JP2011084793A (ja) * 2009-10-19 2011-04-28 Ngk Insulators Ltd プラズマ処理装置
JP2012079877A (ja) * 2010-09-30 2012-04-19 Shibaura Mechatronics Corp プラズマ処理方法及びプラズマ処理装置
WO2012053331A1 (ja) * 2010-10-19 2012-04-26 昭和電工株式会社 Iii族窒化物半導体素子、多波長発光iii族窒化物半導体層及び多波長発光iii族窒化物半導体層の形成方法
JP2013171847A (ja) * 2012-02-17 2013-09-02 Tokyo Electron Ltd プラズマ処理装置及びプラズマのモニタリング方法
TWI575553B (zh) * 2012-02-17 2017-03-21 Tokyo Electron Ltd Plasma processing device and plasma monitoring method
JP2015103622A (ja) * 2013-11-22 2015-06-04 富士通株式会社 半導体装置及びその製造方法

Also Published As

Publication number Publication date
JPWO2005093810A1 (ja) 2008-02-14
KR20070004881A (ko) 2007-01-09
US7507678B2 (en) 2009-03-24
TW200614372A (en) 2006-05-01
CN1938835A (zh) 2007-03-28
TWI310966B (ja) 2009-06-11
CN1938835B (zh) 2011-01-26
US20080113519A1 (en) 2008-05-15
US20070190801A1 (en) 2007-08-16
EP1739732A1 (en) 2007-01-03
JP4624991B2 (ja) 2011-02-02

Similar Documents

Publication Publication Date Title
WO2005093810A1 (ja) 酸窒化膜及び窒化膜の形成方法、形成装置、酸窒化膜、窒化膜、及び基材
KR100954254B1 (ko) 인장 응력 및 압축 응력을 받은 반도체용 재료
KR100956467B1 (ko) 플라즈마 처리 방법
KR100980528B1 (ko) 금속계막의 탈탄소 처리 방법, 성막 방법 및 반도체 장치의제조 방법
KR20120024544A (ko) 펄스형 플라즈마를 사용한 원자층 에칭
EP1612856A1 (en) Device for cleaning cvd device and method of cleaning cvd device
US6746726B2 (en) Method for forming film
JP4197319B2 (ja) シリコン窒化膜の形成方法および形成装置
US20070281107A1 (en) Plasma processing method
JP4546675B2 (ja) 多段型の放電プラズマ処理方法及び装置
JP2005252031A (ja) プラズマ窒化方法
JP4353405B2 (ja) 酸化膜形成装置及び酸化膜形成方法
JP2001176870A (ja) 窒化膜形成方法
US7119029B2 (en) Method of oxidizing a silicon substrate and method of forming an oxide layer using the same
Hino et al. Nitriding of silicon by using an electron cyclotron resonance nitrogen plasma
JP2007113031A (ja) 酸化物膜の形成方法
WO2005022624A1 (ja) 絶縁膜形成方法
Alexandrov Regularities of remote plasma enhanced chemical vapor deposition of silicon nitride films
JPH01239852A (ja) 薄膜形成方法
Manera et al. Silicon oxynitride gate-dielectric made by ECR plasma oxynitridation
Smith et al. Chemistry of Nitrogen-Silane Plasmas
JPH10229081A (ja) 絶縁膜の成膜方法及びその半導体装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006511597

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10594252

Country of ref document: US

Ref document number: 2007190801

Country of ref document: US

Ref document number: 200580009831.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2005727499

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020067021936

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005727499

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067021936

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10594252

Country of ref document: US