WO2017078082A1 - 窒素化合物の製造方法及び製造装置 - Google Patents
窒素化合物の製造方法及び製造装置 Download PDFInfo
- Publication number
- WO2017078082A1 WO2017078082A1 PCT/JP2016/082629 JP2016082629W WO2017078082A1 WO 2017078082 A1 WO2017078082 A1 WO 2017078082A1 JP 2016082629 W JP2016082629 W JP 2016082629W WO 2017078082 A1 WO2017078082 A1 WO 2017078082A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nitrogen
- plasma
- gas
- substrate
- microwave
- Prior art date
Links
- 229910017464 nitrogen compound Inorganic materials 0.000 title claims abstract description 53
- 150000002830 nitrogen compounds Chemical class 0.000 title claims abstract description 53
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 41
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 169
- 239000000758 substrate Substances 0.000 claims abstract description 111
- 239000007789 gas Substances 0.000 claims abstract description 105
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 83
- 150000002500 ions Chemical class 0.000 claims abstract description 29
- 239000000463 material Substances 0.000 claims description 42
- 230000005540 biological transmission Effects 0.000 claims description 9
- 239000013078 crystal Substances 0.000 claims description 9
- 230000001678 irradiating effect Effects 0.000 claims description 9
- 238000005259 measurement Methods 0.000 claims description 9
- 238000007664 blowing Methods 0.000 claims description 8
- 239000010409 thin film Substances 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 7
- 239000002994 raw material Substances 0.000 claims description 7
- 229910052733 gallium Inorganic materials 0.000 claims description 6
- 229910052738 indium Inorganic materials 0.000 claims description 6
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 5
- 230000000694 effects Effects 0.000 claims description 4
- 150000001875 compounds Chemical class 0.000 claims description 3
- 125000002524 organometallic group Chemical group 0.000 claims description 3
- 238000000034 method Methods 0.000 abstract description 78
- 230000008569 process Effects 0.000 abstract description 12
- 239000012528 membrane Substances 0.000 abstract description 2
- 238000005121 nitriding Methods 0.000 description 54
- 238000011282 treatment Methods 0.000 description 23
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical group N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 19
- 239000010936 titanium Substances 0.000 description 19
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 18
- 229910052719 titanium Inorganic materials 0.000 description 18
- 229910052751 metal Inorganic materials 0.000 description 14
- 239000002184 metal Substances 0.000 description 14
- 150000004767 nitrides Chemical class 0.000 description 12
- 238000012545 processing Methods 0.000 description 12
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 10
- 239000002245 particle Substances 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 8
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 8
- 229910021529 ammonia Inorganic materials 0.000 description 7
- 230000001276 controlling effect Effects 0.000 description 7
- 239000010408 film Substances 0.000 description 7
- 230000005684 electric field Effects 0.000 description 6
- 230000005596 ionic collisions Effects 0.000 description 6
- 239000004020 conductor Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 229910001873 dinitrogen Inorganic materials 0.000 description 5
- OTRPZROOJRIMKW-UHFFFAOYSA-N triethylindigane Chemical compound CC[In](CC)CC OTRPZROOJRIMKW-UHFFFAOYSA-N 0.000 description 5
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000010849 ion bombardment Methods 0.000 description 3
- 125000004433 nitrogen atom Chemical group N* 0.000 description 3
- 238000013021 overheating Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 230000003685 thermal hair damage Effects 0.000 description 3
- 238000001069 Raman spectroscopy Methods 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 229910001069 Ti alloy Inorganic materials 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 239000012159 carrier gas Substances 0.000 description 2
- 208000037998 chronic venous disease Diseases 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000002715 modification method Methods 0.000 description 2
- 238000009832 plasma treatment Methods 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 150000003254 radicals Chemical class 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 238000001237 Raman spectrum Methods 0.000 description 1
- 229910000883 Ti6Al4V Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000002109 crystal growth method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- -1 nitride compound Chemical class 0.000 description 1
- 150000002831 nitrogen free-radicals Chemical class 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen(.) Chemical compound [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/06—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
- C23C8/36—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/38—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/301—AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
- C23C16/303—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/34—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45502—Flow conditions in reaction chamber
- C23C16/4551—Jet streams
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45563—Gas nozzles
- C23C16/45578—Elongated nozzles, tubes with holes
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
- C23C16/511—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
- C23C16/513—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using plasma jets
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
- C23C16/517—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using a combination of discharges covered by two or more of groups C23C16/503 - C23C16/515
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/16—Controlling or regulating
- C30B25/165—Controlling or regulating the flow of the reactive gases
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/18—Epitaxial-layer growth characterised by the substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32192—Microwave generated discharge
- H01J37/32201—Generating means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/26—Plasma torches
- H05H1/30—Plasma torches using applied electromagnetic fields, e.g. high frequency or microwave energy
Definitions
- the present invention relates to a method and an apparatus for producing a nitrogen compound using a microwave plasma source.
- the nitriding treatment method is one of surface modification treatment methods and is widely used as a surface modification method for nitriding the surface of steel, titanium, or the like.
- Nitrided surface-treated products are used in machine tool parts such as spindles and gears, internal combustion engine parts such as turbines and fuel injection nozzles, reduction gears such as power shovels, aircraft and automobile parts.
- the nitriding treatment method can be used as a high-density nitrogen-based active species supply method when imparting surface functions such as increasing hardness, imparting corrosion resistance, and imparting wear resistance.
- the technology of the high-density nitrogen-based active species supply method can be applied to material generation on the surface of a substrate such as Metal Organic Chemical Vapor Deposition (hereinafter referred to as MOCVD).
- MOCVD Metal Organic Chemical Vapor Deposition
- LEDs blue and green light-emitting diodes
- GaN-based compound semiconductors are widely used as energy-saving and long-life lighting and display light sources to replace existing lighting devices such as incandescent bulbs and fluorescent lamps. I am doing.
- LED lighting a white light synthesis method in which a yellow phosphor is excited by a blue LED is the mainstream.
- the theoretical limit of the luminous efficiency of the single LED is about 270 lm / W.
- theoretical efficiency> 400 lm / W it is necessary to develop a phosphor-free white LED that simultaneously emits multicolor LEDs.
- the problem is to improve the external quantum efficiency of a green LED using InGaN having an In composition of about 30% as a light emitting material.
- the luminous efficiency of green LEDs is about 20% even in high-performance products, which is less than half that of blue and red LEDs.
- the constituent element, In has a high vapor pressure and is preferably grown at a low temperature of about 600 ° C., while nitrogen (N) is nitrogen in an active state by high-temperature decomposition of ammonia at 800 ° C. or higher, preferably 1000 ° C. or higher. Therefore, it is difficult to obtain optimum crystal growth conditions. Therefore, a method capable of supplying nitrogen-based active species at a high density at 800 ° C. or lower is required.
- a technique is known in which only ammonia gas is substantially supplied to a gas nitriding furnace and a nitride layer is formed on the surface of the member in ammonia gas and ammonia decomposition gas (see Patent Document 1).
- Patent Document 2 Also known is an ion nitriding method by glow discharge, which can efficiently form a metal nitride compound layer on the surface of a metal member and increase the hardness by a synergistic effect of the compound layer and the nitrogen atom diffusion layer.
- Patent Document 2 ion nitriding is performed for 1 hour at an atmospheric pressure of 1 Torr using a metal member of ⁇ 700 V, 0.95 A (665 W), using 2 slm of hydrogen and 0.5 slm of ammonia as an ion nitriding operation gas.
- the temperature of the metal member is kept at a temperature of 300-650 ° C., and glow discharge with a current density of 0.001-2 mA / cm ⁇ 2 is used on the surface of the metal member, and the emission intensity ratio between NH radicals and nitrogen radicals. Ion nitridation is performed in a plasma state in which becomes 0.2-0.1.
- the titanium alloy nitride thin film synthesis technique using atmospheric pressure plasma is known as a simpler nitriding treatment method than the conventional nitriding method (see Non-Patent Document 1).
- the processing apparatus can be simplified, high-density radical generation, and metal surface roughening can be suppressed.
- a high-frequency power source (5 kV, 1.2 A, 21 kHz) uses an effective power of 4 kilowatts, and operating gas is 99% nitrogen and 1% hydrogen gas.
- Non-Patent Document 2 and Patent Document 3 a microwave plasma processing apparatus capable of stably generating and maintaining plasma from low pressure to intermediate pressure and high pressure.
- plasma is classified into the following three types with respect to pressure.
- Low pressure plasma pressure region 0.01 Torr to 1.0 Torr
- Intermediate pressure plasma pressure region 1.0 Torr to 100 Torr
- High pressure plasma pressure region 100 Torr to 760 Torr (atmospheric pressure).
- Non-Patent Document 2 and Patent Document 3 The present inventors have already proposed a microwave plasma processing apparatus using a microstrip line as a microwave transmission line instead of a waveguide.
- This apparatus has advantages such as a simple structure, low cost production, and low power operation over the conventional microwave plasma processing apparatus using a waveguide, and various industrial applications are expected in the future.
- JP 2013-249524 A Japanese Patent Laid-Open No. 08-035053 International Publication No. 2015/030191
- Non-Patent Document 1 Since plasma is generated in space, there is a problem that power consumption increases and efficiency is low. In addition, since the nitride is used as an electrode, there are problems such as formation of arc points (discharge traces on spots) and transition to hollow cathode discharge when there are thin holes.
- the technique of Non-Patent Document 1 has a problem that nitridation is possible only in the range where the irradiation center temperature of the substrate is about 970 ° C. and ⁇ 4, and the nitriding area is very small. In addition, since the plasma is irradiated from the ⁇ 4 orifice with a cylindrical structure, partial nitridation is caused, so that it is difficult to increase the area. There is also a problem of requiring large electric power.
- Patent Document 3 A proposal to use microwave plasma in a method for producing a nitrogen compound was shown in Patent Document 3.
- the plasma processing apparatus of Patent Document 3 was able to generate stable nitrogen plasma with low power.
- Nitrogen plasma is expected to be applied to plasma nitriding treatments such as nitriding treatment of metal surfaces such as copper and production of nitride semiconductors.
- the following problems occurred in the course of research and development of nitrogen compounds by the inventors.
- the conventional apparatus of Patent Document 3 in the production of a nitrogen compound that heats a substrate using a heater, there is a problem that radiant heat is strong and it is difficult to protect the plasma source from the heat.
- a nitrogen-based gas (nitrogen gas, ammonia gas, etc.) is put into a plasma state, and a high-density nitrogen-based active species (hereinafter also referred to as “nitrogen radical”). It aims at providing the method and apparatus which manufacture a nitrogen compound which irradiates to a base material. Moreover, it aims at providing the manufacturing method and manufacturing apparatus of a nitrogen compound which can be formed at low temperature conventionally. Moreover, it aims at providing the manufacturing method and manufacturing apparatus of a nitrogen compound with little power consumption by a higher pressure process.
- the present invention has the following features in order to achieve the above object.
- the method of the present invention is a method for producing a nitrogen compound by producing a microwave plasma to produce a nitrogen compound, while a raw material gas containing a nitrogen-based gas is blown from a nozzle to the surface of the substrate while controlling the flow rate.
- the pressure is a mean free path of ions in the plasma. Is set higher than the pressure smaller than the Debye length.
- the plasma can be irradiated in a line shape toward the substrate to form a nitrogen compound on the surface of the substrate in a line shape.
- the blowing angle may be blown within a range of plus and minus 45 degrees with respect to a plane perpendicular to the substrate.
- the input energy of the microwave is 500 watts or less.
- the method includes generating a plasma containing nitrogen-based active species from the source gas and irradiating the plasma toward the surface of the substrate.
- the substrate is Ti and the nitrogen compound is TiN.
- Ga, In, or Al is transported as an organometallic vapor, and reacted with a plasma containing a nitrogen-based active species generated from the source gas in a gas phase or on a substrate.
- the method of the present invention is characterized in that a nitrogen-based active species measuring unit and a control unit are provided and controlled based on measurement of the amount of nitrogen-based active species.
- An apparatus of the present invention is an apparatus for producing a nitrogen compound by generating microwave plasma, a container, a microwave plasma generating apparatus provided in the container and having a nozzle, a nitrogen-based active species measuring unit, A control unit, and the control unit applies a microwave to the source gas while controlling the flow rate of the source gas containing nitrogen-based gas from the nozzle to the surface of the base material, thereby supplying the source gas.
- the pressure in the container is higher than the pressure at which the mean free path of ions in the plasma is smaller than the Debye length And controlling based on measurement of the amount of the nitrogen-based active species.
- a microwave in order to generate a nitriding plasma, applies a strong electric field near, for example, the tip of a nozzle to bring a nitrogen-based gas (nitrogen gas, ammonia gas, etc.) into a plasma state, and high density nitrogen-based activity
- a nitrogen-based gas nitrogen gas, ammonia gas, etc.
- a nitrogen-based gas may be mixed with a gas such as hydrogen, helium, or argon. Since it is a remote type method, it is not necessary to directly apply a voltage to the nitride, and the generation of spot-like discharge traces due to arcing or the like can be fundamentally solved.
- the present invention it is possible to reduce the size and weight of the nitriding apparatus and the nitrogen compound manufacturing apparatus. Further, in the present invention, even if the input energy of the microwave is 500 watts or less, and even 200 watts or less, it is possible, so that the power consumption can be greatly reduced as compared with the prior art. Moreover, according to the method of the present invention, it is possible to carry out nitriding treatment or production of nitrogen compounds at a substrate temperature of 800 ° C. or lower. The nitride film produced by nitriding the base material according to the method of the present invention exhibited excellent characteristics such as hardness characteristics.
- the crystal growth method by MOCVD or the like is less than 800 ° C. More preferably, film formation can be realized at a low growth temperature of 600 to 700 ° C. According to the method of the present invention, it is possible to supply a high-density nitrogen-based active species in a line shape to the substrate, and it is possible to cope with an increase in area by simply arranging a plurality of plasma sources in parallel.
- the plasma source of the present invention is a stable plasma source at a pressure of about 10 kPa, which is common in MOCVD crystal growth.
- ammonia is decomposed and the nitrogen-based active species are transported to the vicinity of the substrate together with the carrier gas, and group III elements such as In and Ga are transferred to TEIn (triethylindium) and TMGa ( By supplying as an organic metal such as trimethylgallium), InGaN nitride or the like necessary for a green LED or the like can be grown at a low temperature.
- FIG. 1 is a schematic diagram of a microwave plasma nitriding apparatus used in an embodiment of the present invention.
- FIG. 4 is a schematic diagram showing a collisionless sheath and a collision sheath between the plasma and the substrate surface, where (a) shows a state of ion bombardment from plasma in the collisionless sheath to the substrate surface, and (b) shows plasma to substrate in the collision sheath. It is a figure which shows typically the mode of the ion bombardment to the surface, respectively, (c) is a figure which shows typically the method in embodiment of this invention. The figure explaining the light emission of the high-density nitrogen type active species produced
- the present invention applies a strong electric field in the vicinity of the nozzle tip by microwaves to generate a nitriding plasma, puts a nitrogen-based gas (nitrogen gas, ammonia gas, etc.) in a plasma state, and uses a high-density nitrogen-based active species as a base material This is a remote type method that irradiates the light.
- a nitrogen-based gas nitrogen gas, ammonia gas, etc.
- FIG. 1 is a schematic view of an example of an apparatus used for the microwave plasma nitriding method of the embodiment of the present invention.
- the microwave plasma nitriding apparatus in FIG. 1 includes a container (10) and a microwave plasma generation apparatus provided in the container (10).
- the microwave plasma generation apparatus includes a dielectric substrate (4) having a gas flow path inside and a conductor surface on the back surface, a microstrip line (3) provided on the surface of the dielectric substrate (4), and a dielectric substrate ( 4) a nozzle (7) provided on one end face, a microwave introduction flange (11) and a coaxial cable (2) for supplying microwaves to the microwave plasma generator, and a microwave plasma generator It comprises a gas introduction flange (12) and a gas introduction pipe (9) for supplying gas.
- the microwave introduction flange (11) and the gas introduction flange (12) are attached to a container (10).
- the nozzle (7) has, for example, a slit shape so that the plasma generated by applying the microwave together with the raw material gas is blown out uniformly in a wide range.
- the substrate (5) was placed directly below the nozzle (7) of the microwave plasma apparatus so that the width of the nozzle coincided with the longitudinal direction of the substrate, and plasma CVD treatment was performed. .
- the nozzle (7) and the substrate (5) are used by adjusting so that the distance between them becomes a predetermined distance.
- the container (10) includes an exhaust pipe (8).
- a region (1) in FIG. 1 is a space between the nozzle (7) and the substrate (5), and is a high-density nitrogen-based active species region (1) described later in detail.
- the region is measured in the container (10).
- an active species measuring unit may be attached.
- the mean free path of nitrogen-based active species such as nitrogen atoms and NH molecules is shortened, and the nitrogen-based active species increase near the base material directly under the nozzle.
- the uniformity of nitriding directly under the nozzle is improved.
- the conventional remote plasma method has a problem that the synthesis rate of the nitrogen compound is slow and a long time is required.
- the pressure in the container is set sufficiently high so that the mean free path of ions is smaller than the Debye length.
- the length of the sheath formed between the plasma and the surrounding wall is about the Debye length.
- the pressure condition for the plasma nitriding treatment and the nitrogen compound production by plasma CVD used in the present invention is higher than the pressure at which the mean free path ( ⁇ M ) of ions in the plasma is smaller than the Debye length ( ⁇ De ).
- the pressure condition for the plasma CVD process is desirably 1 kPa or more.
- the conventionally known mean free path ( ⁇ M ) of ions in plasma will be described.
- the mean free path of ions is the average of the distance traveled by ions between the collision with another particle and the next collision. That is, the average distance traveled by ions without colliding.
- the mean free path ( ⁇ M ) is obtained from the following equations (1), (2), and (3).
- n the particle density (m ⁇ 3 )
- ⁇ the collision cross section (m 2 ).
- D the diameter of the particle.
- P nKT (3) It is.
- P a pressure (Torr)
- k a Boltzmann constant (1.381 ⁇ 10 ⁇ 23 J / K)
- T a temperature (K).
- Equation (4) shows that the mean free path of ions is inversely proportional to the pressure. As the pressure increases, the mean free path of ions decreases.
- epsilon 0 is the free space in the dielectric constant
- T e is the electron temperature (eV)
- n e is the electron density (m -3)
- e is the electron charge. Therefore, the Debye length is determined by the electron density and the electron temperature.
- the pressure condition at the time of production is set to a pressure higher than the pressure at which the mean free path of ions becomes smaller than the Debye length, and the source gas containing nitrogen-based gas is removed from the nozzle to the plasma region It is desirable to allow the gas flow to directly impinge on the substrate surface by blowing it through the substrate surface.
- FIGS. 2A and 2B schematically show ion collisions from plasma to the substrate surface in the collisionless sheath and the collision sheath, respectively.
- FIG. 2 (c) schematically shows the effect of the gas flow hitting the substrate surface in the method of the present invention.
- the plasma region is indicated by hatching.
- the plasma state is schematically represented by electrons (triangles), ions (circles), and nitrogen-based active species (such as heptagons). Arrows in the figure indicate particle movement.
- ion collision to the substrate surface in the collisionless sheath and the collision sheath will be briefly described below. (1) Ion collision with a base material in a collisionless sheath (see FIG.
- a collisionless sheath is formed between the plasma and the substrate surface.
- the ions generated in the plasma enter the sheath from the plasma, the ions accelerate toward the substrate surface from the sheath potential.
- the accelerated ions collide with the substrate surface with high energy. Therefore, in the CVD process using low-pressure plasma, ion collision occurs on the substrate surface.
- Ion collision with the base material in the collision sheath see FIG. 2B
- a collision sheath is formed in a plasma having a pressure higher than an intermediate pressure (strictly speaking, a pressure higher than a pressure at which the mean free path of ions becomes smaller than the Debye length).
- the flow of the source gas is forcibly sent out through the plasma region by blowing the source gas to the surface of the base material. Try to hit the surface directly.
- generated by discharge are transported to the base-material surface with the flow of this raw material gas.
- the active species transported to the substrate surface are further transported along the substrate surface along with the gas flow, and as a result, the active species are transported to the substrate surface. Forced spread.
- the flow rate of the gas striking the substrate surface during the plasma CVD process can be controlled by changing the flow rate of the gas to be supplied, the pressure in the container, the distance from the nozzle to the substrate surface, the cross-sectional area of the nozzle, etc. Is possible.
- an apparatus for producing a nitrogen compound suitable for the method of the present invention it is possible to measure nitrogen-based active species in the region of FIG. 2C by providing an active species measuring unit as shown in FIG. .
- the emission of nitrogen-based active species is measured spectroscopically, and the amount is qualitatively or quantitatively evaluated.
- a reference value for the amount of the nitrogen-based active species and controlling it to be smaller or larger than the value of the reference value, a more suitable amount of the nitrogen-based active species for the target process is provided on the substrate surface. It becomes possible to do.
- a gas containing a nitrogen-based gas is used as the source gas.
- an inert gas argon, helium, etc.
- hydrogen gas may be mixed and used in an appropriate amount depending on the conditions for performing plasma CVD.
- the gas is blown to the surface of the substrate through a nozzle provided in the container.
- the nozzle is provided on the upper surface of the substrate surface so that the flow of the source gas directly hits the substrate surface.
- a microwave is applied to the inside of the nozzle and / or the end or the periphery of the nozzle to generate plasma.
- the active species necessary for the production of the nitrogen compound can be obtained by making the flow of the raw material gas blown out from the nozzle and hitting the substrate surface appropriate strength. Can be sufficiently supplied to the substrate surface. Accordingly, a nitrogen compound with few defects can be formed at a high speed even at a location away from the plasma generation region.
- the uniformity of film formation can be improved by making the flow rate of the source gas and the direction of the gas flow hitting the substrate surface appropriate.
- the nitriding treatment method of the present invention can be carried out on a base material such as stainless steel in addition to the example of TiN described later.
- the technique of supplying a high-density nitrogen-based active species in the nitriding method can be applied to the generation of a nitrogen compound film on the surface of the substrate such as MOCVD.
- the method for producing a nitrogen compound of the present invention is particularly useful for producing a thin film of a nitrogen compound comprising any one of GaN, InGaN, InN, AlN, and mixed compositions thereof.
- Ga, In, or Al as an organometallic vapor and reacting it with a plasma containing a large amount of nitrogen-based active species generated from the source gas in the gas phase or on the substrate, GaN, InGaN, InN, Alternatively, a thin film of a nitrogen compound made of either AlN or a mixed composition thereof can be epitaxially grown on the substrate at a low temperature of 700 ° C. or lower.
- microwave plasma nitriding method of the present invention and the apparatus used in the method will be specifically described below.
- the shape of the nozzle may be a rectangle, a circle, or an intermediate shape between a rectangle and a circle, and may have various shapes.
- An elongated slit shape is desirable.
- Microplasma refers to plasma generated in a space having a discharge gap distance of 1 mm or less.
- a nozzle in order to generate a microplasma using a microwave, a nozzle is provided on a surface perpendicular to the propagation direction of the microwave, and the nozzle opening in the direction (vector direction) in which the microwave electric field is applied is provided. It is preferable to make it 1 mm or less. Therefore, in the present invention, in order to stably generate a microplasma using a microwave and realize a large area process region, it is desirable that the nozzle has a long and narrow slit shape with a gap of 1 mm or less.
- the microwave that generates plasma includes a power source having a frequency between 900 MHz and 5 GHz.
- the microwave waveform may be a continuous wave or a pulse.
- a microstrip line or a strip line is used as a microwave transmission line for applying a microwave to the nozzle.
- a microstrip line or stripline as a microwave transmission line, it is possible to concentrate the microwave electric field locally at the nozzle, and generate low-temperature plasma even at high pressure. Can do.
- a microstrip line or strip line and a nozzle are provided on a plate-like dielectric substrate, a plurality of these can be arrayed. Thereby, a plasma CVD process area can be enlarged.
- the microstrip line is a type of transmission line that has a structure in which a conductor line is formed on the surface of a dielectric substrate having a conductor surface formed on the back surface, and propagates electromagnetic waves.
- a strip line is a type of transmission line that has a structure in which a conductor foil is formed on the front and back surfaces of a dielectric and a conductor line is formed inside the dielectric, and propagates electromagnetic waves.
- a normal waveguide can also be used as a microwave transmission line.
- the plasma CVD processing region becomes a spot because of the structure, and it is possible to perform plasma CVD processing in a spot shape in a narrow region.
- mass production technology There is a limit to mass production technology.
- a blowout microwave plasma using a rectangular waveguide can be generated.
- a plasma tube is generated by providing a gas tube made of quartz or the like that vertically penetrates the waveguide and concentrating the electric field of the microwave in the gas tube or in the nozzle.
- the diameter of the nozzle that can be used is determined by the wavelength of the microwave in the waveguide, and is less than 10 mm when using 2.45 GHz. At larger diameters, plasma generation becomes difficult. In this example, since it is difficult to provide the nozzles in an array due to the structure, it is difficult to increase the plasma nitriding area.
- the plasma source in order to protect the plasma source from the above-mentioned radiant heat, measures are taken to prevent overheating and thermal damage of the plasma source.
- a structure in which heat of a plasma source obtained by radiant heat from a heater is released to the outside of the container through the container may be employed.
- the plasma source is brought into contact with a part of the container.
- the plasma source is a microwave plasma generation apparatus including a dielectric substrate, a microstrip line, a nozzle, and the like.
- the substrate temperature, gas flow rate, treatment time and the like are not particularly limited, but nitriding treatment and production of a nitrogen compound can be performed at a low temperature (substrate temperature of 800 ° C. or less).
- the embodiment of the present invention is a step of setting the atmospheric pressure to 1 kPa or more.
- the flow rate of the nitrogen-based gas is 1-5 L / min, and the plasma irradiation to the base material can be 2 hours or less.
- the large-scale nitrogen layer is formed by irradiating a high-density nitrogen-based active species while moving the substrate back and forth continuously or sequentially or while rotating the substrate. Area and continuous production can be made.
- a microwave plasma generator that can generate blown-out plasma using titanium metal as a base material is installed in the container, and the base material surface is nitrided at a pressure of 1 kPa or more. It was. Details of the nitriding method used in this embodiment will be described below.
- the apparatus shown in FIG. 1 is used.
- a microwave plasma generator is placed in a metal container (10).
- the nozzle (7) is a linear rectangular nozzle provided on one end face of the dielectric substrate (4).
- the nozzle (7) has a slit shape so that plasma generated by the application of microwaves together with the source gas is blown out uniformly in a wide width.
- a method of protecting the plasma source from the above-described radiant heat is adopted.
- the heat of the plasma source obtained by the radiant heat from the heater is brought out of the container through the container by bringing the plasma source into contact with a part of the container. The escape prevents the plasma source from overheating and thermal damage.
- Example 1 As an example of the present embodiment, a nozzle having a slit shape and a cross-sectional size of width 50 mm ⁇ gap 0.5 mm was used. Inside the container (10), a titanium substrate (5) having a thickness of 1 mm and a size of 25 mm ⁇ 25 mm is directly below the nozzle (7) of the microwave plasma generator, and the nozzle width is in the longitudinal direction of the substrate. It installed so that it might correspond and the plasma CVD process was performed. The processing procedure is as follows. The titanium base material (5) was installed on the base material stand (6) provided in the container (10). The height of the substrate base (6) was adjusted so that the distance between the nozzle (7) and the titanium substrate (5) was 3 mm.
- the container (10) was evacuated through the exhaust pipe (8).
- nitrogen is introduced into the container (10) through the gas introduction flange (12), the gas introduction pipe (9), the gas flow path (not shown) in the dielectric substrate (4), and the nozzle (7).
- Gas was introduced at 2 L / min.
- the pressure in the container (10) was maintained at 2.66 kPa using a pressure regulating valve connected to the exhaust pipe (8).
- microwaves power 60 W
- the microwave propagates in the dielectric substrate (4) provided with the microstrip line (3), and the inside of the nozzle (7) at the end of the dielectric substrate (4) and / or the nozzle (7). Applied to the edge to generate a plasma.
- Plasma was generated based on the source gas (nitrogen gas), and the high-density nitrogen-based active species diffused toward the titanium base material (5) along with the flow of the source gas.
- This diffused region is the high-density nitrogen-based active species region (1) shown in FIG. 1 located in the space between the nozzle (7) and the titanium substrate (5).
- the treatment time was 1 hour, and the temperature of the substrate on which the substrate was installed was 800 ° C. In the slit direction of the nozzle, the plasma generation area was approximately 50 mm. Moreover, the light emission part which blows off from the nozzle (7) has reached the substrate surface.
- FIG. 3 shows a photograph when plasma is generated under the conditions of the first embodiment.
- the gas pressure is higher than the intermediate pressure (1 kPa or higher), it is not necessary to apply a voltage directly to the base material, and the input energy of the microwave is 500 watts or less (this example is achieved with 60 watts or less, which is even smaller). ), A uniform high-density nitrogen-based active species region is generated from the plasma source to the substrate surface, and the substrate is irradiated with the generated nitrogen-based active species in a short time plasma treatment. Formation of uniform nitrogen compounds was confirmed.
- Example 2 As an example of the present embodiment, a titanium substrate was nitrided by the same apparatus as in Example 1.
- FIG. 4 shows photographs of the titanium surface before (a) and after (b) nitriding. It can be seen that after the nitriding treatment, it becomes gold and is uniformly treated.
- the golden color means that nitriding has been performed.
- the production conditions of this example are: microwave power 100 watts, gas pressure 2.66 kPa, nitrogen gas flow rate 1 L / min, treatment time 1 hour, substrate base temperature on which the substrate is installed is 800 ° C., nozzle ( The distance between 7) and the titanium substrate (5) is 3 mm.
- FIG. 1 microwave power 100 watts, gas pressure 2.66 kPa, nitrogen gas flow rate 1 L / min, treatment time 1 hour, substrate base temperature on which the substrate is installed is 800 ° C., nozzle ( The distance between 7) and the titanium substrate (5) is 3 mm.
- FIG. 5 shows the measurement results of the Raman spectrum of the nitride layer obtained in this example, which was measured using a microscopic Raman spectrometer (RENISHAW).
- (1) shows after plasma nitriding
- (2) shows before plasma nitriding.
- FIG. 6 shows the measurement results of the X-Ray diffraction (XRD) of the nitride layer obtained in this example. From the measurement result, the peak of TiN was confirmed.
- XRD X-Ray diffraction
- Example 3 As an example of the present embodiment, a titanium substrate was nitrided by the same apparatus as in Example 1. In this example, nitriding was performed at 2.66 kPa and 60 watts. The hardness of the titanium surface after the nitriding treatment was measured by a nanoindentation method using a nano indentation tester (ElIONIX ENT1100a (device name)). Therefore, it was possible to provide a nitriding method that exhibits an equivalent hardness with a significantly lower power consumption of 1/10 or less than that of the prior art.
- FIG. 7 shows a schematic diagram of the nitriding method of this example.
- a nozzle inclined by 45 degrees with respect to the normal line of the substrate is arranged, and the nitrogen-based active species is irradiated from the nozzle to the substrate at an incident angle of 45 degrees.
- the inclination angle is preferably in the range of ⁇ 45 degrees.
- FIG. 8 shows a multi-nozzle large-area device. A number of nozzles of the same apparatus as in the first embodiment are arranged in a line. As shown in FIG. 8, a microstrip line and gas flow paths are arranged in an array, and a plurality of plasma sources (106) for generating plasma are provided in a slot-shaped nozzle having a length of 200 mm, thereby increasing the plasma processing area. I have to. The plurality of plasma sources are installed in parallel on the upper surface of the metal large-area container.
- the base material (55) is installed on a base plate (54) capable of adjusting the temperature for installing a base material capable of moving back and forth or rotating in the large area container (104).
- the container includes an exhaust part (53).
- the upper part of the figure shows one structure of the plasma source (106).
- Gas 1 (51) and microwave (50) are supplied to the upper part of the plasma source.
- a nitrogen-based gas is supplied as a source gas (gas 1 (51)) from each gas source to each plasma source.
- Gas 2 (an organic metal gas such as TEIn or TMGa) is supplied from another position of the container as necessary.
- the pressure in the large area container (104) controls the pressure regulating valve and is maintained at 1 kPa or more.
- Microwave power is applied to each plasma source, and processing is performed by the nitrogen-based active species region (105) ejected from the nozzle.
- a stable plasma source at atmospheric pressure of about 10 kPa, supplying and decomposing ammonia (gas 1 (51)), transporting the nitrogen-based active species together with the carrier gas (gas 1 (51)) to the vicinity of the substrate,
- a group III element such as In or Ga as an organic metal (gas 2 (52)) such as TEIn (triethylindium) or TMGa (trimethylgallium)
- InGaN nitride necessary for a green LED or the like can be produced at a low temperature.
- MOCVD of the present invention it is possible to form a film at a low temperature by the generation of nitrogen-based plasma which is excellent in long-term stability, temperature resistance and active species generation characteristics and excellent in surface uniformity.
- the present embodiment relates to an apparatus and method relating to the case where an active species measuring unit (13) is provided.
- an active species measuring unit By providing the active species measuring unit, it is possible to measure the amount of nitrogen-based active species in the region of FIG. 2 (c), further providing a reference value for the amount of nitrogen-based active species, and the reference value
- the value By controlling the value to be smaller or larger than the above value, it becomes possible to provide the surface of the substrate with an amount of nitrogen-based active species more suitable for the target process.
- the present invention can be used as a surface modification method by nitriding the surface of steel or titanium.
- machine tool parts such as spindles and gears
- internal combustion engine parts such as turbines and fuel injection nozzles
- reduction gears such as power shovels
- nitriding treatments for aircraft, automobile parts and medical parts Can be applied.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Plasma & Fusion (AREA)
- Inorganic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Analytical Chemistry (AREA)
- Electromagnetism (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Vapour Deposition (AREA)
- Plasma Technology (AREA)
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
- Led Devices (AREA)
Abstract
プラズマによる窒素化合物膜の製造において、基材に電圧を印加することなく、かつ大きな容器を不要とし、大面積化に適し、より高圧プロセスで、消費電力が少ない方法及び装置を提供する。 マイクロ波プラズマを生成して窒素化合物を製造する窒素化合物の製造において、ノズルから窒素系ガスを含む原料ガスを基材の表面に流量を制御して吹き出しながら、前記原料ガスにマイクロ波を印加することにより、前記原料ガスから生成される窒素系活性種を含むプラズマを前記基材の表面に向かって照射する工程において、圧力を前記プラズマにおけるイオンの平均自由行程がデバイ長より小さくなる圧力より高く設定する。
Description
本発明は、マイクロ波プラズマ源を用いた窒素化合物の製造方法及び製造装置に関する。
従来、窒素化合物の薄膜を製造する方法には、基材表面を窒化処理する方法や、窒素化合物を薄膜製造技術により基材表面に形成する方法等が知られている。
窒化処理法は、表面改質処理法の一つであり、鉄鋼やチタンなどの表面を窒化する表面改質法として広く利用されている。窒化表面処理した製品は、スピンドルやギア等の工作機械部品や、タービンや燃料噴射ノズル等の内燃機関部品、パワーショベル等の減速機ギアや、航空機や自動車部品などに使用されている。また、近年、医療用部品への窒化処理等、様々な分野での開発がなされている。窒化処理法は、高硬度化、耐食性付与、耐摩耗性付与などの表面機能を付与する場合において、高密度窒素系活性種供給法として利用可能である。
窒化処理法は、その高密度窒素系活性種供給法の技術を、Metal Organic Chemical Vapor Deposition(以下、MOCVDという。)等の基材表面での材料生成に適用することができる。
半導体技術分野において、GaN系化合物半導体を材料とする青・緑色発光ダイオード(LED)は、白熱電球や蛍光灯などの既存の照明デバイスに取って代わる省エネルギー・長寿命の照明・表示用光源として普及しつつある。LED照明では、青色LEDで黄色蛍光体を励起する白色光合成方式が主流である。その場合のLED単体の発光効率の理論限界は270lm/W程度である。更に発光エネルギー効率を向上するためには(理論効率>400lm/W)、多色LEDを同時に発光させる蛍光体フリー白色LEDを開発する必要がある。課題は、In組成が30%程度のInGaNを発光材料として使用する緑色LEDの外部量子効率の向上である。現在、緑色LEDの発光効率は、高性能な製品でも約20%と青色や赤色LEDの発光効率に比べて、半分以下である。その理由は、その構成元素であるInの蒸気圧が高く600℃程度の低温成長が望ましい一方、窒素(N)は、800℃以上望ましくは1000℃以上でアンモニアを高温分解して活性状態の窒素を供給する必要があるため、最適な結晶成長条件が得られにくい。そのため、800℃以下で窒素系活性種を高密度で供給可能な手法が求められている。
窒化法として、例えば、ガス窒化炉にアンモニアガスのみを実質的に供給し、アンモニアガスとアンモニア分解ガス中で部材表面に窒化層を形成させる技術が知られている(特許文献1参照)。
また、金属部材の表面に金属窒化物の化合物層を効率的に形成するとともに、化合物層と窒素原子の拡散層との相乗効果により硬度を高めることができる、グロー放電によるイオン窒化方法が知られている(特許文献2参照)。特許文献2では、金属部材を-700V、0.95A(665W)でイオン窒化動作ガスとして水素2slm、アンモニア0.5slmを用いて、雰囲気圧1Torrで1時間イオン窒化処理を行っている。その際、金属部材の温度を300-650℃の温度に保持し、金属部材の表面に0.001-2mA/cm^2の電流密度のグロー放電を用い、NHラジカルと窒素ラジカルの発光強度比が0.2-0.1となるプラズマ状態でイオン窒化を行っている。
大気圧プラズマによるチタン合金の窒化薄膜合成技術は、従来の窒化法と比較してより簡便な窒化処理方法として知られている(非特許文献1参照)。大気圧プラズマを用いることにより、処理装置の簡易化、高密度ラジカル生成、金属表面粗化の抑制が可能である。非特許文献1では、高周波電源(5kV、1.2A、21kHz)で実効電力4キロワット、動作ガスとして窒素99%、水素ガス1%を用いている。
最近、低圧から中間圧および高圧において、プラズマを安定に生成・維持できるマイクロ波プラズマ処理装置が開発されている(非特許文献2、特許文献3参照)。通常、プラズマCVD処理用等のプラズマの特性は、プラズマを生成する圧力に強く依存するため、プラズマを圧力に対して次の三つの種類に分けられる。(1)低圧プラズマ:圧力領域0.01Torr~1.0Torr、(2)中間圧プラズマ:圧力領域1.0Torr~100Torr、(3)高圧プラズマ:圧力領域100Torr~760Torr(大気圧)。なお、以下、圧力はPaの単位で示す(1Torr=133Pa)。
本発明者らは、導波管の代わりにマイクロストリップ線路をマイクロ波伝送線路として用いたマイクロ波プラズマ処理装置を既に提案した(非特許文献2、特許文献3参照)。該装置は、従来の導波管を用いたマイクロ波プラズマ処理装置より、単純な構造、安価な製作、低電力運転等のメリットを有し、これからの様々な産業的応用が期待される。
吉光祐樹他、「大気圧プラズマを用いたチタン合金Ti-6Al-4Vの窒化薄膜合成」、電気学会プラズマ研究会 PST-14-057(2014)1-4.
Jaeho Kim et.al、Jpn.J.Appl.Phys.54、10AA02(2015)
従来、窒素化合物の製造方法や基材の窒化処理方法において、次のような問題があった。
特許文献1のような技術では、ガスを加熱して窒化を行うため、消費ガス量が多く、約7.5m3以上が必要となる。また、例えば、基板直径30mmに対して、幅760mm×長さ1200mm×高さ800mmの大型な容器も必要となる。
特許文献2のようなグロー放電を用いた窒化法では、真空下でプラズマ処理を行う必要があり、被窒化物の大型化に伴う装置の大型化と高コスト化が問題となる。空間でプラズマを生成するため、消費電力が多くなり効率が悪いという問題がある。また、被窒化物を電極として利用しているため、アーク点(スポット上の放電痕)の形成や、細い穴を有している場合にホローカソード放電への移行といった点が問題となる。
非特許文献1の技術は、基板の照射中心温度が約970℃、φ4の範囲のみ窒化が可能であり、窒化面積が非常に小さいという問題がある。また、円筒構造でありφ4のオリフィスからプラズマを照射しているため、部分的な窒化となるので、大面積化が困難である。また、大きな電力を必要とするという問題もある。
特許文献1のような技術では、ガスを加熱して窒化を行うため、消費ガス量が多く、約7.5m3以上が必要となる。また、例えば、基板直径30mmに対して、幅760mm×長さ1200mm×高さ800mmの大型な容器も必要となる。
特許文献2のようなグロー放電を用いた窒化法では、真空下でプラズマ処理を行う必要があり、被窒化物の大型化に伴う装置の大型化と高コスト化が問題となる。空間でプラズマを生成するため、消費電力が多くなり効率が悪いという問題がある。また、被窒化物を電極として利用しているため、アーク点(スポット上の放電痕)の形成や、細い穴を有している場合にホローカソード放電への移行といった点が問題となる。
非特許文献1の技術は、基板の照射中心温度が約970℃、φ4の範囲のみ窒化が可能であり、窒化面積が非常に小さいという問題がある。また、円筒構造でありφ4のオリフィスからプラズマを照射しているため、部分的な窒化となるので、大面積化が困難である。また、大きな電力を必要とするという問題もある。
従来、基材へのイオン衝撃を減らすために、基材をプラズマ領域から遠く離れたところに置いて処理を行う通常のリモートタイプのプラズマ処理方法がある。しかし、通常のリモートタイプ法では、窒素化合物の合成速度が遅く、長時間が必要であるという問題があった。
窒素化合物の製造方法において、マイクロ波プラズマを使用することの提案は特許文献3で示された。特許文献3のプラズマ処理装置は、低電力で安定した窒素プラズマを発生することができた。窒素プラズマは、銅等の金属表面の窒化処理や窒化物半導体の製作等のプラズマ窒化処理への応用が期待されるものである。しかしながら、発明者らが、窒素化合物について研究開発する過程で次のような問題が生じた。従来の特許文献3の装置では、ヒーターを用いた基材の加熱をする窒素化合物の製造においては、輻射熱が強く、該熱からプラズマ源を保護することが難しいという問題であった。
また、緑色LEDにおいては、Inの組成割合を30%程度添加したInGaNを結晶成長させる必要がある。しかし、Inの再蒸発や組成分離(セグリゲーション)を防止し、結晶品質を向上するためには、600以上700℃以下の成長温度が望ましい。一方、アンモニアを分解するするためには、高温(約800℃)が必要であり、アンモニアを分解しつつ両者を最適に制御する手法が見出されていない状況にある。
本発明は、これらの問題を解決しようとするものであり、窒素系ガス(窒素ガスやアンモニアガス等)をプラズマ状態とし、高密度の窒素系活性種(以下「窒素系ラジカル」ともいう。)を基材に照射する、窒素化合物を製造する方法及び装置を提供することを目的とする。また、従来より低温で形成可能な窒素化合物の製造方法及び製造装置を提供することを目的とする。また、より高圧プロセスで消費電力の少ない、窒素化合物の製造方法及び製造装置を提供することを目的とする。
本発明は、前記目的を達成するために、以下の特徴を有する。
本発明の方法は、マイクロ波プラズマを生成して窒素化合物を製造する窒素化合物の製造方法であって、ノズルから窒素系ガスを含む原料ガスを基材の表面に流量を制御して吹き出しながら、前記原料ガスにマイクロ波を印加することにより、前記原料ガスから生成される窒素系活性種を含むプラズマを前記基材の表面に向かって照射する工程において、圧力を前記プラズマにおけるイオンの平均自由行程がデバイ長より小さくなる圧力より高く設定することを特徴とする。
本発明の方法において、前記マイクロ波を印加するために、マイクロ波伝送線路としてマイクロストリップ線路又はストリップ線路を用いることが望ましい。
本発明の方法において、前記ノズルをライン状に配置することにより、前記プラズマを前記基材に向かってライン状に照射して、前記基材表面に窒素化合物をライン状に形成することができる。
本発明の方法において、前記ノズルから前記原料ガスを吹き出す際に、吹き出し角度を前記基材に垂直な面に対してプラス及びマイナス45度の角度の範囲内で吹き出すようにしてもよい。
本発明の方法において、前記工程が行われる圧力を1kPa以上に設定することが好ましい。
本発明の方法は、前記マイクロ波の投入エネルギーが500ワット以下である。
本発明の方法は、前記ノズルを2個以上重ねて並べて、各ノズルから窒素系ガスを含む原料ガスを前記基材の表面に流量を制御して吹き出しながら、前記原料ガスにマイクロ波を印加することにより、前記原料ガスから窒素系活性種を含むプラズマを生成して、前記プラズマを前記基材の表面に向かって照射する工程を含むことを特徴とする。
本発明の方法は、例えば、前記基材がTiであり、前記窒素化合物がTiNである。
本発明の方法は、例えば、Ga、In、あるいはAlを有機金属蒸気として輸送し、前記原料ガスから生成される窒素系活性種を含むプラズマと、気相あるいは基板上で反応させることにより、GaN、InGaN、InN、あるいはAlN、及びこれらの混合組成のいずれかからなる窒素化合物の薄膜結晶を、700℃以下の低温にて前記基材上にエピタキシャル成長させる。
本発明の方法は、窒素系活性種計測部及び制御部を設け、窒素系活性種の量の計測に基づき制御することを特徴とする。
本発明の装置は、マイクロ波プラズマを生成して窒素化合物を製造する装置であって、容器と、容器内に設けられ、ノズルを有するマイクロ波プラズマ生成装置と、窒素系活性種計測部と、制御部とを備え、前記制御部は、前記ノズルから窒素系ガスを含む原料ガスを基材の表面に流量を制御して吹き出しながら、前記原料ガスにマイクロ波を印加することにより、前記原料ガスから生成される窒素系活性種を含むプラズマを前記基材の表面に向かって照射する工程において、容器内の圧力が、前記プラズマにおけるイオンの平均自由行程がデバイ長より小さくなる圧力より高くなるように、前記窒素系活性種の量の計測に基づき制御することを特徴とする。
本発明の方法において、前記マイクロ波を印加するために、マイクロ波伝送線路としてマイクロストリップ線路又はストリップ線路を用いることが望ましい。
本発明の方法において、前記ノズルをライン状に配置することにより、前記プラズマを前記基材に向かってライン状に照射して、前記基材表面に窒素化合物をライン状に形成することができる。
本発明の方法において、前記ノズルから前記原料ガスを吹き出す際に、吹き出し角度を前記基材に垂直な面に対してプラス及びマイナス45度の角度の範囲内で吹き出すようにしてもよい。
本発明の方法において、前記工程が行われる圧力を1kPa以上に設定することが好ましい。
本発明の方法は、前記マイクロ波の投入エネルギーが500ワット以下である。
本発明の方法は、前記ノズルを2個以上重ねて並べて、各ノズルから窒素系ガスを含む原料ガスを前記基材の表面に流量を制御して吹き出しながら、前記原料ガスにマイクロ波を印加することにより、前記原料ガスから窒素系活性種を含むプラズマを生成して、前記プラズマを前記基材の表面に向かって照射する工程を含むことを特徴とする。
本発明の方法は、例えば、前記基材がTiであり、前記窒素化合物がTiNである。
本発明の方法は、例えば、Ga、In、あるいはAlを有機金属蒸気として輸送し、前記原料ガスから生成される窒素系活性種を含むプラズマと、気相あるいは基板上で反応させることにより、GaN、InGaN、InN、あるいはAlN、及びこれらの混合組成のいずれかからなる窒素化合物の薄膜結晶を、700℃以下の低温にて前記基材上にエピタキシャル成長させる。
本発明の方法は、窒素系活性種計測部及び制御部を設け、窒素系活性種の量の計測に基づき制御することを特徴とする。
本発明の装置は、マイクロ波プラズマを生成して窒素化合物を製造する装置であって、容器と、容器内に設けられ、ノズルを有するマイクロ波プラズマ生成装置と、窒素系活性種計測部と、制御部とを備え、前記制御部は、前記ノズルから窒素系ガスを含む原料ガスを基材の表面に流量を制御して吹き出しながら、前記原料ガスにマイクロ波を印加することにより、前記原料ガスから生成される窒素系活性種を含むプラズマを前記基材の表面に向かって照射する工程において、容器内の圧力が、前記プラズマにおけるイオンの平均自由行程がデバイ長より小さくなる圧力より高くなるように、前記窒素系活性種の量の計測に基づき制御することを特徴とする。
本発明の方法は、窒化プラズマ生成のために、マイクロ波はノズルの例えば先端近傍に強電界を印加し、窒素系ガス(窒素ガスやアンモニアガス等)をプラズマ状態とし、高密度の窒素系活性種を基材に照射するリモートタイプの手法である。窒素系ガスに、水素、ヘリウム、アルゴン等のガスを混合して流しても良い。リモートタイプの手法であるため、被窒化物に直接に電圧を印加する必要はなく、アーキングなどによるスポット状の放電痕の発生は根本的に解決可能である。また、本発明では、窒化装置や窒素化合物の製造装置の小型化や軽量化が可能である。また、本発明では、マイクロ波の投入エネルギーが500ワット以下、さらに200ワット以下でも、可能であることから、従来技術に比べて大幅な消費電力の低減ができる。また、本発明の方法によれば、窒化処理や窒素化合物の製造を基材温度800℃以下の温度で実施することが可能である。
本発明の方法の、基材を窒化処理することにより生成された窒化膜は、硬度特性等の優れた特性を示した。
従来製作が困難であった窒素化合物膜の製造であっても、本発明の窒素系活性種の高密度供給法により窒素系活性種を供給すれば、MOCVD等による結晶成長法において、800℃未満、より好ましくは600以上700℃以下という低温の成長温度で膜形成を実現することができる。
本発明の方法では、ライン状に高密度の窒素系活性種を基材に供給することが可能となり、プラズマ源を複数並列に配置だけで、大面積化に対応をすることが可能となる。また、基材を前後左右又は回転等により適宜移動させることが容易にでき、これにより、基材表面の窒化一様性が可能となる。
MOCVD結晶成長において一般的な10kPa程度での圧力において、本発明のプラズマ源は安定なプラズマ源である。本発明では、この安定なプラズマ源を用いて、アンモニアを分解し、キャリアガスとともに窒素系活性種を基板近傍まで輸送するとともに、In、GaなどIII族元素を、TEIn(トリエチルインジウム)やTMGa(トリメチルガリウム)などの有機金属として供給することにより、低温で、緑色LED等に必要な窒化InGaN等を低温で成長することができる。
本発明の方法の、基材を窒化処理することにより生成された窒化膜は、硬度特性等の優れた特性を示した。
従来製作が困難であった窒素化合物膜の製造であっても、本発明の窒素系活性種の高密度供給法により窒素系活性種を供給すれば、MOCVD等による結晶成長法において、800℃未満、より好ましくは600以上700℃以下という低温の成長温度で膜形成を実現することができる。
本発明の方法では、ライン状に高密度の窒素系活性種を基材に供給することが可能となり、プラズマ源を複数並列に配置だけで、大面積化に対応をすることが可能となる。また、基材を前後左右又は回転等により適宜移動させることが容易にでき、これにより、基材表面の窒化一様性が可能となる。
MOCVD結晶成長において一般的な10kPa程度での圧力において、本発明のプラズマ源は安定なプラズマ源である。本発明では、この安定なプラズマ源を用いて、アンモニアを分解し、キャリアガスとともに窒素系活性種を基板近傍まで輸送するとともに、In、GaなどIII族元素を、TEIn(トリエチルインジウム)やTMGa(トリメチルガリウム)などの有機金属として供給することにより、低温で、緑色LED等に必要な窒化InGaN等を低温で成長することができる。
本発明の実施形態について以下説明する。
本発明は、窒化プラズマ生成のために、マイクロ波によりノズル先端近傍に強電界を印加し、窒素系ガス(窒素ガスやアンモニアガス等)をプラズマ状態とし、高密度の窒素系活性種を基材に照射するリモートタイプの手法である。
図1は本発明の実施の形態のマイクロ波プラズマ窒化方法のために使用する装置の一例の模式図である。図1のマイクロ波プラズマ窒化装置は、容器(10)と、容器(10)内に設けられたマイクロ波プラズマ生成装置とで構成される。マイクロ波プラズマ生成装置は、内部にガス流路と裏面に導体面を設けた誘電体基板(4)、誘電体基板(4)の表面に設けられたマイクロストリップ線路(3)、誘電体基板(4)の一方の端の端面に設けたノズル(7)、マイクロ波プラズマ生成装置にマイクロ波を供給するためのマイクロ波導入用フランジ(11)と同軸ケーブル(2)、及びマイクロ波プラズマ生成装置にガスを供給するためのガス導入用フランジ(12)とガス導入管(9)、とから構成されている。前記マイクロ波導入用フランジ(11)及び前記ガス導入用フランジ(12)は、容器(10)に取り付けられている。
ノズル(7)は、原料ガスとともにマイクロ波の印加により生成されたプラズマが幅広に一様に吹き出るように、例えば、スリット形状を有している。容器(10)の内部に、基材(5)をマイクロ波プラズマ装置のノズル(7)の真下に、ノズルの幅が基材の長手方向と一致するように設置し、プラズマCVD処理を行った。ノズル(7)と基材(5)との距離が所定の距離になるように調整して使用する。容器(10)は、排気管(8)を備える。図1の(1)の領域は、ノズル(7)と基材(5)との間の空間であり、詳しく後述する高密度窒素系活性種領域(1)である。ノズル(7)と基材(5)との間の空間である高密度窒素系活性種領域(1)における窒素系活性種に関する情報を取得するために、容器(10)に当該領域を計測するための活性種計測部が取り付けられていてもよい。
ノズル(7)は、原料ガスとともにマイクロ波の印加により生成されたプラズマが幅広に一様に吹き出るように、例えば、スリット形状を有している。容器(10)の内部に、基材(5)をマイクロ波プラズマ装置のノズル(7)の真下に、ノズルの幅が基材の長手方向と一致するように設置し、プラズマCVD処理を行った。ノズル(7)と基材(5)との距離が所定の距離になるように調整して使用する。容器(10)は、排気管(8)を備える。図1の(1)の領域は、ノズル(7)と基材(5)との間の空間であり、詳しく後述する高密度窒素系活性種領域(1)である。ノズル(7)と基材(5)との間の空間である高密度窒素系活性種領域(1)における窒素系活性種に関する情報を取得するために、容器(10)に当該領域を計測するための活性種計測部が取り付けられていてもよい。
マイクロ波プラズマ窒化装置の容器内圧力が増加することによって、窒素原子、NH分子などの窒素系活性種の平均自由行程が短くなり、ノズル直下の基材付近において窒素系活性種が増加するため、ノズル直下の窒化の均一性が向上する。このとき、マイクロ波電力の増加、及び処理時間を伸ばすことのいずれか一方又は両方により、ノズル直下に加えて、より広い範囲において、均一なリモートプラズマによる窒化を行うことが可能となる。
しかし、従来のリモートプラズマ法では、窒素化合物の合成速度が遅く、長時間が必要であるという問題があった。
しかし、従来のリモートプラズマ法では、窒素化合物の合成速度が遅く、長時間が必要であるという問題があった。
本発明では、容器内の圧力を、イオンの平均自由行程がデバイ長より小さくなるように圧力を十分高く設定する。一般的に、プラズマとそれを囲む壁との間に形成するシースの長さはデバイ長程度である。
これにより、プラズマと基材との間に、衝突状態のシースを形成することができ、プラズマからのイオンは、シース内で他の粒子とぶつかり合い、その運動エネルギーを失う。その結果、基材表面において、イオンを減らし、ノズルからのガスの流れと共に、高密度の窒素系活性種が基材表面に供給される。
そこで、本発明で用いるプラズマ窒化処理及びプラズマCVDによる窒素化合物製造の圧力条件としては、プラズマにおけるイオンの平均自由行程(λM)がデバイ長(λDe)より小さくなる圧力より高い圧力であることが好ましい。具体的には、プラズマCVD処理の圧力条件としては、1kPa以上が望ましい。
これにより、プラズマと基材との間に、衝突状態のシースを形成することができ、プラズマからのイオンは、シース内で他の粒子とぶつかり合い、その運動エネルギーを失う。その結果、基材表面において、イオンを減らし、ノズルからのガスの流れと共に、高密度の窒素系活性種が基材表面に供給される。
そこで、本発明で用いるプラズマ窒化処理及びプラズマCVDによる窒素化合物製造の圧力条件としては、プラズマにおけるイオンの平均自由行程(λM)がデバイ長(λDe)より小さくなる圧力より高い圧力であることが好ましい。具体的には、プラズマCVD処理の圧力条件としては、1kPa以上が望ましい。
従来知られている、プラズマにおけるイオンの平均自由行程(λM)について説明する。
イオンの平均自由行程とは、他の粒子との衝突から次の衝突までの間にイオンが進む距離の平均である。すなわち、イオンが衝突せずに進む平均距離である。平均自由行程(λM)は下記の式(1)と式(2)、および式(3)から求められる。
イオンの平均自由行程とは、他の粒子との衝突から次の衝突までの間にイオンが進む距離の平均である。すなわち、イオンが衝突せずに進む平均距離である。平均自由行程(λM)は下記の式(1)と式(2)、および式(3)から求められる。
ここで、nは粒子の密度(m-3)、σは衝突断面積(m2)である。
衝突断面積は、
σ=πD2 (2)
である。ここで、Dは粒子の直径である。
また、下記の気体の状態方程式は
P=nKT (3)
である。Pは圧力(Torr)、kはボルツマン定数(1.381×10-23J/K)、Tは温度(K)である。
式(1)に式(2)と式(3)を適用すると、粒子の平均自由行程は次のようになる。
衝突断面積は、
σ=πD2 (2)
である。ここで、Dは粒子の直径である。
また、下記の気体の状態方程式は
P=nKT (3)
である。Pは圧力(Torr)、kはボルツマン定数(1.381×10-23J/K)、Tは温度(K)である。
式(1)に式(2)と式(3)を適用すると、粒子の平均自由行程は次のようになる。
式(4)から、イオンの平均自由行程は圧力に反比例関係であることがわかる。圧力が高くなるとイオンの平均自由行程が小さくなる。
一方、デバイ長(λDe)は次の式から求められる。
ここで、ε0は自由空間中誘電率、Teは電子温度(eV)、neは電子密度(m-3)、eは電子の電荷である。従って、デバイ長は電子密度と電子温度により決まる。
本発明の窒素化合物の製造方法では、製造時の圧力条件を、イオンの平均自由行程がデバイ長より小さくなる圧力より高い圧力に設定するとともに、窒素系ガスを含む原料ガスをノズルからプラズマ領域を通って基材表面に吹き出すことにより、ガスの流れが基材表面に直接当たるようにすることが望ましい。
以下、図面を用いて、詳しく説明する。
以下、図面を用いて、詳しく説明する。
図2(a)と(b)に、それぞれ無衝突シースと衝突シースにおけるプラズマから基材表面へのイオン衝突の様子を模式的に示す。また、図2(c)に、本発明の方法において基材表面に当たるガス流れの効果を模式的に示す。図中、プラズマ領域を斜線で示す。図中模式的にプラズマ状態を電子(三角)、イオン(丸)、窒素系活性種(七角形など)で示す。図中矢印は粒子の移動を示す。
まず、無衝突シースと衝突シースにおける基材表面へのイオン衝突について下記に簡単に説明する。
(1)無衝突シースにおける基材へのイオン衝突(図2(a)参照)
通常の低圧プラズマでは、プラズマと基材表面との間に無衝突シースを形成する。プラズマで生成したイオンは、プラズマからシースの方に入ると、シース電位より基材表面に向かって加速する。低圧の場合は、空間に粒子が少ないので、加速したイオンは高いエネルギーを持ったまま基材表面に衝突する。そのため、低圧プラズマを用いたCVD処理では、基材表面へのイオン衝突が生じる。
(2)衝突シースにおける基材へのイオン衝突(図2(b)参照)
通常、中間圧以上の高い圧力(厳密には、イオンの平均自由行程がデバイ長より小さくなる圧力より高い圧力)のプラズマでは、衝突シースを形成する。プラズマで生成したイオンは、プラズマからシースの方に入ると、シース電位より基材表面に向かって加速される。ところが、高い圧力では、シース内における中性粒子などの密度が高いため、加速中のイオンはそれらの粒子と衝突を繰り返して起こす。イオンは加速しにくくなり、基材表面に達するイオンの運動エネルギーは低い。そのため、中間圧以上のプラズマを用いたCVD処理では、基材表面へのイオン衝突は劇的に減る。
この衝突シースと無衝突シースについては、既に知られている。
まず、無衝突シースと衝突シースにおける基材表面へのイオン衝突について下記に簡単に説明する。
(1)無衝突シースにおける基材へのイオン衝突(図2(a)参照)
通常の低圧プラズマでは、プラズマと基材表面との間に無衝突シースを形成する。プラズマで生成したイオンは、プラズマからシースの方に入ると、シース電位より基材表面に向かって加速する。低圧の場合は、空間に粒子が少ないので、加速したイオンは高いエネルギーを持ったまま基材表面に衝突する。そのため、低圧プラズマを用いたCVD処理では、基材表面へのイオン衝突が生じる。
(2)衝突シースにおける基材へのイオン衝突(図2(b)参照)
通常、中間圧以上の高い圧力(厳密には、イオンの平均自由行程がデバイ長より小さくなる圧力より高い圧力)のプラズマでは、衝突シースを形成する。プラズマで生成したイオンは、プラズマからシースの方に入ると、シース電位より基材表面に向かって加速される。ところが、高い圧力では、シース内における中性粒子などの密度が高いため、加速中のイオンはそれらの粒子と衝突を繰り返して起こす。イオンは加速しにくくなり、基材表面に達するイオンの運動エネルギーは低い。そのため、中間圧以上のプラズマを用いたCVD処理では、基材表面へのイオン衝突は劇的に減る。
この衝突シースと無衝突シースについては、既に知られている。
図2(c)に示した、本発明の方法における基材表面に当たるガス流れの効果を簡単に説明する。
本発明の窒素化合物の作製方法では、図2(c)に示すように、原料ガスを前記基材の表面に吹き出すことで、原料ガスの流れがプラズマ領域を通って強制的に送り出され、基板表面に直接当たるようにする。これにより、放電により生成される活性種は、この原料ガスの流れと共に基材表面に輸送される。さらに、基材表面に当たるガスは基材表面を沿って流れるので、基材表面に輸送された活性種はガスの流れと共に基材表面を沿ってさらに輸送され、その結果、基板表面に活性種が強制拡散される。
プラズマCVD処理中の基材表面に当たるガスの流速は、供給するガスの流量や、容器内の圧力や、ノズルから基材表面までの距離や、ノズルの断面積などを変えることにより制御することが可能である。
また、本発明の方法に適する窒素化合物の製造装置として、図1に示すように活性種計測部を設けることで、図2(c)の領域における窒素系活性種を計測することが可能である。例えば、窒素系活性種の発光を分光計測をし、その量を定性的ないしは定量的に評価する。更に、その窒素系活性種の量に基準値を設け、その基準値の値よりも小ないしは大に制御することで、より目的のプロセスに適した窒素系活性種の量を基材表面に提供することが可能となる。
本発明の窒素化合物の作製方法では、図2(c)に示すように、原料ガスを前記基材の表面に吹き出すことで、原料ガスの流れがプラズマ領域を通って強制的に送り出され、基板表面に直接当たるようにする。これにより、放電により生成される活性種は、この原料ガスの流れと共に基材表面に輸送される。さらに、基材表面に当たるガスは基材表面を沿って流れるので、基材表面に輸送された活性種はガスの流れと共に基材表面を沿ってさらに輸送され、その結果、基板表面に活性種が強制拡散される。
プラズマCVD処理中の基材表面に当たるガスの流速は、供給するガスの流量や、容器内の圧力や、ノズルから基材表面までの距離や、ノズルの断面積などを変えることにより制御することが可能である。
また、本発明の方法に適する窒素化合物の製造装置として、図1に示すように活性種計測部を設けることで、図2(c)の領域における窒素系活性種を計測することが可能である。例えば、窒素系活性種の発光を分光計測をし、その量を定性的ないしは定量的に評価する。更に、その窒素系活性種の量に基準値を設け、その基準値の値よりも小ないしは大に制御することで、より目的のプロセスに適した窒素系活性種の量を基材表面に提供することが可能となる。
原料ガスは、窒素系ガスを含むガスを用いる。
また、プラズマの生成する条件に応じて、不活性ガス(アルゴン、ヘリウム等)を混合して用いる。不活性ガスを混合することにより、高い圧力においてもプラズマを安定に維持することができる。
また、プラズマCVDを行う条件に応じて、水素ガスを適量に混合して用いることがある。
また、プラズマの生成する条件に応じて、不活性ガス(アルゴン、ヘリウム等)を混合して用いる。不活性ガスを混合することにより、高い圧力においてもプラズマを安定に維持することができる。
また、プラズマCVDを行う条件に応じて、水素ガスを適量に混合して用いることがある。
ガスは、容器内に設けられているノズルを通って基材表面に吹き出す。ノズルは、基材表面の上部に設け、原料ガスの流れが基材表面に直接当たるようにする。上記ノズルの内部及び/又はノズルの端又は周辺にマイクロ波を印加し、プラズマを生成する。
本発明では、基材をプラズマ生成領域から離れたところに置いても、ノズルから吹き出て基材表面に当たる原料ガスの流れを適当な強さにすることにより、窒素化合物の作製に必要な活性種を基材表面に十分に供給することができる。これにより、プラズマ生成領域から離れたところにおいても、欠陥が少ない窒素化合物を高速で成膜することができる。
また、原料ガスの流速と基材表面に当たるガスの流れの向きを適切にすることにより、成膜の一様性を向上することができる。
本発明では、基材をプラズマ生成領域から離れたところに置いても、ノズルから吹き出て基材表面に当たる原料ガスの流れを適当な強さにすることにより、窒素化合物の作製に必要な活性種を基材表面に十分に供給することができる。これにより、プラズマ生成領域から離れたところにおいても、欠陥が少ない窒素化合物を高速で成膜することができる。
また、原料ガスの流速と基材表面に当たるガスの流れの向きを適切にすることにより、成膜の一様性を向上することができる。
本発明の窒化処理方法は、後述するTiNの例の他に、ステンレス等の基材でも実施できる。
また、窒化処理法における高密度窒素系活性種供給法の技術を、MOCVD等の基材表面での窒素化合物膜の生成に適用することができる。本発明の窒素化合物の製造方法は、GaN、InGaN、InN、あるいはAlN、及びその混合組成のいずれかからなる窒素化合物の薄膜の製造に特に有用である。即ち、Ga、In、あるいはAlを有機金属蒸気として輸送し、前記原料ガスから生成される窒素系活性種を多く含むプラズマと、気相あるいは基板上で反応させることにより、GaN、InGaN、InN、あるいはAlN、及びその混合組成のいずれかからなる窒素化合物の薄膜を、700℃以下の低温にて前記基材上にエピタキシャル成長させることができる。
本発明のマイクロ波プラズマ窒化方法及び該方法で使用する装置について、以下に具体的に説明する。
ノズルの形状は、矩形、円形、または矩形と円形の中間の形でも良いし、様々な形状にすることができる。細長いスリット形状が望ましい。
高い圧力におけるマイクロ波プラズマ装置では、ノズルの断面面積が大きいと、マイクロ波電界とプラズマとのエネルギー結合が強くなり、プラズマが高温になる。高い圧力においても、安定した低温プラズマを得るためには、マイクロプラズマの生成が望ましい。マイクロプラズマとは、放電ギャップの距離が1mm以下である空間で生成するプラズマをいう。
本発明では、マイクロ波を用いてマイクロプラズマを生成するために、マイクロ波の伝播方向に対して垂直な面にノズルを設けて、マイクロ波の電界がかかる方向(ベクトル方向)のノズルの開口を1mm以下にすることが好ましい。
したがって、本発明では、マイクロ波を用いてマイクロプラズマを安定に生成させると共に、かつ大面積プロセス領域を実現するため、ノズルの形状として1mm以下の隙間を持つ、細長いスリット形状が望ましい。
高い圧力におけるマイクロ波プラズマ装置では、ノズルの断面面積が大きいと、マイクロ波電界とプラズマとのエネルギー結合が強くなり、プラズマが高温になる。高い圧力においても、安定した低温プラズマを得るためには、マイクロプラズマの生成が望ましい。マイクロプラズマとは、放電ギャップの距離が1mm以下である空間で生成するプラズマをいう。
本発明では、マイクロ波を用いてマイクロプラズマを生成するために、マイクロ波の伝播方向に対して垂直な面にノズルを設けて、マイクロ波の電界がかかる方向(ベクトル方向)のノズルの開口を1mm以下にすることが好ましい。
したがって、本発明では、マイクロ波を用いてマイクロプラズマを安定に生成させると共に、かつ大面積プロセス領域を実現するため、ノズルの形状として1mm以下の隙間を持つ、細長いスリット形状が望ましい。
プラズマを生成するマイクロ波としては、900MHzから5GHzまでの間の周波数を持つ電源が包含される。マイクロ波の波形は連続波でも良いし、パルスでも良い。
本発明では、マイクロ波をノズルに印加するためのマイクロ波の伝送線路として、マイクロストリップ線路、または、ストリップ線路を用いる。マイクロ波の伝送線路として、マイクロストリップ線路、または、ストリップ線路を用いることにより、ノズルのところに局所的にマイクロ波の電界を集中させることが可能となり、高い圧力においても低温のプラズマを生成することができる。
また、板状の誘電体基板に、マイクロストリップ線路又はストリップ線路と、ノズルとを設けるので、これらを複数にアレイすることができる。これにより、プラズマCVD処理面積を大規模化することができる。
ここで、マイクロストリップ線路とは、裏面に導体面を形成した誘電体基板の表面に導体線路を形成した構造を持ち、電磁波を伝搬する伝送線路の一種である。ストリップ線路とは、誘電体の表面と裏面に導体箔を形成し、誘電体の内部に導体線路を形成した構造を持ち、電磁波を伝搬する伝送線路の一種である。
また、板状の誘電体基板に、マイクロストリップ線路又はストリップ線路と、ノズルとを設けるので、これらを複数にアレイすることができる。これにより、プラズマCVD処理面積を大規模化することができる。
ここで、マイクロストリップ線路とは、裏面に導体面を形成した誘電体基板の表面に導体線路を形成した構造を持ち、電磁波を伝搬する伝送線路の一種である。ストリップ線路とは、誘電体の表面と裏面に導体箔を形成し、誘電体の内部に導体線路を形成した構造を持ち、電磁波を伝搬する伝送線路の一種である。
本発明では、マイクロ波の伝送線路として、通常の導波管を用いることもできる。導波管を用いる場合は、構造上、プラズマCVD処理領域がスポットとなり、狭い領域にスポット状にプラズマCVD処理を行うことが可能であるが、プラズマCVD処理面積の大規模化が難しく、工業用量産技術としては限界がある。
例として、矩形導波管を用いた吹き出し形のマイクロ波プラズマ生成することができる。導波管を垂直に貫通する石英等のガス管を設け、ガス管内またはノズルに、マイクロ波の電界を集中させることにより、プラズマを生成する。使えるノズルの直径は、導波管におけるマイクロ波の波長により決まり、2.45GHzを用いる場合は10mm以下である。それ以上の直径では、プラズマ生成が難しくなる。また、この例では、構造上、ノズルをアレイ化して設けることが困難であるため、プラズマ窒化処理面積を大規模化することが難しい。
例として、矩形導波管を用いた吹き出し形のマイクロ波プラズマ生成することができる。導波管を垂直に貫通する石英等のガス管を設け、ガス管内またはノズルに、マイクロ波の電界を集中させることにより、プラズマを生成する。使えるノズルの直径は、導波管におけるマイクロ波の波長により決まり、2.45GHzを用いる場合は10mm以下である。それ以上の直径では、プラズマ生成が難しくなる。また、この例では、構造上、ノズルをアレイ化して設けることが困難であるため、プラズマ窒化処理面積を大規模化することが難しい。
本実施の形態では、前述の輻射熱からプラズマ源を保護するために、プラズマ源の過熱や熱損傷を防止する手段を講じている。例えば、冷却手法として、ヒーターからの輻射熱によって得られたプラズマ源の熱を、容器を通して容器の外部へ逃がす構造をとるとよい。具体的には、プラズマ源を容器の一部に接触させる。プラズマ源は、より具体的には、誘電体基板、マイクロストリップ線路、ノズル等を含むマイクロ波プラズマ生成装置である。
本発明の実施の形態は、その基材温度、ガス流量、処理時間などは特に限定されないが、低温(基材温度800℃以下)で窒化処理や窒素化合物の製造が可能である。また、本発明の実施の形態は、雰囲気圧力1kPa以上に設定する工程である。また、本発明の実施の形態では、例えば、窒素系ガスの流量が1-5L/minであり、基材へのプラズマ照射が2時間以下とすることができる。
本発明の実施の形態では、基材を、連続的又は逐次的に、前後に移動させながら、もしくは回転移動をさせながら、高密度の窒素系活性種を照射処理することにより、窒化層の大面積及び連続的作製をすることができる。
(実施の形態1)
本実施の形態においては、チタン金属を基材とし、吹き出し形のプラズマを生成することができるマイクロ波プラズマ生成装置を、容器内に設置して、1kPa以上の圧力において基材表面の窒化を行った。以下に本実施の形態で用いた窒化方法の詳細を述べる。
本実施の形態においては、チタン金属を基材とし、吹き出し形のプラズマを生成することができるマイクロ波プラズマ生成装置を、容器内に設置して、1kPa以上の圧力において基材表面の窒化を行った。以下に本実施の形態で用いた窒化方法の詳細を述べる。
本実施の形態では、図1に示した装置を用いる。金属製の容器(10)内にマイクロ波プラズマ生成装置を配置する。ノズル(7)は、誘電体基板(4)の一方の端の端面に設けた線状の矩形ノズルである。ノズル(7)は、原料ガスとともにマイクロ波の印加により生成されたプラズマが幅広に一様に吹き出るように、スリット形状を有している。
本実施の形態では、前述の輻射熱からプラズマ源を保護する方法を採用している。本実施の形態では、冷却手法として、図1に示すように、プラズマ源を容器の一部に接触させることにより、ヒーターからの輻射熱によって得られたプラズマ源の熱を、容器を通して容器の外部へ逃がすことで、プラズマ源の過熱及び熱損傷を防止している。
(実施例1)
本実施の形態の一実施例として、スリット形状を有し、断面のサイズが幅50mm×隙間0.5mmのノズルを用いて実施した。容器(10)の内部に、厚さ1mmで大きさが25mm×25mmのチタン基材(5)をマイクロ波プラズマ生成装置のノズル(7)の真下に、ノズルの幅が基材の長手方向と一致するように設置し、プラズマCVD処理を行った。処理手順は以下の通りである。
容器(10)内に設けられた基材台(6)にチタン基材(5)を設置した。ノズル(7)とチタン基材(5)との距離が3mmになるように基材台(6)の高さを調整した。次に、排気管(8)を通して容器(10)の排気を行った。
次に、容器(10)内に、ガス導入用フランジ(12)、ガス導入管(9)、誘電体基板(4)内のガス流路(表示せず)、及びノズル(7)を通して、窒素ガスを2L/minで導入した。容器(10)内の圧力を、排気管(8)に接続した圧力調整バルブを用いて2.66kPaに保持した。
次に、マイクロ波導入用フランジ(11)と同軸ケーブル(2)から、マイクロ波(パワー60W)を導入した。マイクロ波は、マイクロストリップ線路(3)が設けられている誘電体基板(4)内を伝搬し、誘電体基板(4)の端部のノズル(7)の内部及び/又はノズル(7)の端に印加されて、プラズマを生成した。
原料ガス(窒素ガス)を基にプラズマが生成され、原料ガスの流れと共に、チタン基材(5)に向かって高密度窒素系活性種が拡散した。この拡散した領域が、ノズル(7)とチタン基材(5)との間の空間に位置する、図1に示している高密度窒素系活性種領域(1)である。処理時間を1時間、基材を設置している基材台温度を800℃とした。
ノズルのスリット方向においては、プラズマ生成領域はほぼ50mmであった。また、ノズル(7)から吹き出た発光部は基材表面まで到達している。
図3に、本実施例1の条件でプラズマ生成した際の写真を示す。図中、基材台に配置された基材と、プラズマ源のノズルとの間の空間に、発光が見られる。分光計測結果から、窒素原子と窒素系活性種が生成されていることが確認された。このことから、高密度窒素系活性種領域(1)の生成を確認することができた。
本実施の形態の一実施例として、スリット形状を有し、断面のサイズが幅50mm×隙間0.5mmのノズルを用いて実施した。容器(10)の内部に、厚さ1mmで大きさが25mm×25mmのチタン基材(5)をマイクロ波プラズマ生成装置のノズル(7)の真下に、ノズルの幅が基材の長手方向と一致するように設置し、プラズマCVD処理を行った。処理手順は以下の通りである。
容器(10)内に設けられた基材台(6)にチタン基材(5)を設置した。ノズル(7)とチタン基材(5)との距離が3mmになるように基材台(6)の高さを調整した。次に、排気管(8)を通して容器(10)の排気を行った。
次に、容器(10)内に、ガス導入用フランジ(12)、ガス導入管(9)、誘電体基板(4)内のガス流路(表示せず)、及びノズル(7)を通して、窒素ガスを2L/minで導入した。容器(10)内の圧力を、排気管(8)に接続した圧力調整バルブを用いて2.66kPaに保持した。
次に、マイクロ波導入用フランジ(11)と同軸ケーブル(2)から、マイクロ波(パワー60W)を導入した。マイクロ波は、マイクロストリップ線路(3)が設けられている誘電体基板(4)内を伝搬し、誘電体基板(4)の端部のノズル(7)の内部及び/又はノズル(7)の端に印加されて、プラズマを生成した。
原料ガス(窒素ガス)を基にプラズマが生成され、原料ガスの流れと共に、チタン基材(5)に向かって高密度窒素系活性種が拡散した。この拡散した領域が、ノズル(7)とチタン基材(5)との間の空間に位置する、図1に示している高密度窒素系活性種領域(1)である。処理時間を1時間、基材を設置している基材台温度を800℃とした。
ノズルのスリット方向においては、プラズマ生成領域はほぼ50mmであった。また、ノズル(7)から吹き出た発光部は基材表面まで到達している。
図3に、本実施例1の条件でプラズマ生成した際の写真を示す。図中、基材台に配置された基材と、プラズマ源のノズルとの間の空間に、発光が見られる。分光計測結果から、窒素原子と窒素系活性種が生成されていることが確認された。このことから、高密度窒素系活性種領域(1)の生成を確認することができた。
よって、ガス圧を中間圧力以上(1kPa以上)で、基材に直接に電圧を印加する必要もなく、かつ、マイクロ波の投入エネルギーが500ワット以下(本実施例ではさらに少ない60ワット以下で実現)で、一様な高密度窒素系活性種領域をプラズマ源から基材表面まで生成し、該生成された窒素系活性種を基材に照射する本発明の方法により、短時間のプラズマ処理で均一な窒素化合物の生成が確認できた。
(実施例2)
本実施の形態の一実施例として、実施例1と同様の装置により、チタン基材の窒化処理を実施した。
図4に、窒化処理を行う前(a)と後(b)のチタン表面の写真を示す。窒化処理後は、金色となり均一に処理されていることがわかる。ここで、黄金色となるのは、窒化がなされていることを意味する。本実施例の生成条件は、マイクロ波パワー100ワット、ガス圧力2.66kPa、窒素ガス流量1L/min、処理時間を1時間、基材を設置している基材台温度を800℃、ノズル(7)とチタン基材(5)との距離が3mmである。
図5に、顕微ラマン分光装置(RENISHAW)を用いて計測された、本実施例で得られた窒化層のラマン分光スペクトルの測定結果を示す。図中、(1)はプラズマ窒化処理後、(2)はプラズマ窒化処理前を示す。図から、200cm-1、330cm-1、550cm-1にTiNの代表的なピークが確認される。
図6に、本実施例で得られた窒化層のX-Ray diffraction (XRD)の測定結果を示す。測定結果から、TiNのピークが確認された。
本実施の形態の一実施例として、実施例1と同様の装置により、チタン基材の窒化処理を実施した。
図4に、窒化処理を行う前(a)と後(b)のチタン表面の写真を示す。窒化処理後は、金色となり均一に処理されていることがわかる。ここで、黄金色となるのは、窒化がなされていることを意味する。本実施例の生成条件は、マイクロ波パワー100ワット、ガス圧力2.66kPa、窒素ガス流量1L/min、処理時間を1時間、基材を設置している基材台温度を800℃、ノズル(7)とチタン基材(5)との距離が3mmである。
図5に、顕微ラマン分光装置(RENISHAW)を用いて計測された、本実施例で得られた窒化層のラマン分光スペクトルの測定結果を示す。図中、(1)はプラズマ窒化処理後、(2)はプラズマ窒化処理前を示す。図から、200cm-1、330cm-1、550cm-1にTiNの代表的なピークが確認される。
図6に、本実施例で得られた窒化層のX-Ray diffraction (XRD)の測定結果を示す。測定結果から、TiNのピークが確認された。
(実施例3)
本実施の形態の一実施例として、実施例1と同様の装置により、チタン基材の窒化処理を実施した。本実施例では、2.66kPa、60ワットで、窒化処理を行った。窒化処理後のチタン表面の硬度を、nano indentation tester (ElIONIX ENT1100a(装置名)を用いてナノインデンテーション法により硬さ計測した結果、16GPaのマルテン硬度であり、従来の窒化方法と同程度の硬度であった。従って、従来技術より10分の1以下の大幅な低消費電力での同等の硬度を示す窒化処理方法を提供することができた。
本実施の形態の一実施例として、実施例1と同様の装置により、チタン基材の窒化処理を実施した。本実施例では、2.66kPa、60ワットで、窒化処理を行った。窒化処理後のチタン表面の硬度を、nano indentation tester (ElIONIX ENT1100a(装置名)を用いてナノインデンテーション法により硬さ計測した結果、16GPaのマルテン硬度であり、従来の窒化方法と同程度の硬度であった。従って、従来技術より10分の1以下の大幅な低消費電力での同等の硬度を示す窒化処理方法を提供することができた。
(実施の形態2)
本実施の形態では、ノズルの角度以外は実施の形態1と同様の装置で、チタン基材の窒化処理を実施した。本実施例では、ノズルの角度を基材に対して斜めに射出する。
図7に、本実施例の窒化方法の模式図を示す。図では、基材の法線に対して45度傾斜したノズルを配置して、ノズルから、45度の入射角度で基材に対して窒素系活性種を照射する場合である。ノズルを傾斜させることにより、生成された窒素系活性種の照射領域を変化させること、またGa、In、あるいはAlを有機金属の蒸気ガス流による窒素系活性種の拡散抑制の点で効果がある。なお傾斜角度は±45度の範囲が好ましい。
本実施の形態では、ノズルの角度以外は実施の形態1と同様の装置で、チタン基材の窒化処理を実施した。本実施例では、ノズルの角度を基材に対して斜めに射出する。
図7に、本実施例の窒化方法の模式図を示す。図では、基材の法線に対して45度傾斜したノズルを配置して、ノズルから、45度の入射角度で基材に対して窒素系活性種を照射する場合である。ノズルを傾斜させることにより、生成された窒素系活性種の照射領域を変化させること、またGa、In、あるいはAlを有機金属の蒸気ガス流による窒素系活性種の拡散抑制の点で効果がある。なお傾斜角度は±45度の範囲が好ましい。
(実施の形態3)
本実施の形態は、大面積処理に対応可能な窒素化合物の製造方法である。図8に、多ノズル方式の大面積用の装置を示す。実施の形態1と同様の装置のノズルを多数ライン状に並べて配置する。図8に示すように、マイクロストリップ線路とガス流路とをアレイ状にし、長さ200mmのスロット形状のノズルにプラズマが生成するプラズマ源(106)を複数設けることにより、プラズマ処理面積を大面積にしている。複数のプラズマ源は、金属製の大面積用容器の上部面に並列設置されている。基材(55)は、大面積用容器(104)内の前後移動ないしは回転が可能な基材を設置するための温度調節が可能な基材台(54)上に設置される。容器は、排気部(53)を備える。図の上段に、プラズマ源(106)の1個の構造を示す。ガス1(51)及びマイクロ波(50)をプラズマ源上部に供給する。プラズマ源を容器の一部に接触させることにより、ヒーターからの輻射熱によって得られたプラズマ源の熱を、容器を通して容器の外部へ逃がすことで、プラズマ源の過熱及び熱損傷を防止している。
それぞれのプラズマ源に、原料ガス(ガス1(51))として窒素系ガスをガス導入部から供給する。ガス2(52)(TEInやTMGaなどの有機金属ガス)を必要に応じ容器の他の位置から供給する。大面積用容器(104)内の圧力は、圧力調整バルブを制御し、1kPa以上に保持する。それぞれのプラズマ源にマイクロ波パワーを印加し、ノズルから射出される窒素系活性種領域(105)により処理を行う。
本実施の形態は、大面積処理に対応可能な窒素化合物の製造方法である。図8に、多ノズル方式の大面積用の装置を示す。実施の形態1と同様の装置のノズルを多数ライン状に並べて配置する。図8に示すように、マイクロストリップ線路とガス流路とをアレイ状にし、長さ200mmのスロット形状のノズルにプラズマが生成するプラズマ源(106)を複数設けることにより、プラズマ処理面積を大面積にしている。複数のプラズマ源は、金属製の大面積用容器の上部面に並列設置されている。基材(55)は、大面積用容器(104)内の前後移動ないしは回転が可能な基材を設置するための温度調節が可能な基材台(54)上に設置される。容器は、排気部(53)を備える。図の上段に、プラズマ源(106)の1個の構造を示す。ガス1(51)及びマイクロ波(50)をプラズマ源上部に供給する。プラズマ源を容器の一部に接触させることにより、ヒーターからの輻射熱によって得られたプラズマ源の熱を、容器を通して容器の外部へ逃がすことで、プラズマ源の過熱及び熱損傷を防止している。
それぞれのプラズマ源に、原料ガス(ガス1(51))として窒素系ガスをガス導入部から供給する。ガス2(52)(TEInやTMGaなどの有機金属ガス)を必要に応じ容器の他の位置から供給する。大面積用容器(104)内の圧力は、圧力調整バルブを制御し、1kPa以上に保持する。それぞれのプラズマ源にマイクロ波パワーを印加し、ノズルから射出される窒素系活性種領域(105)により処理を行う。
MOCVD結晶成長において一般的な10kPa程度のガス圧力領域にてInGaNの結晶成長を行うためには、当該ガス圧力領域において窒素系活性種を結晶成長部に供給する必要がある。図8に示した装置により、MOCVDによる基材上へのエピタキシャル結晶成長を実施できる。本実施の形態では、図8に示したガス1(51)を供給するとともに、ガス2(52)を供給し、ガス1(51)から生成される窒素系活性種と、ガス2(52)を、化学反応させて、基材(55)上に気相成長させる。例えば、気圧10kPa程度で安定なプラズマ源を用い、アンモニア(ガス1(51))を供給して分解し、キャリアガス(ガス1(51))とともに窒素系活性種を基板近傍まで輸送するとともに、In、GaなどIII族元素を、TEIn(トリエチルインジウム)やTMGa(トリメチルガリウム)などの有機金属(ガス2(52))として供給することにより、低温で、緑色LED等に必要な窒化InGaNを低温で成長させる。本発明のMOCVDによれば、長時間安定性、耐温度、活性種生成特性に優れ、更に面一様性にすぐれた窒素系プラズマの発生により、低温で成膜できる。
(実施の形態4)
本実施の形態は、図1に示すように、活性種計測部(13)を設ける場合に関する装置及び方法に関する。前記活性種計測部を設けることで、図2(c)の領域における窒素系活性種の量を計測することを可能とさせ、更にその窒素系活性種の量に基準値を設け、その基準値の値よりも小ないしは大に制御することで、より目的のプロセスに適した窒素系活性種の量を基材表面に提供することが可能となる。
本実施の形態は、図1に示すように、活性種計測部(13)を設ける場合に関する装置及び方法に関する。前記活性種計測部を設けることで、図2(c)の領域における窒素系活性種の量を計測することを可能とさせ、更にその窒素系活性種の量に基準値を設け、その基準値の値よりも小ないしは大に制御することで、より目的のプロセスに適した窒素系活性種の量を基材表面に提供することが可能となる。
上記実施の形態等で示した例は、発明を理解しやすくするために記載したものであり、この形態に限定されるものではない。
本発明は、鉄鋼やチタンなどの表面を窒化することによる表面改質法として利用可能である。例えば、スピンドルやギア等の工作機械部品や、タービンや燃料噴射ノズル等の内燃機関部品、パワーショベル等の減速機ギアや、航空機や自動車部品、医療用部品への窒化処理等、様々な分野への応用が可能である。また、MOCVDなどの高密度窒素系活性種供給法としても産業上有用である。
1、105 窒素系活性種領域
2 マイクロ波伝送用同軸ケーブル
3 マイクロストリップ線路
4 誘電体基板
5、55 基材
6、54 基材台
7 ノズル
8 排気管
9 ガス導入管
10 容器
11 マイクロ波導入用フランジ
12 ガス導入用フランジ
13 活性種計測部
50 マイクロ波
51 ガス1
52 ガス2
53 排気部
104 大面積用容器
106 プラズマ源
2 マイクロ波伝送用同軸ケーブル
3 マイクロストリップ線路
4 誘電体基板
5、55 基材
6、54 基材台
7 ノズル
8 排気管
9 ガス導入管
10 容器
11 マイクロ波導入用フランジ
12 ガス導入用フランジ
13 活性種計測部
50 マイクロ波
51 ガス1
52 ガス2
53 排気部
104 大面積用容器
106 プラズマ源
Claims (11)
- マイクロ波プラズマを生成して窒素化合物を製造する窒素化合物の製造方法であって、
ノズルから窒素系ガスを含む原料ガスを基材の表面に流量を制御して吹き出しながら、前記原料ガスにマイクロ波を印加することにより、前記原料ガスから生成される窒素系活性種を含むプラズマを前記基材の表面に向かって照射する工程において、圧力を前記プラズマにおけるイオンの平均自由行程がデバイ長より小さくなる圧力より高く設定することを特徴とする窒素化合物の製造方法。 - 前記マイクロ波を印加するために、マイクロ波伝送線路としてマイクロストリップ線路又はストリップ線路を用いることを特徴とする請求項1に記載の窒素化合物の製造方法。
- 前記ノズルをライン状に配置することにより、前記プラズマを前記基材に向かってライン状に照射して、前記基材表面に窒素化合物をライン状に形成することを特徴とする請求項1又は2に記載の窒素化合物の製造方法。
- 前記ノズルから前記原料ガスを吹き出す際に、吹き出し角度を前記基材に垂直な面に対してプラス及びマイナス45度の角度の範囲内で吹き出すことを特徴とする請求項1乃至3のいずれか1項に記載の窒素化合物の製造方法。
- 前記工程が行われる圧力を1kPa以上に設定することを特徴とする請求項1乃至4のいずれか1項に記載の窒素化合物の製造方法。
- 前記マイクロ波の投入エネルギーが500ワット以下であることを特徴とする請求項1乃至5のいずれか1項に記載の窒素化合物の製造方法。
- 前記ノズルを2個以上重ねて並べて、各ノズルから窒素系ガスを含む原料ガスを前記基材の表面に流量を制御して吹き出しながら、前記原料ガスにマイクロ波を印加することにより、前記原料ガスから窒素系活性種を含むプラズマを生成して、前記プラズマを前記基材の表面に向かって照射する工程を含むことを特徴とする請求項1乃至6のいずれか1項に記載の窒素化合物の製造方法。
- 前記基材がTiであり、前記窒素化合物がTiNであることを特徴とする請求項1乃至7のいずれか1項に記載の窒素化合物の製造方法。
- Ga、In、あるいはAlを有機金属蒸気として輸送し、前記原料ガスから生成される窒素系活性種を含むプラズマと、気相あるいは基板上で反応させることにより、GaN、InGaN、InN、あるいはAlN、及びこれらの混合組成のいずれかからなる窒素化合物の薄膜結晶を、700℃以下の低温にて前記基材上にエピタキシャル成長させることを特徴とする請求項1乃至7のいずれか1項に記載の窒素化合物の製造方法。
- 窒素系活性種計測部及び制御部を設け、窒素系活性種の量の計測に基づき制御することを特徴とする請求項1乃至9のいずれか1項に記載の窒素化合物の製造方法。
- マイクロ波プラズマを生成して窒素化合物を製造する装置であって、容器と、容器内に設けられ、ノズルを有するマイクロ波プラズマ生成装置と、窒素系活性種計測部と、制御部とを備え、
前記制御部は、前記ノズルから窒素系ガスを含む原料ガスを基材の表面に流量を制御して吹き出しながら、前記原料ガスにマイクロ波を印加することにより、前記原料ガスから生成される窒素系活性種を含むプラズマを前記基材の表面に向かって照射する工程において、容器内の圧力が、前記プラズマにおけるイオンの平均自由行程がデバイ長より小さくなる圧力より高くなるように、前記窒素系活性種の量の計測に基づき制御することを特徴とする製造装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16862142.3A EP3372705A4 (en) | 2015-11-04 | 2016-11-02 | PROCESS AND PRODUCTION DEVICE FOR NITROGEN COMPOUND |
US15/772,683 US20190153617A1 (en) | 2015-11-04 | 2016-11-02 | Production Method and Production Device for Nitrogen Compound |
JP2017548816A JP6590420B2 (ja) | 2015-11-04 | 2016-11-02 | 窒素化合物の製造方法及び製造装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-216552 | 2015-11-04 | ||
JP2015216552 | 2015-11-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017078082A1 true WO2017078082A1 (ja) | 2017-05-11 |
Family
ID=58662112
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/082629 WO2017078082A1 (ja) | 2015-11-04 | 2016-11-02 | 窒素化合物の製造方法及び製造装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20190153617A1 (ja) |
EP (1) | EP3372705A4 (ja) |
JP (1) | JP6590420B2 (ja) |
WO (1) | WO2017078082A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI629378B (zh) * | 2017-09-28 | 2018-07-11 | 財團法人金屬工業研究發展中心 | 不銹鋼表面處理方法 |
WO2020189195A1 (ja) * | 2019-03-15 | 2020-09-24 | 株式会社デンソー | プラズマ窒化処理方法 |
DE112022004880T5 (de) | 2021-10-11 | 2024-07-25 | National Institute Of Advanced Industrial Science And Technology | Verfahren und vorrichtung zum herstellen einer stickstoffverbindung |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0533120A (ja) * | 1991-07-30 | 1993-02-09 | Sumitomo Heavy Ind Ltd | プラズマ表面処理方法及びその装置 |
JP2006100246A (ja) * | 2004-04-13 | 2006-04-13 | Nissan Motor Co Ltd | 燃料電池用セパレータ、燃料電池スタック、燃料電池車両、及び燃料電池用セパレータの製造方法 |
JP2008004540A (ja) * | 2006-05-22 | 2008-01-10 | Toyota Central Res & Dev Lab Inc | 非晶質炭素膜、非晶質炭素膜の形成方法、非晶質炭素膜を備えた導電性部材および燃料電池用セパレータ |
JP2008515175A (ja) * | 2004-09-27 | 2008-05-08 | ガリウム エンタープライジズ ピーティーワイ リミテッド | Iii族金属窒化膜を成長させるための方法および装置、ならびにiii族金属窒化膜 |
WO2015030191A1 (ja) * | 2013-08-30 | 2015-03-05 | 独立行政法人産業技術総合研究所 | マイクロ波プラズマ処理装置 |
JP2015510263A (ja) * | 2012-01-26 | 2015-04-02 | ノベラス・システムズ・インコーポレーテッドNovellus Systems Incorporated | 紫外線を用いたコンフォーマルな膜蒸着の方法 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5356672A (en) * | 1990-05-09 | 1994-10-18 | Jet Process Corporation | Method for microwave plasma assisted supersonic gas jet deposition of thin films |
US6165554A (en) * | 1997-11-12 | 2000-12-26 | Jet Process Corporation | Method for hydrogen atom assisted jet vapor deposition for parylene N and other polymeric thin films |
US6148764A (en) * | 1997-12-29 | 2000-11-21 | Jet Process Corporation | Multiple micro inlet silane injection system for the jet vapor deposition of silicon nitride with a microwave discharge jet source |
US6499426B1 (en) * | 1999-12-10 | 2002-12-31 | Saint-Gobain Industrial Ceramics, Inc. | System and method for coating non-planar surfaces of objects with diamond film |
JP2004165377A (ja) * | 2002-11-12 | 2004-06-10 | Canon Inc | 表面改質方法 |
JP2005150637A (ja) * | 2003-11-19 | 2005-06-09 | Canon Inc | 処理方法及び装置 |
EP1739732A1 (en) * | 2004-03-26 | 2007-01-03 | Sekisui Chemical Co., Ltd. | Method and apparatus for forming oxynitride film and nitride film, oxynitride film, nitride film and base material |
US20100101728A1 (en) * | 2007-03-29 | 2010-04-29 | Tokyo Electron Limited | Plasma process apparatus |
JP5058084B2 (ja) * | 2007-07-27 | 2012-10-24 | 株式会社半導体エネルギー研究所 | 光電変換装置の作製方法及びマイクロ波プラズマcvd装置 |
JP2011077323A (ja) * | 2009-09-30 | 2011-04-14 | Tokyo Electron Ltd | 窒化珪素膜の成膜方法および半導体メモリ装置の製造方法 |
US20110207256A1 (en) * | 2010-02-24 | 2011-08-25 | Applied Materials, Inc. | In-situ acceptor activation with nitrogen and/or oxygen plasma treatment |
US9543123B2 (en) * | 2011-03-31 | 2017-01-10 | Tokyo Electronics Limited | Plasma processing apparatus and plasma generation antenna |
US9018108B2 (en) * | 2013-01-25 | 2015-04-28 | Applied Materials, Inc. | Low shrinkage dielectric films |
KR101451244B1 (ko) * | 2013-03-22 | 2014-10-15 | 참엔지니어링(주) | 라이너 어셈블리 및 이를 구비하는 기판 처리 장치 |
US9406485B1 (en) * | 2013-12-18 | 2016-08-02 | Surfx Technologies Llc | Argon and helium plasma apparatus and methods |
US20180049304A1 (en) * | 2015-02-27 | 2018-02-15 | National Institute Of Advanced Industrial Science And Technology | Microwave Plasma Treatment Apparatus |
-
2016
- 2016-11-02 US US15/772,683 patent/US20190153617A1/en not_active Abandoned
- 2016-11-02 JP JP2017548816A patent/JP6590420B2/ja active Active
- 2016-11-02 WO PCT/JP2016/082629 patent/WO2017078082A1/ja active Application Filing
- 2016-11-02 EP EP16862142.3A patent/EP3372705A4/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0533120A (ja) * | 1991-07-30 | 1993-02-09 | Sumitomo Heavy Ind Ltd | プラズマ表面処理方法及びその装置 |
JP2006100246A (ja) * | 2004-04-13 | 2006-04-13 | Nissan Motor Co Ltd | 燃料電池用セパレータ、燃料電池スタック、燃料電池車両、及び燃料電池用セパレータの製造方法 |
JP2008515175A (ja) * | 2004-09-27 | 2008-05-08 | ガリウム エンタープライジズ ピーティーワイ リミテッド | Iii族金属窒化膜を成長させるための方法および装置、ならびにiii族金属窒化膜 |
JP2008004540A (ja) * | 2006-05-22 | 2008-01-10 | Toyota Central Res & Dev Lab Inc | 非晶質炭素膜、非晶質炭素膜の形成方法、非晶質炭素膜を備えた導電性部材および燃料電池用セパレータ |
JP2015510263A (ja) * | 2012-01-26 | 2015-04-02 | ノベラス・システムズ・インコーポレーテッドNovellus Systems Incorporated | 紫外線を用いたコンフォーマルな膜蒸着の方法 |
WO2015030191A1 (ja) * | 2013-08-30 | 2015-03-05 | 独立行政法人産業技術総合研究所 | マイクロ波プラズマ処理装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3372705A4 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI629378B (zh) * | 2017-09-28 | 2018-07-11 | 財團法人金屬工業研究發展中心 | 不銹鋼表面處理方法 |
WO2020189195A1 (ja) * | 2019-03-15 | 2020-09-24 | 株式会社デンソー | プラズマ窒化処理方法 |
DE112022004880T5 (de) | 2021-10-11 | 2024-07-25 | National Institute Of Advanced Industrial Science And Technology | Verfahren und vorrichtung zum herstellen einer stickstoffverbindung |
Also Published As
Publication number | Publication date |
---|---|
EP3372705A4 (en) | 2019-07-17 |
EP3372705A1 (en) | 2018-09-12 |
JP6590420B2 (ja) | 2019-10-16 |
JPWO2017078082A1 (ja) | 2018-08-30 |
US20190153617A1 (en) | 2019-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2756994C (en) | Migration and plasma enhanced chemical vapor deposition | |
US6396214B1 (en) | Device for producing a free cold plasma jet | |
JP6016339B2 (ja) | カーボンナノチューブの加工方法及び加工装置 | |
EP2276328B1 (en) | Microwave plasma processing device | |
JP6590420B2 (ja) | 窒素化合物の製造方法及び製造装置 | |
US20190112708A1 (en) | Electrostatic control of metal wetting layers during deposition | |
CN107075676B (zh) | 针对成膜装置的气体喷射装置 | |
US20230160067A1 (en) | Atmospheric cold plasma jet coating and surface treatment | |
TWI621732B (zh) | 密封膜之形成方法及密封膜製造裝置 | |
JP2013125761A (ja) | 半導体製造装置及び半導体製造方法 | |
Tan et al. | Dense plasma focus device based high growth rate room temperature synthesis of nanostructured zinc oxide thin films | |
RU2032765C1 (ru) | Способ нанесения алмазного покрытия из паровой фазы и устройство для его осуществления | |
JP6110106B2 (ja) | 薄膜形成装置 | |
RU214891U1 (ru) | Устройство для газоструйного осаждения алмазных покрытий | |
WO2023063310A1 (ja) | 窒素化合物の製造方法及び製造装置 | |
US9691593B2 (en) | Plasma processing device and plasma processing method | |
RU2792526C1 (ru) | Устройство для нанесения алмазных покрытий | |
US20170183795A1 (en) | Methods for atom incorporation into materials using a plasma afterglow | |
Tahara et al. | Diagnostic measurement of supersonic ammonia and nitrogen/hydrogen-mixture DC plasma jets for nitriding under a low pressure environment | |
Zhao | Experimental and Theoretical Studies on Atmospheric Pressure Plasma Jet for Cu Film Deposition | |
JP2012160644A (ja) | InNを含む半導体層の成膜方法および気相成長装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16862142 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017548816 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016862142 Country of ref document: EP |