WO2023063310A1 - 窒素化合物の製造方法及び製造装置 - Google Patents

窒素化合物の製造方法及び製造装置 Download PDF

Info

Publication number
WO2023063310A1
WO2023063310A1 PCT/JP2022/037868 JP2022037868W WO2023063310A1 WO 2023063310 A1 WO2023063310 A1 WO 2023063310A1 JP 2022037868 W JP2022037868 W JP 2022037868W WO 2023063310 A1 WO2023063310 A1 WO 2023063310A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
gas
substrate
plasma
nitrogen compound
Prior art date
Application number
PCT/JP2022/037868
Other languages
English (en)
French (fr)
Inventor
学論 王
載浩 金
直人 熊谷
創 榊田
永 山田
鉄司 清水
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Priority to DE112022004880.8T priority Critical patent/DE112022004880T5/de
Priority to KR1020247009246A priority patent/KR20240046258A/ko
Publication of WO2023063310A1 publication Critical patent/WO2023063310A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • H01L21/2003Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate
    • H01L21/2015Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate the substrate being of crystalline semiconductor material, e.g. lattice adaptation, heteroepitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Definitions

  • the present invention relates to a method and apparatus for producing nitrogen compounds by vapor phase epitaxy. This application claims priority to Japanese Patent Application No. 2021-166589 filed on October 11, 2021, the contents of which are incorporated herein.
  • MOCVD Metal Organic Chemical Vapor Deposition
  • Patent Document 1 discloses a method for producing a Group III nitride semiconductor film using a vertical MOCVD apparatus in which a flat-plate-shaped showerhead electrode is incorporated so that the main surface faces the substrate in a furnace. disclosed. Specifically, a mixed gas containing nitrogen is supplied from a plurality of through holes provided on the main surface of the flat showerhead electrode. Immediately below the shower head electrode, the mixed gas is plasmatized to become a radical mixed gas containing nitrogen radicals, electrons and other charged particles, and is sent toward the substrate in the form of a shower. On the other hand, a group III metal organic metal gas is supplied toward the substrate from a plurality of through holes in the ring portion below the showerhead electrode and near the substrate. It is disclosed that the organometallic gas is entrained in the radical gas mixture and reaches the substrate, thereby forming a Group III nitride semiconductor film having a predetermined composition on the substrate.
  • the present invention has been made in view of the above problems, and its object is to provide a nitrogen compound manufacturing method and a manufacturing apparatus capable of obtaining a high-quality nitrogen compound thin film.
  • the inventors of the present invention have found that by shortening the distance between the plasma source and the substrate in the vapor phase growth method, even if the pressure inside the container containing them is relatively high (1 kPa or more), the nitrogen compound thin film can be formed. It was found that the required nitrogen atom density (10 14 cm -3 or more) can be obtained. As a result of investigation, the inventors have come up with the idea of using a gas supply module in which an opening for discharging plasma is made smaller and an opening for discharging raw material gas is provided around the outer circumference of the opening.
  • the mean free path of ions can be made smaller than the Debye length, the ion bombardment of the substrate can be greatly reduced, and the raw material gas can be supplied into the plasma with good controllability. It has been found that a thin film of a nitrogen compound of high quality can be obtained. In particular, in the case of In-based nitrogen compounds, a practical high-quality nitrogen compound thin film containing 25% or more of In has not been obtained so far. A high-quality thin film can also be obtained.
  • the present invention is a method for producing a nitrogen compound by vapor deposition using a gas supply module having a nozzle surface facing a substrate, wherein a plasma source gas containing nitrogen element is turned into plasma and placed on the nozzle surface. After discharging the raw material gas from a plasma nozzle having an opening toward the substrate, the raw material gas is discharged from the raw material nozzle that opens around the outer periphery of the plasma nozzle on the nozzle surface, and active species including nitrogen contained in the plasma are discharged.
  • a method for producing a nitrogen compound characterized by forming a film of the nitrogen compound on the substrate by reacting it with the raw material gas.
  • the manufacturing method of the first aspect of the present invention is a method for manufacturing a nitrogen compound by vapor phase growth using a gas supply module having a nozzle surface facing a substrate arranged in an arrangement section, A plasma source gas containing a nitrogen element is turned into plasma, and the formed plasma is discharged toward the substrate from the opening of a plasma nozzle having an opening arranged on the nozzle surface, and the raw material gas is discharged onto the nozzle surface. and is discharged from the opening of a raw material nozzle having an opening arranged around the outside of the opening of the plasma nozzle, and the active species containing nitrogen contained in the discharged plasma and the raw material gas are discharged from the opening. It is characterized by reacting to form a nitrogen compound film on the substrate. It is also preferable to start discharging the raw material gas from the raw material nozzle after starting discharging the plasma from the plasma nozzle.
  • the present invention also provides an apparatus for producing a nitrogen compound by vapor deposition using a gas supply module having a nozzle surface facing a substrate, wherein the gas supply module converts a plasma source gas containing nitrogen element into plasma.
  • a plasma nozzle that discharges a raw material gas toward the substrate from an opening arranged on the nozzle surface, and a raw material nozzle that opens and discharges a raw material gas from an outer periphery of the plasma nozzle on the nozzle surface, and is included in the plasma.
  • An apparatus for producing a nitrogen compound is provided, wherein the nitrogen compound is formed on the substrate by reacting the active species containing nitrogen contained in the raw material gas with the raw material gas.
  • the production apparatus of the second aspect of the present invention is an apparatus for producing a nitrogen compound by vapor phase growth using a gas supply module having a nozzle surface facing a substrate arranged in an arrangement section
  • the gas supply module includes a plasma nozzle having an opening, which discharges plasma obtained by converting a plasma source gas containing nitrogen element into plasma toward the substrate from an opening arranged on the nozzle surface, and a raw material gas. is disposed on the nozzle surface and is discharged from an opening disposed around the outer periphery of the opening of the plasma nozzle, and nitrogen contained in the discharged plasma is included.
  • the active species and the source gas are allowed to react to form a film of a nitrogen compound on the substrate.
  • high quality nitrogen compounds are produced due to the high nitrogen atomic density on the substrate provided by the preferred predetermined gas delivery module incorporating the plasma nozzle, source material nozzle, and containment gas nozzle. can be deposited.
  • FIG. 1 is a schematic diagram showing a preferred example of a manufacturing apparatus according to the present invention
  • FIG. 1 is a schematic diagram showing a main part of a preferred example of a manufacturing apparatus according to the present invention
  • FIG. 1 is a schematic perspective view showing a preferred example of a gas supply module according to the invention
  • FIG. 1 is a schematic perspective view showing a preferred example of a plasma source in a manufacturing apparatus according to the present invention
  • FIG. FIG. 4 is a schematic plan view showing a preferred example of the nozzle surface of the gas supply module according to the present invention
  • FIG. 4 is a schematic plan view showing a preferred example of the nozzle surface of the gas supply module according to the present invention
  • It is a graph which shows the pressure dependence in the vacuum vessel of nitrogen atom density.
  • FIG. 4 is a photograph showing the state of light emission between a plasma source and a substrate; 4 is a graph of spectral intensity measured by a visible spectroscope for a light-emitting portion; 1 is a transmission electron micrograph of a cross section of single crystal indium nitride on gallium nitride.
  • FIG. 4 is a ⁇ -2 ⁇ scanning diffraction intensity distribution diagram of a single-crystal indium nitride film measured by an X-ray diffraction method; 4 is a graph of intensity distribution of a single-crystal indium nitride film obtained by an X-ray rocking curve method; FIG.
  • FIG. 4 is a spectral intensity distribution diagram of photoluminescence measured at room temperature for a single-crystal indium nitride film
  • FIG. 2 is a ⁇ -2 ⁇ scanning diffraction diffraction intensity distribution diagram of a single-crystal indium gallium nitride film (In content: 41%) measured by an X-ray diffraction method
  • 4 is a graph showing the temperature dependence at 5 to 295 K of the photoluminescence spectrum of a single-crystal indium gallium nitride film (In content of 41%).
  • 4 is a graph showing the relationship between the gas composition ratio ⁇ TMI/(TMI+TEG) ⁇ of raw material gases and the indium content of the film.
  • FIG. 4 is a ⁇ -2 ⁇ scan diffraction intensity distribution diagram obtained by measuring a film formed using nitrogen as a plasma source gas by an X-ray diffraction method.
  • FIG. 4 is a ⁇ -2 ⁇ scan diffraction intensity distribution diagram obtained by measuring a film formed using ammonia as a plasma source gas by an X-ray diffraction method.
  • 4 is a graph of the intensity distribution of single-crystal indium nitride films formed by changing the position of the plasma nozzle, according to the X-ray rocking curve method.
  • binary compounds such as GaN (gallium nitride), InN (indium nitride), AlN (aluminum nitride), BN (boron nitride), etc., or combinations thereof, or containing three or more kinds of atoms contained in the compounds, InGaN (indium gallium nitride), etc. can be produced.
  • the nitrogen compound film of the present invention can preferably contain at least one of the above compounds.
  • the nitrogen compound can be used for light-emitting devices (laser diodes, light-emitting diodes), light-receiving devices (full-wavelength solar cells, photodetectors), power devices, etc., and has high brightness, high resolution, and low power consumption.
  • next-generation full-color ⁇ LED it can be expected to be applied to augmented reality head-mounted displays.
  • indium nitride has a very small temperature dependence of the emission wavelength from the band edge and a large electron mobility.
  • High frequency devices such as central processing units (CPUs) can also be preferably used.
  • the amount of In in the nitrogen compound containing In produced in the present invention can be arbitrarily selected, for example, it may be 10% or more, 25% or more, or 30% or more, 35% or more, 40% or more, 45% or more, 50% or more, 55% or more, 60% or more may
  • an apparatus and method for producing a nitrogen compound by vapor phase growth using a gas supply module having a nozzle surface opposed to a substrate will be described below with reference to FIGS. 1 to 6. will be used to explain.
  • the substrate is preferably placed on the susceptor, that is, on the surface of the substrate placement portion of the susceptor in the apparatus before starting the vapor phase epitaxy.
  • Materials for the substrate include, for example, GaN, sapphire, silicon, and silicon carbide.
  • a substrate obtained by forming a GaN film on a sapphire substrate, for example, may also be used.
  • discharge of the raw material gas is started after starting discharge of plasma, it is not limited only to this example.
  • the order of starting and stopping the discharge of the raw material gas, the plasma, and the inclusion gas may be arbitrarily selected as necessary. For example, starting discharge of the source gas after starting discharge of the plasma and/or the inclusion gas, starting discharge of the source gas and the plasma and/or the inclusion gas at the same time, or starting discharge of the source gas and then plasma and/or discharge of the contained gas may be initiated.
  • the discharge of the plasma and/or the contained gas may be stopped, or the discharge of the raw material gas, the plasma and/or the contained gas may be stopped simultaneously, or is stopped, the discharge of the raw material gas and/or the inclusion gas may be stopped.
  • FIG. 1 shows a preferred example of the manufacturing apparatus of the present invention.
  • a susceptor system 50 is provided in which a substrate 5 can be placed and heated while being rotated in a horizontal plane. is installed.
  • a gas supply module 20 is installed above the susceptor system 50 .
  • the gas supply module 20 is installed at a predetermined distance from the mounting surface of the susceptor system 50 with its nozzle surface 20a facing the substrate 5 and the mounting surface.
  • the shape and size of the nozzle surface 20a can be arbitrarily selected.
  • the nozzle surface 20a and the substrate 5 or mounting surface are preferably parallel to each other.
  • the nozzle surface 20a may be a flat plane, but may have concave portions and/or convex portions at arbitrary locations such as the central portion.
  • the shape of the concave portion and the convex portion can be arbitrarily selected, and may be, for example, a circular shape in a plan view or a smooth curved surface.
  • the shape and size of the container 10, the susceptor system 50, and the gas supply module 20 can be arbitrarily selected. not.
  • the size and shape of the substrate placed in the susceptor system 50 can be arbitrarily selected. good.
  • the gas supply module 20 includes a plasma source 21 that discharges plasma obtained by decomposing a plasma source gas with high-frequency power toward the substrate 5 .
  • the plasma source 21 is supplied with high-frequency power in the form of continuous waves or pulse waves from a power supply 30 via a coaxial cable 31, a stub tuner 32, and a connector (not shown).
  • a plasma source gas containing nitrogen element is introduced to the plasma source 21 from a gas supply pipe 34 .
  • the gas supply module 20 is connected to a raw material supply pipe 24' for supplying a raw material gas composed of an organometallic group III element and an inclusion gas supply pipe 26' for supplying an inclusion gas containing a group V element.
  • an organometallic gas containing In is preferably mentioned.
  • a cover 16 is provided so as to control the flow of the gas by suppressing the diffusion of the raw material gas and the inclusion gas, and the gas is guided to the lower part of the container 10 in the exhaust direction.
  • the position, size and number of the gas outlets in the container 10 can be arbitrarily selected.
  • a spectroscopic system 40 for spectroscopically analyzing the plasma light emitting portion R in the vicinity of the surface of the substrate 5 is incorporated through a hole 16a provided in the cover 16 as required.
  • the material from which all or part of the container 10 is made can be chosen arbitrarily.
  • the apparatus 10 may have a viewport, and the material of the viewport may be synthetic quartz, Kovar glass, Pyrex, etc., as necessary, in order to allow the spectroscopic system 40 to evaluate the plasma emission portion R. can be used.
  • FIG. 2 shows an example of a main part of a manufacturing apparatus according to the invention.
  • (a) of FIG. 2 schematically shows an example of the configuration of the susceptor system 50 and the gas supply module 20, and
  • (b) of FIG. 2 is a schematic top view of the nozzle surface 20a used in (a). be.
  • FIG. 3 shows a preferred example of a gas supply module according to the present invention, (a) without head plate 20' and (b) with head plate 20'.
  • the lower portion of the gas supply module 20 has a nozzle surface 20a.
  • FIGS. 2 shows an example of a main part of a manufacturing apparatus according to the invention.
  • the lower portion of the gas supply module 20 preferably has a substantially bowl-shaped central portion so as to define a nozzle surface 20a.
  • a recessed, generally disk-shaped head plate 20' is preferably attached to the main body, either integrally therewith or separately.
  • the gas supply module 20 and the head plate 20' are integrally formed.
  • the plasma nozzle 22 of the plasma source 21 has an open tip 22a at a substantially central portion of the nozzle surface 20a. The opening of the tip portion 22a may be provided flush with the nozzle surface 20a, that is, without a step. ), may be provided.
  • the number, shape and arrangement of the openings of the tip portion 22a of the plasma nozzle 22 can be arbitrarily selected.
  • the number of openings may be at least one, such as 1 to 5, 5 to 10, 10 to 30, 30 to 50, 50 to 100, 100 to 300, etc. , 300 to 1000, or 1000 to 10000.
  • the shape and arrangement of the opening can be arbitrarily selected, and may be rectangular, square, substantially quadrangular, circular, elliptical, or the like in plan view.
  • one opening is arranged in the center of the nozzle surface 20a, or two or more openings are arranged so as to be bilaterally symmetrical with respect to a straight line passing through the center of the nozzle surface 20a. good too.
  • the plurality of openings may be arranged linearly, arranged parallel to each other, arranged in a cross shape, or a combination thereof.
  • the distances between adjacent openings of the plasma nozzle 22 are preferably the same, but are not limited to this example.
  • the opening 24a of the raw material nozzle 24 for discharging the raw material gas composed of the organic metal of the group III element is formed around the tip 22a (opening) of the plasma nozzle 22. are provided at an arbitrarily selected constant interval so as to surround the .
  • the raw material gas is preferably discharged from the opening 24a toward the placement portion of the substrate.
  • the openings 24 a of the raw material nozzles 24 are also preferably provided between adjacent openings of the plasma nozzles 22 .
  • the number, shape and arrangement of the openings 24a of the raw material nozzle 24 can be arbitrarily selected.
  • the number may be 1 or more, preferably 10 or more, more preferably 16 or more, 16 to 25, 25 to 50, 50 to 100, or 100
  • the number may be up to 300, 300 to 1000, or 1000 to 10000.
  • the shape and arrangement of the openings 24a of the raw material nozzle 24 may be rectangular, square, substantially rectangular, circular, elliptical, or combinations thereof.
  • the distance between the adjacent opening of the plasma nozzle 22 and the opening of the raw material nozzle 24 can be arbitrarily selected.
  • the opening 22a of the plasma nozzle 22 and the opening 24a of the raw material nozzle 24 are preferably provided only within the area overlapping the substrate in plan view, but if necessary, they may be provided both within and outside the area overlapping the substrate. may be provided. Furthermore, around the outer periphery of the raw material nozzle 24, a plurality of openings of the inclusion gas nozzle 26 for discharging the inclusion gas containing the group V element are arranged at arbitrarily selected constant intervals so as to surround the opening 24a of the raw material nozzle 24. is provided.
  • the containment gas nozzle 26 is preferably provided in the area overlapping the substrate and/or near the outside of the area in plan view.
  • the number, shape and arrangement of the openings 26a of the containment gas nozzle 26 can be arbitrarily selected.
  • the number is preferably 18 or more, more preferably 24 or more.
  • the number may be 1 to 24, 25 to 50, 50 to 80, 80 to 100, 100 or more, and the like.
  • the shape and arrangement of the opening 26a can be arbitrarily selected, and may be rectangular, square, substantially rectangular, circular, elliptical, or combinations thereof.
  • the distance between the opening 24a of the raw material nozzle 24 and the opening 26a of the contained gas nozzle 26 adjacent to each other can be arbitrarily selected. Examples include double, 4 to 8 times, and the like, but are not limited to these examples.
  • the ratio between the number of openings 24a of raw material nozzle 24 and the number of openings 26a of containment gas nozzle 26 can be selected arbitrarily.
  • the ratio is, for example, 1:2-2:1, 1:1.5-1.5:1, 1:1.3-1.3:1, or 1:1.2-1.
  • Examples include 2:1 and 1:1.1 to 1.1:1.
  • the ratio may be 16:24, 28:36, 55:69, 24:32, 48:56, 30:30, 33:36, 61:34, etc.
  • the number of openings 26a is preferably greater than the number of openings 24a, but is not limited to this example.
  • the raw material nozzle 24 and the inclusion gas nozzle 26 may be provided inside the gas supply module 20 by branching a pipe into a plurality of openings so as to communicate with each of the plurality of openings.
  • the plasma nozzle 22 has one opening 22a
  • the raw material nozzle 24 has 16 openings 24a
  • the contained gas nozzle 26 has 24 openings 26a.
  • a substantially disk-shaped head plate 20' that defines the nozzle surface 20a may or may not be provided.
  • raw material gas, inclusion gas, plasma, and active particles generated thereby can be diffused upstream (upper part) along the outer peripheral wall of the raw material nozzle 24, inclusion gas nozzle 26, and the like. can be prevented.
  • the susceptor system 50 (susceptor device) includes a susceptor 51 , the upper surface (placement surface) of which faces the nozzle surface 20 a of the gas supply module 20 .
  • the structure and material of the susceptor system 50 can be selected arbitrarily.
  • the upper surface of the susceptor 51 which may be made of graphite, for example, is preferably coated with silicon carbide.
  • the substrate 5 can be placed on the susceptor 51, and the substrate can be heated and rotated in the horizontal plane. By in-plane rotation of the substrate 5, the position of the substrate 5 facing the tip (opening) 22a of the plasma nozzle 22 can be changed, that is, moved.
  • the manufacturing apparatus of the present invention preferably includes a susceptor that rotates the substrate in-plane and moves the position of the substrate facing the opening of the plasma nozzle.
  • the distance between the substrate and the opening can be arbitrarily selected, but it is preferably close to 150 mm or less, more preferably 120 mm or less, still more preferably 80 mm or less, and particularly preferably 50 mm or less.
  • the distance may be, for example, 0.05-30 mm, 0.1-20 mm, 1-10 mm, 2-8 mm, or the like. Such adjustment makes it possible to provide a high nitrogen atom density on the substrate 5 even if the pressure inside the container 10 is relatively high.
  • FIG. 4 shows a preferred example of the plasma source (plasma forming device) of the manufacturing apparatus of the present invention.
  • the plasma source 21 consists of a plate-like dielectric substrate 23 preferably having a space inside.
  • nitrogen gas or a plasma source gas containing a nitrogen element such as ammonia is supplied to a space (not shown) inside the dielectric substrate 23 through a gas supply path 27 connected to a gas supply pipe 34 . is supplied.
  • the supplied plasma source gas flows to the tip 22a of the plasma nozzle 22 which is open in a slit shape.
  • High-frequency power is guided from the power source 30 to the microstrip line 28 provided on the dielectric substrate 23, propagates, and is applied to the inside and/or the periphery of the tip portion 22a of the plasma nozzle 22.
  • FIG. As a result, the plasma source gas is decomposed by the application of voltage, plasma is generated, and the plasma is emitted from the tip portion 22 a of the plasma nozzle 22 .
  • the shape of the microstrip line 28 can be arbitrarily selected.
  • the plasma source 21 for example, a known one can be used according to International Publication WO2017/078082.
  • the plasma source gas is gas containing nitrogen element.
  • the plasma source gas is, for example, nitrogen gas or ammonia gas, and may be mixed with hydrogen gas or inert gas (argon, helium, etc.) as appropriate.
  • the proportion of inert gas in the mixed gas can be selected arbitrarily. By mixing an inert gas, plasma can be stably maintained even when the pressure inside the container 10 is high, which is preferable.
  • the gas flow rate can also be adjusted as appropriate, typically in the range of 0.1 to 10 L/min. For example, the gas flow rate may be 0.1-1 L/min, 1-5 L/min, 5-8 L/min, or the like.
  • a power supply 30 connected to the plasma source 21 generates high frequency waves, for example, as continuous waves or pulse waves between 900 MHz and 5 GHz, and its power is adjusted in a range of approximately 0 to 200W.
  • the shape, width and gap of the plasma emitting tip 22a (opening) at the tip of the plasma nozzle 22 take into consideration the supply of the raw material gas from the raw material nozzle 24 and the state of film formation on the substrate 5. can be set arbitrarily.
  • the size (cross section) of the tip portion 22a is a slit-like rectangle having a width (horizontal) of 40 mm and a gap (vertical) of 0.2 mm.
  • the tip portion 22a of the plasma nozzle 22 may be arranged as a single or a plurality of circular or irregularly shaped openings instead of the rectangular slit-like openings.
  • the plasma source 21 a small capacitively coupled plasma source, a small inductively coupled plasma source, a small hollow cathode plasma source, etc., other than those described above, may be used.
  • the plasma source 21 includes a device for preventing overheating and thermal damage in order to protect the plasma source 21 from the heat associated with the power supply from the power supply 30 and the radiant heat generated when the substrate 5 is heated in the susceptor system 50.
  • Means such as members are preferably additionally provided.
  • a water cooling pipe for cooling the plasma source 21 may be provided and/or a heat flow path for releasing the heat of the plasma source 21 to the outside of the vacuum vessel 10 may be provided.
  • the raw material nozzle 24 opens around the outer periphery of the plasma nozzle 22 on the nozzle surface 20a, and is made of an organic metal of group III elements, which is arbitrarily selected according to the nitrogen compound made of the group III-V compound to be obtained.
  • the raw material gas is discharged.
  • raw material gases include triethylgallium (TEG), trimethylgallium (TMG), trimethylindium (TMI), mixed gas of triethylgallium (TEG) and trimethylindium (TMI), trimethylgallium (TMG) and trimethylindium (TMI). ) mixed gas.
  • the raw material gas is, for example, triethylgallium (TEG) or trimethylgallium (TMG) if the compound to be formed is a Ga-based nitrogen compound, or trimethylindium (TMI) if it is an In-based nitrogen compound.
  • TEG triethylgallium
  • TMG trimethylgallium
  • TMI trimethylindium
  • a nitrogen compound of GaN containing In it is preferably a mixed gas in which part of TMI is replaced with TEG or TMG.
  • the gas flow rate can be adjusted as appropriate, but typically ranges from 0.01 to 100 L/min.
  • the gas flow rate may be 0.01-0.1 L/min, 0.1-10 L/min, or 10-100 L/min.
  • the raw material gas is a mixed gas composed of a plurality of organic metals, and the mixed amount of the organic metal containing In in the mixed gas is changed to change the amount of In in the nitrogen compound.
  • the raw material gas may be introduced together with a carrier gas such as nitrogen gas.
  • the inclusion gas nozzle 26 is opened further outside the raw material nozzle 24 on the nozzle surface 20a, and discharges an inclusion gas containing, for example, a group V element, typically nitrogen, toward the substrate 5.
  • the inclusion gas used in this way controls the plasma from the plasma nozzle 22 even when the pressure inside the container 10 is high, and supplies raw material gas into the plasma and nitrogen onto the substrate 5. Film formation of the compound can be stabilized.
  • the gas flow rate can be adjusted as appropriate, but typically ranges from 0.01 to 100 L/min. For example, the gas flow rate may be 0.01-0.1 L/min, 0.1-10 L/min, or 10-100 L/min.
  • FIG. 5 shows a preferred example of the nozzle face of the gas supply module according to the invention. Specifically, FIG. 5 shows 11 examples ( a) to (k) are shown. In each of these examples, a plurality of tip portions 22a of the plasma nozzle 22, in this example, 2 to 18 pieces, are arranged on the nozzle surface 20a, and corresponding to each of these openings, the openings of the raw material nozzles 24 are arranged. 24a are arranged side by side, and a plurality of openings 26a of the containment gas nozzle 26 are arranged around the outer circumference of the opening 24a of the raw material nozzle 24 at predetermined intervals.
  • the opening shape, size, number, and arrangement of the various nozzles can be appropriately designed in view of the control of the film formation of the nitrogen compound on the substrate 5, as described above.
  • they can be designed in consideration of the control of the amount of nitrogen-based active species and raw material gas supplied per unit time, the control of the mixed state of the supplied substances, and the like.
  • the active species are free radicals or free radicals, and may mean atoms, molecules, or ions in a highly reactive state.
  • An example in which the tip (opening) 22a of the plasma nozzle 22 has a rectangular cross section will be described below.
  • an irregular shape such as a round shape can be adopted as appropriate.
  • two ends 22a (openings) of the plasma nozzle 22 having a rectangular cross section are arranged in series on a straight line passing through the center of the circular nozzle surface 20a.
  • a plurality of openings 24a with a round cross section of the raw material nozzle 24 are arranged at regular intervals around the tip 22a, specifically, on a square line that is the outer circumference of each tip 22a.
  • a plurality of openings 26a with a circular cross section of the containment gas nozzle 26 are arranged at equal intervals on a square line that is the outer circumference of the plurality of openings 24a.
  • FIG. 5B four tips 22a (openings) of the plasma nozzle 22 having a rectangular cross section are arranged in series on a straight line passing through the center of the nozzle surface 20a. .
  • a plurality of openings 24a of the raw material nozzle 24 with a circular cross section are arranged at equal intervals on a square line that is the outer periphery of each tip 22a of the plasma nozzle 22. are doing.
  • a plurality of openings 26a having a circular cross section of the containment gas nozzle 26 are arranged at equal intervals on the rectangular line that is the outer circumference.
  • FIG. 5C As another example, in FIG. 5C, four tip portions 22a (apertures) of the plasma nozzle 22 having a rectangular cross section are arranged on a cross line passing through the center of the nozzle surface 20a. . Further, a plurality of openings 24a having a circular cross section of the raw material nozzle 24 are arranged at equal intervals around the outer circumference of each of the tip portions 22a. A plurality of round-section openings 26a of the containment gas nozzle 26 are arranged at regular intervals around the outer circumference of the opening 24a.
  • tip portions 22a (openings) of the plasma nozzle 22 having a rectangular cross section are arranged on a cross line passing through the center of the nozzle surface 20a.
  • a plurality of openings 24a having a circular cross section of the raw material nozzle 24 are arranged at regular intervals around the outer periphery of each of the tip portions 22a.
  • a plurality of round-section openings 26a of the containment gas nozzle 26 are arranged at regular intervals around the outer circumference of the opening 24a.
  • three tip portions 22a (openings) of the plasma nozzle 22 having a rectangular cross section are arranged in parallel in a direction perpendicular to a straight line passing through the center of the nozzle surface 20a.
  • a plurality of openings 24a of the raw material nozzle 24 having a circular cross section are arranged at equal intervals on a square line that is the outer periphery of each of the tip portions 22a (openings).
  • a plurality of openings 26a with a circular cross section of the containment gas nozzle 26 are arranged at equal intervals on a square line that is the outer circumference of the plurality of openings 24a.
  • the tip portions 22a (openings) of the plasma nozzle 22 having a rectangular cross section are arranged in parallel with 6 are placed.
  • a plurality of openings 24a of the raw material nozzle 24 having a circular cross section are arranged at regular intervals on a square line that is the outer periphery of each of the tip portions 22a.
  • a plurality of openings 26a with a circular cross section of the containment gas nozzle 26 are arranged at equal intervals on a square line that is the outer circumference of the plurality of openings 24a.
  • each nozzle arrangement shown in (h) shown in FIG. 5 is regarded as one unit (set), and four pieces (four sets) are arranged in the nozzle surface 20a.
  • each tip portion 22a (openings) of the plasma nozzle 22 having a rectangular cross section are arranged on a cross line passing through the center of the nozzle surface 20a.
  • a plurality of openings 24a of circular cross section of the raw material nozzle 24 are arranged side by side around the outer periphery of each of the tip portions 22a.
  • a plurality of circular cross-section openings 26a of the contained gas nozzle 26 are arranged side by side around the outer circumference of the opening 24a.
  • the openings 26a are arranged in a circle so as to entirely surround the plurality of openings 24a.
  • the opening intervals of the respective nozzles may not be equal, but it is preferable to arrange them with a certain regularity.
  • FIG. 6 shows an arrangement example in which the shapes of the openings 24a of the raw material nozzles 24 and the openings 26a of the inclusion gas nozzles 26 on the nozzle surface 20a are changed compared to FIG.
  • the tip 22a (opening) of the plasma nozzle 22 having a rectangular cross section is arranged on a straight line passing through the center of the nozzle surface 20a. Further, a plurality of openings 24a of rectangular cross section of the raw material nozzle 24 are arranged on a square line, which is the outer circumference of the tip portion 22a. Furthermore, a plurality of openings 26a having a rectangular cross section of the contained gas nozzle 26 are arranged side by side on a square line that is the outer periphery of the plurality of openings 24a.
  • FIG. 6B six tip portions 22a (openings) of the plasma nozzle 22 having a rectangular cross section are arranged on a straight line passing through the center of the nozzle surface 20a and in a direction perpendicular to the straight line. .
  • a plurality of openings 24a having a rectangular cross-section of the raw material nozzle 24 are arranged on a square line, which is the outer perimeter of each tip 22a.
  • the openings 24a may include multiple types of openings with different sizes and shapes.
  • a plurality of openings 26a with rectangular cross sections of the containment gas nozzle 26 are arranged side by side on a square line that is the outer perimeter of the plurality of openings 24a.
  • the tip 22a of the plasma nozzle 22 having a rectangular cross section is arranged on a straight line passing through the center of the nozzle surface 20a. Further, four openings 24a each having a rectangular cross section of the raw material nozzle 24 are arranged side by side on a rectangular line that is the outer circumference of the tip portion 22a. Further, a plurality of openings 26a with a circular cross section of the containment gas nozzle 26 are arranged at equal intervals on a square line that is the outer circumference of the plurality of openings 24a.
  • tip portions 22a (openings) of the plasma nozzle 22 having a rectangular cross section are arranged on a straight line passing through the center of the nozzle surface 20a and in a direction perpendicular to the straight line.
  • a plurality of openings 24a having a rectangular cross section of the raw material nozzle 24 are arranged side by side on a square line that is the outer perimeter of each of the tip portions 22a.
  • a plurality of circular cross-section openings 26a of the containment gas nozzle 26 are arranged at equal intervals on a square line that is the outer periphery of the plurality of openings 24a.
  • one tip 22a of the plasma nozzle 22 having a rectangular cross section is arranged on a straight line passing through the center of the nozzle surface 20a. Further, a plurality of openings 24a of the raw material nozzle 24 having a round cross section are arranged at equal intervals on a square line, which is the outer periphery of each of the tip portions 22a. Furthermore, four openings 26a each having a rectangular cross section of the contained gas nozzle 26 are arranged side by side on a square line that is the outer perimeter of the plurality of openings 24a.
  • the tip 22a of the plasma nozzle 22 having a rectangular cross section is arranged on a straight line passing through the center of the nozzle surface 20a and in a direction perpendicular to the straight line. Further, a plurality of openings 24a with a round cross section of the raw material nozzle 24 are arranged at equal intervals on a square line, which is the outer periphery of each of the tip portions 22a. Furthermore, four openings 26a each having a rectangular cross section of the contained gas nozzle 26 are arranged side by side on a square line that is the outer perimeter of the plurality of openings 24a.
  • the height positions of the tip 22a of the plasma nozzle 22, the opening 24a of the raw material nozzle 24, and the opening 26a of the contained gas nozzle 26 with respect to the nozzle surface 20a depend on the film formation state of the nitrogen compound on the substrate 5. can be adjusted accordingly.
  • the angle, opening area, position, etc. are taken into account in consideration of the flow velocity of the raw material gas and the direction of the flow of these gases hitting the surface of the substrate 5. is preferably adjusted, and as a result, the surface uniformity and film quality of the nitride compound deposited on the substrate 5 can be controlled.
  • the tip 22a of the plasma nozzle 22 with respect to the nozzle face 20a may be protruded or recessed, and the distance of the tip 22a with respect to the nozzle face 20a may be, for example, 0 to +10 mm, 0 to -10 mm, or -10 mm. ⁇ -50mm, etc. may be sufficient. If the numerical value is positive, it indicates that the tip is protruding, and if it is negative, it indicates that the tip is recessed.
  • the pressure in the container 10 is increased to 1 kPa or higher, for example, after the pressure in the container 10 is increased to 1 kPa or higher, the temperature of the substrate 5 during the production of the nitrogen compound is lowered than before. Even at a low temperature, for example, a temperature of 300 to 800° C., more specifically, a low temperature of 400 to 750° C., for example, it is possible to produce a high-quality nitrogen compound with few defects. That is, the film can be formed by increasing the pressure so that the mean free path of ions in the plasma becomes smaller than the Debye length.
  • a high-quality thin film can be obtained from a nitrogen compound composed of any group III-V compound, such as GaN, InGaN, InN, AlN, or a mixture thereof.
  • the raw material gas and nitrogen radicals can be reacted at a pressure of 1 kPa or more inside the container containing the substrate and the gas supply module.
  • the pressure is generally 0.1 to 100 kPa, but is not limited to these examples.
  • a pressure of 1 kPa to 10 kPa can also be mentioned.
  • the temperature of the substrate placed in the container can be arbitrarily selected.
  • the film can be preferably produced by setting the temperature to 300 to 800°C.
  • a thin film of a nitrogen compound containing a large amount of In and having very good crystallinity can be obtained.
  • the amount of In in the film include 25 to 45%, 45 to 75%, and 75 to 100%, but are not limited to these examples.
  • the nitrogen atom density required for forming a nitrogen compound thin film can be 1 ⁇ 10 14 cm ⁇ 3 or more at the position of the substrate.
  • the nitrogen atom density required for film formation in the production method and apparatus of the present invention is, for example, 1 ⁇ 10 13 cm ⁇ 3 or more and 1 ⁇ 10 16 cm ⁇ 3 or less, preferably 1 ⁇ 10 13 cm ⁇ 3 . It is at least 1 ⁇ 10 15 cm ⁇ 3 and not more than 1 ⁇ 10 15 cm ⁇ 3 , more preferably at least 1 ⁇ 10 14 cm ⁇ 3 and not more than 1 ⁇ 10 15 cm ⁇ 3 . Specific examples of the nitrogen atom density include 1 ⁇ 10 13 cm ⁇ 3 to 1 ⁇ 10 14 cm ⁇ 3 , 1 ⁇ 10 14 cm ⁇ 3 to 1 ⁇ 10 15 cm ⁇ 3 , and 1 ⁇ 10 15 cm ⁇ 3 . ⁇ 10 15 cm ⁇ 3 or more and 1 ⁇ 10 16 cm ⁇ 3 or less may be used.
  • the above method of the present invention is suitable for forming a thin film of a nitrogen compound such as silicon nitride composed of silicon and nitrogen. Further, by adding an additive to the raw material gas, it is possible to form a film of a nitrogen compound doped with an element derived from the additive. For example, magnesium comes into consideration as an additive.
  • the nitrogen atom density obtained within the vacuum chamber 10 was measured, and the results are shown in FIG. Specifically, the size (cross section) of the slit-shaped tip portion 22a of the plasma nozzle 22 of the plasma source 21 was a slit-shaped rectangle with a width of 40 mm and a gap of 0.2 mm.
  • the diameter of the nozzle surface 20a was set to 181 mm.
  • the raw material nozzle 24 had 16 openings 24a with a diameter of 2.5 mm, and the containment gas nozzle 26 had 24 openings 26a with a diameter of 2.5 mm. Further, as described above, the center of the nozzle surface 20a is flat.
  • Nitrogen gas was introduced into the plasma source 21 at 2 L/min as a plasma source gas, and a microwave of 110 W was applied as a continuous wave. In this measurement, the raw material gas and inclusion gas were not flowed. Further, the nitrogen atom density in a circular region with a diameter of 10 mm, which is a portion corresponding to the central portion of the region R shown in FIG.
  • Ultraviolet absorption spectroscopy system Chon, S., et al. Behaviors of Absolute Densities of N, H, and NH 3 at Remote Region of High-Density Radical Source Employing N 2 -H 2 Mixture Plasmas. Jpn. J. Appl. Phys 50, 01AE03 (2011)) was incorporated and measured using this. This measurement was performed without the substrate 5 and the susceptor system 50 installed.
  • FIG. 7 shows the pressure dependence of the nitrogen atom density at the position of the substrate 5 in the vacuum vessel 10, which was measured without the substrate 5 placed.
  • the nitrogen atom density can be increased from 1 ⁇ 10 14 cm ⁇ 3 to nearly 1 ⁇ 10 15 cm ⁇ 3 while increasing the pressure inside the vacuum vessel 10 from 1 kPa to 10 kPa.
  • the nitrogen atom density at the position of the substrate can be 1 ⁇ 10 14 cm ⁇ 3 or more.
  • Film formation test 1 Next, using the apparatus shown in FIGS. 1 and 2, an indium nitride film was formed under the following conditions (film formation test 1). First, a substrate made of gallium nitride (size: 2 inches) was placed as the substrate 5 on the susceptor 51 . The height of the susceptor system 50 was adjusted so that the distance between the tip 22a of the plasma nozzle 22 and the substrate 5 was 10 mm. The size and shape of each opening were the same as those described above. The plasma source 21 is attached to the gas supply module 20 such that the tip 22a of the plasma nozzle 22 protrudes from the nozzle surface 20a by 0.1 mm.
  • TMI trimethylindium
  • Nitrogen gas was introduced at 1 L/min from the containment gas nozzle 26 .
  • the pressure inside the vacuum container 10 was maintained at 2.0 kPa using a pressure regulating valve, and the temperature of the substrate was adjusted to 650° C. by the susceptor system 50 in which the substrate 5 was placed. Note that the substrate rotation speed was set to 5 rpm.
  • the temperature of the substrate is a value obtained by measuring the temperature of the portion of the susceptor directly below the substrate.
  • FIG. 8 shows the state of light emission at the light emitting portion R (see FIG. 1) between the tip portion 22a of the plasma nozzle 22 and the substrate 5 in the vacuum vessel 10 in the film formation test 1.
  • FIG. 9 shows the result of measuring the light from the light emitting unit R in film formation test 1 using a spectroscopic system 40 (manufactured by Stellarnet Inc., fiber multi-channel compact spectrometer, Blue-Wave-UVNb). showed that.
  • the emission peak value of the 2nd positive system was higher than the emission peak value of the 1st positive system by about one digit or more.
  • the 1st positive system means an emission spectrum group around 500 to 800 nm
  • the 2nd positive system means an emission spectrum group around 300 to 500 nm.
  • FIG. 10 shows the cross section of the indium nitride film grown by performing film formation for 122 minutes in film formation test 1, observed with a transmission electron microscope (manufactured by Hitachi, Ltd., H-9000UHR). A photograph is shown (103,000 times). A single crystal indium nitride having a thickness of about 700 nm was formed on the substrate, and it can be seen that the resulting film is of high quality, with a low defect density of ⁇ 3 ⁇ 10 9 cm ⁇ 2 . . In addition, there was a tendency that the thicker the film, the higher the quality.
  • FIG. 11 shows the X-ray diffraction (XRD) measurement results (X'Pert MRD manufactured by Malvern Panalytical) of the single crystal indium nitride film shown in FIG.
  • XRD X-ray diffraction
  • FIG. 12 shows the measurement results of the single crystal indium nitride film shown in FIG. 10 by the X-ray rocking curve (XRC) method.
  • XRC X-ray rocking curve
  • (a) is the signal on the (0002) plane of symmetry
  • (b) is the signal on the (10-12) plane of asymmetry.
  • the crystal orientation is indicated as a Miller index using parentheses, and when the index is negative, a minus sign is provided before the index.
  • the full widths at half maximum of the (0002) symmetry plane in (a) and the (10-12) asymmetry plane in (b) were 618 arcsec and 999 arcsec, respectively.
  • the defect density D is (full width at half maximum) 2 / ⁇ 9 ⁇ (lattice constant 2 ) ⁇ (the above formula is Zheng, X. H., et al. Determination of twist angle of in-plane mosaicspread of GaN films by high-resolution X-ray diffraction, J. Cryst. Growth 255, 63-67 (2003)). According to this, using the lattice constant c, the screw dislocation defect density is 0.306 ⁇ 10 9 cm ⁇ 2 from the half width of 618 arcsec.
  • the edge dislocation defect density is 2.089 ⁇ 10 9 cm ⁇ 2 from the half width of 999 arcsec. Since the total dislocation defect density is the sum of the screw dislocation defect density and the edge dislocation defect density, it is 2.395 ⁇ 10 9 cm ⁇ 2 . This value almost agrees with the defect density value of 3 ⁇ 10 9 cm ⁇ 2 observed from the transmission electron microscope photograph of FIG. showing.
  • FIG. 13 shows a spectrum obtained by measuring the photoluminescence (PL) of the single-crystal indium nitride film shown in FIG. 10 at room temperature.
  • a spectrum was obtained with a narrow half-width of 0.1 eV for an emission spectrum with a photon energy of 0.687 eV (wavelength of 1806.4 nm).
  • the measurement was performed using a PL measurement system manufactured by Photon Design Co., Ltd. Specifically, a 647 nm excitation laser is output at 100 mW, a 1% optical filter is set, the laser beam diameter at the substrate is 1.2 ⁇ m, and the power density is 8.9 ⁇ 10 4 W/cm 2 . This is the result obtained by irradiating, acquiring the emission spectrum data with an objective lens of 100 ⁇ and an exposure time of 0.5 second, and integrating this 10 times.
  • film formation test 2 Next, using the apparatus shown in FIGS. 1 and 2, an indium gallium nitride film was formed under different conditions as follows (film formation test 2).
  • film formation test 2 a substrate obtained by forming a GaN film on a sapphire substrate was used.
  • the structural conditions of the apparatus were the same as those of Film Formation Test 1, except as described below.
  • part of the trimethylindium (TMI) gas as the Group III gas of the film formation test 1 was replaced with triethylgallium (TEG) gas.
  • TMI trimethylindium
  • TEG triethylgallium
  • the susceptor system 50 on which the substrate 5 was placed was used to raise the temperature of the substrate to 700° C. and the rotation speed of the substrate to 5 rpm, and the indium gallium nitride film was grown for 30 minutes.
  • FIG. 14 shows the XRD measurement results of the indium gallium nitride film formed with the gas composition ratio ⁇ TMI/(TMI+TEG) ⁇ set to 0.5 in film formation test 2. As can be seen, the indium content was 41%.
  • FIG. 15 shows the temperature dependence of the photoluminescence spectrum in the temperature range of 5 to 295K for the indium gallium nitride film used in the measurement results shown in FIG.
  • the gas composition ratio ⁇ TMI/(TMI+TEG) ⁇ is 0.5.
  • an emission distribution with a peak at 700 nm was obtained.
  • a bright line near 700 nm is a signal derived from chromium in the sapphire substrate.
  • a cryostat manufactured by Montana
  • a laser beam with a wavelength of 375 nm (manufactured by Showa Optronics) was used as excitation light with a laser power of 70 mW and a laser beam was used with a condenser lens.
  • the diameter was narrowed down to 50 ⁇ m and irradiation was performed.
  • using a spectrometer and a CCD detector system (manufactured by Horiba, Ltd.), data was obtained with an exposure time of 0.5 seconds and an integration count of 5 times.
  • the CCD detector was cooled to -125°C using liquid nitrogen.
  • FIG. 16 shows the measurement results of the In content in the nitrogen compound film when the film was formed by changing the gas composition ratio ⁇ TMI/(TMI+TEG) ⁇ between 0 and 1.
  • the black circles indicate the case where nitrogen is used as the plasma source gas
  • the square marks indicate the case where ammonia is used as the plasma source gas.
  • films with different amounts of In can be obtained from gallium nitride (GaN) to indium gallium nitride (InGaN) to indium nitride.
  • the amount of In was proportional to the gas composition ratio as expressed by the relational expression 0.99 ⁇ TMI/(TMI+TEG) ⁇ 0.07 (see black circles).
  • the amount of In is represented by the relational expression of ⁇ 0.25 ⁇ TMI/(TMI+TEG) ⁇ . found to be different from
  • FIG. 17 shows the composition ratios ⁇ TMI/(TMI+TEG) ⁇ of the nitrogen compound film whose measurement results are shown in FIG. 71 shows the ⁇ -2 ⁇ curve by XRD of the nitrogen compound film obtained at 71.
  • This graph shows that InGaN films with different amounts of In are formed, and it can be seen that the amount of In can be controlled by the composition ratio (mixing ratio) of the raw material gases.
  • Film formation test 3 film formation was carried out using different plasma source gases using the apparatus shown in FIGS. Specifically, in film formation tests 1 and 2 described above, a gallium nitride film, an indium gallium nitride film, and an indium nitride film were formed using ammonia instead of nitrogen gas as the plasma source gas. (Film formation test 3).
  • FIG. 18 shows the composition ratio of ⁇ TMI/(TMI+TEG) ⁇ of (a) 0.39, (b) 0.59, and (c) 0.65 of the nitride compound film.
  • a ⁇ -2 ⁇ curve by XRD is shown. This also shows that InGaN films with different amounts of In are formed, and it can be seen that the amount of In in the film can be controlled by the composition ratio (mixing ratio) of the raw material gases.
  • the amount of In is represented by a relational expression of 1.00 ⁇ TMI/(TMI+TEG) ⁇ 0.26, which is shown in FIG. 16 (see white square marks).
  • TMI trimethylindium
  • FIG. 19 shows the (0002) symmetric plane in (a) and the (10-12) asymmetric plane in (b) for the single-crystal indium nitride film obtained in film formation test 4. Measurement results by the linear rocking curve (XRC) method are shown.
  • the density of the nitrogen-based active species and the raw material gas can be independently controlled by using the gas supply module provided with the opening for discharging the raw material gas around the outer periphery of the opening for discharging plasma. , a high-grade nitrogen compound can be obtained, and a wide range of indium content can be controlled.
  • the present invention can provide a nitrogen compound manufacturing method and a manufacturing apparatus capable of obtaining a high-quality nitrogen compound thin film with high efficiency.
  • manufacturing apparatus substrate 10 container (furnace body) 16 Cover 16a Cover hole 20 Gas supply module 20a Nozzle surface 20' Head plate 21 Plasma source 22 Plasma nozzle 22a Plasma nozzle tip 23 Dielectric substrate 24 Raw material nozzle 24a Raw material nozzle opening 24' Raw material supply pipe 26 Contained gas nozzle 26a containment gas nozzle opening 26' containment gas supply pipe 27 gas supply path 28 dielectric substrate microstrip line 30 power supply 31 coaxial cable 32 stub tuner 34 gas supply pipe 40 spectroscopic system 50 susceptor system 51 susceptor R light emitter

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

基板に対向させたノズル面を有するガス供給モジュールを用いた気相成長による窒素化合物の製造方法および製造装置であり、窒素元素を含むプラズマ源ガスをプラズマ化してノズル面に配置された開口を有するプラズマノズルから基板へ向けて吐出させた上で、原材料ガスをノズル面のプラズマノズルの外側周囲にて開口する原材料ノズルから吐出させ、プラズマに含まれる窒素を含む活性種と原材料ガスとを反応させて基板上に窒素化合物を成膜させる。

Description

窒素化合物の製造方法及び製造装置
 本発明は、気相成長による窒素化合物の製造方法及び製造装置に関する。
 本願は、2021年10月11日に出願された特願2021-166589号に対し優先権を主張し、その内容をここに援用する。
 有機金属を含む原材料をキャリアガスとともに基板(ウェハ)上に運び、高温で分解して化学反応させ、薄膜をエピタキシャル成長させるMOCVD(Metal Organic Chemical Vapor Deposition)法が知られている。
 例えば、特許文献1は、炉内部において、基板に対してその主面を対向させるように平板形状のシャワーヘッド電極を組み込んだ縦型MOCVD装置を用いた、III族窒化物半導体膜の製造方法を開示している。詳細には、平板形状のシャワーヘッド電極の主面に設けられた複数の貫通孔から、窒素を含む混合ガスが供給される。前記シャワーヘッド電極の直下で、前記混合ガスがプラズマ化されて、窒素ラジカルと電子とその他の荷電粒子を含んだラジカル混合気体となり、シャワー状に基板に向けて送出される。一方、シャワーヘッド電極の下方且つ基板近傍にあるリング部の複数の貫通孔からは、基板に向けてIII族金属の有機金属ガスが供給される。前記有機金属ガスは、ラジカル混合気体に巻き込まれて基板に到達し、前記基板上に、所定の成分組成のIII族窒化物半導体膜を成膜できると開示されている。
特開2018-073999号公報
 有機金属気相成長により、基板上に、欠陥の少ない高品位なIII-V族化合物からなる、窒素化合物薄膜を成膜することが求められている。特に、Inを含む窒素化合物では、Inを25%以上含む実用的な高品位の窒素化合物の薄膜は得られていない。そのため、In含有量を好ましく調整させつつ、高品位な窒素化合物の薄膜を成膜することが求められている。これら要求を満足させるためには、基板上で成膜に十分な窒素原子密度を得た上で、原材料ガスの供給を制御しながら、反応を進行させることが必要となる。
 本発明は、以上のような問題に鑑みてなされたものであって、その目的は、高品位な窒素化合物薄膜を得られる窒素化合物の製造方法及び製造装置の提供にある。
 本願発明者らは、気相成長法において、プラズマ源と基板との距離を短縮することで、これらを収容した容器内を比較的高い圧力(1kPa以上)としても、窒素化合物薄膜の成膜に必要とされる窒素原子密度(1014cm-3以上)を得られることを見出した。そして検討の結果、プラズマを吐出する開口を小型化するとともに、その外側周囲に原材料ガスを吐出する開口を設けた、ガス供給モジュールを利用することに想到した。前記方法や装置を用いた結果、イオンの平均自由行程をデバイ長よりも小さくでき、基板へのイオン衝撃を大幅に軽減できるとともに、原材料ガスをプラズマ中に制御性よく供給できて、その結果、高品位な窒素化合物の薄膜を得られるようになることが見出された。特に、In系の窒素化合物においては、これまでInを25%以上含む実用的な高品位の窒素化合物薄膜は得られていなかったが、本発明によれば、In含有量を好ましく調整しつつ、高品位な薄膜も得られるようになる。
 本発明は、基板に対向させたノズル面を有するガス供給モジュールを用いた気相成長による窒素化合物の製造方法であって、窒素元素を含むプラズマ源ガスをプラズマ化して前記ノズル面に配置された開口を有するプラズマノズルから前記基板へ向けて吐出させたうえで、原材料ガスを前記ノズル面の前記プラズマノズルの外側周囲にて開口する原材料ノズルから吐出させ、プラズマに含まれる窒素を含む活性種と前記原材料ガスとを反応させて前記基板上に窒素化合物を成膜させることを特徴とする窒素化合物の製造方法を提供する。
 つまり、本発明の第一の態様の製造方法は、配置部に配置された基板に対向させたノズル面を有する、ガス供給モジュールを用いた、気相成長による窒素化合物の製造方法であって、窒素元素を含むプラズマ源ガスをプラズマ化して、形成したプラズマを、前記ノズル面に配置された開口を有するプラズマノズルの前記開口から、前記基板へ向けて、吐出させ、原材料ガスを、前記ノズル面に配置され、かつ前記プラズマノズルの前記開口の外側周囲に配置された開口を有する原材料ノズルの前記開口から、吐出させ、吐出された前記プラズマに含まれる窒素を含む活性種と前記原材料ガスとを反応させて、前記基板上に窒素化合物を成膜させることを、特徴とする。
 なお、前記プラズマノズルからの前記プラズマの吐出を開始した後に、前記原材料ノズルからの前記原材料ガスの吐出を開始することも好ましい。
 また、本発明は、基板に対向させたノズル面を有するガス供給モジュールを用いた気相成長による窒素化合物の製造装置であって、前記ガス供給モジュールは、窒素元素を含むプラズマ源ガスをプラズマ化して前記ノズル面に配置させた開口から前記基板へ向けて吐出させるプラズマノズルと、原材料ガスを前記ノズル面の前記プラズマノズルの外側周囲にて開口し吐出させる原材料ノズルと、を含み、プラズマに含まれる窒素を含む活性種と前記原材料ガスとを反応させて前記基板上に窒素化合物を成膜させることを特徴とする窒素化合物の製造装置を提供する。
 すなわち、本発明の第二の態様の製造装置は、配置部に配置された基板に対向させたノズル面を有する、ガス供給モジュールを用いた、気相成長による窒素化合物の製造装置であって、前記ガス供給モジュールは、窒素元素を含むプラズマ源ガスをプラズマ化して得られたプラズマを、前記ノズル面に配置させた開口から前記基板へ向けて吐出させる、前記開口を有するプラズマノズルと、原材料ガスを、前記ノズル面に配置され、かつ前記プラズマノズルの前記開口の外側周囲に配置された開口から吐出させる、前記開口を有する原材料ノズルと、を含み、吐出された前記プラズマに含まれる窒素を含む活性種と前記原材料ガスとを反応させて、前記基板上に窒素化合物を成膜させることを特徴とする。
 本発明の前記特徴によれば、プラズマノズル、原材料ノズル、及び包摂ガスノズルを組み込んだ、好ましい所定のガス供給モジュールにより与えられる、基板上での高い窒素原子密度に起因して、高品質な窒素化合物を成膜できる。
本発明による製造装置の好ましい例を示す概略図である。 本発明による製造装置の好ましい例の要部を示す概略図である。 本発明によるガス供給モジュールの好ましい例を示す概略斜視図である。 本発明による製造装置におけるプラズマ源の好ましい例を示す概略斜視図である。 本発明によるガス供給モジュールのノズル面の好ましい例を示す概略平面図である。 本発明によるガス供給モジュールのノズル面の好ましい例を示す概略平面図である。 窒素原子密度の真空容器内の圧力依存性を示すグラフである。 プラズマ源及び基板の間での発光の状態を示す写真である。 発光部を可視分光器で測定したスペクトル強度のグラフである。 窒化ガリウム上の単結晶窒化インジウムの断面の透過型電子顕微鏡写真である。 単結晶窒化インジウム膜をX線回折法で測定したω-2θスキャン回折強度分布図である。 単結晶窒化インジウム膜のX線ロッキングカーブ法による強度分布のグラフである。 単結晶窒化インジウム膜のフォトルミネッセンスを室温で測定したスペクトル強度分布図である。 単結晶窒化インジウムガリウム膜(In組成41%)をX線回折法で測定したω-2θスキャン回折折強度分布図である。 単結晶窒化インジウムガリウム膜(In組成41%)のフォトルミネッセンススペクトルの5~295Kにおける温度依存性を示すグラフである。 原材料ガスのガス組成比{TMI/(TMI+TEG)}と膜のインジウム含有率との関係を示すグラフである。 プラズマ源ガスに窒素を用いて成膜された膜をX線回折法で測定したω-2θスキャン回折強度分布図である。 プラズマ源ガスにアンモニアを用いて成膜された膜をX線回折法で測定したω-2θスキャン回折強度分布図である。 プラズマノズルの位置を変えて成膜した単結晶窒化インジウム膜のX線ロッキングカーブ法による強度分布のグラフである。
 以下、本発明の窒素化合物の製造方法、及び窒素化合物の製造装置の好ましい例について詳細に説明する。なお、本発明は、以下に示す実施形態のみに限定されるものではない。以下で説明する構成は、本発明の範囲を逸脱しない範囲で、適宜変更が可能である。例えば、本発明の趣旨を逸脱しない範囲で、数、量、比率、組成、種類、位置、材料、順番、サイズ、形、構成等について、付加、省略、置換や、変更が可能である。
 本発明は、III-V族化合物からなる窒素化合物を作製する際の材料供給装置として好ましく利用可能である。例えば、GaN(窒化ガリウム)、InN(窒化インジウム)、AlN(窒化アルミニウム)、BN(窒化ボロン)等の2元化合物、或いは、これらの組み合わせや前記化合物に含まれる原子を3種以上含む、InGaN(窒化インジウムガリウム)などの3元以上の多元化合物を作製できる。本発明の窒素化合物の膜は、前記化合物を少なくとも1つ好ましく含むことができる。前記窒素化合物は、発光デバイス(レーザーダイオード、発光ダイオード)、受光デバイス(全波長型太陽電池、光検出器)、パワーデバイス等への利用が可能であるとともに、高輝度・高解像度・低消費電力な次世代フルカラーμLEDとして拡張現実用ヘッドマウントディスプレイへの適用も期待できる。特に本発明によれば、In系の窒素化合物において、Inを25%以上含む、高品位な窒素化合物薄膜も得られるようになる。特に、窒化インジウムは、バンド端からの発光波長の温度依存性が非常に小さく、また電子移動度が大きいことから、発光デバイス又は受光デバイスだけでなく、Heterojunction field-effect transistors(HFETs)、メモリー、central processing units(CPUs)などの高周波デバイスにも好ましく利用され得る。本発明において製造されるInを含む窒素化合物のInの量は任意に選択でき、例えば、10%以上であってもよく、25%以上であってもよく、30%以上であってもよく、35%以上であってもよく、40%以上であってもよく、45%以上であってもよく、50%以上であってもよく、55%以上であってもよく、60%以上であってもよい。
 以下に、本発明の好ましい実施形態の例として、基板に対して対向させたノズル面を有するガス供給モジュールを用いた、気相成長による窒素化合物の製造装置及び製造方法について、図1乃至図6を用いて説明する。なお基板は、気相成長の開始前に、サセプター上、すなわち装置内のサセプターの基板用配置部の表面に、好ましく配置される。基板の材料としては、例えば、GaN、サファイヤ、シリコン、シリコンカーバイド等が挙げられる。前記材料を組み合わせた基板、例えば、サファイヤ基板上にGaNを製膜した基板なども、用いることもできる。
 なおプラズマの吐出を開始した後に、原材料ガスの吐出を開始することが好ましい例として示されるが、この例のみに限定されない。原材料ガス、プラズマ、及び、包摂ガスの吐出の開始の順番、及び、吐出の停止の順番は、必要に応じて任意に選択してよい。例えば、プラズマ及び/又は包摂ガスの吐出を開始した後に、原材料ガスの吐出を開始したり、原材料ガスとプラズマ及び/又は包摂ガスの吐出を同時に開始したり、又は、原材料ガスの吐出した後にプラズマ及び/又は包摂ガスの吐出を開始してもよい。また、原材料ガスの吐出を停止してから、プラズマ及び/又は包摂ガスの吐出を停止してもよいし、原材料ガス、プラズマ及び/又は包摂ガスの吐出を同時に停止したり、又は、プラズマの吐出を停止してから、原材料ガス及び/又は包摂ガスの吐出を停止してもよい。
 図1は、本発明の製造装置の好ましい例を示す。図1に示すように、窒素化合物の製造装置1の容器(炉体)10の内部には、基板5をその上に載置させて、水平面内で回転させつつ、加熱可能な、サセプターシステム50が設置される。サセプターシステム50の上方には、ガス供給モジュール20が設置される。ガス供給モジュール20は、サセプターシステム50の載置面から所定の間隔をあけて、そのノズル面20aを、基板5や載置面と対向させて、設置されている。
 ノズル面20aの形状やサイズは任意に選択でき、例えば平面視で円形であってもよく、基板5や載置面よりも大きくてもよい。ノズル面20aと、基板5や載置面は、互いに平行である方が好ましい。ノズル面20aは、平らな平面であってもよいが、その中央部などの任意の箇所に、凹部及び/又は凸部を有していても良い。前記凹部や凸部の形状は任意に選択でき、例えば平面視で円形であってもよく、滑らかな曲面で構成されてもよい。
 容器10や、サセプターシステム50や、ガス供給モジュール20の形状やサイズは任意に選択でき、例えば円筒形や円柱形、略円筒形や略円柱形などであってもよいが、これら例のみに限定されない。窒素化合物を基板の表面に形成するために、サセプターシステム50に配置される基板のサイズや形状は任意に選択でき、例えば、2インチや4インチや6インチなどのサイズのディスク状であってもよい。
 ガス供給モジュール20には、プラズマ源ガスを高周波電力により分解して得られるプラズマを、基板5へ向けて吐出する、プラズマ源21が含まれる。前記プラズマ源21には、電源30から同軸ケーブル31、スタブチューナー32、及びコネクター(図示せず)を介して、連続波又はパルス波としての、高周波電力が供給される。また、前記プラズマ源21には、ガス供給管34から、窒素元素を含むプラズマ源ガスが導かれる。更に、ガス供給モジュール20には、III族元素の有機金属からなる原材料ガスを供給する原材料供給管24’、及び、V族元素を含む包摂ガスを供給する包摂ガス供給管26’が接続されている。本発明で使用される原材料ガスの例としては、Inを含む有機金属ガスが好ましく挙げられる。本発明の製造方法や製造装置においては、ノズル面にある原材料ノズルの開口より更に外側周囲において開口する包摂ガスノズルから、V族元素を含む包摂ガスを、基板へ向けて吐出させることが好ましい。
 なお、ここの構成では、原材料ガス及び包摂ガスの拡散を抑制して前記ガスの流れを制御できるように、カバー16が設けられており、前記ガスが、容器10の下部の排気方向へ導かれるように構成されている。容器10における、前記ガスの排気口の位置やサイズや数は任意に選択できる。また、必要に応じて、カバー16に設けられた穴部16aを介して、基板5の表面近傍のプラズマ発光部Rを分光分析する、分光システム40が組み込まれる。容器10の全てを又は一部を構成する材料は任意に選択できる。例えば、装置10はビューポートを有しても良く、分光システム40によるプラズマ発光部Rの評価を可能にするために、前記ビューポートの材料に合成石英やコバールガラス、パイレックス等を必要に応じて用いることができる。
 図2は、本発明による製造装置の要部の例を示す。図2の(a)はサセプターシステム50とガス供給モジュール20の構成の例を模式的に示しており、図2の(b)は、(a)で使用されたノズル面20aの概略上面図である。
 図3は、本発明によるガス供給モジュールの好ましい例を示し、(a)はヘッド板20’がない場合を、(b)はヘッド板20’がある場合を示す。
 図2及び図3に模式的に示すように、ガス供給モジュール20の下部は、ノズル面20aを有する。図2の(a)や(b)及び図3の(a)に示される例では、ガス供給モジュール20の下部には、ノズル面20aを画定するように、好ましくは、略椀状にその中央部を凹ませた、略円板状のヘッド板20’が、本体部と一体に、又は別体として、好ましく取り付けられている。具体的には、図2の(a)や(b)に示す例では、ガス供給モジュール20とヘッド板20’は一体に形成されている。ノズル面20aの略中央部では、プラズマ源21のプラズマノズル22が、その先端部22aを、開口させている。なお、先端部22aの開口は、ノズル面20aに対して、面一、すなわち段差のない状態で設けられても良いが、面一に必ずしもせずともよく、突出又は凹ませて(引っ込ませて)、設けてもよい。プラズマノズル22の先端部22aの開口の数や形や配置は任意に選択できる。例えば開口の数は、少なくとも1つであればよく、1~5個や、5~10個や、10~30個や、30~50個や、50~100個や、100個~300個や、300~1000個や、1000~10000個などであってもよい。例えば、その開口の形や配置は任意に選択でき、平面視で、長方形、正方形、略四角形、円形や、楕円形などであってもよい。前記開口の配置は、例えば、1つの開口をノズル面20aの中央に配置したり、ノズル面20aの中心を通る直線に対して左右対称になるようにして、2つ以上の開口を配置してもよい。複数の開口の配置形状は、後述するように、直線状に配置したり、互いに平行に並べたり、十字状に並べたり、又は、これらを組み合わせであってもよい。プラズマノズル22の隣り合う開口と開口の距離は、同じであることが好ましいが、この例のみに限定されない。
また、ノズル面20aにおいて、プラズマノズル22の先端部22a(開口)の外側周囲には、III族元素の有機金属からなる原材料ガスを吐出させる、原材料ノズル24の開口24aが、プラズマノズル22の開口を囲むように、任意に選択される一定間隔で、複数設けられている。原材料ガスは、開口24aから基板の配置部に向けて、好ましく吐出される。原材料ノズル24の開口24aは、プラズマノズル22の隣り合う開口の間にも、好ましく設けられる。原材料ノズル24の開口24aの数や形や配置は任意に選択できる。例えば数は、1個以上であればよく、10個以上であることが好ましく、16個以上であることがより好ましく、16~25個や、25~50個や、50~100個や、100~300個や、300~1000個や、1000~10000個などであってもよい。例えば、原材料ノズル24の開口24aの形や配置は、長方形、正方形、略四角形、円形、楕円や、これらの組み合わせなどであってもよい。隣り合うプラズマノズル22の開口と原材料ノズル24の開口の距離は、任意に選択でき、例えば、原材料ノズル24の開口の直径や最短辺の長さの1~2倍や、2~4倍や、4~6倍や、6~8倍等が挙げられるが、これら例のみに限定されない。なおプラズマノズル22の開口22aと原材料ノズル24の開口24aは、平面視で、基板と重なるエリア内のみに設けられることが好ましいが、必要に応じて、基板と重なるエリア内とエリア外の両方に設けられてもよい。更に、原材料ノズル24の外側周囲には、V族元素を含む包摂ガスを吐出させる、包摂ガスノズル26の開口が、任意に選択される一定間隔で、原材料ノズル24の開口24aを囲むように、複数設けられている。包摂ガスノズル26は、平面視で、基板と重なるエリア内、及び/又は、前記エリア外近傍に設けられることが好ましい。包摂ガスノズル26の開口26aの数や形や配置は任意に選択できる。例えば数は、18個以上であることが好ましく、24個以上であることがより好ましい。前記数は、1~24個や、25~50個や、50~80個や、80~100個や、100個以上などであってもよい。例えば、その開口26aの形や配置は任意に選択でき、長方形、正方形、略四角形、円形、楕円や、これらの組み合わせなどであってもよい。隣り合う原材料ノズル24の開口24aと包摂ガスノズル26の開口26aの距離は、任意に選択でき、例えば、原材料ノズル24の開口24aの直径や最短辺の長さの1~2倍や、2~4倍や、4~8倍等が挙げられるが、これら例のみに限定されない。原材料ノズル24の開口24aの数と、包摂ガスノズル26の開口26aの数の比は、任意に選択できる。前記比としては、例えば、1:2~2:1や、1:1.5~1.5:1や、1:1.3~1.3:1や、1:1.2~1.2:1や、1:1.1~1.1:1等が挙げられる。具体的には、前記比は、16:24や、28:36や、55:69や、24:32や、48:56や、30:30や、33:36や、61:34などであってもよい。開口26aの数は開口24aの数よりも多いことが好ましいが、この例のみに限定されない。なお、原材料ノズル24及び包摂ガスノズル26は、ガス供給モジュール20の内部において、配管を複数に分岐させて、複数の開口のそれぞれと連通するように設けてもよい。図3において、プラズマノズル22の開口部22aの数は1個、原材料ノズル24の開口24aの数は16個、包摂ガスノズル26の開口26aの数は24個である。
 なお、ノズル面20aを画定する略円板状のヘッド板20’は、設けても、又は設けなくともよい。しかしながらヘッド板20’を設けることにより、原材料ガスや包摂ガス、プラズマ、これにより生じる活性粒子などが、原材料ノズル24、包摂ガスノズル26などの外周壁に沿って、上流(上部)へと拡散することを防ぐことができる。また、後述するサセプターシステム50における、基板5への加熱による、プラズマ源21などへの、輻射熱の影響を、防ぐこともできる。
 サセプターシステム50(サセプター装置)は、サセプター51を含み、その上面(配置面)はガス供給モジュール20のノズル面20aに対向させるように設けられている。サセプターシステム50の構造や材料は、任意に選択できる。例えばグラファイト製であってよい、サセプター51の上面には、シリコンカーバイドのコーティングが好ましく施されている。サセプター51の上には、基板5が載置されることができ、基板を加熱するとともに、水平面内で、基板の回転が可能である。基板5を面内回転させることで、プラズマノズル22の先端部(開口)22aに対向する、基板5の位置を、変化させる、すなわち移動させることができる。その結果、プラズマノズル22の先端部22aの形状が、スリット状等の、小型且つ基板5とは異なる形状であっても、基板5上に、窒素化合物の薄膜を、均一に成膜できる。このように、第一の態様の製造方法においては、基板を面内回転させ、プラズマノズルの開口に対向する基板の位置を移動させることが好ましい。また、サセプター51により、基板5とプラズマノズル22の先端部(開口)22aとの距離を調整できる。このように、本発明の製造装置においては、基板を面内回転させ、プラズマノズルの前記開口に対向する前記基板の位置を移動させる、サセプターを含むことが好ましい。前記基板と前記開口との前記距離は、任意に選択できるが、好ましくは150mm以下、より好ましくは120mm以下、さらに好ましくは80mm以下、特に好ましくは、50mm以下に近接させることが好ましい。前記距離は、例えば、0.05~30mmや、0.1~20mmや、1~10mmや、2~8mmなどであってもよい。このような調整を行うことにより、容器10内を比較的高い圧力としても、基板5上での高い窒素原子密度を与え得るようになる。
 図4は、本発明の製造装置のプラズマ源(プラズマ形成装置)の好ましい例を示す。図4に示すように、プラズマ源21は、内部に好ましく空間を有する、板状の誘電体基板23からなる。板状の誘電体基板23では、ガス供給管34に接続されたガス供給路27を介して、誘電体基板23の内部の図示しない空間に、窒素ガス又はアンモニアなどの窒素元素を含むプラズマ源ガスが供給される。供給されたプラズマ源ガスは、プラズマノズル22のスリット状に開口した先端部22aへと流れる。また、誘電体基板23に設けられたマイクロストリップ線路28には、電源30から、高周波電力が導かれて伝搬して、プラズマノズル22の先端部22aの内部及び/又は周縁部に印加される。その結果、印加によって、プラズマ源ガスが分解されプラズマが生成し、プラズマノズル22の先端部22aから、プラズマが放出される。マイクロストリップ線路28の形状は任意に選択できる。なお、前記プラズマ源21については、例えば、国際公開WO2017/078082によって公知のものを用い得る。
 プラズマ源ガスは、窒素元素を含むガスである。プラズマ源ガスは、例えば、窒素やアンモニアのガスであり、適宜、水素ガスや不活性ガス(アルゴン、ヘリウム等)を混合して用いてもよい。混合気体中の不活性ガスの割合は任意に選択できる。不活性ガスを混合することで、容器10内を高い圧力としても、プラズマを安定的に維持でき、好ましい。また、ガス流量も適宜調整され得るが、典型的には、0.1~10L/minの範囲である。例えば、ガス流量は、0.1~1L/minや、1~5L/minや、5~8L/minなどであってもよい。
 プラズマ源21に接続される電源30は、例えば、900MHzから5GHzまでの間の連続波又はパルス波として、高周波を発生させるものであり、その電力は概ね0~200W程度の範囲で調整される。
 ここで、プラズマノズル22の先端にある、プラズマを放出する先端部22a(開口部)の形、幅及び隙間は、原材料ノズル24からの原材料ガスの供給、及び基板5での成膜状態を考慮して、任意に設定できる。後述する実施例では、先端部22aの大きさ(断面)を、幅(横)40mm×隙間(縦)0.2mmのスリット状の1つの長方形とした。なお、プラズマノズル22の先端部22aは、長方形のスリット状の開口ではなく、円形又は異形の開口として、単数又は複数配置するようにしてもよい。
 更に、プラズマ源21としては、上記した以外の、小型の容量結合型プラズマ源や、小型の誘導結合型プラズマ源や、小型のホローカソードプラズマ源などを用いてもよい。
 また、プラズマ源21には、電源30からの電力供給に伴う熱や、サセプターシステム50での基板5を加熱する際に発生する輻射熱から熱保護するために、過熱や熱損傷を防止する装置や部材などの手段を、追加的に与えられることが好ましい。例えば、プラズマ源21を冷却する水冷管を設けたり、及び/又は、プラズマ源21の熱を真空容器10の外部へと逃がす熱流路を与えるようにしてもよい。
 原材料ノズル24は、ノズル面20aのプラズマノズル22の外側周囲にて開口し、得ようとするIII-V族化合物からなる窒素化合物に応じて任意に選択される、III族元素の有機金属からなる原材料ガスを吐出させる。原材料ガスの例としては、トリエチルガリウム(TEG)、トリメチルガリウム(TMG)、トリメチルインジウム(TMI)、トリエチルガリウム(TEG)とトリメチルインジウム(TMI)の混合ガス、トリメチルガリウム(TMG)とトリメチルインジウム(TMI)の混合ガスが挙げられる。具体的には、原材料ガスは、例えば、形成する化合物がGa系の窒素化合物であればトリエチルガリウム(TEG)又はトリメチルガリウム(TMG)、In系の窒素化合物であればトリメチルインジウム(TMI)からなるガスであり、後述するような、Inを含むGaNの窒素化合物であれば、TMIの一部をTEG又はTMGで置換した混合ガスであることが好ましい。ガス流量は適宜調整され得るが、典型的には、0.01~100L/minの範囲である。例えば、ガス流量は、0.01~0.1L/minや、0.1~10L/minや、10~100L/minなどであってもよい。本発明の製造方法においては、原材料ガスを、複数の有機金属からなる混合ガスとして、前記混合ガス中のInを含む有機金属の混合量を変化させて、前記窒素化合物中のIn量を変化させることも好ましい。原材料ガスは、窒素ガスなどのキャリア用のガスとともに、導入されてもよい。
 包摂ガスノズル26は、ノズル面20aの原材料ノズル24の更に外側周囲にて開口し、例えば、V族元素、典型的には窒素を含む包摂ガスを、基板5へ向けて吐出させる。このように使用される前記包摂ガスは、容器10内を高い圧力とした場合でも、プラズマノズル22からのプラズマを制御し、且つ、プラズマ中への原材料ガスの供給や、基板5上への窒素化合物の成膜を安定化させることができる。ガス流量は適宜調整され得るが、典型的には、0.01~100L/minの範囲である。例えば、ガス流量は、0.01~0.1L/minや、0.1~10L/minや、10~100L/minなどであってもよい。
 図5は、本発明によるガス供給モジュールのノズル面の好ましい例を示す。具体的には、図5には、ノズル面20aにおけるプラズマノズル22の先端部(開口)22a、原材料ノズル24の開口24a、及び、包摂ガスノズル26の開口26aの配置例として、11個の例(a)~(k)を示した。これらの例では、いずれも、ノズル面20aに、プラズマノズル22の先端部22aを複数、本例では2~18個、配置するとともに、これらの開口のそれぞれに対応させて、原材料ノズル24の開口24aを並べて配置し、更に、包摂ガスノズル26の複数の開口26aを、原材料ノズル24の開口24aの外側周囲に、所定の間隔で配置した構成である。ここで、各種ノズルの開口形状や大きさ、数、その配置は、上述したように、基板5上での窒素化合物の成膜の制御を鑑みて、適宜、設計し得る。例えば、それらは、窒素系活性種や原材料ガスの単位時間当たりの供給量の制御、供給された各物質の混合状態の制御などを鑑みて、設計され得る。なお活性種とは、フリーラジカル又は遊離基であり、反応性の高い状態にある原子や分子やイオンを意味してよい。
以下では、プラズマノズル22の先端部(開口)22aの形状を四角形の断面とした例を示す。ただし、本例においても、基板5上での成膜を制御する観点から、また、プラズマ源21の各種機構を考慮して、適宜、丸形をはじめとする、異形状を採用し得る。以上で述べたように、本発明の製造装置においては、プラズマノズルの1つの開口に対応させて、原材料ノズルの開口を複数設けることは好ましい。原材料ノズルの複数の開口を包囲するように、包摂ガスノズルの開口を複数設けることも好ましい。本発明の製造装置においては、必要に応じて、プラズマノズルの開口を複数設けることも好ましい。
 図5に示す(a)では、円形のノズル面20aの中心部を通る直線上に、長方形の断面を有する、プラズマノズル22の先端部22a(開口)を、直列に2つ並べて配置している。更に、先端部22aの周り、具体的には、先端部22aのそれぞれの外側周囲である、四角形状の線上に、原材料ノズル24の丸断面の複数の開口24aを、等間隔で並べて配置している。更に、これら複数の開口24aの外側周囲である、四角形状の線上には、包摂ガスノズル26の丸断面の複数の開口26aを、等間隔で並べて配置している。
 同様に、図5に示す(b)では、ノズル面20aの中心部を通る直線上に、長方形の断面を有するプラズマノズル22の先端部22a(開口)を、直列に4つ並べて配置している。図5に示す(a)と同様に、プラズマノズル22の先端部22aのそれぞれの外側周囲である、四角形状の線上に、原材料ノズル24の丸断面の複数の開口24aを、等間隔で並べて配置している。更に、この外側周囲である四角形状の線上には、包摂ガスノズル26の丸断面の複数の開口26aを、等間隔で並べて配置している。
 他の例として、図5に示す(c)では、ノズル面20aの中心部を通る十字直線上に、長方形の断面を有するプラズマノズル22の先端部22a(開口)を、4つ配置している。更に、先端部22aのそれぞれの外側周囲に、原材料ノズル24の丸断面の複数の開口24aを、等間隔で並べて配置している。開口24aの外側周囲には、包摂ガスノズル26の丸断面の複数の開口26aを、等間隔で並べて配置している。
 また、図5に示す(d)では、ノズル面20aの中心部を通る十字直線上に、長方形の断面を有するプラズマノズル22の先端部22a(開口)を、8つ配置している。更に、先端部22aのそれぞれの外側周囲に、原材料ノズル24の丸断面の複数の開口24aを等間隔で並べて配置している。開口24aの外側周囲には、包摂ガスノズル26の丸断面の複数の開口26aを、等間隔で並べて配置している。
 図5に示す(e)では、ノズル面20aの中心部を通る直線上に、長方形の断面を有するプラズマノズル22の先端部22aを、直列に4つ配置している。更に、図5に示す(b)などと比べて、プラズマノズル22の先端部22a(開口)に対する、原材料ノズル24の開口24aの開口数、及び包摂ガスノズル26の開口26aの開口数を、増やしたものである。
 図5に示す(f)では、ノズル面20aの中心部を通る直線上に、正方形の断面を有するプラズマノズル22の先端部22a(開口)を、直列に6つ配置している。更に、図5に示す(b)などと比べ、プラズマノズル22の先端部22aの開口面積を減じたものである。
 また、図5に示す(g)では、図5に示す(f)と比較して、正方形の断面を有するプラズマノズル22の先端部22aが並ぶ列数、及び原材料ノズル24の開口24aが並ぶ列数を増やしている。更に、これら開口の外側周囲である、四角形状の線上に、包摂ガスノズル26の複数の開口26aを配置したものである。
 図5に示す(h)では、ノズル面20aの中心部を通る直線に対して、垂直方向に、長方形の断面を有するプラズマノズル22の先端部22a(開口)を、並列に3つ配置している。更に、先端部22a(開口)のそれぞれの外側周囲である、四角形状の線上に、原材料ノズル24の丸断面の複数の開口24aを、等間隔で並べて配置している。更に、これら複数の開口24aの外側周囲である、四角形状の線上には、包摂ガスノズル26の丸断面の複数の開口26aを、等間隔で並べて配置している。
 図5に示す(i)では、ノズル面20aの中心部を通る直線上及びその直線に対して垂直方向に、長方形の断面を有するプラズマノズル22の先端部22a(開口)を、並列に、6つ配置している。更に、先端部22aのそれぞれの外側周囲である、四角形状の線上に、原材料ノズル24の丸断面の複数の開口24aを、等間隔で並べて配置している。更に、これら複数の開口24aの外側周囲である、四角形状の線上には、包摂ガスノズル26の丸断面の複数の開口26aを、等間隔で並べて配置している。
 図5に示す(j)では、図5に示す(h)で示した各ノズル配置を一つの単位(組)として、ノズル面20a内に、4個(4組)を配置している。
 図5に示す(k)では、ノズル面20aの中心部を通る十字直線上に、長方形断面のプラズマノズル22の先端部22a(開口)を、4つ配置している。更に、先端部22aのそれぞれ外側周囲に、原材料ノズル24の丸断面の複数の開口24aを並べて配置している。開口24aの外側周囲には、包摂ガスノズル26の丸断面の複数の開口26aを、並べて配置している。本例では、複数の開口24aを全体的に囲むように、開口26aが1つの円形に配置されている。なお、それぞれのノズルの開口間隔は、等間隔でなくともよいが、一定の規則性を持って配列させることが好ましい。
 図6には、図5と比較して、ノズル面20aにおける原材料ノズル24の開口24a、及び、包摂ガスノズル26の開口26aの形状等を変えた、配置の例を示した。
 図6に示す(a)では、ノズル面20aの中心部を通る直線上に、長方形の断面を有するプラズマノズル22の先端部22a(開口)を、配置している。更に、先端部22aの外側周囲である、四角形状の線上に、原材料ノズル24の長方形断面の複数の開口24aを配置している。更に、これら複数の開口24aの外側周囲である四角形状の線上には、包摂ガスノズル26の長方形の断面を有する複数の開口26aを並べて配置している。
 図6に示す(b)では、ノズル面20aの中心部を通る直線上及び直線に対して垂直方向に、長方形の断面を有するプラズマノズル22の6つの先端部22a(開口)を配置している。更に、先端部22aのそれぞれの外側周囲である、四角形状の線上に、原材料ノズル24の長方形の断面を有する複数の開口24aを、配置している。(b)に示すように、開口24aは、サイズや形状が異なる、複数の種類の開口を含んでも良い。更に、これら複数の開口24aの外側周囲である、四角形状の線上には、包摂ガスノズル26の長方形断面の複数の開口26aを並べて配置している。
 図6に示す(c)では、ノズル面20aの中心部を通る直線上に、長方形の断面を有するプラズマノズル22の先端部22aを配置している。更に、先端部22aの外側周囲である四角形状の線上に、原材料ノズル24の長方形の断面を有する4つの開口24aを並べて配置している。更に、これら複数の開口24aの外側周囲である、四角形状の線上には、包摂ガスノズル26の丸断面の複数の開口26aを、等間隔で並べて配置している。
 図6に示す(d)では、ノズル面20aの中心部を通る直線上及び直線に対して垂直方向に、長方形の断面を有するプラズマノズル22の6つの先端部22a(開口)を配置している。更に、先端部22aのそれぞれの外側周囲である、四角形状の線上に、原材料ノズル24の長方形の断面を有する複数の開口24aを並べて配置している。更に、これら複数の開口24aの外側周囲である四角形状の線上には、包摂ガスノズル26の丸断面の複数の開口26aを、等間隔で並べて配置している。
 図6に示す(e)では、ノズル面20aの中心部を通る直線上に、長方形の断面を有するプラズマノズル22の1つの先端部22aを配置している。更に、先端部22aのそれぞれの外側周囲である、四角形状の線上に、原材料ノズル24の丸形断面の開口24aの複数を等間隔で並べて配置している。更に、これら複数の開口24aの外側周囲である四角形状の線上には、包摂ガスノズル26の長方形の断面を有する4つの開口26aを、並べて配置している。
 図6に示す(f)では、ノズル面20aの中心部を通る直線上及び直線に対して垂直方向に、長方形の断面を有するプラズマノズル22の先端部22aを配置している。更に、先端部22aのそれぞれの外側周囲である、四角形状の線上に、原材料ノズル24の丸形断面の複数の開口24aを、等間隔で並べて配置している。更に、これら複数の開口24aの外側周囲である四角形状の線上には、包摂ガスノズル26の長方形の断面を有する4つの開口26aを、並べて配置している。
 なお、プラズマノズル22の先端部22a、原材料ノズル24の開口24a、及び包摂ガスノズル26の開口26aの、ノズル面20aに対する凹凸高さ位置は、基板5の上での窒素化合物の成膜状態に応じて、適宜、調整できる。つまり、ガス供給モジュール20への原材料ノズル24及び包摂ガスノズル26の取り付けについては、原材料ガスの流速や、基板5の表面に当たるこれらガスの流れの向きを考慮して、その角度や開口面積、位置などが好ましく調整され、結果として、基板5の上に成膜される窒化物化合物の面一様性や膜質を制御できる。例えば、ノズル面20aに対するプラズマノズル22の先端部22aは突出しても又は引っ込んでいてもよく、ノズル面20aに対する先端部22aの距離は、例えば、0~+10mmや、0~-10mmや、-10~-50mmなどであってもよい。上記数値は、プラスであれば先端部が突出していることを示し、マイナスであれば引っ込んでいることを示す。
 上記した窒素化合物の製造装置1では、容器10内の圧力を1kPa以上にして加えて、例えば容器10内の圧力を1kPa以上にした後に、窒素化合物の製造時の基板5の温度を従来よりも低温としても、例えば、300~800℃などの温度、より具体的には、400~750℃などの低温にしても、例えば、欠陥の少ない、高品位な窒素化合物の製造が可能となる。つまり、プラズマにおけるイオンの平均自由行程がデバイ長よりも小さくなるように圧力を上げ成膜できるのである。これによれば、例えば、GaN、InGaN、InN、又はAlN、及び、その混合組成の、いずれのIII-V族化合物からなる窒素化合物であっても、その薄膜を高品位なものとして得られるのである。
 上述したように、本発明の方法や装置においては、基板及びガス供給モジュールを収容した容器内部の圧力を1kPa以上で、原材料ガスと窒素ラジカルを反応させることができる。例えば前記圧力は、一般的には0.1~100kPaであるが、これら例のみに限定されない。具体的な例として、例えば、1kPaから10kPaの圧力などを挙げることもできる。
 本発明の方法や装置においては、容器内に配置された基板の温度を任意に選択することができる。例えば前記温度を300~800℃にして好ましく膜の製造を行うことができる。
 本発明の方法や装置によれば、Inを含む窒素化合物の場合、Inを多く含む、非常に結晶性の良い窒素化合物の薄膜を得ることができる。前記膜中のInの量としては、例えば、25~45%や、45~75%や、75~100%などが例として挙げられるが、これら例のみに限定されない。
 本発明の製造法や装置においては、窒素化合物薄膜の成膜に必要とされる窒素原子密度を、基板の位置において、1×1014cm-3以上とすることが可能である。本発明の製造法や装置において成膜に必要とされる窒素原子密度は、例えば、1×1013cm-3以上1×1016cm-3以下であり、好ましくは1×1013cm-3以上1×1015cm-3以下であり、より好ましくは1×1014cm-3以上1×1015cm-3以下である。前記窒素原子密度の具体的な例としては、例えば、1×1013cm-3以上1×1014cm-3以下や、1×1014cm-3から1×1015cm-3や、1×1015cm-3以上1×1016cm-3以下などであってもよい。
 本発明の上記方法は、シリコンと窒素からなる窒化ケイ素のような窒素化合物の薄膜の成膜に好適である。また、原材料ガスに添加物を加えることで、添加物に由来する元素をドーピングした窒素化合物を成膜できる。例えば、添加物としてマグネシウムが考慮される。
(成膜前の試験)
 まず、ノズル面20を平らにした、図1及び2に示した装置を用い、真空容器10内で得られる窒素原子密度を測定し、結果を図7に示した。具体的には、プラズマ源21のプラズマノズル22のスリット状の先端部22aの大きさ(断面)を、幅40mm×隙間0.2mmのスリット状の長方形とした。なおノズル面20aの直径は、181mmとした。原材料ノズル24の開口24a数は16個とし、開口の直径は2.5mmとし、包摂ガスノズル26の開口26aの数は24個とし、開口の直径は2.5mmとした。また上述したようにノズル面20aの中央は、平らである。プラズマ源21には、プラズマ源ガスとして、窒素ガスを2L/minで導入するとともに、110Wのマイクロ波を連続波として印加した。なお、本測定では、原材料ガス及び包摂ガスは流さなかった。また、プラズマノズル22の先端部22aの直下であって、図8に示す領域Rの中心部に該当する部分である、直径10mmの円形の領域の窒素原子密度は、分光システム40としての、真空紫外吸収分光システム(Chen, S., et al. Behaviors of Absolute Densities of N, H, and NH3 at Remote Region of High-Density Radical Source Employing N2-H2 Mixture Plasmas. Jpn. J. Appl. Phys. 50, 01AE03 (2011)を参照)を組み込み、これを用いて計測した。なお本測定は、基板5とサセプターシステム50を設置しない状態で計測を行った。
 図7には、基板5を配置せずに測定した、真空容器10内での基板5の位置における、窒素原子密度の圧力依存性を測定した結果を示した。上記構成において、真空容器10内の圧力を1kPaから10kPaに上昇させつつ、窒素原子密度を1×1014cm-3から1×1015cm-3近くまで上昇させ得ることがわかる。
 このように、本発明の製造法においては、基板の位置における窒素原子密度を1×1014cm-3以上とすることができる。
(成膜試験1)
 次に、図1及び2に示した装置を用い、以下のような条件で、窒化インジウム膜の成膜を行った(成膜試験1)。まず最初に、サセプター51上に、基板5として窒化ガリウムからなる基板(サイズ:2インチ)を載置した。プラズマノズル22の先端部22a及び基板5の間の距離を10mmとするように、サセプターシステム50の高さを調整した。それぞれの開口のサイズや形状は、上述したものと同様とした。プラズマノズル22の先端部22aが、ノズル面20aから、0.1mm突出するようにして、プラズマ源21が、ガス供給モジュール20に取り付けられている。そのうえで、プラズマ源21には、プラズマ源ガスとして窒素ガスを2L/minで導入し、90Wのマイクロ波を印加した。そして、原材料ノズル24から、III族ガスとしてトリメチルインジウム(TMI)ガスを、キャリア用の窒素ガスとともに、3.5L/minで、導入した。また、包摂ガスノズル26からは、窒素ガスを1L/minで導入した。真空容器10内の圧力は、圧力調整バルブを用いて、2.0kPaに保持し、基板5を設置したサセプターシステム50により、基板の温度を650℃にした。なお、基板回転速度は、5rpmとした。基板の温度は、基板の直下にあるサセプターの部分の温度を計測した値である。
 図8には、成膜試験1における、真空容器10内でのプラズマノズル22の先端部22aと、基板5との間の発光部R(図1参照)での、発光の状態を示した。
 また、図9には、成膜試験1における、前記発光部Rからの光を、分光システム40(Stellarnet Inc.製、ファイバーマルチチャンネル小型分光器、Blue-Wave-UVNb)を用いて計測した結果を示した。窒素分子の発光スペクトル群、CN分子バンド(~388nm)の発光スペクトル、及びIn原子の発光スペクトルIn I [In 5s6s (s)→In 5s5p (p), 451.13nm]が測定された。特に、窒素分子の発光スペクトル群において、2nd positive systemの発光ピーク値が、1st positive systemの発光ピーク値よりも、1桁程度以上高くなっていた。なお1st positive systemは500~800nm付近の発光スペクトル群を意味し、2nd positive systemは300~500nm付近の発光スペクトル群を意味する。
 図10には、成膜試験1において122分間の成膜を行って成長させた、窒化インジウム膜について、その断面を、透過型電子顕微鏡(株式会社日立製作所製、H-9000UHR)にて観察した写真を示した(10万3000倍)。基板上に、約700nmの厚さを有する単結晶窒化インジウムが形成されていたが、~3×10cm-2の低い欠陥密度であって、得られた膜が高品位であることがわかる。なお、膜厚が厚くなるほど、高品位となる傾向にあった。
 図11には、図10で示した単結晶窒化インジウム膜のX線回折(XRD)の測定結果(Malvern Panalytical社製、X’Pert MRD)を示した。33度の金属インジウムに由来した信号は観察されず、31.35度の位置に現れるスペクトル幅の狭い窒化インジウムの信号が測定された。つまり、成膜された窒化インジウムの膜には、金属インジウムの析出がなく、結晶性が良いことを示している。また、基板の窒化ガリウムに由来した信号が34.58度の位置に観察された。
 図12には、図10で示した単結晶窒化インジウム膜の、X線ロッキングカーブ(XRC)法での、測定結果を示した。ここで、(a)は(0002)対称面の信号、(b)は(10-12)非対称面の信号である。なお結晶方位を括弧を用いてミラー指数として表記し、指数が負である場合にはその指数の前にマイナス記号を設けて記載した。(a)の(0002)対称面、及び(b)の(10-12)非対称面の半値全幅は、それぞれ618arcsec、及び999arcsecであった。前記膜に関して、逆格子空間マップから格子定数を求めると、それぞれ、c=0.570635nm、a=0.353008nmとなった。
 また、欠陥密度Dは、(半値全幅)/{9×(格子定数)}(前記式は、Zheng, X. H., et al. Determination of twist angle of in-plane mosaicspread of GaN films by high-resolution X-ray diffraction, J. Cryst. Growth 255, 63-67 (2003)を参照)で計算できる。これによると、格子定数cを用いて、半値幅である618arcsecから、螺旋転位欠陥密度は、0.306×10cm-2となる。
 一方、格子定数aを用いて、半値幅である999arcsecから、刃状転位欠陥密度は、2.089×10cm-2となる。全転位欠陥密度は、螺旋転位欠陥密度と刃状転位欠陥密度を足し合わせたものとなるので、2.395×10cm-2となる。この値は、上記した図9の透過型電子顕微鏡観察による写真から観察された欠陥密度の値である3×10cm-2に、ほぼ一致し、得られた膜の結晶性が良いことを示している。
 図13には、図10で示した単結晶窒化インジウム膜の、フォトルミネッセンス(PL)を室温で測定した、スペクトルを示した。フォトンエネルギー0.687eV(波長1806.4nm)の発光スペクトルについて、狭い半値幅0.1eVで、スペクトルが得られた。ここでは、株式会社フォトンデザイン社製のPL測定システムを用いて測定した。詳細には、647nmの励起用レーザーを100mWで出力させ、1%の光学フィルターをセットするとともに、基板部でのレーザービーム径を1.2μm、パワー密度8.9×10W/cmで照射し、対物レンズ100倍、露光時間0.5秒で発光スペクトルデータを取得し、これを10回積算して得た、結果である。
(成膜試験2)
 次に、図1及び2に示した装置を用い、以下のように異なる条件で、窒化インジウムガリウム膜の成膜を行った(成膜試験2)。成膜試験2では、サファイヤ基板上にGaNを製膜した基板を用いた。装置の構造条件は、以下に述べる以外は、成膜試験1と同じとした。具体的には、成膜試験2の成膜では、上記した成膜試験1のIII族ガスとしてのトリメチルインジウム(TMI)ガスの一部を、トリエチルガリウム(TEG)ガスに置き換えて行った。なお、基板5を載置させたサセプターシステム50により、基板の温度を700℃にするとともに、基板回転速度を5rpmとし、30分間、窒化インジウムガリウム膜を成長した。
 図14には、成膜試験2の成膜において、ガス組成比{TMI/(TMI+TEG)}を0.5として成膜した窒化インジウムガリウム膜のXRDの測定結果を示した。これから分かるように、インジウムの含有量は、41%であった。
 図15には、図14に示す測定結果で使用した窒化インジウムガリウム膜について、5~295Kの温度範囲での、フォトルミネッセンススペクトルの温度依存性を示した。ここで、ガス組成比{TMI/(TMI+TEG)}は、0.5である。この結果から分かるように、700nmをピークとする発光分布が得られた。なお、700nm付近の輝線は、サファイア基板中のクロムに由来する信号である。なおここでは、クライオスタット(モンタナ社製)を用いて基板の温度を制御するとともに、波長375nmのレーザー(昭和オプトロニクス社製)を励起光として、70mWのレザーパワーで、集光レンズを用いてレーザービーム径を50μmに絞り、照射を行った。そして、分光器及びCCD検出器システム(堀場製作所社製)を用いて、露光時間0.5秒、積算回数5回のデータを取得した。なお、CCD検出器は、液体窒素を用いてマイナス125℃まで冷却した。
 図16には、ガス組成比{TMI/(TMI+TEG)}を0~1の間で変えて成膜したときの、窒素化合物膜中のIn含有量の測定結果を示した。本グラフにおいて、黒丸印はプラズマ源ガスに窒素を用いたもの、四角印はプラズマ源ガスにアンモニアを用いたものを示す。
これらの結果から分かるように、窒化ガリウム(GaN)~窒化インジウムガリウム(InGaN)~窒化インジウムへと、In量を変化させた膜を得られる。このグラフにおいて、In量は、0.99×{TMI/(TMI+TEG)}-0.07の関係式で表されるようにして、ガス組成比に比例していた(黒色丸印参照)。なお、一般的には、In量は、~0.25×{TMI/(TMI+TEG)}の関係式で表されるとされることから、本実施例の結果が、従来知られる一般的な反応とは異なることがわかる。
 図17には、図16で測定結果が示された窒素化合物膜について、{TMI/(TMI+TEG)}の組成比が、(a)0.39、(b)0.59、(c)0.71であるときに得られた、窒素化合物膜の、XRDによるω-2θ曲線を示した。このグラフは、それぞれ、In量の異なるInGaNが成膜されていることを示しており、原材料ガスの組成比(混合比)で、In量を制御できることがわかる。
(成膜試験3)
 次に、図1及び図2に示した上述の装置を用い、異なるプラズマ源ガスを用いて成膜を行った。具体的には、上記した成膜試験1及び2について、プラズマ源ガスとして、窒素ガスの代わりに、アンモニアを用いて、窒化ガリウム膜、窒化インジウムガリウム膜、及び窒化インジウム膜の成膜を行った(成膜試験3)。
 図18には、{TMI/(TMI+TEG)}の組成比を、(a)0.39、(b)0.59、(c)0.65にしたときに得られた、窒素化合物膜の、XRDによるω-2θ曲線を示した。ここでも、それぞれIn量の異なるInGaNが成膜されていることを示しており、原材料ガスの組成比(混合比)で、膜中のIn量を制御できることがわかる。なお、In量は、1.00×{TMI/(TMI+TEG)}-0.26の関係式で表され、図16にこれを示した(白色四角印参照)。
(成膜試験4)
 次に、図1及び図2に示した上記装置を用い、以下のようにして、3つの異なる構成条件(プラズマノズル22の先端部22aの異なる高さ位置)で、窒化インジウム膜の成膜をそれぞれ行った(成膜試験4)。まず、サセプター51上に、窒化ガリウムからなる基板5を載置した。プラズマノズル22の先端部22a及び基板5の間の距離を10mmとするように、サセプターシステム50の高さを調整した。プラズマノズル22の先端部22aは、ノズル面20aから、0.1mm突出するようにして(d=0.1mm)、10mm凹むようにして、すなわち引っ込むようにして(d=-10mm)、または、20mm凹むようにして(d=-20mm)、プラズマ源21が、ガス供給モジュール20に、それぞれ取り付けられた。更に、プラズマ源21には、プラズマ源ガスとして窒素ガスを2L/minで導入し、90Wのマイクロ波を印加した。そして、原材料ノズル24から、III族ガスとしてトリメチルインジウム(TMI)ガスを、キャリア用の窒素ガスとともに、3.5L/minで導入した。また、包摂ガスノズル26からは、窒素ガスを1L/minで導入した。真空容器10内の圧力は、圧力調整バルブを用いて、2.0kPaに保持し、基板5を設置したサセプターシステム50により、その温度を650℃にした。なお、基板回転速度は、5rpm、成膜時間は30分とした。
 図19には、図12と同様に、成膜試験4で得られた単結晶窒化インジウム膜ついて、(a)では(0002)対称面、(b)では(10-12)非対称面の、X線ロッキングカーブ(XRC)法での測定結果を示した。
 d=0.1mmでは、(0002)対称面、及び(10-12)非対称面の、それぞれの測定結果における半値全幅は、それぞれ578arcsec及び1315arcsecであった。また、d=-10mmではそれぞれ559arcsec、及び1363arcsecであった。d=-20mmでは、それぞれ529arcsec、及び1408arcsecであった。これら値は、いずれも、図12での(a)の(0002)対称面の半値全幅よりも小さいことから、螺旋転位欠陥密度は、小さくなっていることがわかる。一方、図12での(b)の(10-12)非対称面の半値全幅よりも若干大きいことから、刃状転位欠陥密度については、若干大きくなっていることがわかる。つまり、プラズマ源の位置を変化させたときであっても、十分な量の窒素原子を供給できるように制御すれば、高品位な膜を形成し得ることが分かる。
 以上のように、プラズマを吐出する開口の外側周囲に、原材料ガスを吐出する開口を設けた、ガス供給モジュールを用いることで、窒素系活性種の密度と、原材料ガスとを独立して制御し、高品位な窒素化合物を得られ、しかも、幅広いインジウム含有量の制御が可能となる。
 ここまで、本発明による代表的な実施形態及びこれに基づく改変例について説明したが、本発明は必ずしもこれらに限定されるものではない。当業者であれば、添付した特許請求の範囲を逸脱することなく、種々の代替実施例を見出すことができるであろう。
 本発明は、高品位な窒素化合物薄膜を高い効率で得られる窒素化合物の製造方法及び製造装置を提供できる。
1     製造装置
5     基板
10    容器(炉体)
16    カバー
16a   カバーの穴部
20    ガス供給モジュール
20a   ノズル面
20’   ヘッド板
21    プラズマ源
22    プラズマノズル
22a   プラズマノズルの先端部
23    誘電体基板
24    原材料ノズル
24a   原材料ノズルの開口
24’   原材料供給管
26    包摂ガスノズル
26a   包摂ガスノズルの開口
26’   包摂ガス供給管
27    ガス供給路
28    誘電体基板のマイクロストリップ線路
30    電源
31    同軸ケーブル
32    スタブチューナー
34    ガス供給管
40    分光システム
50    サセプターシステム
51    サセプター
R     発光部

Claims (20)

  1.  配置部に配置された基板に対向させたノズル面を有する、ガス供給モジュールを用いた、気相成長による窒素化合物の製造方法であって、
     窒素元素を含むプラズマ源ガスをプラズマ化して、形成したプラズマを、前記ノズル面に配置された開口を有するプラズマノズルの前記開口から、前記基板へ向けて、吐出させ、
     原材料ガスを、前記ノズル面に配置され、かつ前記プラズマノズルの前記開口の外側周囲に配置された開口を有する原材料ノズルの前記開口から、吐出させ、
     吐出された前記プラズマに含まれる窒素を含む活性種と前記原材料ガスとを反応させて、前記基板上に窒素化合物を成膜させることを特徴とする、窒素化合物の製造方法。
  2.  前記基板と前記プラズマノズルの前記開口との距離は150mm以下であることを特徴とする請求項1に記載の窒素化合物の製造方法。
  3.  前記基板及び前記ガス供給モジュールを収容した容器を用意し、前記容器の内部の圧力を1kPa以上にして、前記活性種と前記原材料ガスとを反応させることを特徴とする請求項1又は2に記載の窒素化合物の製造方法。
  4.  前記基板を取り外した状態で、前記基板が配置されていた位置で測定される、前記配置面における窒素原子密度が、1×1014cm-3以上であることを特徴とする請求項1から3のいずれか一項に記載の窒素化合物の製造方法。
  5.  前記ノズル面の前記原材料ノズルの前記開口の更に外側周囲にて開口する、開口を有する、包摂ガスノズルを設け、前記窒素化合物の成膜の際に、V族元素を含む包摂ガスを、前記包摂ガスノズルの前記開口から、前記基板へ向けて吐出させることを特徴とする請求項1から4のいずれか一項に記載の窒素化合物の製造方法。
  6.  前記窒素化合物の成膜の際に、前記基板を面内回転させ、前記プラズマノズルの前記開口に対向する前記基板の位置を移動させることを特徴とする請求項1から5のいずれか一項に記載の窒素化合物の製造方法。
  7.  前記原材料ガスはInを含む有機金属ガスであることを特徴とする請求項1から6のいずれか一項に記載の窒素化合物の製造方法。
  8.  前記原材料ガスは複数の有機金属からなる混合ガスであって、前記窒素化合物の成膜の際に、前記混合ガス中のInを含む有機金属の混合量を変化させて、前記窒素化合物中のIn量を変化させることを特徴とする請求項7に記載の窒素化合物の製造方法。
  9.  配置部に配置された基板に対向させたノズル面を有する、ガス供給モジュールを用いた、気相成長による窒素化合物の製造装置であって、
     前記ガス供給モジュールは、
     窒素元素を含むプラズマ源ガスをプラズマ化して得られたプラズマを、前記ノズル面に配置させた開口から前記基板へ向けて吐出させる、前記開口を有するプラズマノズルと、
     原材料ガスを、前記ノズル面に配置され、かつ前記プラズマノズルの前記開口の外側周囲に配置された開口から吐出させる、前記開口を有する原材料ノズルと、を含み、
     吐出された前記プラズマに含まれる窒素を含む活性種と前記原材料ガスとを反応させて、前記基板上に窒素化合物を成膜させることを特徴とする、窒素化合物の製造装置。
  10.  前記基板と前記プラズマノズルの前記開口との距離は150mm以下であることを特徴とする請求項9に記載の窒素化合物の製造装置。
  11.  前記ノズル面の前記原材料ノズルの前記開口の更に外側周囲にて開口する、開口を有する、包摂ガスノズルを有し、V族元素を含む包摂ガスを、前記包摂ガスノズルの前記開口から、前記基板へ向けて吐出させることを特徴とする請求項9又は10に記載の窒素化合物の製造装置。
  12.  前記基板を面内回転させ、前記プラズマノズルの前記開口に対向する前記基板の位置を移動させるサセプターを含むことを特徴とする請求項9から11のいずれか一項に記載の窒素化合物の製造装置。
  13.  前記プラズマノズルの前記開口の数が1つ以上であり、前記開口のそれぞれに対して、前記原材料ノズルの前記開口を複数設けることを特徴とする請求項11に記載の窒素化合物の製造装置。
  14.  前記原材料ノズルの複数の前記開口を包囲して、前記包摂ガスノズルの前記開口を複数設けることを特徴とする請求項13に記載の窒素化合物の製造装置。
  15.  前記プラズマノズルの前記開口を複数設けることを特徴とする請求項13又は14に記載の窒素化合物の製造装置。
  16.  前記窒素化合物が、窒化ガリウム、窒化インジウム、窒化アルミニウム、窒化ボロン、窒化インジウムガリウム、窒化インジウムアルミニウム、窒化アルミニウムガリウムからなる群から選択される少なくとも1つである、請求項1から8のいずれか一項に記載の窒素化合物の製造方法。
  17.  前記窒素化合物が、窒化ガリウム、窒化インジウム、窒化アルミニウム、窒化ボロン、窒化インジウムガリウム、窒化インジウムアルミニウム、窒化アルミニウムガリウムからなる群から選択される少なくとも1つである、請求項9から15のいずれか一項に記載の窒素化合物の製造装置。
  18.  前記基板と前記プラズマノズルの前記開口との距離は150mm以下であり、
     前記窒素化合物の成膜時の、前記基板を収容した容器内の圧力が1kPa以上であり、
     前記基板を取り外した状態で、前記基板が配置されていた位置で測定される、窒素原子密度が、1×1014cm-3以上であり、
     前記プラズマ源ガスが、窒素ガス又はアンモニアを含み、
     前記原材料ガスが、トリエチルガリウム、トリメチルガリウム、トリメチルインジウム、トリエチルガリウムとトリメチルインジウムの混合ガス、トリメチルガリウムとトリメチルインジウムの混合ガスのいずれかであり、
     前記包括ガスが、窒素ガスである、
    請求項5に記載の窒素化合物の製造方法。
  19.  前記プラズマノズルからの前記プラズマの吐出を開始した後に、前記原材料ノズルからの前記原材料ガスの吐出を開始する、請求項1から8、16及び18のいずれか一項に記載の窒素化合物の製造方法。
  20.  前記基板と前記プラズマノズルの前記開口との距離は150mm以下であり、
     前記窒素化合物の成膜時の、前記基板を収容した容器内の圧力が1kPa以上であり、
     前記基板を取り外した状態で、前記基板が配置されていた位置で測定される、前記配置面における窒素原子密度が、1×1014cm-3以上であり、
     前記プラズマ源ガスが、窒素ガス又はアンモニアを含み、
     前記原材料ガスが、トリエチルガリウム、トリメチルガリウム、トリメチルインジウム、トリエチルガリウムとトリメチルインジウムの混合ガス、トリメチルガリウムとトリメチルインジウムの混合ガスのいずれかであり、
     前記包括ガスが、窒素ガスである、
    請求項11記載の窒素化合物の製造装置。
PCT/JP2022/037868 2021-10-11 2022-10-11 窒素化合物の製造方法及び製造装置 WO2023063310A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112022004880.8T DE112022004880T5 (de) 2021-10-11 2022-10-11 Verfahren und vorrichtung zum herstellen einer stickstoffverbindung
KR1020247009246A KR20240046258A (ko) 2021-10-11 2022-10-11 질소 화합물의 제조 방법 및 제조 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-166589 2021-10-11
JP2021166589A JP2023057215A (ja) 2021-10-11 2021-10-11 窒素化合物の製造方法及び製造装置

Publications (1)

Publication Number Publication Date
WO2023063310A1 true WO2023063310A1 (ja) 2023-04-20

Family

ID=85987961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/037868 WO2023063310A1 (ja) 2021-10-11 2022-10-11 窒素化合物の製造方法及び製造装置

Country Status (5)

Country Link
JP (1) JP2023057215A (ja)
KR (1) KR20240046258A (ja)
DE (1) DE112022004880T5 (ja)
TW (1) TWI848396B (ja)
WO (1) WO2023063310A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01298725A (ja) * 1988-05-27 1989-12-01 Hitachi Ltd 薄膜形成方法及びその装置並びに半導体素子
JPH1187253A (ja) * 1997-09-02 1999-03-30 Sumitomo Electric Ind Ltd 化合物半導体薄膜の成膜方法
JP2002016056A (ja) * 2000-06-29 2002-01-18 Nec Corp リモートプラズマcvd装置及び膜形成方法
JP2012243934A (ja) * 2011-05-19 2012-12-10 Showa Denko Kk Iii族窒化物半導体発光素子及びその製造方法
US20160329192A1 (en) * 2015-05-05 2016-11-10 Eastman Kodak Company Radial-flow plasma treatment system
JP2019153690A (ja) * 2018-03-02 2019-09-12 東芝デバイス&ストレージ株式会社 成膜装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5113705B2 (ja) * 2007-10-16 2013-01-09 東京エレクトロン株式会社 薄膜形成装置の洗浄方法、薄膜形成方法、薄膜形成装置及びプログラム
US20190153617A1 (en) 2015-11-04 2019-05-23 National Institute Of Advanced Industrial Science And Technology Production Method and Production Device for Nitrogen Compound
JP6811472B2 (ja) * 2016-10-28 2021-01-13 国立大学法人東海国立大学機構 Iii族窒化物半導体素子の製造方法
US11081337B2 (en) * 2017-03-15 2021-08-03 Versum Materials U.S., LLC Formulation for deposition of silicon doped hafnium oxide as ferroelectric materials
JP7274191B2 (ja) 2020-04-09 2023-05-16 株式会社サンセイアールアンドディ 遊技機

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01298725A (ja) * 1988-05-27 1989-12-01 Hitachi Ltd 薄膜形成方法及びその装置並びに半導体素子
JPH1187253A (ja) * 1997-09-02 1999-03-30 Sumitomo Electric Ind Ltd 化合物半導体薄膜の成膜方法
JP2002016056A (ja) * 2000-06-29 2002-01-18 Nec Corp リモートプラズマcvd装置及び膜形成方法
JP2012243934A (ja) * 2011-05-19 2012-12-10 Showa Denko Kk Iii族窒化物半導体発光素子及びその製造方法
US20160329192A1 (en) * 2015-05-05 2016-11-10 Eastman Kodak Company Radial-flow plasma treatment system
JP2019153690A (ja) * 2018-03-02 2019-09-12 東芝デバイス&ストレージ株式会社 成膜装置

Also Published As

Publication number Publication date
DE112022004880T5 (de) 2024-07-25
TWI848396B (zh) 2024-07-11
TW202334092A (zh) 2023-09-01
KR20240046258A (ko) 2024-04-08
JP2023057215A (ja) 2023-04-21

Similar Documents

Publication Publication Date Title
KR100272752B1 (ko) 기상성장장치및기상성장방법
US5637146A (en) Method for the growth of nitride based semiconductors and its apparatus
US5334277A (en) Method of vapor-growing semiconductor crystal and apparatus for vapor-growing the same
EP1271607A2 (en) Chemical vapor deposition apparatus and method
WO2006013957A1 (ja) Ga含有窒化物半導体単結晶、その製造方法、並びに該結晶を用いた基板およびデバイス
US20120070963A1 (en) Plasma deposition
US20100307418A1 (en) Vapor phase epitaxy apparatus of group iii nitride semiconductor
WO2023063310A1 (ja) 窒素化合物の製造方法及び製造装置
US11186922B2 (en) Apparatus for producing Group-III nitride semiconductor crystal including nitrogen source nozzles with different spray directions
US8992684B1 (en) Epitaxy reactor internal component geometries for the growth of superior quality group III-nitride materials
WO2017078082A1 (ja) 窒素化合物の製造方法及び製造装置
Sakakita et al. Ammonia-free epitaxy of single-crystal InN using a plasma-integrated gas-injection module
Yamaguchi et al. Growth of Highly Crystalline GaN at High Growth Rate by Trihalide Vapor‐Phase Epitaxy
US20060288933A1 (en) Chemical vapor deposition reactor
JP4524175B2 (ja) 有機金属気相成長装置及び半導体の製造方法
KR101105629B1 (ko) 유기금속 화학 기상 증착에 의하여 기판상에 화합물을증착하는 방법
JP6110106B2 (ja) 薄膜形成装置
KR19990023438A (ko) 화합물반도체 에피텍셜웨이퍼의 제조방법 및 이것에 사용되는 기상성장장치
JP2934740B2 (ja) 半導体結晶のエピタキシャル成長装置
JP2849642B2 (ja) 化合物半導体の気相成長装置
JP2006140397A (ja) 窒化物系化合物半導体製造装置
JP3104677B2 (ja) Iii族窒化物結晶成長装置
JPS63188933A (ja) 窒化ガリウム系化合物半導体の気相成長方法
JP3112445B2 (ja) 窒化ガリウム系化合物半導体の気相成長装置
JP2005228757A (ja) 気相成長装置及び気相成長方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22881005

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247009246

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18699882

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112022004880

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22881005

Country of ref document: EP

Kind code of ref document: A1