WO2005092482A1 - 排ガス浄化装置 - Google Patents

排ガス浄化装置 Download PDF

Info

Publication number
WO2005092482A1
WO2005092482A1 PCT/JP2004/002881 JP2004002881W WO2005092482A1 WO 2005092482 A1 WO2005092482 A1 WO 2005092482A1 JP 2004002881 W JP2004002881 W JP 2004002881W WO 2005092482 A1 WO2005092482 A1 WO 2005092482A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
gas purification
purification apparatus
zeolite
way catalyst
Prior art date
Application number
PCT/JP2004/002881
Other languages
English (en)
French (fr)
Other versions
WO2005092482A8 (ja
Inventor
Hiroshi Tanada
Keisuke Tashiro
Hirokuni Seto
Kenji Morimoto
Tatsuya Okubo
Masaru Ogura
Original Assignee
Mitsubishi Jidosha Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Jidosha Kogyo Kabushiki Kaisha filed Critical Mitsubishi Jidosha Kogyo Kabushiki Kaisha
Priority to DE112004002783.7T priority Critical patent/DE112004002783B4/de
Priority to CNB2004800422949A priority patent/CN100428980C/zh
Priority to PCT/JP2004/002881 priority patent/WO2005092482A1/ja
Priority to JP2006511353A priority patent/JP4998698B2/ja
Publication of WO2005092482A1 publication Critical patent/WO2005092482A1/ja
Publication of WO2005092482A8 publication Critical patent/WO2005092482A8/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/945Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0246Coatings comprising a zeolite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0814Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/104Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/2073Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20738Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20753Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20761Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/91NOx-storage component incorporated in the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/464Rhodium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2370/00Selection of materials for exhaust purification
    • F01N2370/02Selection of materials for exhaust purification used in catalytic reactors
    • F01N2370/04Zeolitic material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • F01N2510/063Surface coverings for exhaust purification, e.g. catalytic reaction zeolites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an apparatus for purifying exhaust gas from an engine.
  • an adsorbent composed of various zeolites (FER type, MR type, FAU type, MF type, / 3 type etc.) is provided in the exhaust passage of the engine, and the engine is cooled during exhaust start-up.
  • FER type zeolites
  • MR type MR type
  • FAU type MF type
  • / 3 type etc. zeolites
  • zeolite has the property of desorbing the adsorbed HC as the temperature rises, and in practical use, the temperature is raised to a temperature at which the catalyst (such as a three-way catalyst) for purifying HC works properly. It is desirable to start the desorption of HC from the zeolite after the reaction.
  • the present invention has been made in view of such problems, and an object of the present invention is to provide an exhaust gas purification apparatus capable of holding HC in an adsorbent up to a temperature at which a catalyst for purifying HC in exhaust gas works properly. To provide.
  • an adsorbent having a zeolite having a three-dimensional structure in which annular structures having different member numbers cross each other is provided in an exhaust passage of an internal combustion engine. Therefore, compared to the conventional J3 type zeolite, the amount of H 2 C adsorption on the adsorption catalyst can be secured, and the desorption of the adsorbed 2 H C can be further suppressed. At this time, it is preferable that the center lines of the ring structures having the same number of adjacent ring members do not coincide with each other. This makes it possible to suppress the desorption of adsorbed HC by the structure of the formed pores.
  • the cyclic structure having one member ring number has the function of adsorbing HC in the exhaust gas
  • the ring structure having the other member ring number has a function to prevent the release of adsorbed HC. It is preferable to have As a result, the amount of adsorption of H 2 C can be large, and desorption of H 2 C can be suppressed to a high temperature.
  • the different member ring numbers are 10 and 12. Therefore, it is possible to facilitate adsorption of H 2 C 2 by the 12-membered ring number pore, and to suppress desorption of H 2 C 2 adsorbed by the 10-membered ring number pore.
  • the above-mentioned zeolite has a hole of member number 10 in one direction of the three-dimensional structure, and a hole of member number 12 in the remaining two directions.
  • the silica / alumina composition ratio of the zeolite is preferably set to 20 to 150, and more preferably to 20 to 300. Therefore, the adsorption performance can be kept high and the heat resistance can be secured without impairing the adsorption performance of HC.
  • the supported amount of the zeolite is set to 90 gZL to 1 30 gZL. As a result, a sufficient amount of adsorption can be secured, and the purification performance of HC can be improved.
  • the zeolite contain one or more elements selected from Ag, Mn, Fe, Ni, and Cu. This allows the temperature at which desorption of HC from the adsorbent starts to be raised.
  • the adsorbent is carried on a carrier, and a three-way catalyst substance is carried on the downstream side of the carrier.
  • the HC desorbed from the adsorbent can be purified by the downstream three-way catalyst substance.
  • the adsorbent is carried on a carrier, and a three-way catalyst layer is formed on the surface of the adsorbent. This makes it possible to clean up the HC that is released.
  • the three-way catalyst layer contains Ce.
  • the three-way catalyst layer is rich in HC and CO due to the oxygen storage / function (O, storage function) of Ce.
  • the adsorption amount of the zeolite is larger than the total amount of HC discharged from the internal combustion engine from the cold start of the internal combustion engine to the activation time of the three-way catalyst layer. Should be set to have. This makes it possible to reliably suppress HC release at the cold start.
  • an upstream side three-way catalyst is provided upstream of the carrier. Therefore, the amount of HC in the exhaust gas downstream of the upstream three-way catalyst can be reduced and the amount of HC adsorbed to the adsorbent can be reduced by purifying the HC even by the upstream three-way catalyst.
  • the cell density of the upstream three-way catalyst is preferably higher than the cell density of the carrier.
  • the temperature increase rate of the upstream three-way catalyst is improved, and the HC Can be purified more efficiently.
  • the adsorption amount of the zeolite is larger than the total amount of HC discharged from the engine from the cold start of the engine to the activation time of the upstream three-way catalyst. Should be set to have. This makes it possible to suppress the exhaustion of HC released before the upstream side catalyst is activated.
  • the adsorbent should have a maximum HC release capacity at a temperature of 160 ° C. or higher. This can improve the purification rate of HC.
  • an adsorbent having zeolite having a C ⁇ N type structure in the exhaust passage of an internal combustion engine, in which case the zeolite has a three-dimensional structure in which annular structures intersect. It is desirable to have SS Z-26 or S SZ-33. As a result, compared to the conventional type 3 zeolite, desorption of adsorbed HC can be further suppressed, and the adsorbed HC can be well maintained to a high temperature range.
  • FIG. 1 is a block diagram schematically showing an exhaust gas heating apparatus according to the present invention
  • Fig. 2 is a cross-sectional view showing a laminated structure of a three-way catalyst layer of UCC and an HC adsorption layer;
  • Fig. 3 is a view schematically showing a crystal structure of CON-type zeolite;
  • Figure 4 shows the relationship between HC adsorption of CON-type zeolite and HC emission due to temperature transition
  • Fig. 5 is a configuration diagram schematically showing an exhaust gas purification apparatus according to another embodiment in which a UCC carrier is divided into a front part and a rear part;
  • Fig. 6 shows test results showing the relationship between the temperature when a new U C C is fitted to the engine and the amount of HC emission from U C C (ie the amount of HC desorption);
  • Fig. 7 shows the same result as Fig. 6 in the form of a bar graph for each temperature range
  • FIG. 9 is a diagram showing the relationship between the composition ratio S i / A 1 of CON type zeolia and the reduction rate of NMHC excretion;
  • FIG. 10 is a diagram showing the relationship between the amount of CQN type zeolite and the reduction rate of NMHC excretion
  • FIG. 11 is a graph showing the change in HC desorption temperature when transition metal is supported on CON-type zeolite.
  • FIG. 1 is a block diagram schematically showing an exhaust gas purification apparatus according to an embodiment of the present invention
  • FIG. 2 shows a laminated structure of a three-way catalyst layer and an HC adsorption layer of a catalyst used in the exhaust gas purification apparatus.
  • an exhaust gas purification apparatus includes an exhaust passage 31 upstream (here, exhaust manifold) 31 connected to an engine body (hereinafter simply referred to as an engine) 30. Equipped with a proximity catalyst (MCC: Mani fold Catalytic Converter) 10 intervened in a and an underfloor catalyst (UC C: Under-floor Catalytic Converter) 20 intervened in the downstream part 31 b of the exhaust passage 31 It is configured.
  • MCC Mani fold Catalytic Converter
  • UC C Under-floor Catalytic Converter
  • the MCC 10 is configured as a three-way catalyst.
  • the support case with a large number of cell holes is equipped inside the catalyst case of UCC 20, and this support contains a three-way catalyst component of palladium Pd-rhodium Rh system, silica S i and alumina A 1 And an HC adsorbent capable of adsorbing HC in the exhaust gas.
  • the HC adsorbent is disposed on the inner peripheral surface of each cell hole 3 a of the carrier 3 as the HC adsorption layer 2.
  • a catalyst component is formed in a laminated manner as a three-way catalyst layer 1.
  • Fig. 3 schematically shows the crystal structure of CON type zeolite.
  • the CON type zeolite has a three-dimensional structure in which cyclic structures having different member numbers cross each other, and two kinds of pore structures having different diameters depending on the cyclic structure in the crystal body (a pore having 10 ring members and a member ring number) It has 12 pores.
  • pores having a three-dimensional structure are formed from respective faces in the unit crystal structure forming the pores, and when stacked, the center lines of adjacent ring structures having the same number of member rings coincide.
  • the pore passage is configured in the non-state.
  • CON-type zeolite has the property that HC has a porosity of 12 ring members and is easy to infiltrate into the crystal. On the other hand, HC also infiltrates into the crystal body from the 10-ring ring, but its penetration is slower than in the 12-ring ring, and thus the 10-ring hole passes through the HC. Also has the characteristic of becoming loose.
  • the CON-type zeolite is adsorbed by the intricate pore passage due to the fact that the center lines of the ring structures having the same number of member rings adjacent to each other do not match when HC is once infiltrated into the back of the crystal body.
  • passing through HC in one dimension in the three-dimensional direction becomes gentle due to the small diameter pores of 10 member rings, and HC rises outside the crystal even if the temperature rises. It has the characteristic of being difficult to release.
  • CON-type zeolite has the property that the large diameter pore of 12 member rings promotes adsorption of HC, and the small diameter pore of 10 member rings suppresses the desorption of HC in a high temperature range. ing.
  • HC also has the property of being easily adsorbed to A 1 among S i and A 1 which are main components of zeolite, and according to the experiment, the larger the amount of A 1 is, that is, silica S It was confirmed that the adsorption performance of the HC adsorption layer 2 is improved as the composition ratio S iZA 1 of i and alumina A 1 is decreased.
  • the CNN-type zeolite is in a region where the collapse of A 1 in the zeolite structure is small even at high temperatures (eg, 900 ° C.) by the exhaust gas and the adsorption performance of the HC adsorption layer 2 is high.
  • the composition ratio S i / A 1 of the glaze is set. That is, CON-type zeolite exhibits high HC adsorption performance even when it is set to a smaller composition ratio S i ZA 1 when compared with type-zeolite etc., and also has excellent heat resistance and excellent durability.
  • the composition ratio S iZA 1 is preferably set in the range of about 20 to 1500, and in particular, when the composition ratio S iZA 1 is set to about 20 to 300, HC
  • the adsorption performance can be kept high and the heat resistance can be secured without impairing the release performance.
  • the desorption rate of HC desorbs as the amount of zeolite decreases, while the desorption rate of HC desorbs as the amount of zeolite increases.
  • the heat capacity tends to increase and the temperature rise effect tends to decrease.
  • the desorption rate of HC tends to be against the amount of adsorption. That is, although the amount of HC that can be adsorbed is determined by the amount of zeolite, as shown in FIG. 4, the amount of HC adsorbed with respect to the amount capable of adsorbing zeolite increases with the amount of HC adsorbed. While the separation increases at lower temperatures, the smaller the amount of HC adsorbed with respect to the amount that can be adsorbed, the higher the desorption of adsorbed HC can be suppressed. Through experiments, it was confirmed that force S exhibits the same tendency even in CON-type solar oil.
  • the amount of CON type primary within the range not exceeding the allowable range of the heat capacity is set. It is done. Furthermore, the amount of the CON type zeolite is set to have an HC adsorption capacity larger than the total amount of HC exhausted from the time of cold condition of the engine 30 to the time of activation of the MCC 10. According to the experiment, it is preferable to contain about 90 g / L to about 1 30 g ZL of CON type zeolite in the HC adsorption layer 2 because a sufficient HC adsorption amount can be secured.
  • a palladium-Pd-rhodium-Rh based noble metal is used for the three-way catalyst layer 1.
  • the surface area of the HC adsorption layer 2 increases as the cell density increases, and the amount of the adsorbent that can be carried, that is, the amount of zeolite increases. In this respect as well, it was confirmed by experiments that a similar tendency is shown in CON type zeolitic rods.
  • the carrier cell density of UCC 20 is optimized by the total amount of the adsorbent (zeolite).
  • the carrier cell density of the MCC 10 upstream of the exhaust passage is set higher than the carrier cell density of the UCC 20 downstream.
  • the cell density is increased, the contact area between the exhaust gas discharged from the engine 30 and the three-way catalyst substance is increased, and more HC discharged from the engine is oxidized, so the heat of reaction improves the temperature rising characteristic.
  • the wall thickness of the support is reduced to increase the density in order to increase the cell density, the heat sink mass is reduced by decreasing the wall thickness.
  • the temperature rising characteristics of the MCC 10 can be improved, the time to activation can be shortened, and the amount of HC discharged at the cold start of the engine 30 can be reduced. Therefore, the total amount of HC adsorbed by the HC adsorption layer 2 of UCC 20 is reduced, HC can be easily adsorbed in the C adsorption layer 2 and the capacity of the UCC 20 can be reduced.
  • the carrier 3 of UCC 20 is divided into the upstream portion and the downstream portion, and the HC adsorption layer 2 and the three-way catalyst layer 1 are formed in each of them.
  • the carrier cell density in the upstream part is increased and the carrier cell density in the downstream part is decreased, HC tends to be easily adsorbed in the HC adsorptive layer 2. It was confirmed that the trend of Therefore, when the carrier 3 of UCC 20 is divided into the upstream portion and the downstream portion, the carrier cell density in the upstream portion is increased, while the carrier cell density in the downstream portion is decreased, and HC adsorption layer 2
  • the three-way catalyst layer 1 is formed.
  • the exhaust gas purification apparatus when the engine 30 is in a cold state, the exhaust gas purification is performed by the upstream MCC 10 that raises the temperature quickly mainly by the exhaust gas, but among the exhaust gases that could not be cleaned by the MC C 10 HC is adsorbed to the HC adsorption layer 2 of UCC 20. Then, when the temperature of the MCC 10 is raised with warm-up of the engine 30 and the function as a three-way catalyst is activated, the exhaust gas is purified by the MCC 10. At this time, the temperature rise rate of MCC 10 is accelerated by the high temperature exhaust gas, and the function as a three-way catalyst will be activated early.
  • the amount of HC contained in the exhaust gas on the downstream side of MCC 10 is reduced by purifying HC on the upstream side as little as possible, and adsorption of HC adsorbed on HC adsorption layer 2 of UCC 20 The amount can be reduced.
  • the UCC 20 has the amount of zeolite so as to have an HC adsorption capacity greater than the total amount of HC discharged from the cold state of the engine 30 to the activation time of the MCC 10 Is set. Therefore, when the UCC 20 is heated and its activation is promoted thereafter, the desorption force S of HC from the HC adsorption layer 2 of UCC 20 starts, but the three-way catalyst layer activated as in the HC adsorption layer 2 is heated. The HC desorbed from the adsorption layer 2 is purified by 1. Therefore, the capacity of the adsorption layer 2 of HC can be reduced. At the same time, the HC contained in the exhaust gas in the cold state can be significantly reduced.
  • the temperature rising rate of the MCC 10 is accelerated by the high temperature exhaust gas, and the function as a three-way catalyst is activated earlier. Therefore, after HC adsorption layer 2 of UCC 20 starts adsorption of HC, the time for MCC 10 to raise the temperature to the HC purification temperature (activation temperature) can be extremely short, and at the time of MCC 10 low temperature
  • the HC that could not be purified can be adsorbed by the HC adsorption layer 2 of UCC 20, and HC desorbed from HC adsorption layer 2 when UCC 20 is activated can be cleaned well by the three-way catalyst layer 1 of UCC 20 It is. As a result, the amount of HC discharged without being processed by MCC 10 can be significantly reduced.
  • the engine 30 may perform ignition timing retardation for raising the exhaust temperature. Furthermore, when the engine 30 is a cylinder injection type engine, it is also effective to perform additional injection of fuel (sub injection) in the expansion stroke.
  • CON type zeolite having a pore with 10 members and a pore with 12 members, but it has a pore with 10 members and a pore with 12 or more members.
  • the CON type zeolite may be used, or a zeolite having three or more member ring numbers may be used.
  • C_ ⁇ _N type zeolite adsorbent a (product name Chevron made SS Z- 3 3 or SSZ- 26), and S i O 2 of 1 OWT% of the adsorbent weight as S I_ ⁇ 2 sol
  • dispersion mixing of a 5 O wt% aqueous dispersion solution in water was performed using a pole mill to prepare a slurry of the HC adsorption layer. Thereafter, this slurry was adhered to a desired weight on a honeycomb (1 L) made of Kojigilite and dried, and then fired in air in 500 to form an HC adsorption layer.
  • the target noble metal salt was mixed with alumina in a pole mill to prepare a slurry with 5 O wt% as solid content.
  • the target weight After allowing the target weight to adhere to the HC-made honeycombs coated with the HC adsorption layer and drying it, it is calcined at 500 ° C. in the air similarly to the HC adsorption layer, and the three-way catalyst layer is It formed.
  • HC desorption temperatures were compared for the case of using the CON type zeolite and for the case of using the type 3 zeolite only for HC adsorption.
  • Zeolite used powder and toluene was used as adsorption HC.
  • the profile results of the Temperature Programmed Desorption (TPD) test of HC emissions (ie HC desorption) when using new Zeolite are compared between the CON type Zeolite and the Type Zeolite. It is shown in the figure, and referring to FIG. 7, the same result is shown as a bar graph comparison for each temperature range.
  • Fig.6 and Fig.7 compared with the case of using / 3 type zeolite (dotted line), when CON type zeolite is used for HC adsorption layer (solid line), HC desorption in low temperature range
  • the amount of HC desorption at high temperatures is dramatically increased. In particular, the amount of HC released increases above 160, and the amount of emission peaks near 20.
  • the CON-type zeolite has a three-dimensional pore structure and has a small diameter pore of 10 ring members and a large diameter pore of 12 ring members in a unit crystal forming the pores.
  • the large diameter pore of 12 member rings promotes adsorption of HC
  • the small diameter pore of 10 ring members suppresses desorption of HC.
  • the minimum activation temperature about 200. It was possible to desorb after exceeding the oxidation temperature, and it was verified that adopting C ON type zeolite for the HC adsorption layer of the adsorption catalyst is extremely effective for improving the HC purification performance. .
  • the test results after the heat resistance test where the zeolite is held at 800 in 10% water vapor for 5 hours are shown as in FIG. 6, but as shown in FIG.
  • the CON-type zeolite for the HC adsorption layer is inferior in performance to the new product, but the three-way catalyst layer has the lowest activation temperature (when using the 0-type zeolite).
  • the amount of desorbed HC in the region exceeding about 200) is much higher. From this, it was verified that an adsorption catalyst employing a C ⁇ N-type zeolite for the HC adsorption layer can sufficiently withstand in practical use.
  • CON-type zeolite when CON-type zeolite is used for the HC adsorption layer of UCC 20, the composition ratio S i ZA 1 of CON-type zeolite, the amount of CON-type zeolite, the kind of precious metal of three-way catalyst layer, integral of carrier or A separate evaluation was conducted to evaluate the reduction rate of NMHC (Non Methane Hydrocarbon) emission (HC purification rate of the entire exhaust system) for HC emitted from U CC by changing the carrier cell density.
  • NMHC Non Methane Hydrocarbon
  • Table 1 it is shown the results of investigation of the cold NMHC emission reduction rate immediately after the start of the engine by changing the composition ratio Si ZA 1 of CON type zeolite of UCC 20. Further, referring to FIG. 9, the relationship between the composition ratio S iZA 1 of the C ⁇ N-type zeolite and the reduction rate of the NMHC based on the results is shown.
  • the reduction rate of NMHC excretion at the amount of 00 g L of said CON type zeolite is the largest at 80%, 90 gZL to l 30 g If it is about / L, it is possible to maintain the HC purification rate high. From this, the amount of CON-type zeolite is set to be about 90 gZL to about 1 30 gZL.
  • the type of noble metal of the three-way catalyst layer is mainly composed of palladium, Pd, rhodium, Rh and noble metals, and platinum Pt, rhodium Rh
  • the mixing ratio of Pd and Pt to Rh is different, these show typical mixing ratios in the case of preparing an optimum three-way catalyst layer using Pd and Pt, respectively.
  • Table 4 shows: 1 carrier volume 1 L at a carrier cell density of 4.3 mil Z60 Ocell, 2 carrier volume 1 L at a carrier cell density of 2.5 mil Z90 Ocell, and FIG. As shown, when 3 carriers are divided into the front stage 0.4L and the rear stage 0.6L, and both are carrier cell density 4.3 mil 60 Ocell, 4 carriers are the front stage 0.4L and the rear stage 0.4.
  • the case of 1 and 2 compared with the case of carrier cell density of 2.5 mil Z 90 Ocell is the carrier.
  • the cell density reduction rate of NMHC is higher than in the case of cell density of 4.3 mil / 600 cells (cell density is low). It is considered that this is because the surface area of the HC adsorption layer increases as the cell density increases, and HC is easily adsorbed. From this, when the carrier is not divided but integrated, the carrier cell density is set to be large. Moreover, when the cases of 3 and 4 are compared, the carrier cell density is set to 4.3 mil Z600 cells in both cases where the carrier cell density is 2.5 mils for both the front part and the rear part of the carrier. NMHC emission reduction rate is higher than in the case.
  • the former part of the carrier is the carrier cell density of 2.5 mil Z 90 Ocell
  • the latter part is the carrier cell density of 4.3 mi 1Z 600 eel 1
  • the reduction rate of NMHC is higher than in the case where the front part of the carrier is 4.3 mil Z60 Ocell and the rear part is a carrier cell density of 25 mil / 900 cell.
  • the cell density of the former part is set to be larger than that of the latter part.
  • CON type zeolite product name: Chevron 352-33
  • a three-way catalyst is used for the MCC 10, this is to reduce the HC adsorption amount and to increase the efficiency of the oxidation of desorbed HC, and a three-way catalyst layer on one carrier like the above UCC 20. Even when 1 and the HC adsorption layer 2 are provided, the same effect can be obtained.
  • nickel ( ⁇ ) may be further added to the ternary catalytic layer 1 of the MCC 10 or the UCC 20. That is, among transition metals, N i has a particularly high ability to adsorb and oxidize CO, and by including N i in the three-way catalyst layer 1, the oxidation reaction amount of CO in the three-way catalyst layer 1 is sufficiently ensured. The three-way catalyst layer 1 is heated earlier and activated earlier.
  • transition metals such as Ag, Fe, Ni, and Cu are supported on zeolite of the above-mentioned adsorption catalyst, a chemical adsorption force is generated between the transition metals and HC, as shown in Fig. 11.
  • the desorption temperature of HC is improved.
  • Ce may be further added to the three-way catalyst layer 1 of the UCC 20. That, Ce has an oxygen storage function (0 2 storage function), ternary catalytic layer 1 HC, be in a high reducing atmosphere of CO occluded ⁇ 2 HC can oxide removal in a good good by Yes, this will further improve HC purification performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

内燃機関(30)の排気通路(31)に、異なる員環数の環状構造が交差する三次元構造を持つゼオライトからなる吸着触媒(2)を設け、排ガス中のHCを浄化する触媒が適正に働く温度までHCを吸着触媒(2)に保持可能とする。

Description

明 細 書
排ガス浄化 g置 技術分野
本発明は、 エンジンからの排ガスを浄ィヒする装置に関する。 背景技術
従来より、 エンジンの排気通路に各種のゼォライト (FER型、 M〇R型、 F AU型、 MF I型、 /3型ゼォライ卜等) からなる吸着剤を設け、 エンジンの冷態 始動時に排ガス中に含まれる HCを当該吸着剤に吸着させる技術が開発されてい る。
しかしながら、 一般にゼォライトは吸着した HCを温度上昇に伴い脱離する特 性を有しており、 実用上は、 HCを浄化する触媒 (三元触媒等) が適正に働く温 度まで昇温し活性化した後に当該ゼォライトからの HCの脱離が開始されること が望ましい。
そこで、 上記各種のゼォライトに種々の条件を付加し、 HC吸着剤の最適化を 図った排ガス浄化システムが開発されている (日本国特開 2003-29066 1号公報、 日本国特開 2002 - 239346号公報参照) 。
ところが、 従来の主として /3型ゼオライトを用いた HC吸着剤では、 HCを浄 化する触媒 (三元触媒等) が適正に働く温度まで昇温する前の時点でゼォライト からの HCの脱離が始まってしまい、 吸着した HCを十分に浄化しきれていない という問題がある。 また、 Ag等の金属を HC吸着剤とともに担持させる技術は、 HCの脱離温度に有効であるが、 排ガス浄化装置として用いるには耐熱性が高く ないという問題がある。 発明の開示 本発明は、 このような問題点に鑑みなされたもので、 その目的とするところは、 排ガス中の H Cを浄化する触媒が適正に働く温度まで H Cを吸着剤に保持可能に 図った排ガス浄化装置を提供することにある。
上記した目的を達成するために、 本発明の排ガス浄化装置では、 内燃機関の排 気通路に、 異なる員環数の環状構造が交差する三次元構造を持つゼォライトを有 する吸着剤を設けた。 従って、 従来の J3型ゼオライトに比べ、 吸着触媒への H C 吸着量を確保し、 当該吸着した H Cの脱離をより一層抑制することができる。 この際、 隣り合う同じ員環数の前記環状構造の中心線は一致していないのがよ い。 これにより、 形成される細孔の構造によって吸着した H Cの脱離を抑制する ことができる。
また、 前記異なる員環数のうち、 一方の員環数を持つ環状構造は排ガス中の H C吸着機能を有し、 他方の員環数を持つ環状構造は吸着された H Cの放出を妨げ る機能を有しているのが好ましい。 これにより、 H Cの吸着量が多いとともに、 H Cの脱離を高温まで抑制することができる。
好ましくは、 前記異なる員環数は、 1 0と 1 2である。 従って、 1 2員環数の 細孔によって H Cを吸着し易くできるとともに、 1 0員環数の細孔によって吸着 した H Cの脱離を抑制することができる。
この際、 前記ゼォライトは、 三次元構造の一方向に員環数 1 0の孔を持ち、 残 りの二方向に員環数 1 2の孔を持っているのがよい。 これにより、 従来の /3型ゼ オライトに比べ、 吸着した H Cの脱離を抑制し、 当該吸着した H Cを高温域まで 保持することができる。
また、 前記ゼォライ卜の組成比シリカ/アルミナは 2 0〜1 5 0 0に設定され るのがよく、 特に 2 0〜3 0 0に設定されるのが好ましい。 従って、 H Cの吸着 性能を損なうことなく、 吸着性能を高く保ち耐熱性をも確保することができる。 また、 前記ゼォライトの組成比シリカ Zアルミナは、 9 0 0 T:で前記ゼォライ 卜の組織に崩れがないように設定されるのが望ましい。 これにより、 ゼォライト の組織が崩れにくく、 ゼォライト触媒の耐久性が向上する。
また、 前記ゼォライトの担持量は、 90 gZL〜l 30 gZLに設定されるの がよい。 これにより、 十分な吸着量を確保でき、 HCの浄化性能を向上させるこ とができる。
また、 前記ゼォライトに、 Ag, Mn, F e, N i , Cuから選ばれる 1っ以 上の元素を含むのがよい。 これにより、 吸着剤から HCの脱離が始まる温度を上 げることができる。
また、 前記吸着剤が担体に担持されるとともに、 前記担体の下流側に三元触媒 物質が担持されているのが好ましい。 これにより、 吸着剤から脱離した HCを下 流側の三元触媒物質で浄化することができる。
また、 前記吸着剤が担体に担持されるとともに、 前記吸着剤の表面に三元触媒 層が形成されているのが好ましい。 これにより、 放出される HCを確実に浄化す ることができる。
この際、 前記三元触媒層に Ceを含むのがよい。 これにより、 Ceの酸素吸蔵 /、機能 (O,ストレージ機能) によって、 三元触媒層が HC, COの多い還元雰囲気
、.h
中にあっても HCを良好に酸化除去可能である。
また、 この際、 前記ゼォライトの担持量は、 前記内燃機関の冷態始動時から前 記三元触媒層の活性時までの間に前記内燃機関から排出される HCの総量よりも 大きい吸着能力を有するように設定されるのがよい。 これにより、 冷態始動時の HC放出を確実に抑制することができる。
また、 前記担体の上流には、 上流側三元触媒が設けられているのが好ましい。 従って、 上流側三元触媒が少しでも HCを浄化することで、 上流側三元触媒下流 の排ガス中の HC量を減少させ、 吸着剤に吸着される HCの量を減少させること ができる。
この際、 前記上流側三元触媒のセル密度は、 前記担体のセル密度よりも高く構 成されているのがよい。 これにより、 上流側三元触媒の昇温速度が向上し、 HC をより効率よく浄化することができる。
また、 この際、 前記ゼォライトの担持量は、 前記エンジンの冷態始動時から前 記上流側三元触媒の活性時までの間に前記エンジンから排出される HCの総量よ りも大きい吸着能力を有するように設定されるのがよい。 これにより、 上流側触 媒が活性化されるまでの間に放出される HCが外に排出されるのを抑制すること ができる。
また、 前記吸着剤は 160°C以上の温度で HC放出能力が最大となるのがよい。 これにより、 HCの浄ィ匕率を向上させることができる。
より好ましい態様として、 内燃機関の排気通路に、 C〇N型の構造をもつゼォ ライトを有する吸着剤を設けるのがよく、 この場合、 前記ゼォライトは、 環状構 造が交差する三次元構造をもつ S S Z- 26または S SZ-33であるのが望ま しい。 これにより、 従来の) 3型ゼオライトに比べ、 吸着した HCの脱離をより一 層抑制し、 当該吸着した HCを高温域まで良好に保持することができる。 図面の簡単な説明
図 1は、 本発明に係る排ガス诤化装置を模式的に示す構成図;
図 2は、 UC Cの三元触媒層及び HC吸着層の積層構造を示す断面図; 図 3は、 CON型ゼオライトの結晶構造を模式的に示す図;
図 4は、 CON型ゼオライトの HC吸着量と、 温度遷移による HC排出量との 関係を示す図;
図 5は、 UCCの担体を前段部と後段部とに分割した他の実施形態に係る排ガ ス浄化装置を模式的に示す構成図;
図 6は、 エンジンに新品の U C Cを装着した場合の温度と U C Cからの H C排 出量 (即ち、 HC脱離量) との関係を示す試験結果;
図 7は、 図 6と同一の結果を温度域毎に棒グラフで示す図;
図 8は、 U C Cの耐熱試験後の試験結果; 図 9は、 CON型ゼォライ卜の組成比 S i /A 1と NMHC排出低減率との関 係を示す図;
図 10は、 CQN型ゼォライ卜の量と NMHC排出低減率との関係を示す図; 及び
図 1 1は、 CON型ゼオライトに遷移金属を担持したときの HC脱離温度の変 化を示す図である。 発明を実施するための最良の形態
以下、 図面を参照しながら本発明の実施の形態について説明する。
図 1は本発明の一実施形態としての排ガス浄化装置を模式的に示す構成図であ り、 図 2は排ガス浄化装置において使用される触媒の三元触媒層及び HC吸着層 の積層構造を示す断面図である。
図 1に示すように、 本発明の一実施形態である排ガス浄化装置は、 エンジン本 体 (以下、 単にエンジンという) 30に接続された排気通路 31の上流部 (ここ では排気マ二ホールド) 31 aに介装された近接触媒(MCC:Mani fold Catalytic Converter) 10と、排気通路 31の下流部 3 1 bに介装された床下触媒(UC C: Under-floor Catalytic Converter) 20とを備えて構成されている。
MCC 10は、 三元触媒として構成されている。
また、 UCC 20のキヤ夕リストケース内部には、 多数のセル孔を有する担体 が装備され、 この担体には、 パラジウム Pd—ロジウム Rh系の三元触媒成分と、 シリカ S iとアルミナ A 1とを主体とする CON型ゼォライトからなり排ガス中 の H Cを吸着可能な H C吸着剤とが担持されている。
詳しくは、 図 2に示すように、 HC吸着剤は、 HC吸着層 2として担体 3の各 セル孔 3 aの内周面に配設されており、 この HC吸着層 2の表面に、 三元触媒成 分が三元触媒層 1として積層形成されている。
図 3には CON型ゼォライ卜の結晶構造が模式的に示されている。 CON型ゼォライトは、 異なる員環数の環状構造が交差する三次元構造を有し、 結晶体内に環状構造によって径の異なる二種類の細孔構造 (員環数 10の細孔及 び員環数 12の細孔) を有している。
また、 CON型ゼオライトでは、 細孔を形成する単位結晶構造中のそれぞれの 面から三次元構造の細孔が構成されており、 積層すると隣り合う同じ員環数の環 状構造の中心線が一致しない状態で細孔通路が構成されている。
このような構造上の特徴から、 CON型ゼオライトは、 HCが員環数 12の孔 力、ら結晶体内に浸入し易いという特性を有している。 一方、 員環数 10の孔から も HCは結晶体内に浸入するが、 その浸入は員環数 12の孔の場合に比べて緩や かであり、 よって員環数 10の孔は HCの通り抜けも緩やかになるという特性を 有している。
そして、 CON型ゼオライトは、 一旦結晶体内の奥部に浸入した HCについて は、 上記積層すると隣り合う同じ員環数の環状構造の中心線が一致しないことに よる入り組んだ細孔通路によって吸着された HCの通り抜けが困難になるととも に、 三次元方向中の一次元方向への HCの通り抜けが員環数 10の小径の細孔に よって緩やかになり、 温度が上昇しても HCが結晶体外に放出され難いという特 性を有している。
つまり、 CON型ゼオライトは、 員環数 12の大径の細孔が HCの吸着を促し、 員環数 10の小径の細孔が高温域においての HCの脱離を抑制するという特性を 有している。
また、 HCはゼォライトの主体成分である S iと A 1のうち A 1に吸着し易い という特性を有し、 実験により、 CON型ゼオライトにおいても、 A 1の量が多 いほど、 即ちシリカ S iとアルミナ A 1の組成比 S iZA 1を小さくするほど H C吸着層 2の吸着性能を向上させることが確認された。
一方、 ゼォライト構造中の A 1の量が多いほど、 つまり S i /A 1組成比を小 さくするほど、 高温により構造中の A 1の結合が離れて組成が崩れ易いという特 性を有する。
しかしながら、 実験によれば、 CON型ゼオライトにおいては、 S i/A l組 成比を小さく設定した場合でも、 高温の排ガスに曝されたゼォライ卜の組成に崩 れがそれほど見られず、 従来のゼォライ卜よりも HC吸着層 2の高温吸着性能及 び脱離抑制性能が高いことが確認された。
従って、 本実施態様では、 排ガスによる高温時 (例えば、 900°C) でもゼォ ライト構造中の A 1の崩れが少なく且つ HC吸着層 2の吸着性能が高くなる領域 内において C〇N型ゼォライ卜の組成比 S i/A 1を設定するようにしている。 即ち、 CON型ゼオライトは、 型ゼオライト等と比較したとき、 より小さい組 成比 S i ZA 1に設定した場合でも高い HC吸着性能を示し且つ耐熱性が高くま た耐久性にも優れている。 後に示す実験によれば、 CON型ゼォライトでは組成 比 S iZA 1は 20〜1500程度の領域内に設定されることが好ましく、 特に 組成比 S iZA 1が 20〜300程度に設定されると HCの放出性能を損なうこ となく、 吸着性能を高く保ち且つ耐熱性をも確保することができる。
また、 HCの吸着量はゼオライトの量に比例するため、 ゼォライトの量が少な いと脱離する HCの脱離速度が速くなる一方、 逆にゼォライトの量が多いと脱離 する H Cの脱離速度は遅くなるものの熱容量が増加して昇温作用が低下する傾向 にある。
一方で、 HCの脱離速度は吸着量に反する傾向にあることも解っている。 つま り、 ゼォライトの量によって吸着可能な HCの量が決まっているが、 図 4に示す ように、 ゼォライトが吸着可能な量に対して吸着された HC量が多いほど吸着さ れた HCの脱離がより低温で多くなる一方、 吸着可能な量に対して吸着された H Cの量が少ないほど吸着された HCの脱離をより高温まで抑制することができる。 実験により、 CON型ゼォライ卜においても同様の傾向を示すこと力 S確認された。 従って、 ここでは、 上記組成比 S iZA 1の最適化を図るとともに、 熱容量の 許容範囲を超えない程度の領域内において CON型ゼォライ卜の量を設定するよ うにしている。 さらに、 エンジン 30の冷態時から MCC 10の活性時までの間 に排出される HCの総量よりも大きい量の HC吸着能力を有するように CON型 ゼォライトの量を設定するようにしている。 実験によれば、 CON型ゼオライト を HC吸着層 2中に 90 g/L〜l 30 gZL程度含むようにすると、 十分な H Cの吸着量を確保でき、 好ましい。
また、 ゼォライ卜の化学吸着特性はォレフイン等の不飽和炭化水素の吸着が支 配的であるため、 三元触媒層 1の貴金属としてォレフィン系の酸化に優れる Pd を用いると H Cの吸着及び脱離酸化が促進される傾向にあり、 実験により C ON 型ゼォライ卜においても同様の傾向を示すことが確認された。
従って、 本実施態様では、 三元触媒層 1にパラジウム Pd—ロジウム Rh系の 貴金属を用いている。
また、 UCC 20の担体 3のセル孔 3 aは、 そのセル密度が大きいほど HC吸 着層 2の表面積が増加し、 担持可能な吸着剤の量、 即ちゼォライトの量が増加す るため、 HCを吸着し易くなる傾向にあるが、 この点についても、 実験により、 CON型ゼォライ卜において同様の傾向を示すことが確認された。
従って、 本実施態様では、 UCC 20の担体セル密度を吸着剤 (ゼオライト) の総量で最適化するようにしている。
また、 排気通路の上流側にある MCC 10の担体セル密度は、 該下流側にある UCC 20の担体セル密度よりも高く設定されている。 セル密度を高くすると、 エンジン 30から排出される排気ガスと三元触媒物質の接触面積が増え、 ェンジ ンより排出される HCがより多く酸化されるため、 その反応熱により昇温特性が 向上する。 さらに、 セル密度を高くするために担体の壁の厚さを薄くして密度を 高める場合は、 壁の厚さが薄くなることによってヒー卜マスが低減される。 これ により、 該 MCC 10の昇温特性が向上し、 活性までの時間を短縮することがで きることになり、 エンジン 30の冷態始動時に排出される HCの量が低減される。 従って、 UCC20の HC吸着層 2により吸着される HCの総量が低減され、 H C吸着層 2において HCが吸着し易くなり、 UCC 20の容量を減少することが できる。
なお、 図 5に示すように、 他の実施形態として UCC 20の担体 3を上流部と 下流部とに分割し、 それぞれに HC吸着層 2と三元触媒層 1とを形成するように してもよく、 この場合、 上流部の担体セル密度を大きくし、 下流部の担体セル密 度を小さくすると H C吸着層 2において H Cを吸着し易くなる傾向にあり、 実験 により CON型ゼォライ卜においても同様の傾向を示すことが確認された。 従つ て、 UCC 20の担体 3を上流部と下流部とに分割した場合には、 上流部の担体 セル密度を大きくする一方、 下流部の担体セル密度を小さくし、 それぞれに HC 吸着層 2と三元触媒層 1とを形成するのが好ましい。
以上のような排ガス浄化装置は、 エンジン 30の冷態時には、 主として排ガス により早期に昇温する上流側の MCC 10により排ガス浄化が行われるが、 MC C 10によって浄ィ匕しきれなかった排ガス中の HCが UCC 20の HC吸着層 2 に吸着される。 そして、 エンジン 30の暖機に伴い MCC 10が昇温し三元触媒 としての機能が活性化されると、 MCC 10により排ガスが浄化される。 この際、 高温の排ガスによって MCC 10の昇温速度は高速化されており、 三元触媒とし ての機能は早期に活性化することになる。 これより、 上流側の MCC 10が少し でも HCを浄ィ匕することによって、. MCC 10下流側の排ガス中に含まれる HC 量を減少させ、 UCC20の HC吸着層 2に吸着される HCの吸着量を減少させ ることができる。
ここで、 上述したように、 UCC20は、 エンジン 30の冷態時から MCC 1 0の活性時までの間に排出される H Cの総量よりも大きい量の H C吸着能力を有 するようにゼォライトの量が設定されている。 従って、 その後、 UCC20が昇 温し活性化が促進されると、 UCC20の HC吸着層 2から HCの脱離力 S始まる が、 HC吸着層 2と同じく昇温し活性化された三元触媒層 1によって、 吸着層 2 から脱離した HCが浄ィヒされる。 よって、 HCの吸着層 2の容量を小さくできる とともに、 冷態時の排ガス中に含まれる H Cを大幅に削減することができる。 また、 当該排ガス浄化装置では、 高温の排ガスによって MCC 10の昇温速度 は高速化されており、 三元触媒としての機能は早期に活性化することになる。 故 に、 UCC 20の HC吸着層 2が HCの吸着を開始してから MCC 10が HCを 浄化可能な温度 (活性化温度) まで昇温する時間を極めて短時間にでき、 MCC 10の低温時に浄化できなかった HCを UCC 20の HC吸着層 2で吸着させ、 UCC 20の活性時に HC吸着層 2から脱離した HCを UCC 20の三元触媒層 1によって良好に浄ィ匕することが可能である。 これより、 MCC 10で処理され ずに排出される H Cを大幅に削減することができる。
なお、 MCC 10のさらなる早期活性化を実現するため、 エンジン 30におい て排気昇温のための点火時期リタードを行うようにしてもよい。 さらに、 ェンジ ン 30が筒内噴射型エンジンである場合においては、 膨張行程で燃料の追加噴射 (副噴射) を行うことも排気昇温に有効である。
ここでは員環数 10の細孔と員環数 12の細孔とを有した CON型ゼォライト を用いて説明したが、 員環数 10の細孔と員環数 12以上の細孔とを有した CO N型ゼォライトを用いるようにしてもよいし、 3種類以上の員環数を有したゼォ ライトを用いるようにしてもよい。
[実施例]
以下、 上記のように構成される本発明に係る排ガス浄化装置の具体的な実施例 について説明する。
先ず、 UCCにおける三元触媒層及び HC吸着層の作製手順について説明する。 (1) HC吸着層の作製
水中に、 吸着剤である C〇N型ゼオライト (製品名:シェブロン製 SS Z— 3 3または SSZ— 26) と、 S i〇2ゾルとして吸着剤重量の 1 Owt %の S i O 2とを混合し、 5 Owt %の水中分散水溶液をポールミルにより分散混合を実施し、 H C吸着層のスラリーを調製した。 その後、 このスラリーをコ一ジライト製ハニカム (1L) に目的重量を付着さ せて乾燥させた後、 空気中にて 500 で焼成して HC吸着層を形成した。
(2) 三元触媒層の作製
目的の貴金属の塩をァ_アルミナとともに、 ポールミルにより粉碎混合を実施 し、 固形分として 5 Owt %のスラリーを調製した。
その後、 HC吸着層を被覆したコ一ジライト製ハ二カムに目的重量を付着させ て乾燥させた後、 HC吸着層と同様に、 空気中にて 500°Cで焼成して三元触媒 層を形成した。
(3) 熱処理
HC吸着層及び三元触媒層を形成した後、 エンジンにて、 リーン空燃比 (AZ F=23) 及びリッチ空燃比 (A/F=13) の雰囲気において触媒中心温度 9 50でで 40時間処理を行った。
次に、 上記のように三元触媒層及び H C吸着層の作製される吸着触媒の評価結 果について説明する。
ここでは、 先ず、 HC吸着のみについて、 CON型ゼオライトを使用した場合 と) 3型ゼオライトを使用した場合との HC脱離温度の比較を行った。 なお、 ゼォ ライトは粉体を使用して吸着 HCとしてはトルエンを用いた。
図 6を参照すると、 新品のゼォライトを用いた場合の HC排出量 (即ち、 HC 脱離量) の TPD (Temperature Programmed Desorption) 試験によるプロフアイ ル結果が CON型ゼォライトと 型ゼォライトとで比較して線図で示されており、 図 7を参照すると、 同一の結果が温度域毎に棒グラフで比較して示されている。 これら図 6、 図 7に示すように、 HC吸着層に CON型ゼオライトを用いた場 合 (実線) には、 /3型ゼオライトを用いた場合 (破線) に比べ、 低温域での HC 脱離量が減少するとともに、 高温域での HC脱離量が飛躍的に増大している。 特 に 160で以上で HC放出量が大きくなるとともに、 20 近傍で放出量のピ ークを迎えている。 即ち、 CON型ゼオライトを使用した場合には、 )3型ゼオラ ィ卜を用いた場合よりも多くの HCが三元触媒層の最低活性化温度 (約 20 Ot:) を越えるまで HC吸着層内に保持され、 当該保持された HCが当該最低活性化温 度を越えた後において脱離されている。
つまり、 CON型ゼオライトは、 上述したように三次元の細孔構造を有し且つ 細孔を形成する単位結晶内に員環数 10の小径の細孔と員環数 12の大径の細孔 の二種類の細孔を有するという特徴を備え、 員環数 12の大径の細孔が HCの吸 着を促し、 員環数 10の小径の細孔が HCの脱離を抑制するという特性を有して いるのであるが、 当該試験結果により、 排ガス中の HCの多くを三元触媒層が最 低活性化温度 (約 200 ) を越えるまで HC吸着層内に吸着保持し、 当該最低 活性化温度を越えた後において脱離させることが可能であり、 吸着触媒の H C吸 着層に C ON型ゼォライトを採用することが H C浄ィ匕性能の向上に極めて有効で あることが検証された。
なお、 図 8を参照すると、 当該ゼォライトを 10%水蒸気中で 5時間に亘り 8 00 に保持した耐熱試験後の試験結果が図 6と同様に示されているが、 同図に 示すように、 耐熱試験後においても、 HC吸着層に CON型ゼオライトを用いた 場合の方が、 新品のときに比べ性能は劣るものの、 0型ゼオライトを用いた場合 よりも三元触媒層が最低活性化温度 (約 200で) を越える領域での HC脱離量 が遙かに多くなつている。 これより、 HC吸着層に C〇N型ゼオライトを採用し た吸着触媒が実用上も十分に耐え得るものであることが検証された。
そして、 UCC 20の HC吸着層に CON型ゼオライトを用いた場合において、 さらに、 CON型ゼオライトの組成比 S i ZA 1、 CON型ゼオライトの量、 三 元触媒層の貴金属の種類、 担体の一体または分割の別、 担体セル密度を変えて U CCから排出される HCに関する NMHC (Non Methane Hydro Carbon) 排出低 減率 (排気系全体の HC浄化率) の比較評価を行った。
なお、 MCC 10については、 ここでは、 パラジウム P d—ロジウム Rh系の 触媒成分を主体とし、 担体容量 0. 7L、 担体セル密度 2milZ90 Ocelし Pd ZRh = 2. 1/0. 3 [g/L] として作製した。
また、 MCC 10の早期活性化を実現するため、 ここでは点火時期リタードに よる昇温制御を併せて行った。
表 1を参照すると、 UCC 20の CON型ゼォライ卜の組成比 S i ZA 1を変 化させてエンジン始動直後のコールド NMHC排出低減率を調べた結果が示され ている。 また、 図 9を参照すると、 当該結果に基づく C〇N型ゼオライトの組成 比 S iZA 1と NMHC排出低減率との関係が示されている。
[表 1]
Figure imgf000015_0001
表 1及び図 9によれば、 CON型ゼオライトを用いた UCCにおいては CON 型ゼォライ卜の組成比 S i_/A 1 = 100〜1000のときの NMHC排出低減 率が約 80%で最も大きく、 組成比 S iZA 1 =20〜1500程度であれば、 HC浄化率を高く維持することが可能である。 特に S i /A 1 =20〜300に 設定した場合は、 HC吸着量と耐熱性とが高い状態で HC排出低減率を高めるこ とができる。
表 2を参照すると、 組成比 S i /A 1 = 100の CON型ゼォライトを用いた UCC 20において、 CON型ゼォライ卜の量を変化させて NMHC排出低減率 を調べた結果が示されている。 また、 図 10を参照すると、 当該結果に基づく C ON型ゼォライ卜の量と NMHC排出低減率との関係が示されている。 [表 2]
Figure imgf000016_0001
表 2及び図 10によれば、 CON型ゼォライトを用いた UCC 20においては 当該 CON型ゼォライ卜の量力 00 g Lのときの NMHC排出低減率が 8 0%で最も大きく、 90 gZL〜l 30 g/L程度であれば、 HC浄化率を高く 維持することが可能である。 これより、 CON型ゼオライトの量については 90 gZL〜l 30 gZL程度となるように設定する。
表 3を参照すると、 さらに 100 gZLの CON型ゼォライトを用いた UCC 20において、 三元触媒層の貴金属の種類をパラジウム Pd—ロジウム Rh系の 貴金属を主体とした場合と、 白金 P t—ロジウム Rh系の貴金属を主体とした場 合とに変えて NMHC排出低減率を調べた結果が示されている。 なお、 Rhに対 する Pd、 P tの混合比が異なるが、 これらは、 それぞれ Pd、 P tを用いて最 適な三元触媒層を作製する場合の代表的な混合比を示している。
ほ 3]
UCC NMH
担体 容量 三元触媒層 HC吸着層 C排出
(セル密度) 貴金属種類 S i/A 1 量 低減率
4.3mil/600cell 1L Pd/Rh=3/0.3 100 100g/L 80 同上 同上 Pt/Rh=2.5/0.5 同上 同上 70 表 3によれば、 CON型ゼォライトを用いた UCC 20においては三元触媒層 が P d— Rh系の貴金属を主体としたときの方が P t—Rh系の貴金属を主体と したときの NMHC排出低減率よりも大きい。 これは、 上述したように、 ゼオラ ィトの化学吸着特性はォレフィン等の不飽和炭化水素の吸着が支配的であるため、 このォレフィン系の酸化に優れる P dが H Cの吸着及び脱離酸化に大きく貢献す るためと考えられる。 これより、 三元触媒層については Pd— Rh系の貴金属が 主体となるように設定する。
表 4を参照すると、 担体を一体または分割とし、 担体セル密度を変化させて N MHC排出低減率を調べた結果が示されている。 具体的には、 表 4には、 ①担体 容量 1 Lで担体セル密度 4. 3milZ60 Ocellとした場合、 ②担体容量 1 Lで担 体セル密度 2. 5milZ90 Ocellとした場合、 また、 図 5に示すように、 ③担体 を前段部 0. 4Lと後段部 0. 6Lとに分割し、 どちらも担体セル密度 4. 3mil 60 Ocellとした場合、 ④担体を前段部 0. 4Lと後段部 0. 6Lとに分割し、 どちらも担体セル密度 2. 5milZ90 Ocellとした場合、 ⑤担体を前段部 0. 4 Lと後段部 0. 6 Lとに分割し、 前段部を担体セル密度 2. 5milZ90 Ocellと し、 後段部を担体セル密度 4. 3milZ60 Ocellとした場合、 ⑥担体を前段部 0. 4Lと後段部 0. 6 Lとに分割し、 前段部を担体セル密度 4. 3mil/60 Ocell とし、 後段部を担体セル密度 2. 5milZ90 Ocellとした場合について NMHC 排出低減率を調べた結果が示されている。
ほ 4]
Figure imgf000018_0001
表 4によれば、 CON型ゼオライトを用いた UCC 20においては、 ①の場合 と②の場合とを比較すると、 担体セル密度 2. 5milZ90 Ocellとした場合 (セ ル密度大) の方が、担体セル密度 4. 3mil/600 cellとした場合(セル密度小) よりも NMHC排出低減率が高い。 これは、 セル密度が大きくなるほど HC吸着 層の表面積が増加し、 HCが吸着し易くなるためと考えられる。 これより、 担体 を分割せず一体とした場合には、 担体セル密度が大きくなるように設定する。 また、 ③の場合と④の場合とを比較すると、 担体の前段部及び後段部を共に担 体セル密度 2. 5 milZ900 cellとした場合の方が、共に担体セル密度 4. 3mil Z600 cellとした場合よりも NMHC排出低減率が高い。
さらに、 ⑤の場合と⑥の場合とを比較すると、 担体の前段部を担体セル密度 2. 5milZ90 Ocellとし、 後段部を担体セル密度 4. 3mi 1Z 600 eel 1とした場 合の方が、 担体の前段部を 4. 3milZ60 Ocellとし、 後段部を担体セル密度 2 5mil/900 cellとした場合よりも NMHC排出低減率が高い。
これより、 担体を前段部と後段部とに分割した場合には、 後段部よりも前段部 のセル密度が大きくなるように設定する。
このように、 UCCの HC吸着剤に CON型ゼオライト (製品名:シェブロン 製352— 33) を採用し、 さらに UCCの最適化を図ることにより、 HC浄化 率を高く維持することが可能である。
以上、 本発明の実施形態について実施例を挙げて説明したが、 本発明は上記実 施形態に限定されるものではない。
例えば、 上記 MCC 10に三元触媒を用いたが、 これは HC吸着量を減少させ て脱離 HCの酸化の効率を上げるためであり、 上記 UCC20のような、 一つの 担体に三元触媒層 1と HC吸着層 2を持たせた場合でも、 同様な効果を得ること ができる。
また、 上記 MCC 10または上記 UCC 20の三元触某層 1にさらにニッケル (Ν ί ) を添加するようにしてもよい。 即ち、 遷移金属のうち N iは COを吸着 し酸化させる能力が特に高く、 三元触媒層 1に N iを含ませることにより、 三元 触媒層 1での COの酸化反応量が十分に確保され、 三元触媒層 1がより一層早期 に昇温、 活性ィヒされる。
また、 上記の吸着触媒のゼォライトに、 Ag, Fe, N i, Cu等の遷移金属 を担持させると、 遷移金属と HCとの間に化学的吸着力が発生するため、 図 1 1 に示すように H Cの脱離温度が向上する。
また、 上記 UCC20の三元触媒層 1にさらにセリア (Ce) を添加するよう にしてもよい。 即ち、 Ceは酸素吸蔵機能 (02ストレージ機能) を有し、 三元触 媒層 1が HC、 COの多い還元雰囲気中にあっても吸蔵した〇2によって HCを良 好に酸化除去可能であり、 これにより HC浄化性能がより一層向上する。

Claims

請求の範囲
1. 内燃機関の排気通路に、 異なる員環数の環状構造が交差する三次元構造を 持つゼォライトを有する吸着剤を設けたことを特徴とする排ガス浄化装置。
2. 隣り合う同じ員環数の前記環状構造の中心線が一致しないことを特徴とす る、 請求項 1に記載の排ガス浄化装置。
3. 前記異なる員環数のうち、 一方の員環数を持つ環状構造は排ガス中の HC 吸着機能を有し、 他方の員環数を持つ環状構造は吸着された HCの放出を妨げる 機能を有していることを特徴とする、 請求項 1に記載の排ガス浄化装置。
4. 前記異なる員環数は、 10と 12であることを特徴とする、 請求項 1に記 載の排ガス浄化装置。
5. 前記ゼォライトは、 三次元構造の一方向に員環数 10の孔を持ち、 残りの 二方向に員環数 12の孔を持つことを特徴とする、 請求項 4に記載の排ガス浄化 装置。
6. 前記ゼォライ卜の組成比シリカ/ ^アルミナが 20〜1500に設定されて いることを特徴とする、 請求項 1に記載の排ガス净化装置。
7. 前記の組成比シリカ アルミナが 20〜300に設定されていることを特 徵とする、 請求項 6に記載の排ガス浄化装置。
8. 前記ゼォライトの組成比シリカ Zアルミナが、 900でで前記ゼォライト の組織に崩れがないように設定されたことを特徴とする、 請求項 1に記載の排ガ ス浄化装置。
9. 前記ゼォライトの担持量は、 90 gZL〜l 30 gZLに設定されている ことを特徴とする、 請求項 1に記載の排ガス浄化装置。
10. 前記ゼォライトに、 Ag, Mn, F e, N i, Cuから選ばれる 1っ以 上の元素を含むことを特徴とする、 請求項 1に記載の排ガス浄化装置。
11. 前記吸着剤が担体に担持されるとともに、 前記担体の下流側に三元触媒 物質が担持されていることを特徴とする、 請求項 1に記載の排ガス浄化装置。 iy
12. 前記吸着剤が担体に担持されるとともに、 前記吸着剤の表面に三元触媒 層が形成されていることを特徴とする、 請求項 1に記載の排ガス浄化装置。
13. 前記三元触媒層に C eを含むことを特徴とする請求項 12に記載の排ガ ス浄化装置。
14. 前記ゼォライトの担持量は、 前記内燃機関の冷態始動時から前記三元触 媒層の活性時までの間に前記内燃機関から排出される HCの総量よりも大きい吸 着能力を有するように設定されることを特徴とした請求項 12に記載の排ガス浄 化装置。
15. 前記担体の上流には、 上流側三元触媒が設けられていることを特徴とす る、 請求項 12に記載の排ガス浄ィ匕装置。
16. 前記上流側三元触媒のセル密度は、 前記担体のセル密度よりも高く構成 されていることを特徴とする、 請求項 15に記載の排ガ 浄化装置。
17. 前記ゼォライ卜の担持量は、 前記内燃機関の冷態始動時から前記上流側 三元触媒の活性時までの間に前記内燃機関から排出される HCの総量よりも大き い吸着能力を有するように設定されることを特徴とする、 請求項 15に記載の排 ガス浄化装置。
18. 前記吸着剤は 160 以上の温度で HC放出能力が最大となることを特 徵とする、 請求項 1に記載の排ガス浄化装置。
19. 内燃機関の排気通路に、 CON型の構造をもつゼォライトを有する吸着 剤を設けたことを特徴とする排ガス浄化装置。
20. 前記ゼォライトは、 環状構造が交差する三次元構造をもつ SSZ— 26 または SSZ— 33であることを特徴とする、 請求項 19に記載の排ガス浄ィ匕装 置。
PCT/JP2004/002881 2004-03-05 2004-03-05 排ガス浄化装置 WO2005092482A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112004002783.7T DE112004002783B4 (de) 2004-03-05 2004-03-05 Abgasreinigungsvorrichtung
CNB2004800422949A CN100428980C (zh) 2004-03-05 2004-03-05 排气净化装置
PCT/JP2004/002881 WO2005092482A1 (ja) 2004-03-05 2004-03-05 排ガス浄化装置
JP2006511353A JP4998698B2 (ja) 2004-03-05 2004-03-25 排ガス浄化装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/002881 WO2005092482A1 (ja) 2004-03-05 2004-03-05 排ガス浄化装置

Publications (2)

Publication Number Publication Date
WO2005092482A1 true WO2005092482A1 (ja) 2005-10-06
WO2005092482A8 WO2005092482A8 (ja) 2006-08-31

Family

ID=35056020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/002881 WO2005092482A1 (ja) 2004-03-05 2004-03-05 排ガス浄化装置

Country Status (4)

Country Link
JP (1) JP4998698B2 (ja)
CN (1) CN100428980C (ja)
DE (1) DE112004002783B4 (ja)
WO (1) WO2005092482A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010514561A (ja) * 2006-12-27 2010-05-06 シェブロン ユー.エス.エー. インコーポレイテッド コールドスタートエンジン排気処理
JP2017515030A (ja) * 2014-03-13 2017-06-08 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフトUmicore AG & Co.KG 三元触媒及びscr触媒を有する、ガソリン燃焼エンジン用触媒システム
WO2022085774A1 (ja) * 2020-10-22 2022-04-28 東ソー株式会社 炭化水素吸着剤及び炭化水素の吸着方法
WO2022085753A1 (ja) 2020-10-23 2022-04-28 株式会社キャタラー 炭化水素吸着装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9987626B2 (en) * 2015-08-20 2018-06-05 Ford Global Technologies, Llc Use of transition metals to reduce cold start emissions
US20230271136A1 (en) 2020-07-31 2023-08-31 Mitsui Mining & Smelting Co., Ltd. Hydrocarbon adsorption material, exhaust gas cleaning catalyst, and exhaust gas cleaning system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000237584A (ja) * 1999-02-24 2000-09-05 Tosoh Corp 炭化水素の吸着剤及び炭化水素の吸着除去方法
JP2004105821A (ja) * 2002-09-17 2004-04-08 Nissan Motor Co Ltd 排気ガス用炭化水素吸着材及びそれを用いた排気ガス浄化用触媒

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3411942B2 (ja) * 1993-09-30 2003-06-03 マツダ株式会社 排気ガス浄化用のhc吸着剤、排気ガス浄化用触媒及び排気ガス浄化装置
JP2002263450A (ja) * 2001-03-05 2002-09-17 Mitsubishi Motors Corp 排気浄化装置
JP4847876B2 (ja) * 2004-02-02 2011-12-28 カリフォルニア インスティテュート オブ テクノロジー 改善された炭化水素トラップのためのモレキュラーシーブ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000237584A (ja) * 1999-02-24 2000-09-05 Tosoh Corp 炭化水素の吸着剤及び炭化水素の吸着除去方法
JP2004105821A (ja) * 2002-09-17 2004-04-08 Nissan Motor Co Ltd 排気ガス用炭化水素吸着材及びそれを用いた排気ガス浄化用触媒

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010514561A (ja) * 2006-12-27 2010-05-06 シェブロン ユー.エス.エー. インコーポレイテッド コールドスタートエンジン排気処理
US8580228B2 (en) 2006-12-27 2013-11-12 Chevron U.S.A. Inc. Treatment of cold start engine exhaust
US9114362B2 (en) 2006-12-27 2015-08-25 Chevron U.S.A. Inc. Treatment of cold start engine exhaust
JP2017515030A (ja) * 2014-03-13 2017-06-08 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフトUmicore AG & Co.KG 三元触媒及びscr触媒を有する、ガソリン燃焼エンジン用触媒システム
WO2022085774A1 (ja) * 2020-10-22 2022-04-28 東ソー株式会社 炭化水素吸着剤及び炭化水素の吸着方法
WO2022085753A1 (ja) 2020-10-23 2022-04-28 株式会社キャタラー 炭化水素吸着装置

Also Published As

Publication number Publication date
JP4998698B2 (ja) 2012-08-15
DE112004002783B4 (de) 2015-04-09
JPWO2005092482A1 (ja) 2008-02-07
WO2005092482A8 (ja) 2006-08-31
CN1925904A (zh) 2007-03-07
CN100428980C (zh) 2008-10-29
DE112004002783T5 (de) 2007-03-08

Similar Documents

Publication Publication Date Title
JP3855266B2 (ja) 排気ガス浄化用触媒
JP3904802B2 (ja) 排気ガス浄化用触媒及びその製造方法
JP3311051B2 (ja) 排気ガス浄化方法及び装置
JP4523911B2 (ja) 排ガス浄化装置
JP3484205B2 (ja) 改善された低温始動特性を有する自動車排気ガスの接触的浄化方法
JP3854134B2 (ja) 内燃機関用排気ガス浄化装置
WO2009087935A1 (ja) NOx 吸着装置及び排ガス浄化装置
KR20040090454A (ko) 배기가스 정화용 촉매 및 배기가스 정화방법
WO2005092482A1 (ja) 排ガス浄化装置
JP3842862B2 (ja) 排ガス浄化システム
JP2003201832A (ja) 排ガス浄化触媒システム
US6447735B1 (en) Exhaust purifier and manufacturing method of same
JPH11324662A (ja) 触媒コンバータ装置
JP3458624B2 (ja) 内燃機関の排気浄化用触媒装置
JPH0999217A (ja) 排ガス浄化システム
JP2003135970A (ja) 排気ガス浄化用触媒
JP5292975B2 (ja) 排気ガス浄化触媒装置
JP3736373B2 (ja) エンジンの排気浄化装置
JP4770132B2 (ja) Hc吸着触媒及びこれを用いた排気ガス浄化装置
JP4565424B2 (ja) 排気ガス浄化触媒
JP2002263450A (ja) 排気浄化装置
JP2004089881A (ja) 排ガス浄化装置
JP4145019B2 (ja) 排気ガス浄化装置
JP7410100B2 (ja) 排気浄化装置及び排気浄化方法
JP3567507B2 (ja) 内燃機関の排気ガス浄化用触媒

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480042294.9

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006511353

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1120040027837

Country of ref document: DE

RET De translation (de og part 6b)

Ref document number: 112004002783

Country of ref document: DE

Date of ref document: 20070308

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 112004002783

Country of ref document: DE

122 Ep: pct application non-entry in european phase
REG Reference to national code

Ref country code: DE

Ref legal event code: 8607