WO2005090624A2 - 高剛性・低線膨張率を有する鋳造用アルミニウム合金 - Google Patents

高剛性・低線膨張率を有する鋳造用アルミニウム合金 Download PDF

Info

Publication number
WO2005090624A2
WO2005090624A2 PCT/JP2005/005225 JP2005005225W WO2005090624A2 WO 2005090624 A2 WO2005090624 A2 WO 2005090624A2 JP 2005005225 W JP2005005225 W JP 2005005225W WO 2005090624 A2 WO2005090624 A2 WO 2005090624A2
Authority
WO
WIPO (PCT)
Prior art keywords
mass
aluminum alloy
less
linear expansion
high rigidity
Prior art date
Application number
PCT/JP2005/005225
Other languages
English (en)
French (fr)
Japanese (ja)
Inventor
Kazuhiro Oda
Masahiko Shioda
Original Assignee
Nippon Light Metal Company, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Company, Ltd. filed Critical Nippon Light Metal Company, Ltd.
Priority to US10/593,338 priority Critical patent/US20070193663A1/en
Priority to EP05726972.2A priority patent/EP1728882B1/en
Publication of WO2005090624A2 publication Critical patent/WO2005090624A2/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/124Accessories for subsequent treating or working cast stock in situ for cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0605Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by two belts, e.g. Hazelett-process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/05Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys of the Al-Si-Mg type, i.e. containing silicon and magnesium in approximately equal proportions

Definitions

  • the present invention relates to a structural aluminum alloy, and particularly to a structure of a member requiring high rigidity and a low coefficient of linear expansion, such as a ladder type frame, a perimeter type frame, and cases of various vehicles such as automobiles.
  • the present invention relates to a structural aluminum alloy which can be suitably used for aluminum.
  • an aluminum alloy having high rigidity an aluminum alloy composite material in which A10, SiC, or the like is compounded as a reinforcing material in an aluminum alloy is known.
  • the material has a problem that the manufacturing process is complicated and the cost is high. Also, A1 0
  • Japanese Patent Application Laid-Open No. 1-180938 discloses an aluminum alloy having improved abrasion resistance.
  • the aluminum alloy disclosed herein is used in steel frames and the like used in automobile frames and the like.
  • Japanese Patent Application Laid-Open No. 3-199336 similarly discloses an aluminum alloy having improved wear resistance.
  • the aluminum alloy disclosed herein is also used for a frame of an automobile. In the case of replacing with an iron product, there is a problem that the rigidity is small and the linear expansion coefficient is too large, and further, the seizure to a mold is easily caused.
  • Patent Document 1 JP-A-1180938
  • Patent Document 2 JP-A-3-199336
  • Ni 0.5 to 6% by mass may be added so that the total amount of Fe, Mn and Ni is 3.0% by mass or more.
  • Ni 0. 1-1 0 weight 0/0
  • Mg 0. 0. 05 one 1.5 mass 0 / o
  • Ti 0. 01 . -1 0 mass 0/0
  • B 0.. 0 0001-1 0 mass 0 / o
  • Zr 0. 1-1 0 wt%
  • V 0. 1-1 0 wt%
  • Mo 0 . 01-1. 0% by mass.
  • Si is crystallized as eutectic Si, primary crystal Si, and Fe-Si-based compound, and has the effect of improving rigidity. This effect is remarkable at 13% by mass or more, but when it exceeds 25% by mass, the primary crystals are coarsened, and conversely, the effect of improving rigidity is reduced. Also, it is necessary to increase the production temperature. Furthermore, the machinability is significantly deteriorated by the coarse Si. Si also has a function of lowering the coefficient of linear expansion and a function of improving wear resistance. A more preferred range of Si is 13-17% by mass. [0011] 01: 2-8 mass%
  • Cu is crystallized as an A-to-Cu-based compound and an A-to-N-to-Cu-based compound, contributing to an improvement in rigidity. This effect becomes remarkable when added at 4% by mass or more, but when it exceeds 8% by mass, the compound becomes coarse, conversely the elongation is reduced, and the corrosion resistance is also reduced.
  • a more preferred range for Cu is 3-6% by mass.
  • Fe + Mn (+ Ni) 3. 0 mass 0/0 or more
  • Fe, Mn, Ni are A-Fe-Mn, A-Fe-Si, A-Ni, A-Ni-Cu, A-Ni-Fe-Mn, A-Si-Fe-Mn It has the effect of crystallizing as a compound, contributing to the improvement of rigidity, and lowering the coefficient of linear expansion. It also has the effect of improving heat resistance. This effect is remarkable when Fe + Mn (+ Ni) is 3% by mass or more, but when it exceeds 12% by mass, the crystallized material becomes coarse and the effect of improving the rigidity becomes small, so that Fe + Mn + It is preferable that the total amount of Ni is 12% by mass or less.
  • P has a function of making primary crystal Si fine and dispersing it uniformly. This effect is remarkable at 0.001% by mass or more, but if it exceeds 0.02% by mass, the viscosity of the molten metal increases, and the formability deteriorates.
  • Mg forms a solid solution in the parent phase and contributes to improvement in rigidity. This effect is remarkable at 0.05% by mass or more, but when it exceeds 1.5% by mass, the elongation is reduced, and the formability is significantly deteriorated. More preferably, Mg is at most 0.4% by mass.
  • Cr is crystallized as an Fe-Mn-Cr-based compound, contributing to an improvement in rigidity. It also has the function of dispersing primary Si finely and uniformly. This effect is remarkable when Cr is 0.1% by mass or more, but when it exceeds 1.0% by mass, a coarse compound is formed, and on the contrary, elongation is reduced.
  • Ti has the effect of making the ⁇ phase finer, contributing to the improvement of the formability, and preventing the coarse force of the Ni-based compound. The effect is remarkable when Ti is 0.01% by mass or more, but when it exceeds 1.0% by mass, a coarse compound is formed, and on the contrary, elongation is reduced.
  • B 0.0001—1.0% by mass
  • V 0.1—1.0% by mass
  • Zr 0.1—1.0% by mass
  • Mo 0.01—1.0% by mass
  • B, V, Zr, and Mo form high rigidity crystallized substances and contribute to improvement in rigidity.
  • any of the elements is added in excess of the upper limit, coarse crystals are formed and elongation is reduced.
  • the inventor of the present application manufactured the aluminum alloy according to the present invention, and experimentally confirmed the relationship between the composition, the crystal structure, and the rigidity and the linear expansion coefficient. The results are described below. .
  • Table 1 shows the composition of the aluminum alloy used in the experiment.
  • the aluminum alloy used in the experiment was manufactured by a PF die-casting method into a flat plate shape of 200 ⁇ 200 ⁇ 10 mm at a manufacturing temperature of 720 ° C, kept at 200 ° C for 4 hours, aged, and then stiffened (Young's Rate) and the coefficient of linear expansion (coefficient of thermal expansion) were measured.
  • Alloy Nos. 1-17 are aluminum alloys according to the present invention, and Alloy Nos. 18-24 are comparative examples in which at least one of the composition ranges does not satisfy the above conditions. When the conditions were satisfied, the composition was underlined.
  • the reference value with respect to Young's modulus it is determined that no more things to satisfaction criteria, the reference value as a 18 X 10 one 6 Z ° C for the linear expansion coefficient, which less than one reference was determined to be satisfied.
  • the alloy No. 18 has a Young's modulus is below 80GPa and a reference value (90 GPa), at the same time, the linear expansion coefficient 20. 0 X 10- 6 / ° C and the reference value (18 X 10- 6 ° C) than the large instrument any value nor is it satisfy the criteria. This is probably because the contents of Si, Cu, and Ni + Fe + Mn are all insufficient, that is, they are below the above-mentioned range.
  • Alloy No. 19 also, like Alloy No. 18, does not satisfy the standards in both Young's modulus and coefficient of linear expansion. This is because Cu is within the above range, but the content of both Si and Ni + Fe + Mn is insufficient (below the above range! /). Conceivable.
  • Alloy No. 20 has a Young's modulus lower than the reference value, but this is because the total content of Ni + Fe + Mn is 2.0% by mass, and the above conditions, Ni + Fe + Mn3 It is thought that the cause was less than 0% by mass.
  • Alloy No. 22 exerted insufficient force to measure the Young's modulus due to insufficient elongation and cracking of the test piece in the elastic deformation region. This is considered to be because Mn was not substantially added and did not satisfy the above-mentioned conditions regarding the composition.
  • Alloy No. 23 does not satisfy the standards in both Young's modulus and linear expansion coefficient. This is considered to be because 1% by mass is insufficient (below the above range).
  • Alloy No. 24 also does not satisfy the standards in both Young's modulus and linear expansion coefficient. This is thought to be due to the fact that 12% by mass of Si is insufficient (below the above range).
  • the aluminum alloy No. 1-17 of the present invention satisfying the above-mentioned composition range has a Young's modulus and a coefficient of linear expansion which are all based on the values shown in Table 1. Is pleased.
  • the aluminum alloy for production of the present invention is particularly useful for producing members requiring high rigidity and low coefficient of linear expansion, such as ladder-type frames, perimeter-type frames and cases of various vehicles such as automobiles. It can be suitably used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Body Structure For Vehicles (AREA)
  • Continuous Casting (AREA)
PCT/JP2005/005225 2004-03-23 2005-03-23 高剛性・低線膨張率を有する鋳造用アルミニウム合金 WO2005090624A2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/593,338 US20070193663A1 (en) 2004-03-23 2005-03-23 Aluminum alloy for casting, having high rigidity and low liner expansion coefficiant
EP05726972.2A EP1728882B1 (en) 2004-03-23 2005-03-23 Aluminium alloy for casting, having high rigidity and low liner expansion coefficiant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004084256A JP4665413B2 (ja) 2004-03-23 2004-03-23 高剛性・低線膨張率を有する鋳造用アルミニウム合金
JP2004-084256 2004-03-23

Publications (1)

Publication Number Publication Date
WO2005090624A2 true WO2005090624A2 (ja) 2005-09-29

Family

ID=34994430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/005225 WO2005090624A2 (ja) 2004-03-23 2005-03-23 高剛性・低線膨張率を有する鋳造用アルミニウム合金

Country Status (6)

Country Link
US (2) US20070193663A1 (enrdf_load_stackoverflow)
EP (1) EP1728882B1 (enrdf_load_stackoverflow)
JP (1) JP4665413B2 (enrdf_load_stackoverflow)
KR (1) KR20060130753A (enrdf_load_stackoverflow)
MY (1) MY139116A (enrdf_load_stackoverflow)
WO (1) WO2005090624A2 (enrdf_load_stackoverflow)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4665413B2 (ja) * 2004-03-23 2011-04-06 日本軽金属株式会社 高剛性・低線膨張率を有する鋳造用アルミニウム合金
JP4796563B2 (ja) * 2007-12-03 2011-10-19 日軽金アクト株式会社 熱処理用アルミニウム鋳造合金及び剛性に優れたアルミニウム合金鋳物の製造方法
JP5565115B2 (ja) * 2010-06-07 2014-08-06 日本軽金属株式会社 アルミニウム合金の製造方法
DE102011083972A1 (de) * 2011-10-04 2013-04-04 Federal-Mogul Nürnberg GmbH Verfahren zur Herstellung eines Motorbauteils und Motorbauteil
JP6011998B2 (ja) 2012-12-25 2016-10-25 日本軽金属株式会社 Al−Fe−Si系化合物を微細化させたアルミニウム合金の製造方法
CN103231038B (zh) * 2013-04-25 2015-09-09 浙江盾安轻合金科技有限公司 一种轻合金的压铸方法
US9834828B2 (en) * 2014-04-30 2017-12-05 GM Global Technology Operations LLC Cast aluminum alloy components
JP5945361B1 (ja) * 2015-03-20 2016-07-05 株式会社神戸製鋼所 ろう材および熱交換器用ブレージングシート
JP2016204711A (ja) * 2015-04-23 2016-12-08 株式会社大紀アルミニウム工業所 高強度過共晶Al−Si合金及びこれを用いたダイカスト
CN105838934B (zh) * 2016-05-30 2018-01-12 广州晶品智能压塑科技股份有限公司 制盖机用高耐磨性高硬度合金材料
US20190093197A1 (en) * 2017-09-26 2019-03-28 GM Global Technology Operations LLC Aluminum iron silicon alloys having optimized properties
US11035026B2 (en) 2017-09-26 2021-06-15 GM Global Technology Operations LLC Aluminum iron silicon alloys having optimized properties
JP7011944B2 (ja) * 2018-01-19 2022-02-10 昭和電工株式会社 磁気記録媒体用アルミニウム合金基板、磁気記録媒体用基板、磁気記録媒体およびハードディスクドライブ
CN108611532A (zh) * 2018-05-14 2018-10-02 广东技术师范学院天河学院 铝合金、铝合金-陶瓷复合材料
DE102018210007A1 (de) * 2018-06-20 2019-12-24 Federal-Mogul Nürnberg GmbH Aluminiumlegierung, Verfahren zur Herstellung eines Motorbauteils, Motorbauteil und Verwendung einer Aluminiumlegierung zur Herstellung eines Motorbauteils
TWI692530B (zh) * 2019-09-06 2020-05-01 圓融金屬粉末股份有限公司 鋁合金粉末及其製造方法、鋁合金製品及其製造方法
CN111926222B (zh) * 2020-08-25 2021-11-30 肇庆南都再生铝业有限公司 一种耐热再生压铸铝合金及其制备方法
CN112899593B (zh) * 2021-01-27 2022-09-13 山东省科学院新材料研究所 一种高强高塑轻合金材料及其制备方法与应用
KR20250000373A (ko) * 2023-06-26 2025-01-03 한국재료연구원 고탄성 알루미늄 합금 주조재

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2357450A (en) * 1941-01-18 1944-09-05 Nat Smelting Co Aluminum alloy
US3325279A (en) * 1965-12-03 1967-06-13 Dow Chemical Co Aluminum-high silicon alloys
SU431252A1 (ru) * 1972-05-22 1974-06-05 В. Н. Иванов, Ю. С. Миронов, В. Т. Сайкин , В. Е. пин Сплав на алюминиевой основе
JPS5337810B2 (enrdf_load_stackoverflow) * 1973-10-11 1978-10-12
AU536976B2 (en) * 1980-09-10 1984-05-31 Comalco Limited Aluminium-silicon alloys
JP2630401B2 (ja) * 1987-07-30 1997-07-16 リョービ株式会社 耐摩耗性ダイカスト用アルミニウム合金
JPH01180938A (ja) * 1988-01-12 1989-07-18 Ryobi Ltd 耐摩耗性アルミニウム合金
GB8813939D0 (en) * 1988-06-13 1988-07-20 Shell Int Research Hexafluorophosphates as structure refiner for aluminium-silicon alloys
JPH0699772B2 (ja) * 1988-09-08 1994-12-07 本田技研工業株式会社 機械構造部材用高強度アルミニウム合金
FR2636974B1 (fr) * 1988-09-26 1992-07-24 Pechiney Rhenalu Pieces en alliage d'aluminium gardant une bonne resistance a la fatigue apres un maintien prolonge a chaud et procede de fabrication desdites pieces
JPH03199336A (ja) * 1989-12-28 1991-08-30 Ryobi Ltd 耐摩耗性アルミニウム合金
JP3448990B2 (ja) * 1994-11-02 2003-09-22 日本軽金属株式会社 高温強度及び靭性に優れたダイカスト製品
SE505823C2 (sv) * 1995-10-10 1997-10-13 Opticast Ab Förfarande för framställning av järninnehållande aluminiumlegeringar fria från flakformad fas av Al5FeSi-typ
JP3303661B2 (ja) * 1996-04-09 2002-07-22 トヨタ自動車株式会社 耐熱高強度アルミニウム合金
JP2000054053A (ja) * 1998-08-03 2000-02-22 Toyota Motor Corp 耐熱性に優れたアルミニウム基合金およびその製造方法
JP3552565B2 (ja) * 1999-01-11 2004-08-11 日本軽金属株式会社 高温疲労強度に優れたダイカスト製ピストンの製造方法
FR2788788B1 (fr) * 1999-01-21 2002-02-15 Pechiney Aluminium Produit en alliage aluminium-silicium hypereutectique pour mise en forme a l'etat semi-solide
JP2002206131A (ja) * 2001-01-09 2002-07-26 Nippon Light Metal Co Ltd 高温強度,耐摩耗性に優れた鋳物用アルミニウム合金およびその製造方法
JP4665413B2 (ja) * 2004-03-23 2011-04-06 日本軽金属株式会社 高剛性・低線膨張率を有する鋳造用アルミニウム合金

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Also Published As

Publication number Publication date
EP1728882A2 (en) 2006-12-06
JP4665413B2 (ja) 2011-04-06
US20100296964A1 (en) 2010-11-25
EP1728882A4 (en) 2007-10-31
EP1728882B1 (en) 2013-09-18
US20070193663A1 (en) 2007-08-23
KR20060130753A (ko) 2006-12-19
JP2005272868A (ja) 2005-10-06
MY139116A (en) 2009-08-28

Similar Documents

Publication Publication Date Title
WO2005090624A2 (ja) 高剛性・低線膨張率を有する鋳造用アルミニウム合金
US8133331B2 (en) Aluminum-zinc-magnesium-scandium alloys and methods of fabricating same
US20080181812A1 (en) Alloys from recycled aluminum scrap containing high levels of iron and silicon
JP2008024964A (ja) 高強度アルミニウム合金板およびその製造方法
US20170096726A1 (en) CAST Al-Si-Mg-BASED ALUMINUM ALLOY HAVING EXCELLENT SPECIFIC RIGIDITY, STRENGTH AND DUCTILITY, AND CAST MEMBER AND AUTOMOBILE ROAD WHEEL MADE THEREOF
CA2409888C (en) Age-hardening copper alloy as material for producing casting molds
WO2005064025A1 (ja) ベークハード性に優れたAl-Mg-Si系アルミニウム合金板の製造方法
JP2020084278A (ja) Al−Mg−Si系アルミニウム合金押出引抜材及びその製造方法
JP2818721B2 (ja) ボディーシート用アルミニウム合金板の製造方法とこれにより得られるアルミニウム合金板
JPS62207851A (ja) 成形加工用アルミニウム合金圧延板およびその製造方法
JPH07197165A (ja) 高耐磨耗性快削アルミニウム合金とその製造方法
JPH10110232A (ja) Al−Mg−Si系合金板とその製造方法
JPS6050864B2 (ja) 曲げ加工性に優れた成形加工用アルミニウム合金材料およびその製造法
JPH07197164A (ja) 高強度高加工性アルミニウム合金とその製造方法
JP4701998B2 (ja) 強度および耐肌荒れ性に優れたアルミニウム合金箔およびその製造方法
JPH0447019B2 (enrdf_load_stackoverflow)
JP4052641B2 (ja) 衝撃吸収特性に優れ、かつ良好な焼き入れ性と押出性を有するアルミニウム合金及びその製造方法
JP3234511B2 (ja) 高速成形用Al合金板の製造方法及びAl合金板の高速成形方法
JP4771791B2 (ja) 成形加工用アルミニウム合金板の製造方法
JPH0747804B2 (ja) 成形性、形状凍結性及び塗装焼付硬化性に優れた異方性の少ないアルミニウム合金材の製造法
JPH07173565A (ja) 塗装焼付硬化性に優れたプレス成形用アルミニウム合金板
JPH05230605A (ja) 焼付け硬化性成形用アルミニウム合金の製造方法
KR100209208B1 (ko) 차체패널재용 알루미늄합금판 및 그 제조방법
JP4190673B2 (ja) 強度と成形性に優れたアルミニウム基合金板材及びその製造方法
JPH08209281A (ja) 成形性に優れるアルミニウム合金板およびその製造法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005726972

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10593338

Country of ref document: US

Ref document number: 2007193663

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 1020067021516

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005726972

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067021516

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10593338

Country of ref document: US