WO2005085168A1 - 有機酸アニオン含有アルミニウム塩水酸化物粒子、その製造方法およびその利用 - Google Patents

有機酸アニオン含有アルミニウム塩水酸化物粒子、その製造方法およびその利用 Download PDF

Info

Publication number
WO2005085168A1
WO2005085168A1 PCT/JP2005/003831 JP2005003831W WO2005085168A1 WO 2005085168 A1 WO2005085168 A1 WO 2005085168A1 JP 2005003831 W JP2005003831 W JP 2005003831W WO 2005085168 A1 WO2005085168 A1 WO 2005085168A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic acid
aluminum salt
hydroxide particles
containing aluminum
particles
Prior art date
Application number
PCT/JP2005/003831
Other languages
English (en)
French (fr)
Inventor
Xing Dong Wang
Akira Okada
Original Assignee
Kyowa Chemical Industry Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34918120&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2005085168(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kyowa Chemical Industry Co., Ltd. filed Critical Kyowa Chemical Industry Co., Ltd.
Priority to CN2005800071434A priority Critical patent/CN1930107B/zh
Priority to CA2564630A priority patent/CA2564630C/en
Priority to JP2006510757A priority patent/JP4931210B2/ja
Priority to AU2005219753A priority patent/AU2005219753B2/en
Priority to EP05720103.0A priority patent/EP1731497B1/en
Priority to KR1020067017909A priority patent/KR101157441B1/ko
Priority to US10/591,588 priority patent/US7629480B2/en
Publication of WO2005085168A1 publication Critical patent/WO2005085168A1/ja
Priority to IL177895A priority patent/IL177895A0/en
Priority to NO20064525A priority patent/NO20064525L/no

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C55/00Saturated compounds having more than one carboxyl group bound to acyclic carbon atoms
    • C07C55/02Dicarboxylic acids
    • C07C55/06Oxalic acid
    • C07C55/07Salts thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/01Saturated compounds having only one carboxyl group and containing hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/01Saturated compounds having only one carboxyl group and containing hydroxy or O-metal groups
    • C07C59/08Lactic acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/235Saturated compounds containing more than one carboxyl group
    • C07C59/245Saturated compounds containing more than one carboxyl group containing hydroxy or O-metal groups
    • C07C59/255Tartaric acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/235Saturated compounds containing more than one carboxyl group
    • C07C59/245Saturated compounds containing more than one carboxyl group containing hydroxy or O-metal groups
    • C07C59/265Citric acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C65/00Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C65/01Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups containing hydroxy or O-metal groups
    • C07C65/03Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups containing hydroxy or O-metal groups monocyclic and having all hydroxy or O-metal groups bound to the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/0097Dye preparations of special physical nature; Tablets, films, extrusion, microcapsules, sheets, pads, bags with dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/0098Organic pigments exhibiting interference colours, e.g. nacrous pigments
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/40Compounds of aluminium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer

Definitions

  • the present invention relates to an organic acid anion-containing aluminum salt hydroxide particle, a method for producing a soybean and its use. That is, various fields, for example, construction, food, agriculture, semiconductor, electrophotography, medical, cosmetics, chemistry, resin, rice field
  • the present invention relates to an aluminum oxide hydroxide-containing aluminum salt hydroxide particle which can be used in fibers, rubbers or other industrial fields, and a method for producing the same. More specifically, the present invention relates to a spherical, paired, rectangular parallelepiped, disk-shaped (go-stone) person hexagonal plate, rice grain or columnar resin having a small and uniform particle diameter, a resin, a rubber having little hygroscopicity.
  • TECHNICAL FIELD The present invention relates to an organic acid anion-containing aluminum salt hydroxide particle excellent in the addition property to the like, a method for producing the same, and use thereof.
  • a representative of the aluminite compounds is aluminite (amatite). Natural products occur as alunite in hot-deposited areas and acid-eroded areas formed by active volcanoes and hot springs. Synthetic aluminite is used industrially as an adsorbent, an additive to resins, a filler, and various carriers. The following synthesis methods are known.
  • the document 1 Aluminum sulfate (A 1 2 (S 0 4 ) 3), sulfate potassium (K 2 S_ ⁇ 4), were mixed at a constant ratio sodium sulfate (N a 2 S_ ⁇ 4) under atmospheric pressure It describes a method of synthesizing alunite by keeping stirring at 100 ° C with a magnetic stirrer with a hot plate for 48 hours.
  • Arunai bets generated in this way is a flaky aggregate having porosity, there is Sri Tsu preparative shaped pores of 1 5 to 3 0 A a width of about ice adsorptivity comparable to silica gel S_ ⁇ 2 It has been reported that it has high NO adsorption ability and also well adsorbs acid dyes.
  • M represents a monovalent cation
  • M ' represents A 1 or a combination of A 1 and F e ( ⁇ )
  • a homogeneous composition comprising a layered compound having a chemical structure represented by the following formula and an aluminite-type or jarosite-type crystal structure, and amorphous silica or amorphous silica-alumina in an amount of 5 to 80% by weight based on the layered compound.
  • an adsorbent composition having a BET specific surface area of at least 300 m 2 / g and a pore volume of at least 0.1 m 1 / g.
  • the production method can be used to crystallize an aluminite-type and a jarosite-type layered compound depending on the starting material and the value of pH in the reaction, respectively.
  • Reference 5 Japanese Unexamined Patent Publication No. 2000-7332 describes the formula
  • the particle size at 25 % and 75 % of the volume-based cumulative particle size distribution curve by the Coulter method is D 25 and D 75 , respectively.
  • Individual particles are independent spindle-shaped or spherical alkalis, specified by chemical composition, X-ray diffraction pattern different from Alnite, pH of 5% aqueous suspension, BET specific surface area and moisture absorption It describes aluminum-palladium hydroxide.
  • the parameters such as the bulk density of the particles, the median diameter based on the volume, the sharpness of the particle size distribution, the aspect ratio, the refractive index, and the abrasion degree are optimized so that the compoundability in the resin is optimal.
  • Salt hydroxides have been proposed. As for the production method, it is described that aluminum sulfate, alkali sulfate or ammonium sulfate and aluminum hydroxide are subjected to hydrothermal treatment.
  • Document 6 Japanese Patent Application Laid-Open No. 6-122519
  • Document 6 has a spherical shape, an average particle diameter of 3 to 30 ⁇ m, and a specific surface area BET value of 150 to 300 m 2 / ⁇ .
  • a bulk density of 0.7-; L .. 1 g / m 1 formula
  • the synthetic aluminite compound can be used as an additive to resins, rubbers, etc., as a filler, as an adsorbent for odorous components, or as a carrier for dyes and the like. .
  • additives or fillers when adding additives or fillers to resins, rubbers, etc., they have low hygroscopicity, have acid resistance, improve the dispersibility of additives, and minimize the deterioration of mechanical properties such as tensile strength.
  • transparency the smaller the particle size, the greater the total light transmittance and the smaller the HAZE
  • the uniformity of particle shape and particle size closed (Sharpness of distribution) is often required.
  • the filter when kneading with resin, the filter is less likely to be clogged, and in order to improve the processability when processing the kneaded material into fine fibers, it is required that the particle diameter be uniform. . In order to satisfy these requirements, it is required to reduce the particle size without lowering the dispersibility in the resin, and to secure the uniformity of the particle shape and the particle size. These requirements are mutually contradictory, and the particle size must be reduced for the purpose of improving mechanical properties and transparency. Then, secondary agglomeration is likely to occur, so that the dispersibility in resin, rubber and the like is reduced, and the mechanical properties and transparency are rather reduced.
  • the composition described in Reference 2 has too high a hygroscopic property and cannot be used as an additive to resins, rubbers and the like.
  • the above documents 3, 4 and 6 do not disclose the particle shape, particle size uniformity, or a method for securing these characteristics, and are not disclosed in terms of mechanical properties such as compoundability to resin, that is, dispersibility or tensile strength. It is unknown how maintainable it is.
  • the literature 5 suggests a method of controlling the particle shape to either a spherical shape or a spindle shape by the pH control in the reaction, but this method is incomplete and is not suitable for the reaction.
  • the water absorption in order to use it as an adsorbent or carrier, the water absorption must be as small as possible.
  • the composition described in Reference 2 has too high a hygroscopic property, so that the gas adsorption ability is reduced in an environment having a high relative humidity.
  • industrial adsorbents and carriers are often used in a strong acid environment, and are required to be acid-resistant. Therefore, it is necessary that the change in crystal structure related to adsorption and loading in a strong acid environment be as small as possible.
  • a first object of the present invention is to provide organic acid anion-containing aluminum salt hydroxide particles having a uniform particle shape and a uniform particle diameter.
  • a second object of the present invention is to present a novel shape which has not been known before.
  • a third object of the present invention is to provide an excellent adsorption property for alkali substances and the like, without losing its function even in a strong acid environment, and having good dispersibility in resin and rubber and moldability, and high density. Contains an organic acid anion that has various excellent properties such that it does not lower the physical properties of the resin, rubber, etc. even when blended, and does not lower its fluidity when added to paints, etc. It is to provide aluminum salt hydroxide particles.
  • a fourth object of the present invention is to provide a method for producing organic acid anion-containing aluminum salt hydroxide particles having a desired particle shape and a uniform particle diameter.
  • a fifth object of the present invention is to provide an adsorbent, an ultraviolet absorber, and a resin composition using the organic acid-one-containing aluminum salt hydroxide particles. Means for solving the problem
  • the present inventors have added a known aluminum hydroxide solution to a mixed solution of aluminum sulfate and sodium sulfate as a catalyst by adding an aqueous solution of sodium hydroxide and performing a heating reaction.
  • a known aluminum hydroxide solution to a mixed solution of aluminum sulfate and sodium sulfate as a catalyst by adding an aqueous solution of sodium hydroxide and performing a heating reaction.
  • oxalic acid C 2 H 2 0 4
  • the present inventors added potassium hydroxide to a mixed solution of aluminum sulfate, potassium sulfate and oxalic acid to form a spherical organic acid having a smooth particle surface and extremely high particle diameter uniformity. It has been found that aluminum salt hydroxide particles containing -one can be synthesized.
  • the present inventors have developed research based on many experiments based on the above findings, and as a result, have found that a mixed solution of a sulfate of a trivalent metal and a sulfate of a monovalent cation as a catalyst has An aqueous solution of aluminum hydroxide containing ions
  • a mixed solution of a sulfate of a trivalent metal and a sulfate of a monovalent cation as a catalyst has An aqueous solution of aluminum hydroxide containing ions
  • organic acid anion-containing aluminum salt hydroxide particles represented by the following formula (I) having diameter uniformity can be synthesized.
  • organic acid anion-containing aluminum salt hydroxide particles having a desired particle size and particle shape according to the application. I found that I can do it. Specifically, it is possible to obtain not only a spherical particle but also a pair, a rectangular parallelepiped, a disk (go stone), a rice grain or a columnar organic acid-on-containing aluminum salt hydroxide particles.
  • aluminum salt hydroxide particles containing an organic acid anion that is, composite particles of an organic acid and an aluminite compound are novel.
  • novel organic acid-containing aluminum salt hydroxide particles are represented by the following formula (I).
  • M is + N a, ⁇ +, which is one of cationic even without least selected from ⁇ 4 + and Eta 3 0 + group consisting.
  • A is at least one kind of organic acid cation, preferably at least one kind selected from the group of carboxylic acids based on organic carboxylic acids or organic carboxylic acids, and more preferably 1 to 15 carbon atoms. At least one member selected from the group consisting of organic carboxylic acids or organic carboxylic acids having the following. A is more preferably an organic carboxylic acid or an organic carboxylic acid having 1 to 15 (particularly 2 to 10) carbon atoms and having 1 to 4 (preferably 1 or 2) carbonyl groups.
  • At least one member selected from the group of anions based on the following, and particularly preferably at least one member selected from the group consisting of oxalate ion, citrate ion, malate ion and tartrate, glycerate ion, gallate ion and lactate ion. Is a seed. '
  • Aeon inorganic acids least, but preferably, Ri least 1 Tanedea selected from inorganic acids Ayuon group taking tetrahedron structure, more preferably sulfate ion (so 4 2), phosphate ions (PO 4 3 _), nitrate ion (NOs 1 -) and Kei acid ion (S i 0 3 2 -, S i ⁇ 4 4 -, HS i 2 ⁇ 5 -, etc.) less selected from the group consisting of And at least one selected from sulfate ions, phosphate ions and potassium silicate. Most preferred is sulfate ion.
  • a, b, n, m ⁇ x, y, and z are 0.7 ⁇ a ⁇ l.35, 2.7 ⁇ b ⁇ 3.3, 0 ⁇ m ⁇ 5, 4 ⁇ n ⁇ 7, 0 ⁇ x ⁇ 0.6, 1.7 ⁇ y ⁇ 2.4, 0.00.01 ⁇ z ⁇ 0.5, but the preferred range is 0.9 ⁇ a ⁇ l. 2, 2.8 ⁇ b ⁇ 3.2, 0 ⁇ m ⁇ 2, 5 ⁇ ⁇ ⁇ 6.5, 0 ⁇ ⁇ ⁇ 0.3, 1.8 ⁇ y ⁇ 2.2, 0.0 1 ⁇ ⁇ 0.4, the more preferred range is 0.9 ⁇ a ⁇ l.
  • organic acid aunion-containing aluminum salt hydroxide particles represented by the following general formula (I).
  • A represents at least one organic acid anion
  • B represents at least one inorganic acid anion, wherein a, b, m, n, x, y and z are 0.7 ⁇ a ⁇ 1.35, 2.7 ⁇ b ⁇ 3, 3, 0 ⁇ m ⁇ 5, 4 ⁇ n ⁇ 7 s 0 ⁇ x ⁇ 0.6, 1. 7 ⁇ y ⁇ 2. 4. 0. 0 1 ⁇
  • Organic acid aunion-containing aluminum salt hydroxide particles.
  • the organic acid anion in the above formula (I) (A) is at least one selected from the group consisting of organic carboxylic acids having 1 to 15 carbon atoms and organic carboxylic acids.
  • At least one metal salt hydrolyzate selected from the group consisting of Cu, Zn, Ni, Sn, Zr, Fe, and Ti is supported on the surface.
  • the organic acid anion-containing aluminum salt hydroxide particles according to (1) are supported on the surface.
  • the organic acid is at least one selected from organic carboxylic acids or organic oxycarboxylic acids or salts thereof.
  • the group of inorganic acid salts is sulfate, nitrate, phosphate and silicate.
  • a resin additive comprising the organic acid ion-containing aluminum salt hydroxide particles according to (1).
  • An adsorbent composition comprising the organic acid anion-containing aluminum salt hydroxide particles according to (1).
  • a dye carrier comprising the organic acid anion-containing aluminum salt hydroxide particles according to (1).
  • FIG. 1 is a SEM photograph of the spherical particles according to Example 1A.
  • FIG. 2 is an SEM photograph of the disk-shaped particles according to Example 1B.
  • FIG. 3 is an SEM photograph of the paired particles according to Example 1... C.
  • FIG. 4 is a SEM photograph of the spherical particles according to Example 1-D.
  • FIG. 5 is a SEM photograph of the rectangular parallelepiped particles according to Example 11E.
  • FIG. 6 is a SEM photograph of the hexagonal plate-like particles according to Example 11F.
  • FIG. 7 is a SEM photograph of the granular rice grains according to Example 1-J.
  • FIG. 8 is a SEM photograph of the columnar particles according to Example 1-O.
  • FIG. 9 is a SEM photograph of the rectangular parallelepiped particles according to Example 1-P.
  • FIG. 10 is a SEM photograph of the spherical particles according to Example 11W.
  • FIG. 11 is a SEM photograph of the spherical particles according to Example 11N.
  • Fig. 12 shows the organic acid anion-containing aluminum salt according to Example 11A. It is a particle size distribution figure of a hydroxide particle. The horizontal axis is the particle diameter, the left vertical axis is the frequency
  • FIG. 13 is a particle size distribution diagram of the organic acid anion-containing aluminum salt hydroxide particles according to Example 11B.
  • FIG. 14 is a particle size distribution diagram of the organic acid anion-containing aluminum salt hydroxide particles according to Example 11C.
  • FIG. 15 is a particle size distribution diagram of the organic acid anion-containing aluminum salt hydroxide particles according to Example 11D.
  • FIG. 16 is a particle size distribution diagram of the organic acid anion-containing aluminum salt hydroxide particles according to Example 11V.
  • FIG. 17 is a graph showing the relationship between the solution temperature and the A 1 elution concentration from the immersed organic acid aion-containing aluminum salt hydroxide particles in the nitric acid solution according to Example 4-A.
  • FIG. 18 is a graph showing the relationship between the solution temperature and the concentration of SO 4 eluted from immersed aluminum salt hydroxide particles containing organic acid anion in a nitric acid solution according to Example 41A.
  • FIG. 19 is a graph showing the relationship between the solution temperature and the concentration of SO 4 eluted from the immersed organic acid anion-containing aluminum salt hydroxide particles in a sulfuric acid solution according to Example 4.
  • FIG. 20 and FIG. 21 are IR spectra of the aluminum salt hydroxide particles containing an organic acid anion according to Example 9.
  • the horizontal axis is the wave number (cm to x ), and the vertical axis is the reflectance (%).
  • FIG. 22 is a UV-visible light reflection spectrum of an organic acid-one-containing aluminum salt hydroxide particle according to Example 10-A.
  • the horizontal axis is the wavelength (nm), and the vertical axis is the reflectance (%).
  • FIG. 23 is a UV-visible light reflection spectrum of the organic acid anion-containing aluminum salt hydroxide particles according to Example 10-B.
  • FIG. 24 is a UV-visible light reflection spectrum of an organic acid-one-containing aluminum salt hydroxide particle according to Example 10-C.
  • FIG. 25 is a light transmission spectrum of a low-density polyethylene film to which aluminum salt hydroxide particles containing organic acid a-one according to Example 13-A were added.
  • FIG. 26 and FIG. 27 are differential thermal analysis diagrams of the aluminum salt hydroxide particles containing an organic acid-one according to Example 11. The horizontal axis is the wave number (cm- ⁇ ), and the vertical axis is the weight (%).
  • FIG. 28 to FIG. 32 are X-ray diffraction diagrams of the organic acid aeon-containing aluminum salt hydroxide particles according to Example 14.
  • organic acid anion-containing aluminum salt hydroxide particles of the present invention will be described in more detail.
  • the particle size distribution maps according to the present invention (D 7 5 / D 2 5 Organic layer containing a new particle shape such as spherical, disk-shaped (go-stone), paired, rectangular parallelepiped, hexagonal, rice grain, or columnar with a uniform particle size.
  • Luminium salt hydroxide particles were provided.
  • the particles of these new shapes according to the present invention are characterized by good shape uniformity (points of uniform shape).
  • the particles of the present invention have low cohesion and excellent dispersibility irrespective of their shape and despite their small particle size.
  • FIGS. 1 to 11 are SEM images of representative particles obtained according to the example of the present invention. Is true. Spherical particles are shown in Figures 1, 4, 10, and 11, discotic particles are shown in Figure 2, paired particles are shown in Figure 3, and cuboid particles are shown in Figures 5 and 9. The hexagonal plate-like particles are shown in Figure 6; the rice granular particles are shown in Figure 7; and the columnar particles are shown in Figure 8. 'The SEM photographs in Figs. 1 to 11 are representative examples of the particles obtained in the examples.
  • the shape of the particles of the present invention is observed based on SEM photographs magnified about 10,000 times to about 20,000 times.
  • the particles of the present invention are characterized in that each of the photographs has a uniform and uniform particle size and a small agglomeration and a monodisperse shape. You. Another characteristic is that the particle size is relatively small.
  • FIGS. 1, 4, 10, and 11 are almost spherical. Things.
  • the spherical particles in FIG. 4 have a smooth surface force S, and the spherical particles in FIGS. 1, 10, and 11 have small irregularities or wrinkles on the surface.
  • the disk-shaped particles are shown in Figure 2 and are almost symmetrical on the front and back, domed, and resemble goseki.
  • the disk-shaped particles in Fig. 2 have a smooth surface.
  • FIG. 3 shows a pair of particles.
  • the feature of this particle is that two of the disk particles, whose bottom is a flat plate and whose opposite surface is dome-shaped, have a paired shape with the bottom as a symmetric surface, and the surrounding area where the two particles overlap. There is a space just before. In the overlapping center there is an aluminum salt hydroxide connecting the two disks. This pair of particles looks like a hamburger at first glance.
  • FIG. 5 shows an example of a rectangular parallelepiped particle.
  • the particle in FIG. 5 is a rectangular parallelepiped close to a regular hexahedron and has a smooth surface.
  • FIG. 9 shows another example of the rectangular parallelepiped particles. The particles in FIG. 9 may be called octahedral particles.
  • FIG. 6 shows hexagonal plate-like particles.
  • the hexagonal plate-like particles are plate-like having a hexahedral surface formed by six sides. The six sides do not have to be the same length, and the contact of the two sides may have a rounded shape.
  • the rice grain is shown in Figure 7.
  • the rice grains have an elliptical projected shape and a substantially circular cross section in the longitudinal direction.
  • the particles in Figure 7 have small wrinkles on the surface.
  • An example of a columnar particle is shown in FIG.
  • the columnar particles may have a shape in which the middle portion is bulged, such as a sake barrel (or a wine barrel), or a cylindrical particle having a substantially circular cross section.
  • the particles in FIG. 8 have many irregularities on the surface.
  • the particles of the present invention are characterized in that in each of the photographs, the particle shape is uniform, the size is uniform and the dispersibility is good. I have.
  • the shape of each of the particles described above is classified and expressed in order to classify the respective particles, and there is no problem even if there is a slight deformation / mixing of other particles with a small percentage.
  • the smoothness, the presence of minute irregularities or the presence of small wrinkles (wrinkles) on the surface of the particles are not particularly limited, and may or may not be present.
  • S is closer to 1 as s is closer to a true sphere.
  • a particle having a spherical shape may be a ball-like shape as shown in FIGS. 1, 4, 10, and 11, and the sphericity s of Wade 11 is 0. It is preferable that 9 5 ⁇ s ⁇ 1.
  • the shape of the particles is disc-shaped (go stone shape) as shown in FIG. As shown, it has a spheroidal shape with the minor axis as the axis of rotation.
  • the circularity c of Wade 11 is 0.95 ⁇ c ⁇ l
  • a particle having a pair shape refers to a particle in which a pair of hemispherical particles (via a plane) overlap each other as shown in FIG.
  • gaps exist on the periphery of the overlapping surface of the two hemispherical particles.
  • the ratio t of the minor axis Z and the major axis of the paired particles is 0.1 and t ⁇ 0.5, and the ratio u of the minor axis is 0.05 ⁇ u ⁇ 0. Preferably it is 5.
  • the shape of the particle is a rectangular parallelepiped when it is a shape similar to a hexahedron (including a regular hexahedron) or an octahedron as shown in FIGS. 5 and 9, and the sphericity s of the W ade 11 is It is preferred that 0.5 ⁇ s ⁇ 0.8.
  • the shape of the particles being a hexagonal plate shape is a flat hexagonal prism-like shape as shown in FIG. 6, and a circular shape of Wade 11 with respect to the projected image of the particles viewed from the upper surface or the lower surface direction. It is preferable that the degree c is 0.95 c and 0.99, and the ratio b of the thickness Z (diagonal length of the regular hexagon) is 0.05 ⁇ b ⁇ 0.5.
  • the shape of the particles is defined as rice grains when the particles have a spheroidal shape with the major axis as the axis of rotation as shown in FIG. 7 and the ratio a of the minor axis / major axis of the ellipse is 0.1 l ⁇ a ⁇ 0.5, and the sphericity s of the W ade 11 is preferably 0.4 ⁇ s ⁇ 0.75.
  • the shape of the particles being cylindrical refers to a shape including a cylinder, in which the radius of the center of the cylinder in the height direction is 1.0 to 1.2 times the radius of the upper surface and the lower surface.
  • the circularity c of Wade 11 with respect to the projected images of the upper and lower surfaces is 0.95 c and 0.99, and the height / 8 or the diameter of the lower surface) is preferably 1.5 ⁇ b ⁇ 3.
  • Such a shape is shown in FIG.
  • the organic acid aeon-containing aluminum salt hydroxide particles may be spherical, disk-shaped (goite-shaped), pair-shaped, rectangular parallelepiped, hexagonal plate-shaped, or rice-grain-shaped according to the use or purpose.
  • various shapes such as a column shape can be provided, and the particle size can be controlled.
  • the shape is spherical when added as an anti-blocking agent, rectangular parallelepiped, disk-shaped (goishi), spherical or hexagonal as a filler for semiconductor epoxy encapsulant, and adsorbent as a filler.
  • organic acid anion-containing aluminum-palladium hydroxide particle having an optimal shape such as a pair, a column, a rice grain, or a disc (go stone).
  • particle size it is possible to provide organic acid anion-containing aluminum salt hydroxide particles having an optimum particle size according to the application and the required packing ratio.
  • the organic acid ion-containing aluminum salt hydroxide particles of the present invention have an average secondary particle diameter of 0.1 to 12 / m as measured by a laser diffraction method, and preferably 0.1 to 10 ⁇ m. m. Most preferably it is from 0.2 to 5111, especially from 0.2 to 2 im.
  • the organic acid ion-containing aluminum salt hydroxide particles of the present invention have a low cohesiveness even with a fine particle diameter of 0.5 ⁇ m or less, particularly 2 ⁇ m or less, and the conventionally known aluminum Superior in dispersibility when filled into resin compared to salt hydroxide particles. Therefore, the particle size is formed to a particle size of 1 ⁇ 2 or less of the visible light wavelength (0.4 to 0.7 ⁇ ), and the refractive index is equivalent to that of the resin by optimizing the particle shape and composition. If it is set to, a resin composition having a small haze and a very good transparency can be provided.
  • Organic acid-one-containing aluminum salt hydroxide provided by the present invention
  • the compound particles have a relatively small particle size, they maintain a uniform particle size with almost no secondary aggregation.
  • the horizontal axis represents the particle diameter
  • the vertical axis represents the cumulative frequency.D25 is the particle size at which the cumulative frequency is 25 % from the largest particle size to the total number of particles.
  • the particle diameter at a 7 5% and D 75 is often used to process I table the spread of particle size distribution by the value D 75 / D 25 ratio.
  • D 75 ZD 25 is referred to as a particle size distribution ratio (D R ).
  • the particle size distribution ratio (D R ) of the organic acid aion-containing aluminum hydroxide particles according to the present invention shows a value in the range of 1 to 1.8 regardless of the particle shape. Shows no particle size uniformity.
  • the range of D R is in the preferred embodiment from 1.01 to 1.5, particularly preferably from 102 to 1.3. Most preferably D R of 1.0 3 to 1.2.
  • the uniformity of the particle diameter can be indicated by the ratio of the number of particles having a particle diameter within a certain range centered on the average particle diameter or the median particle diameter to the total number of particles. This percentage, depending on the shape of the particle size distribution, the above D R (D 75 / D 25 ), is useful as a measure the half width and standard deviation, etc. to assess the uniformity of the particle diameter as a separate independent parameters .
  • the organic acid anion-containing aluminum salt hydroxide particles of the present invention have a particle size that is 0.85 times the average particle size determined by the laser diffraction method.
  • the ratio of the number of particles included in the range of the particle diameter of 15 times is 40% or more, preferably 60% or more, particularly preferably 80% or more of the whole. This can be expressed by an equation: (Average particle diameter X 0.85) ⁇ 40 mm / The ratio of particles satisfying ⁇ W M m ⁇ (average particle diameter X 1.15). It is preferably at least 60%, particularly preferably at least 70%.
  • the upper limit of this ratio is preferably as high as possible, but is generally 95%, preferably 97% in the present invention.
  • the organic acid anion-containing aluminum hydroxide salt particles of the present invention have a specific surface area measured by the BET method of 0.1 to 300 m 2 / g, preferably 0.5 to 250 in 2 / g.
  • a suitable range can be selected depending on the application.
  • the specific surface area by the BET method is preferably 0.1 to 30 m 2 Zg. A more preferred range is 2 to 10 in 2 / g.
  • the specific surface area by the BET method is preferably 0.5 to 300 m 2 / g. A more preferred range is 2 ⁇ 2 5 0 m 2 Z g .
  • Such an aluminum salt hydroxide containing an organic acid aunion having uniform particle size has good dispersibility as an additive to a resin or rubber. Therefore, a conventionally known additive is added to a resin or rubber. Comparing the product with the aluminum salt hydroxide particles containing the organic acid-one of the present invention, the elongation of the latter in the tensile test was 5 to 10 times that of the former, indicating that the flexibility was higher. Can be granted.
  • conventionally known fillers such as spherical silica are combined with two or more kinds of particles having an average particle diameter that satisfy the filling conditions determined by the equation of increase in the compounding of the semiconductor sealing resin or the like.
  • D R the particle size distribution ratio
  • the problem is that close packing cannot be achieved in practice because the percentage of particles that satisfy
  • the organic acid anion-containing aluminum salt hydroxide particles of the present invention have a uniform particle diameter, it is possible to achieve close packing as theoretically.
  • the color of the resin into which the aluminum salt hydroxide particles containing an organic acid ion of the present invention are kneaded becomes milky white, and no yellowing or whitening of the resin is observed. Therefore, they are useful as additives for resins and rubbers, especially as fillers, antiblocking agents, and ultraviolet and infrared absorbers.
  • the organic acid anion-containing aluminum salt hydroxide particles of the present invention are insoluble in water, have excellent acid resistance, and can maintain their basic structure even in a strong acid environment. It is useful as a filter aid or as an additive for resin for food containers that dislikes elution of components.
  • organic acid aunion-containing aluminum salt hydroxide particles of the present invention are useful when used alone as an adsorbent or a deodorant for malodorous gas, or when blended with fibers, resins and the like.
  • organic acid ion-containing aluminum salt hydroxide particles of the present invention exhibit good dye adsorption properties, they are useful as dye carriers, coloring assistants, and external additives for electrophotographic color toners.
  • the aluminum salt hydroxide particles containing an organic acid a-one according to the present invention include aluminum sulfate and a sulfate of M ′ in the formula (I); sulfates and organic acids and Z or organic acid salts of M, for example, in a mixed solution of oxalic acid (H 2 C 2 0 4) , thus generated thereby heating the reaction by the addition of hydroxide Al Chikarari aqueous solution containing the M Can be done. If necessary, the formed organic acid anion-containing aluminum salt hydroxide particles are filtered off, washed and dried to obtain a water-containing powder of the organic acid anion-containing aluminum salt hydroxide particles. Is obtained. ⁇
  • the value (D R ) of the particle size distribution ratio indicating the particle size uniformity of the resulting organic acid anion-containing aluminum salt hydroxide particles increases.
  • the shape of the generated particles is limited to a spherical shape or a shape similar thereto, and the object of the present invention is achieved because there is no freedom to form the particles into a shape according to the application. Can not.
  • the particle size uniformity and the particle shape are ensured by the amount of the organic acid added, so that the pH is constantly monitored during the reaction to secure the particle size uniformity, as in a conventionally known method, and No need to control. Further, since particles having a uniform particle size and shape are already obtained at the end of the reaction, there is no need for pulverization or classification.
  • the organic acid ion-containing aluminum salt hydroxide particles of the present invention have the following advantages in terms of (1) acid resistance, (2) fineness of the particles, and (3) versatility of the particle shape. And excellent-yes.
  • the organic acid anion-containing aluminum salt hydroxide particles of the present invention are excellent in dispersibility in resin and the like and high filling properties as compared with conventionally known alunite compound particles, and the resin composition to which this is added is Excellent in acid resistance and physical strength. Furthermore, the application is more versatile than conventionally known alunite compound particles having a small degree of freedom in shape.
  • an organic acid anion-containing aluminum oxide formed from the combination of the cation M and the type of the organic acid is used under fixed reaction conditions.
  • the particle size, particle shape, and chemical and physical properties of the salt hydroxide particles are uniquely determined.
  • the reaction conditions are as follows: the molar ratio of the sulfate of M 'to alkali hydroxide in formula (I), the heating reaction temperature and the organic acid.
  • the particle size, particle shape and chemical and physical properties of the resulting organic acid-containing aluminum salt hydroxide particles are uniquely determined.
  • a mixture of a sulfate of 'aluminum sulfate and M' and an organic acid for example, a mixture of aluminum sulfate and titanium sulfate and a mixture of alkali hydroxide containing cation M are heated.
  • the reaction can produce a solid solution of organic acid aion-containing aluminum salt hydroxide particles having a different composition from the above-mentioned solid solution.
  • Such a metal-supported particle on the surface can also be obtained by a method in which various metal compounds are subsequently supported on a synthesized organic acid-containing aluminum salt hydroxide by a conventionally known method.
  • aqueous solution of titanium sulfate is combined with an organic acid anion-containing aluminum salt solution.
  • a base such as sodium hydroxide
  • a heat-reaction between a sulfate of M ′ containing aluminum, a mixed solution of two or more kinds of organic acids different from each other, and a mixed solution of sulfate of cation M is carried out with an alkali hydroxide solution containing cation M
  • an alkali hydroxide solution containing cation M By doing so, a solid solution of organic acid anion-containing aluminum salt hydroxide particles having a different composition from the above solid solution can be generated.
  • nitrate, phosphate or silicate when synthesizing the organic acid anion-containing aluminum salt hydroxide particles, nitrate, phosphate or silicate may be used instead of the sulfate of M added as a catalyst.
  • the present inventors have found that even when used repeatedly the reaction mother liquid containing a M 2 S 0 4 be produced in the reaction, with respect to the product organic acid Anion-containing aluminum salt hydroxide particles, does not adversely quite bad influence Was found. According to the method of the present invention, the reaction mother liquor can be used repeatedly, which is advantageous in that the production cost can be reduced.
  • the organic acid ion-containing aluminum salt hydroxide particles of the present invention can be obtained at the end of the heating reaction step by setting the reaction conditions so that particles having a required shape and particle diameter are obtained according to various applications. Gives the desired particle size and particle shape. Therefore, there is no need for any subsequent pulverizing treatment, and the number of man-hours can be reduced, and the production cost can be reduced in this respect as well.
  • Group 1 at least one cation inorganic salt and at least one sulfuric acid selected from the group consisting of Na +, K +, ⁇ ⁇ 4 + and ⁇ 30 +
  • Group 2 When an alkali hydroxide solution selected from the second group is added to a mixed solution containing a salt or a nitrate to cause a heating reaction, the heating reaction is performed with an organic solvent.
  • a method for producing organic acid cation-containing aluminum salt hydroxide particles which is carried out in the presence of an acid or an organic acid salt.
  • the reaction temperature in the method of the present invention is higher than the boiling point and not higher than 300 ° C.
  • the temperature is more preferably 90 to 250 ° C. If the reaction temperature is lower than 90 ° C, the reaction rate becomes extremely slow, and the production efficiency is poor. Conversely, if the reaction temperature exceeds 300 ° C., special equipment is required, which is not preferable.
  • the reaction may be performed under sealed conditions using a autoclave or the like, or under open conditions. Preferred reaction temperatures are in the range from 100 ° C. to 200 ° C., especially from 120 ° C. to: L 70 ° C.
  • the aluminum salt concentration in the reaction of the present invention is from 0.01 to 3.0 mol / L. More preferably 'is 0.01 to 2 mol ZL. If the aluminum salt concentration is less than 0.01 mol 1 ZL, the productivity will be poor, and if it exceeds 3 mol, aggregation between particles is likely to occur, and the uniformity of particle size and particle size Is difficult to control.
  • the organic acid concentration in the reaction solution in the present invention is 1 to 2 or less of the aluminum salt concentration (mol). More preferably, it is 1 / 20-1Z2. If the value of (organic acid concentration) / (aluminum salt concentration) exceeds 1 Z2 or is less than 1 Z20, the shape, size and particle size of the particles become non-uniform.
  • the organic acid is preferably an organic carboxylic acid or an organic carboxylic acid. They preferably have 1 to 15 carbon atoms, preferably 2 to 10 carbon atoms, and particularly preferably have 1 to 4, preferably 1 to 2 carboxyl groups in the molecule. . These organic acids may be salts or isomers.
  • the organic acid include at least one selected from the group consisting of oxalic acid, cunic acid, malic acid, tartaric acid, glyceric acid, gallic acid, and lactic acid, isomers thereof, and salts thereof.
  • the molar ratio of the sulfate salt of M 'to the MOH hydroxide is 1: 3.8 to 4.7.
  • the reaction formula at a molar ratio of 1: 4 is shown in the above formula, but if the value of the hydroxyl hydroxide is less than 4, the reaction may be insufficient.
  • the value of alkali hydroxide exceeds 4.4, boehmite may be formed. Taking these points into account, the more preferable monole ratio is 1: 4 to 4.4.
  • the organic acid anion-containing aluminum salt hydroxide particles of the present invention are additives having excellent dispersibility even when used as they are, but they include higher fatty acids, cation-based surfactants, phosphates, coupling agents and polyvalents.
  • Surface treatment with at least one type of surface treatment agent selected from the group consisting of alcohol and fatty acid esters can further improve dispersibility in resins, rubbers, and the like. The following are preferably used as the surface treatment agent.
  • Higher fatty acids having 10 or more carbon atoms such as stearic acid, erlic acid, palmitic acid, lauric acid, and behenic acid; or alkali metal salts of the higher fatty acids; higher alcohols such as stearyl alcohol and oleinole alcohol; Estenolate sulfate; Polyethylene blended alcohol sulfate, amide-linked sulfate, ester-linked sulfate, ester-linked sulfonate, amide-linked sulfonate, ether-linked sulfonate, ether-linked alkylaryl sulfone Aron-based surfactants such as acid salts, ester-linked alkylaryl sulfonates, and amide-linked alkylaryl sulfonates; mono- or diesters such as orthotrinic acid and oleyl alcohol, stearyl alcohol, or both A mixture of Phosphoric acid esters such as the acid form or metal salts of acrylon
  • the surface treatment of the organic acid anion-containing aluminum salt hydroxide particles with the surface treatment agent can be performed by a method known per se as a surface treatment method of the particles, and can be performed, for example, as follows.
  • An aqueous solution of aluminum hydroxide is added to a mixed solution of a sulfate of a trivalent metal, a monovalent cation sulfate and / or a nitrate, and an organic acid, and the mixture is heated to cause a reaction.
  • the surface treatment agent is removed after any of the heating reaction, filtration, washing or drying. It may be added. If kneading with rubber, resin, etc., a surface treatment agent may be added at that time.
  • the surface treatment can be performed by a conventionally known method such as a wet method and a dry method.
  • the amount of the surface treatment agent to be added is 0.01 to 10 parts by weight, preferably 0.05 to 5 parts by weight, based on 100 parts by weight of the organic acid aion-containing aluminum hydroxide particles.
  • the organic acid anion-containing aluminum salt hydroxide particles of the present invention are subjected to surface modification with the following inorganic oxides, metals, ceramics, etc. to impart fluidity to these substances, Conductivity can be imparted to the aluminum-containing hydroxide particles; silica, alumina, antimony oxide, tin oxide, manganese dioxide, zirconium oxide, zinc oxide, titanium oxide, antimony-doped tin oxide, tin-doped indium oxide, ytterbium oxide And tungsten trioxide stainless.
  • surface modification using the following inorganic oxides, metals, ceramics, etc. imparts fluidity to these substances, or imparts thermal conductivity to the aluminum salt hydroxide particles containing organic oxides. can do ;
  • the aluminum salt hydroxide particles containing organic acid aeon, surface-modified with the above materials are kneaded with the resin according to the application, or are applied to different substrate materials such as various alloys, ceramics, or carbon by CVD, plasma CVD, PVD. It is also possible to provide a predetermined function by forming a film by such a method.
  • organic acid anion-containing aluminum hydroxide hydroxide particles of the present invention By subjecting the organic acid anion-containing aluminum hydroxide hydroxide particles of the present invention to surface modification with an alkali metal silicate, mica, zeolite, imogolite or the like, various adsorbents such as a moisture adsorbent or a humidity control Agent, It can be used as a volatile organic substance (VOC) remover or a carrier for dyes.
  • VOC volatile organic substance
  • organic acid anion-containing aluminum salt hydroxide particles of the present invention which are surface-modified with an ultraviolet absorbent such as titanium oxide, can be used as a heat insulating agent for agricultural films, an ultraviolet Z infrared absorbing agent for cosmetics, and ultraviolet deterioration of rubber. Very useful as an inhibitor.
  • the surface modification of the organic acid anion-containing aluminum hydroxide hydroxide particles by the inorganic oxide or the like is performed by adding a polyhydric alcohol to a mixture of the organic acid anion-containing aluminum salt hydroxide particles and, for example, a titanium oxide powder. Conventionally known methods such as polishing and baking can be used.
  • the amount of the surface modifier to be added is 0.01 to 100 parts by weight, preferably 0.05 to 50 parts by weight, based on 100 parts by weight of the organic acid anion-containing aluminum salt hydroxide particles. .
  • the organic acid anion-containing aluminum salt hydroxide particles of the present invention can be used after firing for 2 hours at a temperature in the range of 300 to 1,000 ° C. according to the intended use.
  • organic acid anion-containing aluminum salt hydroxide particles of the present invention may be mixed with an organic polymer compound as described below as it is or after being subjected to the above-mentioned surface treatment, surface modification, firing, etc. Can be done. ;
  • Resole-type and nopolak-type phenolic resins melamine resin, melamine-urea co-condensation resin, melamine-benzoguanamine co-condensation resin, melamine-phenol resin, bisphenol A-type epoxy resin, brominated epoxy resin, bisphenol F-type epoxy Resin, novolak epoxy resin, alicyclic epoxy resin, glycidylamine epoxy resin, glycidyl ester epoxy resin, heterocyclic epoxy resin, urea resin, urea-formaldehyde-furfuryl alcohol resin, Saturated polyester resin, silicone resin, polyurethane, vinyl chloride, vinyl chloride-ethylene copolymer, vinyl chloride monovinyl acetate copolymer, vinylidene chloride copolymer, poly.ethylene, polyethyleneimine, polyethylene glycol Cornole, polyethylene terephthalate, poly (ethylene mono-trifluoroethylene), acrylic resin, polyethylene naphthalate, polybutylene terephthalate
  • Polyamide MXD 6 T Polyamide MXD 6, Polyacetal, Polyester, Polypropylene, Modified Polyphenylene Ether, Polysulfone, Polyarylate, Polyether Imide, Polyether Sulfone, Polyamide Imide, Polyphenylene Sulfide, Liquid Crystal Resin such as polyester, alloys of plural kinds of resins selected from these; chloroprene rubber, styrene butadiene rubber, ptynole rubber, ethylene propylene rubber, -tril rubber, chlorosnoreon polyethylene rubber, urethane rubber, silicone rubber, fluorine Synthetic rubber such as rubber, polyisoprene rubber, butadiene rubber; synthetic fiber such as nylon, vinylon, acryl fiber, rayon; cellulose, alginic acid, starch, protein, collagen, natural wood (Natural organic polymers such as shellac, dammanole, amber, copanole, rosin, etc.); cellulosic resins (cellulose acetate
  • the amount of the organic acid anion-containing aluminum and / or sodium salt hydroxide particles of the present invention to be added to the organic polymer compound is as follows.
  • the amount is preferably 0.5 to 90 'parts by weight with respect to 100 parts by weight. If the amount is less than 0.5 part, the effect as an additive is insufficient, and if the amount exceeds 90 parts, the effect is not improved. Therefore, the amount is more preferably 1 to 80 parts by weight.
  • the filler is preferably 0.5 to 0.5 parts by weight. If the amount is less than 0.5 part, the effect as a filler is insufficient, and if the amount exceeds 100 parts, the effect is not significantly improved.
  • organic acid anion-containing aluminum salt hydroxide particles of the present invention have a small haze in the visible light region, their refractive index and dispersion can be adjusted by adding them to the following inorganic compounds.
  • the addition to the inorganic compound can be performed by a method known per se, for example, by firing a mixture of the inorganic compound and the aluminum salt hydroxide particles containing an organic acid anion.
  • the organic acid-an-containing aluminum salt hydroxide particles of the present invention include cement additives and curing accelerators; food additives, beer, soy sauce and other fermented food filter aids; pesticide additives and carriers; Additives for agricultural films; Additives for semiconductor encapsulants; Additives for heat-resistant ceramics; Toners for electronic photography and toner external additives; Cleaning agents; Two-component toner carriers; Pharmaceutical additives and various Carriers; Cosmetic additives, deodorants, antibacterial agents, antifungal agents, anti-algal agents and their carriers; dyes and pigment carriers and additives; catalysts; fiber deodorants, rubber, resin colorants , Anchor coating agent, heat conductive material carrier, magnetic material carrier, conductivity imparting material carrier, electromagnetic wave absorber carrier, anti-blocking agent and other additives; additives to glass, reuse of glass waste material Foaming agent for;.
  • a first effect of the present invention is to provide a method for producing organic acid dione-containing aluminum salt hydroxide particles having a shape and a particle diameter most suitable for use at low cost, with good reproducibility, and with high yield.
  • the second effect is that it is possible to provide organic acid anion-containing aluminum salt hydroxide particles which are fine particles, have a uniform particle shape and particle diameter, are highly dispersible, have low moisture absorption, and are acid-resistant.
  • the third effect is that, even when added to resins, rubbers, etc., resins that have good dispersibility, can provide anti-blocking properties, acid resistance and other properties without lowering physical properties such as transparency and tensile strength, It can provide additives and fillers for rubber and the like.
  • a fourth effect is that it is possible to provide particles, carriers and the like whose physical properties are not deteriorated even in an environment having a high relative humidity or a strong acid environment, in particular, the adsorbing / supporting ability is not reduced.
  • Example 1_A shows the properties of the obtained aluminum-palladium hydroxide particles containing organic acid anion, and FIG. 14 shows the particle size distribution. The particle shape at this time was a pair as shown in SEM photograph Fig. 3.
  • Example 11A Dissolve 0.1 mol of aluminum sulfate aqueous solution in 500 ml of water, add 0.1 mol of potassium nitrate and 0.125 mol of oxalic acid, and stir at room temperature for 30 minutes. Further, an aqueous solution of potassium hydroxide (20 Oml (0.4 mol)) was added, and a hydrothermal treatment was performed at 170 ° C for 10 hours. Other processing conditions were the same as in Example 11A. Table 11 shows the characteristics of the obtained aluminum salt hydroxide particles containing an organic acid anion, and FIG. 15 shows the particle size distribution. The particle shape at this time was spherical as shown in SEM photograph Fig. 4.
  • Example 11A shows the properties of the obtained organic acid anion-containing aluminum salt hydroxide particles.
  • the particle shape at this time was a rectangular parallelepiped as shown in SEM photograph FIG.
  • Table 1-1 shows various characteristics of the spherical organic acid anion-containing aluminum salt hydroxide particles obtained in Example 11-I by changing citrate to DL_malic acid.
  • Example 11 One L K 0. 99 A 1 3 ( S 0 4)!. 99 (C 6 H 5 0 7) o. 14 (OH) 5. 59 ⁇ synthesis of 0. 5 H 2 0
  • Example 11 In Example I, spherical organic acid anion-containing aluminum salt hydroxide particles obtained by replacing sodium sulfate as a catalyst with sulfuric acid lime, oxalic acid with citric acid, and sodium hydroxide with potassium hydroxide. The characteristics of are shown in Table 11-11.
  • Example 11 In Example I, spherical organic acid anion-containing aluminum salt hydroxide particles obtained by changing cunic acid to two kinds of organic acids, namely, oxalic acid 0.026 mo1 and tartaric acid 0.026 mo1. The characteristics of are shown in Table 11-1.
  • Example 11 In Table I, various characteristics of the spherical organic acid anion-containing aluminum salt hydroxide particles obtained by using gallic acid [C 6 H 4 (OH) 3 C OOH] instead of cunic acid are shown. Shown in Figure 10. The particle shape at this time was spherical as shown in SEM photograph Fig. 11.
  • Example 11 various properties of the organic acid aunion-containing aluminum salt hydroxide particles obtained by using DL-glyceric acid [HOCH 2 CH (OH) COOH] instead of cunic acid are shown in Table 1. One is shown in 1. The particle shape at this time was cylindrical as shown in SEM photograph Fig. 8.
  • Example 1-I various properties of the aluminum salt hydroxide particles containing an organic acid cation obtained using L-lactic acid [CH 3 CH (OH) COOH] instead of cunic acid are shown in Table 1-11. Shown in The particle shape at this time was a round rectangular parallelepiped as shown in SEM photograph Fig. 9.
  • Aqueous solution of aluminum sulfate 1.94 ml (0.2 mol), sodium sulfate 28.4 g (0.2 mo 1) and oxalic acid 6.3 g (0.05 mol 1) were mixed and ion-exchanged water. Dilute to 600 ml and dissolve the crystal with stirring. To this solution, 14.38 g (0.05 mol) of zinc sulfate was added and dissolved. Further, 23.5 ml (0.8 mol) of sodium hydroxide solution was added to the above mixture at room temperature for 6 minutes. After stirring at room temperature for 1 hour, hydrothermal treatment is performed at 170 ° C for 2 hours, and the reaction solution after the hydrothermal treatment is filtered, washed with water, and dried (at 150 ° C for 15 hours). Table 11 shows the properties of the aluminum salt hydroxide particles containing an organic acid cation.
  • Example 11 Disc-shaped organic acid-one-containing aluminum salt hydroxide particles obtained by using 7.35 g (0.03 mol) of nickel sulfate instead of zinc sulfate in Example S. The characteristics are shown in Table 11-1.
  • Example l-S iron sulfate in place of zinc sulfate 0. 0 2m o 1 (F e S 0 4 - 7 H 2 0: 5. 6 g) and zinc sulfate 0. 0 2 mo 1 (Z n S 0 4 ⁇ 7 H 2 0: 5. shows the various properties of the obtained disk-shaped organic acid Anion-containing aluminum salt hydroxide particles using 8 g) in Table 1 one 2.
  • Table 1-2 shows the properties of anion-containing aluminum salt hydroxide particles.
  • Fig. 16 shows the particle size distribution of these particles.
  • Example 11 As a result of using titanium sulfate 0.08 mo 1 (30 g of a 30% solution) in place of zinc sulfate in one R, aluminum containing organic acid anion containing titanium and titanium hydrolyzate was used. Salt hydroxide particles were obtained. Table 2 shows properties of the obtained titanium hydrolyzate-supported composition. The particle shape at this time was a disk shape.
  • Example 1 _R copper sulfate 0. 0 3 mo 1 in place of zinc sulfate (C u S 0 4 - 5 H 2 0: 7. 4 9 g) results using copper and copper hydrolyzate organic acid
  • aluminum salt hydroxide particles containing iron-on were obtained.
  • Table 2 shows properties of the obtained copper hydrolyzate-supported composition. At this time, the particle shape was a pair.
  • the particle size of the organic acid anion-containing aluminum salt hydroxide particles synthesized in Examples 11A to 2-C was measured by a laser diffraction method.
  • the results of particle size of 2 5% value and 7 5% value of the cumulative particle size distribution curve was a D 25 and D 75, respectively, to calculate the value D 7 5 ZD 25 ratio, this ratio is 1
  • the values in the range of ⁇ 1.2 were shown.
  • the ratio e (%) of the number of particles having a particle diameter m of 0.85A ⁇ W ⁇ 1.15A was read from each particle size distribution. Tables 11 and 12 show the results.
  • Example 41A The organic acid aion-containing aluminum salt hydroxide particles synthesized in Example 11G were used. ⁇
  • Comparative Example 2 Alnite-type compound particles synthesized in Comparative Example 1 were used.
  • Aluminum in solution - the ⁇ beam level measurement in FIG. 1 7 shows an S 0 4 concentration measurement results in FIG 8.
  • organic invention Sana - O emissions for-containing aluminum salt hydroxide particles it is understood that the amount of elution of Aruminiumu and S 0 4 is minimal. That is, the organic acid anion-containing aluminum salt hydroxide particles of the present invention hardly change under an acidic environment.
  • organic acid ion-containing aluminum salt hydroxide particles of the present invention contain an organic acid, and thus have higher acid resistance than conventional alunite type compound particles.
  • Example 41 The procedure was the same as in B.
  • Example 41 The procedure was the same as in B.
  • Table 3 shows the results of the above measurements performed on the sample synthesized in Example 1_G.
  • Example 1 Table 3 shows the results of the above measurements performed on samples synthesized with 1H.
  • Example 11 Table 3 shows the results of the above measurements performed on the sample synthesized in Example I.
  • Example 11 Table 3 shows the results of the above measurements performed on the sample synthesized in Example 1J.
  • Example 1 Table 3 shows the results of the above measurements performed on samples synthesized at 1K.
  • Example 41 I Example 1 Table 3 shows the results of the above measurements performed on a sample synthesized in one liter.
  • Example 11 Table 3 shows the results of the above measurements performed on the sample synthesized in Step P.
  • Table 3 shows the results of the above measurements performed on the samples synthesized in Example 1-Q.
  • the S 0 4 ion concentration in the case of changing the sulfuric acid concentration is shown in Figure 1 9.
  • Increasing the concentration of sulfuric acid also increased the solubility of the sample, but the amount eluted was small and the particle shape did not change.
  • the organic acid aunion-containing aluminum salt hydroxide particles of the present invention by containing an organic acid anion, exhibit much better acid resistance than conventional aluminite-type compounds, which have better acid resistance. Has been shown.
  • the heat-treated solution was filtered, washed with water, and dried at 95 ° C for 15 hours to obtain aluminum oxide hydroxide particles containing a disc-shaped organic acid anion and having a BET specific surface area of 4 Oms / g. Was.
  • Example 5 Similar to Example 5-A except that filtration, washing and drying were performed without autoclaving, aluminum oxide hydroxide particles containing an organic acid anion and having a BET specific surface area of 97 m 2 / g were obtained. Synthesized. Table 4 shows the results of the adsorption test.
  • Example 11 Table 4 shows the results of an adsorption test performed on the sample synthesized at 1 G.
  • Example 1 Table 4 shows the results of an adsorption test performed on the sample synthesized in 1H.
  • Example 11 Table 4 shows the results of an adsorption test performed on the sample synthesized in Example I.
  • Example 11 Table 4 shows the results of an adsorption test performed on the sample synthesized in Example 1J.
  • Example 1 Table 4 shows the results of an adsorption test performed on samples synthesized at 1K.
  • Example 1 Table 4 shows the results of an adsorption test performed on a sample synthesized in one liter.
  • Example 1 Table 4 shows the results of an adsorption test performed on a sample synthesized at 1 M.
  • Example 11 Table 4 shows the results of an adsorption test performed on the sample synthesized in Step P.
  • Example 5 K ′
  • Table 4 shows the results of an adsorption test performed on the sample synthesized in Q.
  • Table 4 shows the results of adsorption tests on activated carbon.
  • Table 4 below shows that the aluminum salt hydroxide particles containing an organic acid cation according to the present invention easily adsorb an alkaline substance such as ammonia.
  • Example 6 The composition of the A ′ raw material is the same as the sample of Example 41-B. However, the conditions for the heat treatment differ as follows. The conditions for the autoclave treatment were 180 ° C. and 20 hours, and before the autoclave treatment, heat treatment was performed at 100 ° C. for 2 hours under open conditions.
  • Example 41 A sample prepared in C was used.
  • Example 4-D The sample prepared in Example 4-D was used.
  • Example 1 A sample synthesized in H was used.
  • Example 11 A sample synthesized in I was used.
  • Example 11 A sample synthesized in step J was used.
  • Example 1-K A sample synthesized in Example 1-K was used.
  • Example 1 A sample synthesized in one liter was used.
  • Example 11 A sample synthesized at 1 M was used.
  • Example 1_P The sample synthesized in Example 1_P was used.
  • Example 11 A sample synthesized in Q was used. Comparative Example 5-Activated carbon commonly used as an adsorbent was used.
  • Example 6-A to Example 6-K show that the organic acid anion-containing aluminum salt hydroxide particles of the present invention adsorb acid dyes, direct dyes, basic dyes, reactive dyes and the like well. Is shown. Therefore, the organic acid-an-containing aluminum salt hydroxide particles of the present invention are useful as coloring aids, pigments and carriers for organic polymers such as resins.
  • Example 7 For the whitening test, a piece of polypropylene containing aluminum salt hydroxide particles containing an organic acid aunion prepared in Example 7 was used. Further, as Comparative Example 7, the same polypropylene piece as Comparative Example 6 to which magnesium hydroxide generally used as an additive was added was used.
  • FIG. 22 shows the absorption spectrum of the sample synthesized in 1H.
  • FIG. 23 shows the absorption spectrum of the sample synthesized in Example 1-J.
  • FIG. 24 shows the absorption spectrum of the sample synthesized in Example 2-A.
  • the reflection spectrum was measured using a spectrophotometer with a sample piece obtained by molding the sample powder into a disk shape of 40 ⁇ 2 mm.
  • organic acid anion-containing aluminum salt hydroxide particles of the present invention have an absorption band in the ultraviolet region of 200 to 38 O nm, and are useful as an ultraviolet absorber.
  • Example 1 1 differential thermal analysis test 'Example 1 -B and Example N a AL 3 prepared in 1 one C (S 0 4) 2 ( OH) 6 results of differential thermal analysis for, FIG 6 And the result of Figure 27 was obtained. Both samples are thermally stable up to 400 ° C or higher.
  • the organic acid-one-containing aluminum salt hydroxide particles of the present invention when the addition rate of the alkali hydroxide to be added and the concentration ratio of the sulfate are changed, the organic acid-one-containing aluminum is formed.
  • Table 8 shows the results of measuring the particle size of the salt hydroxide particles by a laser diffraction method. Table 8 shows that the particle size of the organic acid anion-containing aluminum salt hydroxide particles depends on the concentration ratio between the hydroxide and the sulfate during the formation reaction.
  • Table 9 shows the results of SEM observation of the particle shape of the organic acid anion-containing aluminum chloride hydroxide particles generated when the type of the organic acid to be added, the reaction conditions, and the reaction molar ratio were changed.
  • Table 9 shows that the shape of the generated particles depends on the type and amount of organic acid added (Yes Molar ratio of mechanical acid to aluminum sulfate ': [organic acid] / [aluminum sulfate]) and reaction temperature.
  • the molar ratio is 18 ⁇ [organic acid] / [aluminum sulfate]. ⁇ 1/4, and the reaction is performed by heating at 150-200 ° C for 2 hours.
  • Example 1 After mixing the organic acid anion-containing aluminum salt hydroxide particles synthesized in _B at a mixing ratio of 0.1 part by weight per 100 parts by weight of low-density polyethylene (UF240), an extruder was used. The mixture was kneaded and melted at about 180 ° C to produce a pellet. Using this pellet, a 100 m thick film was produced at about 200 ° C. by the T-die method, and this was used as a test piece.
  • UF240 low-density polyethylene
  • the aluminite compound particles synthesized in Comparative Example 1 were mixed in the same manner as in Example 13-A at a mixing ratio of 0.1 part by weight per 100 parts by weight of low-density polyethylene (UF240). Using an extruder, the mixture was kneaded and melted at about 180 ° C. to produce a pellet. Using this pellet, a film having a thickness of 100 m at about 200 ° C. was produced by a T-die method and used as a test piece.
  • UF240 low-density polyethylene
  • Titanium oxide (ST-01: Ishihara Sangyo) was mixed in the same manner as in Example 13-A, except that the mixing ratio of 0.2 parts by weight per 100 parts by weight of low-density polyethylene (UF240) was Using an extruder, the mixture was kneaded and melted at about 180 ° C. to produce a pellet. Using this pellet, a film having a thickness of 100 m was produced at about 200 ° C. by a T-die method, and this was used as a test piece.
  • UF240 low-density polyethylene
  • a low-density polyethylene (UF240) without any blending was melted at approximately 180 ° C using an extruder to produce a pellet. Using this pellet, a 100 Am thick film was produced at approximately 200 ° C. by the T-die method and used as a test piece. (ii) Test method
  • the transmittance and haze were measured using a haze meter (TC-H3DP: Nippon Denshoku).
  • Table 11 shows the measurement results of the refractive index of the sample synthesized in Example 11-B.
  • Example 14 41 B-Table 11 shows the results of measuring the refractive index of the sample synthesized in Example 11C.
  • Example 11 Table 11 shows the measurement results of the refractive index of the sample synthesized in Example E.
  • Example 14
  • Example 11 shows the measurement results of the refractive index of the sample synthesized in Example 1F.
  • Example 14_E ′ Example 11 Table 11 shows the results of measuring the refractive index of a sample synthesized in Example 1 with O.
  • Table 11 shows the measurement results of the refractive index of the sample synthesized in Example 2-A.
  • Table 11 shows the measurement results of the refractive index of the sample synthesized in Comparative Example 1.
  • the organic acid-one-containing aluminum chloride hydroxide particles of the present invention have a refractive index of 1.49 to 1.55 depending on the kind of the organic acid contained therein, and are added to the resin to be added. It can be adjusted according to the requirements, and is particularly useful for resins requiring transparency.
  • Example 11 Table 12-1 shows the results of component analysis of the sample synthesized in Example 1A.
  • Example 11 Table 12-1 shows the results of component analysis of the sample synthesized in Step C. '
  • Example 11 shows the results of component analysis of the sample synthesized in 1D.
  • Example 11 Table 12-1 shows the results of component analysis of the sample synthesized in 1H.
  • Example 11 Table 12-2 shows the results of component analysis of the sample synthesized in Example I.
  • Example 11 Table 12-2 shows the results of component analysis of the sample synthesized in Example J.
  • Example 15 Table 12-2 shows the results of component analysis of the sample synthesized in Example J.
  • Example 1 shows the results of component analysis of the sample synthesized at 1K.
  • Example 15—J ′ Example 1 Table 12-2 shows the results of component analysis of the sample synthesized in 1 L.
  • Example 11 shows the results of component analysis of the sample synthesized in Q.
  • Example 11 shows the results of component analysis of the sample synthesized in R.
  • Apparatus NOVA 20000 high-speed specific surface area / pore distribution measurement device (Yuasa Ionitas)
  • Dye adsorption test Method Put 2 g of the sample and 10 mg of the dye in 150 ml of pure water, stir well, and analyze the dye concentration at the beginning and after 15 hours.
  • Adsorption rate (a-b) / a X 1 0 0 (%)
  • 1 L is introduced into 50 ml of pure water, and the residual gas is measured by a pH calibration curve.
  • Spectrophotometer 150-200 (Hitachi)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

下記一般式(I)で表わされる有機酸アニオン含有アルミニウム塩水酸化物粒子。Ma[Al1-xM'x]bAzBy(OH)n・mH2O(I)(ただし、式中MはNa+、K+、NH4+およびH3O+なる群から選ばれる少なくとも1種の陽イオン、M'は、Cu2+、Zn2+、Ni2+、Sn4+、Zr4+、Fe2+、Fe3+およびTi4+なる群から選ばれる少なくとも1種の金属の陽イオン、Aは少なくとも1種の有機酸アニオン、Bは少なくとも1種の無機酸アニオンを表わし、式中a、b、m、n、x、yおよびzは、0.7≦a≦1.35、2.7≦b≦3.3、0≦m≦5、4≦n≦7、0≦x≦0.6、1.7≦y≦2.4、0.001≦z≦0.5とする。)前記粒子は、粒子の形状が粒状、一対状、直方体状、円盤状(碁石状)、六角板状、米粒状または円柱状であり、かつ均一な粒子径を有している。

Description

有機酸ァニオン含有アルミ -ゥム塩水酸化物粒子、 その製造方法およ びその利用 '
技術分野
本発明は、 有機酸ァニオン含有アルミニウム塩水酸化物粒子、 そめ 製造方法およびその利用に関す明る。 すなわち、 種々の分野、 例えば、 建設、 食品、 農業、 半導体、 電子写真、 医療、 化粧品、 化学、 樹脂、 田
繊維、 ゴムまたはその他工業分野に使用することができる有機酸ァュ オン含有アルミニウム塩水酸化物粒子およびその製造方法に関する。 より詳細には、 本発明は、 微小かつ均一な粒子径を持つ球状、 一対状、 直方体状、 円盤状 (碁石状) 人 六角板状、 米粒状または円柱状の、 吸 湿性が少なく樹脂、 ゴム等への添加性に優れた有機酸ァニオン含有ァ ルミニゥム塩水酸化物粒子、 その製造方法およびその利用に関する。
背景技術
アルナイ ト類化合物の代表物はアルナイ ト ( a l u n i t e )であ る。 天然物は、 明ばん石として熱鉱床および活火山、 温泉によって形 成した酸性腐食された地区に存在する。 合成アルナイ トは、 吸着剤、 樹脂への添加剤、 充填剤、 各種担体として工業利用されている。 合成 法は以下に示すものが知られている。
文献 1には硫酸アルミニウム (A 1 2 (S 04) 3) 、 硫酸カリ ウム (K2 S〇4) 、 硫酸ナトリ ウム (N a 2 S〇4) を一定比で混合し、 大気圧下で 4 8時間ホットプレート付マグネチックスターラーで 1 0 0 °cに保つて攪拌を続け、 明ばん石を合成する方法が記載されている。 文献 2には硫酸アルミニウム (A 1 2 (S 04) 3) 水溶液に硫酸力 リウム (K2 S〇4) および水酸化カリウム (KOH) を加えて、 K/ A l比を 5、 p Hを 3. 7とし、 3诗間沸騰還流させて、 2 0 0〜 2 4 0 m2/ gの比表面積を有するアルナイ トを生成させる方法が記載 されている。 この方法で生成したアルナイ トは多孔性を持つ薄片状の 集合体で、 1 5乃至 3 0 A程度の幅のスリ ット状細孔があり、 氷吸着 能がシリカゲルに匹敵し、 S〇2、 NO吸着能が高く、 又、 酸性染料 をもよく吸着することが報告されている。
文献 1 ;河野等、 鉱物学雑誌第 2 0卷第 1 · 2号 P 1 3〜 2 3 c 1 9 9 1年 1 · 4月
文献 2 ;井上等、 日本化学会誌 1 9 8 5 ( 2 ) P 1.5 6〜 l
6 2
アルナイ ト類化合物を吸着剤として工業的に利用するために、 安価 にしかも収率良く製造する方法としては、 下記文献 3、 文献 4および 文献 5が知られている。
文献 3 (特開昭 64 - 1 1 6 3 7号公報) には式
MM' 3 ( S 04) 2 (OH) 6
(Mは 1価陽ィオンを表わし、 M' は A 1または、 A 1 と F e (ΠΙ) の組み合わせを表わす)
で表わされ、 2 8 0 m2/g以上の B ET比表面積を有し、 細孔径 1 0〜 3 0 0 Aの範囲内における細孔容積が 0. 0 5 m 1 Z g以上であ るアルナイ ト型吸着剤について記載されている。 その合成については、 硫酸アルミニウムまたは、 硫酸アルミエゥムと硫酸第二鉄の組み合わ せと硫酸アルカ リ とを、 水酸化アルカリが添加された水性溶媒中で加 熱反応させる際、 反応開始から反応液の P Hを 4. 0〜4. 4に維持 し、 反応過程においても反応液の P Hが 3. 8を下らないように維持 して、 比表面積の増大したアルナイ ト型層状化合物を晶出させる方法 が記載されている。
文献 4 (特開昭 64— 1 1 6 3 8号公報) には式
MM' 3 (S〇4) 2 (OH) 6 (Mは 1価カチオンを表わし、 Μ'· は A 1または F e (Π) を表わ す)
で表わされる化学構造とアルナイ ト型またはジャロサイ ト型の結晶構 造を有する層状化合物と、 層状化合物に対して 5〜8 0重量%の非晶 質シリカないし非晶質シリカアルミナとの均質組成物からなり、 3 0 0 m2/ g以上の B E T比表面積と 0. 1 m 1 / g以上の細孔容積と を有する吸着剤組成物について記載されている。 さらに、 その製造方 法については、 出発原料および反応における: p Hの値によってそれぞ れアルナイ ト型およびジャロサイ ト型の層状化合物を晶出させること ができることが記載されている。 文献 5 (特開 20 0 0— 7 3 2 6号公報) には式
MA 1 3 (S 04) 2 (OH) 6
(Mは 1価アル力リ金属またはアンモェゥム基を表わす)
で表わされ、 コールター法による体積基準の累積粒度分布曲線の 2 5 %値および 7 5 %値の粒子径をそれぞれ D25および D75として
1 - 2≤D75/D25≤ 2
であるような、 化学組成、 アルナイ トとは異なる X線回折像、 5 %水 性サスペンジョンの p H、 B E T比表面積および吸湿量によって特定 される、 個々の粒子が独立した紡錘状ないし球状のアルカリアルミ - ゥム塩水酸化物について記載されている。 ここでは、 さらに粒子の嵩 比重、 体積規準のメジアン径、 粒度分布のシャープ度、 アスペク ト比、 屈折率、 磨耗度などのパラメータが樹脂への配合性において最適であ るようなアル力リアルミニウム塩水酸化物が提案されている。 製造方 法については、 硫酸アルミニウム、 硫酸アルカリまたは硫酸アンモニ ゥムおよび水酸化アルミニウムを水熱処理することが記載されている。 また、 粒子形状を球状および紡錘状のどちらかにコントロールする方 法についても示唆されている。 一方文献 6 (特開平 6— 1 2 2 5 1 9号公報) には、 球状を呈し、 平均粒子径が 3〜 3 0 μ m、 比表面積 B E T値が 1 5 0〜 3 0 0m2 /§で、 嵩密度が0. 7〜; L .. 1 g/m 1である、 式
R F e 3 (S 04) 2 (OH) 6 (R :K +、 N a +、 NH4+等) で表される 「ジャ口サイ ト粒子(非晶質含水酸化第二鉄粒子粉末)」 の合成方法が開示されている。 ここでは、 「硫酸第一鉄水溶液とアル 力リ金属またはアンモユウムイオンの硫酸塩水溶液との混合液に酸素 含有ガスを通気して 45°Cを超え沸点以下の温度範囲で酸化反応を行 うことよりジャロサイ ト粒子を生成させる」 という反応母液の繰り返 し利用が提案されている。 発明の開示
発明が解決しようとする課題
合成アルナイ ト化合物は樹脂、 ゴム等への添加剤、 充填剤、 臭気成 分の吸着剤あるいは染料等の担体等として利用しうることが、 前記文 献 2および文献 3〜 5に提案されている。 一般に、 樹脂、 ゴム等への 添加剤または充填剤の配合に際しては、 吸湿性が小さく、 耐酸性があ り、 添加剤の分散性を良く して、 引張り強度など機械的特性の低下を 極力抑えるべきであることは勿論、 用途によっては透明性 (粒子径が 小さいほど全光線透過率が大きく、 HAZ Eが小さくなる) や、 最密 充填のために一定の粒子形状および粒子径均一性 (粒度分布のシヤー プさ) を要求されることが少なくない。 また、 樹脂に混練する際に、 フィルターの目詰まりが少なく、 その後混練したものを微細な繊維等 に加工する際の加工性を良くするためには、 粒子径が均一であること が要求される。 これらの要求を満たすためには、 樹脂への分散性を低 下させることなく粒子径を小さく し、 なおかつ粒子形状および粒子径 均一性を確保することが要望される。 以上のような要求は相互に矛盾 するもので、 機械的特性や透明性を向上させる目的で粒子径を小さく すると二次凝集が発生し易いため樹脂、 ゴム等への分散性が低下し、 かえって機械的特性や透明性の低下をまねく という問題がある。 前記 文献 2に記載された組成物は吸湿性が高過ぎるため、 樹脂、 ゴム等へ の添加剤としては使用できない。 前記文献 3、 4および 6には、 粒子 形状、 粒子径均一性おょぴこれら特性を確保する方法に関して開示さ れておらず、 樹脂への配合性すなわち分散性または引張り強度など機 械的特性の維持性については不明である。 一方、 前記文献 5において は、 反応における p Hコン トロールにより粒子形状を球状および紡錘 状のどちらかにコン トロールする方法が示唆されているが、 この方法 は、 未完成である上、 反応の際一定時間おきに p Hを測定しながら p H調整剤としての水酸化アル力リを添加しなければならないという、 特に高温での加熱反応を伴う場合に非実用的かつ非経済的な方法であ る。 さらに、 重要なパラメータである粒子径および粒度分布のコント ロール方法にまでは言及されていない。 同文献 5に開示された定形粒 子においては、 粒子径の均一性を表わす D 2 5 Z D 7 5の値が 1 . 4 5 を超えることが示す様に粒子径のばらつきが比較的大きく、 その上現 実に得られた平均粒子径は約 2 IX m以上のものである。
一方、 吸着剤、 担体として使用するためには、 吸水性ができる限り 小さくなければならない。 この点において、 前記文献 2に記載された 組成物は吸湿性が高過ぎるため、 相対湿度の高い環境下ではガス吸着 能が低下する。 また、 工業用の吸着剤、 担体は強酸環境下で使用され ることが多く、 耐酸性であることが要求される。 従って強酸環境下で 吸着 ·担持に関わる結晶構造変化ができる限り少ないことが必要とさ れる。 しかしながら、 耐酸性については前記文献 3〜 6のいずれにも 全く記載がない。
本発明の第 1の目的は、 均一な粒子形状および均一な粒子径を有す る有機酸ァニオン含有アルミニウム塩水酸化物粒子を提供することに ある。 本発明の第 2の目的は、 従来知られていない新規な形状を呈す る有機酸ァ-オン含有アルミニウム塩水酸化物粒子を提供することに ある。 本発明の第 3の目的は、 アルカリ物質などの吸着性に優れ、 強 酸環境下においてもその機能を失うことなく、 樹脂 ' ゴム等への分散 性および成形性が良好であり、 高密度で配合しても該榭脂 · ゴムなど の物理的特性を低下させることがなく、 塗料等へ添加してもその流動 性を低下させることのない等種々の優れた特性を有する有機酸ァニォ ン含有アルミニウム塩水酸化物粒子を提供することにある。 本発明の 第 4の目的は、 所望する粒子形状を有しかつ均一な粒子径を有する有 機酸ァニオン含有アルミニウム塩水酸化物粒子の製造方法を提供する ことにある。 本発明の第 5の目的は、 前記有機酸ァ-オン含有アルミ ウム塩水酸化物粒子を利用した吸着剤、 紫外線吸収剤および樹脂組 成物を提供することにある。 課題を解決するための手段
本発明者らは、 前記文献 5において開示されているように、 硫酸ァ ルミ二ゥムと触媒としての硫酸ナトリゥムの混合溶液に水酸化ナトリ ゥムの水溶液を添加し、 加熱反応させる公知のアルナイ ト類化合物粒 子の合成方法において、 前記混合溶液に蓚酸 (C 2 H 2 0 4 ) を加える ことにより、 従来にはなかった粒子径均一性を示す、 直方体状の形状 を有する有機酸ァニオン含有アルミニウム塩水酸化物粒子を合成でき るという予想外の結果を得た。
また、 本発明者らは硫酸アルミニウム、 硫酸カリウムおよび蓚酸の 混合溶液に、 水酸化カリウムを加えることにより、 平滑な粒子表面を 有し、 粒子径均一性が極めて高い球状の形状を有する有機酸ァ-オン 含有アルミユウム塩水酸化物粒子を合成できることを見出した。
本発明者らは上記知見を端緒として多くの実験にもとづいて研究を 発展させた結果、 三価金属の硫酸塩と触媒としての一価陽イオンの硫 酸塩の混合溶液に、 該ー価陽イオンを含む水酸化アル力リの水溶液を 添加し、 加熱反応させるアルミニウム塩水酸化物粒子の公知の合成方 法において、 前記混合溶液に一定量の有機酸を加えることにより、 従 来の方法では得られなかった種々の形状を有しかつ粒子径均一性を有 する下記式 ( I ) で表わされる有機酸ァニオン含有アルミユウ'ム塩水 酸化物粒子を合成することができることを見出した。
また、 添加する水酸化アル力リあるいは特に有機酸または有機酸塩 の種類を変えることにより、 用途に応じた所望の粒子径および粒子形 状を有する有機酸ァニオン含有アルミニウム塩水酸化物粒子を得るこ とができることを見出した。 具体的には、 粒子形状が球状のみならず、 一対状、 直方体状、 円盤状 (碁石状) 、 米粒状または円柱状の有機酸 ァ-オン含有アルミニウム塩水酸化物粒子を得ることができる。 本発 明者らの知る限り、 有機酸ァニオンを含有するアルミニウム塩水酸化 物粒子、 すなわち有機酸とアルナイ ト型化合物の複合体粒子は新規で ある。
本発明において、 新規な有機酸ァ-オン含有アルミニウム塩水酸化 物粒子は、 下記式 ( I ) で表わされる。
Ma [A 1 ! -,Μ' x] bAz By (OH) n'mH2〇 ( I )
式中、 Mは N a +、 Κ +、 ΝΗ4 +および Η30 +なる群から選ばれる少 なく とも 1 種の陽イオンである。 一方、 M' は少なく とも 1種の C u 2 +、 Z n 2 +、 N i 2 +、 S n4 +、 Z r 4 +、 F e 2 +、 F e 3 +および T i 4 +なる群から選ばれる少なく とも 1種の陽イオンである。
Aは少なく とも 1種の有機酸ァユオンであり、 好ましくは、 有機力 ルボン酸または有機ォキシカルボン酸に基づくァ-オン群から選ばれ る少なく とも 1種であり、 より好ましくは炭素数 1〜 1 5を有する有 機カルボン酸または有機ォキシカルボン酸に基づくァ-オン群から選 ばれる少なく とも 1種である。 Aはさらに好ましくは炭素数 1〜 1 5 (特に 2〜 1 0) を有しかつ、 力ルポキシル基を 1〜4個 (好ましく は 1または 2個) 有する有機カルボン酸または有機ォキシカルボン酸 に基づくァニオン群から選ばれる少なく とも 1種であり、 特に好まし くは蓚酸イオン、 クェン酸イオン、 リンゴ酸イオンおよび酒石酸ィォ ン、 グリセリン酸イオン、 没食子酸イオンおよび乳酸イオンから選ば れる少なくとも 1種である。 '
Bは少なく とも 1種の無機酸ァェオンであればよいが、 好ましくは、 四面体構造をとる無機酸ァユオン群から選ばれる少なく とも 1種であ り、 より好ましくは硫酸イオン (so4 2 ) 、 リン酸イオン (P O4 3_) 、 硝酸イオン (NOs1— ) およびケィ酸イオン (S i 03 2—、 S i 〇4 4—、 H S i 25—など) なる群から選ばれる少なく とも 1種で あり、 さらに好ましくは硫酸イオン、 リン酸イオンおよぴケィ酸ィォ ンから選ばれる少なく とも 1種である。 最も好ましいのは硫酸イオン である。
また、 式中 a、 b、 n、 m\ x、 yおよび zは、 0. 7≤ a≤ l . 3 5、 2. 7≤ b≤ 3. 3、 0≤m≤ 5 , 4≤ n≤ 7 , 0≤ x≤ 0. 6、 1. 7≤ y≤ 2. 4、 0. 0 0 1≤ z≤ 0. 5の範囲であればよ いが、 好ましい範囲は、 0. 9≤ a≤ l . 2、 2. 8≤ b≤ 3. 2、 0≤ m≤ 2 , 5≤ η≤ 6. 5、 0≤ χ≤ 0. 3、 1. 8≤ y≤ 2. 2、 0. 0 1≤ ζ≤ 0. 4であり、 より好ましい範囲は、 0. 9≤ a≤ l . 2、 2. 8≤ b≤ 3. 2、 0≤m≤ 2 , 5≤ n≤ 6. 5、 0≤ x≤ 0. 3、 1. 8≤ y≤ 2. 2、 0. 0 5≤ z≤ 0. 3であり、 さらに好ま しい範囲は 3. 6≤ a + b≤ 4. 4、 0≤ m≤ 2 5≤ η≤ 6. 5、 0≤ χ≤ 0. 3、 1. 7≤ y + ζ≤ 2. 4であり、 特に好ましい範囲 は 3. 6≤ a + b≤ 4. 4、 0≤m≤ 2 , 5≤ η≤ 6. 5、 0≤ χ≤ 0. 3、 1. 8≤ y + ζ≤ 2. 2であり、 最も好ましい範囲は 3. 6 ≤ a + b≤ 4. 4、 0≤m≤ 2 s 0≤ x≤ 0. 3、 7. 5≤ y + n≤ 8. 5である。
かく して本発明によれば、 下記有機酸ァユオン含有アルミニウム塩 水酸化物粒子、 その製造方法および利用が提供される。 ( 1 ) 下記一般式 ( I ) で表わされる有機酸ァニオン含有アルミユウ ム塩水酸化物粒子。
Ma [A 1 1-ΧΜ J b A z B y (OH) n-mH20 ( I ) (ただし、 式中 Mは N a+、 K NH4+および H3+なる群から選ば れる少なく とも 1種の陽イオン、 M' は、 C u 2+、 Z n 2+、 N i 2+、 S n 4+、 Z r 4+、 F e 2+、 F e 3 +および T i 4+なる群から選ばれる 少なくとも 1種の金属の陽イオン、 Aは少なく とも 1種の有機酸ァニ オン、 Bは少なく とも 1種の無機酸ァニオンを表わし、 式中 a、 b、 m、 n、 x、 yおよび zは、 0. 7≤ a ≤ 1. 3 5、 2. 7≤ b≤ 3 , 3、 0≤m≤ 5 , 4≤ n≤ 7 s 0 ≤ x≤ 0. 6、 1. 7≤ y≤ 2. 4. 0. 0 0 1 ≤ z ≤ 0. 5とする。 )
( 2) 上記 ( I ) 式で表わされ、 式中 aが、 0. 9≤ a ^ l . 2で あることを特徴とする前記 ( 1 ) に記載の有機酸ァニオン含有アル ミニゥム塩水酸化物粒子。
( 3) 上記 ( I ) 式で表わされ、 式中 b;^、 2. 8≤ b ≤ 3. 2で あることを特徴とする前記 (1 ) に記載の有機酸ァユオン含有アル ミニゥム塩水酸化物粒子。
(4) 上記 ( I ) 式で表わされ、 式中 mが、 0≤m≤ 2であること を特徴とする前記 (1 ) に記載の有機酸ァニオン含有アルミェゥム 塩水酸化物粒子。
( 5 ) 上記 ( I ) 式で表わされ、 式中 nが、 5 n≤ 6. 5である ことを特徴とする前記 (1 ) に記載の有機酸ァニオン含有アルミ二 ゥム塩水酸化物粒子。
( 6 ) 上記 ( I ) 式で表わされ、 式中 Xが、 0≤ x≤ 0. 3である ことを特徴とする前記 (1 ) に記載の有機酸ァユオン含有アルミ二 ゥム塩水酸化物粒子。
( 7) 上記 ( I ) 式で表わされ、 式中 yが、 1. 8≤ y 2. 2で あることを特徴とする前記 (1 ) に記載の有機酸ァユオン含有アル 0 ミニゥム塩水酸化物粒子。
( 8 ) 上記 ( I ) 式で表わされ、 式中 τ 、 0. 0 1≤ ζ≤ 0. 4 であることを特徴とする前記 (1 ) に記載の有機酸ァニオン含有ァ ルミ-ゥム塩水酸化物粒子。 '
(9) 上記 ( I ) 式における有機酸ァニオン (Α) 力 S、 有機カルボ ン酸または有機ォキシカルボン酸に基づくァニオン群から選ばれる 少なくとも 1種であることを特徴とする前記 (1 ) に記載の有機酸 ァユオン含有アルミニウム塩水酸化物粒子。
( 1 0) 上記 ( I ) 式における有機酸ァニオン (A) 力 炭素数 1 〜 1 5を有する有機カルボン酸または有機ォキシカルボン酸に基づ くァェオン群から選ばれる少なく とも 1種であることを特徴とする 前記 (1 ) に記載の有機酸ァニオン含有アルミニウム塩水酸化物粒 子。 '
( 1 1) 上記 ( I ) 式における無機酸ァニオン (B) 力 S、 硫酸イオン、 リン酸イオン、 硝酸イオンおよびケィ酸イオンなる群から選ばれる少 なく とも 1種であることを特徴とする前記 (1 ) に記載の有機酸ァニ オン含有アルミニウム塩水酸化物粒子。
( 1 2) 上記 ( I ) .式における無機酸ァニオン (B) 力 S、 硫酸イオン、 あるいは硫酸イオンおょぴリン酸イオンであることを特徴とする前記 ( 1 ) に記載の有機酸ァ-オン含有アルミユウム塩水酸化物粒子。
( 1 3) レーザー回折法によって測定される、 累積粒度分布曲線の
2 5 %値および 7 5 %値の粒子径をそれぞれ D 25および D 75として、 1 <D75/D25< 1. 8を満足することを特徴とする前記 ( 1 ) に 記載の有機酸ァ-オン含有アルミニウム塩水酸化物粒子。
(1 4) 粒子の形状が粒状、 一対状、 直方体状、 円盤状 (碁石状) 、 六角板状、 米粒状または円柱状である前記 ( 1 ) に記載の有機酸ァニ オン含有アルミニウム塩水酸化物粒子。
( 1 5) 平均粒子径が 0. 1 ~ 1 0 μ mの範囲にある前記 ( 1 ) に記 載の有機酸ァ-オン含有アルミニウム塩水酸化物粒子。
( 1 6) 前記 ( 1 ) に記載の有機酸ァユオン含有アルミニウム塩水 酸化物粒子を 3 0 0°C以上 1,. 0 0 0°C以下で焼成した焼成物。
( 1 7) C u、 Z n、 N i、 S n、 Z r、 F eおよび T iなる群から 選ばれる少なく とも 1種の金属塩の加水分解物を表面に担持してなる 前記 (1 ) に記載の有機酸ァニオン含有アルミニウム塩水酸化物粒子。
( 1 8 ) 高級脂肪酸類、 ァ-オン系界面活性剤、 リン酸エステル類、 カツプリング剤および多価アルコールと脂肪酸のェステル類よりな る群から選ばれた少なくとも 1種の表面処理剤により表面処理され た前記 ( 1) に記載のアルナイ ト型化合物粒子。
( 1 9) A 1 3 +単独または A 1 3+、 C u 2+、 Z n 2+、 N i 2+、 S n 4 +、 Z r 4+、 F e 2+、 F e 3+および T i 4+なる群 (第 1群) から選ば れる少なく とも 1種の陽イオンの無機塩と N a+、 K+、 ΝΗ4 +および Η30 +なる群 (第 2群) から選ばれる少なくとも 1種の硫酸塩また は硝酸塩を含む混合溶液に、 第 2群から選ばれた水酸化アルカ リ溶液 を添加して加熱反応させる際に、 該加熱反応を有機酸または有機酸塩 の存在下において行わせることを特徴とする有機酸ァ オン含有アル ミニゥム塩水酸化物粒子の製造方法。
(2 0) 前記の無機塩が硫酸アルミニウムである前記 ( 1 9) に記載 の有機酸ァニオン含有アルミニウム塩水酸化物粒子の製造方法。
(2 1) 有機酸が、 有機カルボン酸または有機ォキシカルボン酸も しくはこれらの塩から選ばれる少なく とも 1種である ( 1 9) に記 載の有機酸ァ-オン含有アルミニウム塩水酸化物粒子の製造方法。
(2 2) 有機酸が、 炭素数 1 ~ 1 5の有機カルボン酸または有機ォ キシカルボン酸もしくはこれらの塩から選ばれる少なく とも 1種で ある前記 (1 9) に記載の有機酸ァニオン含有アルミニウム塩水酸 化物粒子の製造方法。
( 2 3) 無機酸塩が硫酸塩、 硝酸塩、 リン酸塩およびケィ酸塩なる群 2 から選ばれる少なく とも 1種であることを特徴とする前記 (1 9) に 記載の有機酸ァ-オン含有アルミニウム塩水酸化物粒子の製造方法。
(24) 9 0- 2 5 0 °Cにおいて加熱反応させることを特徴とする前 記 (1 9) に記載の有機酸ァ-オン含有アルミニウム塩水酸化物粒子 の製造方法。
(2 5) 前記 ( 1 ) に記載の有機酸ァ-オン含有アルミニウム塩水酸 化物粒子を含むことを特徴とする樹脂添加剤。
(2 6) 前記 (2 5) に記載の樹脂添加剤を含む樹脂組成物。
(2 7) 前記 ( 1 ) に記載の有機酸ァニオン含有アルミニウム塩水酸 化物粒子を含むことを特徴とする吸着剤組成物。
(2 8) 前記 ( 1 ) に記載の有機酸ァニオン含有アルミニウム塩水酸 化物粒子を含むことを特徴とする染料担持体。
(2 9) 前記 ( 1 ) に記載の有機酸ァ-オン含有アルミニウム塩水酸 化物粒子を含むことを特徴とする紫外線吸収剤。 図面の簡単な説明
図 1は実施例 1 Aにかかる球状粒子の S EM写真である。
図 2は実施例 1 Bにかかる円盤状粒子の S EM写真である。 図 3は実施例 1 …… Cにかかる一対状粒子の S EM写真である。 図 4は実施例 1 ― Dにかかる球状粒子の S EM写真である。
図 5は実施例 1一 Eにかかる直方体状粒子の S EM写真である。 図 6は実施例 1一 Fにかかる六角板状粒子の S EM写真である。 図 7は実施例 1 ― Jにかかる米粒状粒子の S EM写真である。 図 8は実施例 1 ― Oにかかる円柱状粒子の S EM写真である。 図 9は実施例 1 ― Pにかかる直方体状粒子の S EM写真である。 図 1 0は実施例 1一 Wにかかる球状粒子の S EM写真である。 図 1 1は実施例 1一 Nにかかる球状粒子の S EM写真である。 図 1 2は実施例 1一 Aにかかる有機酸ァニオン含有アルミニウム塩 水酸化物粒子の粒度分布図である。 横軸が粒子径、 左側縦軸が度数
( % : トータル数に対する比率で、 棒で表記) であり、 右側縦軸が累 積度数 (% : トータル数に対する比率で折れ線表記) である。
図 1 3は実施例 1一 Bにかかる有機酸ァニオン含有アルミニウム塩 水酸化物粒子の粒度分布図である。
図 1 4は実施例 1一 Cにかかる有機酸ァニオン含有アルミニウム塩 水酸化物粒子の粒度分布図である。
図 1 5は実施例 1一 Dにかかる有機酸ァニオン含有アルミニウム塩 水酸化物粒子の粒度分布図である。
図 1 6は実施例 1一 Vにかかる有機酸ァニオン含有アルミニウム塩 水酸化物粒子の粒度分布図である。
図 1 7は実施例 4— Aにかかる、 硝酸溶液中における、 溶液温度と 浸漬した有機酸ァユオン含有アルミニウム塩水酸化物粒子からの A 1 溶出濃度の関係を表わすグラフである。
図 1 8は実施例 4一 Aにかかる、 硝酸溶液中における、 溶液温度と 浸漬した有機酸ァニオン含有アルミニゥム塩水酸化物粒子からの S O 4溶出濃度の関係を表わすグラフである。
図 1 9は実施例 4—しにかかる、 硫酸溶液中における、 溶液温度と 浸漬した有機酸ァニオン含有アルミニウム塩水酸化物粒子からの S O 4溶出濃度の関係を表わすグラフである。
図 2 0および図 2 1は実施例 9にかかる有機酸ァニオン含有アルミ ェゥム塩水酸化物粒子の I Rスぺク トルである。 横軸が波数( c m ~ x ) 、 縦軸が反射率 (%) である。
図 2 2は実施例 1 0— Aにかかる有機酸ァ-オン含有アルミニウム 塩水酸化物粒子の紫外〜可視光の反射スぺク トルである。 横軸が波長 ( n m ) 、 縦軸が反射率 (%) である。
図 2 3は実施例 1 0— Bにかかる有機酸ァニオン含有アルミニウム 塩水酸化物粒子の紫外〜可視光の反射スぺク トルである。 図 2 4は実施例 1 0— Cにかかる有機酸ァ-オン含有アルミニウム 塩水酸化物粒子の紫外〜可視光の反射スぺク トルである。 図 2 5は実施例 1 3— Aにかかる有機酸ァ-オン含有アルミ ゥム 塩水酸化物粒子を添加した低密度ポリエチレンフィルムの光透過スぺ ク トノレである。 図 2 6および図 2 7は実施例 1 1にかかる有機酸ァ-オン含有アル ミニゥム塩水酸化物粒子の示差熱分析図である。 横軸が波数 ( c m一 α ) 、 縦軸が重量 (%) である。
図 2 8〜図 3 2は実施例 1 4にかかる有機酸ァェオン含有アルミ二ゥ ム塩水酸化物粒子の X線回折図である。 発明を実施するための最良の形態
以下本発明の有機酸ァニオン含有アルミニウム塩水酸化物粒子につ いてさらに詳細に説明する。
アルミニウム塩水酸化物粒子の形状に関して、 従来文献 5に記載さ れているように、 紡錘状ないし球状のものが知られていたが、 本発明 によれば粒度分布度 (D 7 5 / D 2 5 ) がー層シャープな、 すなわち粒 子径が均一な球状、 円盤状 (碁石状) 、 一対状、 直方体状、 六角板状、 米粒状または円柱状等の新しい粒子形を有する有機酸ァユオン含有ァ ルミニゥム塩水酸化物粒子が提供された。 本発明のこれら新しい形状 の粒子は、 形状の均一性が良好である点 (形状が揃っている点) に特 徴を有している。 その上本発明の粒子は、 形状に関係なく、 また、 粒 子径が小さいにも拘わらず、 凝集性が小さく分散性にも優れている。 本発明の有機酸ァユオン含有アルミニウム塩水酸化物粒子の前記した 粒子形状の特徴は、 添付した図 1〜 1 1からも認識することができる。 図 1 ~ 1 1は本発明の実施例により得られた代表的粒子の S E M写 真である。 球形粒子は図 1、 4、 1 0および 1 1.に示され、 円盤状粒 子は図 2に示され、 一対状粒子は図 3に示され、 直方体粒子は図 5お よび図 9に示され、 六角板状粒子は図 6に示され'、 米粒状粒子は図 7 に示され、 円柱状粒子は図 8に示されている。 ' 図 1〜 1 1の S E M写真は実施例により得られた粒子の代表的な例 である。 本発明の粒子の形状は約 1万倍乃至約 2万倍に拡大された S E M写真に基づいて観察される。 図 1〜 1 1から理解されるように、 本発明の粒子は、 各々の写真において粒子の形状が均一で大きさが揃 つていることおよび凝集が少なく単分散状を呈することが特徴的であ る。 また粒子径が比較的小さいことも特徴の 1つである。
図 1〜 1 1に基づいて本発明の粒子の形状について説明すると、 球 状粒子は図 1、 4、 1 0および 1 1に示され、 図 1、 4および 1 1の 粒子はほぼ真球状のものである。 図 4の球状粒子は表面が平滑である 力 S、 図 1、 1 0および 1 1の球状粒子は表面に小さな凹凸を有してい るかあるいはしわ (皺) を有している。 円盤状粒子は図 2に示され、 この形状は表と裏がほぼ対象であり、 ドーム形であって、 碁石にも似 ている。 図 2の円盤状粒子は表面が平滑である。
図 3には一対状粒子が示されている。 この粒子の特徴は、 底面が平 板でその反対面がドーム形の円盤粒子の 2つが底面を対称面として一 対状の形状を有していることであり、 その 2つの粒子の重なり合う周 囲の間際には空間が存在している。 また重なり合う中心部は 2つの円 盤を接合しているアルミニウム塩水酸化物が存在している。 この一対 状粒子は、 一見ハンバーガーに似ている。
図 5には直方体状粒子の一例が示され、 この図 5の粒子は、 正六面 体に近い直方体であって表面が平滑である。 図 9には直方体状粒子の 他の例が示され、 この図 9の粒子は、 八面体状粒子とも言うことがで きるかもしれない。 図 6には六角板状粒子が示され、 この六角板状粒 子は六つの辺で形成された六面体の表面を有する板状のものである。 この六つの辺は同じ長さであること'を要せず、 また 2つの辺の接点は 丸味を有していてもよい。
米粒状粒子は、 図 7に示されている。 この米粒状粒子は、 投影した 形が楕円形で長さ方向の直角断面がほぼ円形の形状をしている。 図 7 の粒子は、 表面に小さなしわ (皺) を有している。 円柱状粒子の一例 は図 8に示されている。 この円柱状粒子は、 大略酒樽状 (またはワイ ン樽状) のように中間部分が膨らんだものでよく、 また断面がほぼ円 形の筒状のものでもよい。 図 8の粒子は表面に多数の凹凸を有してい る。
以上図 1〜 1 1の写真から理解されるように本発明の粒子は各々の 写真において、 粒子形状が揃っており、 その大きさが均一でありかつ 分散性がよい点に特徴を有している。 前記した各粒子の形状は、 それ ぞれ区分するために分類して表現したものであり、 若干の変形ゃ少割 合の他の粒子の混合があっても差支えない。 また粒子の表面における 平滑性、 微小凹凸の存在または小さいしわ (皺) の存在は、 特に限定 されるものではなく、 存在してもしなくてもよい。
粒子の形状を特定する尺度の一つに、 粉体工業分野において従来か ら用いられてきた W a d e l lの円形度おょぴ球形度がある。
W a d e 1 1の球形度 sは、
s = (粒子と等体積の球の表面積) / (粒子の表面積)
で定義され、 sが 1に近い程真球に近い。
W a d e 1 1の円形度 cは、
c = (粒子の投影面積と等面積円の周長) / (粒子の投影面の周長) で表わされ、 cが 1に近い程、 真円に近い。
本発明において粒子の形状が球状であるとは、 図 1、 4、 1 0およ び 1 1に示されるようなボール様の形状であればよく、 前記 W a d e 1 1の球形度 sが 0 . 9 5≤ s ≤ 1であることが好ましい。
本発明において粒子の形状が円盤状 (碁石状) であるとは、 図 2に 示すように短径を回転軸とした回転楕円形状の形状である。 具体的に は、 回転軸の方向から見た粒子の投影像に関して、 Wa d e 1 1の円 形度 cが、 0. 9 5 ≤ c ≤ lであって、 断面である楕円の (短径 /長 径) の比率 aが 0. 0 5≤ a ≤ 0. 5であることが好ましい。 ' 本発明において粒子の形状が一対状であるとは、 図 3に示すように 半球状の粒子 (平面を介して) が 2個重なり合うような形状で対を形 成した粒子である。 そして、 一対状粒子は、 2個の半球状粒子の重な り合う面の周縁に、 隙間 (溝) が存在している。 一対状粒子の短径 Z 長径の比率 tは 0. 1く t < 0. 5であり、 (該半球の合わせ目の隙 間幅) 短径の比率 uが、 0. 0 5 < u < 0. 5であることが好まし い。
本発明において粒子の形状が直方体状であるとは、 図 5および図 9 に示すような六面体 (正六面体を含む) または八面体に類似する形状 であり、 前記 W a d e 1 1の球形度 sが 0. 5≤ s ≤ 0. 8であるこ とが好ましい。
本発明において粒子の形状が六角板状であるとは、 図 6に示すよう な扁平な六角柱様の形状であり、 上面または下面方向から見た粒子の 投影像に関して、 W a d e 1 1の円形度 cが、 0. 9 5 cく 0. 9 9であって、 厚さ Z (正六角形の対角線長さ) の比率 bが 0. 0 5 ≤ b≤ 0. 5であることが好ましい。
本発明において粒子の形状が米粒状であるとは、 図 7に示すような 長軸を回転軸とした回転楕円体状であり、 楕円の (短径 /長径) の比 aが 0. l ≤ a ≤ 0. 5であり、 前記 W a d e 1 1の球形度 sが 0. 4≤ s ≤ 0. 7 5であることが好ましい。
本発明において粒子の形状が円柱状であるとは、 円柱を含み、 円柱 の高さ方向の中心部の半径が上面および下面の半径の 1. 0〜 1. 2 倍までの形状をいい、 上面および下面の投影像に関して、 Wa d e 1 1の円形度 cが、 0. 9 5 cく 0. 9 9であって、 高さ/ (上面ま 8 たは下面の直径) の値 bが 1 . 5 ≤ b ≤ 3であることが好ましい。 こ のような形状は図 8に示されている。
本発明によれば、 上記のように、 有機酸ァェオン含有アルミニウム 塩水酸化物粒子は、 用途や目的に応じて球状、 円盤状 (碁石状) 、 一 対状、 直方体状、 六角板状、 米粒状または円柱状などの種々の形状を 提供でき、 かつ粒子径をコントロールできる。 すなわち、 形状に関し ては、 アンチブロッキング剤として添加する場合には球状、 半導体の エポキシ封止剤用充填材としては直方体状、 円盤状 (碁石状) 、 球状、 または六角板状、 吸着剤としては一対状、 円柱状、 米粒状または円盤 状 (碁石状) 等、 最適な形状の有機酸ァニオン含有アルミ -ゥム塩水 酸化物粒子を提供することが可能である。 一方粒子径に関しても、 用 途および必要な充填率に応じて最適な粒子径の有機酸ァニオン含有ァ ルミェゥム塩水酸化物粒子を提供することが可能である。 また、 最密 充填を実現するために、 平均粒子径の異なる 2種類の有機酸ァニオン 含有アルミニウム塩水酸化物粒子を混合して用いることも可能である。 本発明の有機酸ァ オン含有アルミニウム塩水酸化物粒子は、 平均 2次粒子径がレーザー回折法によって測定された値で 0 . 1〜 1 2 / mであり、 好ましくは 0 . 1〜 1 0 μ mである。 最も好適には 0 . 2 〜 5 111殊に0 . 2〜 2 i mである。
本発明の有機酸ァ-オン含有アルミニウム塩水酸化物粒子は、 好適 な態様では 0 . 5 μ m以下殊に 2 μ m以下の微小粒子径であっても凝 集性が小さく、 従来公知のアルミニウム塩水酸化物粒子に比べて、 樹 脂に充填したときの分散性に優れる。 したがって、 粒子径を可視光波 長 (0 . 4〜0 . 7 μ τη ) の 1 Ζ 2以下の粒子径に形成させ、 粒子形 状と組成を最適化することにより屈折率を樹脂と同等の値に設定すれ ば、 ヘイズが小さく、 透明性が非常に良好な樹脂組成物を提供するこ ともできる。
本発明によって提供される有機酸ァ-オン含有アルミニウム塩水酸 化物粒子は、 粒子径が比較的小さいにもかかわらず、 二次凝集が殆ど なく均一な粒子径を保つ。 粒子径均一性の評価方法としては、 横軸に 粒子径、 縦軸に累積度数をとり、 全粒子個数に対し、 粒子径の大きい ものから累積度数が 2 5 %になる粒子径を D 25、 7 5 %になる粒子 径を D75とし、 比の値 D75/D25によって粒度分布の拡がりを表わ す方法が良く用いられる。
本発明ではこの D 75ZD25によって表わされる値を粒度分布比 (DR) という。
本発明における有機酸ァユオン含有アルミ-ゥム塩水酸化物粒子に おいて、 粒度分布比 (DR) は粒子形状にかかわらず 1〜 1. 8の範 囲の値を示し、 従来公知の技術にはない粒子径均一性を示す。 DRの 範囲は、 好ましい使用態様においては 1. 0 1〜 1. 5、 特に好まし くは 1. 0 2〜 1. 3である。 最も好ましくは DRが 1. 0 3〜 1. 2の範囲である。
粒子径均一性の他の評価方法としては、 半値幅、 標準偏差および変 動係数等で評価することも可能であり、 これら評価方法には、 互いに 相関関係があり、 Dr、 半値幅および標準偏差のうちどれを評価基準 にしても差し支えない。
さらに粒子径の均一性を、 平均粒子径またはメジアン粒子径を中心 とする一定範囲内の粒子径を持つ粒子数が全粒子数に対して占める割 合で示すことができる。 この割合は、 粒度分布の形によっては、 上記 の DR (D75/D25) 、 半値幅および標準偏差等とは別の独立した パラメータとして粒子径の均一性を評価する尺度として有用である。 平均粒子径を中心とするこの尺度を用いると、 本発明における有機酸 ァニオン含有アルミニウム塩水酸化物粒子は、 レーザー回折法による 平均粒子径に対して、 その 0. 8 5倍の粒子径から 1. 1 5倍の粒子 径の範囲に含まれる粒子の個数の割合が全体の 40%以上、 好ましく は 60%以上、 特に好ましくは 80 %以上である。 これを式で示すと、 (平均粒子径 X 0. 8 5 ) <WMm< (平均粒子径 X 1. 1 5) を満足する粒子の割合が 40 °/。以上、 好ましくは 6 0%以上、 特に好 ましくは 70 %以上である。
Wが上記範囲である粒子の割合 (%) が高い程、 粒子の均一性は高 くなる。 この割合の上限は高い程良いが、 本発明において、 通常は 9 5 %、 好ましくは 9 7 %である。
本発明の有機酸ァニオン含有アルミ-ゥム塩水酸化物粒子は B E T 法により測定された比表面積は 0. l〜 3 0 0m2/g、 好ましくは 0. 5〜 2 5 0 in2/ gの範囲であるが、 この粒子は用途に応じて好 適な範囲を選択することができる。
例えば粒子をアンチブロッキング性の要求される用途に用いる場合 B E T法による比表面積は、 0. 1〜 3 0m2Zgであることが好ま しい。 より好ましい範囲は、 2〜 1 0 in2/ gである。 一方、 吸着剤 や担体などに用いる場合は、 B E T法による比表面積が 0. 5〜 3 0 0 m2/ gであることが好ましい。 より好ましい範囲は、 2〜 2 5 0 m 2 Z gである。
このような粒子径均一性を持つ有機酸ァユオン含有アルミユウム塩 水酸化物粒子は樹脂やゴムへの添加剤としては分散性が良好であり、 このため、 樹脂またはゴムに従来公知の添加剤を添加したものと本発 明の有機酸ァ-オン含有アルミニウム塩水酸化物粒子を添加したもの を比較すると、 引張試験における後者の伸び率が前者に対し 5〜 1 0 倍の値を示し、 柔軟性を付与できる。 また、 球状シリカ等従来公知の 充填剤は、 半導体封止樹脂等への配合において、 An d r e a s e n の式により決定される充填条件を満たすような 2種類の平均粒子径の 粒子を組合せて充填しても、 粒子径均一性を表わす、 粒子径分布比 (DR) が 1. 8を超えたり、 上記 (平均粒子径 X 0. 8 5) <ψμ mく (平均粒子径 X 1. 1 5 ) を満足する粒子の割合が 40 %未満で あつたために、 現実には最密充填することができないという問題があ つたが、 本発明の有機酸ァニオン含有アルミニウム塩水酸化物粒子に おいては、 粒子径が均一であるため、 理論どおりの最密充填を実現す ることが可能である。 本発明の有機酸ァ-オン含有アルミニウム塩水 酸化物粒子を練りこんだ樹脂の色は乳白色になり、 樹脂の黄変ミ ある いは白化は認められない。 したがって、 樹脂、 ゴム用の添加剤特に充 填剤、 アンチブロッキング剤、 紫外線および赤外線吸収剤として有用 である。
本発明の有機酸ァニオン含有アルミニウム塩水酸化物粒子は水に不 溶であるうえに、 耐酸性に優れており、 強酸環境下においても、 その 基本構造を保つことができるので、 食品加工における濾過剤、 濾過助 剤あるいは、 成分の溶出を嫌う食品容器用樹脂の添加剤として有用で ある。
本発明の有機酸ァユオン含有アルミニウム塩水酸化物粒子は、 悪臭 ガスの吸着剤または、 消臭剤等として単体で使用もしくは繊維、 樹脂 等に配合しても有用である。
本発明の有機酸ァ-オン含有アルミニウム塩水酸化物粒子は、 良好 な染料の吸着特性を示すので、 染料担体、 着色助剤、 電子写真用カラ 一トナーの外添剤として有用である。
次に本発明の有機酸ァ-オン含有アルミニウム塩水酸化物粒子の製 造方法について説明する。
本発明の有機酸ァ-オン含有アルミニウム塩水酸化物粒子は、 例え ば式 ( I ) における Bの無機酸イオンが硫酸イオンの場合、 硫酸アル ミニゥムと ( I ) 式における M' の硫酸塩と、 Mの硫酸塩および有機 酸および Zまたは有機酸塩、 例えば蓚酸 (H 2 C 2 0 4 ) の混合溶液に、 当該 Mを含む水酸化アル力リ水溶液を添加して加熱反応させることに よって生成させることができる。 必要ならば、 生成した該有機酸ァニ オン含有アルミニウム塩水酸化物粒子を濾別、 洗诤および乾燥するこ とにより有機酸ァニオン含有アルミニウム塩水酸化物粒子の含水粉末 が得られる。 ·
上記反応において、 有機酸を全く添加せずに反応させると、 生成す る有機酸ァニオン含有アルミニウム塩水酸化物粒子の粒子径均一性を 表わす粒子径分布比の値 (D R ) が大きくなる。 また、 有機酸を用い ない場合は、 生成する粒子形状が.球状またはこれに準じた形状に限定 され、 粒子を用途に応じた形状に形成できる自由度がないので本発明 の目的を達成することができない。
本発明においては、 有機酸の添加量によって粒子径均一性および粒 子形状が確保されるので、 従来公知の方法のように粒子径均一性確保 のために反応中常に p Hを監視し、 かつコントロールする必要がない。 また、 反応終了時に既に均一な粒子径および形状をもつ粒子が得られ るため、 粉砕や分級の必要もない。
反応において有機酸の存在'は、 本発明における有機酸ァニオン含有 アルミニウム塩水酸化物粒子の粒子径均一性確保および粒子形状の決 定に大きな寄与をしていることは疑いがない。 その具体的な作用につ いては現時点で明らかではない。 ( I ) 式における Mの硫酸塩は触媒 としてはたらく。
本発明の有機酸ァ-オン含有アルミニウム塩水酸化物粒子は、 ①耐 酸性、 ②粒子の微細性および③粒子形状の多様性において有機酸を含 有しないいわゆる従来公知のアルナイ ト類化合物粒子に対して優れて - いる。
従って、 本発明の有機酸ァニオン含有アルミニウム塩水酸化物粒子 は、 従来公知のアルナイ ト類化合物粒子に比べて、 樹脂等への分散性、 高充填性に優れるとともに、 これを添加した樹脂組成物は、 耐酸性、 物理的強度において優れている。 さらには、 形状の自由度が小さい従 来公知のアルナイ ト類化合物粒子に比べて、 用途が多様である。
本発明において、 固定した反応条件下では、 前記陽イオン Mおよび 有機酸の種類の組合せから、 生成する有機酸ァニオン含有アルミニゥ ム塩水酸化物粒子の粒子径、 粒子形状および化学的 ·物理的性質は一 義的に決定される。 一方、 一定の陽イオン ( ( I ) 式における M) の 組合せにおいては、 反応条件、. すなわち ( I ) 式の M' の硫酸塩と水 酸化アルカリのモル比、 加熱反応温度おょぴ有機酸の種類から; 生成 する有機酸ァ-オン含有アルミニウム塩水酸化物粒子の粒子径、 粒子 形状および化学的 ·物理的性質は一義的に決定される。 すなわち、 M の組合せ、 有機酸の種類および加熱反応条件を選択することにより、 所望の粒子径、 粒子形状、 化学的,物理的性質をもつ有機酸ァニオン 含有アルミニウム塩水酸化物粒子を生成させることができる。 いずれ の場合にも、 加熱反応における有機酸の存在により粒子径および粒子 形状の均一性が維持される。 この点については具体的には後でさらに 説明する。
また、 前記反応において、 '硫酸アルミニウム、 M' の硫酸塩および 有機酸の混合液、 例えば硫酸アルミニウムと硫酸チタンおょぴクェン 酸の混合液を、 陽イオン Mを含む水酸化アルカリ混合液と加熱反応さ せると、 上記固溶体とはさらに組成の異なる有機酸ァユオン含有アル ミニゥム塩水酸化物粒子の固溶体を生成させることができる。
上記反応において、 M' の濃度を大きくすると、 有機酸ァユオン含 有アルミ -ゥム塩水酸化物粒子表面に、 それらイオンの加水分解物、 すなわち酸化物、 水酸化物、 塩基性塩または酸性塩等が担持された組 成物を得ることもできる。 特に、 M' の硫酸塩として硫酸スズ、 硫酸 チタン等を選択することにより、 有機酸ァ-オン含有アルミニウム塩 水酸化物粒子の表面にスズ、 チタン、 銅等の加水分解物を析出させる ことができる。
このような表面に金属が担持した粒子は、 従来公知の方法によって、 合成した有機酸ァ-オン含有アルミニウム塩水酸化物に、 あとから 種々の金属化合物を担持させる方法によっても得ることが可能である。 例えば、 硫酸チタンの水溶液に有機酸ァニオン含有アルミニウム塩水 03831
2 4 酸化物粒子と水酸化ナトリゥム等の塩基を加えてチタンの加水分解物 を有機酸ァニオン含有アルミニウム塩水酸化物表面に析出させる方法 によっても、 得ることも出来る。
本発明において、 アルミニウムを含む M' の硫酸塩、 互いに異なる 2種類以上の有機酸の混合液および陽イオン Mの硫酸塩混合液を、 該 陽イオン Mを含む水酸化アル力リ溶液と加熱反応させると、 上記固溶 体とはさらに組成の異なる有機酸ァニオン含有アルミニウム塩水酸化 物粒子の固溶体を生成させることができる。
本発明において、 有機酸ァニオン含有アルミニウム塩水酸化物粒子 を合成する際、 触媒として添加する Mの硫酸塩の代わりに硝酸塩、 リ ン酸塩またはケィ酸塩を使用してもよい。
本発明者らは、 反応において生成する M 2 S 0 4を含む反応母液を 繰り返し使用しても、 生成物である有機酸ァニオン含有アルミニウム 塩水酸化物粒子に対して、 全く悪い影響を及ぼさないことを見出した。 本発明の方法によれば、 反応母液を繰り返し使用できるため、 生産コ ス トを抑えることができる点で有利である。
本発明の有機酸ァ-オン含有アルミニウム塩水酸化物粒子は、 様々 な用途に応じて必要な形状おょぴ粒子径の粒子が得られるように反応 条件を設定することにより、 加熱反応工程終了時点で所望する粒子径 および粒子形状が得られる。 従って、 その後に粉砕処理を全く必要と せず工数が少なくて済み、 この点でも生産コストを抑えることができ る。
かく して本発明によれば A 1 3 +単独または A 1 3 +、 C u 2 +、 Z n 2 +、 N i 2 +、 S n 4 +、 Z r 4 +、 F e 2 F e 3 +および T i 4 +なる群
(第 1群) から選ばれる少なく とも 1種の陽イオンの無機塩と N a +、 K+、 Ν Η 4 +および Η 3 0 +なる群 (第 2群) から選ばれる少なく とも 1種の硫酸塩または硝酸塩を含む混合溶液に、 第 2群から選ばれた水 酸化アルカリ溶液を添加して加熱反応させる際に、 該加熱反応を有機 酸または有機酸塩の存在下において行わせることを特徴とする有機酸 ァユオン含有アルミニウム塩水酸化物粒子の製造方法が提供される。 前記方法において、 陽イオンの無機酸塩としては少なく とも A 1 3 +を含む硫酸塩であることが好適である。 ' 本発明の方法における反応温度は沸点を超え、 3 0 0 °C以下である。 より好ましくは 9 0〜 2 5 0°Cである。 反応温度が 9 0°C未満の場合 には反応速度が非常に遅くなり、 生産効率が悪い。 逆に、 反応温度が 3 0 0°Cを超える場合には特別の設備を要するため好ましくない。 反 応はォ一トクレーブ等を使用した密封条件でも、 あるいは、 .開放の条 件でもよい。 好ましい反応温度は 1 0 0°C~ 2 0 0°C、 殊に 1 2 0°C 〜: L 7 0°Cの範囲である。
本発明の反応におけるアルミェゥム塩濃度は 0. 0 1〜3. 0 m o 1 /Lである。 より好ましく'は 0. 0 1〜2 m o l ZLである。 アル ミユウム塩濃度が 0. 0 1 m o 1 ZL未満の場合には、 生産性が悪く なり、 3 m o 1 を超える場合には、 粒子間凝集が起こりやすく、 粒子の大きさおよび粒子径の均一性を制御しにく くなる。
本発明における反応溶液中の有機酸濃度はアルミニゥム塩濃度 (モル) の 1ノ2以下である。 より好ましくは 1 / 2 0〜 1 Z 2であ る。 (有機酸濃度) / (アルミニウム塩濃度) の値が 1 Z2を超える と、 あるいは 1 Z 2 0未満であると、 粒子の形状、 大きさおよび粒子 径が不均一になる。 本発明において、 有機酸としては有機カルボン酸 または有機ォキシカルボン酸が好ましい。 またこれらは炭素数が 1〜 1 5、 好ましくは 2〜 1 0のものが好適であり、 特に分子中にカルボ キシル基を 1〜4個、 好ましくは 1〜 2個含有しているのが望ましい。 これらの有機酸は塩であってもよく、 異性体であってもよい。 具体的 な有機酸としては、 蓚酸、 クェン酸、 リンゴ酸、 酒石酸、 グリセリン 酸、 没食子酸および乳酸なる群もしくはこれらの異性体およびこれら の塩から選ばれる少なく とも 1種が挙げられる。 本発明方法の反応における M' の硫酸塩と水酸化アル力リ M O Hの モル比は 1 : 3 . 8〜4 . 7である。 モル比 1 : 4における反応式が 前記式に示されているが、 水酸化アル力リの値が 4未満であると反応 不十分の場合がある。 一方、 水酸化アルカリの値が 4 · 4を超'えると ベーマイ トを生成する場合がある。 これらの点を考慮するとより好ま しいモノレ比は 1 : 4〜4 . 4である。
本発明における有機酸ァニオン含有アルミニウム塩水酸化物粒子は そのまま使用しても分散性の優れた添加剤であるが、 高級脂肪酸類、 ァユオン系界面活性剤、 リン酸エステル類、 カップリング剤および多 価アルコールと脂肪酸のエステル類よりなる群から選ばれた少なく と も 1種の表面処理剤により表面処理することにより樹脂、 ゴム等への 分散性をさらに向上させることができる。 表面処理剤として好ましく 用いられるものは以下の通りである。 ステアリン酸、 エル力酸、 パル ミチン酸、 ラウリン酸、 ベヘン酸等の炭素数 1 0以上の高級脂肪酸類 または、 前記高級脂肪酸のアルカ リ金属塩;ステアリルアルコール、 ォレイノレアルコール等の高級アルコールの硫酸エステノレ塩; ポリェチ レンダリコールエーテルの硫酸エステル塩、 アミ ド結合硫酸エステル 塩、 エステル結合硫酸エステル塩、 エステル結合スルホネート、 アミ ド結合スルホン酸塩、 エーテル結合スルホン酸塩、 エーテル結合アル キルァリールスルホン酸塩、 エステル結合アルキルァリールスルホン 酸塩、 アミ ド結合アルキルァリールスルホン酸塩等のァ-オン系界面 活性剤類; オルトリ ン酸とォレイルアルコール、 ステアリルアルコー ル等のモノまたはジエステルまたは両者の混合物であって、 それらの 酸型またはアル力リ金属塩またはァミン塩等のリン酸エステル類; γ 一 ( 2 —アミ ノエチル) ァミ ノプロ ビルト リ メ トキシシラン、 Ί — ( 2—アミノエチル) ァミ ノプロピ^/メチルジメ トキシシラン、 Ν— β — ( Ν—ビュルベンジルァミノェチル) 一 γ —ァミノプロ ピルト リ メ トキシシラン ·塩酸塩、 γ—グリシドキシプロビルト リメ トキシシ ラン、 γ —メルカプトプロピルトリメ トキシシラン、 メチルトリメ ト キシシラン、 メチルトリエトキシシラン、 ビュルトリァセトキシシラ ン、 γ —クロ口プロピノレメチノ トリメ トキシシラン、 へキサメチノレジ シラザン、 γ—ァ-リノプロビルトリメ トキシシラン、 ビュル'トリメ トキシシラン、 ォクタデシルジメチル [ 3 — ( ト リ メ トキシシリ ノレ) ] アンモ-ゥムク口ライ ド、 γ —クロ口プロピノレメチルジメ トキ シシラン、 γ —メルカプトプロピルメチルジメ トキシシラン、 メチル トリクロロシラン、 ジメチ ジクロロシラン、 トリメチノレクロロシラ ン、 ビュルトリクロルシラン、 ビエルトリエトキシシラン、 ビエルト リス (J3メ トキシエトキシ) シラン、 β— ( 3, 4エポキシシクロへ キシル) ェチルトリメ トキシシラン、 y—グリシドキシプロピルメチ ルェトキシシラン、 y —ダリシドキシプロピルトリエトキシシラン、 y —メタタリロキシプロピル'メチルジメ トキシシラン、 γ —メタタ リ 口キシプロピルメチルジェトキシシラン、 γ —メタタ リ ロキシプロピ ノレメチルトリエトキシシラン、 Ν— |3 (アミノエチル) γ —アミノプ 口ピルメチ^/ジメ トキシシラン、 N _ ]S (アミノエチル) γ—ァミノ プロビルトリメ トキシシラン、 Ν— ]3 (アミノエチル) γ —アミノプ 口ピルトリエトキシシラン、 γ—アミノプロピルトリメ トキシシラン、 y —ァミノプロピルトリエトキシシラン、 Ν—フエ二ルー γ —ァミノ プロビルトリメ トキシシラン、 γ—グリシドキシプロビルトリメ トキ シシラン、 γ —メタタ リロキシプロピルトリメ トキシシラン等のシラ ンカップリング剤 ; イソプロピルトリイソステアロイルチタネート、 イソプロビルトリ ス (ジォクチルパイロフォスフェート) チタネート、 イソプロピルトリ (Ν—アミノエチルーアミノエチル) チタネート、 イソプロピルトリデシルベンゼンスルホ-ルチタネート、 テ トラオタ チルビス (ジトリデシ ホスフェイ ト) チタネート、 ビス (ジォクチ ルパイロフォスフェー ト) ォキシアセテートチタネート、 イソプロピ ノレト リ ドデシ /レベンゼンスノレホニノレチタネー ト、 テ トライソプロピノレ ビス (ジォクチルフォスフアイ ト) チタネート、 テトラ (2, 2—ジ ァリルォキシメチルー 1一プチル) ビス一 (ジト リデシル) ホスファ イ トチタネート、 ビス (ジォクチルパイ 口フォスフェー ト) エチレン チタネー ト、 イ ソプロビルト リオクタノィルチタネー ト、 イ ソプロ ピ ルジメタタ リルイソステアロイルチタネー ト、 イ ソプロ ピルイ ソステ ァロイルジアク リルチタネー ト、 イ ソプロピルト リ (ジォクチルホス フェー ト) チタネー ト、 イ ソプロ ピルト リ ク ミルフエニルチタネー ト、 ジク ミルフエニルォキシァセテー トチタネー ト、 ジィ ソステアロイノレ エチレンチタネート等のチタネート系カツプリング剤類;ァセトアル コキシアルミニウムジイソプロピレート等のアルミニウム系カツプリ ング剤類、 ト リ フエエルホスファイ ト、 ジフエエル ' ト リデシルホス ファイ ト、 フエニル ■ ジト リデシルホスファィ ト、 ト リ - ノエルフェ -ルホスファイ ト、 4 , 4 ' ーブチリデンービス ( 3—メチルー 6— t —ブチルフエエル) —ジト リデシルホスファイ ト、 ト リ ラウリルチ ォホスファイ ト等、 グリセリ ンモノステアレー ト、 グリセリ ンモノォ レエ一ト等の多価アルコールと脂肪酸等。
前記表面処理剤による有機酸ァニオン含有アルミニウム塩水酸化物 粒子の表面処理は、 粒子の表面処理法としてそれ自体公知の方法を利 用することができるが例えば以下のように行うことができる。
三価金属の硫酸塩、 1価陽イオン硫酸塩および/または硝酸塩、 お よび有機酸の混合溶液に、 水酸化アル力リ水溶液を添加して加熱反応 させて有機酸ァユオン含有アルミニウム塩水酸化物粒子を生成させ、 生成した有機酸ァ-オン含有アルミニウム塩水酸化物粒子を濾別して 洗浄、 乾燥を行う一連の工程においては、 表面処理剤を、 加熱反応、 濾別、 洗浄または乾燥のいずれの工程後に添加してもよい。 ゴム、 樹 脂等に混練するのであれば、 その際に表面処理剤を添加してもよい。 表面処理方法は、 湿式法、 乾式法等従来公知の方法で行うことが可能 である。 表面処理剤の添加量は、 有機酸ァユオン含有アルミニウム塩水酸化 物粒子 1 0 0重量部に対して、 0 . 0 1〜 1 0重量部、 好ましくは 0 . 0 5〜 5重量部である。
本発明における有機酸ァニオン含有アルミニウム塩水酸化物粒子に、 以下の無機酸化物、 金属、 セラミ ックス等を用いて表面修飾を施すこ とによりこれらの物質に流動性を与え、 あるいは、 有機酸ァユオン含 有アルミニウム塩水酸化物粒子に導電性を付与することができる ; シリカ、 アルミナ、 酸化アンチモン、 酸化スズ、 二酸化マンガン、 酸 化ジルコユウム、 酸化亜鉛、 酸化チタン、 アンチモンドープ酸化スズ、 スズドープ酸化インジウム、 酸化イッテルビウムおよび三酸化タング ステン。
また、 以下の無機酸化物、 金属、 セラミ ックス等を用いて表面修飾 を施すことによりこれらの物質に流動性を与え、 あるいは、 有機酸ァ 二オン含有アルミニウム塩水酸化物粒子に熱伝導性を付与することが できる ;
酸化アルミニウム、 酸化亜鉛、 酸化バリウム、 酸化マグネシウム、 酸 化カルシウム、 塩基性炭酸マグネシウム、 ハイ ドロタルサイ ト類、 チ ャルコアルマイ ト化合物、 無機ケィ酸塩、 ダイヤモンド、 銅、 シリコ ンカーバイ ド、 アルミユウム、 窒化アルミニウム、 鉄、 ベリ リア、 窒 化チタンおよび窒化クロム。
上記材料によつて表面修飾された有機酸ァェオン含有アルミ ウム 塩水酸化物粒子は、 用途に合わせて樹脂に混練し、 または各種合金、 セラミックまたはカーボン等、 別の基板材料に C V D、 プラズマ C V D、 P V D等の方法で被膜形成して所定の機能を付与することも可能 である。
本発明における有機酸ァニオン含有アルミ-ゥム塩水酸化物粒子を アルカリ金属ケィ酸塩、 雲母、 ゼォライ ト、 ィモゴライ ト等で表面修 飾することにより、 種々の吸着剤例えば、 水分吸着剤または調湿剤、 揮発性有機物質 (V O C ) 除去剤等、 あるいは染料等の担体として用 いることができる。
また、 本発明における有機酸ァニオン含有アルミニウム塩水酸化物 粒子を酸化チタン等の紫外線吸収剤で表面修飾したものは、 農業用フ イルム用保温剤、 化粧料の紫外 Z赤外線吸収剤、 ゴムの紫外線劣化防 止剤として非常に有用である。
前記無機酸化物などによる有機酸ァニオン含有アルミ -ゥム塩水酸 化物粒子の表面修飾は、 有機酸ァ-オン含有アルミニゥム塩水酸化物 粒子と、 例えば酸化チタン粉末の混合物に、 多価アルコールを添加し ながら研磨、 焼成する方法等従来公知の方法を用いて行うことができ る。
表面修飾剤の添加量は、 有機酸ァニオン含有アルミユウム塩水酸化 物粒子 1 0 0重量部に対して、 0 . 0 1〜 1 0 0重量部、 好ましくは 0 . 0 5〜 5 0重量部である。
本発明の有機酸ァニオン含有アルミニウム塩水酸化物粒子は 3 0 0 〜 1, 0 0 0 °Cの範囲の用途に応じた温度で 2時間焼成して使用する ことができる。
本発明の有機酸ァニオン含有アルミニウム塩水酸化物粒子はそのま ま、 あるいは前記したような表面処理、 表面修飾、 焼成等を行ったう えで以下に説明するような有機高分子化合物に配合することができ る。 ;
レゾール型およびノポラック型フエノール樹脂、 メラミン樹脂、 メ ラミン一ユリア共縮合樹脂、 メラミン一ベンゾグァナミン共縮合樹脂、 メラミ ン一フエノール樹脂、 ビスフエノール A型エポキシ榭脂、 臭素 化エポキシ樹脂、 ビスフエノール F型エポキシ樹脂、 ノボラック型ェ ポキシ樹脂、 脂環式エポキシ樹脂、 グリシジルァミン型エポキシ樹脂、 グリシジルエステル型エポキシ樹脂、 複素環式エポキシ樹脂、 ユリア 樹脂、 ユリア一ホルムアルデヒ ド一フルフリルアルコール系樹脂、 不 飽和ポリエステル樹脂、 シリ コーン樹脂、 ポリウレタン、 塩化ビュル、 塩化ビニルーエチレン共重合体、 塩化ビュル一酢酸ビニル共重合体、 塩化ビニリデ'ン共重合体、 ポリ.エチレン、 ポリエチレンィ ミ ン、 ポリ エチレングリ コーノレ、 ポリエチレンテレフタレー ト、 ポリ (エチレン 一クロ口 ト リ フルォロエチレン) 、 アク リル樹脂、 ポリエチレンナフ タレート、 ポリ ブチレンテレフタレー ト、 ポリ ミクロィキシレンジメ チレンテレフタレー ト、 脂肪族ポリケ トン、 ポリスチレン、 A B S樹 脂、 ポリプロピレン、 ポリ アミ ド 6、 ポリアミ ド 6— 6、 ポリアミ ド
6 T、 ポリアミ ド M X D 6、 ポリ ァセタール、 ポリエステル、 ポリ力 ーポネート、 変性ポリフエ二レンエーテル、 ポリスルホン、 ポリアリ レー ト、 ポリエーテルイ ミ ド、 ポリエーテルサルフォン、 ポリアミ ド イミ ド、 ポリフエ二レンスルフィ ド、 液晶性ポリエステル等の樹脂お ょぴこれらから選ばれた複数種類の樹脂のァロイ等; クロロプレンゴ ム、 スチレンブタジエンゴム、 プチノレゴム、 エチレンプロピレンゴム、 - ト リルゴム、 クロロスノレホン化ポリエチレンゴム、 ウレタンゴム、 シリ コーンゴム、 フッ素ゴム、 ポリイソプレンゴム、 ブタジエンゴム 等の合成ゴム ; ナイ ロン、 ビニロン、 アク リル繊維、 レーヨン等の合 成繊維;セルロース、 アルギン酸、 でんぷん、 たんぱく質、 コラーゲ ン、 天然樹脂 (シェラ ック、 ダンマノレ、 コハク、 コーパノレ、 ロジン 等) 等の天然有機高分子;セルロース系樹脂 (セルロースアセテー ト、 セノレロース- ト レー ト、 セノレロースアセテー トプチレー ト等) 、 カゼ インプラスチック、 大豆たんぱくプラスチックを含む半合成高分子。 合成高分子類に対しては、 有機酸ァニオン含有アルミニウム塩水酸 化物粒子を高密度で添加できる上に、 その結果得られる組成物は添加 前の合成高分子本来の機械的、 光学的その他特性をそのまま維持して いるという点から、 特に好適な組合せと言える。
. 本発明の有機酸ァニオン含有アルミ,ニゥム塩水酸化物粒子を前記有 機高分子化合物へ添加する量は、 添加剤としては、 有機高分子化合物 1 0 0重量部に対し、 0 . 5〜 9 0 '重量部であることが好ましい。 0 . 5部より少ないと添加剤としての効果が不十分で 9 0部を超えて配合 しても効果は向上,しないので、.より好ましくは、 1 ~ 8 0重量部であ る。 一方、 充填剤と しては、 0 . 5〜; L 0 0重量部であること 好ま しい。 0 . 5部より少ないと充填剤としての効果が不十分で 1 0 0部 を超えて配合しても効果は大きく向上しない。
本発明の有機酸ァニオン含有アルミニウム塩水酸化物粒子は、 可視 光領域におけるヘイズが小さいので、 下記無機化合物へ添加すること により、 屈折率や分散の調節が可能である。
ソーダガラス、 鉛ク リスタルガラス、 硼ケィ酸ガラス、 ガラスセ ラミ ック、 アルミノケィ酸塩ガラス、 カリガラス、 石英、 各種酸化 物 ·非酸化物セラミック等。
前記無機化合物.へ添加は、 それ自体公知の方法、 例えば、 前記無機 化合物と有機酸ァニオン含有アルミニゥム塩水酸化物粒子の混合物を 焼成することによって可能である。
本発明の有機酸ァ-オン含有アルミニウム塩水酸化物粒子は、 セメ ント用添加剤および硬化促進剤;食品の添加剤、 ビール、 醤油等発酵 食品用濾過助剤 ;農薬の添加剤および担体、 各種農業用フィルムの添 加剤 ;半導体封止剤用添加剤、 耐熱セラミックス用の添加剤 ;電子写 真用トナーおよびトナー外添剤、 クリーニング剤、 二成分系トナーの キャリアー ; 医薬品の添加剤および各種担体;化粧料添加剤、 消臭剤、 抗菌剤、 抗カビ剤、 防藻剤およびこれらの担体;染料および顔料の担 体および添加剤 ;触媒;繊維の消臭剤、 ゴム、 樹脂の着色剤、 アンカ 一コート剤、 熱伝導性材料担体、 磁性体担体、 導電性付与材料担体、 電磁波吸収剤担体、 アンチブロッキング剤その他の添加剤; ガラスへ の添加剤、 ガラス廃材再利用のための発泡剤;その他研磨剤、 機器校 正用標準粒子、 液晶パネル用スぺーサ、 紫外線および赤外線吸収剤、 消臭剤、 放射性廃棄物の処理剤、 環境汚染物質および揮発.性有機物質 (VO C) の吸着剤、 などの広い分野に有利に使用できる。 発明の効果 .
本発明の第一の効果は、 用途に最適な形状および粒子径の有機酸ァ 二オン含有アルミニウム塩水酸化物粒子を安価で再現性良く、 高収率 で製造する方法を提供できることである。
第二の効果は、 微粒子でかつ粒子形状および粒子径が均一で、 高分 散性、 低吸湿性で、 耐酸性をもつ有機酸ァニオン含有アルミニウム塩 水酸化物粒子を提供できることである。
第三の効果は、 樹脂、 ゴム等へ添加しても、 分散性が良好で、 透明 性、 引張り強度など物理的特性を低下させずアンチプロッキング性、 耐酸性その他の特性を付与できる樹脂、 ゴム等への添加剤、 充填剤を 提供できることである。
第四の効果は、 相対湿度の高い環境下や強酸環境下でも物性低下、 特に吸着■担持能力が低下しない粒子および担体等を提供できること である。 実施例
以下、 本発明を実施例により具体的に説明するが、 本発明はこれら 実施例に限定されるものではない。 また、 以下用いた全ての薬品は、 特に記すもの以外和光純薬㈱製の一級試薬を使用した。
実施例 1一 A
(NH4) o. 92A 1 a (S〇4) x. 95 (C20 4 ) 0. 0 9 9 (OH) 5
82 - 0. 3 H2 Oの合成
0. 2 m o 1 の硫酸ァノレミニゥム、 0. 2 m o 1硫酸アンモユウム を 6 0 0 m 1 の純水に溶解させ、 0. 0 2 5 m o 1の蓚酸を入れた。 攪拌しながら、 混合液に 2 5 %の水酸化アンモニゥム水溶液 8 9 m 1を添加し、 1 0 0°Cで 1時間加熱処理を行った。 冷却した液を濾過 水洗し、 9 5 °Cで 1 5時間乾燥処理した結果、 S EM写真図 1に示す 球状を呈する有機酸ァ-オン含有アルミニウム塩水酸化物粒子を得た。 得られた有機酸ァニオン含有アルミニウム塩水酸化物粒子の平均粒子 径と B E T比表面積を表 1一 1に、 粒度分布を図 1 2に示す。 ' · 実施例 1一 B
N a x. 02A 1 3 (S 04 ) 2. 0 3 (C 204) 0. 0 6 (OH) 5. 84 ■ 0. 2 H20の合成
0. 2 m o 1 の硫酸アルミニウム、 0. 2 m o 1 の硫酸ナトリ ウム を 6 0 0 m 1 の純水に溶解させ、 0. 0 1 5 m o 1 の蓚酸を入れた。 攪拌しながら、 混合液に 0. 8 m o 1の水酸化ナトリウムを添加し、 1 7 0°Cで 8時間水熱処理を行った。 冷却した液を濾過水洗し、 9 5°Cで 1 5時間乾燥処理した結果、 S EM写真図 2に示す円盤状を呈 する有機酸ァニオン含有アルミニウム塩水酸化物粒子を得た。 得られ た有機酸ァニオン含有アルミニウム塩水酸化物粒子の諸特性を表 1一 1に示す。 また、 この粒子の粒度分布を図 1 3に示す。
実施例 1一 C
N a 06 A 1 3 (S 04) 2. 04 (C 204 ) 0. 096 (〇Η) 5. 79 · 0. 2 Η 2 Οの合成
1. 0 3m ο 1 ZLの硫酸アルミニウム水溶液 1 9 4m 1 と、 0. 5 m o 1 /Lの硫酸ナトリウム水溶液 4 0 0 m 1 の混合液に、 0. 0 2 5 m o 1 の蓚酸を添加し、 攪拌しながら、 さらに水酸化ナトリウム 水溶液 2 40m l (0. 8 1 m o 1 ) を添加し、 1 8 0 °Cで 1 5時間 水熱処理を行った。 他の処理条件は実施例 1 _Aと同じであった。 得 られ 有機酸ァニオン含有アルミ -ゥム塩水酸化物粒子の諸特性を表 1一 1に、 粒度分布を図 1 4に示す。 このときの粒子形状は S EM写 真図 3に示す一対状であった
実施例 1一 D
^ 0. 9 8 A 1 3 、 04) J . g 9 ( 24) 0. 0 8 9 ( O H ) 5. 8 2 · 〇 . 1 H20の合成
0. 1 mo 1 の硫酸アルミユウム水溶液を 5 0 0m l の水に溶かし、 0. 1 m o 1の硝酸カリウムおよび 0. 0 1 2 5 m o 1の蓚酸を添 加し、 室温で 3 0分攪拌したのち、 さらに水酸化カリウム水溶 2 0 Om l ( 0. 4 m o 1 ) を添加し、 1 7 0 °Cで 1 0時間の水熱処理を 行った。 他の処理条件は実施例 1一 Aと同じであった。 得られた有機 酸ァニオン含有アルミニウム塩水酸化物粒子の諸特性を表 1一 1に、 粒度分布を図 1 5に示す。 このときの粒子形状は S EM写真図 4に示 す球状であった。
実施例 1一 E
(H30) A 1 3 (S 04) 2. 01 (C 204) o. 0 9 (OH) 5. 8 · 0. 1 H20の合成
0. 1 mo 1の硫酸アルミニウムを 5 0 0m 1の水に溶解させ、 こ の溶液と、 水酸化アルミニウムの懸濁液 2 0 8m 1 (0. 1 2 5 m o 1 ) を混合し、 0. 0 5 m o 1の蓚酸を加えた。 十分攪拌した上で、 1 7 0°Cで 5時間水熱処理を行った。 他の処理条件は実施例 1一 Aと 同じであった。 得られた有機酸ァニオン含有アルミニウム塩水酸化物 粒子の諸特性を表 1一 1に示す。 このときの粒子形状は S EM写真図 5に示す直方体状であった。
実施例 1一 F
N a 0. 93A 1 3 (S 04) 2. 0 1 (C20 4 0. 0 9 2 (OH) s 7 3 '
0. 2 H20の合成
0. 2 m o 1の硫酸アルミニウム、 0. 2m o l硫酸ナトリ ウムを 6 0 0m lの純水に溶解させ、 0. 0 2 5 mo 1 の蓚酸を入れた。 攪 拌しながら、 前記混合液に水酸化ナトリウム水溶液 1 8 0m 1 (0. 9 m o 1 ) を添加し、 室温で 3 0分攪拌したのち、 1 8 0°Cで 2 0時 間の水熱処理を行った。 冷却した液を濾過水洗し、 9 5°Cで 1 5時間 乾燥処理して得られた、 有機酸ァニオン含有アルミニウム塩水酸化物 粒子の諸特性を表 1— 1に示す。 このときの粒子形状は S EM写真図 6に示す六角板状であった。
実施例 1一 G .
a !! A 1 2. 98 (S 04) !. 96 (C24) 0. 201 (OH) '5. 7 3 ' 0. 8 H2 Oの合成
0. 2 m o 1 の硫酸アルミニウム、 0. 2m o lの硫酸ナトリ ウム を 6 0 0 m 1 の純水に溶解させ、 0. 0 5mo l (6. 3 g ) の蓚酸 を入れた。 さらに、 攪拌しながら、 混合液に 0. 8m o lの水酸化ナ トリウムを添加し、 1 7 0°Cで 2時間の水熱処理を行った。 冷却した 液を濾過水洗し; 1 0 5°Cで 1 5時間乾燥処理した結果、 円盤状を呈 する有機酸ァニオン含有アルミニウム塩水酸化物粒子を得た。 得られ た有機酸ァニオン含有アルミニゥム塩水酸化物粒子の諸特性を表 ,1 一 1に示す。 '
実施例 1一 H
[N a 0. 98 K0. 0 J A 1 3 (S〇4) ^ 83 (C 24) 0. 1 3 (Ο Η) 6. 07 · 0. 6 Η2〇の合成
室温において、 1 , 4 2 0. 4 gの硫酸ナトリ ウム、 1 0 gの硫酸 カリウム、 3 1 5. 1 5 gの蓚酸、 硫酸アルミ二.ゥム溶液 9. 8 L ( 1 0m o 1 ) を混合して溶解させ、 イオン交換水で 2 7 Lにする。 この混合溶液及び水酸化ナトリウム溶液 1 2 L (4 1 m o 1 ) を 2. 5 Lの反応槽に添加して攪拌し、 反応液をさらに 5 0 Lの反応槽に流 して、 イオン交換水で 40 Lにする。 反応液を更に室温で 1 0時間攪 拌後、 1 7 0°Cで 2時間の水熱処理を行った。 水熱処理後の反応液を 濾過 '水洗し、 1 0 5°Cで 1 5時間乾燥して、 得られた円盤状の有機 酸ァニオン含有アルミニウム塩水酸化物粒子の諸特性を表 1 _ 1に示 す。
実施例 1一 I
N a x. !! A 1 3 (S 04) 86 (C6H57) 0. 14 (OH) 5. 9 7 · 0. 8 H2 Oの合成
室温において、 9 9. 4 3 g の硫酸ナトリウム、 3 6. 9 6 gの クェン酸 (H3 C6H57 ■ Η2θ) 、 硫酸アルミニウム溶液 6 6 0 m l (0. 7 m o 1 ) にイオン交換水を加えて 1. 7 Lにしたのち攪 拌して溶解させる。 この混合溶液を攪拌しながら、 水酸化ナトリウム 溶液 8 5 3m l ( 2. 8 7 m o 1 ) を添加、 更に室温で 1 0時間攪拌 後、 1 7 0°Cで 2時間の水熱処理を行った。 水熱処理後の反応液を濾 過■水洗し、 1 0 5°Cで 1 5時間乾燥して、 得られた球状の有機酸ァ ユオン含有アルミニウム塩水酸化物粒子の諸特性を表 1一 1に示す。 実施例 1一 J
N a 0. 99A 1 3 (S 04) し 92 (C4H406) 0. 27 (OH) 5. 3 4 ■ 0. 5 H2 Oの合成
室温において、 9 9. 4 3 gの硫酸ナトリウム、 2 6. 2 7 gの酒 石酸 (H2C4H46) 、 硫酸アルミニウム溶液 6 6 0 m 1 (0. 7 m o 1 ) に、 イオン交換水を加えて 1. 7 Lにしたのち、 室温で攪拌 して溶解させる。 この混合溶液に、 水酸化ナトリゥム溶液 8 5 3 m l ( 2. 8 7m o 1 ) を添加して 1 0時間攪拌後、 1 7 0°Cで 2時間の 水熱処理を行った。 水熱処理後の反応液を濾過 ·水洗し、 1 0 5°Cで 1 5時間乾燥して、 得られた有機酸ァニオン含有アルミニウム塩水酸 化物粒子の諸特性を表 1— 1に示す。 このときの粒子形状は S EM写 真図 7に示す米粒状であった。
実施例 1一 K
N a 02A 1 3 (S 04) x. 92 (C4H405 ) 0. 1 2 (OH)
4 ■ 0.. 6 H2 Oの合成
実施例 1一 Iにおいて、 クェン酸を D L_林檎酸にかえて得られた 球状の有機酸ァニオン含有アルミニウム塩水酸化物粒子の諸特性を表 1 - 1に示す。
実施例 1一 L K0. 99 A 1 3 (S 04) !. 99 (C6H507) o. 14 (OH) 5. 59 ■ 0. 5 H20の合成
実施例 1一 Iにおいて、 触媒としての硫酸ナトリゥムを硫酸力リ ゥ ムに、 蓚酸をクェン酸に、 水酸化ナトリウムを水酸化カリウムにかえ て得られた球状の有機酸ァニオン含有アルミニウム塩水酸化物粒子の 諸特性を表 1一 1に示す。
実施例 1一 M
a 0. 9 5 -"~ 1 3 ( ^ 4 / 1. 8 7 ( C 2 O 4 ) 0. 0 5 v 4H4Og) 0. 0
7 (OH) 5. 9 0 - 0. 6 H2 Oの合成
実施例 1一 Iにおいて、 クェン酸を 2種類の有機酸すなわち蓚酸 0. 0 2 6 m o 1および酒石酸 0. 0 2 6 m o 1にかえて得られた球状の 有機酸ァニオン含有アルミニウム塩水酸化物粒子の諸特性を表 1一 1 に示す。
実施例 1一 N
N a 02 A 1 3 (S 04) x. 98 [C 6H2 (OH) 3 CO〇] 。. 12 (OH) 5. 94 - 0. 8 H20の合成
実施例 1一 Iにおいて、 クェン酸のかわりに、 没食子酸 [C6H4 (OH) 3 C OOH] を使用して得られた球状の有機酸ァニオン含有 アルミニウム塩水酸化物粒子の諸特性を表 1一丄に示す。 このときの 粒子形状は S EM写真図 1 1に示す球状であった。
実施例 1一 O
N a 0. 98 A 1 a (S〇 4) !. 97 [HO C H2 C H (OH) COO] 0. so (OH) 5. 8 4 - 0. 6 H2 Oの合成
実施例 1一 Iにおいて、 クェン酸のかわりに、 D L—グリセリン酸 [HOCH2 CH (OH) COOH] を使用して得られた有機酸ァュ オン含有アルミニウム塩水酸化物粒子の諸特性を表 1一 1に示す。 こ のときの粒子形状は S EM写真図 8に示す円柱状であった。
実施例 1一 P N a o 3 1 a (S〇4) !. 99 [CH3 CH (OH) C OO] 22 (OH) 5. 3 3 - 0. 7 H20の合成
実施例 1— Iにおいて、 クェン酸のかわりに、 L一乳酸 [CH3 C H (OH) COOH] を使用して得られた有機酸ァユオン含有アルミ ニゥム塩水酸化物粒子の諸特性を表 1一 1に示す。 このときの粒子形 状は S EM写真図 9に示す丸味のある直方体状であった。
実施例 1一 Q
[ (H30) N a 0. 03] A 1 3 (S 04) " (C 204) 0. 04 (O H) 5. 97 - 0. 6 H2 Oの合成
硫酸アルミニウム水溶液 1 9 2 m 1 (0. 2m o 1 ) を撹拌しなが ら、 蓚酸 3. 1 5 gを添加し、 さらに水酸化アルミニウム 1 5. 6 g を添加し沈殿物スラリーを作った。 該スラリ一にイオン交換水を加え 8 5 Om 1になるように希釈し、 更に室温で 1時間攪拌後、 オートク レーブによって、 1 7 0°Cで 5時間の水熱処理を行った。 処理後の溶 液を濾過 '水洗'乾燥 ·粉砕処理して得た球状の有機酸ァユオン含有ァ ルミニゥム塩水酸化物粒子の諸特性を表 1一 1に示す。
実施例 1一 R
[NH4N a 0.02] A 1 3 (S 04) 2. 02 (C 204) 0. 14 (OH) 5. 7 0 - 0- 5 H20の合成
2 6 4. 2 8 gの硫酸アンモニゥム、 5. 0 gの硫酸ナトリ ウム、 6 3. 0 3 gの蓚酸、 硫酸アルミ -ゥム溶液 1. 9 L ( 2 m o 1 ) を 混合して、 イオン交換水で 8. 0 Lにして攪拌する。 4 5°Cで全部溶 解したらこの溶液にアンモニア水溶液 1. 9 L ( 1 7. 2 5 m o 1 ) 添加する。 更に 1時間攪拌して、 1 00 °Cで 1時間の水熱処理を行つ た。 水熱処理後の反応液を濾過 '水洗 '乾燥 (1 0 5°C 1 5時間) して得た有機酸ァ-オン含有アルミニウム塩水酸化物粒子の諸特性を 表 1— 1に示す。
実施例 1一 S N a !. oi [A 1 2. Θ 3 Z n o. 37] (S〇4) 2 1。 (C24) 0. 13 (OH) 5. ! 8 ■ 0. 6 H20の合成
硫酸アルミニウム水溶液 1.9 4m l (0. 2mo l ) 、 硫酸ナト リウム 2 8. 4 g (0. 2 m o 1 ) および蓚酸 6. 3 g (0. 0 5 m o 1 ) を混合し、 イオン交換水で 6 0 0m lに希釈、 撹拌しながら 結晶物を溶解させる。 この溶液に、 硫酸亜鉛 1 4. 3 8 g (0. 0 5 m o 1 ) を添加して溶解させた。 さらに、 室温において 6分で水酸化 ナトリウム溶液 2 3 5 m l (0. 8 m o 1 ) を前記の混合液に添加し た。 室温で 1時間撹拌後、 1 7 0°Cで 2時間の水熱処理を行い、 水熱 処理後の反応液を濾過 ·水洗 ·乾燥 ( 1 0 5°C 1 5時間) 処理して 得た球状の有機酸ァユオン含有アルミニウム塩水酸化物粒子の諸特性 を表 1一 1に示す。
実施例 1一 T
N & 1. Q 1 〔A i 2. 8 6 N l 0. 1 4」 ( O u 4 ) 2. 0 2 、C24) 0 _ 2 0 (OH) 5. 4 3 · 1. 2 H20の合成
実施例 1一 Sにおいて、 硫酸亜鉛のかわりに硫酸ニッケル 7. 3 5 g (0. 0 3m o 1 ) を使用して得た円盤状の有機酸ァ-オン含有ァ ルミニゥム塩水酸化物粒子の諸特性を表 1一 1に示す。
実施例 1一 U
N a 0. 96 [A l 2. 76 F e 0. 1 3 Z n 0. u] (S O4) 2. 01 (C2O 4) 。. 1 9 (OH) 5. 3 2 - 0. 6 0 H2Oの合成
実施例 l— Sにおいて、 硫酸亜鉛のかわりに硫酸鉄 0. 0 2m o 1 (F e S 04 - 7 H20 : 5. 6 g) および硫酸亜鉛 0. 0 2 m o 1 (Z n S 04 ■ 7 H20 : 5. 8 g) を使用して得られた円盤状の有 機酸ァニオン含有アルミニウム塩水酸化物粒子の諸特性を表 1一 2に 示す。
実施例 1一 V
N a χ. χ 2 A 1 3 [ (P 04) !. 71 (S〇4) o. 2 9 ] (C 204) 0. x 2 (OH) 4. 17 - 0. 9 0 H2Oの合成
硫酸アルミニウム 1 9 4m l (0. 2 m o 1 ) 、 硫酸ナトリウ ム 2 8. 4 g (0. 2mo l ) .およぴ蓚酸 6. 3 gを混合し、 イオン 交換水で 5 0 0 m 1に希釈、 撹拌しながら、 結晶物を溶解させ δ。 こ の溶液に、 水酸化ナトリウム 0. 2m o l (8. 4 § :純度9 5 %) および N a 3 P 04 - 1 2 H2 O 0. 7 m o 1 ( 2 6 6. 1 g ) を含 有した溶液 40 0 m 1 を 6分間で添加した。 1時間撹拌後、 1 70 °C で 2時間の水熱処理を行い、 水熱処理後の反応液を濾過■水洗 ·乾燥 ( 1 0 5°C 1 5時間) 処理して得た直方体状の有機酸ァニオン含有 アルミユウム塩水酸化物粒子の諸特性を表 1— 2に示す。 また、 この 粒子の粒度分布を図 1 6に示す。
実施例 1一 W
Kx. 02A 1 3 [ (S 04) x. 79 (N03) o. 21] (C 204) o. X 1 (OH) 6. 0 1 - 0. 8 5 H2 Oの合成
硫酸アルミニウム 1 9 4m l (0. 2mo l ) 、 硝酸力リ ウム 2 0. 3 g (0. 2mo l ) および蓚酸 5. l gを混合し、 イオン交換 水で 5 0 0m l に希釈、 撹拌しながら、 結晶物を溶解させる。 この溶 液に、 水酸化力リウム 0. 8mo l (5 2. 8 1 g :純度 8 5 %) を 含有した溶液 4 0 0m 1を 1 0分間で添加した。 2時間撹拌後、 1 5 0 °Cで 2時間の水熱処理を行い、 水熱処理後の反応液を濾過 '水洗 - 乾燥 ( 1 0 5°C 1 5時間) 処理して得た有機酸ァユオン含有アルミ •ニゥム塩水酸化物粒子の諸特性を表 1一 2に示す。 このときの粒子形 状は S EM写真図 1 0に示す球状であった。
比較例 1
N a 0. 96 A 1 3 (S 04) 2. 01 (OH) 5. 94 · 0. 6 3 H2〇の合 成
1. 0 2 5 m o 1 の硫酸アルミニゥム 1 2 7 m 1 と硫酸ナトリ ゥム 1 8. 4 6 g (0. 1 3 m o 1 ) を脱イオン水で 5 0 0 m 1にし、 室温において攪拌しながら 3. 3 8 '2 Nの水酸化ナトリゥム溶液 1 5 4m 1を約 1分間で注加する。 さらに 2 0分間攪拌後、 オートクレー ブ装置に移して 1 7 0°Cで 2時間水熱反応させた。 2 5 °Cまで冷却後、 濾別し、 5 0 0 m lの水で水洗して 1 0 5°Cで 2 2時間乾燥さ^た結 果、 球状を呈する有機酸ァニオンを含まないアルナイ ト型化合物粒子 を得た。 得られたアルナイ ト型化合物粒子の諸特性を表 1一 2に示す。 実施例 2 , 担持体組成物の合成
実施例 2— A
チタン加水分解物担持体組成物の合成
実施例 1一 Rにおいて、 硫酸亜鉛のかわりに硫酸チタン 0. 0 8 m o 1 ( 3 0 %の溶液 6 4 g) を使用した結果、 チタンおよびチタン加 水分解物を含む、 有機酸ァニオン含有アルミニウム塩水酸化物粒子を 得た。 得られたチタン加水分解物担持体組成物の諸特性を表 2に示す。 このときの粒子形状は円盤状であった。
実施例 2— B
銅加水分解物担持体組成物の合成
実施例 1 _Rにおいて、 硫酸亜鉛のかわりに硫酸銅 0. 0 3 mo 1 (C u S 04 - 5 H20 : 7. 4 9 g ) を使用した結果、 銅および銅 加水分解物有機酸ァ-オン含有アルミニウム塩水酸化物粒子を得た。 得られた銅加水分解物担持体組成物の諸特性を表 2に示す。 このとき の粒子形状は一対状であつた
実施例 2— C
ジルコニウム加水分解物担持体組成物の合成
実 例 1一 Rにおいて、 硫酸亜鉛のかわりにォキシ塩化ジルコユウ ム 0. 0 3 m o l (Z r C l 20 - 8 H20 : 9. 6 7 g ) を使用し た結果、 ジルコニウムおよびジルコニウム加水分解物を含む有機酸ァ 二オン含有アルミニウム塩水酸化物粒子を得た。 得られたジルコユウ ム加水分解物担持体組成物の諸特性を表 2に示す。 このときの粒子形 W 状は直方体状であった。
実施例 3 粒子径分布幅の測定
前記実施例 1一 A〜 2— Cにおいて合成した有機酸ァニオン含有ァ ルミニゥム塩水酸化物粒子につき、 レーザー回折法によって粒^径を 測定した。 得られた粒度分布において、 累積粒度分布曲線の 2 5 %値 および 7 5 %値の粒子径をそれぞれ D 25および D 75とし、 比の値 D 75ZD 25を計算した結果、 この比は 1〜 1. 2の範囲の値を示した。 さらに、 平均粒子径を A μ mとして粒子径 m が 0. 8 5A<W < 1. 1 5 Aである粒子数の割合 e (%) を個々の粒度分布から読み 取った。 表 1一 1および表 1一 2にそれらの結果を示す。
表 1 一 1
Figure imgf000045_0001
(続きあり)
表 1— 1 ( さソ
粒子形状
実施例 組成式
e % ' 平均粒子径 D75 D25 BET m2/g 粒子形状
1-A 87ぐ 0.55 1.133 10.5 球状 (NH4)o.92Al3(S04)l.95(C204)o.099(OH)5.82 · 0.3H2O
1 - B 81.6 < 0.40 1.086 163.8 円盤状 aI.o2Al3(S04)2.o3(C204)o.o6(OH)5.84- 0.2H20
1-C 63.6 < 1.36 1.132 2.9 一河 NaL06AI3(SO4)2.04(C2O4)0.096(OH)5.79 · 0.2H2O
1-D 92 < 0.63 1.076 12 球状 Ko.98Al3(S04)i.99(C204)o.o89(OH)5.82 · 0· 1¾0
1-E 一 2.44 1.121 4.1 直方体状 (H3O)Al3(SO4)2.01(C2O4)0.09(OH)5.8' 0.1H2O
1-F 一 0.61 1.147 10.5 プ、角砍状 Na0.93Al3(SO4)2.01(C2O4)0.092(OH)5.73 · 0.2¾O
1-G — 0.45 1.072 154 円盤状 NaLnA^.ggCSO^i.seCCjO^o.ao O^s^s - O.SHzO
1-H — 0.32 1.077 8.5 円盤状 [Nao.98Ko.oi]Al3(S04)i.83(C204)o. i3(OH)6.o7- 0.6H20
1-1 ― 0.27 1.180 17.7 球状 NaI.I IAl3(SO4)1.86(C6H5O7)0.14(OH)5.97- 0.8H2O
1-J — 0.61 1.189 89.2 米粒状 Nao.99Al3(S04)1.92(C4H4Os)o.27(OH)5.34 - 0.5H20
1-K 一 0.55 1.073 115 球状 Na1.02Al3(S04)1.92(C4H405)o.i2(OH)5.94- 0.6H20
1-L ― 0.61 1.146 30 球状 K0.99Al3(S04)I.99(C6H507)o. I4(OH)5.59 - 0.5H20
1-M 一 0.61 1.095 11 球状 a0.9jAl3(S04)1.87(C204)o.Q5(C4H4Oj)0.07(OH)5.9o - 0.6H20
1-N 一 0.48 1.142 35 球状 Na1.02Al3(SO4)i.98[C6H2(OH)3COO]0.12(OH)5.94- 0.8H2O l-O — 3.05 1.178 9 円柱状 Na0.98Al3(SOi,)i.97[HOCH2CH(OH)COO]0.2o(OH)5.s4- 0.6H20
1-P 一 0.59 1.055 30 直方体状 NaL3Al3(SO .99[C¾CH(OH)COO]。.22(OH)5.83 · 0.7H2O
1-Q 一 0.59 1.069 26 球状 [(H3O)Na0.03]Al3(SO4)1.99(C2O4)0.04(OH)5.97- 0.6H2O
1-R 一 0.70 1.113 21 球状 [NH4Na0.o2]Al3(S04)2.02(C204)o.i4(OH)5.7o - 0.5H20
1-S — 0.3 8 1.172 64 球状
1-T 一 0.40 1.19 163.8 円盤状 Na1.oi[Al2.86Nio. i4](S04)2.o2(C204)o.2o(OH)5.43 - 1.2H2 O
<
O 〇
〇 0
O S8s/0S007zfc1£ 8SS80/S0S O;AV
Figure imgf000047_0001
O
1 ? HO^N ε("θ8)ζΐν
mm εΟΝ2 -I mm £Cos)Jiv Λ - 1 mm "OS^N HOBJM n-i s瑰掛^
¾ 丰 ίί へは If凝 ¾
表 2
Figure imgf000048_0002
Figure imgf000048_0001
実施例 4 耐酸性試験 '
実施例 4一 A
( i ) サンプル
実施例 4一 A :実施例 1一 Gで合成した有機酸ァユオン含有アルミ ユウム塩水酸化物粒子を用いた。 ·
比較例 2 :比較例 1で合成したアルナイ ト型化合物粒子を用いた。
( i i ) 試験方法 '
5 Nの HNO 3水溶液 1 0 0m l に 1. 0 gのサンプルを入れ、 攪 拌後 3時間放置後、 セルロース一アセテート (0. 2 ηι) で濾過し、 原子吸光法によって溶液中のアルミユウム濃度および S〇4濃度を測 定した。
( i i i ) 結果
溶液中のアルミ-ゥム濃度測定結果を図 1 7に、 S 04濃度測定結 果を図 1 8に示す。 これらによれば、 水浴温度を高めると、 有機酸を 含有しないアルナイ ト型化合物粒子については、 溶液中のアルミニゥ ム濃度および S 04濃度が大きく増大したが、 本発明の有機酸ァ-ォ ン含有アルミニウム塩水酸化物粒子については、 アルミニゥムおよび S 04の溶出量は極微量であることがわかる。 すなわち、 本発明の有 機酸ァニオン含有アルミニウム塩水酸化物粒子は酸性環境下において ほとんど変化していない。
この結果は、 本発明の有機酸ァ-オン含有アルミニウム塩水酸化物 粒子は有機酸を含有していることにより、 従来のアルナイ ト型化合物 粒子に比べ、 耐酸性が大きいことを示している。
実施例 4一 B
( i ) サンプルの調製
0. 4m o l /Lの A l 2 (S〇4) 3水溶液 5 0 0m l と、 1 5 0 m l純水に N a N〇3 1 7. 0 gを溶解させた溶液を混合し、 攪拌 しながら蓚酸 (H2 C 204) を添加した。 さらに、 4. 0m o 1 /L の水酸化ナトリゥム溶液 200m Γを混合溶液に注入し、 1 0 0°C、 2時間加熱後、 1 80°Cで 20時間 オートク レープ処理を行った。 処理後の溶液を濾過、 水洗して、 9 5°Cで 1 5時間の乾燥処理を行い、 円盤状の有機酸ァニオン含有アルミニウム塩水酸化物粒子を合^した。
( i i ) 試験方法
2種類の濃度の HC 1溶液に 1. 0 gのサンプルを入れ、 攪拌後、 室温で 3時間放置してセルロース一アセテート (0. 2 πι) で濾過 し、 原子吸光法によって溶液中のアルミニウム濃度を分析した。
( i i i ) 結果 '
下記表 3に示すように、 塩酸の濃度を高めると、 サンプルの溶解度 も増大したが、 溶出量は微量であり、 粒子形状は変化していなかった。 実施例 4一 C
( i ) サンプルの調製 '
5 0 0 m l純水に 0. l m o l の A 1 2 (S04) · 1 5 Η20 6 1. 2 gを溶解させた溶液と、 5 0 m l純水に 1 0. 2 gのKN03 を溶解させた溶液を混合して、 攪拌しながら、 3. 1 5 §の蓚酸(《[ 2C 204)を直接添加した。 そして、 2. 3 6 m o l ZLの水酸化力 リゥム (KOH) 水溶液 200 m lを添加し、 攪拌しながら、 1 7 0°Cで 20時間加熱反応させた。 加熱処理した溶液を濾過、 水洗して、 9 5 °Cで 20時間の乾燥処理を行い、 球状の有機酸ァニオン含有アル ミニゥム塩水酸化物粒子を得た。
( i i ) 試験方法
実施例 4一 Bと同様に行った。
( i i i ) 結果
表 3に示すように、 塩酸の濃度を高めると、 サンプルの溶解度も增 大したが、 溶出量は微量であり、 粒子形状は変化していなかった。
実施例 4一 D
( i ) サンプルの調製 0. 2 m o 1 /L A 1 2 (S 04) 3溶液 5 0 0m l に、 3. 1 5 gの蓚酸 (H2C 204) を添加して攪拌しながら、 20 0m l純水に 1 1. 7 gの水酸化アルミニウム A 1 (OH) 3を溶解させた水溶液 を添加した。 1 0 0°Cで 2時間以上加熱後、 1 7 0°Cで 1 0時阇のォ 一トクレーブ処理を行った。 加熱処理した溶液を濾過、 水洗後、 9 5°C 1 5時間の乾燥処理を行って、 直方体状の有機酸ァェオン含有ァ ルミ -ゥム塩水酸化物粒子を得た。
( i i ) 試験方法
実施例 4一 Bと同様に行った。
( i i i ) 結果
表 3に示すように、 塩酸の濃度を高めると、 サンプルの溶解度も増 大したが、 溶出量は微量であり、 粒子形状は変化していなかった。 実施例 4一 D
実施例 1 _Gで合成したサンプルにっき、 上記測定を行った結果を 表 3に示す。
実施例 4一 E
実施例 1一 Hで合成したサンプルにっき、 上記測定を行った結果を 表 3に示す。
実施例 4一 F
実施例 1一 Iで合成したサンプルにっき、 上記測定を行った結果を 表 3に示す。
実施例 4一 G
実施例 1一 Jで合成したサンプルにっき、 上記測定を行った結果を 表 3に示す。
実施例 4 -H
実施例 1一 Kで合成したサンプルにっき、 上記測定を行った結果を 表 3に示す。
実施例 4一 I 実施例 1一 Lで合成したサンプルにっき、 上記測定を行った結果を 表 3に示す。
実施例 4一 J
実施例 1一 Pで合成したサンプルにっき、 上記測定を行った結果を 表 3に示す。
実施例 4一 K
実施例 1—Qで合成したサンプルにっき、 上記測定を行った結果を 表 3に示す。
結果
下記表 3に示すように、 塩酸の濃度を高めると、 サンプルの溶解度 も増大したが、 溶出量は微量であり、 粒子形状は変化していなかった。 このことは、 本発明の有機酸ァユオン含有アルミニウム塩水酸化物粒 子が良好な耐酸性を有することを示している。
表 3
Figure imgf000052_0001
実施例 4一 L
( i ) サンプルの調整
実施例 1一 Bで合成したサンプルを用いた ( i i ) 試験方法
硫酸溶液 1 ◦ Om 1あたり 1. 0 gのサンプルを入れ、 攪拌後、 2 7 °Cで 1時間放置してセル口—スーアセテー ト ( 0. 2 μπι) で濾過 し、 原子吸光法によって溶液中のアルミニウム濃度を分析した。
( i i i ) 結果
硫酸濃度を変化させた場合の S 04イオン濃度を図 1 9に示す。 硫 酸の濃度を高くすると、 サンプルの溶解度も増大したが、 溶出量は微 量であり、 粒子形状は変化していなかった。 本発明の有機酸ァユオン 含有アルミニウム塩水酸化物粒子は、 有機酸ァニオンを含有すること により、 良好な耐酸性をもっとされる従来のアルナイ ト型化合物に比 ベても、 はるかに良好な耐酸性を有することを示している。
実施例 5 悪臭ガスの吸着テス ト
新たに下記方法にて合成した有機酸ァニオン含有アルミニウム塩水 酸化物粒子を含めて 1 2種類のサンプルについて、 別途後述する方法 で悪臭ガスの吸着テス トを行った。 比較例 4として活性炭 (和光純薬 工業㈱製) を使用した。
実施例 5— A
サンプル調整
0. 4 m o 1 ZL硫酸アルミニウム A 12 (S04) 3水溶液 500 m 1 に、 1 m o 1 /Lの硫酸ナトリウム N a 2 S 04溶液 200 m 1 を添加し、. さらに 6. 3 gの蓚酸 (H2C24) を直接添加して攪拌 しながら 9 3 % N a O H溶液 200m l を注入した。 この溶液を 1 0 0°Cで 1 0時間以上加熱後、 1 70°Cで 1 0時間オートクレープ処理 を行った。 加熱処理した溶液を濾過、 水洗して、 9 5°Cで 1 5時間の 乾燥処理を行い、 円盤状で B ET比表面積が 4 Oms/gである有機 酸ァニオン含有アルミニウム塩水酸化物粒子を得た。
試験方法
別途後述する方法により吸着テス トを行った。 吸着テス トを行った結果を表 4に示す。 実施例 5— B
オートクレーブ処理をせずに濾過、 水洗および乾燥処理を行う以外 は実施例 5— Aと同様に、 円盤状で B E T比表面積が 9 7 m 2 / gで ある有機酸ァニオン含有アルミニウム塩水酸化物粒子を合成した。 吸 着テス トを行った結果を表 4に示す。
実施例 5— C
実施例 1一 Gで合成したサンプルにっき、 吸着テストを行った結果 を表 4に示す。
実施例 5— D
実施例 1一 Hで合成したサンプルにっき、 吸着テストを行った結果 を表 4に示す。
実施例 5— E
実施例 1一 Iで合成したサンプルにっき、 吸着テス トを行った結果 を表 4に示す。
実施例 5— F
実施例 1一 Jで合成したサンプルにっき、 吸着テストを行った結果 を表 4に示す。
実施例 5— G
実施例 1一 Kで合成したサンプルにっき、 吸着テストを行った結果 を表 4に示す。
実施例 5— H
実施例 1一 Lで合成したサンプルにっき、 吸着テストを行った結果 を表 4に示す。
実施例 5— I
実施例 1一 Mで合成したサンプルにっき、 吸着テストを行った結果 を表 4に示す。 実施例 5— J
実施例 1一 Pで合成したサンプルにっき、 吸着テストを行った結果 を表 4に示す。
実施例 5— K ' 実施例 1一 Qで合成したサンプルにっき、 吸着テス トを行った結果 を表 4に示す。
比較例 4
活性炭につき、 吸着テス トを行った結果を表 4に示す。
結果
下記表 4は、 本発明の有機酸ァユオン含有アルミニウム塩水酸化物 粒子はアンモニア等アル力リ性物質を吸着し易いことを示している。
表 4
Figure imgf000055_0001
実施例 6 染料の吸着性テス ト
C o n g o R e d (C32H22N66 S 2N a 2) ヽ S u d a n B 1 a c k B iS u d a n s c h w a r z B ) 、 T i t a n Y e 1 1 o w (C28H19N 506 S4N a 2) 、 /いずれも和光純薬工業㈱、 C . I . D i r e c t B l a c k 5 1 (C27H17N 508 N a 2) /保土谷㈱、 G r e e n F L B /大 |3精化工業㈱の吸着性を調べた。
( i ) サンプルの調製
実施例 6— A ' 原料の構成は実施例 4一 Bのサンプルと同じである。 しかし、 加熱 処理の条件は以下のように異なる。 オートクレーブ処理の条件は 1 8 0°C、 20時間であり、 また、 オートクレープ処理する前に、 1 0 0 °Cで 2時間、 開放条件下で加熱処理を行った。
実施例 6— B
実施例 4一 Cで調製したサンプルを用いた。
実施例 6— C
実施例 4—Dで調製したサンプルを用いた。
実施例 6— D
実施例 1 - Hで合成したサンプルを用いた。
実施例 6— E
実施例 1一 Iで合成したサンプルを用いた。
実施例 6— F
実施例 1一 Jで合成したサンプルを用いた。
実施例 6— G
実施例 1—Kで合成したサンプルを用いた。
実施例 6— H
実施例 1一 Lで合成したサンプルを用いた。
実施例 6 - I
実施例 1一 Mで合成したサンプルを用いた。
実施例 6 _ J
実施例 1 _ Pで合成したサンプルを用いた。
実施例 6— K
実施例 1一 Qで合成したサンプルを用いた。 比較例 5 - 吸着剤として通常用いられる活性炭を使用した。
( i i ) 試験方法 .
1 0 O m lの純水中に、 染料 1 O m gを入れて十分攪拌し、 サンプ ル 2 gを入れる。 1 5時間攪拌を続けた後、 上澄み液を採取して分光 光度法によって、 染料濃度の分析を行った。
( i i i ) 結果
下記表 5に染料吸着率を示す。 以上実施例 6— A〜実施例 6—Kの結果は、 本発明の有機酸ァニォ ン含有アルミニウム塩水酸化物粒子が酸性染料、 直接染料、 塩基性染 料、 反応染料等を良く吸着することを示している。 従って、 本発明の 有機酸ァ-オン含有アルミニウム塩水酸化物粒子は樹脂等有機高分子 物用の着色助剤、 顔料および担体として有用である。
表 5
Figure imgf000057_0001
実施例 7
樹脂組成物の伸び率テスト
( i ) サンプルの調製 硫酸アルミニウム A 1 2 (S〇4) '3溶液 9. 8 L ( 1 Omo 1 ) に N a 2 S O 4' 1, 4 3 5 gを溶解させ、 3 1 5 gの蓚酸を直接添加 する。 攪拌しながら、 2 6 Lの純水を添加し、 N a 2 S〇4および蓚 酸が完全に溶けるまで攪拌する。 さらに水酸化ナトリゥム溶液 i 2 L (40. 5 m o 1 ) を添加して室温で 1時間攪拌後、 1 70°Cで 8時 間水熱処理を行った。 水熱処理した溶液を濾過、 水洗して、 9 5°Cで 2 5時間の乾燥処理を行った。 また、 比較例 6としては一般に添加剤 として広く使用される水酸化マグネシウム (キスマ 5 A/協和化学ェ 業: B E T 5 m2/ g ) をサンプルとして使用した。
( i i ) 試験方法
サンプルを 6 0重量%、 対衝撃グレードボリプロピレン樹脂を 3 9. 8重量%、 酸化防止剤 D L T Pを 0. 1重量% (D LT P :吉富製薬 社の D i l a u r y l TH i o d i p r o p i o n a t e) 、 酸化 防止剤 I R 1 0 1 0を 0. 1重量0/。 ( I R 1 0 1 0 : I r g a n o x c h i b a s e c i a l c h e m i c a l社品) の害!!合で混合し、 得られた樹脂組成物から、 N I S S E I P I A S T L C I NDU S TR I AL CO. , L T D社の F S 1 2 0 S 1 8 A S E型の I N J ECT I ON MO LD I NG M A C H I N E成形機によって引 つ張りテス トのサンプルピースを作成し、 伸び率を測定した。 測定結 果を表 6に示す。
( i i i ) .結果
下記表 6から本発明の有機酸ァニオン含有アルミニウム塩水酸化物 粒子を練り込んだ樹脂の伸び率は従来公知の添加剤に比較して 1 0倍 以上に高くなることがわかる。 表 6
Figure imgf000059_0001
実施例 8 樹脂組成物の白化テス ト
( i ) サンプルの調製 ,
白化テス トには、 実施例 7で調製した、 有機酸ァユオン含有アルミ ニゥム塩水酸化物粒子含有ポリプロピレン片を用いた。 また、 比較例 7としては、 一般に添加剤として使用される水酸化マグネシウムを添 加した比較例 6 と同じポリプロピレン片を用いた。
( i i ) 試験方法
24°Cの恒温純水槽に試験片を入れ、 炭酸ガスボンベから、 1. 0 LZm i nの速度で、 48時間炭酸ガスを流し、 目視による樹脂表面 の白化を確認すると共に、 溶液中の金属イオンの濃度を分析する方法 で行った。
( i i i ) 結果
得られた結果を下記表 7に示す。 水酸化マグネシウム (キスマ 5 A 協和化学工業 : B E T 5m2/g) 含有ポリプロピレン片 (比較 例 7) には明らかな表面白化が見られたが、 有機酸ァニオン含有アル ミニゥム塩水酸化物粒子含有ポリプロピレン片 (実施例 8) には白化 が認められなかった。 また、 前者では溶液中への金属溶出が見られた ί 後者においては確認できなかった。
この結果は、 本発明の有機酸ァ-オン含有アルミニウム塩水酸化物 粒子は樹脂に添加しても安定レており、 白化等の現象を誘引しないこ とを示すものである。 '
表 7
Figure imgf000060_0001
実施例 9 赤外線吸収能テス ト
実施例 1—Bおよび実施例 1— Cで調製した N a AL3 (S 04) 2 (OH) 6についてそれぞれ KB r錠剤法で I Rの分析を行った結果、 図 20および図 2 1の結果を得た。 これによると 1, 6 00〜 1, 8 O O c m—1 (波長 1 0〜 1 4 μ m) 付近に I Rの吸収帯が存在し、 赤外線吸収剤として有用であることが明らかである。
実施例 1 0 紫外〜可視反射スぺク トル測定
( i ) サンプルの調製
実施例 1 0 _ A
実施例 1一 Hで合成したサンプルの吸収スぺク トルを図 2 2に示す。 実施例 1 0— B
実施例 1 - Jで合成したサンプルの吸収スぺク トルを図 2 3に示す。 実施例 1 0— C
実施例 2— Aで合成したサンプルの吸収スぺク トルを図 2 4に示す。 ( i i ) 試験方法
サンプル粉末を 4 0 X 2 mmの円板状に成形したものをサンプル ピースとして、 分光光度計を用いて反射スぺク トルを測定した。
( i i i ) 結果 本発明の有機酸ァニオン含有アルミニウム塩水酸化物粒子は 2 0 0 〜 3 8 O nmの紫外域に吸収帯を持っており、 紫外線吸収剤として有 用である。
実施例 1 1 示差熱分析テス ト ' 実施例 1 —Bおよび実施例 1一 Cで調製した N a A L 3 ( S 0 4 ) 2 ( O H ) 6について示差熱分析を行った結果、 図 2 6および図 2 7の 結果を得た。 両サンプル共 4 0 0 °C以上まで熱的に安定である。
実施例 1 2 反応条件と粒子径との関係
本発明の有機酸ァ-オン含有アルミニウム塩水酸化物粒子の製造に おいて、 添加する水酸化アルカリの添加速度と硫酸塩の濃度比を変化 させたときに、 生成する有機酸ァ-オン含有アルミニウム塩水酸化物 粒子の粒子径をレーザー回折法により測定した結果を表 8に示す。 表 8は、 有機酸ァニオン含有アルミニウム塩水酸化物粒子の粒子径は、 生成反応時の水酸化アル力リと硫酸塩の濃度比に依存することを示す。
表 8
Figure imgf000061_0001
一方、 添加する有機酸の種類、 反応条件および反応モル比を変化 させたときに、 生成する有機酸ァニオン含有アルミユウム塩水酸 化物粒子の粒子形状を S E Mにより観察した結果を表 9に示す。 表 9は、 生成する粒子の形状が、 添加する有機酸の種類と量 (有 機酸と硫酸アルミニウムのモル比': [有機酸] / [硫酸アルミ二 ゥム] ) および反応温度に強く依存することを示している。
表中※ 1、 ※ 2および※ 3については反応条件が以下の様に異なる。 ※ェ モル比を 1/4≤ [有機酸] / [硫酸アルミニウム] と'し、 1 5 0〜 2 00°Cで加熱反応させる
※ 2 モル比を 1 /2 0≤ [有機酸] / [硫酸アルミニウム] く 1
Z8とし、 1 5 0〜 2 00°Cで 2時間加熱反応させる
^ 3 モル比を 1 8≤ [有機酸] / [硫酸アルミニウム]. < 1/ 4とし、 1 5 0〜 2 0 0°Cで 2時間加熱反応させる
表 9
Figure imgf000063_0001
実施例 1 3 光学特性評価
( i ) サンプルの調製
実施例 1 3— A
実施例 1 _Bで合成した有機酸ァニオン含有アルミニウム塩水酸化 物粒子を低密度ポリエチレン (U F 2 4 0) 1 0 0重量部あたり 0. 1重量部の配合比で混合後、 押出機を用いて、 約 1 8 0°Cで混練溶融 し、 ペレッ トを作製した。 このペレッ トを用いて、 Tダイ法により、 約 2 0 0 °Cで厚さ 1 0 0 mのフィルムを作製し、 これをテス トピー スとした。
比較例 8
比較例 1で合成したアルナイ ト型化合物粒子を実施例 1 3— Aと同 様に、 低密度ポリエチレン (U F 2 4 0 ) 1 0 0重量部あたり 0. 1 重量部の配合比で混合後、 押出機を用いて、 約 1 8 0°Cで混練溶融し、 ペレッ トを作製した。 このペレッ トを用いて、 Tダイ法により、 約 2 0 0 °Cで厚さ 1 0 0 mのフィルムを作製し、 これをテストピースと した。
比較例 9
酸化チタン (S T— 0 1 :石原産業) を実施例 1 3— Aと同様に、 ただし低密度ポリエチレン (U F 2 4 0 ) 1 0 0重量部あたり 0. 2 重量部の配合比で混合後、 押出機を用いて、 約 1 8 0°Cで混練溶融し、 ペレッ トを作製した。 このペレッ トを用いて、 Tダイ法により、 約 2 0 0°Cで厚さ 1 0 0 mのフィルムを作製し、 これをテス トピースと した。
比車 列 1 0
何も配合しない低密度ポリエチレン (UF 2 4 0) を、 押出機を用 いて、 約 1 8 0 °Cで溶融し、 ペレッ トを作製した。 このペレッ トを用 いて、 Tダイ法により、 約 2 0 0 °Cで厚さ 1 0 0 A mのフィルムを作 製し、 これをテス トピースと した。 ( i i ) 試験方法
ヘイズメーター (T C一 H 3 D P : 日本電色) を用いて透過率とへ ィズを測定した。
( i i i ) 結果 ' 光透過スペク トルを図 2 5に、 全光線透過率とヘイズの測定結果を 下記表 1 0に示す。 厚みの差による光学特性の違いは、 L a mb e r t - B e e rの式を用いて補正し、 1 0 0 μ m換算とした。 表 1 0か ら、 本発明の有機酸ァニオン含有アルミニウム塩水酸化物粒子は、 樹 脂に添加しても透過率が高く、 ヘイズも小さいので、 特に透明な樹脂 の光学特性を損なわないことがわかる。
表 1 0
Figure imgf000065_0001
実施例 1 4 屈折率測定
( i ) サンプルの調製
実施例 1 4一 A
実施例 1一 Bで合成したサンプルにっき屈折率を測定した結果を表 1 1に示す。
実施例 1 4一 B - 実施例 1一 Cで合成したサンプルにっき屈折率を測定した結果を 表 1 1に示す。
実施例 1 4一 C
実施例 1一 Eで合成したサンプルにっき屈折率を測定した結果を表 1 1に示す。 実施例 1 4一 D
実施例 1一 Fで合成したサンプルにっき屈折率を測定した結果を表 1 1に示す。
実施例 1 4 _ E ' 実施例 1一 Oで合成したサンプルにっき屈折率を測定した結果を表 1 1に示す。
実施例 1 4 _ F
実施例 2— Aで合成したサンプルにっき屈折率を測定した結果を表 1 1に示す。
比較例 1 1
比較例 1で合成したサンプルにっき屈折率を測定した結果を表 1 1 に示す。
( i i ) 試験方法
別途後述する方法で行った。
( i i i ) 結果
下記表 1 1から、 本発明の有機酸ァ-オン含有アルミニウム塩水酸 化物粒子は含有する有機酸の種類等により屈折率を 1 . 4 9〜 1 . 5 5の広い範囲で、 添加する樹脂に応じて調節することが可能であり、 特に透明性の要求される樹脂に対し有用である。
表 1 1
平均粒子径
実施例 屈折率
μ m
14-A 0.40 1.52
14-B 1.36 1.49
14-C 2.44 1.52
14-D 0.61 1.52
14-E 3.05 1.55
14-F 0.55 1.55
比較例 11 1.64 1.52 実施例 1 5 成分分析
原子吸光分光光度計を用いて、 本発明の有機酸ァ-オン含有アルミ -ゥム塩水酸化物粒子の成分を分析した結果を下記表 1 2— 1および 表 1 2— 2に示す。 ' 実施例 1 5— A
実施例 1一 Aで合成したサンプルの成分分析結果を表 1 2— 1に示 す。
実施例 1 5— B
実施例 1一 Bで合成したサンプルの成分分析結果を表 1 2— 1に示 す。
実施例 1 5— C
実施例 1一 Cで合成したサンプルの成分分析結果を表 1 2— 1に示 す。 '
実施例 1 5— D
実施例 1一 Dで合成したサンプルの成分分析結果を表 1 2— 1に示 す。
実施例 1 5— E
実施例 1一 Eで合成したサンプルの成分分析結果を表 1 2— 1に示 す。
実施例 1 5— F
実施例 1一 Hで合成したサンプルの成分分析結果を表 1 2 - 1に示 す。
実施例 1 5— G
実施例 1一 Iで合成したサンプルの成分分析結果を表 1 2— 2に示 す。
実施例 1 5— H
実施例 1一 Jで合成したサンプルの成分分析結果を表 1 2— 2に示 す。 実施例 1 5— I .
実施例 1一 Kで合成したサンプルの成分分析結果を表 1 2— 2に示 す。
実施例 1 5— J ' 実施例 1一 Lで合成したサンプルの成分分析結果を表 1 2— 2に示 す。
実施例 1 5— K
実施例 1一 Qで合成したサンプルの成分分析結果を表 1 2— 2に示 す。
実施例 1 5— L
実施例 1一 Rで合成したサンプルの成分分析結果を表 1 2— 2に示 す。
表 1 2— 1
Figure imgf000068_0001
表 1 2— 2
Figure imgf000069_0001
実施例 1 6 X線回折
本発明の有機酸ァニオン含有アルミニウム塩水酸化物粒子 N a A 1 3 (S 04) 2 (OH) 6 (実施例 1一 Fのサンプル) 、 NH4A 1 3
(S 04) 2 (OH) 5 (実施例 1一 Aのサンプル) 、 KA 1 3 (S O
4) 2 (OH) 6 (実施例 1一 Dのサンプル) および HA 1 3 (S O
4) 2 (OH) 6 (実施例 1 _ Eのサンプル) 、 N a 1. 1 1A l 2. 98
(S 04) x. 96 (C 204) o. 201 (OH) 5. 73 · 0. 8 H20 (実 施例 1一 Gのサンプル) について X線回折分析を行った結果、 それぞ れ図 2 8、 図 2 9、 図 3 0、 図 3 1および図 3 2の X線回折図を得た これらは、'本発明のあるナイ ト類化合物の X線回折図は従来公知の合 成アルミニウム塩水酸化物粒子とは異なるパターンおよび強度比を持 つ、 すなわち組成比が異なることを示している。
分析、 テス トの方法および装置の説明
分析、 テス トの方法および装置を以下に説明する。
( 1) 屈折率
方法:有機溶媒 5 m 1 に試料粉末 5 m gを添加して、 超音波で 1 0分 間に分散させ、 透明部分を主プリズム面に薄膜状に広げて、 屈折率を 求めた。
装置: アッベ屈折計 I T (AT AGO)
( 2 ) S EM
方法:加速電圧 1 5 KV、 作動距離 1 Omm、 倍率 2千倍、 1万倍、 2万倍
装置: S— 3 ◦ 0 ひ N (日立)
(3) 示差熱分析
方法:空気雰囲気 1 0 0m l Zm i n ;参照試料ひ一アルミナ ;昇 温速度 1 0 °C/m i n
装置: T h e r ma l An a l y s i s S t a t i o n T A S 1 0 0 ; TG 8 1 1 0 (理学)
(4) I Rの分析
方法: KB r錠剤法
装置: フーリエ変換赤外分光光度計 FT— 7 1 0 (HOR I BA)
(5) 粒子径および粒度分布の分析 (レーザー回折法による) 方法: 0. 2 %のへキサメタリン酸ナトリ ウムに試料粉末を添加し
(濃度: Wt l %) 、 超音波で 3分間分散させ、 粒子径を測定した。 装置: LA— 9 1 0 (HOR I BA)
(6) 比表面積 B ETの分析
方法: 3点法による
装置: NO VA 2 0 0 0高速比表面積/細孔分布測定装置 (ュアサ アイォニタス)
(7) . X線回折の分析
方法: C u— Kひ、 角度 ( Θ ) : 5〜6 5、 ステップ : 0. 0 2、 ス キヤンスピード: 4、 管電圧: 40 k V、 管電流: 2 0mV。
装置: R I NT 2 2 0 0 V X線回折システム (理学電機㈱製)
(8) 染料吸着テスト 方法: 1 5 0m l の純水にサンプル 2 gと染料 1 0 m g入れ、 十分に 攪拌した上で、 初期と 1 5時間後の染料濃度分析を行う。
吸着率 = ( a - b ) / a X 1 0 0 (%)
a :溶液の初期染料濃度 . ' b : 1 5時間吸着後の染料濃度
装置: H I TACH I 1 5 0 - 2 0 S p e c t r o p h o t o m e t e rおよぴ D a t a p r o c e s s o r
( 9) 酸素含量の分析
装置: J SM6 3 0 0 S CANN I NG M I C RO S C O P E ( 1 0) 悪臭ガス吸着テス ト
アンモニア NH3
標準ガス濃度 1 9 7 p pm
1 Lを 5 0m 1純水に導入し、 p Hの検量線により、 残存ガスを測定 する。
ト リメチルァミン (CH3) 3
標準ガス濃度 1 9 8 p p m
導入量 1. 0 m l
試料気化室温度 1 3 0°C
カラム D i g l y c e r o l +T E P + KOH 1 5 + 1 5 + 2 % C h r o m o s o r b W 8 0 / 1 0 0 AW-DMC S 3. 1 m X 3. 2 mm
カラム温度 6 0°C (—定)
キヤリァガス N2
流量 5 0 m l /m i n
圧力 1 3 0 k P a
検出器 F I D
水素ガス圧 5 0 k P a
空気圧 5 0 k P a 検出器温度 1 3 0°C
i s o—吉草酸 (CH3) 2 CHCOOH
標準ガス濃度 2 0. 0 p p m
導入量 1. 0 m 1
試料気化室温度 2 5 0°C
カラム DB— WAX 3 0 m X 0. 3 2mm
カラム温度 2 2 0°C (—定)
キャリアガス H e
流量 2. 3 m l / . i n
圧力 5 0 k P a
検出器 F I D
水素ガス圧 5 0 k P a
空気圧 5 0 k P a
検出器温度 2 5 0°C
( 1 1 ) 樹脂伸び率の測定方法
方法: プラスチックの引張試験方法 (J I S— K 7 1 1 3 ) に準拠 装置: T EN S I L ON/UTM— 1 — 2 5 0 0および S S— 2 0 7
D— UA (TOYO B A LDW I NC O. , L TD)
( 1 2) 吸水率の測定方法
方法: J I S— K 6 9 1 1 5. 2 6. 1の方法で吸水率を測定した 装置:恒温恒湿槽 ァドパンテック東洋 A G X— 3 2 6
( 1 3 ) 紫外〜可視光反射率の測定
装置:分光光度計 1 5 0— 2 0 (日立)

Claims

2005/085168 72 請求の範囲
1. 下記一般式 ( I ) で表わされる有機酸ァニオン含有アルミニウム 塩水酸化物粒子。 '
Ma [A 1 ,.ΧΜ' J b A2 By (OH) n-mH20 ( I )
(ただし、 式中 Mは N a +、 K NH4+および H30+なる群から選ば れる少なくとも 1種の陽イオン、 M' は、 C u 2+、 Z n 2+ s N i 2+、 S n 4\ Z r 4+、 F e 2+、 F e 3 +および T i 4 +なる群から選ばれる 少なく とも 1種の金属の陽イオン、 Aは少なく とも 1種の有機酸ァ- オン、 Bは少なく とも 1種の無機酸ァユオンを表わし、 式中 a、 b、 m、 n、 x、 yおよぴ zは、 0. 7 a ^ l . 3 5、
2. 7≤ b≤ 3. 3、 0≤m≤ 5 , 4≤ n≤ 7 0≤ x≤ 0. 6、 1. 7≤ y≤ 2. 4、 0. 0 0 1 ≤ z ≤ 0. 5とする。 ) 2. 上記 ( I ) 式で表わされ、 式中 aが、 0. 9 ^ a ≤ l . 2であ ることを特徴とする請求項 1に記載の有機酸ァ オン含有アルミ二 ゥム塩水酸化物粒子。
3. 上記 ( I ) 式で表わされ、 式中 bが、 2. 8≤ b≤ 3. 2であ ることを特徴とする請求項 1に記載の有機酸ァ オン含有アルミ二 ゥム塩水酸化物粒子。
4. 上記 ( I ) 式で表わされ、 式中 mが、 0≤m≤ 2であることを 特徴とする請求項 1に記載の有機酸ァ-オン含有アルミニウム塩水 酸化物粒子。
5. 上記 ( I ) 式で表わされ、 式中 nが、 5≤ n≤ 6. 5であるこ とを特徴とする請求項 1に記載の有機酸ァニオン含有アルミ-ゥム 塩水酸化物粒子。
6. 上記 ( I ) 式で表わされ、.式中 Xが、 0≤ χ ^ Ο . 3であるこ とを特徴とする請求項 1に記載の有機酸ァ-オン含有アルミ-'ゥム 塩水酸化物粒子。
7. 上記 ( I ) 式で表わされ、 式中 yが、 1. 8 y ^ 2. 2であ ることを特徴とする請求項 1に記載の有機酸ァニオン含有アルミ二 ゥム塩水酸化物粒子。
8 · 上記 ( I ) 式で表わされ、 式中 zが、 0. 0 1≤ z ^ 0. 4で あることを特徴とする請求項 1に記載の有機酸ァニオン含有アルミ ニゥム塩水酸化物粒子。 '
9. 上記 ( I ) 式における有機酸ァ-オン (A) ί 有機カルボン 酸または有機ォキシカルボン酸に基づくァユオン群から選ばれる少 なく とも 1種であることを特徴とする請求項 1に記載の有機酸ァニ オン含有アルミニウム塩水酸化物粒子。
1 0. 上記 ( I ) 式における有機酸ァェオン (Α) 力 炭素数 1〜 1 5を有する有機カルボン酸または有機ォキシカルボン酸に基づく ァ-オン群から選ばれる少なく とも 1種であることを特徴とする請 求項 1に記載の有機酸ァニオン含有アルミニゥム塩水酸化物粒子。
1 1. 上記 ( I ) 式における無機酸ァニオン (Β) 力 硫酸イオン、 リン酸イオン、 硝酸イオンおよびケィ酸イオンなる群から選ばれる少 なく とも 1種であることを特徴とする請求項 1に記載の有機酸ァニォ ン含有アルミニウム塩水酸化物粒子。 2005/085168
74
1 2. 上記'( I ) 式における無機酸ァニオン (B) 力 S、 硫酸イオン、 あるいは硫酸イオンおよびリン酸イオンであることを特徴とする請求 項 1に記載の有機酸ァ-オン含有アルミニウム塩水酸化物粒子。
1 3. レーザー回折法によって測定される、 累積粒度分布曲線の 2 5 %値および 7'5 %値の粒子径をそれぞれ D25および D75として、 1 <D75/D25< 1. 8を満足することを特徴とする請求項 1に記 載の有機酸ァニオン含有アルミニウム塩水酸化物粒子。
1 4. 粒子の形状が粒状、 一対状、 直方体状、 円盤状 (碁石状) 、 六 角板状、 米粒状または円柱状である請求項 1に記載の有機酸ァニオン 含有アルミ-ゥム塩水酸化物粒子。
1 5. 平均粒子径が 0. 1〜 1 0 mの範囲にある請求項 1に記載の 有機酸ァ-オン含有アルミ-ゥム塩水酸化物粒子。
1 6. 請求項 1に記載の有機酸ァニオン含有アルミニウム塩水酸化 物粒子を 3 0 0°C以上 1, 0 0 0°C以下で焼成した焼成物。
1 7. C u、 Z n、 N i、 S n、 Z r、 F eおよび T iなる群から選 ばれる少なくとも 1種の金属塩の加水分解物を表面に担持してなる請 求項 1に記載の有機酸ァニオン含有アルミニウム塩水酸化物粒子。
1 8. 高級脂肪酸類、 ァユオン系界面活性剤、 リン酸エステル類、 カップリング剤および多価アルコールと脂肪酸のェステル類よりな る群から選ばれた少なくとも 1種の表面処理剤により表面処理され た請求項 1に記載のアルナイ ト型化合物粒子。 205/ 8S168
75
1 9. A 1 3+単独または A 1 3+、 C u 2+、 Z n 2+、 N i 2+、 S n 4 + Z r 4+、 F e 2+、 F e 3+および T i 4 +なる群 (第 1群) から選ばれ る少なく とも 1種の陽イオンの無機塩と N a+、 K+、 ΝΗ4 +お j び Η 30+なる群 (第 2群) から選ばれる少なく とも 1種の硫酸塩または 硝酸塩を含む混合溶液に、 第 2群から選ばれた水酸化アル力リ溶液を 添加して加熱反応させる際に、 該加熱反応を有機酸または有機酸塩の 存在下において行わせることを特徴とする有機酸ァニオン含有アルミ ニゥム塩水酸化物粒子の製造方法。
2 0. 前記の無機塩が硫酸アルミニウムである請求項 1 9に記載の有 機酸ァニオン含有アルミニウム塩水酸化物粒子の製造方法。
2 1. 有機酸が、 有機カルボン酸または有機ォキシカルボン酸もし くはこれらの塩から選ばれる少なく とも 1種である請求項 1 9に記 載の有機酸ァニオン含有アルミニウム塩水酸化物粒子の製造方法。
2 2. 有機酸が、 炭素数 1 ~ 1 5の有機カルボン酸または有機ォキ シカルボン酸もしくはこれらの塩から選ばれる少なく とも 1種であ る請求項 1 9に記載の有機酸ァ-オン含有アルミニウム塩水酸化物 粒子の製造方法。
2 3. 無機酸塩が硫酸塩、 硝酸塩、 リン酸塩およぴケィ酸塩なる群か ら選ばれる少なく とも 1種であることを特徴とする請求項 1 9に記載 の有機酸ァニオン含有アルミニウム塩水酸化物粒子の製造方法。
24. 9 0〜2 5 0°Cにおいて加熱反応させることを特徴とする請求 項 1 9に記載の有機酸ァユオン含有アルミニウム塩水酸化物粒子の製 造方法
2 5 . 請求項 1に記載の有機酸ァ-オン含有アルミニウム塩水酸化物 粒子を含むことを特徴とする樹脂添加剤。 '
2 6 . 請求項 2 5に記載の樹脂添加剤を含む樹脂組成物。
2 7 . 請求項 1に記載の有機酸ァニオン含有アルミニウム塩水酸化物 粒子を含むことを特徴とする吸着剤組成物。
2 8 . 請求項 1に記載の有機酸ァ-オン含有アルミニウム塩水酸化物 粒子を含むことを特徴とする染料担持体。
2 9 . 請求項 1に記載の有機酸ァユオン含有アルミニウム塩水酸化物 粒子を含むことを特徴とする紫外線吸収剤。
PCT/JP2005/003831 2004-03-05 2005-03-01 有機酸アニオン含有アルミニウム塩水酸化物粒子、その製造方法およびその利用 WO2005085168A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CN2005800071434A CN1930107B (zh) 2004-03-05 2005-03-01 含有机酸阴离子的铝盐氢氧化物粒子、其制造方法及其应用
CA2564630A CA2564630C (en) 2004-03-05 2005-03-01 Organic acid anion containing aluminum salt hydroxide particles, production method thereof, and use thereof
JP2006510757A JP4931210B2 (ja) 2004-03-05 2005-03-01 有機酸アニオン含有アルミニウム塩水酸化物粒子、その製造方法およびその利用
AU2005219753A AU2005219753B2 (en) 2004-03-05 2005-03-01 Particles of aluminum salt hydroxide containing organic acid anion, method for production thereof and use thereof
EP05720103.0A EP1731497B1 (en) 2004-03-05 2005-03-01 Particles of aluminum salt hydroxide containing organic acid anion and use thereof
KR1020067017909A KR101157441B1 (ko) 2004-03-05 2005-03-01 유기산 음이온 함유 알루미늄염 수산화물 입자, 그 제조방법 및 그 이용
US10/591,588 US7629480B2 (en) 2004-03-05 2005-03-01 Organic acid anion containing aluminum salt hydroxide particles, production method thereof, and use thereof
IL177895A IL177895A0 (en) 2004-03-05 2006-09-05 Particles of aluminum salt hydroxide containing organic acid anion, method for production thereof and use thereof
NO20064525A NO20064525L (no) 2004-03-05 2006-10-05 Partikler av aluminiumsalthydroksid inneholdende organisk syreanion, fremgangsmate for produksjon derav og anvendelse derav

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004062549 2004-03-05
JP2004-062549 2004-03-05

Publications (1)

Publication Number Publication Date
WO2005085168A1 true WO2005085168A1 (ja) 2005-09-15

Family

ID=34918120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/003831 WO2005085168A1 (ja) 2004-03-05 2005-03-01 有機酸アニオン含有アルミニウム塩水酸化物粒子、その製造方法およびその利用

Country Status (12)

Country Link
US (1) US7629480B2 (ja)
EP (1) EP1731497B1 (ja)
JP (1) JP4931210B2 (ja)
KR (1) KR101157441B1 (ja)
CN (1) CN1930107B (ja)
AU (1) AU2005219753B2 (ja)
CA (1) CA2564630C (ja)
IL (1) IL177895A0 (ja)
NO (1) NO20064525L (ja)
RU (1) RU2360900C2 (ja)
TW (1) TWI365852B (ja)
WO (1) WO2005085168A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007004713A1 (ja) * 2005-06-30 2007-01-11 Kyowa Chemical Industry Co., Ltd. 銀含有アルミニウム硫酸塩水酸化物粒子よりなる抗菌剤およびその利用
JP2007039444A (ja) * 2005-07-01 2007-02-15 Kyowa Chem Ind Co Ltd 抗菌剤、その製造方法及びその利用
JP2007039442A (ja) * 2005-06-30 2007-02-15 Kyowa Chem Ind Co Ltd 銀及び有機酸アニオン含有アルミニウム硫酸塩水酸物粒子よりなる抗菌剤およびその利用
JP2007204293A (ja) * 2006-01-31 2007-08-16 Kyowa Chem Ind Co Ltd 多孔質粒子およびその製造方法
JP2008120860A (ja) * 2006-11-08 2008-05-29 Fujifilm Corp 顔料分散組成物、それを含有する着色感光性樹脂組成物及び感光性樹脂転写材料、並びにそれらを用いたカラーフィルタ及び液晶表示装置
WO2008082007A1 (ja) * 2006-12-29 2008-07-10 Kyowa Chemical Industry Co., Ltd. 抗菌性粒子、その製造方法および抗菌性組成物
JP2008254994A (ja) * 2007-04-09 2008-10-23 Ishihara Sangyo Kaisha Ltd 酸化亜鉛及びその製造方法並びにそれを用いた化粧料
JP2010047703A (ja) * 2008-08-22 2010-03-04 Kyowa Chem Ind Co Ltd 難燃性樹脂組成物
WO2010067881A1 (ja) 2008-12-12 2010-06-17 協和化学工業株式会社 化粧料組成物
JP2010134097A (ja) * 2008-12-03 2010-06-17 Kyowa Chem Ind Co Ltd 光拡散構造体
WO2011059105A1 (ja) * 2009-11-10 2011-05-19 協和化学工業株式会社 遮熱剤組成物
JP2011517309A (ja) * 2007-09-25 2011-06-02 ザ レジェンツ オブ ザ ユニヴァースティ オブ カリフォルニア 食用に適した生体適合性金属有機構造体

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7981395B2 (en) * 2006-01-12 2011-07-19 Enax, Inc. Negative electrode carbon material for lithium ion secondary battery and manufacturing method thereof
CN103127900B (zh) * 2013-03-07 2015-08-19 清华大学 一种水滑石前驱体吸附剂及其制备方法
CN104355374A (zh) * 2014-09-29 2015-02-18 昆明理工大学 一种砷钠明矾石固溶体及其制备方法和该制备方法的用途
CN105792006B (zh) * 2016-03-04 2019-10-08 广州酷狗计算机科技有限公司 互动信息显示方法及装置
RU2626396C1 (ru) * 2016-10-19 2017-07-27 Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук (ИК СО РАН) Катализатор гидрокрекинга углеводородного сырья
RU2626397C1 (ru) * 2016-10-19 2017-07-27 Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук (ИК СО РАН) Способ гидрокрекинга углеводородного сырья
US11426818B2 (en) 2018-08-10 2022-08-30 The Research Foundation for the State University Additive manufacturing processes and additively manufactured products
US11944982B2 (en) 2019-06-05 2024-04-02 Battelle Memorial Institute Polymer-functionalized magnetic particle embodiments for solute separation, and devices and systems for using the same
CN114887582B (zh) * 2022-05-12 2023-08-15 重庆文理学院 一种回收废水中亚磷酸根离子的方法
CN115920848A (zh) * 2023-01-30 2023-04-07 长沙理工大学 一种FeCu-LDH/BC复合材料及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0841076A (ja) * 1993-07-26 1996-02-13 Fuji Chem Ind Co Ltd 乾燥水酸化アルミニウムゲル及びその製法並びに制酸剤
JPH10273324A (ja) * 1997-01-21 1998-10-13 Kyowa Chem Ind Co Ltd 非晶質塩基性複水酸化物およびその製造方法
JP2000007326A (ja) * 1998-06-25 2000-01-11 Mizusawa Ind Chem Ltd 紡錘状乃至球状アルカリアルミニウム硫酸塩水酸化物、その製造法及び樹脂配合剤
WO2001004053A1 (fr) * 1999-07-08 2001-01-18 Mizusawa Industrial Chemicals, Ltd. Sel polybasique composite, procede de production de ce sel, et utilisation

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3903240A (en) * 1969-09-17 1975-09-02 Wenceslao X Lopez Process for producing basic sulfates and aluminum hydrates
JPH0433719Y2 (ja) 1987-07-14 1992-08-12
JPH0433720Y2 (ja) 1987-07-14 1992-08-12
JPH06122519A (ja) 1991-05-27 1994-05-06 Toda Kogyo Corp 非晶質含水酸化第二鉄粒子粉末及びその製造法
WO2001005796A2 (en) * 1999-07-20 2001-01-25 Munksjo Paper Decor Inc. Aluminum compounds and process of making the same
JP4638996B2 (ja) 2000-04-12 2011-02-23 水澤化学工業株式会社 イオン交換による複合金属多塩基性塩の製造方法
US7709149B2 (en) * 2004-09-24 2010-05-04 Lg Chem, Ltd. Composite precursor for aluminum-containing lithium transition metal oxide and process for preparation of the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0841076A (ja) * 1993-07-26 1996-02-13 Fuji Chem Ind Co Ltd 乾燥水酸化アルミニウムゲル及びその製法並びに制酸剤
JPH10273324A (ja) * 1997-01-21 1998-10-13 Kyowa Chem Ind Co Ltd 非晶質塩基性複水酸化物およびその製造方法
JP2000007326A (ja) * 1998-06-25 2000-01-11 Mizusawa Ind Chem Ltd 紡錘状乃至球状アルカリアルミニウム硫酸塩水酸化物、その製造法及び樹脂配合剤
WO2001004053A1 (fr) * 1999-07-08 2001-01-18 Mizusawa Industrial Chemicals, Ltd. Sel polybasique composite, procede de production de ce sel, et utilisation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1731497A4 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007004713A1 (ja) * 2005-06-30 2007-01-11 Kyowa Chemical Industry Co., Ltd. 銀含有アルミニウム硫酸塩水酸化物粒子よりなる抗菌剤およびその利用
JP2007039442A (ja) * 2005-06-30 2007-02-15 Kyowa Chem Ind Co Ltd 銀及び有機酸アニオン含有アルミニウム硫酸塩水酸物粒子よりなる抗菌剤およびその利用
US8394392B2 (en) 2005-06-30 2013-03-12 Kyowa Chemical Industry Co., Ltd. Antibacterial agent composed of silver-containing aluminum sulfate hydroxide particles and use thereof
CN101212905B (zh) * 2005-06-30 2013-01-09 协和化学工业株式会社 包含含有银的铝硫酸盐氢氧化物粒子的抗菌剂及其用途
AU2006266691B2 (en) * 2005-06-30 2011-06-30 Kyowa Chemical Industry Co., Ltd. Antibacterial agent comprising silver-containing aluminum sulfate hydroxide particle and use thereof
JP2007039444A (ja) * 2005-07-01 2007-02-15 Kyowa Chem Ind Co Ltd 抗菌剤、その製造方法及びその利用
JP2007204293A (ja) * 2006-01-31 2007-08-16 Kyowa Chem Ind Co Ltd 多孔質粒子およびその製造方法
JP2008120860A (ja) * 2006-11-08 2008-05-29 Fujifilm Corp 顔料分散組成物、それを含有する着色感光性樹脂組成物及び感光性樹脂転写材料、並びにそれらを用いたカラーフィルタ及び液晶表示装置
JPWO2008082007A1 (ja) * 2006-12-29 2010-04-30 協和化学工業株式会社 抗菌性粒子、その製造方法および抗菌性組成物
JP5158876B2 (ja) * 2006-12-29 2013-03-06 協和化学工業株式会社 抗菌性粒子、その製造方法および抗菌性組成物
WO2008082007A1 (ja) * 2006-12-29 2008-07-10 Kyowa Chemical Industry Co., Ltd. 抗菌性粒子、その製造方法および抗菌性組成物
JP2008254994A (ja) * 2007-04-09 2008-10-23 Ishihara Sangyo Kaisha Ltd 酸化亜鉛及びその製造方法並びにそれを用いた化粧料
JP2011517309A (ja) * 2007-09-25 2011-06-02 ザ レジェンツ オブ ザ ユニヴァースティ オブ カリフォルニア 食用に適した生体適合性金属有機構造体
JP2010047703A (ja) * 2008-08-22 2010-03-04 Kyowa Chem Ind Co Ltd 難燃性樹脂組成物
JP2010134097A (ja) * 2008-12-03 2010-06-17 Kyowa Chem Ind Co Ltd 光拡散構造体
WO2010067881A1 (ja) 2008-12-12 2010-06-17 協和化学工業株式会社 化粧料組成物
JPWO2010067881A1 (ja) * 2008-12-12 2012-05-24 協和化学工業株式会社 化粧料組成物
WO2011059105A1 (ja) * 2009-11-10 2011-05-19 協和化学工業株式会社 遮熱剤組成物
JPWO2011059105A1 (ja) * 2009-11-10 2013-04-04 協和化学工業株式会社 遮熱剤組成物

Also Published As

Publication number Publication date
CN1930107A (zh) 2007-03-14
KR20060123611A (ko) 2006-12-01
TWI365852B (en) 2012-06-11
CA2564630C (en) 2013-09-03
US7629480B2 (en) 2009-12-08
KR101157441B1 (ko) 2012-06-22
US20070189986A1 (en) 2007-08-16
CN1930107B (zh) 2011-07-27
EP1731497A4 (en) 2008-03-05
EP1731497A1 (en) 2006-12-13
JP4931210B2 (ja) 2012-05-16
EP1731497B1 (en) 2016-04-27
CA2564630A1 (en) 2005-09-15
NO20064525L (no) 2006-10-05
RU2006135118A (ru) 2008-04-10
AU2005219753B2 (en) 2010-06-03
IL177895A0 (en) 2006-12-31
JPWO2005085168A1 (ja) 2008-01-17
AU2005219753A1 (en) 2005-09-15
TW200540115A (en) 2005-12-16
RU2360900C2 (ru) 2009-07-10

Similar Documents

Publication Publication Date Title
WO2005085168A1 (ja) 有機酸アニオン含有アルミニウム塩水酸化物粒子、その製造方法およびその利用
TWI395715B (zh) 明礬石型化合物粒子、其製法及其利用
Chernyshova et al. Size-dependent structural transformations of hematite nanoparticles. 1. Phase transition
Dong et al. One-pot template-free synthesis, growth mechanism and enhanced photocatalytic activity of monodisperse (BiO) 2 CO 3 hierarchical hollow microspheres self-assembled with single-crystalline nanosheets
AU2006266691B2 (en) Antibacterial agent comprising silver-containing aluminum sulfate hydroxide particle and use thereof
EP3245258B1 (en) Sio2-layered double hydroxide microspheres and methods of making them
JP2003306325A (ja) 塩基性炭酸マグネシウム及びその製造方法、並びに該塩基性炭酸マグネシウムを含有する組成物又は構造体
KR100472120B1 (ko) 합성칼코알루마이트화합물및그의제조방법
Jaiswal et al. Layered double hydroxides and the environment: An overview
JP5019556B2 (ja) 多孔質粒子およびその製造方法
TW592638B (en) Aluminosilicate antibacterial agents
JP2004196574A (ja) 含スピネル型フェライト球状多孔質シリカ粒子及びその製造方法
JP2000247633A (ja) 板状Mg−Al系ハイドロタルサイト型粒子粉末及びその製造法
JP2017171547A (ja) 階層構造を有する新規ハイドロタルサイト粒子
JP2004298810A (ja) 吸着剤
Krehula et al. Formation of iron oxides in a highly alkaline medium in the presence of palladium ions
Bharali et al. Efficient Removal of Anionic Dye Pollutant by NiMgAl Layered Double Hydroxides of Variable Composition
JPH02204321A (ja) 塩基性塩化―もしくは塩基性硝酸―マグネシウム

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006510757

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020067017909

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10591588

Country of ref document: US

Ref document number: 2564630

Country of ref document: CA

Ref document number: 2007189986

Country of ref document: US

Ref document number: 2005219753

Country of ref document: AU

Ref document number: 200580007143.4

Country of ref document: CN

Ref document number: 177895

Country of ref document: IL

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

ENP Entry into the national phase

Ref document number: 2005219753

Country of ref document: AU

Date of ref document: 20050301

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2005720103

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005219753

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2006135118

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 1020067017909

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005720103

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10591588

Country of ref document: US