WO2005082976A1 - ポリマーおよびその製造方法、絶縁膜形成用組成物、ならびに絶縁膜およびその形成方法 - Google Patents

ポリマーおよびその製造方法、絶縁膜形成用組成物、ならびに絶縁膜およびその形成方法 Download PDF

Info

Publication number
WO2005082976A1
WO2005082976A1 PCT/JP2005/002343 JP2005002343W WO2005082976A1 WO 2005082976 A1 WO2005082976 A1 WO 2005082976A1 JP 2005002343 W JP2005002343 W JP 2005002343W WO 2005082976 A1 WO2005082976 A1 WO 2005082976A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polymer
insulating film
bis
component
Prior art date
Application number
PCT/JP2005/002343
Other languages
English (en)
French (fr)
Inventor
Masahiro Akiyama
Takahiko Kurosawa
Hisashi Nakagawa
Atsushi Shiota
Original Assignee
Jsr Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr Corporation filed Critical Jsr Corporation
Priority to EP05719195A priority Critical patent/EP1719793A4/en
Publication of WO2005082976A1 publication Critical patent/WO2005082976A1/ja
Priority to US11/489,468 priority patent/US20070027287A1/en
Priority to US12/717,225 priority patent/US8404786B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/48Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/14Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen
    • H01L21/02216Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen the compound being a molecule comprising at least one silicon-oxygen bond and the compound having hydrogen or an organic group attached to the silicon or oxygen, e.g. a siloxane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02345Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light
    • H01L21/02348Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light treatment by exposure to UV light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02345Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light
    • H01L21/02351Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light treatment by exposure to corpuscular radiation, e.g. exposure to electrons, alpha-particles, protons or ions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/312Organic layers, e.g. photoresist
    • H01L21/3121Layers comprising organo-silicon compounds
    • H01L21/3122Layers comprising organo-silicon compounds layers comprising polysiloxane compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31604Deposition from a gas or vapour
    • H01L21/31633Deposition of carbon doped silicon oxide, e.g. SiOC

Definitions

  • the present invention relates to a method for producing a polymer, and more particularly, to a polymer which can be suitably used for an interlayer insulating film in a semiconductor device, a method for producing the polymer, a composition for forming an insulating film, and an insulating film and forming the same About the method.
  • silica (SiO 2) film formed by a vacuum process such as a CVD method has been frequently used as an interlayer insulating film in a semiconductor element or the like.
  • a more uniform film thickness has been introduced.
  • an interlayer insulating film For the purpose of forming an interlayer insulating film, a coating-type insulating film called a SOG (Spin on Glass) film, which is mainly composed of a hydrolysis product of tetraalkoxylan, has been used. Also, with the high integration of semiconductor devices and the like, an interlayer insulating film having a low relative dielectric constant, which is mainly composed of polyorganosiloxane called organic SOG, has been developed.
  • SOG Spin on Glass
  • Japanese Patent Application Laid-Open No. 2001-127152 also discloses that a coating solution is prepared by mixing a polycarbosilane solution and a polysiloxane solution, and a low dielectric constant insulating film is formed using the coating solution.
  • a coating solution is prepared by mixing a polycarbosilane solution and a polysiloxane solution, and a low dielectric constant insulating film is formed using the coating solution.
  • this method has a problem that the carbosilane domain and the siloxane domain are respectively dispersed in the coating film in a non-uniform state.
  • a CMP Chemical Mechanical Planarization
  • An object of the present invention is to provide an insulating film which can be suitably used in a semiconductor element or the like where high integration and multilayering are desired, has a low relative dielectric constant, and is excellent in chemical resistance and the like.
  • An object of the present invention is to provide a polymer that can be formed and a method for producing the polymer.
  • Another object of the present invention is to provide a composition for forming an insulating film, a method for forming an insulating film, and an insulating film using the polymer of the present invention.
  • the method for producing a polymer of the present invention includes mixing (A) a polysiloxane compound and (B) a polycarbosilane compound in the presence of a catalyst, water and an organic solvent, and heating.
  • the (B) polycarbosilane conjugate is a polycarbosilane conjugate having a structure represented by the following general formula (1). be able to.
  • R 8 is a hydrogen atom, a halogen atom, a hydroxy group, an alkoxy group, an acyloxy group, a sulfone group, a methanesulfone group, a trifluoromethanesulfone group, an alkyl group, an alkyl group, and an aryl group.
  • R 9 is selected from the group consisting of a halogen atom, a hydroxy group, an alkoxy group, an acyloxy group, a sulfone group, a methanesulfone group, a trifluoromethansulfone group, an alkyl group, an alkenyl group, and an aryl group.
  • R 10 and R 11 are the same or different and are a halogen atom, a hydroxy group, an alkoxy group, an acyloxy group, a sulfone group, a methane sulfone group, a trifluoromethane sulfone group, an alkyl group having 216 carbon atoms, an alkenyl group And R 12 — R 14 are the same or different.
  • the component (A) is obtained by hydrolyzing and condensing a silane-conjugated product having a hydrolyzable group.
  • the component (B) can be used in an amount of 1 to 1,000 parts by weight based on 100 parts by weight in terms of a complete hydrolysis condensate.
  • the weight average molecular weight in terms of polystyrene of the component (B) may be 400 to 50,000.
  • the catalyst may be an acid catalyst, a base catalyst, or a metal catalyst.
  • the amount of the catalyst to be used is 0.001 to 100 parts by weight based on 100 parts by weight of the total of the components (A) and (B). be able to.
  • the amount of the water used may be 0.1 to 100 parts by weight based on 100 parts by weight of the total of the component (A) and the component (B). it can.
  • the method for producing a polymer according to the present invention (A) the polysiloxane conjugate and (B) the polycarbosilane compound are mixed in the presence of a catalyst, water, and an organic solvent, and heated.
  • a polymer in which polysiloxane and polycarbosilane have reacted can be obtained.
  • This polymer does not cause phase separation in the film as in the case where a polysiloxane solution and a polycarbosilane solution are blended.
  • a composition for forming an insulating film containing a specific polymer a polymer film having a small relative dielectric constant and excellent chemical resistance can be obtained.
  • the polymer according to the present invention is obtained by the above-described production method according to the present invention.
  • composition for forming a polymer film according to the present invention contains the polymer according to the present invention and an organic solvent.
  • the method for forming a polymer film according to the present invention can include applying the composition for forming an insulating film according to the present invention to a substrate, and heating the composition to 30 to 500 ° C.
  • the insulating film of the present invention is obtained by the method for forming an insulating film according to the present invention.
  • the insulating film of the present invention has a low dielectric constant and excellent chemical resistance! Therefore, for example, it can be suitably used as an interlayer insulating film of a semiconductor element.
  • the method for producing the polymer of the present invention comprises the steps of: (A) a polysiloxane compound (also referred to as the “(A) component” in the present invention); and (B) a polycarbosilane conjugate (the present invention).
  • the method includes mixing and heating the “(B) component” and “)” in the presence of a catalyst, water and an organic solvent.
  • the method for producing a polymer of the present invention when both (A) the polysiloxane conjugate and (B) the polycarbosilane conjugate have Si—OH groups, (A) the polysiloxane conjugate
  • the compound (B) and the polycarbosilane compound (B) are mixed in the presence of a catalyst, water and an organic solvent, and heated, whereby the (B) Si—OH group in the polycarbosilane conjugate and (A) )
  • the Si-OH group in the polysiloxane conjugate is condensed, and the composite siloxane of polysiloxane and polycarbosilane proceeds. Thereby, a polymer having no phase separation can be obtained.
  • the (B) polycarbosilane conjugate does not have a Si-OH group
  • the (B) polycarbosilane compound may contain a Si-H group-containing compound or a hydrolyzate.
  • the Si—OH group in the (B) polycarbosilane conjugate and the Si—OH group in the (A) polysiloxane conjugate are condensed to form a composite of the polysiloxane and the polycarbosilane. You can proceed with the dani.
  • the polysiloxane conjugate may be obtained by hydrolytic condensation of a silane conjugate having a hydrolyzable group.
  • the “hydrolyzable group” refers to a group that can be hydrolyzed. Specific examples of the hydrolyzable group include, but are not particularly limited to, for example, a hydrogen atom bonded to a silicon atom, a halogen atom, a hydroxy group, an alkoxy group, an acyloxy group, a sulfone group, a methane sulfone group, and a trifluoromethyl group. Methanesulfone group.
  • Examples of the (A) polysiloxane compound include a compound represented by the following general formula (2) (hereinafter, referred to as “compound 2”) and a compound represented by the following general formula (3) (Hereinafter referred to as “Compound 3”) and a compound represented by the following general formula (4) (hereinafter “Compound 4”) at least one of which is selected from the group consisting of The polysiloxane compound obtained by decomposition and condensation can be used.
  • R represents a hydrogen atom, a fluorine atom or a monovalent organic group
  • R 1 represents a monovalent organic group
  • a represents an integer of 13
  • R 2 represents a monovalent organic group.
  • R 3 — R 6 are the same or different, each is a monovalent organic group, b and c are the same or different, and each represents 0-2, and R 7 is an oxygen atom, a phenylene group, or ( CH)
  • examples of the monovalent organic group represented by R and R 1 include an alkyl group, an alkenyl group, and an aryl group.
  • the monovalent organic group for R 1 is particularly preferably an alkyl group, an alkyl group, or a phenol group.
  • examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group and the like, preferably having 15 to 15 carbon atoms, and these alkyl groups may be chain-like or branched.
  • a hydrogen atom may be further substituted by a fluorine atom or the like.
  • examples of the alkenyl group include a vinyl group and an aryl group.
  • examples of the aryl group include a phenyl group, a naphthyl group, a methylphenyl group, a ethylphenyl group, a chlorophenol group, a bromophenyl group, and a fluorophenyl group.
  • compound 2 examples include methyltrimethoxysilane, methyltriethoxysilane, methyltripropoxysilane, methyltriisopropoxysilane, methyltributoxysilane, methyltrisecbutoxysilane, methyltritertbutoxysilane.
  • Methyltrihue Nokishishiran E trimethoxysilane, E triethoxysilane, Echirutori n - pro Pokishishiran, E tilt Li tetraisopropoxysilane, Echirutori n-butoxysilane, Echiru tri - sec butoxysilane, Echirutori tert-butoxysilane, E tilt riff hackberry sheet Sila N-propyltrimethoxysilane, n-propyltriethoxysilane, n-propyltri-n-propoxysilane, n -propyltriisopropoxysilane, n-propyltri-n-butoxysilane, n-propyltri-sec-butoxysilane, n-propyltri-tert-butoxy Silane, n-propyltriphenoxysilane, isopropyltrimethoxysilane, isopropyltriethoxy, is
  • compounds are methyltrimethoxysilane, methyltriethoxysilane, methyltri-n-propoxysilane, methyltri-isopropoxysilane, ethyltrime Toxoxysilane, ethyltriethoxysilane, butyltrimethoxysilane, butyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, dimethyldimethoxysilane, dimethino reethoxy silane, ethino resie methoxy silane, jetino reje Toxisilane, diphenyldimethoxysilane, diphenylethoxysilane and the like.
  • examples of the monovalent organic group for R 2 include the same groups as those exemplified in the general formula (2).
  • compound 3 examples include tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, tetra-iso-propoxysilane, tetra-n-butoxysilane, tetra-sec-butoxysilane, tetra-tert-butoxysilane, tetraf-silane.
  • Enoxysilane and the like can be mentioned, and particularly preferred compounds include tetramethoxysilane and tetraethoxysilane. These may be used alone or in combination of two or more.
  • examples of the monovalent organic group represented by R 3 to R 6 include the same groups as those exemplified in the general formula (2).
  • R 7 is a compound represented by — (CH 2) —
  • One or more of the compounds 2-4 may be used at the same time.
  • an organic solvent As a powerful organic solvent, an organic solvent described in 1.3 below can be used.
  • the polysiloxane conjugate preferably has a weight average molecular weight in terms of polystyrene of 100 to 100,000, preferably 1000 to 100,000.
  • the siloxane compound component ⁇ ⁇ ⁇ -, R -, R 4 0- Contact and groups represented by R s O-is 100% hydrolyzed It becomes an OH group and shows a completely condensed one.
  • a catalyst may be contained, if necessary, when producing the polysiloxane conjugate.
  • This catalyst includes organic acids, inorganic acids, organic bases
  • Examples of the organic acid include acetic acid, propionic acid, butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, oxalic acid, maleic acid, methylmalonic acid, Adipic acid, sebacic acid, gallic acid, butyric acid, melitic acid, arachidonic acid, mykimic acid, 2-ethylhexanoic acid, oleic acid, stearic acid, linoleic acid, linoleic acid, salicylic acid, benzoic acid, ⁇ -amino Benzoic acid, ⁇ -toluenesulfonic acid, benzenesulfonic acid, monochloroacetic acid, dichloroacetic acid, trichloroacetic acid, trifluoroacetic acid, formic acid, malonic acid, phthalic acid, fuma
  • inorganic acid examples include hydrochloric acid, nitric acid, sulfuric acid, hydrofluoric acid, phosphoric acid and the like.
  • Examples of the inorganic base include ammonia, sodium hydroxide, potassium hydroxide, potassium hydroxide, calcium hydroxide, and the like.
  • organic base examples include, for example, methanolamine, ethanolamine, propanolamine, butanolamine, N-methylmethanolamine, N-ethylmethanolamine, N-propylmethanolamine, and N-methylmethanolamine.
  • Metal chelates include, for example, triethoxy mono (acetyl acetatetonate) titanium, tri- n -propoxy mono (acetyl acetatetonate) titanium, tree i propoxy 'mono (acetinol acetatetonate) titanium, tree n butoxy. Mono.
  • the amount of these catalysts to be used is usually 0.0001-1 mol per 1 mol of the total amount of the compounds (2)-(4).
  • It is 1 mole, preferably 0.001 to 0.1 mole.
  • R 8 represents a hydrogen atom, a halogen atom, a hydroxy group, an alkoxy group, an acyloxy group, a sulfone group, a methane sulfone group, a trifluoromethane sulfone group, an alkyl group, an alkyl group, and an aryl group.
  • R 9 represents a halogen atom, a hydroxy group, an alkoxy group, an acyloxy group, a sulfone group, a methane sulfone group, a trifluoromethane sulfone group, an alkyl group, an alkyl group, or an aryl group.
  • R 10 and R 11 are the same or different and each represents a halogen atom, a hydroxy group, an alkoxy group, an acyloxy group, a sulfone group, a methanesulfone group, a trifluoromethanesulfone group, a carbon number of 2 —
  • R 8 to R 11 may be the same group or different groups.
  • R 12 to R 14 are the same or different and represent a substituted or unsubstituted methylene group, alkylene group, alkenylene group, and arylene group.
  • the alkylene group include a methylene group, an ethylene group, a propylene group, a butylene group, a hexylene group, and a decylene group.
  • the alkylene group preferably has 1 to 16 carbon atoms.
  • a hydrogen atom that is branched or forms a ring is a fluorine atom Any substitution may be made.
  • examples of the alkenyl group include an ethylene group, a probelene group, a 1-butylene group, a 2-butylene group, and the like.
  • a hydrogen atom may be replaced by a fluorine atom or the like.
  • the arylene group include a phenylene group and a naphthylene group.
  • the arylene group may be substituted with a hydrogen atom, a fluorine atom or the like.
  • X, y, z are 0 ⁇ x ⁇ 800, 0 ⁇ y ⁇ 500, 0 ⁇ 1,000, respectively, more preferably, 0 ⁇ x ⁇ 500, 0 ⁇ y ⁇ 300, 0 ⁇ z ⁇ 500, more preferably 0 ⁇ x ⁇ 100, 0 ⁇ y ⁇ 50, 0 ⁇ z ⁇ 100.
  • any one of R 9 , R 10 , and R 11 is a halogen atom, a hydroxy group, an alkoxy group, an acyloxy group, a sulfone group, a methanesulfone group, a trifluoromethanesulfone group. It is.
  • the component (B) has a Si—OH group or a functional group that generates a Si—OH group by a hydrolysis reaction, and the Si—OH group or the functional group is contained in the component (A). Condensation with the Si—OH group of
  • the component (B) can have a weight average molecular weight in terms of polystyrene of 400 to 50,000.
  • the component (A) when the component (A) is obtained by hydrolyzing and condensing a silane compound having a hydrolyzable group, A) Completion of the component ⁇ ! ]
  • the component (B) can be used in an amount of 1 to 1000 parts by weight based on 100 parts by weight converted into the hydrolyzed condensate.
  • the (B) polycarbosilane compound may further have the following structural units (5) to (7).
  • R 15 represents a group selected from the group consisting of a hydrogen atom, a halogen atom, a hydroxy group, an alkoxy group, an acyloxy group, a sulfone group, a methanesulfone group, and a trifluoromethanesulfone group.
  • R 16 to R 18 are the same or different and represent the same group as R 15. )
  • the structural unit represented by the following general formula (5) is preferably 5 to 20 mol% (more preferably
  • the number of silicon atoms in component (B) is preferably 5-200, more preferably 5-50, and even more preferably 5-15.
  • the abundance ratio and the number of silicon atoms of each of the above structural units in the component (B) are, for example, 29 Si—NM
  • the (A) polysiloxane conjugate described in 1.1 and the (B) polycarbosilane compound described in 1. 2. are dissolved or dispersed in an organic solvent. It is used.
  • the concentration of the total amount of the component (A) and the component (B) in the organic solvent is preferably 110 to 30% by weight.
  • Examples of the organic solvent that can be used in the method for producing a polymer of the present invention include alcohol solvents, ketone solvents, amide solvents, ether solvents, ester solvents, aliphatic hydrocarbon solvents, and aromatic hydrocarbons. At least one selected from the group consisting of a system solvent and a halogen-containing solvent is exemplified.
  • alcohol solvents include methanol, ethanol, n-propanol, i-propanol, n-butanol, i-butanol, sec-butanol, t-butanol, n-pentanol, i-pentanol, 2-methylbutanol, and sec-pentanol.
  • T-pentanol 3-methoxybutanol, n-xanol, 2-methylpentanol, sec-xanol, 2-ethylbutanol, sec-ptanol, 3-ptanol, n-octanol, 2-ethylhexanol, sec-octanol N-Alcohol, 2,6-dimethyl-4-butanol, n-decanol, sec- decyl alcohol, trimethyl alcohol, sec-tetradecyl alcohol, sec-heptadecyl alcohol, furfuryl alcohol, phenol , Cyclohexanol, methylcyclo Hexanol, 3, 3, 5-trimethyl cycloheteroalkyl key Sanol, benzyl alcohol, mono-alcohol solvents such as diacetone alcohol; Ethylene glycolone, 1,2-propylene glycol, 1,3-butylene glycol, 2,4-pentan
  • One or more of these alcohol solvents may be used at the same time.
  • Ketone solvents include acetone, methyl ethyl ketone, methyl n-propyl ketone, methyl n-butyl ketone, getyl ketone, methyl i-butyl ketone, methyl n-pentyl ketone, ethyl n-butyl ketone, methyl n-hexyl ketone, and di-ketone.
  • i-butyl ketone trimethylnonanone, cyclopentanone, cyclohexanone, cycloheptanone, cyclooctanone, 2-hexanone, methylcyclohexanone, 2,4 pentanedione, acetonyl acetone, diacetone alcohol, acetophenone, fenchone, etc.
  • Ketone solvents can be mentioned.
  • ketone solvents may be used alone or in combination of two or more.
  • amide solvents examples include ⁇ , ⁇ dimethylimidazolidinone, ⁇ methylformamide
  • amide solvents may be used simultaneously.
  • Examples of the ether solvent system include ethyl ether, i-propyl ether, n-butyl ether, n-hexyl ether, 2-ethylhexyl ether, ethylene oxide, 1,2-propylenoxide, dioxolan, and 4-methyldioxide.
  • One or more of these ether solvents may be used simultaneously.
  • ester solvents examples include getyl carbonate, propylene carbonate, methyl acetate, ethyl acetate, ⁇ -butyrolataton, ⁇ -valerolatatone, ⁇ -propyl acetate, propyl acetate, ⁇ -butyl acetate, i-butyl acetate, and sec-butyl acetate.
  • ester solvents may be used simultaneously.
  • Examples of the aliphatic hydrocarbon-based solvent include n-pentane, i-pentane, n-xane, i-xan, n-heptane, i-heptane, 2,2,4-trimethylpentane, n-octane, i-octane, cyclohexane, methylcyclohexane
  • Examples thereof include aliphatic hydrocarbon solvents such as hexane.
  • One or more of these aliphatic hydrocarbon solvents may be used at the same time.
  • aromatic hydrocarbon solvents include benzene, toluene, xylene, ethylbenzene, trimethylbenzene, methylethylbenzene, n-propylbenzene, i-propylbenzene, getylbenzene, i-butylbenzene, triethylbenzene, Examples thereof include aromatic hydrocarbon solvents such as dipropyl benzene, n-amylnaphthalene, and trimethylbenzene.
  • One or more of these aromatic hydrocarbon solvents may be used simultaneously.
  • halogen-containing solvent examples include halogen-containing solvents such as dichloromethane, chloroform, chlorofluorocarbon, chlorobenzene, and dichlorobenzene.
  • ketone solvents, ester solvents, and aromatic hydrocarbon solvents are particularly preferred as the types of organic solvents for which it is desirable to use an organic solvent having a boiling point of less than 250 ° C. More preferably, they are used alone or in combination of two or more. [0077] 1. 4. Catalyst
  • a catalyst can be used in the method for producing a polymer of the present invention.
  • a catalyst include the catalysts that can be used for producing the (A) polysiloxane conjugate described in 1.1.4.
  • the amount of the catalyst to be used is preferably 0.001 to 100 parts by weight based on 100 parts by weight of the total of the component (A) and the component (B).
  • the amount is more preferably 0.005 to 50 parts by weight, and still more preferably 0.01 to 10 parts by weight. If the amount of the catalyst used is less than 0.001 parts by weight, the compounding reaction of the component (A) and the component (B) may not be sufficiently performed, and phase separation may occur when a coating is formed. If the amount exceeds 100 parts by weight, the complex reaction of the component (A) and the component (B) may rapidly progress, and may cause gelation.
  • the amount of water used is preferably 0.1 to 100 parts by weight based on 100 parts by weight of the total of the components (A) and (B). — More preferably 50 parts by weight, and even more preferably 120 parts by weight.
  • the amount of water used is 0.1 to 100 parts by weight, it is possible to obtain a film having a low relative dielectric constant and improved chemical resistance.
  • the amount of the component (B) to be used with respect to the component (A) is as follows: B)
  • the component is 1.1-1,000 parts by weight, more preferably 5-50 parts by weight.
  • the amount of the component (B) used relative to the component (A) S is in this range, it is possible to obtain a film having improved chemical resistance while maintaining a low dielectric constant.
  • composition for forming an insulating film of the present invention components such as an organic polymer and a surfactant are further added to a liquid obtained by dissolving or dispersing a polymer in an organic solvent, obtained by the production method described in 1. May be added.
  • An organic solvent can be further added to the liquid material as needed.
  • an organic solvent For example, the organic solvents described in 1. and 3. can be exemplified.
  • the organic solvent to be added may be the same as the organic solvent used in the production of the polymer of the present invention, or the organic solvent used in the production of the polymer of the present invention after the production of the polymer of the present invention is completed. Can be replaced with a desired organic solvent, or a desired organic solvent can be added.
  • organic polymer examples include a polymer having a sugar chain structure, a vinylamide polymer, a (meth) acrylic polymer, an aromatic vinyl compound polymer, a dendrimer, a polyimide, a polyamic acid, a polyarylene, a polyamide, and a polymer.
  • examples include quinoxaline, polyoxadiazole, fluorine-based polymers, and polymers having a polyalkylene oxide structure.
  • Examples of the polymer having a polyalkylene oxide structure include a polymethylene oxide structure, a polyethylene oxide structure, a polypropylene oxide structure, a polytetramethylene oxide structure, and a polybutylene oxide structure.
  • polyoxymethylene alkyl ethers polyoxyethylene alkyl ethers, polyoxyethylene ethylene phenyl ethers, polyoxyethylene ester ethers, polyoxyethylene lanolin derivatives, and alkylphenol formalin condensates can be used.
  • Ether type compounds such as ethylene oxide derivatives, polyoxyethylene polyoxypropylene block copolymers, polyoxyethylene polyoxypropylene alkyl ethers, polyoxyethylene glycerin fatty acid esters, polyoxyethylene sorbitan fatty acid esters, polyoxyethylene sorbitol fatty acid esters, polyoxyethylene Fatty acid alcohols such as ether amide sulfates, polyethylene glycol fatty acid esters, ethylene glycol Call fatty acid esters, fatty Monoguriseri de, polyglycerol fatty acid esters, sorbitan fatty acid esters, propylene glycol fatty acid esters, ether-ester type compounds such as sucrose fatty acid esters and the like can ani gel.
  • Examples of the polyoxyethylene polyoxypropylene block copolymer include compounds having the following block structures.
  • n a number of 0-90.
  • polyoxyethylene alkyl ether polyoxyethylene polyoxypropylene block copolymer, polyoxyethylene polyoxypropylene anolequinolate ester, polyoxyethylene glycerin fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester Ether-type compounds such as oxyethylene sorbitol fatty acid ester can be mentioned as more preferable examples.
  • One or more of the above organic polymers may be used simultaneously.
  • the surfactant examples include a nonionic surfactant, an anionic surfactant, a cationic surfactant, an amphoteric surfactant, and the like. Further, a fluorine-based surfactant, a silicone-based surfactant, Examples thereof include polyalkylene oxide-based surfactants and poly (meth) acrylate-based surfactants, and preferred examples include fluorine-based surfactants and silicone-based surfactants.
  • fluorinated surfactant examples include 1,1,2,2-tetrafluorooctyl (1,1,2,2-tetrafluoropropyl) ether and 1,1,2,2-tetrafluorocarbon Octylhexyl ether, octaethylene glycol di (1,1,2,2-tetrafluorobutyl) ether, hexethylene glycol (1,1,2,2,3,3-hexafluoropentyl) ether, Octapropylene glycol di (1,1,2,2-tetrafluorobutyl) ether, hexapropylene glycol di (1,1,2,2,3,3-hexafluoropentyl) ether, perfluorododecyl sulfonate Sodium, 1, 1, 2, 2, 8, 8, 9, 9, 10, 10—decaf mouth rhododecane, 1, 1, 2, 2, 3, 3—hexafluorodecane, N— [3— (perfluo Looctanes
  • silicone surfactant examples include SH7PA, SH21PA, SH30PA, and ST9.
  • 4PA [a shift is also available from Toray 'Dowko Jung' Silicone Co., Ltd.].
  • SH28PA and SH30PA are particularly preferable.
  • the amount of the surfactant to be used is usually 0.000001 to 1 part by weight based on 100 parts by weight of the polymer having the component (A) and component (B).
  • the insulating film of the present invention can be obtained by applying the composition for forming an insulating film described in 2 to form a coating film, and then heating and irradiating the coating film with Z or high energy rays.
  • the insulating film forming composition of the present invention is applied to a silicon wafer, a SiO wafer, a SiN wafer or the like.
  • a coating method such as spin coating, dipping, roll coating, or spraying is used.
  • the dry film thickness is about 0.05 to 2.5 m in a single coating, and about 0.1 to 5.0 m in a double coating. Can be formed. After that, drying at room temperature, heating at a temperature of usually 80-600 ° C, preferably 30-500 ° C, more preferably 60-430 ° C, usually for 5-240 minutes. By drying by drying, a vitreous or macromolecular coating film can be formed.
  • a hot plate, an oven, a furnace, or the like may be used as a heating method at this time.
  • the heating can be performed under air, a nitrogen atmosphere, an argon atmosphere, a vacuum, a reduced pressure with controlled oxygen concentration, or the like.
  • heating may be performed stepwise, or an atmosphere such as nitrogen, air, oxygen, or reduced pressure may be selected.
  • the film-forming composition is applied to a substrate, and heated to 25 to 500 ° C, preferably 30 to 450 ° C, more preferably 60 to 430 ° C under high energy ray irradiation. be able to
  • the high energy ray may be at least one kind of high energy energy selected from electron beam, ultraviolet ray and X-ray power. Illumination conditions when an electron beam is used are described below as an example.
  • the required time can be reduced as compared with the case of thermal curing. Therefore, for example, when the present invention is applied to formation of an inter-layer insulating film of a semiconductor device, the processing time can be reduced even if every-wafer processing is performed.
  • the energy when irradiating an electron beam is 0.1 to 50 keV, preferably 1 to 30 keV, and the amount of electron beam irradiation is 1 to 1000 ⁇ CZcm 2 , preferably 10 to 500 ⁇ CZcm 2 . If the energy of the electron beam irradiation is 0.1-50 keV, the electron beam must sufficiently penetrate into the coating film without penetrating the film and damaging the underlying semiconductor device. Can be. In addition, when the electron beam irradiation amount is 1000 C / cm 2, it is possible to react the entire coating film and reduce damage to the coating film.
  • the substrate temperature during electron beam irradiation is preferably from 300 to 500 ° C, more preferably from 350 to 420 ° C. If the substrate temperature is lower than 300 ° C, the coating film is not sufficiently cured. If the substrate temperature is higher than 500 ° C, there is a risk that the coating film will be partially decomposed.
  • the substrate before the coating film is irradiated with an electron beam, the substrate may be heated to 250 to 500 ° C and the coating film may be preliminarily thermally cured and then irradiated with an electron beam. According to this method, the nonuniformity of the film thickness depending on the nonuniformity of the irradiation amount of the electron beam can be reduced.
  • irradiation with an electron beam is preferably performed in an atmosphere having an oxygen concentration of 10, OOOppm or less, preferably 1, OOOppm. If the oxygen concentration exceeds 10, OOOppm, electron beam irradiation may not be performed effectively and curing may be insufficient.
  • the irradiation with the electron beam may be performed in an inert gas atmosphere.
  • the inert gas used is N
  • the film is oxidized and the obtained coating film can maintain a low dielectric constant.
  • This electron beam irradiation may be performed in a reduced pressure atmosphere.
  • the pressure at that time is in the range of 110 mTorr, more preferably in the range of 200 mTorr.
  • Irradiation with high energy energy can be performed using ultraviolet rays in addition to using electron beams as described above.
  • conditions when using ultraviolet light will be described.
  • Irradiation with ultraviolet rays is preferably performed with ultraviolet rays having a wavelength of 100 to 260 nm, more preferably 150 to 260 nm.
  • Irradiation with ultraviolet rays is preferably performed in the presence of oxygen.
  • the insulating film of the present invention is characterized in that it has many silicon-carbon bonds in the film structure. Further, the polymer of the present invention is condensed in a state where the (A) polysiloxane conjugate and the (B) polycarbosilane coexist, so that the polysiloxane and the polycarbosilane are conjugated. As a result, it is possible to obtain a homogeneous film which does not cause phase separation in the film as in the case where a polysiloxane solution and a polycarbosilane solution are blended. By using a film-forming composition containing this polymer, an insulating film having a small relative dielectric constant and excellent in mechanical strength, CMP resistance and chemical resistance can be obtained.
  • the insulating film of the present invention has a low dielectric constant and excellent mechanical strength, CMP resistance and chemical resistance, so that it can be used for interlayers for semiconductor devices such as LSI, system LSI, DRAM, SDRAM, RDRAM, and D-RDRAM.
  • Protective films such as insulating films and etching stopper films, surface coat films for semiconductor devices, intermediate layers in the semiconductor manufacturing process using multilayer resist, interlayer insulating films for multilayer wiring boards, protective films and insulating films for liquid crystal display devices, etc. It is useful for applications.
  • An aluminum electrode pattern was formed on the obtained polymer film by a vapor deposition method to prepare a sample for measuring a relative dielectric constant.
  • the relative permittivity of the polymer film at room temperature was measured at room temperature by the CV method at a frequency of 100 kHz using an HP16451B electrode and an HP4284A precision LCR meter manufactured by Yokogawa Hewlett-Packard Co., Ltd.
  • the 8-inch wafer on which the polymer film was formed was immersed in a 0.2% diluted hydrofluoric acid aqueous solution for 1 minute at room temperature, and the change in film thickness before and after the immersion of the polymer film was observed. If the residual film ratio defined below is 99% or more, it is determined that the chemical resistance is good (represented by “A” in Table 1). If the residual film ratio is less than 99%, It was determined that the chemical resistance was good (represented by “B” in Table 1).
  • Remaining film ratio (%) (Film thickness after immersion) ⁇ (Film thickness before immersion) X 100
  • A-1 Polylene glycol monopropyl ether solution with a polysiloxane solids concentration of 13.0%
  • Synthesis Example 1 150 g, 25 g hydrochloric acid 5 g, ultrapure water 3 20 g, and ethanol 600 g 1.5 g of a commercially available polycarbosilane having a weight average molecular weight of 1,000 (trade name: NIPUSI Type-Sj, a polydimethylsilane carbosilanated polymer available from Nippon Carbon Co., Ltd.) is added to the mixed solution, and the mixture is heated to 60 °. The mixture was reacted for 5 hours with C.
  • NIPUSI Type-Sj a polydimethylsilane carbosilanated polymer available from Nippon Carbon Co., Ltd.
  • composition (A-2) obtained in Example 1 composition (A-3) obtained in Example 2, Example 3
  • Each of the composition (A-4) obtained in the above and the solution (A-1) obtained in the synthesis example 1 were applied on an 8-inch silicon wafer by a spin coating method, and the resulting mixture was air-dried at 80 ° C for 5 minutes. After heating at 200 ° C for 5 minutes under nitrogen, further heat at 340 ° C, 360 ° C, and 380 ° C for 30 minutes each under vacuum, and further heat at 425 ° C under vacuum. Heating for 1 hour formed a colorless and transparent coating film. The dielectric constant and chemical resistance of this coating film were measured by the evaluation method described in 4.1. The results are shown in Table 1.
  • composition (A-2) obtained in Example 1 The composition (A-2) obtained in Example 1, the composition (A-3) obtained in Example 2, the composition (A-4) obtained in Example 3, and the composition obtained in Synthesis Example 1
  • Each of the solutions (A-1) was applied onto an 8-inch silicon wafer by spin coating to obtain a coating film having a thickness of 0.5 m. After heating in the air at 80 ° C for 5 minutes and then in a nitrogen atmosphere at / !, and heating at 200 ° C for 5 minutes, the resulting coating film was accelerated at 5 keV and hot plate temperature 400.
  • the insulating film was formed by irradiating an electron beam under the conditions of ° C, pressure 1.33Pa and He atmosphere. The dielectric constant and chemical resistance of this insulating film were measured by the evaluation method described in 4.1. The results are shown in Table 1.
  • Comparative Example 2 2.3 B As is clear from Table 1, according to Experimental Examples 1 to 6, the relative dielectric constant is lower and more excellent than Comparative Examples 1 and 2 using the composition containing only polysiloxane. It was confirmed that an insulating film having chemical resistance was obtained.

Abstract

 本発明のポリマーの製造方法は、(A)ポリシロキサン化合物と、(B)ポリカルボシラン化合物とを、触媒、水および有機溶媒の存在下で混合し、加熱することを含む。

Description

明 細 書
ポリマーおよびその製造方法、絶縁膜形成用組成物、ならびに絶縁膜お よびその形成方法
技術分野
[0001] 本発明は、ポリマーの製造方法に関し、さらに詳しくは、半導体素子における層間 絶縁膜などに好適に用いることができるポリマーおよびその製造方法、絶縁膜形成 用組成物、ならびに絶縁膜およびその形成方法に関する。
背景技術
[0002] 従来、半導体素子などにおける層間絶縁膜として、 CVD法などの真空プロセスに より形成されたシリカ(SiO )膜が多用されている。そして、近年、より均一な膜厚を有
2
する層間絶縁膜を形成することを目的として、 SOG (Spin on Glass)膜と呼ばれる テトラアルコキシランの加水分解生成物を主成分とする塗布型の絶縁膜も使用される ようになつている。また、半導体素子などの高集積ィ匕に伴い、有機 SOGと呼ばれるポ リオルガノシロキサンを主成分とする低比誘電率の層間絶縁膜の開発も行なわれて いる。
[0003] し力しながら、半導体素子などのさらなる高集積ィ匕ゃ多層化に伴い、より優れた導 体間の電気絶縁性が要求されており、したがって、保存安定性が良好でより低比誘 電率でリーク電流特性に優れる層間絶縁膜が求められるようになつている。
[0004] 特開 2001— 127152号公報には、また、ポリカルボシラン溶液とポリシロキサン溶 液とを混合することにより塗布液を調製し、この塗布液を用いて低誘電率絶縁膜を形 成する方法が提案されている。し力しながら、この方法ではカルボシランのドメインと シロキサンのドメインとが不均一な状態で塗膜中にそれぞれ分散してしまうという問題 があった。また、半導体装置の製造過程では、絶縁層を平坦ィ匕するための CMP (Ch emical Mechanical Planarization)工程や、各種洗浄工程が行われる。そのため 、半導体装置の層間絶縁膜や保護膜などに適用するためには、誘電率特性の他に 、機械的強度や薬液による侵食に耐えられる程度の薬液耐性を有することも求めら れている。 発明の開示
[0005] 本発明の目的は、高集積ィ匕および多層化が望まれている半導体素子などにおい て好適に用いることができ、低比誘電率であり、薬液耐性などにも優れた絶縁膜を形 成することができるポリマーおよびその製造方法を提供することにある。
[0006] 本発明の他の目的は、前記本発明のポリマーを用いた絶縁膜形成用組成物、絶 縁膜の形成方法および絶縁膜を提供することにある。
[0007] 本発明のポリマーの製造方法は、(A)ポリシロキサン化合物と、(B)ポリカルボシラ ン化合物とを、触媒、水および有機溶媒の存在下で混合し、加熱することを含む。
[0008] 本発明のポリマーの製造方法にぉ 、て、前記 (B)ポリカルボシランィ匕合物は、下記 一般式(1)で表される構造を有するポリカルボシランィ匕合物であることができる。
[0009] [化 1]
Figure imgf000003_0001
· · · · · (1)
(式中、 R8は水素原子、ハロゲン原子、ヒドロキシ基、アルコキシ基、ァシロキシ基、 スルホン基、メタンスルホン基、トリフルォロメタンスルホン基、アルキル基、ァルケ- ル基、およびァリール基力もなる群より選ばれる基を示し、 R9はハロゲン原子、ヒドロ キシ基、アルコキシ基、ァシロキシ基、スルホン基、メタンスルホン基、トリフルォロメタ ンスルホン基、アルキル基、アルケニル基、およびァリール基カゝらなる群より選ばれる 基を示し、 R10, R11は同一または異なり、ハロゲン原子、ヒドロキシ基、アルコキシ基、 ァシロキシ基、スルホン基、メタンスルホン基、トリフルォロメタンスルホン基、炭素数 2 一 6のアルキル基、アルケニル基、およびァリール基力 なる群より選ばれる基を示し 、 R12— R14は同一または異なり、置換または非置換のメチレン基、アルキレン基、ァ ルケ-レン基、およびァリーレン基を示し、 X, y, zは、それぞれ 0— 10, 000の数を 示し、 5<x+y+ z< 10, 000の条件を満たす。ただし、 x = 0の場合には、 R9、 R10、 R11のいずれかひとつは、ハロゲン原子、ヒドロキシ基、アルコキシ基、ァシロキシ基、 スルホン基、メタンスルホン基、トリフルォロメタンスルホン基である。 )
[0010] 本発明のポリマーの製造方法において、前記 (A)成分は、加水分解性基を有する シランィ匕合物を加水分解縮合することにより得られ、前記 (A)成分を (A)成分の完全 加水分解縮合物に換算した 100重量部に対して、前記 (B)成分が 1一 1000重量部 であることができる。
[0011] 本発明のポリマーの製造方法において、前記 (B)成分のポリスチレン換算重量平 均分子量が 400— 50, 000であることができる。
[0012] 本発明のポリマーの製造方法において、前記触媒は酸触媒、塩基触媒、または金 属触媒であることができる。
[0013] 本発明のポリマーの製造方法において、前記触媒の使用量が、前記 (A)成分およ び前記(B)成分の合計 100重量部に対して、 0. 001— 100重量部であることができ る。
[0014] 本発明のポリマーの製造方法において、前記水の使用量が、前記 (A)成分および 前記 (B)成分の合計 100重量部に対して、 0. 1— 100重量部であることができる。
[0015] 本発明に係るポリマーの製造方法よれば、(A)ポリシロキサンィ匕合物と、(B)ポリ力 ルボシラン化合物とを、触媒、水および有機溶媒の存在下で混合し、加熱すること〖こ より、ポリシロキサンとポリカルボシランとが反応したポリマーを得ることができる。この ポリマーは、ポリシロキサン溶液とポリカルボシラン溶液とをブレンドした場合のように 、膜中に相分離を発生することがない。このような特定のポリマーを含有する絶縁膜 形成用組成物を用いることにより、比誘電率が小さぐ薬液耐性に優れたポリマー膜 を得ることができる。
[0016] 本発明に係るポリマーは、上述した本発明に係る製造方法によって得られる。
[0017] 本発明に係るポリマー膜形成用組成物は、本発明に係るポリマーと有機溶剤とを含 有する。
[0018] 本発明に係るポリマー膜の形成方法は、本発明に係る絶縁膜形成用組成物を基 板に塗布し、 30— 500°Cに加熱することを含むことができる。
[0019] 本発明の絶縁膜は、本発明に係る絶縁膜の形成方法により得られる。
[0020] 本発明の絶縁膜は、上述したように、低比誘電率であり、薬液耐性に優れて!/、るた め、たとえば、半導体素子の層間絶縁膜として好適に用いることができる。
発明を実施するための最良の形態
[0021] 以下に、本発明のポリマーおよびその製造方法、絶縁膜形成用組成物、ならびに 絶縁膜およびその形成方法についてさらに詳細に説明する。
[0022] 1.ポリマーの製造方法
本発明のポリマーの製造方法は、(A)ポリシロキサン化合物 (本発明にお!/、て「 (A )成分」とも 、う)と、 (B)ポリカルボシランィ匕合物 (本発明にお 、て「 (B)成分」とも 、う )とを、触媒、水および有機溶媒の存在下で混合し、加熱することを含む。
[0023] 本発明のポリマーの製造方法によれば、(A)ポリシロキサンィ匕合物および (B)ポリ カルボシランィ匕合物がともに Si— OH基を有する場合、 (A)ポリシロキサンィ匕合物と (B )ポリカルボシラン化合物とを、触媒、水および有機溶媒の存在下で混合し、加熱す ることにより、(B)ポリカルボシランィ匕合物中の Si— OH基と (A)ポリシロキサンィ匕合物 中の Si— OH基とが縮合して、ポリシロキサンとポリカルボシランとの複合ィ匕が進行す る。これにより、相分離がないポリマーを得ることができる。
[0024] また、(B)ポリカルボシランィ匕合物が Si— OH基を有していない場合であっても、 (B) ポリカルボシラン化合物中が Si— H基を含む力 あるいは加水分解により Si— OH基を 生成する官能基を有しており、 (A)ポリシロキサンィ匕合物と (B)ポリカルボシランィ匕合 物とを、触媒、水および有機溶媒の存在下で混合し、加熱することにより、(B)ポリ力 ルボシランィ匕合物中へ Si— OH基を導入することができる。これにより、(B)ポリカルボ シランィ匕合物中の Si— OH基と (A)ポリシロキサンィ匕合物中の Si— OH基とが縮合す ることにより、ポリシロキサンとポリカルボシランとの複合ィ匕を進行させることができる。
[0025] 1. 1. (A)ポリシロキサン化合物
本発明のポリマーの製造方法において、(A)ポリシロキサンィ匕合物は、加水分解性 基を有するシランィ匕合物を加水分解縮合することにより得られるものであってもよい。 ここで、「加水分解性基」とは、加水分解されうる基をいう。加水分解性基の具体例と しては、特に限定されないが、例えば、シリコン原子に結合した水素原子、ハロゲン 原子、ヒドロキシ基、アルコキシ基、ァシロキシ基、スルホン基、メタンスルホン基、およ びトリフルォロメタンスルホン基が挙げられる。 [0026] (A)ポリシロキサンィ匕合物としては、例えば、下記一般式(2)で表される化合物(以 下、「化合物 2」という)、下記一般式 (3)で表される化合物 (以下、「ィ匕合物 3」という) および下記一般式 (4)で表される化合物(以下、「化合物 4」 、う)の群力も選ばれ た少なくとも 1種のシランィ匕合物を加水分解縮合して得られるポリシロキサンィ匕合物を 用!/、ることができる。
[0027] R Si (OR1) (2)
a 4— a
(式中、 Rは水素原子、フッ素原子または 1価の有機基、 R1は 1価の有機基、 aは 1 一 3の整数を示す。 )
Si (OR2) (3)
4
(式中、 R2は 1価の有機基を示す。 )
R3 (R40) Si-(R?) -Si (OR5) R6
b 3-b d 3-c c …(4)
(式中、 R3— R6は同一または異なり、それぞれ 1価の有機基、 bおよび cは同一また は異なり、 0— 2の数を示し、 R7は酸素原子、フエ-レン基または (CH ) 一で表され
2 m る基(ここで、 mは 1一 6の整数である)、 dは 0または 1を示す。)
[0028] 1. 1. 1.化合物 2
前記一般式(2)において、 R, R1で表される 1価の有機基としては、アルキル基、ァ ルケニル基、およびァリール基などを挙げることができる。なかでも、一般式(2)にお いて、 R1の 1価の有機基は、特にアルキル基、ァルケ-ル基、またはフエ-ル基であ ることが好ましい。ここで、アルキル基としては、メチル基、ェチル基、プロピル基、ブ チル基などが挙げられ、好ましくは炭素数 1一 5であり、これらのアルキル基は鎖状で も、分岐していてもよぐさらに水素原子がフッ素原子などに置換されていてもよい。 前記一般式(2)において、アルケニル基としては、ビニル基、ァリル基などが挙げら れる。前記一般式(2)において、ァリール基としては、フエ-ル基、ナフチル基、メチ ルフエ-ル基、ェチルフエ-ル基、クロ口フエ-ル基、ブロモフエ-ル基、フルオロフェ -ル基などを挙げることができる。
[0029] 化合物 2の具体例としては、メチルトリメトキシシラン、メチルトリエトキシシラン、メチ ルトリー n プロポキシシラン、メチルトリイソプロポキシシラン、メチルトリー n ブトキシシ ラン、メチルトリ— sec ブトキシシラン、メチルトリー tert ブトキシシラン、メチルトリフエ ノキシシラン、ェチルトリメトキシシラン、ェチルトリエトキシシラン、ェチルトリー n—プロ ポキシシラン、ェチルトリイソプロポキシシラン、ェチルトリー n ブトキシシラン、ェチル トリ— sec ブトキシシラン、ェチルトリー tert ブトキシシラン、ェチルトリフエノキシシラ ン、 n プロピルトリメトキシシラン、 n プロピルトリエトキシシラン、 n プロピルトリー n— プロポキシシラン、 n—プロピルトリイソプロポキシシラン、 n プロピルトリー n ブトキシ シラン、 n プロピルトリ— sec ブトキシシラン、 n プロピルトリー tert ブトキシシラン、 n —プロピルトリフエノキシシラン、イソプロピルトリメトキシシラン、イソプロピルトリエトキシ シラン、イソプロピルトリー n プロポキシシラン、イソプロピルトリイソプロポキシシラン、 イソプロピルトリー n ブトキシシラン、イソプロピルトリ一 sec ブトキシシラン、イソプロピ ルトリー tert ブトキシシラン、イソプロピルトリフエノキシシラン、 n—ブチルトリメトキシシ ラン、 n ブチルトリエトキシシラン、 n ブチルトリー n プロポキシシラン、 n ブチルトリ イソプロポキシシラン、 n—ブチルトリー n—ブトキシシラン、 n ブチルトリー sec ブトキシ シラン、 n ブチルトリー tert ブトキシシラン、 n ブチルトリフエノキシシラン、 sec—ブ チルトリメトキシシラン、 sec ブチルイソトリエトキシシラン、 sec ブチルトリー n プロボ キシシラン、 sec ブチルトリイソプロポキシシラン、 sec ブチルトリー n ブトキシシラン 、 sec ブチルトリー sec ブトキシシラン、 sec ブチルトリー tert ブトキシシラン、 sec— ブチルトリフエノキシシラン、 tert—ブチルトリメトキシシラン、 tert ブチルトリエトキシ シラン、 tert ブチルトー n プロポキシシラン、 tert ブチルトリイソプロポキシシラン、 t ert ブチルトリー n ブトキシシラン、 tert ブチルトリー sec ブトキシシラン、 tert—ブチ ルトリー tert ブトキシシラン、 tert ブチルトリフエノキシシラン、フエニルトリメトキシシ ラン、フエニルトリエトキシシラン、フエニルトリー n プロポキシシラン、フエニルトリイソ プロポキシシラン、フエニルトリー n—ブトキシシラン、フエニルトリー sec ブトキシシラン、 フエニルトリー tert ブトキシシラン、フエニルトリフエノキシシラン、ビニルトリメトキシシ ラン、ビニルトリエトキシシラン、ビニルトリー n プロポキシシラン、ビニルトリイソプロボ キシシラン、ビニルトリー n ブトキシシラン、ビニルトリ— sec ブトキシシラン、ビニルトリ tert ブトキシシラン、ビニルトリフエノキシシラン、ジメチルジメトキシシラン、ジメチ ノレジェトキシシラン、ジメチノレジ プロポキシシラン、ジメチノレジイソプロポキシシラ ン、ジメチルジー n ブトキシシラン、ジメチルジー sec—ブトキシシラン、ジメチルジー ter t ブトキシシラン、ジメチノレジフエノキシシラン、ジェチノレジメトキシシラン、ジェチノレ ジエトキシシラン、ジェチノレジ プロポキシシラン、ジェチノレジイソプロポキシシラン 、ジェチルジー n—ブトキシシラン、ジェチルジー sec ブトキシシラン、ジェチルジー ter t ブトキシシラン、ジェチノレジフエノキシシラン、ジー n プロピノレジメトキシシラン、ジー n プロピルジェトキシシラン、ジー n プロピルジー n プロポキシシラン、ジー n プロピ ノレジイソプロボキシシラン、ジー n プロピルジー n ブトキシシラン、ジー n プロピルジー sec ブトキシシラン、ジー n プロピルジー tert ブトキシシラン、ジー n プロピルジーフ エノキシシラン、ジイソプロピノレジメトキシシラン、ジイソプロピノレジェトキシシラン、ジィ ソプロピルジー n プロポキシシラン、ジイソプロピルジイソプロボキシシラン、ジィソプ ロピルジー n ブトキシシラン、ジイソプロピルジー sec ブトキシシラン、ジイソプロピノレ ジー tert ブトキシシラン、ジイソプロピルジフエノキシシラン、ジー n—ブチルジメトキシ シラン、ジー n—ブチルジェトキシシラン、ジー n—ブチルジー n プロポキシシラン、ジー n ーブチルジイソプロポキシシラン、ジー n—ブチルジー n ブトキシシラン、ジー n ブチル ジ—sec ブトキシシラン、ジー n—ブチルジー tert ブトキシシラン、ジー n—ブチルジーフ エノキシシラン、ジー sec—ブチルジメトキシシラン、ジー sec—ブチルジェトキシシラン、 ジー sec—ブチルジー n プロポキシシラン、ジー sec—ブチルジイソプロポキシシラン、ジ —sec—ブチルジー n ブトキシシラン、ジ— sec—ブチルジー sec ブトキシシラン、ジー se cーブチルジー tert ブトキシシラン、ジー sec—ブチルジーフエノキシシラン、ジー tert— ブチルジメトキシシラン、ジー tert—ブチルジェトキシシラン、ジー tert—ブチルジー n— プロポキシシラン、ジー tert—ブチルジイソプロポキシシラン、ジー tert—ブチルジー n— ブトキシシラン、ジー tert—ブチルジー sec ブトキシシラン、ジー tert—ブチルジー tert— ブトキシシラン、ジー tert—ブチルジーフエノキシシラン、ジフエ二ルジメトキシシラン、ジ フエ二ルジーエトキシシラン、ジフエ二ルジー n プロポキシシラン、ジフエニルジイソプ ロポキシシラン、ジフエ二ルジー n ブトキシシラン、ジフエ二ルジー sec ブトキシシラン 、ジフエ二ルジー tert ブトキシシラン、ジフエ二ルジフエノキシシラン、ジビニルトリメト キシシランが挙げられる。これらは、 1種あるいは 2種以上を同時に使用してもよい。 化合物 2として特に好ま U、化合物は、メチルトリメトキシシラン、メチルトリエトキシシ ラン、メチルトリー n プロポキシシラン、メチルトリー iso プロポキシシラン、ェチルトリメ トキシシラン、ェチルトリエトキシシラン、ビュルトリメトキシシラン、ビュルトリエトキシシ ラン、フエニルトリメトキシシラン、フエニルトリエトキシシラン、ジメチルジメトキシシラン 、ジメチノレジェトキシシラン、ジェチノレジメトキシシラン、ジェチノレジェトキシシラン、ジ フエ二ルジメトキシシラン、ジフエ二ルジェトキシシランなどである。
[0031] 1. 1. 2.化合物 3
一般式(3)において、 R2の 1価の有機基としては、前記一般式(2)において例示し たものと同様の基を挙げることができる。
[0032] 化合物 3の具体例としては、テトラメトキシシラン、テトラエトキシシラン、テトラー n—プ ロポキシシラン、テトラー iso—プロポキシシラン、テトラー n—ブトキシラン、テトラー sec— ブトキシシラン、テトラー tert—ブトキシシラン、テトラフエノキシシランなどを挙げること ができ、特に好ましい化合物としてはテトラメトキシシラン、テトラエトキシシランが挙げ られる。これらは、 1種あるいは 2種以上を同時に使用してもよい。
[0033] 1. 1. 3.化合物 4
一般式 (4)において、 R3— R6の 1価の有機基としては、前記一般式(2)において例 示したものと同様の基を挙げることができる。
[0034] 一般式 (4)において、 d=0の化合物としては、へキサメトキシジシラン、へキサエト キシジシラン、へキサフエノキシジシラン、 1, 1, 1, 2, 2—ペンタメトキシー 2—メチルジ シラン、 1, 1, 1, 2, 2—ペンタエトキシ— 2—メチルジシラン、 1, 1, 1, 2, 2—ペンタフ エノキシー 2—メチルジシラン、 1, 1, 1, 2, 2—ペンタメトキシ— 2—ェチルジシラン、 1, 1 , 1, 2, 2—ペンタエトキシー 2—ェチルジシラン、 1, 1, 1, 2, 2—ペンタフエノキシー 2— ェチルジシラン、 1, 1, 1, 2, 2—ペンタメトキシ— 2—フエ-ルジシラン、 1, 1, 1, 2, 2 —ペンタエトキシー 2—フエ-ルジシラン、 1, 1, 1, 2, 2—ペンタフエノキシー 2—フエ-ル ジシラン、 1, 1, 2, 2—テトラメトキシー 1, 2—ジメチルジシラン、 1, 1, 2, 2—テトラエト キシー 1, 2—ジメチルジシラン、 1, 1, 2, 2—テトラフエノキシー 1, 2—ジメチルジシラン 、 1, 1, 2, 2—テトラメトキシー 1, 2—ジェチルジシラン、 1, 1, 2, 2—テトラエトキシー 1, 2—ジェチルジシラン、 1, 1, 2, 2—テトラフエノキシー 1, 2—ジェチルジシラン、 1, 1, 2, 2—テトラメトキシー 1, 2—ジフエ二ルジシラン、 1, 1, 2, 2—テトラエトキシー 1, 2—ジ フエ-ルジシラン、 1, 1, 2, 2—テトラフエノキシー 1, 2—ジフエ二ルジシラン、 1, 1, 2- トリメトキシー 1, 2, 2—トリメチルジシラン、 1, 1, 2—トリエトキシー 1, 2, 2—トリメチルジ シラン、 1, 1, 2—トリフエノキシ 1, 2, 2—トリメチルジシラン、 1, 1, 2—トリメトキシー 1, 2, 2—卜!;ェチノレジシラン、 1, 1, 2—卜!;エトキシー 1, 2, 2—卜!;ェチノレジシラン、 1, 1, 2—卜!;フ ノキシ 1, 2, 2—卜!;ェチノレジシラン、 1, 1, 2—卜!;メ卜キシー 1, 2, 2—卜!;フ ニノレジシラン、 1, 1, 2—卜!;エトキシー 1, 2, 2—卜!;フ ニノレジシラン、 1, 1, 2—卜!;フ ノキシ 1, 2, 2—トリフエ二ルジシラン、 1, 2—ジメトキシ— 1, 1, 2, 2—テトラメチルジシ ラン、 1, 2—ジエトキシー 1, 1, 2, 2—テトラメチルジシラン、 1, 2—ジフエノキシー 1, 1, 2, 2—テトラメチルジシラン、 1, 2—ジメトキシ— 1, 1, 2, 2—テトラェチルジシラン、 1, 2—ジエトキシー 1, 1, 2, 2—テトラェチルジシラン、 1, 2—ジフエノキシー 1, 1, 2, 2—テ トラェチルジシラン、 1, 2—ジメトキシー 1, 1, 2, 2—テトラフヱ二ルジシラン、 1, 2—ジ エトキシー 1, 1, 2, 2—テトラフエ二ルジシラン、 1, 2—ジフエノキシー 1, 1, 2, 2—テトラ フエ二ルジシランなどを挙げることができる。
[0035] これらのうち、へキサメトキシジシラン、へキサェトキシジシラン、 1, 1, 2, 2—テトラメ トキシー 1, 2—ジメチルジシラン、 1, 1, 2, 2—テトラエトキシー 1, 2—ジメチルジシラン、 1, 1, 2, 2—テトラメトキシー 1, 2—ジフエ二ルジシラン、 1, 2—ジメトキシー 1, 1, 2, 2— テトラメチルジシラン、 1, 2—ジエトキシー 1, 1, 2, 2—テトラメチルジシラン、 1, 2—ジメ トキシー 1, 1, 2, 2—テトラフエ二ルジシラン、 1, 2—ジエトキシー 1, 1, 2, 2—テトラフエ 二ルジシランなどを、好まし 、例として挙げることができる。
[0036] さらに、一般式 (4)において、 R7が- (CH ) —で表される基の化合物としては、ビス
2 m
(トリメトキシシリル)メタン、ビス(トリエトキシシリル)メタン、ビス(トリ- n-プロポキシシリ ル)メタン、ビス(トリー iso プロポキシシリル)メタン、ビス(トリー n ブトキシシリル)メタン 、ビス(トリ— sec ブトキシシリル)メタン、ビス(トリー tert ブトキシシリル)メタン、 1, 2— ビス(トリメトキシシリル)ェタン、 1, 2—ビス(トリエトキシシリル)ェタン、 1, 2—ビス(トリ— n—プロポキシシリル)ェタン、 1, 2—ビス(トリー iso プロポキシシリル)ェタン、 1, 2—ビ ス(トリー n ブトキシシリル)ェタン、 1, 2—ビス(トリ— sec—ブトキシシリル)ェタン、 1, 2 —ビス(トリー tert ブトキシシリル)ェタン、 1 (ジメトキシメチルシリル)— 1— (トリメトキシ シリル)メタン、 1- (ジエトキシメチルシリル)— 1— (トリエトキシシリル)メタン、 1— (ジ -n プロポキシメチルシリル)—1— (トリー n—プロポキシシリル)メタン、 1— (ジー iso プロボ キシメチルシリル)—1— (トリー iso プロポキシシリル)メタン、 1— (ジー n ブトキシメチル シリル)—1— (トリー n ブトキシシリル)メタン、 1— (ジー sec ブトキシメチルシリル)—1— ( トリ— sec ブトキシシリル)メタン、 1— (ジー tert ブトキシメチルシリル)— 1— (トリー tert— ブトキシシリル)メタン、 1 (ジメトキシメチルシリル)— 2—(トリメトキシシリル)ェタン、 1— (ジエトキシメチルシリル)—2— (トリエトキシシリル)ェタン、 1— (ジー n プロポキシメチ ルシリル)—2— (トリー n プロポキシシリル)ェタン、 1— (ジー iso—プロポキシメチルシリ ル)—2— (トリー iso—プロポキシシリル)ェタン、 1— (ジー n ブトキシメチルシリル)—2— ( トリー n ブトキシシリル)ェタン、 1— (ジー sec—ブトキシメチルシリル)—2— (トリ— sec—ブ トキシシリル)ェタン、 1— (ジー tert ブトキシメチルシリル)—2— (トリー tert ブトキシシ リル)ェタン、ビス(ジメトキシメチルシリル)メタン、ビス(ジエトキシメチルシリル)メタン 、ビス(ジー n プロポキシメチルシリル)メタン、ビス(ジー iso プロポキシメチルシリル) メタン、ビス(ジー n ブトキシメチルシリル)メタン、ビス(ジー sec ブトキシメチルシリル)
)ェタン、 1, 2—ビス(ジエトキシメチルシリル)ェタン、 1, 2—ビス(ジー n プロポキシメ チルシリル)ェタン、 1, 2—ビス(ジー iso プロポキシメチルシリル)ェタン、 1 , 2—ビス( ジー n ブトキシメチルシリル)ェタン、 1, 2—ビス(ジー sec ブトキシメチルシリル)エタ ン、 1, 2—ビス(ジー tert ブトキシメチルシリル)ェタン、 1, 2—ビス(トリメトキシシリル) ベンゼン、 1, 2—ビス(トリエトキシシリル)ベンゼン、 1, 2—ビス(トリー n プロポキシシリ ル)ベンゼン、 1 , 2—ビス(トリー iso プロポキシシリル)ベンゼン、 1, 2—ビス(トリー n— ブトキシシリル)ベンゼン、 1, 2—ビス(トリ— sec ブトキシシリル)ベンゼン、 1, 2—ビス( トリー tert ブトキシシリル)ベンゼン、 1, 3—ビス(トリメトキシシリル)ベンゼン、 1, 3—ビ ス(トリエトキシシリル)ベンゼン、 1, 3 ビス(トリー n プロポキシシリル)ベンゼン、 1, 3 —ビス(トリー iso プロポキシシリル)ベンゼン、 1, 3 ビス(トリー n ブトキシシリル)ベン ゼン、 1, 3 ビス(トリ— sec ブトキシシリル)ベンゼン、 1, 3 ビス(トリー tert ブトキシ シリル)ベンゼン、 1, 4—ビス(トリメトキシシリル)ベンゼン、 1, 4 ビス(トリエトキシシリ ル)ベンゼン、 1 , 4 ビス(トリー n プロポキシシリル)ベンゼン、 1, 4 ビス(トリー iso— プロポキシシリル)ベンゼン、 1, 4—ビス(トリー n ブトキシシリル)ベンゼン、 1, 4 ビス (トリ— sec ブトキシシリル)ベンゼン、 1, 4—ビス(トリー tert ブトキシシリル)ベンゼン など挙げることができる。
[0037] これらのうち、ビス(トリメトキシシリル)メタン、ビス(トリエトキシシリル)メタン、 1, 2—ビ ス(トリメトキシシリル)ェタン、 1, 2—ビス(トリエトキシシリル)ェタン、 1 (ジメトキシメチ ルシリル)—1 (トリメトキシシリル)メタン、 1— (ジエトキシメチルシリル)—1— (トリェトキ シシリル)メタン、 1 (ジメトキシメチルシリル)— 2—(トリメトキシシリル)ェタン、 1— (ジェ トキシメチルシリル)—2—(トリエトキシシリル)ェタン、ビス(ジメトキシメチルシリル)メタ ン、ビス(ジエトキシメチルシリル)メタン、 1, 2—ビス(ジメトキシメチルシリル)ェタン、 1 , 2—ビス(ジエトキシメチルシリル)ェタン、 1, 2—ビス(トリメトキシシリル)ベンゼン、 1, 2—ビス(トリエトキシシリル)ベンゼン、 1, 3—ビス(トリメトキシシリル)ベンゼン、 1, 3- ビス(トリエトキシシリル)ベンゼン、 1, 4 ビス(トリメトキシシリル)ベンゼン、 1, 4 ビス (トリエトキシシリル)ベンゼンなどを好まし 、例として挙げることができる。
[0038] 前記の化合物 2— 4は、 1種あるいは 2種以上を同時に使用してもよい。
[0039] 化合物 2— 4で表される化合物を加水分解、部分縮合させる際に、一般式 (2)— (4 )において I^O—、 R20—、 R40—および R50—で表される基 1モル当たり、 0. 3— 10 モルの水を用いることが好ましい。また、化合物 1一 3で表される化合物を加水分解 縮合させる際には、これらの化合物を有機溶媒に溶解したものを用いることができる 。力かる有機溶媒としては、後述する 1. 3.の有機溶媒を用いることができる。
[0040] 本発明において、ポリシロキサンィ匕合物は、ポリスチレン換算重量平均分子量で 10 0— 100, 000、好ましくは 1000— 100, 000であること力好まし!/、。なお、本発明に おいて完 卩水分解縮合物とは、シロキサン化合物成分中 Ι^Ο-、 R -、 R40-お よび RsO—で表される基が 100%加水分解して OH基となり、完全に縮合したものを 示す。
[0041] 1. 1. 4.触媒
本発明のポリマーの製造方法において、ポリシロキサンィ匕合物の製造時に、必要に 応じて触媒が含有されていてもよい。この触媒としては、有機酸、無機酸、有機塩基
、無機塩基、金属キレートなどを挙げることができる。
[0042] 有機酸としては、例えば酢酸、プロピオン酸、ブタン酸、ペンタン酸、へキサン酸、 ヘプタン酸、オクタン酸、ノナン酸、デカン酸、シユウ酸、マレイン酸、メチルマロン酸、 アジピン酸、セバシン酸、没食子酸、酪酸、メリット酸、ァラキドン酸、ミキミ酸、 2—ェチ ルへキサン酸、ォレイン酸、ステアリン酸、リノール酸、リノレイン酸、サリチル酸、安息 香酸、 ρ—ァミノ安息香酸、 ρ—トルエンスルホン酸、ベンゼンスルホン酸、モノクロ口酢 酸、ジクロロ酢酸、トリクロ口酢酸、トリフルォロ酢酸、ギ酸、マロン酸、フタル酸、フマ ル酸、クェン酸、酒石酸等を挙げることができる。
[0043] 無機酸としては、例えば塩酸、硝酸、硫酸、フッ酸、リン酸等を挙げることができる。
無機塩基としては、例えば、アンモニア、水酸化ナトリウム、水酸ィ匕カリウム、水酸ィ匕 ノ リウム、水酸ィ匕カルシウムなどを挙げることができる。
[0044] 有機塩基としては、例えば、メタノールァミン、エタノールァミン、プロパノールアミ、 ブタノールァミン、 N—メチルメタノールァミン、 N—ェチルメタノールァミン、 N—プロピ ルメタノールァミン、 N—ブチルメタノールァミン、 N—メチルエタノールァミン、 N—ェチ ルエタノールァミン、 N—プロピルエタノールァミン、 N—ブチルエタノールァミン、 N—メ チルプロパノールァミン、 N—ェチルプロパノールァミン、 N—プロピルプロパノールァ ミン、 N—ブチルプロパノールァミン、 N—メチルブタノールァミン、 N—ェチルブタノ一 ルァミン、 N—プロピルブタノールァミン、 N—ブチルブタノールァミン、 N, N—ジメチル メタノールァミン、 N, N—ジェチルメタノールァミン、 N, N—ジプロピルメタノールアミ ン、 N, N—ジブチルメタノールァミン、 N, N—ジメチルエタノールァミン、 N, N—ジェ チルエタノールァミン、 N, N—ジプロピルエタノールァミン、 N, N—ジブチルエタノー ルァミン、 N, N—ジメチルプロパノールァミン、 N, N—ジェチルプロパノールァミン、 N, N—ジプロピルプロパノールァミン、 N, N—ジブチルプロパノールァミン、 N, N- ジメチルブタノールァミン、 N, N—ジェチルブタノールァミン、 N, N—ジプロピルブタ ノールァミン、 N, N—ジブチルブタノールァミン、 N—メチルジメタノールァミン、 N—ェ チルジメタノールァミン、 N—プロピルジメタノールァミン、 N—ブチルジメタノールァミン 、 N—メチルジェタノールァミン、 N—ェチルジェタノールァミン、 N—プロピルジェタノ ールァミン、 N—ブチルジェタノールァミン、 N—メチルジプロパノールァミン、 N—ェチ ルジプロパノールァミン、 N—プロピルジプロパノールァミン、 N—ブチルジプロパノー ルァミン、 N—メチルジブタノールァミン、 N—ェチルジブタノールァミン、 N—プロピル ジブタノールァミン、 N—ブチルジブタノールァミン、 N—(アミノメチル)メタノールァミン 、 N (アミノメチル)エタノールァミン、 N (アミノメチル)プロパノールァミン、 N (アミ ノメチル)ブタノールァミン、 N—(アミノエチル)メタノールァミン、 N—(アミノエチル)ェ タノールァミン、 N— (アミノエチル)プロパノールァミン、 N (アミノエチル)ブタノール ァミン、 N— (ァミノプロピル)メタノールァミン、 N— (ァミノプロピル)エタノールァミン、 N— (ァミノプロピル)プロパノールァミン、 N— (ァミノプロピル)ブタノールァミン、 N— ( アミノブチル)メタノールァミン、 N—(アミノブチル)エタノールァミン、 N (アミノブチル )プロパノールァミン、 N (アミノブチル)ブタノールァミン、メトキシメチルァミン、メトキ シェチルァミン、メトキシプロピルァミン、メトキシブチルァミン、エトキシメチルァミン、 エトキシェチルァミン、エトキシプロピルァミン、エトキシブチルァミン、プロポキシメチ ノレアミン、プロポキシェチノレアミン、プロポキシプロピルァミン、プロポキシブチノレアミ ン、ブトキシメチルァミン、ブトキシェチルァミン、ブトキシプロピルァミン、ブトキシブチ ルァミン、メチルァミン、ェチルァミン、プロピルァミン、ブチルァミン、 N, N—ジメチル ァミン、 N, N—ジェチルァミン、 N, N—ジプロピルァミン、 N, N ジブチルァミン、トリ メチルァミン、トリェチルァミン、トリプロピルァミン、トリブチルァミン、テトラメチルアン モ -ゥムハイドロキサイド、テトラエチルアンモ -ゥムハイドロキサイド、テトラプロピル アンモ-ゥムハイドロキサイド、テトラプチルアンモ-ゥムノ、イドロキサイド、テトラメチ ルエチレンジァミン、テトラエチルエチレンジァミン、テトラプロピルエチレンジァミン、 テトラブチルエチレンジァミン、メチルアミノメチルァミン、メチルアミノエチルァミン、メ チルァミノプロピルァミン、メチルアミノブチルァミン、ェチルアミノメチルァミン、ェチ ルアミノエチルァミン、ェチルァミノプロピルァミン、ェチルアミノブチルァミン、プロピ ルアミノメチルァミン、プロピルアミノエチルァミン、プロピルアミノプロピルァミン、プロ ピルアミノブチルァミン、ブチルアミノメチルァミン、ブチルアミノエチルァミン、ブチル ァミノプロピルァミン、ブチルアミノブチルァミン、ピリジン、ピロール、ピぺラジン、ピロ リジン、ピぺリジン、ピコリン、モルホリン、メチルモルホリン、ジァザビシクロオクラン、 ジァザビシクロノナン、ジァザビシクロウンデセンなどを挙げることができる。
金属キレートとしては、例えばトリエトキシ ·モノ(ァセチルァセトナート)チタン、トリ— n—プロポキシ ·モノ(ァセチルァセトナート)チタン、トリー i プロポキシ 'モノ(ァセチノレ ァセトナート)チタン、トリー n ブトキシ.モノ(ァセチルァセトナート)チタン、トリ— sec— ブトキシ ·モノ(ァセチルァセトナート)チタン、トリー t ブトキシ ·モノ(ァセチノレアセトナ ート)チタン、ジエトキシ'ビス(ァセチルァセトナート)チタン、ジー n プロポキシ 'ビス( ァセチルァセトナート)チタン、ジー i プロポキシ 'ビス(ァセチルァセトナート)チタン、 ジー n ブトキシ ·ビス(ァセチルァセトナート)チタン、ジー sec—ブトキシ ·ビス(ァセチノレ ァセトナート)チタン、ジー t ブトキシ 'ビス(ァセチルァセトナート)チタン、モノエトキシ •トリス(ァセチルァセトナート)チタン、モノー n プロポキシ 'トリス(ァセチルァセトナー ト)チタン、モノー i プロポキシ 'トリス(ァセチルァセトナート)チタン、モノー n ブトキシ •トリス(ァセチルァセトナート)チタン、モノ— sec ブトキシ 'トリス(ァセチルァセトナー ト)チタン、モノー t ブトキシ 'トリス(ァセチルァセトナート)チタン、テトラキス(ァセチル ァセトナート)チタン、トリエトキシ 'モノ(ェチルァセトアセテート)チタン、トリー n プロ ポキシ ·モノ(ェチノレアセトアセテート)チタン、トリー i プロポキシ ·モノ(ェチノレアセトァ セテート)チタン、トリー n ブトキシ 'モノ(ェチルァセトアセテート)チタン、トリ— sec—ブ トキシ ·モノ(ェチノレアセトアセテート)チタン、トリー t ブトキシ ·モノ(ェチノレアセトァセ テート)チタン、ジエトキシ'ビス(ェチノレアセトアセテート)チタン、ジー n プロポキシ' ビス(ェチルァセトアセテート)チタン、ジー i プロポキシ 'ビス(ェチルァセトアセテート )チタン、ジー n ブトキシ ·ビス(ェチノレアセトアセテート)チタン、ジー sec ブトキシ ·ビ ス(ェチルァセトアセテート)チタン、ジー t ブトキシ'ビス(ェチルァセトアセテート)チ タン、モノエトキシ 'トリス(ェチルァセトアセテート)チタン、モノー n プロポキシ 'トリス( ェチルァセトアセテート)チタン、モノー i プロポキシ 'トリス(ェチルァセトアセテート) チタン、モノー n ブトキシ 'トリス(ェチルァセトアセテート)チタン、モノー sec ブトキシ · トリス(ェチルァセトアセテート)チタン、モノー t ブトキシ 'トリス(ェチルァセトァセテー ト)チタン、テトラキス(ェチルァセトアセテート)チタン、モノ(ァセチルァセトナート)トリ ス(ェチルァセトアセテート)チタン、ビス(ァセチルァセトナート)ビス(ェチルァセトァ セテート)チタン、トリス(ァセチルァセトナート)モノ(ェチルァセトアセテート)チタン、 等のチタンキレート化合物;
トリエトキシ.モノ(ァセチルァセトナート)ジルコニウム、トリー n プロポキシ 'モノ(ァ セチルァセトナート)ジルコニウム、トリー i プロポキシ 'モノ(ァセチノレアセトナート)ジ ルコ-ゥム、トリー n—ブトキシ 'モノ(ァセチルァセトナート)ジルコニウム、トリ— sec ブト キシ 'モノ(ァセチルァセトナート)ジルコニウム、トリー t ブトキシ 'モノ(ァセチルァセト ナート)ジルコニウム、ジエトキシ'ビス(ァセチノレアセトナート)ジノレコ-ゥム、ジー n—プ 口ポキシ ·ビス(ァセチノレアセトナート)ジルコニウム、ジー i プロポキシ ·ビス(ァセチノレ ァセトナート)ジルコニウム、ジー n ブトキシ'ビス(ァセチノレアセトナート)ジルコニウム 、ジー sec—ブトキシ ·ビス(ァセチルァセトナート)ジルコニウム、ジー t ブトキシ ·ビス( ァセチルァセトナート)ジルコニウム、モノエトキシ ·トリス(ァセチルァセトナート)ジル コニゥム、モノー n プロポキシ 'トリス(ァセチルァセトナート)ジルコニウム、モノー iープ 口ポキシ 'トリス(ァセチルァセトナート)ジルコニウム、モノー n ブトキシ 'トリス(ァセチ ルァセトナート)ジルコニウム、モノ— sec—ブトキシ 'トリス(ァセチルァセトナート)ジル コニゥム、モノー t ブトキシ 'トリス(ァセチルァセトナート)ジルコニウム、テトラキス(ァ セチルァセトナート)ジルコニウム、トリエトキシ ·モノ(ェチルァセトアセテート)ジルコ ユウム、トリー n プロポキシ 'モノ(ェチルァセトアセテート)ジルコニウム、トリー i プロボ キシ .モノ(ェチルァセトアセテート)ジルコニウム、トリー n ブトキシ ·モノ(ェチルァセト アセテート)ジルコニウム、トリ— sec—ブトキシ 'モノ(ェチルァセトアセテート)ジルコ- ゥム、トリー t ブトキシ 'モノ(ェチルァセトアセテート)ジルコニウム、ジエトキシ'ビス( ェチノレアセトアセテート)ジノレコニゥム、ジー n プロポキシ 'ビス(ェチノレアセトァセテ ート)ジルコニウム、ジー i プロポキシ 'ビス(ェチルァセトアセテート)ジルコニウム、ジ n ブトキシ ·ビス(ェチノレアセトアセテート)ジルコニウム、ジー sec ブトキシ ·ビス(ェ チノレアセトアセテート)ジノレコニゥム、ジー t ブトキシ'ビス(ェチノレアセトアセテート)ジ ルコ-ゥム、モノエトキシ 'トリス(ェチルァセトアセテート)ジルコニウム、モノー n プロ ポキシ 'トリス(ェチルァセトアセテート)ジルコニウム、モノー i プロポキシ 'トリス(ェチ ノレァセトアセテート)ジノレコニゥム、モノー n ブトキシ 'トリス(ェチノレアセトアセテート) ジルコニウム、モノ—sec—ブトキシ 'トリス(ェチルァセトアセテート)ジルコニウム、モノ t ブトキシ 'トリス(ェチルァセトアセテート)ジルコニウム、テトラキス(ェチルァセトァ セテート)ジノレコニゥム、モノ(ァセチノレアセトナート)トリス(ェチノレアセトアセテート)ジ ルコ-ゥム、ビス(ァセチルァセトナート)ビス(ェチルァセトアセテート)ジルコニウム、 トリス(ァセチルァセトナート)モノ(ェチルァセトアセテート)ジルコニウム、等のジルコ ユウムキレートイ匕合物; トリス(ァセチルァセトナート)ァノレミ-ゥム、トリス(ェチノレアセトアセテート)ァノレミ-ゥ ム等のアルミニウムキレートイ匕合物;などを挙げることができる。
[0046] これらの触媒の使用量は、化合物(2)—(4)の総量 1モルに対して通常 0. 0001—
1モル、好ましくは 0. 001—0. 1モルである。
[0047] 1. 2. (B)ポリカルボシラン化合物
本発明のポリマーの製造方法において、(B)ポリカルボシランィ匕合物としては、下 記一般式(1)で表される構造を有するポリカルボシランィ匕合物(以下、「化合物 1」と いう)を用いることができる。
[0048] [化 2]
Figure imgf000017_0001
(1)
前記一般式(1)において、 R8は水素原子、ハロゲン原子、ヒドロキシ基、アルコキシ 基、ァシロキシ基、スルホン基、メタンスルホン基、トリフルォロメタンスルホン基、アル キル基、ァルケ-ル基、およびァリール基力もなる群より選ばれる基を示し、 R9はハロ ゲン原子、ヒドロキシ基、アルコキシ基、ァシロキシ基、スルホン基、メタンスルホン基、 トリフルォロメタンスルホン基、アルキル基、ァルケ-ル基、およびァリール基からなる 群より選ばれる基を示し、 R10, R11は同一または異なり、ハロゲン原子、ヒドロキシ基、 アルコキシ基、ァシロキシ基、スルホン基、メタンスルホン基、トリフルォロメタンスルホ ン基、炭素数 2— 6のアルキル基、ァルケ-ル基、およびァリール基力 なる群より選 ばれる基を示す。なお、 R8— R11は、同一の基でも異なる基であってもよい。
[0049] また、前記一般式(1)において、 R12— R14は、同一または異なり、置換または非置 換のメチレン基、アルキレン基、ァルケ-レン基、およびァリーレン基を示す。ここで、 アルキレン基としては、メチレン基、エチレン基、プロピレン基、ブチレン基、へキシレ ン基、デシレン基等が挙げられ、好ましくは炭素数 1一 6であり、これらのアルキレン基 は鎖状でも分岐していても、さらに環を形成していてもよぐ水素原子がフッ素原子な どに置換されていてもよい。ここで、ァルケ-レン基としては、エテュレン基、プロべ- レン基、 1 ブテ-レン基、 2—ブテ-レン基等が挙げられ、ジェ-ルであってもよぐ 好ましくは炭素数 1一 4であり、水素原子がフッ素原子などに置換されていても良い。 ァリーレン基としては、フエ-レン基、ナフチレン基等を挙げることができ、水素原子 力 Sフッ素原子などに置換されて 、てもよ!/、。
[0050] また、前記一般式(1)【こお ヽて、 X, y, ζίま、 0一 10, 000の数で、 5<x+y+ z < 1 0, 000である。 x+y+zく 5の場合には、絶縁膜形成用組成物の保存安定性が劣る 場合があり、一方、 10, 000く x+y+zの場合には、(A)成分と層分離を起こし、均 一な膜を形成しないことがある。好ましくは、 X, y, zはそれぞれ、 0≤x≤800、 0≤y ≤500、 0≤ζ≤1, 000であり、より好ましくは、 0≤x≤500, 0≤y≤300, 0≤z≤5 00であり、さらに好ましくは、 0≤x≤100, 0≤y≤50, 0≤z≤100である。
[0051] また、前記一般式(1)において、 5く x+y+zく 1000であるのが好ましぐ 5<x+ y+zく 500であるのがより好ましぐ 5く x+y+zく 250であるのがさらに好ましぐ 5 く x+y+zく 100であるのが最も好ましい。
[0052] さらに、 x = 0の場合には、 R9、 R10、 R11のいずれかひとつは、ハロゲン原子、ヒドロ キシ基、アルコキシ基、ァシロキシ基、スルホン基、メタンスルホン基、トリフルォロメタ ンスルホン基である。これにより、(B)成分は、 Si— OH基、あるいは加水分解反応に よる Si— OH基を生成する官能基を有することになり、この Si— OH基または前記官能 基が (A)成分中の Si— OH基と縮合することにより、複合ィ匕を進行させることができる
[0053] 本発明の絶縁膜形成用組成物において、(B)成分のポリスチレン換算重量平均分 子量力400— 50, 000であること力 Sできる。
[0054] 本発明の絶縁膜形成用組成物において、(A)成分が、加水分解性基を有するシラ ン化合物を加水分解縮合することにより得られたものである場合、 (A)成分を (A)成 分の完^!]水分解縮合物に換算した 100重量部に対して、(B)成分が 1一 1000重 量部であることができる。
[0055] (B)ポリカルボシラン化合物は例えば、以下の構造単位(5)—(7)をさらに有するこ とがでさる。
Figure imgf000019_0001
•… · (5)
[化 4]
Figure imgf000019_0002
… · · (6)
(式中、 R15は、水素原子、ハロゲン原子、ヒドロキシ基、アルコキシ基、ァシロキシ基 、スルホン基、メタンスルホン基、およびトリフルォロメタンスルホン基からなる群より選 ばれる基を示す。 )
[化 5]
Figure imgf000019_0003
… · · (7)
(式中、 R16— R18は、同一または異なり、 R15と同様の基を示す。 )
(B)成分が上記構造単位 (5)—(7)を有する場合、 (B)成分の分子中におレ、て、 好ましくは下記一般式(5)で表される構造単位が 5— 20モル%であり(より好ましくは
10— 15モル%)、好ましくは下記一般式(6)で表される構造単位が 1一 15モル%で あり(より好ましくは 5— 10モル%)、好ましくは下記一般式(7)で表される構造単位が
30— 50モル0 /0である(より好ましくは 35— 45モル0 /0)。
[0057] また、(B)成分中のケィ素原子の数は 5— 200であることが好ましぐ 5— 50であるこ とがより好ましぐ 5— 15であることがさらに好ましい。
[0058] (B)成分中の上記各構造単位の存在比およびケィ素原子数は、例えば29 Si— NM
Rスペクトル解析結果およびポリスチレン換算重量平均分子量から推定することがで きる。
[0059] 1. 3.有機溶媒
本発明のポリマーの製造方法においては、 1. 1.で述べた (A)ポリシロキサンィ匕合 物および 1. 2.で述べた (B)ポリカルボシラン化合物は、有機溶媒に溶解もしくは分 散されて用いられる。有機溶媒中における (A)成分および (B)成分の合計量の濃度 は 1一 30重量%であることが好ましい。
[0060] 本発明のポリマーの製造方法で用いることができる有機溶媒としては、アルコール 系溶媒、ケトン系溶媒、アミド系溶媒、エーテル系溶媒、エステル系溶媒、脂肪族炭 化水素系溶媒、芳香族系溶媒および含ハロゲン溶媒の群カゝら選ばれた少なくとも 1 種が挙げられる。
[0061] アルコール系溶媒としては、メタノール、エタノール、 n プロパノール、 i プロパノー ル、 n—ブタノール、 iーブタノール、 sec—ブタノール、 tーブタノール、 n ペンタノール、 i ペンタノール、 2—メチルブタノール、 sec ペンタノール、 t ペンタノール、 3—メトキ シブタノール、 n キサノール、 2—メチルペンタノール、 sec キサノール、 2—ェチ ルブタノール、 sec プタノール、 3 プタノール、 n—ォクタノール、 2—ェチルへキ サノール、 sec—ォクタノール、 n ノ-ルアルコール、 2, 6 ジメチルー 4 プタノール 、 n—デカノール、 sec—ゥンデシルアルコール、トリメチルノ-ルアルコール、 sec—テト ラデシルアルコール、 sec—ヘプタデシルアルコール、フルフリルアルコール、フエノ ール、シクロへキサノール、メチルシクロへキサノール、 3, 3, 5—トリメチルシクロへキ サノール、ベンジルアルコール、ジアセトンアルコールなどのモノアルコール系溶媒; エチレングリコーノレ、 1, 2 プロピレングリコール、 1, 3—ブチレングリコール、 2, 4— ペンタンジオール、 2—メチルー 2, 4 ペンタンジオール、 2, 5—へキサンジオール、 2 , 4 ヘプタンジオール、 2—ェチルー 1, 3—へキサンジオール、ジエチレングリコール 、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコールなどの多価 アルコール系溶媒; エチレングリコールモノメチルエーテル、エチレングリコールモノ ェチノレエーテノレ、エチレングリコーノレモノプロピノレエーテノレ、エチレングリコーノレモノ ブチノレエーテノレ、エチレングリコーノレモノへキシノレエーテノレ、エチレングリコーノレモノ フエニノレエーテノレ、エチレングリコーノレモノー 2—ェチノレブチノレエーテノレ、ジエチレン グリコーノレモノメチノレエーテノレ、ジエチレングリコーノレモノェチノレエーテノレ、ジェチレ ングリコーノレモノプロピノレエーテノレ、ジエチレングリコーノレモノブチノレエーテノレ、ジェ チレングリコーノレモノへキシノレエーテノレ、プロピレングリコーノレモノメチノレエーテノレ、 プロピレングリコーノレモノェチノレエーテノレ、プロピレングリコーノレモノプロピノレエーテ ル、プロピレングリコールモノブチルエーテル、ジプロピレングリコーノレモノメチノレエー テル、ジプロピレングリコーノレモノェチノレエーテル、ジプロピレングリコーノレモノプロピ ルエーテルなどの多価アルコール部分エーテル系溶媒;などを挙げることができる。
[0062] これらのアルコール系溶媒は、 1種あるいは 2種以上を同時に使用してもよい。
[0063] ケトン系溶媒としては、アセトン、メチルェチルケトン、メチルー n プロピルケトン、メ チルー n—ブチルケトン、ジェチルケトン、メチルー iーブチルケトン、メチルー n ペンチ ルケトン、ェチルー n—ブチルケトン、メチルー n—へキシルケトン、ジー iーブチルケトン、 トリメチルノナノン、シクロペンタノン、シクロへキサノン、シクロへプタノン、シクロォクタ ノン、 2—へキサノン、メチルシクロへキサノン、 2, 4 ペンタンジオン、ァセトニルァセト ン、ジアセトンアルコール、ァセトフエノン、フェンチョンなどのケトン系溶媒を挙げるこ とがでさる。
[0064] これらのケトン系溶媒は、 1種あるいは 2種以上を同時に使用してもよい。
[0065] アミド系溶媒としては、 Ν,Ν ジメチルイミダゾリジノン、 Ν メチルホルムアミド
、 Ν, Ν—ジメチルホルムアミド、 Ν, Ν—ジェチルホルムアミド、ァセトアミド、 Ν メチル ァセトアミド、 Ν, Ν—ジメチルァセトアミド、 Ν メチルプロピオンアミド、 Ν メチルピロリ ドンなどの含窒素系溶媒を挙げることができる。 [0066] これらのアミド系溶媒は、 1種あるいは 2種以上を同時に使用してもよい。
[0067] エーテル溶媒系としては、ェチルエーテル、 i プロピルエーテル、 n ブチルエーテ ル、 n—へキシルエーテル、 2—ェチルへキシルエーテル、エチレンォキシド、 1 , 2—プ ロピレンォキシド、ジォキソラン、 4ーメチルジォキソラン、ジォキサン、ジメチルジォキ サン、エチレングリコールモノメチルエーテル、エチレングリコールジメチルエーテル、 エチレングリコーノレモノェチノレエーテノレ、エチレングリコーノレジェチノレエーテノレ、ェチ レングリコーノレモノー n—ブチノレエーテノレ、エチレングリコーノレモノー n—へキシノレエー テノレ、エチレングリコーノレモノフエニノレエーテノレ、エチレングリコーノレモノー 2—ェチノレ ブチノレエーテノレ、エチレングリコーノレジブチノレエーテノレ、ジエチレングリコーノレモノメ チルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールモノエ チノレエーテノレ、ジエチレングリコーノレジェチノレエーテノレ、ジエチレングリコーノレモノー n ブチルエーテル、ジエチレングリコールジー n—ブチルエーテル、ジエチレングリコ ールモノー n—へキシルエーテル、エトキシトリグリコール、テトラエチレングリコールジー n ブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコール モノェチノレエーテノレ、プロピレングリコーノレモノプロピノレエーテノレ、プロピレングリコー ルモノブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリ コールモノェチルエーテル、トリプロピレングリコールモノメチルエーテル、テトラヒドロ フラン、 2—メチルテトラヒドロフラン、ジフエ-ルエーテル、ァ-ソールなどのエーテル 系溶媒を挙げることができる。これらのエーテル系溶媒は、 1種あるいは 2種以上を同 時に使用してもよい。
[0068] これらのエーテル系溶媒は、 1種あるいは 2種以上を同時に使用してもよい。
[0069] エステル系溶媒としては、ジェチルカーボネート、プロピレンカーボネート、酢酸メ チル、酢酸ェチル、 γ ブチロラタトン、 γ バレロラタトン、酢酸 η プロピル、酢酸卜 プロピル、酢酸 η -ブチル、酢酸 iーブチル、酢酸 sec -ブチル、酢酸 n -ペンチル、酢 酸 sec ペンチル、酢酸 3—メトキシブチル、酢酸メチルペンチル、酢酸 2—ェチルブチ ル、酢酸 2—ェチルへキシル、酢酸ベンジル、酢酸シクロへキシル、酢酸メチルシクロ へキシル、酢酸 n—ノ -ル、ァセト酢酸メチル、ァセト酢酸ェチル、酢酸エチレングリコ 一ノレモノメチノレエーテノレ、酢酸エチレングリコーノレモノエチノレエーテノレ、酢酸ジェチ レングリコーノレモノメチノレエーテノレ、酢酸ジエチレングリコーノレモノェチノレエーテノレ、 酢酸ジエチレングリコールモノー n—ブチルエーテル、酢酸プロピレングリコールモノメ チルエーテル、酢酸プロピレングリコールモノェチルエーテル、酢酸プロピレングリコ ールモノプロピルエーテル、酢酸プロピレングリコールモノブチルエーテル、酢酸ジ プロピレングリコールモノメチルエーテル、酢酸ジプロピレングリコールモノェチルェ 一テル、ジ酢酸ダリコール、酢酸メトキシトリグリコール、プロピオン酸ェチル、プロピ オン酸 n—ブチル、プロピオン酸 iーァミル、シユウ酸ジェチル、シユウ酸ジー n—ブチル、 乳酸メチル、乳酸ェチル、乳酸 n—ブチル、乳酸 n—ァミル、マロン酸ジェチル、フタル 酸ジメチル、フタル酸ジェチルなどのエステル系溶媒を挙げることができる。
[0070] これらのエステル系溶媒は、 1種あるいは 2種以上を同時に使用してもよい。
[0071] 脂肪族炭化水素系溶媒としては、 n ペンタン、 i ペンタン、 n キサン、 i キサ ン、 n ヘプタン、 i ヘプタン、 2, 2, 4 トリメチルペンタン、 n オクタン、 i オクタン、 シクロへキサン、メチルシクロへキサンなどの脂肪族炭化水素系溶媒を挙げることが できる。
[0072] これらの脂肪族炭化水素系溶媒は、 1種あるいは 2種以上を同時に使用してもよい
[0073] 芳香族炭化水素系溶媒としては、ベンゼン、トルエン、キシレン、ェチルベンゼン、 トリメチルベンゼン、メチルェチルベンゼン、 n プロピルベンセン、 i プロピルべンセ ン、ジェチルベンゼン、 i ブチルベンゼン、トリェチルベンゼン、ジー i プロピルベン セン、 n-アミルナフタレン、トリメチルベンゼンなどの芳香族炭化水素系溶媒を挙げ ることがでさる。
[0074] これらの芳香族炭化水素系溶媒は、 1種あるいは 2種以上を同時に使用してもよい
[0075] 含ハロゲン溶媒としては、ジクロロメタン、クロ口ホルム、フロン、クロ口ベンゼン、ジク ロロベンゼン、などの含ハロゲン溶媒を挙げることができる。
[0076] 本発明においては、沸点が 250°C未満の有機溶媒を使用することが望ましぐ有機 溶媒の種類としては、ケトン系溶媒、エステル系溶媒、芳香族炭化水素系溶媒が特 に好ましぐさらにそれらを 1種あるいは 2種以上を同時に使用することが好ましい。 [0077] 1. 4.触媒
本発明のポリマーの製造方法においては、触媒を用いることができる。かかる触媒 としては、 1. 1. 4.で述べた、(A)ポリシロキサンィ匕合物を製造する際に用いることが できる触媒を例示できる。
[0078] 本発明のポリマーの製造方法において、触媒の使用量は、(A)成分および (B)成 分の合計 100重量部に対して、 0. 001— 100重量部であることが好ましぐ 0. 005 一 50重量部であることがより好ましぐ 0. 01— 10重量部であることがさらに好ましい 。触媒の使用量が 0. 001重量部未満であると、(A)成分と (B)成分の複合化反応が 十分に行われず、塗膜にした場合に相分離を起こす可能性があり、一方、 100重量 部を超えると、(A)成分と (B)成分の複合ィ匕反応が急激に進行し、ゲル化する恐れ がある。
[0079] 1. 5.水
本発明のポリマーの製造方法において、水の使用量は、(A)成分および (B)成分 の合計 100重量部に対して、 0. 1— 100重量部であることが好ましぐ 0. 1— 50重量 部であることがより好ましぐ 1一 20重量部であることがさらに好ましい。水の使用量が 0. 1一 100重量部であると、低い比誘電率を保持しつつ、薬液耐性が向上した膜を 得ることができる。
[0080] 1. 6.組成
本発明のポリマーの製造方法において、(A)成分に対する(B)成分の使用量は、 ( A)成分を (A)成分の完^ 水分解縮合物に換算した 100重量部に対して、(B)成 分が 1一 1, 000重量部、より好ましくは 5— 50重量部である。(A)成分に対する(B) 成分の使用量力 Sこの範囲であると、低い比誘電率を保持しつつ、薬液耐性が向上し た膜を得ることができる。
[0081] 2.絶縁膜形成用組成物
本発明の絶縁膜形成用組成物には、 1.で述べた製造方法で得られた、有機溶媒 にポリマーが溶解もしくは分散されてなる液状物に、さらに有機ポリマー、界面活性 剤などの成分を添加してもよ 、。
[0082] 上記液状物には、必要に応じてさらに有機溶剤を加えることができる。有機溶剤とし ては、 1. 3.で述べた有機溶媒を例示できる。添加する有機溶剤は、本発明のポリマ 一の製造に用いた有機溶媒と同じものであってもよいし、本発明のポリマーの製造が 終了した後に、本発明のポリマーの製造に用いた有機溶媒を所望の有機溶剤に置 換したり、あるいは所望の有機溶剤を添加したりすることもできる。
[0083] 2. 1.有機ポリマー
有機ポリマーとしては、例えば、糖鎖構造を有する重合体、ビニルアミド系重合体、 (メタ)アクリル系重合体、芳香族ビニル化合物系重合体、デンドリマー、ポリイミド,ポ リアミック酸、ポリアリーレン、ポリアミド、ポリキノキサリン、ポリオキサジァゾール、フッ 素系重合体、ポリアルキレンオキサイド構造を有する重合体などを挙げることができる
[0084] ポリアルキレンオキサイド構造を有する重合体としては、ポリメチレンオキサイド構造 、ポリエチレンオキサイド構造、ポリプロピレンオキサイド構造、ポリテトラメチレンォキ サイド構造、ポリブチレンォキシド構造などが挙げられる。
[0085] 具体的には、ポリオキシメチレンアルキルエーテル、ポリオキシエチレンアルキルェ 一テル、ポリオキシェテチレンアルキルフエニルエーテル、ポリオキシエチレンステロ ールエーテル、ポリオキシエチレンラノリン誘導体、アルキルフエノールホルマリン縮 合物の酸化エチレン誘導体、ポリオキシエチレンポリオキシプロピレンブロックコポリ マー、ポリオキシエチレンポリオキシプロピレンアルキルエーテルなどのエーテル型 化合物、ポリオキシエチレングリセリン脂肪酸エステル、ポリオキシエチレンソルビタン 脂肪酸エステル、ポリオキシエチレンソルビトール脂肪酸エステル、ポリオキシェチレ ン脂肪酸アル力ノールアミド硫酸塩などのエーテルエステル型化合物、ポリエチレン グリコール脂肪酸エステル、エチレングリコール脂肪酸エステル、脂肪酸モノグリセリ ド、ポリグリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、プロピレングリコール 脂肪酸エステル、ショ糖脂肪酸エステルなどのエーテルエステル型化合物などを挙 げることができる。
[0086] ポリオキシチレンポリオキシプロピレンブロックコポリマーとしては、下記のようなブロ ック構造を有する化合物が挙げられる。
[0087] -(Χ' ) -(Υ' ) -(χ' ) -(Υ' ) -(χ' )
1 m η
(式中、 Ύ! は CH CH O—で表される基を、 Ύ' は CH CH (CH ) 0—で表され
2 2 2 3
る基を示し、 1は 1一 90、 mは 10— 99、 nは 0— 90の数を示す。)
これらの中で、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンポリオキシ プロピレンブロックコポリマー、ポリオキシエチレンポリオキシプロピレンァノレキノレエ一 テル、ポリオキシエチレングリセリン脂肪酸エステル、ポリオキシエチレンソルビタン脂 肪酸エステル、ポリオキシエチレンソルビトール脂肪酸エステル、などのエーテル型 化合物をより好ましい例として挙げることができる。
[0088] 前述の有機ポリマーは、 1種あるいは 2種以上を同時に使用しても良い。
[0089] 2. 2.界面活性剤
界面活性剤としては、たとえば、ノニオン系界面活性剤、ァニオン系界面活性剤、 カチオン系界面活性剤、両性界面活性剤などが挙げられ、さらには、フッ素系界面 活性剤、シリコーン系界面活性剤、ポリアルキレンォキシド系界面活性剤、ポリ (メタ) アタリレート系界面活性剤などを挙げることができ、好ましくはフッ素系界面活性剤、 シリコーン系界面活性剤を挙げることができる。
[0090] フッ素系界面活性剤としては、例えば、 1 , 1, 2, 2—テトラフロロォクチル(1, 1, 2, 2—テトラフロロプロピル)エーテル、 1, 1, 2, 2—テトラフロロォクチルへキシルエーテ ル、ォクタエチレングリコールジ(1, 1, 2, 2—テトラフ口ロブチル)エーテル、へキサェ チレングリコール(1, 1, 2, 2, 3, 3—へキサフロロペンチル)エーテル、ォクタプロピ レングリコールジ(1, 1, 2, 2—テトラフ口ロブチル)エーテル、へキサプロピレングリコ ールジ(1, 1, 2, 2, 3, 3—へキサフロロペンチル)エーテル、パーフロロドデシルスル ホン酸ナトリウム、 1, 1, 2, 2, 8, 8, 9, 9, 10, 10—デカフ口ロドデカン、 1, 1, 2, 2, 3, 3—へキサフロロデカン、 N— [3— (パーフルォロオクタンスルホンアミド)プロピル]— N, N' ジメチルー N カルボキシメチレンアンモ-ゥムベタイン、パーフルォロアル キルスルホンアミドプロピルトリメチルアンモ -ゥム塩、パーフルォロアルキル N—ェ チルスルホ-ルグリシン塩、リン酸ビス(N パーフルォロォクチルスルホ-ルー N—ェ チルアミノエチル)、モノパーフルォロアルキルェチルリン酸エステルなどの末端、主 鎖および側鎖の少なくとも何れかの部位にフルォロアルキルまたはフルォロアルキレ ン基を有する化合物力もなるフッ素系界面活性剤を挙げることができる。
[0091] また、市販品としては、メガファック F142D、同 F172、同 F173、同 F183〔以上、大 日本インキ化学工業 (株)製〕、エフトップ EF301、同 303、同 352〔新秋田化成 (株) 製〕、フロラード FC— 430、同 FC— 431〔住友スリーェム (株)製〕、アサヒガード AG71 0、サーフロン S— 382、同 SC— 101、同 SC— 102、同 SC— 103、同 SC— 104、同 SC 105、同 SC - 106〔旭硝子(株)製〕、 BM - 1000、 BM - 1100〔裕商(株)製〕、 NB X— 15〔 (株)ネオス〕などの名称で市販されて!ヽるフッ素系界面活性剤を挙げることが できる。これらの中でも、上記メガファック F172, BM— 1000, BM— 1100, NBX— 1 5が特に好ましい。
[0092] シリコーン系界面活性剤としては、例えば、 SH7PA、 SH21PA、 SH30PA、 ST9
4PA [ 、ずれも東レ 'ダウコーユング 'シリコーン (株)製〕などを用いることが出来る。こ れらの中でも、上記 SH28PA、 SH30PAが特に好ましい。
[0093] 界面活性剤の使用量は、(A) , (B)成分力もなる重合体 100重量部に対して、通 常、 0. 00001— 1重量部である。
[0094] これらは、 1種あるいは 2種以上を同時に使用しても良い。
[0095] 3.絶縁膜の形成方法
本発明の絶縁膜は、 2.で述べた絶縁膜形成用組成物を塗布して塗膜を形成した 後、塗膜を加熱および Zまたは高エネルギー線照射することによって得ることができ る。
[0096] 本発明の絶縁膜形成組成物を、シリコンウエノ、、 SiOウェハ、 SiNウェハなどの基
2
材に塗布する際には、スピンコート、浸漬法、ロールコート法、スプレー法などの塗装 手段が用いられる。
[0097] この際の膜厚は、乾燥膜厚として、 1回塗りで厚さ 0. 05-2. 5 m程度、 2回塗り では厚さ 0. 1— 5. 0 m程度の塗膜を形成することができる。その後、常温で乾燥 する力、ある ヽ ίま通常 80— 600°C、好ましく ίま 30— 500°C、より好ましく ίま 60— 430 °Cの温度で、通常 5— 240分程度、加熱して乾燥することにより、ガラス質または巨大 高分子の塗膜を形成することができる。
[0098] この際の加熱方法としては、ホットプレート、オーブン、ファーネスなどを使用するこ とが出来、加熱雰囲気としては、大気下、窒素雰囲気、アルゴン雰囲気、真空下、酸 素濃度をコントロールした減圧下などで行うことができる。
[0099] また、前記塗膜の硬化速度を制御するため、必要に応じて、段階的に加熱したり、 窒素、空気、酸素、減圧などの雰囲気を選択することができる。
[0100] 本発明では、膜形成用組成物を基板に塗布し、高エネルギー線照射下で通常 25 一 500°C、好ましくは 30— 450°C、より好ましくは 60— 430°Cに加熱することができる
[0101] 高エネルギー線としては、電子線、紫外線および X線力 選ばれる少なくとも 1種の 高工ネルギ一線であることができる。以下に、一例として電子線を使用した場合の照 射条件を記す。
[0102] このように、高エネルギー線の照射によって、塗膜を硬化させる場合、熱硬化の場 合と比して所要時間を短縮させることができる。そのため、たとえば半導体装置の層 間絶縁膜の形成に適用する場合に、毎葉処理が行われるとしても、処理時間の短縮 を図ることができる。
[0103] 以下の説明では、高エネルギー線として、電子線を用いた場合の照射条件につい て説明する。
[0104] 電子線を照射する場合のエネルギーは 0. 1— 50keV、好ましくは 1一 30keV、電 子線照射量は 1—1000 μ CZcm2、好ましくは 10— 500 μ CZcm2である。電子線 を照射する場合のエネルギーが 0. 1— 50keVである場合、電子線が膜を透過して 下部の半導体素子へダメージを与えることがなぐ塗膜内部にまで電子線を十分に 進入させる事ができる。また、電子線照射量カ^ー 1000 C/cm2である場合、塗膜 全体を反応させ、かつ塗膜へのダメージを低減させることができる。
[0105] 電子線照射時の基板温度は、好ましくは 300— 500°Cであり、より好ましくは 350— 420°Cである。基板温度が 300°C以下では、塗膜の硬化が不十分であり、 500°C以 上では、塗膜が部分的に分解してしまう危険性がある。
[0106] また、塗膜に電子線を照射する前に基板を 250— 500°Cに熱した状態で塗膜をあ らかじめ熱硬化させた後に電子線を照射する事もできる。この方法によると、電子線 照射量の不均一性に依存する膜厚の不均一さを低減することができる。 [0107] また、電子線の照射は、酸素濃度が 10, OOOppm以下、好ましくは 1, OOOppmの 雰囲気下で行うことが好ましい。酸素濃度が 10, OOOppmを越えると、電子線の照射 が効果的に行われず、硬化が不十分になる恐れがある。
[0108] また、本発明にお 、て電子線の照射は不活性ガス雰囲気下で行うこともできる。こ こで、使用される不活性ガスとは N
2、 He、 Ar、 Krおよび Xe、好ましくは Heおよび Ar などを挙げることができる。電子線照射を不活性ガス雰囲気下で行うことにより膜が酸 ィ匕されに《なり、得られる塗膜の低誘電率を維持する事ができる。
[0109] この電子線照射は、減圧雰囲気で行っても良い。そのときの圧力は、 1一 lOOOmT orrであり、より好ましくは 1一 200mTorrの範囲である。
[0110] 高工ネルギ一線の照射は、上述のように、電子線を用いて行う他に紫外線を用いて 行うことができる。以下に、紫外線を用いる場合の条件について説明する。
[0111] 紫外線の照射としては、好ましくは 100— 260nm、より好ましくは 150— 260nmの 波長の紫外線により照射する。
[0112] また、紫外線の照射は、酸素存在下で行われることが好ましい。
[0113] 本発明の絶縁膜は、膜構造中にケィ素 炭素結合を多く有するという特徴を有する 。また、本発明のポリマーは、(A)ポリシロキサンィ匕合物と、(B)ポリカルボシランとを 共存させた状態で縮合することにより、ポリシロキサンとポリカルボシランとが複合ィ匕さ れたポリマーであるため、ポリシロキサン溶液とポリカルボシラン溶液とをブレンドした 場合のように、膜中に相分離を発生することがなぐ均質な膜を得ることができる。こ のポリマーを含有する膜形成用組成物を用いることにより、比誘電率が小さぐ機械 的強度、 CMP耐性ならびに薬液耐性に優れた絶縁膜を得ることができる。
[0114] 本発明の絶縁膜は、低比誘電率でかつ機械的強度、 CMP耐性ならびに薬液耐性 に優れることから、 LSI,システム LSI、 DRAM, SDRAM, RDRAM, D— RDRAM などの半導体素子用層間絶縁膜やエッチングストッパー膜、半導体素子の表面コー ト膜などの保護膜、多層レジストを用いた半導体作製工程の中間層、多層配線基板 の層間絶縁膜、液晶表示素子用の保護膜や絶縁膜などの用途に有用である。
[0115] 4.実施例
以下、本発明を、実施例を挙げてさらに具体的に説明する。本発明は以下の実施 例に限定されるものではない。なお、実施例および比較例中の「部」および「%」は特 記しない限り、それぞれ重量部および重量%であることを示して!/ヽる。
[0116] 4. 1.評価方法
各種の評価は、次のようにして行った。
[0117] 4. 1. 1.比誘電率
得られたポリマー膜に対して蒸着法によりアルミニウム電極パターンを形成させ、比 誘電率測定用サンプルを作成した。該サンプルを周波数 100kHzの周波数で、横河 'ヒューレットパッカード(株)製、 HP16451B電極および HP4284Aプレシジョン LC Rメータを用いて、 CV法により室温における当該ポリマー膜の比誘電率を測定した。
[0118] 4. 1. 2.薬液耐性
ポリマー膜が形成された 8インチウェハを、室温で 0. 2%の希フッ酸水溶液中に 1 分間浸潰し、ポリマー膜の浸漬前後の膜厚変化を観察した。下記に定義する残膜率 が 99%以上であれば、薬液耐性が良好である(表 1にお 、て「A」で表す)と判断し、 前記残膜率が 99%未満であれば、薬液耐性が良好でな 、(表 1にお 、て「B」で表 す)と判断した。
残膜率 (%) = (浸漬後の膜厚) ÷ (浸漬前の膜厚) X 100
[0119] 4. 2.合成例 1
25%アンモニア水溶液 5g、超純水 320gおよびエタノール 600gの混合溶液中に、 メチルトリメトキシシラン 15g (完^ 水分解縮合物換算 7. 4g)、テトラエトキシシラン 20g (完^ 水分解縮合物 5. 8g)、およびビス (へキサメトキシシリル)メタン 15g (完 全加水分解縮合物 6. 9g)を加えて、 60°Cで 3時間反応させたのち、プロピレングリコ ールモノプロピルエーテル 200gを加え、その後、減圧下で全溶液量が 140gとなるま で濃縮した。その後、酢酸の 10%プロピレングリコールモノプロピルエーテル溶液 10 gを添加し、固形分含有量 13. 0%の溶液 (A— 1)を得た。
[0120] 4. 3.実施例 1
合成例 1において合成した溶液 (A— 1) (ポリシロキサンの固形分濃度が 13. 0%で あるプロピレングリコールモノプロピルエーテル溶液) 150g、 25%アンモニア水溶液 5g、超純水 320g、およびエタノール 600gの混合溶液中に、重量平均分子量 1, 00 0の巿販ポリカルボシラン(商品名「NIPUSI Type-Sj , 日本カーボン株式会社 力 入手可能であるポリジメチルシランのカルボシラン化ポリマー) 1. 5gを加え、 60 °Cで 5時間反応させた。これに、プロピレングリコールモノプロピルエーテル lOOOgを 加え、減圧下で全溶液量が 160gとなるまで濃縮した。その後、酢酸の 10%プロピレ ングリコールモノプロピルエーテル溶液 10gを添カ卩し、固形分含有量 12. 3%の絶縁 膜形成用組成物 (A— 2)を得た。
[0121] 4. 4.実施例 2
合成例 1において合成した溶液 (A— 1) (ポリシロキサンの固形分濃度が 13. 0%で あるプロピレングリコールモノプロピルエーテル溶液) 150g、 25%アンモニア水溶液 5g、超純水 320g、およびイソプロピルアルコール 600gの混合溶液中に、重量平均 分子量 5, 000の巿販ポリカルボシラン(商品名「NIPUSI Type-S」, 日本カー ボン株式会社から入手可能であるポリジメチルシランのカルボシランィ匕ポリマー) 1. 5 gを加え、 60°Cで 5時間反応させた。これに、プロピレングリコールモノプロピルエー テル 1000gをカ卩え、減圧下で全溶液量が 160gとなるまで濃縮した。その後、酢酸の 10%プロピレングリコールモノプロピルエーテル溶液 10gを添カ卩し、固形分含有量 1 2. 3%の絶縁膜形成用組成物 (A— 3)を得た。
[0122] 4. 5.実施例 3
合成例 1において合成した溶液 (A— 1) (ポリシロキサンの固形分濃度が 13. 0%で あるプロピレングリコールモノプロピルエーテル溶液) 150g、 25%塩酸 5g、超純水 3 20g、およびエタノール 600gの混合溶液中に、重量平均分子量 1, 000の巿販ポリ カルボシラン(商品名「NIPUSI Type-Sj , 日本カーボン株式会社から入手可能 であるポリジメチルシランのカルボシラン化ポリマー) 1. 5gを加え、 60°Cで 5時間反 応させた。これに、プロピレングリコールモノプロピルエーテル 1000gをカ卩え、減圧下 で全溶液量が 160gとなるまで濃縮した。その後、酢酸の 10%プロピレングリコール モノプロピルエーテル溶液 10gを添加し、固形分含有量 12. 3%の絶縁膜形成用組 成物 (A - 4)を得た。
[0123] 4. 6.試験例 1
実施例 1で得られた組成物 (A— 2)、実施例 2で得られた組成物 (A— 3)、実施例 3 で得られた組成物 (A-4)および合成例 1で得られた溶液 (A-1)を、それぞれ 8イン チシリコンウェハ上にスピンコート法により塗布し、大気中 80°Cで 5分間、次いで窒素 下 200°Cで 5分間加熱したのち、さらに真空下で 340°C、 360°C、 380°Cの順でそれ ぞれ 30分間ずつ加熱し、さらに真空下にて 425°Cで 1時間加熱して、無色透明の塗 膜を形成した。この塗膜について、 4. 1.で述べた評価方法によって、比誘電率およ び薬液耐性を測定した。その結果を表 1に示す。
[0124] なお、表 1にお ヽて、実験例 1一 3はそれぞれ、実施例 1一 3で得られた溶液 (A-2 ) , (A-3) , (A— 4)を用いた時の結果であり、比較例 1は、合成例 1で得られた溶液( A— 1)を用いた時の結果である。
[0125] 4. 7.試験例 2
実施例 1で得られた組成物 (A— 2)、実施例 2で得られた組成物 (A— 3)、実施例 3 で得られた組成物 (A-4)および合成例 1で得られた溶液 (A-1)を、それぞれ 8イン チシリコンウェハ上にスピンコート法を用いて塗布し、膜厚 0. 5 mの塗膜を得た。 大気中にお 、て 80°Cで 5分間、次!、で窒素雰囲気下にお!/、て 200°Cで 5分間加熱 したのち、得られた塗膜に加速電圧 5keV、ホットプレート温度 400°C、圧力 1. 33Pa 、 He雰囲気の条件下で電子線を照射することにより絶縁膜を形成した。この絶縁膜 について、 4. 1.で述べた評価方法によって比誘電率および薬液耐性を測定した。 その結果を表 1に示す。
[0126] なお、表 1において、実験例 4一 6はそれぞれ、本試験例において実施例 1一 3で 得られた溶液 (A-2) , (A-3) , (A— 4)を用いた時の結果であり、比較例 2は、本試
Figure imgf000032_0001
ヽて合成例 1で得られた溶液 (A-1)を用いた時の結果である。
[0127] [表 1] 比誘電率 薬液耐性 実験例 1 2.2 A
実験例 2 2.2 A
実験例 3 2.3 A
実験例 4 2.3 A
実験例 5 2.3 A
実験例 6 2.4 A
比較例 1 2.2 B
比較例 2 2.3 B 表 1から明らかなように、実験例 1一 6によれば、ポリシロキサンのみの組成物を用い た比較例 1, 2と比較して、より比誘電率が低ぐかつ優れた薬液耐性を有する絶縁 膜が得られたことが確認された。

Claims

請求の範囲
[1] (A)ポリシロキサンィ匕合物と、 (B)ポリカルボシランィ匕合物とを、触媒、水および有 機溶媒の存在下で混合し、加熱することを含む、ポリマーの製造方法。
[2] 請求項 1において、
前記 (B)ポリカルボシラン化合物は、下記一般式(1)で表される構造を有するポリ カルボシランィ匕合物である、ポリマーの製造方法。
[化 6]
Figure imgf000034_0001
· · · · · (1)
(式中、 R8は水素原子、ハロゲン原子、ヒドロキシ基、アルコキシ基、ァシロキシ基、 スルホン基、メタンスルホン基、トリフルォロメタンスルホン基、アルキル基、ァルケ- ル基、およびァリール基力もなる群より選ばれる基を示し、 R9はハロゲン原子、ヒドロ キシ基、アルコキシ基、ァシロキシ基、スルホン基、メタンスルホン基、トリフルォロメタ ンスルホン基、アルキル基、アルケニル基、およびァリール基カゝらなる群より選ばれる 基を示し、 R10, R11は同一または異なり、ハロゲン原子、ヒドロキシ基、アルコキシ基、 ァシロキシ基、スルホン基、メタンスルホン基、トリフルォロメタンスルホン基、炭素数 2 一 6のアルキル基、アルケニル基、ァリール基力 なる群より選ばれる基を示し、 R12 一 R14は同一または異なり、置換または非置換のメチレン基、アルキレン基、ァルケ- レン基、およびァリーレン基を示し、 X, y, zは、それぞれ 0— 10, 000の数を示し、 5 <x+y+ z< 10, 000の条件を満たす。ただし、 x = 0の場合には、 R9、 R10、 R11の いずれかひとつは、ハロゲン原子、ヒドロキシ基、アルコキシ基、ァシロキシ基、スルホ ン基、メタンスルホン基、トリフルォロメタンスルホン基である。 )
[3] 請求項 1または 2において、
前記 (A)成分は、加水分解性基を有するシラン化合物を加水分解縮合すること〖こ より得られ、 前記 (A)成分を (A)成分の完全加水分解縮合物に換算した 100重量部に対して、 前記 (B)成分が 1一 1000重量部である、ポリマーの製造方法。
[4] 請求項 1ないし 3のいずれかにおいて、
前記(B)成分のポリスチレン換算重量平均分子量が 400— 50, 000である、ポリマ 一の製造方法。
[5] 請求項 1ないし 4のいずれかにおいて、
前記触媒は酸触媒、塩基触媒、または金属触媒である、ポリマーの製造方法。
[6] 請求項 1ないし 5のいずれかにおいて、
前記触媒の使用量が、前記 (A)成分および前記 (B)成分の合計 100重量部に対 して、 0. 001— 100重量部である、ポリマーの製造方法。
[7] 請求項 1ないし 6のいずれかにおいて、 前記水の使用量が、前記 (A)成分および 前記 (B)成分の合計 100重量部に対して、 0. 1— 100重量部である、ポリマーの製 造方法。
[8] 請求項 1な 、し 7の 、ずれかに記載のポリマーの製造方法によって得られたポリマ
[9] 請求項 8に記載のポリマーおよび有機溶剤を含有する、絶縁膜形成用組成物。
[10] 請求項 9に記載の絶縁膜形成用組成物を基板に塗布し、 30— 500°Cに加熱する ことを含む、絶縁膜の形成方法。
[11] 請求項 10に記載の絶縁膜の形成方法により得られた絶縁膜。
PCT/JP2005/002343 2004-02-26 2005-02-16 ポリマーおよびその製造方法、絶縁膜形成用組成物、ならびに絶縁膜およびその形成方法 WO2005082976A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05719195A EP1719793A4 (en) 2004-02-26 2005-02-16 POLYMER AND MANUFACTURING METHOD THEREFOR, COMPOSITION FOR FORMING AN INSULATING FILM AND PRODUCTION METHOD THEREFOR
US11/489,468 US20070027287A1 (en) 2004-02-26 2006-07-20 Polymer and process for producing the same, composition for forming insulating film, and insulating film and method of forming the same
US12/717,225 US8404786B2 (en) 2004-02-26 2010-03-04 Polymer and process for producing the same, composition for forming insulating film, and insulating film and method of forming the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004051733 2004-02-26
JP2004-051733 2004-02-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/489,468 Continuation US20070027287A1 (en) 2004-02-26 2006-07-20 Polymer and process for producing the same, composition for forming insulating film, and insulating film and method of forming the same

Publications (1)

Publication Number Publication Date
WO2005082976A1 true WO2005082976A1 (ja) 2005-09-09

Family

ID=34908644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/002343 WO2005082976A1 (ja) 2004-02-26 2005-02-16 ポリマーおよびその製造方法、絶縁膜形成用組成物、ならびに絶縁膜およびその形成方法

Country Status (5)

Country Link
US (2) US20070027287A1 (ja)
EP (1) EP1719793A4 (ja)
KR (1) KR20070010011A (ja)
TW (1) TW200602387A (ja)
WO (1) WO2005082976A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009231678A (ja) * 2008-03-25 2009-10-08 Jsr Corp 絶縁膜形成用組成物、絶縁膜の製造方法、及びそれによって得られる絶縁膜

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3951124B2 (ja) * 2002-12-06 2007-08-01 Jsr株式会社 絶縁膜
EP1719793A4 (en) * 2004-02-26 2009-05-20 Jsr Corp POLYMER AND MANUFACTURING METHOD THEREFOR, COMPOSITION FOR FORMING AN INSULATING FILM AND PRODUCTION METHOD THEREFOR
WO2005108469A1 (ja) * 2004-05-11 2005-11-17 Jsr Corporation 有機シリカ系膜の形成方法、有機シリカ系膜、配線構造体、半導体装置、および膜形成用組成物
JP5110239B2 (ja) * 2004-05-11 2012-12-26 Jsr株式会社 有機シリカ系膜の形成方法、膜形成用組成物
JP5110238B2 (ja) * 2004-05-11 2012-12-26 Jsr株式会社 絶縁膜形成用組成物およびその製造方法、ならびにシリカ系絶縁膜およびその形成方法
EP1947135A4 (en) * 2005-11-11 2012-12-26 Jsr Corp POLYCARBOSILAN, METHOD OF MANUFACTURING THEREOF, SILICON DIOXIDE COMPOSITION FOR COATING APPLICATION AND SILICON DIOXIDE FILM
EP1981074B1 (en) * 2006-02-02 2011-06-22 JSR Corporation Organic silica film and method for forming same, composition for forming insulating film of semiconductor device and method for producing same, wiring structure and semiconductor device
US7927664B2 (en) * 2006-08-28 2011-04-19 International Business Machines Corporation Method of step-and-flash imprint lithography
KR20090119903A (ko) * 2007-02-14 2009-11-20 제이에스알 가부시끼가이샤 규소 함유 막 형성용 재료, 및 규소 함유 절연막 및 그의 형성 방법
WO2009008041A1 (ja) * 2007-07-06 2009-01-15 Fujitsu Limited 絶縁膜材料、多層配線基板及びその製造方法、並びに、半導体装置及びその製造方法
JP5365785B2 (ja) * 2008-05-30 2013-12-11 Jsr株式会社 有機ケイ素化合物の製造方法
KR100968803B1 (ko) * 2008-06-24 2010-07-08 주식회사 티씨케이 폴리카르보실란 및 그 제조방법
JP4911143B2 (ja) * 2008-08-15 2012-04-04 信越化学工業株式会社 高温耐性接着剤組成物、基板の接着方法、及び3次元半導体装置
JP4379637B1 (ja) 2009-03-30 2009-12-09 Jsr株式会社 有機ケイ素化合物の製造方法
KR101030019B1 (ko) * 2009-12-31 2011-04-20 제일모직주식회사 봉지재용 투광성 수지 및 이를 포함하는 전자 소자
TWI726871B (zh) * 2015-03-17 2021-05-11 德商巴斯夫歐洲公司 混成有機-無機材料的組成物及其製造方法與使用方法
EP3318606B1 (en) 2015-07-09 2020-03-18 Tokyo Ohka Kogyo Co., Ltd. Silicon-containing resin composition
JP6999408B2 (ja) * 2016-12-28 2022-02-04 東京応化工業株式会社 樹脂組成物、樹脂組成物の製造方法、膜形成方法及び硬化物
US10947412B2 (en) * 2017-12-19 2021-03-16 Honeywell International Inc. Crack-resistant silicon-based planarizing compositions, methods and films

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5461299A (en) * 1977-10-26 1979-05-17 Tokushiyu Muki Zairiyou Kenkiy Polycarbosilane partially containing siloxane linkage and method of making same
JPH05105759A (ja) * 1991-10-17 1993-04-27 Kanegafuchi Chem Ind Co Ltd ケイ素系ハイブリツド材料
JP2000309752A (ja) * 1999-04-27 2000-11-07 Jsr Corp 膜形成用組成物および絶縁膜形成用材料
JP2001127152A (ja) * 1999-10-25 2001-05-11 Fujitsu Ltd 低誘電率絶縁膜の形成方法及び該方法で形成された低誘電率絶縁膜及び該低誘電率絶縁膜を用いた半導体装置
JP2001345317A (ja) * 2000-03-29 2001-12-14 Fujitsu Ltd 低誘電率被膜形成材料、及びそれを用いた被膜と半導体装置
WO2002098955A1 (en) * 2001-06-07 2002-12-12 Lg Chem, Ltd. Organosilicate polymer and insulating film therefrom
JP2003115482A (ja) * 2001-10-05 2003-04-18 Asahi Kasei Corp 絶縁膜形成用組成物
US20040007753A1 (en) * 2002-04-25 2004-01-15 Kyocera Corporation Photoelectric conversion device and manufacturing process thereof
JP2005076031A (ja) * 2003-09-01 2005-03-24 Samsung Electronics Co Ltd 新規のシロキサン樹脂及びこれを用いた半導体層間絶縁膜

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5248903B2 (ja) * 1974-06-19 1977-12-13
GB2009196B (en) * 1977-10-26 1982-04-15 Res Inst For Special Inorganic Polycarbosilane process for its prudiction and its use as material for producing silicon carbide
JPH04100873A (ja) 1990-08-21 1992-04-02 Ube Ind Ltd 耐熱性塗料
DE19810803A1 (de) * 1998-03-12 1999-09-16 Wacker Chemie Gmbh Verfahren zur Herstellung mikroverkapselter Produkte mit Organopolysiloxanwänden
JP4100873B2 (ja) 2001-02-23 2008-06-11 株式会社クボタ 汚水処理装置
JP4545973B2 (ja) * 2001-03-23 2010-09-15 富士通株式会社 シリコン系組成物、低誘電率膜、半導体装置および低誘電率膜の製造方法
US6809041B2 (en) * 2002-07-01 2004-10-26 Rensselaer Polytechnic Institute Low dielectric constant films derived by sol-gel processing of a hyperbranched polycarbosilane
US7462678B2 (en) * 2003-09-25 2008-12-09 Jsr Corporation Film forming composition, process for producing film forming composition, insulating film forming material, process for forming film, and silica-based film
JP2005175060A (ja) * 2003-12-09 2005-06-30 Jsr Corp 絶縁膜およびその形成方法、ならびに膜形成用組成物
JP4737361B2 (ja) * 2003-12-19 2011-07-27 Jsr株式会社 絶縁膜およびその形成方法
JP5105041B2 (ja) * 2004-01-16 2012-12-19 Jsr株式会社 絶縁膜形成用組成物およびその製造方法、ならびにシリカ系絶縁膜およびその形成方法
WO2005068539A1 (ja) * 2004-01-16 2005-07-28 Jsr Corporation ポリマーの製造方法、ポリマー、絶縁膜形成用組成物、絶縁膜の製造方法、および絶縁膜
EP1719793A4 (en) * 2004-02-26 2009-05-20 Jsr Corp POLYMER AND MANUFACTURING METHOD THEREFOR, COMPOSITION FOR FORMING AN INSULATING FILM AND PRODUCTION METHOD THEREFOR
WO2005108469A1 (ja) * 2004-05-11 2005-11-17 Jsr Corporation 有機シリカ系膜の形成方法、有機シリカ系膜、配線構造体、半導体装置、および膜形成用組成物
JP5110238B2 (ja) * 2004-05-11 2012-12-26 Jsr株式会社 絶縁膜形成用組成物およびその製造方法、ならびにシリカ系絶縁膜およびその形成方法
JP5110239B2 (ja) * 2004-05-11 2012-12-26 Jsr株式会社 有機シリカ系膜の形成方法、膜形成用組成物
EP1615260A3 (en) * 2004-07-09 2009-09-16 JSR Corporation Organic silicon-oxide-based film, composition and method for forming the same, and semiconductor device
JP4355939B2 (ja) * 2004-07-23 2009-11-04 Jsr株式会社 半導体装置の絶縁膜形成用組成物およびシリカ系膜の形成方法
EP1947135A4 (en) * 2005-11-11 2012-12-26 Jsr Corp POLYCARBOSILAN, METHOD OF MANUFACTURING THEREOF, SILICON DIOXIDE COMPOSITION FOR COATING APPLICATION AND SILICON DIOXIDE FILM
EP1981074B1 (en) * 2006-02-02 2011-06-22 JSR Corporation Organic silica film and method for forming same, composition for forming insulating film of semiconductor device and method for producing same, wiring structure and semiconductor device
JP5105759B2 (ja) 2006-03-31 2012-12-26 株式会社Nttファシリティーズ 蓄電池管理装置
JP5365785B2 (ja) * 2008-05-30 2013-12-11 Jsr株式会社 有機ケイ素化合物の製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5461299A (en) * 1977-10-26 1979-05-17 Tokushiyu Muki Zairiyou Kenkiy Polycarbosilane partially containing siloxane linkage and method of making same
JPH05105759A (ja) * 1991-10-17 1993-04-27 Kanegafuchi Chem Ind Co Ltd ケイ素系ハイブリツド材料
JP2000309752A (ja) * 1999-04-27 2000-11-07 Jsr Corp 膜形成用組成物および絶縁膜形成用材料
JP2001127152A (ja) * 1999-10-25 2001-05-11 Fujitsu Ltd 低誘電率絶縁膜の形成方法及び該方法で形成された低誘電率絶縁膜及び該低誘電率絶縁膜を用いた半導体装置
JP2001345317A (ja) * 2000-03-29 2001-12-14 Fujitsu Ltd 低誘電率被膜形成材料、及びそれを用いた被膜と半導体装置
WO2002098955A1 (en) * 2001-06-07 2002-12-12 Lg Chem, Ltd. Organosilicate polymer and insulating film therefrom
JP2003115482A (ja) * 2001-10-05 2003-04-18 Asahi Kasei Corp 絶縁膜形成用組成物
US20040007753A1 (en) * 2002-04-25 2004-01-15 Kyocera Corporation Photoelectric conversion device and manufacturing process thereof
JP2005076031A (ja) * 2003-09-01 2005-03-24 Samsung Electronics Co Ltd 新規のシロキサン樹脂及びこれを用いた半導体層間絶縁膜

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009231678A (ja) * 2008-03-25 2009-10-08 Jsr Corp 絶縁膜形成用組成物、絶縁膜の製造方法、及びそれによって得られる絶縁膜

Also Published As

Publication number Publication date
US8404786B2 (en) 2013-03-26
KR20070010011A (ko) 2007-01-19
EP1719793A4 (en) 2009-05-20
TW200602387A (en) 2006-01-16
US20070027287A1 (en) 2007-02-01
EP1719793A1 (en) 2006-11-08
US20100168327A1 (en) 2010-07-01

Similar Documents

Publication Publication Date Title
WO2005082976A1 (ja) ポリマーおよびその製造方法、絶縁膜形成用組成物、ならびに絶縁膜およびその形成方法
KR100709644B1 (ko) 실리카계 막 및 그의 형성 방법, 반도체 장치의 절연막형성용 조성물, 및 배선 구조체 및 반도체 장치
KR101185644B1 (ko) 절연막 형성용 조성물 및 그의 제조 방법, 및 실리카절연막 및 그의 형성 방법
KR101203225B1 (ko) 막 형성용 조성물, 막 형성용 조성물의 제조 방법, 절연막형성용 재료, 막의 형성 방법 및 실리카계 막
KR101168452B1 (ko) 절연막 형성용 조성물, 그의 제조 방법, 실리카계 절연막및 그의 형성 방법
WO2005108468A1 (ja) 有機シリカ系膜の形成方法、有機シリカ系膜、配線構造体、半導体装置、および膜形成用組成物
EP1981074B1 (en) Organic silica film and method for forming same, composition for forming insulating film of semiconductor device and method for producing same, wiring structure and semiconductor device
WO2005108469A1 (ja) 有機シリカ系膜の形成方法、有機シリカ系膜、配線構造体、半導体装置、および膜形成用組成物
WO2005068539A1 (ja) ポリマーの製造方法、ポリマー、絶縁膜形成用組成物、絶縁膜の製造方法、および絶縁膜
KR100619647B1 (ko) 막 형성용 조성물, 막의 형성 방법 및 절연막
KR20030027694A (ko) 막형성 방법, 적층막, 절연막 및 반도체용 기판
WO2005057646A1 (ja) 絶縁膜およびその形成方法、ならびに膜形成用組成物
WO2007139004A1 (ja) 絶縁膜形成用組成物およびその製造方法、ならびにシリカ系絶縁膜およびその形成方法
JP5099302B2 (ja) 絶縁膜形成用組成物、ポリマーおよびその製造方法、絶縁膜の製造方法、ならびにシリカ系絶縁膜
JP4662000B2 (ja) 膜形成用組成物、膜の形成方法および絶縁膜
JP2005272816A (ja) ポリマーおよびその製造方法、絶縁膜形成用組成物、ならびに絶縁膜およびその形成方法
US6749944B2 (en) Stacked film, method for the formation of stacked film, insulating film, and substrate for semiconductor
JP2007262256A (ja) ポリマーおよびその製造方法、絶縁膜形成用組成物、絶縁膜の製造方法、ならびにシリカ系絶縁膜
JP2000309751A (ja) 膜形成用組成物および絶縁膜形成用材料
JP4022802B2 (ja) 膜形成用組成物、膜の形成方法および絶縁膜
JP5099301B2 (ja) 絶縁膜形成用組成物、ポリマーおよびその製造方法、絶縁膜の製造方法、ならびにシリカ系絶縁膜
JP4101989B2 (ja) ポリオルガノシロキサン系組成物の製造方法、ポリオルガノシロキサン系組成物、および膜
JP4150922B2 (ja) 積層体の形成方法
JP2001049184A (ja) 膜形成用組成物、膜の形成方法および低密度化膜
JP2001335744A (ja) 膜形成用組成物、膜の形成方法およびシリカ系膜

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005719195

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11489468

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020067019813

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005719195

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067019813

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 11489468

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP