WO2005071092A1 - サイトメガロウイルスエンハンサーおよびニワトリβ-アクチンプロモーターを含むハイブリッドプロモーターを利用したマイナス鎖RNAウイルスベクターの製造方法 - Google Patents

サイトメガロウイルスエンハンサーおよびニワトリβ-アクチンプロモーターを含むハイブリッドプロモーターを利用したマイナス鎖RNAウイルスベクターの製造方法 Download PDF

Info

Publication number
WO2005071092A1
WO2005071092A1 PCT/JP2005/000705 JP2005000705W WO2005071092A1 WO 2005071092 A1 WO2005071092 A1 WO 2005071092A1 JP 2005000705 W JP2005000705 W JP 2005000705W WO 2005071092 A1 WO2005071092 A1 WO 2005071092A1
Authority
WO
WIPO (PCT)
Prior art keywords
virus
dna
rna
strand
minus
Prior art date
Application number
PCT/JP2005/000705
Other languages
English (en)
French (fr)
Inventor
Akihiro Iida
Hiroshi Ban
Makoto Inoue
Takahiro Hirata
Mamoru Hasegawa
Original Assignee
Dnavec Research Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dnavec Research Inc. filed Critical Dnavec Research Inc.
Priority to US10/586,142 priority Critical patent/US8741650B2/en
Priority to EP05703933A priority patent/EP1717317A4/en
Priority to CN2005800091828A priority patent/CN1934260B/zh
Priority to AU2005206410A priority patent/AU2005206410A1/en
Priority to KR1020067016708A priority patent/KR101279677B1/ko
Priority to CA2553976A priority patent/CA2553976C/en
Priority to JP2005517263A priority patent/JP4999330B2/ja
Publication of WO2005071092A1 publication Critical patent/WO2005071092A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/36011Togaviridae
    • C12N2770/36111Alphavirus, e.g. Sindbis virus, VEE, EEE, WEE, Semliki
    • C12N2770/36141Use of virus, viral particle or viral elements as a vector
    • C12N2770/36143Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/10Plasmid DNA
    • C12N2800/108Plasmid DNA episomal vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/30Vector systems comprising sequences for excision in presence of a recombinase, e.g. loxP or FRT
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2830/00Vector systems having a special element relevant for transcription
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2830/00Vector systems having a special element relevant for transcription
    • C12N2830/15Vector systems having a special element relevant for transcription chimeric enhancer/promoter combination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2830/00Vector systems having a special element relevant for transcription
    • C12N2830/42Vector systems having a special element relevant for transcription being an intron or intervening sequence for splicing and/or stability of RNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2830/00Vector systems having a special element relevant for transcription
    • C12N2830/80Vector systems having a special element relevant for transcription from vertebrates
    • C12N2830/90Vector systems having a special element relevant for transcription from vertebrates avian

Definitions

  • the present invention relates to a method for producing a minus-strand RNA viral vector.
  • minus-strand RNA viruses have been mainly recovered by recombinant vaccinia virus expressing v7 RNA polymerase (vTF7-3: Fuerst, TR et al., Proc. Natl. Acad. Sci. USA 83, 8122- 8126 (1986), MVA-T7: Sutter, G. et al., FEBS lett. 371: 9-12 (1995), NP, P, L genes and minus-strand RNA virus genome under T7 promoter control (Kolakofsky, et al., EMBO J. 14: 6087-6094 (1995); Kato, A. et al "Genes Cells 1: 569-579 (1996)).
  • NP, P, L and antigenomic RNA are supplied by the action of T7 RNA polymerase expressed in the virus, and the cap structure is formed at the 5 'end of NP, P, L mRNA by the action of the vaccinia virus caving enzyme.
  • the proteins are translated, and these proteins act on antigenomic RNA to form a functional RNP. Genome RNP from the non-RNP is replicated, further occur transcription of the virus-derived protein, the virus infection cycle begins Ru recovered.
  • Non-Patent Document 1 Fuerst, TR et al., Proc. Natl. Acad. Sci. USA 83, 8122-8126 (1986)
  • Non-Patent Document 2 Sutter G, et al, FEBS lett. 371: 9-12 (1995) )
  • Non-Patent Document 3 Kolakofsky et al., EMBO J. 14: 6087-6094 (1995)
  • Non-Patent Document 4 Kato, A. et al., Genes Cells 1: 569-579 (1996)
  • the present invention provides a method for producing a negative-strand RNA virus vector without using a vaccinia virus, using a hybrid promoter containing a cytomegaloinole hanshan and a chicken 13-actin promoter.
  • the second method is a recovery method reported by Rabies virus, in which NP, P, L, and genome are all driven by a cytomegalovirus promoter (K. Inoue, et al., J Virological Method. 107: 229-236 (2003)).
  • a hammerhead ribozyme is added to the 5 'end of the antigenome in order to accurately cut the end of the genome, allowing virus recovery without using a T7 RNA polymerase expression strain. is there.
  • the present inventors have improved the method for driving transcription of the virus genome in a virus-producing cell.
  • transcription of the minus-strand RNA virus genomic RNA and all expression of the minus-strand RNA virus protein that forms ribonucleoprotein with the genomic RNA can be performed using the cytomegaloinole hanshan and the chicken / 3-actin promoter. It has been found that efficient virus production can be realized by direct or indirect drive by a hybrid promoter (referred to as CA promoter).
  • genomic RNA transcription is performed by linking DNA encoding a minus-strand RNA virus genomic RNA under the control of a CA promoter, and directly inducing transcription of the genomic RNA by the CA promoter, or encoding genomic RNA.
  • a signal sequence of RNA polymerase derived from butteriophage is linked upstream of the DNA, and the RNA polymerase is expressed from the CA promoter, thereby inducing transcription of genomic RNA.
  • the present inventors have used F protein, M protein, which are one of the envelope constituent proteins, and non-propagating negative-strand RNA lacking F and M protein genes.
  • the virus was successfully recovered for the first time without using vaccinia virus. Since the method of the present invention can prepare a high-titer minus-strand RNA virus without using any vaccinia virus, it is useful for the production of highly safe viruses such as gene therapy.
  • the present invention relates to transcription of genomic RNA of a minus-strand RNA virus and the genome.
  • the present invention relates to a method for producing a minus-strand RNA virus, characterized in that expression of a minus-strand RNA virus protein that forms RNA and ribonucleoprotein is induced by a CA promoter. Relates to the invention.
  • the present invention claims One or more (or all) of the inventions described in each of the paragraphs as desired combinational inventions, in particular, the same independent claims (sections relating to inventions not included in the inventions described in other paragraphs)
  • a method for producing a minus-strand RNA virus vector in a virus-producing cell (0 transcription of the minus-strand RNA virus genomic RNA or its complementary strand and (ii) formation of a ribonucleoprotein with the genomic RNA.
  • a method comprising inducing expression of a minus-strand RNA virus protein by a promoter including a cytomegalovirus enhancer and a -bird avian j8-actin promoter,
  • a DNA encoding a ribozyme and a minus-strand RNA virus genomic RNA or its complementary strand is linked under the control of a promoter including cytomegalovirus enhancer and chicken j8-actin promoter.
  • the ribozyme has an activity of cleaving the transcript between the ribozyme and genomic RNA or a complementary strand thereof,
  • the method further comprises the step of expressing one or more genes encoding the envelope-constituting protein and the DNA encoding the envelope-constituting protein in the cell.
  • the method according to any one of 1) to 8),
  • the ribozyme has an activity of cleaving a transcript between the ribozyme and a minus-strand RNA viral genomic RNA or its complementary strand
  • [20] A mammalian cell carrying the DNA of any one of [10] to [15], [21] The mammalian cell according to [20], which is a minus-strand RNA virus-producing cell, [22] the genomic RNA or its complementary strand contains one or more genes encoding an envelope-constituting protein. Deficient mammalian cell according to [20] or [21], [23] the mammalian cell according to any one of [20] to [22], wherein the minus-strand RNA virus is Sendai virus,
  • FIG. 1 is a diagram showing a construction procedure of pCAGGS (B type) and pCAGGS (BSX).
  • FIG. 2 is a diagram showing the construction procedure of pCALNdLWE-zeo-NP (Z).
  • FIG. 3 is a diagram showing a construction procedure of pCAGGS-P4C ( ⁇ ).
  • FIG. 4 is a diagram showing the construction procedure of pCAGGS-L (TDK).
  • FIG. 5 shows the procedure for constructing pCAGGS-F.
  • FIG. 6 is a diagram showing a construction procedure of pCAGGS-F 5 R.
  • FIG. 7 is a diagram showing the procedure for constructing pCAGGS-F 5 R (continued from FIG. 6).
  • FIG. 8 is a diagram showing the construction procedure of pCAGGS-T7.
  • FIG. 9 is a diagram showing the construction procedure of pCAGGS-SeV and pCAGGS-SeV / ⁇ F-GFP.
  • FIG. 10 shows the procedure for constructing pCAGGS-SeV and pCAGGS-SeV / ⁇ F-GFP (continued from FIG. 9).
  • FIG. 1l This is a diagram showing the construction procedure of pCAGGS-SeV (continued from Fig. 10).
  • FIG. 12 A photograph showing the results of HA assembly of a propagation-type SeV vector recovered by the HamRbz method. It is.
  • FIG. 13 is a diagram showing the results of examination of the recovery efficiency of SeV / ⁇ F-GFP when the amount of genomic DNA was changed by the HamRbz method using CIU assembly. Almost no change at 2 g or more.
  • FIG. 14 is a graph showing the results of examining the recovery efficiency of pCAGGS-F and pCAGGS-F5R during the SeV / ⁇ F-GFP recovery by HamRbz method. The force recovery efficiency when using pCAGGS-F5R was much improved.
  • FIG. 15 is a photograph showing the results of HA assembly of propagating SeV (SeV (TDK) 18 + GFP) recovered by the pCAGGS-T7 method. HA activity was detected only when eggs were inoculated without dilution with BHK-21, BHK / T7, and 293T.
  • SeV SeV
  • FIG. 16 is a diagram showing the results of examining the recovery efficiency of SeV / ⁇ F-GFP when the amount of genomic DNA was changed in the pCAGGS-T7 method by CIU Atsay. There was little change between 0.5 and 5.0 g, but the recovery efficiency was the best when 5 g was used.
  • FIG. 17 is a diagram showing the results of examination of the collection efficiency of SeV18 + GFP / ⁇ F by CIU assembly when the introduced reagent was changed in the pCAGGS-T7 method.
  • the recovery efficiency was equivalent to or better than when TransIT-LT-1 was used.
  • FIG. 18 is a diagram showing the results of examining the recovery efficiency of SeV / ⁇ F-GFP when the cell type was changed in the pCAGGS-T7 method by CIU assembly. Virus was recovered from all cells tested. The recovery efficiency was in the order of BHK / T7 ⁇ BHK-21 ⁇ 293T ⁇ LLC-MK2. (However,
  • FIG. 19 is a graph showing the results of a CIU assay comparing the efficiency of SeV / ⁇ F-GFP recovery by HamRbz and pCAGGS-T7 methods.
  • the PCAGGS-T7 method has a better reconstruction efficiency than the HamRbz method.
  • FIG. 20 is a diagram showing the reconstruction of SeV / ⁇ M-GFP by the pCAGGS-T7 method.
  • FIG. 21 is a diagram showing the reconstruction of SeV / ⁇ F-GFP by the pCAGGS-T7 method.
  • FIG. 22 shows the results of comparison of vector reconstitution with CA promoter and vector reconstitution with CMV promoter.
  • the efficiency of CA promoter vector reconstruction is overwhelmingly high.
  • the present invention relates to the transcription of minus-strand RNA virus genomic RNA in virus-producing cells and the expression of all of the minus-strand RNA virus proteins that form ribonucleoprotein (RNP) with the genomic RNA.
  • a CA promoter the enhancer and- ⁇ tori j8-actin promoter
  • transcription of minus-strand RNA viral genomic RNA is induced directly or indirectly by a CA promoter.
  • RNA virus genomic RNA DNA encoding the minus-strand RNA virus genomic RNA (minus strand) or its complementary strand (plus strand) under the control of the CA promoter.
  • Link refers to ligating DNA encoding the gene downstream of the promoter so that transcription of the target gene occurs according to the promoter activity.
  • RNA polymerase-encoding DNA DNA linked to RNA polymerase-encoding DNA under the control of the CA promoter and the recognition sequence of the RNA polymerase.
  • RNA virus genomic RNA or its complementary strand is ligated with DNA, and these are introduced into cells.
  • the recognition sequence of RNA polymerase is a DNA sequence that serves as a signal for the polymerase to initiate transcription.
  • genomic polymerase or antigenomic RNA
  • the CA promoter induces RNA polymerase expression, which induces transcription of the minus-strand RNA virus genome.
  • Virus production at higher potency is possible.
  • the negative-strand RNA viral protein that constitutes the genomic RNA and RNP forms a complex with the genomic RNA of the negative-strand RNA virus, and is replicated and encoded in the genome.
  • an expression vector in which the coding sequence of the protein is simply linked downstream of the CA promoter. Can be used. Thereby, the expression of the protein group is directly induced by the CA promoter.
  • the protein is a protein that forms a core excluding the viral envelope, and is typically N (nucleocapsid), P (phospho), and L (large) proteins. Depending on the virus species, the notation may differ, but the corresponding protein is obvious to those skilled in the art (Anjeanette Robert et al., Virology 247: 1-6 (1998). For example, N is denoted as NP. Sometimes.
  • the method for producing the minus-strand RNA viral vector of the present invention specifically includes:
  • Negative strand RNA viral genomic RNA or its complementary strand (antigenomic RNA) forms an RNP together with the viral protein that constitutes the negative strand RNA virus RNP, and the viral protein encoded in the genome is expressed and expressed in the cell.
  • the genomic RNA and antigenomic RNA are amplified, and envelope constituent proteins are taken in to produce virus particles. By collecting this, you can get Winores.
  • the generated virus can be appropriately amplified.
  • a spread virus having an envelope gene when a mammalian cell is infected, the virus propagates according to a normal virus propagation cycle.
  • the infectious virus can be amplified by introducing it into a cell (helper cell) that expresses the envelope-constituting protein.
  • a promoter (CA promoter) containing a cytomegalovirus enhancer and a- ⁇ 13-actin promoter is (an enhancer of IE (immediate early) gene of 0 cytomegaloinores (CMV)).
  • CMV cytomegaloinores
  • the sequence and the promoter containing the (ii) -bird avian j8-actin gene promoter sequence CMV IE The enhancer of the immediately early gene of the desired CMV strain can be used.
  • DNA containing the nucleotide sequence of SEQ ID NO: 1 can be exemplified.
  • a fragment having a promoter activity which is a DNA fragment containing the transcription start site of genomic DNA of the- ⁇ bird ⁇ -actin gene, can be used.
  • the base sequence of the chicken avian j8-actin gene promoter has been reported, for example, by TAKost et al. (Nucl. Acids Res. 11, 8287-8286, 1983).
  • -The avian avian j8-actin gene promoter contains TATA boxes (Ann. Rev. Biochem. 50, 349-383, 1981) and CCAAT boxes (Nucl. Acids Res), which have relatively high G (guanine) and C (cytosine) contents.
  • the G-guanine force at the position of 909 upstream of the translation initiation codon (ATG) of the original ⁇ -actin structural gene and the region up to the G (guanine) at position -7 are It is considered an intron. Since this intron has an activity to promote transcription, it is preferable to use a genomic DNA fragment containing at least a part of this intron.
  • a specific example of such an avian chicken j8-actin promoter is, for example, DNA containing the base sequence of SEQ ID NO: 2.
  • the intron acceptor sequence it is preferable to use the intron acceptor sequence of another gene, for example, the splicing acceptor sequence of Usagi ⁇ -globin.
  • the acceptor site of the second intron immediately before the start codon of Usagi j8-globin can be used.
  • a DNA containing the base sequence set forth in SEQ ID NO: 3 can be exemplified.
  • a CA promoter is a downstream of a CMV IE enhancer sequence, a ⁇ - ⁇ -actin promoter containing up to a part of an intron is linked, and a desired intron acceptor sequence is downstream thereof.
  • the added DNA is preferred.
  • An example is shown in SEQ ID NO: 4.
  • the coding sequence of the target protein may be added using the last ATG of this sequence as a start codon.
  • a DNA encoding the minus-strand RNA virus genome or its complementary strand (which may be a plus strand or a minus strand) is ligated downstream of the above intron receptor sequence.
  • the intron acceptor sequence and the DNA encoding the minus-strand RNA virus genome. It is preferable to insert DNA encoding a self-cleaving ribozyme.
  • the CMV enhancer sequence used for the hybrid promoter and the- ⁇ 13-actin gene promoter may vary in sequence depending on the isolate or individual. These sequences may be slightly modified to add or delete restriction enzyme recognition sites or to insert a linker sequence. That is, these sequences may be the same or more (e.g., 70% or more, preferably 80% or more, preferably 90% or more, or 100) even if they are not exactly the same as those exemplified in SEQ ID NO: 4. % Or more) can be used as appropriate. Methods for introducing mutations into nucleotide sequences are well known to those skilled in the art. "L (Molecular cloning: a laboratory manual., 3rd ed., Joseph Sambrook, David W.
  • CMV enhancer sequence and the- ⁇ tri ⁇ 8-actin gene promoter sequence examples include Genbank accession AF334827, AY237157, AJ575208, and X00182, and the sequences described therein can be used in the present invention.
  • Genbank accession AF334827, AY237157, AJ575208, and X00182 examples include Genbank accession AF334827, AY237157, AJ575208, and X00182, and the sequences described therein can be used in the present invention.
  • To identify the sequence required for the construction of the CA promoter create an alignment with SEQ ID NOs: 1 and 2 and select the relevant region.
  • pCAGGS Niwa , H. et al. (1991) Gene. 108: 193-199, Japanese Patent Laid-Open No. 3-168087) and
  • Examples of the CMV IE enhancer sequence and the variant of the ⁇ tri 13-actin promoter described above are exemplified in the CMV IE henno sequence described in SEQ ID NO: 1, and the sequence number: 2-
  • the CMV IE henno sequence described in SEQ ID NO: 1 the sequence number: 2-
  • the chicken avian j8-actin promoter 30% or less, preferably 20% or less, more preferably 15% or less, more preferably 10% or less, more preferably 5% or less, more preferably 3% or less of the bases are replaced.
  • Deleted and / or inserted nucleotide sequences, and sequences exhibiting equivalent promoter activity are replaced.
  • Each of these sequences shows a high homology with the nucleotide sequence set forth in SEQ ID NO: 1 or the nucleotide sequence set forth in SEQ ID NO: 2.
  • a high homology for example, 70% or more, more preferably 75% or more, more preferably 80% or more, more preferably 85% or more, more preferably 90% or more, more preferably 93% or more, more preferably A nucleotide sequence having 95% or more, more preferably 96% or more identity. salt
  • the identity of the base sequence can be determined using, for example, the BLAST program (Altschul, SF et al., 1990, J. Mol. Biol. 215: 403-410).
  • the blast2sequences program (Tatiana A et al. (1999) FEMS Microbiol Lett. 174: 247-250) that compares two sequences can be used to create two sequence alignments and determine sequence identity.
  • the gap is handled in the same way as a mismatch.
  • an identity value is calculated for the entire base sequence described in SEQ ID NO: 1 or the entire base sequence described in SEQ ID NO: 2. Specifically, the ratio of the number of matching bases in the total base number (including the gap) of SEQ ID NO: 1 or 2 in the alignment is calculated. The gap outside of SEQ ID NO: 1 or 2 in the alignment is excluded from the calculation.
  • the CMV enhancer sequence and the chicken j8-actin promoter sequence can also be isolated by CMV genomic nucleic acid and chicken genomic DNA force by hybridization.
  • the CMV enhancer and the chicken j8-actin promoter used in the present invention are noblyzed under stringent conditions with the nucleotide sequence set forth in SEQ ID NO: 1, or the nucleotide sequence set forth in SEQ ID NO: 2, or its complementary sequence, respectively. DNA having a promoter activity equivalent to these may be used.
  • a nucleic acid force probe comprising the nucleotide sequence set forth in SEQ ID NO: 1, the nucleotide sequence set forth in SEQ ID NO: 2, or a complementary sequence thereof is prepared, or is targeted for hybridization.
  • Stringent hybridization conditions include, for example, 5xSSC, 7% (W / V) SDS, 100 microg / ml denatured salmon sperm DNA, 5x Denhardt solution (lx Denhardt solution is 0.2% polyvinylpyrrolidone, 0.2% bovine serum In a solution containing albumin and 0.2% ficoll) at 60 ° C., preferably 65 ° C., more preferably 68 ° C., followed by hybridization.
  • the conditions are the same temperature, 2xSSC, preferably lxSSC, more preferably 0.5xSSC, more preferably O.lxSSC, with washing for 2 hours while shaking.
  • One embodiment of the method for producing a minus-strand RNA virus of the present invention is that a virus-producing cell encodes a ribozyme and a minus-strand RNA virus genomic RNA or its complementary strand under the control of a CA promoter.
  • This is a method of transcription of DNA linked with DNA.
  • the initial transcripts that are transcribed by DNA force include ribozymes and negative RNA RNA genomic RNA (plus or minus strand).
  • the ribozyme is designed to have an activity of cleaving between this ribozyme and the genomic RNA of the minus-strand RNA virus.
  • Ribozymes in the transcribed RNA act in cis or trans, cleaving between the ribozyme and the genomic RNA of the negative-strand RNA virus, producing the negative-strand RNA viral genomic RNA with the correct genomic end.
  • o Ribozyme-based methods only transcribe DNA to produce RNA, and have negative ends with precise ends. Since RNA RNA genomic RNA is self-generated, the virus production method is simple, and it is excellent in that it does not require special cells.
  • a ribozyme that cleaves a specific sequence can be designed based on a known technique.
  • hammerhead ribozymes have been isolated from viroids in nature (JM Buzayan et al., Nature, 1986, 323: 349-353; GA Prody et al., Science, 1986, 231: 1577).
  • -1580 originally having a gold-plated structure with three loops and three helices, it can act in cis, and can also act in trans by separating the catalytic RNA portion from the target RNA .
  • Such ribozymes have, for example, a loop and a helix, and pseudo-loop with the target sequence (Turner, P., The Biochemistry or tne Hammerhead ibozyme. In: 3 ⁇ 4canlon, KJ., And Kashani- Sabet, M. ed. Ribozymes in the Gene Tarapy of Cancer (Medical).
  • N A, G, C, or U
  • H A, C, or U.
  • ribozymes that specifically cleave sites containing the UC, UU or UA and ⁇ ⁇ sequences in the target RNA of interest.
  • Hairpin ribozymes are also useful for the purposes of the present invention. Hairpin ribozymes are found, for example, in the negative strand of satellite RNA of tobacco ring spot virus (J. M. Buzayan, Nature 323: 349, 1986). It has been shown that this ribozyme can also be designed to cause target-specific RNA cleavage (Y. Kikuchi and N. Sasaki, Nucleic Acids Res. 19: 6751, 1992; Hiroshi Kikuchi, Chemistry and Biology 30: 112 , 1992).
  • ribozymes can be appropriately modified.
  • a method is known in which a natural ribozyme is modified using an in vitro evolution system to obtain a highly active modified ribozyme (
  • Ribozymes that function as dimers can also be used.
  • a ribozyme having RNA cleavage activity generally contains a sequence essential for catalytic activity and a target recognition sequence necessary for target RNA recognition.
  • the sequence necessary for the hammerhead ribozyme catalyst is, for example, ⁇ ' ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ 23 ⁇ 24 ⁇ -3' (SEQ ID NO: : 5), but is not limited to this.
  • is G, A, U, or C
  • the 4 bases of 12 N 13 N 14 N 15 N are preferably formed into a loop, which is not limited to 4 bases, but about 2-7 bases (ie N), for example, 3-5 bases (ie N) 23
  • a 24 N is a target recognition sequence and
  • N is a base complementary to N of the above NUH, which is the target site.
  • An example is 5'-GUGA-3. More specific sequences are shown in the examples.
  • a target recognition sequence is added to both ends.
  • the target recognition sequence is set to a sequence complementary to the sequence between the ribozyme and the minus-strand RNA virus genome.
  • a DNA encoding a bacteriophage RNA polymerase is linked under the control of a CA promoter.
  • This is a method for expressing DNA.
  • the virus producing cell contains a DNA encoding the genomic RNA of the minus-strand RNA virus or its complementary strand linked downstream of the recognition sequence of the RNA polymerase.
  • the expressed RNA polymerase transcribes the DNA encoding the minus-strand RNA viral genomic RNA ligated downstream of the recognition sequence of RNA polymerase to produce viral genomic RNA.
  • RNA polymerase As the RNA polymerase to be used, a desired pacteriophage-derived RNA polymerase that recognizes a specific sequence (a target sequence of RNA polymerase, generally also referred to as a promoter sequence) and initiates transcription is specifically shown. Examples include E. coli T3 and T7 phages and Salmonella SP6 phages (Krieg, PA and Melton, DA 1987. In vitro RNA synthesis with SP6 RNA polymerase. Methods Enzymol. 155: 397-15; Milligan, JF , Groebe, DR, Witherell, GW, and Uhlenbeck, OC 1987.
  • Typical recognition sequences of T3, T7, and SP6 are shown below.
  • “+1” represents the first base to be transcribed.
  • T7 TAATACGACTCACTATAGGGAGA (SEQ ID NO: 6)
  • T3 AATTAACCCTCACTAAAGGGAGA (SEQ ID NO: 7)
  • the region from -17 to -1 is essential for transcription and must be double-stranded.
  • the arrangement shown in the underlined portion is used.
  • Negative strand RNA viral genomic cDNA (plus or minus strand) is bound directly under the recognition sequence of the RNA polymerase. For efficient virus production, the positive strand should be transcribed.
  • the RNA polymerase expression vector may be a desired DNA vector or a vector such as a retrovirus that is converted into DNA after introduction into a cell, but typically a plasmid vector is used.
  • the vector may be a vector that exists and is expressed as an episome after introduction into the cell, or may be a chromosome-embedded vector that is integrated into the cell chromosome and expressed. For example, when a plasmid is used, it may be transiently expressed by transfection or a stably introduced strain integrated in a chromosome may be selected.
  • the vector may be constitutively expressed, or may be an inducible expression type vector that can induce expression when necessary.
  • it can be expressed inducibly using a sequence-specific recombinase (recombinant enzyme) (Example 2).
  • Recombinases that can be used for this purpose include Cre recombinase and FLP recombinase.
  • Cre is a cyclization recombinase of about 38 kDa possessed by Batateriophage P1 and specifically recombines between ⁇ sites (Sauer B, Henderson N. 1988. Site-specific DNA recombination in mammalian ceils by the re recombinase of oactenophage PI. Proc Natl Acad Sci USA 85: 5166-70; Sternberg N, Hamilton D. 1981.
  • loxP is a 13 bp asymmetric inverted repeat sequence with 8 bp spacer (ATAACTTCGTATAATGTATGC
  • TATACGAAGTTAT Underlined portion is inverted repeat (SEQ ID NO: 9).
  • FLP recombinase is an approximately 49 kDa flippase recombinase derived from the 2 micron plasmid of yeast Saccharomyces cerevisiae. 1999. Temporal, spatial, and cell type-specific control of Cre— mediated DNA recombination in transgenic mice. Nat Biotechnol 17: 1091—6; Broach, JR, Guarascio, VR & Jayaram, M. (1982) Cell 29, 227-34; Cox, MM ( 1983) Proc. Natl. Acad. Sci. USA 80,
  • the FRT sequence consists of a 13 bp repeat sequence with an 8 bp spacer (GAAGTTCCTATTCTCTAGAAAGTATAGGAACTTC: SEQ ID NO: 10) (Andrews, BJ et al. (1985).
  • Target-specific recombination can also be performed using the above-mentioned loxP site and FRT site mutation sequences (Baszczynski, Hristopher et al, Ub Patent Application
  • a DNA sandwiched between a pair of recombinase target sequences is inserted between the CA promoter and the coding sequence of a ribozyme or phage RNA polymerase.
  • the inserted DNA fragment prevents the CA promoter from expressing the minus-strand RNA virus genome (attached with a ribozyme) or phage RNA polymerase.
  • the DNA sandwiched between the target sequences is excised, and the minus-strand RNA virus genome or phage RNA polymerase is expressed from the CA promoter.
  • recombinase can induce the expression of CA promoter.
  • the DNA sandwiched between the target sequences of the recombinase should contain a transcription termination signal and / or termination codon, and when the recombinase does not act, the genome of the negative strand RNA virus or phage RNA It is preferable to ensure that the expression of the polymerase gene can be blocked.
  • a marker gene can be appropriately inserted into the DNA sandwiched between the recombinase target sequences.
  • DNA and cells for virus production described in this specification may be combined as appropriate. It can be a kit for virus production.
  • the present invention relates to the following kits.
  • kit according to any one of (1-1) to (1-3) above, further comprising DNA encoding an envelope-constituting protein.
  • Genomics encoding the genomic RNA or its complementary strand strength envelope protein The kit according to (2-1) or (2-2) above, wherein one or more of the children are missing.
  • kits according to any one of (3-1) to (3-5) above which is selected from the group consisting of the bacteriophage SP6 phage, T3 phage, and T7 phage.
  • (3-7) The kit according to any one of (3-1) to (3-6) above, wherein expression of the DNA of (i) and / or GO can be induced by recombinase.
  • the expression inducible by recombinase means that the DNA sandwiched between the recombinase recognition sequence is inserted between the CA promoter and the downstream DNA, and the DNA sandwiched by the recombinase is removed. In other words, the expression of DNA downstream of the CA promoter is induced.
  • a minus-strand RNA virus is a virus containing as a genome RNA of a minus strand (an antisense strand complementary to a strand that senses a viral protein). Negative strand RNA is also called negative strand RNA.
  • the minus-strand RNA virus used in the present invention includes, in particular, a single-strand minus-strand RNA virus (also referred to as a non-segmented minus-strand RNA virus).
  • a “single-stranded negative-strand RNA virus” refers to a virus that has a single-stranded negative strand [ie, minus strand] RNA in its genome.
  • Such viruses include paramyxoviruses (including Paramyxoviridae; Paramyxovirus, Morbillivirus, Rubulavirus, and Pneumovirus J3 ⁇ 4), Fubutu Winores (including Rhabdovindae; Vesiculovirus, Lyssavirus, and Epnemerovirus genera, etc.), philoirinoles (Filovirida) Honorotomyxoviridae (including Inluluenza virus A, B, C, and Thogoto-like viruses), Buja virus (
  • Bunyaviridae including Bunyavirus, Hantavirus, Nairo virus, and Phlebovirus genus? Viruses belonging to the family such as _? Li and arenavirus (Arenaviridae) are included.
  • a minus-strand RNA viral vector is an infectious virus based on a minus-strand RNA virus and refers to a carrier for introducing a gene into a cell.
  • infectious refers to the ability of the minus-strand RNA viral vector to retain the ability to adhere to cells and introduce the gene contained in the vector into the adhered cells.
  • Gene refers to any genetic material possessed by the minus-strand RNA virus vector produced in the present invention, and is not limited to foreign genes. That is, the minus-strand RNA virus vector may or may not have a foreign gene.
  • the method of the present invention comprises the production of a viral vector having a transmission ability, and a defective vector having no transmission ability. It can be applied to both of one manufacture. In particular, it has the advantage of enabling efficient production of defective vectors that do not have propagation ability.
  • having transmission ability means that when a virus vector infects a host cell, the virus replicates in the cell and infectious virus particles are produced.
  • a recombinant virus refers to a virus produced via a recombinant polynucleotide, or an amplification product of the virus.
  • a recombinant polynucleotide refers to a polynucleotide in which both ends or one end are not joined in the same manner as in the natural state.
  • the recombinant polynucleotide is a polynucleotide in which the binding of the polynucleotide strand is artificially altered (cut and / or bound).
  • a recombinant polynucleotide can be produced by a known genetic recombination method by combining polynucleotide synthesis, nuclease treatment, ligase treatment, and the like.
  • a recombinant virus can be produced by expressing a polynucleotide encoding a viral genome constructed by genetic engineering and reconstructing the virus. For example, a method of reconstructing a virus from cDNA encoding the viral genome is known (Y. Nagai, A. Kato, Microbiol. Immunol, 43, 613-624 (1999)).
  • a gene refers to genetic material and refers to a nucleic acid encoding a transcription unit.
  • the gene can be RNA or DNA! /.
  • a nucleic acid encoding a protein is called a gene of the protein.
  • a gene may not encode a protein.
  • a gene may encode a functional RNA such as a ribozyme or an antisense RNA.
  • a gene can be a naturally derived or artificially designed sequence.
  • “DNA” includes single-stranded DNA and double-stranded DNA.
  • encoding a protein means that an ORF encoding the amino acid sequence of the protein is included in the sense or antisense so that the polynucleotide can express the protein under appropriate conditions.
  • minus-strand RNA viruses examples include the Paramyxoviridae virus Sendai virus, New Katsunore f ⁇ Winores (Newcastle disease) 7 into the virus; ⁇ ze 1 / Inoles (Mumps virus) ⁇ Meunoles (Measles virus) ⁇ RS Winores (Respiratory syncytial virus) ⁇ Beef Thrower (rinderpest virus) ⁇ distemper virus ⁇ sanoreno ⁇ Rheinofrenovirus (SV5) ⁇ Human parainfluenza virus type 1,2,3 ⁇ Orthomyxoviridae
  • Influenza virus from Orthomyxoviridae examples include Influenza virus from Orthomyxoviridae, Vesicular stomatitis virus from Rahabinoviridae, Vabicular stomatitis virus, and Rabies virus.
  • viruses that can be used in the present invention are: Sendai virus (SeV), human parainfluenza virus-1 (HPIV-1), human parainfluenza virus-3 (HPIV-3). , Phocine distemper virus (PDV), canine distemper virus (CDV), dolphin molbillivirus (DMV), peste—des—petits— ruminants virus (PDPR), measles virus (MV), rinderpest virus (RPV), Hendra virus (Hendra) , Nipah virus (Nipah), human parainfluenza virus-2 (HPIV-2), simian parainfluenza virus 5 (SV5), human parainfluenza virus-4a (HPIV-4a), human parainfluenza virus-4b (HPIV-4b), mumps virus (Mumps), and Newcastle disease virus (NDV).
  • PDV Phocine distemper virus
  • CDV canine distemper virus
  • DMV dolphin molbillivirus
  • PDPR measles virus
  • Sendai virus SeV
  • human parainfluenza virus-1 HPIV-1
  • human parainfluenza virus-3 HPIV-3
  • phocine distemper virus PDV
  • canine distemper virus CDV
  • dolphin molbillivirus DMV
  • Peste des—petits— ruminants virus (PDPR), measles virus (MV), rinderpest virus (RPV), Hendra virus (Hendra) ⁇ and viruses selected from the group consisting of Nipah virus (Nipah). It is done.
  • the minus-strand RNA virus produced by the present invention is more preferably a virus belonging to the subclass of Nora myxovirus (including the genera Respirovirus, Rubravirus, and Morbillivirus) or its More preferably, it is a virus belonging to the genus Respirovirus (also referred to as Paramyxovirus) or a derivative thereof.
  • Derivatives include viruses in which viral genes have been modified and viruses that have been chemically modified so as not to impair the ability of the gene to be introduced by the virus.
  • respirovirus viruses to which the present invention can be applied examples include human parinfluenza virus type 1 (HPIV-1), human parainfluenza virus type 3 (HPIV-3), and ushipaline fluenza virus type 3 (BPIV). -3), Sendai virus (also called mouse parinfluenza virus type 1), and monkey parainfluenza virus type 10 ( SPIV-10) etc. are included.
  • the paramyxovirus is most preferably a Sendai virus. These viruses may be derived from natural strains, wild strains, mutant strains, laboratory passage strains, and artificially constructed strains.
  • the minus-strand RNA viral vector encodes the gene carried on the viral genomic RNA in an antisense manner.
  • Viral genomic RNA forms a ribonucleoprotein (RNP) together with the viral protein of the minus-strand RNA virus, and this protein expresses a gene in the genome, and this RNA is replicated to form a daughter RNP.
  • RNP ribonucleoprotein
  • RNA RNA.
  • the genome of a negative-strand RNA virus has a structure in which the viral gene is arranged as an antisense sequence between the 3 'leader region and the 5' trailer region.
  • RNA encoding the ORF of each gene there is a transcription termination sequence (E sequence)-an intervening sequence (I sequence)-a transcription initiation sequence (S sequence), which separates the RNA encoding the ORF of each gene. It is transcribed as a cistron.
  • the genomic RNA contained in the virus of the present invention contains N (nucleocapsid) and P (phospho) which are viral proteins necessary for the expression of the genes encoded by the RNA and the autonomous replication of the RNA itself.
  • And L (Large) are encoded as antisense.
  • the RNA may encode an M (matrix) protein necessary for the formation of virus particles. Further, the RNA may encode an envelope protein necessary for virus particle infection.
  • the envelope protein of the minus-strand RNA virus includes F (fusion) protein, which is a protein that causes cell membrane fusion, and HN (hemadalun-neuraminidase) protein necessary for adhesion to cells.
  • F fusion protein
  • HN hemadalun-neuraminidase
  • each gene in each virus belonging to the Paramyxovirus subfamily is generally expressed as follows.
  • the NP gene is also expressed as “N ⁇ .
  • HN is also expressed as H when it has no neuraminidase activity.
  • Mobilivirus NP P / C / VMFH-L the accession number of the nucleotide sequence database of each gene of Sendai virus is M29343, M30202, M30203, M30204, M51331,
  • M55565, M69046, X17218, P gene is M30202, M30203, M30204, M55565, M69046, X00583, X17007, X17008, M gene is D11446, K02742, M30202, M30203, M30204, M69046, U31956, X00584, X53056, F gene For D00152, D11446, D17334, D17335, M30202, M30203, M30204, M69046, X00152, X02131, for HN gene D26475, M12397, M30202, M30203, M30204, M69046, X00586, X02808, X56131, for L gene
  • viral genes encoded by other viruses include N gene !, CDV, AF014953; DMV, X75961; HPIV-1, D01070; HPIV-2, M55320; HPIV-3, D10025. ; Mapuera, X85128; Mumps, D86172; MV, K01711; NDV, AF064091;
  • PDPR X74443; PDV, X75717; RPV, X68311; SeV, X00087; SV5, M81442; and Tupaia, AF079780, P genes, CDV, X51869; DMV, Z47758; HPIV-1, M74081; HPIV-3, X04721; HPIV— 4a, M55975; HPIV— 4b, M55976; Mumps,
  • HN H or G genes, CDV, AF112189; DMV, AJ224705; HPIV-1, U709498; HPIV-2, D000865; HPIV-3, AB012132; HPIV-4A, M34033; HPIV-4B, AB006954; Mumps, X99040; MV, K01711; NDV, AF204872; PDPR, Z81358; PDV, Z36979; RPV, AF132934; SeV, U06433; and SV-5, S76876.
  • a plurality of strains are known for each virus, and there are genes that have an array ability other than those exemplified above depending on the strain.
  • the ORFs encoding these viral proteins and the ORFs of foreign genes are placed antisense in the genomic RNA via the E-I-S sequence described above.
  • the closest 3 'ORF in genomic RNA requires only the S sequence between the 3' leader region and the ORF, and not the E and I sequences.
  • the ORF closest to the 5 'in genomic RNA requires only the E sequence between the 5' trailer region and the ORF, and does not require the I and S sequences.
  • Two ORFs can also be transcribed as the same cistron using, for example, a sequence such as IRES. In such cases, an E-to-S sequence is not required between these two ORFs.
  • RNA genome follows the 3 'leader region, followed by six ORFs that encode N, P, M, F, HN, and L proteins in antisense order.
  • the genomic RNA is not limited to the arrangement of the viral gene, but preferably, like the wild type virus, it follows the 3 ′ leader region, followed by N, P, M, F, HN, It is preferable that ORFs encoding L protein and L protein are arranged in order, followed by a 5 ′ trailer region.
  • the viral genes are arranged in the same manner as in the wild type as described above even in such a case.
  • a vector carrying the N, P, and L genes autonomously expresses the RNA genomic force gene in the cell, and the genomic RNA is replicated.
  • infectious virus particles are formed and released out of the cells by the action of genes encoding envelope spike proteins such as the F and HN genes and the M gene. Therefore, such a vector becomes a viral vector having transmission ability.
  • a foreign gene When a foreign gene is loaded on a vector, it may be inserted into a non-coding protein region in this genome as described later.
  • the minus-strand RNA viral vector may lack one of the genes possessed by the wild-type virus.
  • a virus lacking the gene of the viral envelope component protein is useful as a highly safe gene transfer vector.
  • a virus from which the gene for the envelope constituent protein has been deleted It can be recovered at a high titer without using a vaccinia virus vector.
  • Envelope constituent proteins refer to viral proteins that are components of the viral envelope, including spike proteins that are exposed on the surface of the envelope and function to adhere to or infect cells, and lining proteins that function to form the envelope. .
  • the genes of the envelope constituent proteins include F, HN, and M.
  • viruses that lack one or more of these envelope protein genes are highly safe because they cannot form infectious virus particles in infected cells.
  • Such reconstitution of the virus can be performed, for example, by supplying an exogenous gene product exogenously.
  • it may be a completely different envelope protein that complements the infectivity of the virus.
  • An example of such an envelope protein is VSV-G. That is, the envelope protein gene used to construct a virus from which the envelope protein gene has been deleted is not limited to the deleted gene as long as the formation and infectivity of the virus are ensured.
  • the virus produced in this way has the ability to adhere to host cells and cause cell fusion in the same way as the wild type virus.
  • the viral genome introduced into the cell has a defect in the viral gene, the same infectivity as the first Daughter virus particles with are not formed. Therefore, it is useful as a safe viral vector having a one-time gene transfer ability (WO00 / 70055, WO00 / 70070, and WO03 / 025570; Li, H.—0. Et al, J. Virol. 74). (14) 6564-6569 (2000)).
  • Examples of the gene to be deficient in genomic force include F gene, HN gene, M gene, or any combination thereof.
  • a plasmid expressing a recombinant negative-strand RNA virus genome deficient in the F gene can be transfected into a host cell together with an F protein expression vector and NP, P, and L protein expression vectors to produce a recombinant virus.
  • a virus can be produced using a host cell in which the F gene is integrated into the chromosome. In this case, it is preferable that expression of the F gene can be induced in a specific manner using the above-mentioned recombinant enzyme target sequence so that the F gene can be induced and expressed.
  • viruses-producing cells have activity in introducing nucleic acids even if the amino acid sequence is not the virus-derived sequence as it is. If it is equal to or greater than that of the natural form, mutations may be introduced, or a homologous gene from another virus may be substituted.
  • a recombinant virus containing a protein different from the envelope protein of the virus from which the virus genome is derived can also be produced.
  • a recombinant virus having a desired envelope protein can be produced by expressing in the cell an envelope protein other than the envelope protein originally encoded by the base virus genome during virus reconstitution. .
  • a desired protein that confers the ability to infect cells is used.
  • the envelope protein of other viruses for example, the G protein (VSV-G) of vesicular stomatitis virus (VSV) can be mentioned.
  • the VSV-G protein may be derived from any VSV strain.
  • the ability to use a VSV-G protein derived from an Indiana serotype strain is not limited thereto.
  • the vector of the present invention can contain any combination of envelope proteins derived from other viruses.
  • an envelope protein derived from a virus that infects human cells is suitable as such a protein.
  • Such a protein is not particularly limited, and examples thereof include a retroviral unphotopick envelope protein.
  • an envelope protein derived from the murine leukemia virus (MuLV) 4070A strain can be used as the retrovirus unphoto-mouth pick envelope protein.
  • An envelope protein derived from MuMLV 10A1 can also be used (for example, pCL-lOAl (Imgenex) (Naviaux, RK et al, J. Virol. 70: 5701-5705 (1996)).
  • proteins include simple herpesvirus gB, gD, gH, and gp85 proteins, EB virus gp350 and gp220 proteins, etc.
  • Hepadnaviridae proteins include hepatitis B virus S protein and the like. These proteins may be used as fusion proteins in which the extracellular domain is bound to the intracellular domain of the F protein or HN protein.
  • proteins such as adhesion factors, ligands, receptors, etc., antibodies or fragments thereof, or these proteins capable of adhering to specific cells on the envelope surface have these proteins in the extracellular region.
  • a virus containing a chimeric protein having a polypeptide derived from the envelope protein of a minus-strand RNA virus in the intracellular region can also be produced. This can control the specificity of the viral vector infection.
  • These may be encoded in the viral genome or supplied by expression from a gene other than the viral genome (for example, another expression vector or a gene on the host chromosome) upon reconstitution of the virus. .
  • any viral gene contained in a virus is modified by a wild-type gene. May have been.
  • at least one of the N, P, and L genes that are replication factors may be modified to enhance the function of transcription or replication.
  • HN protein which is one of the envelope proteins, has both hemagglutinin activity and neuraminidase activity, which are hemagglutinins. For example, if the former activity can be weakened, It may be possible to improve the stability of the virus in it, and it is also possible to regulate the infectivity by, for example, modifying the activity of the latter.
  • membrane fusion ability can be regulated by modifying the F protein.
  • F-protein and / or HN protein antigen-presenting epitopes that can be antigen molecules on the cell surface are analyzed, and this is used to produce a recombinant virus vector that weakens the antigen-presenting ability of these proteins. I can do it.
  • the minus-strand RNA viral vector may be one lacking an accessory gene.
  • knocking out the V gene, one of the SeV accessory genes significantly reduces the pathogenicity of SeV against a host such as a mouse that does not impair gene expression and replication in cultured cells (Kato, A. et al., 1997, J. Virol. 71: 7266-7272; Kato, A. et al "1997, EMBO J. 16: 578-587; Curran, J. et al” (WO01 / 04272, EP1067179) o
  • Such an attenuated vector is particularly useful as a viral vector for gene transfer without toxicity in vivo or ex vivo.
  • the minus-strand RNA virus is excellent as a gene transfer vector, and only transcribes and replicates in the cytoplasm of the host cell and has no DNA phase, so it does not integrate into the chromosome (integration).
  • integration chromosome
  • minus-strand RNA viruses greatly contributes to the safety of vectorization.
  • SeV Sendai virus
  • o Transgene size or packaging flexibility due to lack of force psid structure protein There are merit advantages such as (flexibility).
  • minus-strand RNA viral vectors represent a new class of high-efficiency vectors for human gene therapy. SeV vectors with transmissibility can introduce foreign genes up to at least 5 kb, and two or more genes can be expressed simultaneously by adding a transcription unit.
  • Sendai virus is pathogenic to rodents and is not pathogenic to powerful humans known to cause pneumonia. This is also supported by previous reports that nasal administration of wild-type Sendai virus does not show serious adverse effects in non-human primates (Hurwitz, JL et al., Vaccine 15 : 533-540, 1997; Bitzer, M. et al "J. Gene Med, .5: 543-553, 2003; Slobod, KS et al" Vaccine 22: 3182-3186, 2004) o These characteristics of Sendai virus This suggests that Sendai virus vector can be applied to human treatment.
  • a viral vector can encode a desired foreign gene in genomic RNA.
  • a thread-replaceable virus vector containing a foreign gene can be obtained by inserting a foreign gene into the genome of the virus vector.
  • the insertion position of the foreign gene is, for example, the viral genome Desired regions of the non-coding region of the protein, for example, between the 3 ′ leader region of genomic RNA and the viral protein ORF closest to the 3 ′ end, between each viral protein ORF, and / or 5 It can be inserted between the viral protein ORF closest to the end and the 5 'trailer region.
  • a nucleic acid encoding a foreign gene can be inserted into the deleted region.
  • An E-to-S sequence is constructed between the inserted foreign gene and the viral ORF. Two or more foreign genes can be inserted in tandem via the E-to-S sequence.
  • a cloning site for inserting foreign genes into cDNA encoding genomic RNA can be designed.
  • the position may be, for example, a desired position in a protein non-coding region of the genome, specifically between the 3 ′ leader region and the viral protein ORF closest to 3 ′, between each viral protein ORF, and It can be inserted between the viral protein ORF closest to the 5 'and / or the 5' trailer region.
  • a cloning site can be designed in the deleted region.
  • the cloning site can be, for example, a recognition sequence for a restriction enzyme.
  • the cloning site may be a so-called multicloning site having a plurality of restriction enzyme recognition sequences. Cloning sites should exist at multiple locations in the genome so that multiple foreign genes can be inserted at different locations in the genome.
  • the expression level of a foreign gene mounted on a vector can be regulated by the type of transcription initiation sequence added upstream (3 ′ side of the negative strand (negative strand)) of the gene (WO01 / 18223) o Moreover, it can be controlled by the insertion position of the foreign gene on the genome, and the expression level becomes lower as it is inserted closer to 3 ′ of the minus strand, and the expression level becomes higher as it is inserted closer to 5 ′.
  • the insertion position of a foreign gene can be adjusted as appropriate in order to obtain a desired expression level of the gene and so that the combination with the genes encoding the preceding and subsequent viral proteins is optimal.
  • the foreign gene be linked to a transcription start sequence with high efficiency and inserted near the 3 ′ end of the minus-strand genome. Specifically, it is inserted between the 3 'leader region and the viral protein ORF closest to 3'. Alternatively, it may be inserted between the viral protein gene closest to 3 'and the ORF of the second viral protein gene, or between the second and third viral protein genes from 3'.
  • the viral protein gene closest to 3 'in the genome is the N gene
  • the second gene is the P gene
  • the third gene is the M gene.
  • the transgene for example, by setting the insertion position of the foreign gene as 5 'as possible in the minus-strand genome, or by making the transcription start sequence less efficient, It is also possible to obtain an appropriate effect by keeping the expression level of the vector force low.
  • the S sequence to be added when the nucleic acid encoding the foreign gene is inserted into the genome is, for example, a force Sendai virus that can use the desired S sequence of a minus-strand RNA virus.
  • sequences are represented by 5'-AGGGTCAAAG-3 '(SEQ ID NO: 15), 5'-AGGGTGAATG-3' (SEQ ID NO: 16), and 5'- AGGGTGAAAG-3 ′ (SEQ ID NO: 17).
  • E sequence of the Sendai virus vector for example, 3′-AUUCUUUU-5 ′ (SEQ ID NO: 18) (5′-TAAGAAAAA-3 ′ (SEQ ID NO: 19) for DNA encoding a plus strand) is preferable.
  • 3′-GAA-5 ′ (5′-CTT-3 for plus-strand DNA) may be used as the I sequence.
  • RNA virus in mammalian cells, the viral proteins necessary for reconstitution of RNP containing the genomic RNA of the negative-strand RNA virus, ie, N, P, and L proteins Expression and transcription of the cDNA encoding the genomic RNA of the minus-strand RNA virus are induced by the CA promoter. Transcription can produce a negative-strand genome (ie, the same antisense strand as the viral genome) or a positive strand (a Inchigenome. Complementary strand of genomic RNA. ) Can also be used to reconstitute the virus RNP. In order to increase the efficiency of vector reconstitution, a plus strand is preferably generated.
  • the RNA ends reflect the ends of the 3 ′ leader sequence and the 5 ′ trailer sequence as accurately as possible, as in the case of the natural viral genome.
  • This can be achieved by adding a self-cleaving ribozyme to the 5 ′ end of the transcript as described above, and accurately cutting the end of the minus-strand RNA virus genome by the ribozyme.
  • the RNA polymerase recognition sequence of a nocteriophage is used as a transcription initiation site, and the RNA polymerase is expressed in the cell.
  • a self-cleaving ribozyme can be encoded at the 3' end of the transcript, and the 3 'end can be accurately cut out by this ribozyme.
  • the ribosome can be a self-cleaving ribozyme derived from the antigenomic strand of hepatitis delta virus.
  • a DNA sample containing the cDNA base sequence of the target foreign gene When integrating a foreign gene, first prepare a DNA sample containing the cDNA base sequence of the target foreign gene. It is preferable that the DNA sample can be confirmed as a single plasmid by electrophoresis at a concentration of 25 ng / micro-l or more.
  • the target cDNA base sequence contains a Notl recognition site, use a site-directed mutagenesis method, etc. to modify the base sequence so that the encoded amino acid sequence is not changed, and remove the Notl site in advance. It is preferable to keep it.
  • the gene fragment of interest is amplified from this sample by PCR and recovered.
  • both ends of the amplified fragment become Notl sites.
  • the E-to-S sequence should be included in the primer so that the E-to-S sequence is placed between the ORF of the native gene and the ORF of the viral genes on both sides.
  • the length of the synthetic DNA is designed so that the length of the final insert fragment containing the added EIS sequence is a multiple of 6 (so-called “rule of six J; Kolakofski, D. et al., J. Virol. 72: 891-899, 1998; Calain, P. and Roux, L., J. Virol. 67: 4822-4830, 1993; Calain, P.
  • the E-1-S sequence is, for example, the S-sequence, I-sequence, and E-sequence of the Sendai virus minus strand on the 3 ′ side of the oligo DNA of the insert fragment, for example, respectively.
  • 5′-TTTTTCTTACTACGG-3 ′ (SEQ ID NO: 21) can be used.
  • PCR For PCR, an ordinary method using Taq polymerase or other DNA polymerase can be used.
  • the amplified target fragment is digested with Notl and then inserted into the Notl site of a plasmid vector such as pBluescript. Confirm the base sequence of the obtained PCR product with a sequencer and select a plasmid with the correct sequence.
  • the insert is excised from this plasmid with Notl and cloned into the Notl site of the plasmid containing the genomic cDNA. It is also possible to obtain recombinant Sendai virus cDNA by inserting directly into the Notl site of genomic cDNA without using a plasmid vector.
  • recombinant Sendai virus genomic cDNA can be constructed according to literature methods (Yu, D. et al., Genes Cells 2: 457-466, 1997; Hasan, MK et al , J. Gen. Virol. 78: 2813-2820, 1997) 0
  • double-stranded DNA with an EIS sequence linked to the 3 'side of the sense strand of a foreign gene is synthesized. This is inserted immediately 3 'to the desired S sequence of the cDNA encoding the plus strand of the genome.
  • a restriction enzyme site for example, Notl site
  • the encoded DNA can be inserted using restriction enzyme sites (
  • the DNA encoding the viral genomic RNA thus prepared is efficiently transcribed in cells in the presence of the viral proteins (L, P, and N) by the CA promoter.
  • Viral vectors can be reconstituted.
  • the method of the present invention can be used in various ways. Can be applied to recombinant virus reconstitution method (W097 / 16539;
  • minus-strand RNA viruses including nora influenza, vesicular stomatitis virus, rabies virus, measles virus, Linda-pest virus, Sendai virus, etc. have high DNA power and efficiency. Can be reconfigured.
  • infectious virus particles are not formed as they are, but they do not form host cells. Infectious virus particles can be formed by introducing these deleted genes and / or genes encoding envelope proteins of other viruses separately into cells and expressing them ( Hirata, T. et al "2002, J. Virol. Methods, 104: 125-133; Inoue, M. et al., 2003, J. Virol.
  • envelope-constituting proteins are also preferably expressed by the CA promoter, in order to achieve this, DNA encoding the envelope-constituting protein downstream of the CA promoter.
  • the expression of the envelope constituent protein can be directly expressed by the CA promoter.
  • One specific method is, for example, a method of transient virus production.
  • One of these methods is to construct a vector that transcribes a DNA encoding the genomic RNA of the ribozyme and the minus-strand RNA virus or its complementary strand under the control of the CA promoter, and constructs an RNP containing the genomic RNA of the minus-strand RNA virus.
  • This is a method for transfecting mammalian cells with a vector that expresses the viral protein to be expressed together with a vector that is expressed under the control of the CA promoter.
  • Minus strand from CA promoter in the presence of viral proteins that make up RNP RNA viral genomic RNA or antigenomic RNA is transcribed to form a functional RNP and reconstruct the virus.
  • a minus-strand RNA viral vector can be obtained by recovering the minus-strand RNA virus or its propagation product produced in cells.
  • a vector comprising a DNA encoding a butteriophage RNA polymerase under the control of a CA promoter, and a minus-strand RNA virus linked downstream of the recognition sequence of the RNA polymerase.
  • a vector containing genomic RNA or DNA encoding its complementary strand is used together with a vector that expresses the viral proteins (N, L, and P) that make up the RNP containing the genomic RNA of the minus-strand RNA virus under the control of the CA promoter. Transfect mammalian cells.
  • RNA polymerase is expressed from the CA promoter, which transcribes negative-strand RNA viral genomic RNA or antigenomic RNA, forming a functional RNP and reconstructing the virus. Is done.
  • a minus-strand RNA virus vector can be obtained by recovering the minus-strand RNA virus produced by the cell or its propagation product.
  • a plasmid As a vector used for transfection, for example, a plasmid is preferable. Each plasmid may express one type of protein, or a plurality of proteins may be expressed from one plasmid.
  • one plasmid can have a plurality of promoters, or one promoter can be used to generate a plurality of proteins using IRES or the like.
  • IRES non-promoter mechanism
  • At least the viral proteins (L, P, and N) that constitute the RNP containing the genomic RNA of the minus-strand RNA virus are driven by different CA promoters.
  • Transient virus production by transfection as described above is excellent in that virus can be rapidly produced without using special cells.
  • nucleic acid transfection into cells examples include the calcium phosphate method (Graham, F. and Van Der Eb, J., 1973, Virology 52: 456; Wigler, M. and Silverstein, S., 1977). , Cell 11: 223), methods using various transfection reagents, electroporation, and the like can be used.
  • calcium phosphate method for example Chen and
  • electroporation is highly versatile in that it has no cell selectivity, pulse current duration, pulse shape, electric field (gap between electrodes, voltage) strength, buffer conductivity, Applied by optimizing DNA concentration and cell density.
  • a method using a transfection reagent is suitable because it is easy to operate and a large number of cells can be used to examine a large number of specimens.
  • Superfect Transfection Ragent QIAGEN, at No. 301305
  • DOSPER Liposomal Transfection Reagent (Roche, Cat No.
  • proteins and / or RNA necessary for virus production are expressed from the chromosomes of virus-producing cells.
  • DNA that transcribes viral genomic RNA or its complementary strand from the CA promoter, or DNA that expresses the RNA promoter derived from the CA promoter power butteriophage is integrated into the chromosome of the mammalian cell.
  • the method using the obtained cell line is mentioned.
  • virus genomic RNA and RNA polymerase are usually not expressed from the CA promoter! However, it is also preferable to be able to induce expression in response to stimulation. Use the above ⁇ or FRT
  • the gene can be expressed inductively by the CA promoter force. Cre recombinase and FLP recombinase are expressed during virus production to induce expression from the CA promoter.
  • the viral genomic RNA or its complementary strand is transcribed in the presence of the viral proteins (N, L, and P) that constitute the RNP containing the genomic RNA of the negative-strand RNA virus.
  • RNA virus can be reconstructed.
  • RNP constituent proteins may be supplied by plasmid vector encoding them.
  • each plasmid used for transfection in the method of excising the minus-strand RNA virus genome by ribozyme (for example, HamRbz method), 0.1 ⁇ g-2 ⁇ g (NP expression plasmid) More preferably 0.3 ⁇ g), P expression plasmid 0.1 g—2 ⁇ g (more preferably 0.5 ⁇ g), L expression plasmid 0.5 ⁇ g—4.5 ⁇ g (more preferably 2.0 ⁇ g), F Using 0.1 ⁇ g—5 ⁇ g (more preferably 0.5 ⁇ g) of the expression plasmid and 0.5 g—5 g (more preferably 5 g) of the plasmid encoding the viral genomic RNA (plus strand or negative strand). Good.
  • the plasmids described in the examples may be used in transfection in the following amounts.
  • each plasmid described in the Examples may be used in transfection in the following amounts.
  • various transfection reagents can be used. Examples include DOTMA (Roche), Superfect (QIAGEN # 301305), DOTAP ⁇ DOPE, DOSPER (Roche # 1811169), TransIT-LTl (Mirus, Product No. MIR 2300), and the like.
  • black mouth quince can also be added (Calos, MP, 1983, Proc. Natl. Acad. Sci. USA 80: 3015).
  • viral gene expression from RNP and RNP replication progress, and the virus is amplified.
  • the obtained virus solution (culture supernatant) can be appropriately diluted and repeated for re-amplification to remove contaminating complications.
  • the method of the present invention uses a vaccinia virus that expresses T7 RNA polymerase, it is not necessary to repeat reamplification to remove the vaccinia virus!
  • the resulting vector can be stored at -80 ° C.
  • helper cells used to construct a minus-strand RNA viral vector that lacks the envelope constituent protein gene include, for example, the missing envelope constituent protein or another envelope protein (eg, VSV-G or unphotopic mouth pick).
  • env etc. can be produced by transfection (see WO00 / 70055 and WO00 / 70070; Hasan, MK et al, 1997, J. General Virology 78: 2813-2820).
  • a vector having a recombinant enzyme target sequence such as Cre / loxP inducible expression plasmid pCALNdlw (Arai, T. et al., J. Virology 72, 1998, pi 115-1121).
  • pCALNdlw a vector having a recombinant enzyme target sequence
  • pCALNdlw a recombinant enzyme target sequence
  • pCALNdlw a vector having a recombinant enzyme target sequence
  • pCALNdlw a recombinant enzyme target sequence
  • LLC-MK2 cells are cultured at 37 ° C in MEM supplemented with 10% heat-treated non-immobilized rabbit serum (FBS), penicillin G sodium 50 units / ml, and streptomycin 50 micro-g / ml. Incubate with 5% CO. SeV-F gene product is a cell
  • the plasmid pCALNdLw / F which is designed to induce the expression of the envelope protein gene by Cre DNA recombinase because of its toxicity, has been well-known from the calcium phosphate method (mammalian transfection kit (Stratagene)). Gene transfer into LLC-MK2 cells according to protocol. After clotting the cells by limiting dilution, the cells are expanded and selected for a cell line that highly expresses the transgene. For this purpose, for example, adenovirus AxCANCre is prepared by the method of Saito et al. (Saito et al., Nucl. Acids Res. 23:
  • SeV / AMAF M and F gene deletion SeV
  • SeV / ⁇ F maintains a high level of infectivity and gene expression in vitro and in vivo, which is similar to that of wild-type SeV vectors. is there.
  • the titer of the recovered virus can be determined by, for example, CIU (Cell Infecting Unit) measurement or hemagglutination activity (HA) measurement (WOOO / 70070; Kato, A. et al., 199, Genes Cells 1: 569—579; Yonemitsu, Y. & Kaneda, Y., Hemaggulutinating virus of Japan—polar— mediated gene delivery to vascular cells. Ed. By Baker AH. Molecular Biology of Vascular Diseases. Method in Molecular Medicine: Humana Press: pp. 295-306, 1999).
  • CIU Cell Infecting Unit
  • HA hemagglutination activity
  • the titer can be quantified by directly counting infected cells using the marker as an indicator (eg, as GFP-CIU).
  • the titer measured in this way can be handled in the same way as CIU (WOOO / 70070).
  • the host cells used for reconstitution are not particularly limited.
  • culture of monkey kidney-derived LLC-MK2 cells and CV-1 cells eg, ATCC CCL-70
  • hamster kidney-derived BHK cells eg, ATCC CCL-10
  • Cells, human-derived cells and the like can be used.
  • Virus vector using chicken eggs One manufacturing method has already been developed (Nakanishi et al., (1993), "Advanced Technology Protocol III of Neuroscience Research, Molecular Neuronal Physiology", Koseisha, Osaka, ⁇ .153- 172). Specifically, for example, fertilized eggs are placed in an incubator and cultured at 37-38 ° C for 9-12 days to grow embryos. The virus vector is inoculated into the allantoic cavity and the eggs are cultured for several days (eg, 3 days) to propagate the virus vector. Conditions such as the culture period may vary depending on the recombinant Sendai virus used. Thereafter, the urine containing the virus is collected.
  • the virus vector of the present invention has, for example, 1 X 10 5 CIU / mL or more, preferably 1 X 10 6 CIU / mL or more, more preferably 5 X 10 6 CIU / mL or more, more preferably 1 X 10 7 CIU / mL or more, more preferably 5 X 10 7 CIU / mL or more.
  • a titer of preferably 1 ⁇ 10 8 CIU / mL or more, more preferably 5 ⁇ 10 8 CIU / mL or more.
  • Viral titers can be measured by methods described herein and elsewhere (Kiyotani, K. et al, Virology 177 (1), 65-74 (1990); WO00 / 70070).
  • the recovered viral vector can be purified to be substantially pure.
  • the purification method can be performed by a known purification / separation method including filtration (filtration), centrifugation, adsorption, column purification, or any combination thereof.
  • “Substantially pure” means that the virus component occupies a major proportion in the solution containing the virus vector.
  • a substantially pure viral vector composition has 10% (by weight) of the total protein contained in the solution (except for proteins added as carriers and stabilizers) as components of the viral vector. / Weight) or more, preferably 20% or more, more preferably 50% or more, preferably 70% or more, more preferably 80% or more, and further preferably 90% or more.
  • a paramyxovirus vector as a specific purification method, a method using cellulose sulfate ester or crosslinked polysaccharide sulfate ester (Japanese Patent Publication No. 62-30752, Japanese Patent Publication No. 62-33879, and Japanese Patent Publication No. No. 62-30753), and a method of adsorbing to a sulfated-fucose-containing polysaccharide and / or a degradation product thereof (WO97 / 32010) and the like.
  • the vector can be combined with a desired pharmacologically acceptable carrier or vehicle as necessary.
  • a “pharmaceutically acceptable carrier or vehicle” is a material that can be administered with a vector and does not significantly inhibit gene transfer by the vector. Examples of such a carrier or medium include sterilized water, sodium chloride solution, dextrose solution, lactic acid-containing Ringer solution, culture solution, serum, and phosphate buffered saline (PBS). It is possible to formulate by combining one as appropriate.
  • the composition of the present invention may contain a liposomal membrane stabilizer (eg, sterols such as cholesterol).
  • composition of the present invention may be in the form of an aqueous solution, capsule, suspension, syrup and the like.
  • the composition of the present invention may also be a composition in the form of a solution, a lyophilized product or an aerosol. In the case of a freeze-dried product, it may contain sorbitol, sucrose, amino acids, various proteins, and the like as stabilizers.
  • an immunostimulant such as cyto force-in, cholera toxin, or salmonella toxin can be added to increase immunogenicity.
  • vaccine compositions include miyonon, incomplete Freund's adjuvant, MF59 (oil emulsion), MTP-PE (including muramyl tnpeptide derived from mycobacterial cell wall, Q3 ⁇ 4-21 ⁇ soapbarK tree Quilaia It can also be combined with a zojuvant such as saponana.
  • cytosines that enhance the adjuvant effect. Examples of such genes include: i) single-stranded IL-12 (Proc. Natl. Acad. Sci. USA 96 (15):
  • the dose of the minus-strand RNA virus vector in vivo varies depending on the disease, patient weight, age, sex, symptoms, administration composition form, administration method, transgene, etc. It is possible to determine appropriately.
  • Vector administered is preferably about 10 5 CLU / ml to about 10 u CIU / ml, more preferably about 10 7 CIU / ml to about 10 9 CIU / ml, most preferably rather about 1 X 10 8 CIU /
  • an amount in the range of ml to about 5 ⁇ 10 8 CIU / ml is administered in a pharmaceutically acceptable carrier.
  • the dose per dose is 2 X 10 5 CIU—2 X 10 11 CIU is preferred for a single dose or multiple doses within the range of clinically acceptable side effects.
  • an amount converted from the above dose can be administered based on the body weight ratio between the target animal and human or the volume ratio (for example, average value) of the administration target site. If it is necessary to inhibit the growth of viral vectors after administration of a transmissible negative-strand RNA viral vector to an individual or cell, such as when treatment is complete, an RNA-dependent RNA polymerase inhibitor should be added. If administered, it is possible to specifically inhibit only the growth of the viral vector without damaging the host.
  • the vector is contacted with the target cell outside the body (for example, in a test tube or petri dish).
  • the MOI is preferably administered between 1 and 500, more preferably 2-300, more preferably 3-200, even more preferably 5-100, and even more preferably 7-70.
  • the organisms to be administered with the minus-strand RNA viral vector of the present invention include desired mammals including humans and non-human mammals that are not particularly limited. Specifically, humans, mice, rats, Nu, Pig, Cat, Usi, Usagi, Hidge, Goat and Monkey.
  • pCALNdLw (Arai, T. et al. J. Virology 72, 1998, pi 115-1121) was digested with Xho I, purified with the Qiaquick PCR Purification kit, and ligated. The product from which the Xho I fragment was removed was selected, and the resulting product was designated as pCAGGS (B type). pCAGGS (B type) was quenched with Sal I, blunted with Pfo DNA polymerase, purified with Qiaquick PCR Purification kit, and ligated. The Sal I site was crushed and selected as pCAGGS (BSX).
  • pCALNdLw was digested with Spe I and EcoT22I and separated by agarose gel electrophoresis.
  • the 2651 bp fragment and 3674 bp fragment were excised and purified with the Qiaquick gel Extraction kit.
  • the 2651 bp fragment was further digested with Xho I, separated by agarose gel electrophoresis, and the 1761 bp band was purified.
  • CTCAC-3 ' (SEQ ID NO: 22) and primers CAGTCCTGCTCCTCGGCCACGAAGTGCACGCAGTTG-3 ′ (SEQ ID NO: 23) was amplified by PCR, digested with Xhol and EcoT22I, separated by agarose gel electrophoresis, and a 438 bp band was excised and purified with the Qiaquick Gel Extraction kit. The band containing this Zeocin resistance gene and the above three fragments of 3674 bp and 1761 bp were ligated by ligation to obtain pCALNdLw-Zeo.
  • This pCALNdLw-Zeo was digested with Swal and an Eco RI linker (STRATAGENE) was inserted to obtain pCALNdLWE-Zeo.
  • Sendai virus cDNA with multicloning site introduced JP 2002-272465 (hereinafter referred to as pSeV (TDK)) is digested with Not I and Xho I, separated by agarose gel electrophoresis, and 1669 bp band was cut out and purified with Qiaquick Gel Extraction kit.
  • a fragment containing this NP gene was inserted into NotI and XhoI digested pGEMllZ +) (Promega) to obtain pGEM-NP (Z) PCR14-3. Use this as a template for primer
  • pCALNdLWE-Zeo-NP Z
  • pCALNdLWE-Zeo-NP Z
  • Xho I Xho I
  • a plasmid from which the Xho I fragment was removed was constructed. This was designated as pCAGGS-NP.
  • pCALNdLw-HygroM (Inoue, M. et al. J. Virology 77, 2003, p6419— 6429) was digested with Xhol, separated by agarose gel electrophoresis, and a 1679 bp band containing the Hygromycin resistance gene was excised. Qiaquick Gel Purified with Extraction kit.
  • pCALNdLw was digested with Xho I, and after agarose gel electrophoresis, a 4864 bp band was excised and purified with the Qiaquick Gel Extraction kit. Ligation using both fragments
  • pCALNdLw- Hygro was constructed. This pCALNdLw-Hygro was digested with Swal and the Nhe I linker (STRATAGENE) was inserted to obtain pCALNdLWN-Hygro. Using 4C (-) SeV cDNA (Kurotani, Kato, Nagai. Et al Genes to Cells 3, 1998, pill—124) as a template -3 '(SEQ ID NO: 26) and
  • PCR was performed with KOD-PLUS DNA Polymerase (TOYOBO) using -3 ′ (SEQ ID NO: 27).
  • the product was purified using a gene clean kit, the PCR product was digested with Nhe I, and purified using a gene clean kit. This was introduced into the Nhe I site of pCALNdLWN-hygro above,
  • pCALNdLWN-hygro-P (Z) k4C (-) was obtained. This was digested with Xho I, purified with the Qiaquick PCR Purification kit, ligated, and selected from the Xho I fragment (Hygromycin resistance gene region) to obtain pCAGGS-P4C (-).
  • pSeV pSeV
  • pCALNdLw / F (Li, H.-O. et al. J. Virology 74, 2000, p6564-6569) was digested with Xho I, purified and ligated to remove the Xho I fragment (neomycin resistance gene region). PCAGGS-F was obtained.
  • Use pCALNdLw-ZeoF Japanese Patent Application No.
  • PCR was performed using Pfo Turbo with a combination of 5′-C ATTTTGGC AAAGAATTGATTAATTCGAG-3 ′ (SEQ ID NO: 28) and No. 31).
  • PCR product 51 was subjected to agarose gel electrophoresis and stained with ethidium bromide. As a result, an expected 2.6 kb band was detected. Therefore, the remaining PCR products were purified using the Qiaquick PCR Extraction kit. After that, restriction enzyme treatment was continuously performed with Dra III and Mfe I, and after separation by agarose gel electrophoresis, a band of about 2.0 kb was cut out.
  • pCALNdLw-Zeo-F was digested successively with Dra III and Mfe I, separated by agarose gel electrophoresis, a band of about 6 kp was excised and purified with GENECLEAN II KIT (BIO).
  • PCALNdLw-Zeo-F forin was obtained by ligating the pCALNdLw-Zeo-F Drain-Mfe I fragment and the PCR Dralll-Mfe I fragment.
  • PCR was performed with a primer combination of TGA-3 ′ (SEQ ID NO: 33) and 5′-AAATCCTGGAGTGTCTTTAGAGC-3 ′ (SEQ ID NO: 34). After separation by electrophoresis, a band of about 1.4 kbp under condition (I) and a band of about 200 bp under condition (II) were excised and purified with Qiaquick gel Extraction kit. Mix 50-fold diluted one by one, and further
  • PCR was performed using Pfo Turbo with 5′-AAATCCTGGAGTGTCTTTAGAGC-3 ′ (SEQ ID NO: 34) primer combination.
  • a 5 ⁇ l PCR product was separated by agarose gel electrophoresis and then stained to confirm a band of about 1.6 kbp. The remainder was purified with the Qiaquick PCR Purification kit, digested with Cla I and Fsel, separated by agarose gel electrophoresis, and the approximately 1 kbp band was excised and purified with the Qiaquick PCR Purification kit.
  • This pMW219-T7-Eco RI was digested with Eco RI, the Eco RI fragment containing T7 RNA Polymerase was purified, and introduced into the Eco RI site of pCALNdLWE to obtain pCALNdLWE-T7.
  • Annealing was carried out at 15 ° C for 15 minutes, 25 ° C for 15 minutes, and 4 ° C for 4 minutes.
  • This mixture was ligated with the pSeV (TDK) Notl-Kpn I purified solution to obtain pSeV / Linker.
  • pGEM-F5 5 '-CTTAACTATGCGGC ATC AGAGC-3' SEQ ID NO: 37
  • pGEM-Rl 5 -GCCGATTCATTAATGCAGCTGG-3 '(SEQ ID NO: 38) were used.
  • PCR reaction was performed using (TOYOBO) and purified using the Qiaquick PCR Purification kit. RibLFl using the purified solution as a template
  • RibLF2 5 -CTATAGGAAAGGAATTCCTATAGTCACCAAACAAGAG-3 '(SEQ ID NO: 39) and pGEM-Rl 5 -GCCGATTCATTAATGCAGCTGG-3' (SEQ ID NO: 38) are used to perform a PCR reaction using KOD-PLUS (TOYOBO) and a Qiaquick PCR Purification kit Used to purify. Using this purified solution as a template, RibLF2
  • RibLF3 5 -GATGAGTCCGTGAGGACGAAACTATAGGAAAGGAATTC-3 '(SEQ ID NO: 40) And pGEM—Rl 5′—GCCGATTCATTAATGCAGCTGG—3 ′ (SEQ ID NO: 38), PCR was performed using KOD-Plus (TOYOBO), and purification was performed using the Qiaquick PCR Purification kit. Furthermore, using this purified solution as a template, RibLF3
  • pGEM-Rl 5′-GCCGATTCATTAATGCAGCTGG-3 ′ (SEQ ID NO: 38) were used to perform a PCR reaction using KOD-Plus (TOYOBO) and purified using the Qiaquick PCR Purification kit.
  • This purified PCR product was introduced into the Swa I site of pCAGGS (BSX) to obtain pCAGGS-SeV (m).
  • pSeV18 + b (+) / AF- EGFP Li, H.-O. et al. J. Virology 74, 2000, p6564-6569 was digested with Not I and Sal I and separated by agarose gel electrophoresis.
  • the 1972 bp band was excised, purified with the Qiaquick Gel Extraction kit, digested with Not I and Sal I, and ligated with purified pCAGGS-SeV (m) to obtain pCAGGS-SeV (m) A.
  • pSeV (+) 18 / ⁇ F was digested with Nhe I and Kpn I, separated by agarose gel electrophoresis, the 3325 bp band was excised, purified with Qiaquick Gel Extraction kit, Not I and Sal I were eliminated, and purified Ligation with pCAGGS-SeV (m) gave pCAGGS-SeV (m) AC.
  • pSeV18 + b (+) (Li, H.-O. et al. J. Virology 74, 2000, p6564-6569) was digested with Sal I and Nhe I and purified with a Qiaquick PCR purification kit. And it was introduced into Sal I-Nhel site of LITMUS38 (NEW ENGLAND BioLabs) to obtain Litmus38 / SeV Sal I-Nhe I.
  • This Litmus38 / SeV Sal I-Nhe I was digested with Sal I and Nhe I, separated by agarose gel electrophoresis, a 9886 bp band was excised, purified with the Qiaquick Gel Extraction kit, and pCAGGS-SeV (m) AC PCAGGS-SeV was obtained by introducing it into the Sal I-Nhe I site.
  • pSeV / ⁇ F-EGFP (Li, H.-O. et al. J. Virology 74, 2000, p6564-6569) was digested with Sal I and Nhe I and purified with a Qiaquick PCR purification kit. Then, it was introduced into the Sal I-Nhel site of LITMUS38 (NEW ENGLAND BioLabs) to obtain Litmus38 / Sal I-Nhe I ⁇ F-GFP.
  • This Litmus38 / Sal I-Nhe I ⁇ F-GFP was digested with Sal I and Nhe I, separated by agarose gel electrophoresis, an 8392 bp band was excised, purified with the Qiaquick Gel Extraction kit, and pCAGGS- SeV (m ) PCAGGS—SeV / AF—GFP was obtained by introducing it into the Sal I—Nhe I site of AC.
  • Example 2 Establishment of T7 RNA Polymerase expression BHK-21 (hereinafter referred to as BHK / T7)
  • the pCALNdLWE-T7 constructed above was applied to BHK-21 cells (ATCC CCL-10) using mammalian transfection kit (3 ⁇ 4tratagene) or buperFect (Qiagen) and 400 g / ml. Incubate with D-MEM containing G418 at 37 ° C, 5% CO for 2 weeks.
  • a drug resistant clone was obtained which grew from a single cell.
  • T7 RNA Polymerase was confirmed by Western blot analysis using Polymerase rabbit polyclonal antibody.
  • pGEM-IRES-Luci was transcribed using SuperFect. After 24 hours, cells were collected, and luciferase activity was measured with MiniLumat LB9506 (EG & G BERTHOLD) using a dual luciferase reporter system (Promega) kit to confirm the activity of T7 RNA Polymerase.
  • LLC-MK2 cells were seeded at 5 ⁇ 10 6 cells / dish in a 100 mm Petri dish, cultured for 24 hours, washed once with serum-free MEM, 3 g / ml psoralen and long-wavelength ultraviolet light (365 nm ) Recombinant vaccinia virus expressing T7 RNA polymerase treated for 5 minutes with
  • LLC-MK2 / F7 / A was transflector Ekushi Yon (10 6 cells / well 24- weU- plate), serum and containing that does not contain MEM (40 ⁇ g / ml AraC , a 7.5 mu g / m trypsin) Cultured. On day 7 after the culture, the supernatant was collected and used as a Pl-d7 sample. Furthermore, after infecting the F-expressing LLC-MK2 / F7 cell line (LLC-MK2 / F7 / A) spread on a 12-weU-plate with a supernatant at 37 ° C for 1 hour, the supernatant was washed once with MEM medium and serum.
  • LLC-MK2 / F7 cell line LLC-MK2 / F7 / A
  • MEM containing 40 ⁇ g / ml AraC, 7.5 g / ml trypsin.
  • the supernatant was collected and used as a P4-d7 sample.
  • Sendai virus vector recovery method using Sendai virus genome with hammerhead ribozyme attached to pCAGGS (hereinafter referred to as HamRbz method)
  • pCAGGS—P4C (—), pCAGGS—L (TDK), and pCAGGS—SeV were dissolved in 0.5 ⁇ g, 0.5 ⁇ , 2 ⁇ , and 2 / z g, respectively.
  • the TransIT-LT1 solution and the DNA solution were mixed and allowed to stand at room temperature for 15 minutes.
  • the cell culture medium was removed and fresh 10% FBS-containing D-MEM was gently added at 1 ml / well. 15 minutes later, Opti-MEM (GIBCO) 500 1
  • LLC-MK2 After culturing under 4 days, discard the culture solution and suspend LLC-MK2 in MEM (tryp-medium) containing trypsin g / ml to 1 ⁇ 10 6 cells / ml / F7 / A cells were overlaid at lml / well and cultured at 37 ° C under 5% CO for 4 days. LLC- MK2 / F7 / A Multi-layer 4 days
  • pCAGGS-P4C (-), pCAGGS-L (TDK), pCAGGS-F5R, and pCAGGS-SeV / ⁇ F-GFP were dissolved at 0.3 / z g, 0.5 / z g, 0.5 g, and 0.5-5 g, respectively.
  • the Tran sIT-LTl solution and the DNA solution were mixed and allowed to stand at room temperature for 15 minutes. During this time, the cell culture medium was removed and fresh 10% FBS-containing D-MEM was gently added at lml / well.
  • Opti-MEM (GIBCO) 500 1 was added to the DNA-TransIT-LTl mixture, and the entire amount was added to the cells and cultured. After culturing at 37 ° C, 5% CO for 72 hours, discard the culture and contain trypsin g / ml
  • LLC-MK2 cells were seeded on 12 weU-plates 2-3 days before CIU Atsey. Two days ago, 1.5 ⁇ 10 5 cells / well and 10% FBS in MEM lml / well, 3 days before 8.0 ⁇ 10 4 cells / well and 10% FBS MEM lml / well. After washing once with MEM without serum on the day of CIU assembly, make a 1Z10 dilution series of culture medium collected at 24, 48, 72 hours after overlaying in MEM medium, and infect at 37 ° C for 1 hour After washing once with MEM medium, 1 ml of MEM medium was added.
  • the reconstitution efficiency was compared between when the wild-type F gene was used and when F5R was introduced with a forin recognition sequence.
  • the day before transfection of 293T cells the cells were seeded on a 6-well plate with D-MEM containing 1 ⁇ 10 6 cells / well / 2 ml 10% FBS. Transfusion was performed as follows. Opti-MEM 30 in 1
  • TransIT-LTl (Mirus) was mixed with 151 and incubated at room temperature for 10-15 minutes. During this time, the DNA solution was prepared.
  • Try-MEM was added in 1 ml and cultured at 37 ° C, 5% CO. After 48 hours, collect 1 ml of the culture solution.
  • pCAGGS-F had the best reconstitution efficiency at 0.7 g, with 0 CIU / ml, 7.9 X 10 2 CIU / ml, 3.3 X 10 at 24 hours, 48 hours, and 72 hours, respectively. It contained 4 CIU / ml virus vectors.
  • each cell was seeded on a 6-well plate (293T cells: 1 x 10 6 cells / well / 2 ml D—MEM, LLC—MK2 cells with 10% FBS: 5.0 x 10 5 cells / well / 2 ml D-MEM with 10% FBS, BHK-21 cells: 2.5 X 10 5 cells / well / 2 ml D—MEM with 10% FBS, BHK / T7 cells: 2.5 X 10 5 cells / well / 2 ml D-MEM with 10% FBS).
  • Transfusion was performed as follows.
  • TransIT-LT1 (Mirus) 15 ⁇ 1 was mixed with Opt-MEM 30 ⁇ 1, and incubated at room temperature for 10-15 minutes.
  • the DNA solution was prepared.
  • the TransIT-LTl solution and the DNA solution were mixed and allowed to stand at room temperature for 15 minutes. During this time, the cell culture medium was removed and fresh 10% FBS-containing D-MEM was gently added at 1 ml / well.
  • Opti-MEM (GIBCO) 5001 was added to the DNA-TransIT-LT1 mixture, and the whole amount was added to the cells and cultured. The cells were cultured at 37 ° C and 5% CO for 3 days. At this time, GFP positive cells
  • TransIT-LT1 (Mirus) was mixed with 30 ⁇ 1 of Opti-MEM and incubated at room temperature for 10-15 minutes. During this time, the DNA solution was prepared.
  • pCAGGS-NP pCAGGS- P4C (-), pCAGGS- L (TDK), pCAGGS- F5R, pSeV / ⁇ F-GFP (WO00 / 70070) 0.5 ⁇ g, 0.5 ⁇ g, 0.5 ⁇ g, 2 ⁇ g, respectively , 0.5 ⁇ g, 0.5-5 ⁇ g.
  • the TransIT-LTl solution and the DNA solution were mixed and allowed to stand at room temperature for 15 minutes. During this time, the cell culture medium was removed and fresh 10% FBS-containing D-MEM was added statically at lml / well. After 15 minutes, Opti-MEM (GIBCO) 500 1 was added to the DNA-TransIT-LT1 mixture, and the entire amount was added to the cells and cultured. After culturing at 37 ° C, 5% CO for 72 hours,
  • LLC-MK2 / F7 / A cells suspended in Try-MEM at 1 ⁇ 10 6 cells / ml were overlaid at lml / well and cultured at 37 ° C., 5% CO 2. 24 hours later, 1 ml of culture broth
  • the collected Try-MEM was added in 1 ml and cultured at 37 ° C under 5% CO. Culture after 48 hours
  • LLC-MK2 cells were seeded on 12 weU-plates 2-3 days before CIU Atsey. Two days ago, 1.5 ⁇ 10 5 cells / well and 10% FBS in MEM lml / well, 3 days before 8.0 ⁇ 10 4 cells / well and 10% FBS MEM lml / well. After washing once with MEM without serum on the day of CIU assembly, make a 1Z10 dilution series of culture medium collected at 24, 48, 72 hours after overlaying in MEM medium, and infect at 37 ° C for 1 hour After washing once with MEM medium, 1 ml of MEM medium was added.
  • LLC-MK2 LLC-MK2
  • BHK-21 2.5 X 10 5 cells / well
  • BHK / T7 2.5 X 10 5 cells / well
  • 293T cells lO X 10 6 cells / well.
  • Transfusion was performed as follows. 15 ⁇ 1 of TransIT-LTl (Mirus) was mixed with 30 ⁇ 1 of OpttoMEM and incubated at room temperature for 10-15 minutes.
  • the DNA solution was prepared.
  • Opti-MEM 20 1 with pCAGGS-T7, pCAGGS-NP, pCAGGS- P4C (-), pCAGGS- L (TDK), pCAGGS- F5R, pSeV / ⁇ F-GFP 0.5 ⁇ g, 0.5 ⁇ g, 0.5 g, respectively , 2 g, 0.5 g, 2 g (However, when using BHK / T7 cells, pCAGGS-T7 should be added! /, NA! /,). After 10-15 minutes, the TransIT-LTl solution and DNA solution were mixed and allowed to stand at room temperature for 15 minutes.
  • the cell culture medium was removed and fresh 10% FBS-containing D-MEM was gently added at lml / well.
  • Opti-MEM (GIBCO) 5001 was added to the DNA-TransIT-LT1 mixture, and the entire amount was added to the cells and cultured.
  • Try-MEM was added in 1 ml and cultured at 37 ° C, 5% CO. After 72 hours, collect 1 ml of culture broth
  • TransIT-LT1 (Mirus) was mixed with 30 ⁇ 1 of Opti-MEM and incubated at room temperature for 10-15 minutes. During this time, the DNA solution was prepared.
  • pCAGGS-P4C (-), pCAGGS-L (TDK), pCAGGS-F5R, and pCAGGS-SeV / ⁇ F-GFP were dissolved in 0.3 ⁇ g, 0.5 g, 2 g, 0.5 g, and 5 g, respectively.
  • the TransIT-LT1 solution and the DNA solution were mixed and allowed to stand at room temperature for 15 minutes.
  • the cell culture medium was removed, and D-MEM containing 10% FBS was gently added at 1 ml / well. 15 minutes later, Opti-MEM
  • the TransIT-LTl solution and DNA solution were mixed and allowed to stand at room temperature for 15 minutes. During this time, the cell culture medium was removed and fresh 10% FBS-containing D-MEM was gently added at lml / well.
  • Opti-MEM (GIBCO) 500 1 was added to the DNA-TransIT-LT1 mixture, and the entire amount was added to the cells and cultured. After culturing at 37 ° C, 5% CO for 72 hours, discard the culture solution.
  • TransIT-LT1 (Mirus) was mixed with 30 ⁇ 1 of Opti-MEM and incubated at room temperature for 10-15 minutes. During this time, the DNA solution was prepared.
  • Opti-MEM 20 1, pCAGGS- NP,
  • the TransIT-LTl solution and the DNA solution were mixed and allowed to stand at room temperature for 15 minutes.
  • cell culture The ground was removed and fresh 10% FBS-containing D-MEM was gently added at 1 ml / well.
  • Opti-MEM (GIBCO) 5001 was added to the DNA-TransIT-LT1 mixture, and the entire amount was added to the cells and cultured. After culturing at 37 ° C, 5% CO for 72 hours, discard the culture and trypsin 7.5
  • LLC-MK2 cells that express both M and F genes of Sendai virus suspended in MEM containing g / ml (without serum) (hereinafter Try-MEM) at 1 X 10 6 cells / ml (Hereinafter referred to as LLC-M / F) was overlaid at 1 ml / well and cultured at 37 ° C under 5% CO. After layer 3
  • the medium was replaced with fresh Try-MEM every day. After that, it was changed every 2-3 days.
  • the culture solution was added to fresh LLC-MK2-M / F cells and cultured for 9 days at 32 ° C and 5% CO (medium was changed every 2-3 days). The supernatant is fresh
  • TransIT-LT1 (Mirus) 15 1 was mixed with Opti-MEM 301 and incubated at room temperature for 10-15 minutes. During this time, the DNA solution was prepared.
  • the medium was replaced with fresh Try-MEM every day for 3 days after overlaying. After that, every 2-3 days Exchanged.
  • the culture solution was added to fresh LLC-M / F cells and cultured for 9 days at 32 ° C. and 5% CO (medium was changed every 2-3 days). The supernatant is fresh
  • the cells were added to LLC-M / F cells and cultured in the same manner for 4 days. In addition, the supernatant is fresh.
  • FIG. 21 shows the results of observation of the spread of vector-infected cells of cells cultured for one day (P3d3) with GFP fluorescence.
  • NP, P, L, F5R, and T7 RNA polymerase under the control of CMV promoter were mounted on pC neo (Promega) (pCl-neo-NP, pCHieo— P4C ( ⁇ ), respectively) , pCHieo— L (TDK), pCHieo— F5R, and
  • Opti-MEM 201 can be used with pCAGGS-NP, pCAGGS-P4C (-),
  • pCAGGS-L TTK
  • pCAGGS-F5R pCAGGS-T7
  • pSeV / ⁇ F-GFP pCAGGS-L
  • Opti-MEM 20 1 should be connected to pCHieo—NP, pCHieo—P4C (—),
  • pCl-neo-L TDK
  • pCHieo-F5R pCHieo-T7
  • pSeV / ⁇ F-GFP pCl-neo-L
  • pCHieo-F5R pCHieo-T7
  • pSeV / ⁇ F-GFP pCl-neo-L
  • pCHieo-F5R pCHieo-T7
  • pSeV / ⁇ F-GFP were dissolved in 0.5 ⁇ g, 0.5 g, 5 g, 0.5 g, 1 g, and 5 g, respectively.
  • the method of the present invention can produce a minus-strand RNA virus vector with high efficiency without using a vaccinia virus, and the production process and the safety of the produced preparation are high.
  • minus-strand RNA viral vectors lacking envelope protein proteins such as F gene, HN gene, and / or M gene can be produced independently of cocoon virus.
  • the method of the present invention is particularly useful as a method for producing a vector requiring high safety such as a vector for gene therapy.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Virology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Saccharide Compounds (AREA)

Abstract

 本発明は、マイナス鎖RNAウイルスベクターのゲノムRNAの転写、および該ゲノムRNAとリボヌクレオプロテインを形成するマイナス鎖RNAウイルス蛋白質の発現を、サイトメガロウイルスエンハンサーおよびニワトリβ-アクチンプロモーターを含むプロモーターにより誘導することを特徴とする、マイナス鎖RNAウイルスベクターの製造方法を提供する。本発明の方法は、安全性の高いマイナス鎖RNAウイルスベクターを高い効率で製造することを可能にする。特に本発明の方法は、エンベロープ構成蛋白質遺伝子を欠損するマイナス鎖RNAウイルスベクターを製造するために有用である。

Description

明 細 書
サイトメガロウイ/レスェンノ、ンサ一およびニヮトリ β -ァクチンプロモーター を含むハイブリッドプロモーターを利用したマイナス鎖 RNAウィルスベクターの製 造方法
技術分野
[0001] 本発明はマイナス鎖 RNAウィルスベクターの製造方法に関する。
背景技術
[0002] 従来、マイナス鎖 RNAウィルスの回収は、主に Τ7 RNAポリメラーゼを発現する組み 換えワクシニアウィルス (vTF7-3: Fuerst, T.R. et al., Proc.Natl.Acad.Sci.USA 83, 8122-8126(1986), MVA-T7: Sutter, G. et al., FEBS lett. 371: 9-12 (1995》を使用 して、 T7プロモーター制御下に NP、 P、 L遺伝子とマイナス鎖 RNAウィルスゲノムを発 現するプラスミドが用いられてきた(Kolakofsky, et al., EMBO J. 14: 6087-6094 (1995); Kato, A. et al" Genes Cells 1: 569-579 (1996))。組み換えワクシニアウィル スで発現させた T7 RNAポリメラーゼの働きで NP、 P、 Lとアンチゲノムの RNAが供給さ れ、ワクシニアウィルスのキヤッビング酵素の働きにより NP、 P、 L mRNAの 5'末にキヤ ップ構造が形成され、蛋白質が翻訳される。それらの蛋白質はアンチゲノム RNAに作 用し、機能的な RNPを構成する。その後、アンチゲノム RNPからゲノム RNPが複製され 、さらにウィルス由来蛋白質の転写が起き、感染サイクルが始まりウィルスが回収され る。
[0003] 組み換えワクシニアウィルスを使用することによってマイナス鎖 RNAウィルスベクタ 一の回収はできる力 最終的なベクター標品の調製に際してワクシニアウィルスを除 去する必要があり、コストと時間がかかる。遺伝子治療用のベクターとして利用する場 合には、安全性の点力もも、ワクシニアウィルスを使用しないベクターの回収が望ま れる。
非特許文献 1 : Fuerst, T.R. et al., Proc.Natl.Acad.Sci.USA 83, 8122-8126 (1986) 非特許文献 2 : Sutter G, et al, FEBS lett. 371: 9-12 (1995)
非特許文献 3 : Kolakofsky et al., EMBO J. 14: 6087-6094 (1995) 非特許文献 4: Kato, A. et al., Genes Cells 1: 569-579 (1996)
発明の開示
発明が解決しょうとする課題
[0004] 本発明は、サイトメガロウイノレスェンハンサーおよびニヮトリ 13 -ァクチンプロモータ 一を含むハイブリッドプロモーターを利用して、ワクシニアウィルスを用いずにマイナ ス鎖 RNAウィルスベクターを製造する方法を提供する。
課題を解決するための手段
[0005] これまでに、組み換えワクシニアウィルスを使用しないでウィルスを回収する方法が 幾つかのモノネガウィルスで開発されてきた。その 1つは、 T7 RNAポリメラーゼを恒常 的に発現する哺乳動物細胞株を使用する方法である。この方法では、ワクシニアウイ ルスを使用した場合のようなキヤッビング酵素がないため、 NP、 P、 L蛋白質を発現さ せるために、キヤッビング非依存的翻訳のできる IRES配列を持つ発現プラスミドを利 用して ヽる。この方法を使用して、 在までに Bovine respiratory syncytial virus (BRSVXUrsula, et al" J. Virol. 73:251—259 (1999》、 Ravies virus (Stefan, et al" J. Virol. 73:3818-3825 (1999》、 Newcastle disease virus (NDV)(Romer- Oberdorfer, et al" J. General Virology 80:2987—2995 (1999》、 Sendai virus (F. Iseni, et al" EMBO J. Vol.21:5141-5150 (2002》の回収が報告されている。 SV5では、同様の細胞を使用 してアンチゲノムを BSR-T7/5細胞を用いて T7 RNAポリメラーゼで発現させ、 NP、 P、 L蛋白質を細胞由来の RNAポリメラーゼ IIにより転写される CAGプロモーターを持つ pCAGGSで駆動する方法が報告されている(David L. Waning et al., J. Virol.
76:9284-9297 (2002)) 0
[0006] 2つ目の方法は、 Rabies virusで報告された回収方法で、 NP、 P、 L、ゲノムを全てサ イトメガロウィルスプロモーターで駆動する方法である(K. Inoue, et al., J. Virological Method. 107:229-236 (2003))。この方法では、ゲノムの末端を正確に切り出すため にハンマーヘッドリボザィムがアンチゲノムの 5'末端に付加されており、 T7 RNAポリメ ラーゼ発現株を使用しなくてもウィルス回収ができる方法である。
[0007] 但し、これらの方法は全て伝播能を持つウィルスを再構成させる方法である。これま で、ワクシニアウィルスを用いないで、伝播能を欠損したウィルスを再構成した例はな い。伝播能を欠損したウィルスを再構成するためには、エンベロープ構成蛋白質をコ ードする遺伝子をウィルスゲノム力も欠損させ、ウィルス再構築の際に、エンベロープ 構成蛋白質をトランスに供給して、感染性ウィルス粒子を形成させなければならない 。従って、欠損型ウィルスを高効率で再構築するには、伝播型ウィルスの再構築より もさらに効率の高いウィルス産生系が必要である。
[0008] 本発明者らは、より効率的にマイナス鎖 RNAウィルスを生産 ·回収する方法を開発 するため、ウィルス産生細胞にぉ 、てウィルスゲノムの転写を駆動する方法の改良を 行った。その結果、マイナス鎖 RNAウィルスのゲノム RNAの転写、および該ゲノム RNA とリボヌクレオプロテインを形成するマイナス鎖 RNAウィルス蛋白質の全ての発現を、 サイトメガロウイノレスェンハンサーおよびニヮトリ /3 -ァクチンプロモーターを含むハイ ブリツドプロモーター(CAプロモーターと称す)によって直接または間接に駆動するこ とによって、効率的なウィルス産生を実現させることが可能であることを見出した。本 発明においてゲノム RNAの転写は、 CAプロモーターの制御下にマイナス鎖 RNAウイ ルスゲノム RNAをコードする DNAを連結し、ゲノム RNAの転写を CAプロモーターによ り直接誘導するか、あるいはゲノム RNAをコードする DNAの上流にバタテリオファージ 由来 RNAポリメラーゼのシグナル配列を連結しておき、 CAプロモーターから該 RNAポ リメラーゼを発現させ、それによりゲノム RNAの転写を誘導する。これらの方法により、 ワクシニアウィルスを使用することなぐ高力価のウィルスを生産させることができた。
[0009] そして本発明者らは、これらの方法を用いて、エンベロープ構成蛋白質の 1つであ る F蛋白質、 M蛋白質、そして Fおよび M蛋白質の遺伝子を欠損する非伝播型のマイ ナス鎖 RNAウィルスを、ワクシニアウィルスを用いずに初めて回収することに成功した 。本発明の方法は、ワクシニアウィルスを全く使用することなく高力価のマイナス鎖 RNAウィルスを調製することができるため、遺伝子治療等の安全性の高!ヽウィルスの 製造に有用である。
[0010] すわなち本発明は、マイナス鎖 RNAウィルスのゲノム RNAの転写および該ゲノム
RNAとリボヌクレオプロテインを形成するマイナス鎖 RNAウィルス蛋白質の発現を CA プロモーターにより誘導することを特徴とするマイナス鎖 RNAウィルスの製造方法に 関し、より具体的には、請求項の各項に記載の発明に関する。なお本発明は、請求 項の各項に記載の発明の 1つまたは複数 (または全部)の所望の組み合わせ力 な る発明、特に、同一の独立項 (他の項に記載の発明に包含されない発明に関する項
)を引用する項 (従属項)に記載の発明の 1つまたは複数 (または全部)の所望の組み 合わせ力 なる発明にも関する。各独立項に記載の発明には、その従属項の任意の 組み合わせ力もなる発明も意図されている。すなわち本発明は、
〔1〕 マイナス鎖 RNAウィルスベクターの製造方法であって、ウィルス生産細胞にお ける(0該マイナス鎖 RNAウィルスのゲノム RNAまたはその相補鎖の転写および(ii) 該ゲノム RNAとリボヌクレオプロテインを形成するマイナス鎖 RNAウィルス蛋白質の発 現を、サイトメガロウィルスェンハンサーおよび-ヮトリ j8 -ァクチンプロモーターを含 むプロモーターにより誘導することを特徴とする方法、
〔2〕 該ウィルス生産細胞において、サイトメガロウィルスェンハンサーおよびニヮトリ j8 -ァクチンプロモーターを含むプロモーターの制御下にリボザィムとマイナス鎖 RNA ウィルスのゲノム RNAまたはその相補鎖とをコードする DNAが連結された DNAを転写 させる工程を含み、該リボザィムは、転写産物を該リボザィムとゲノム RNAまたはその 相補鎖との間で切断する活性を有する、〔1〕に記載の方法、
〔3〕 該ウィルス生産細胞において、サイトメガロウィルスェンハンサーおよびニヮトリ j8 -ァクチンプロモーターを含むプロモーターの制御下にバタテリオファージの RNA ポリメラーゼをコードする DNAが連結された DNAを発現させる工程、および該 RNAポ リメラーゼにより、該 RNAポリメラーゼの認識配列の制御下に連結されたマイナス鎖 RNAウィルスのゲノム RNAまたはその相補鎖をコードする DNAを転写させる工程を含 む、〔1〕に記載の方法、
〔4〕 該リボザィムがハンマーヘッドリボザィムである、〔2〕に記載の方法、
〔5〕 該 RNAポリメラーゼをコードする DNAが連結された DNAを、該ウィルス生産細胞 においてェピソ一マルに発現させる、〔3〕に記載の方法、
〔6〕 該 RNAポリメラーゼをコードする DNAが連結された DNAを、該ウィルス生産細胞 の染色体から発現させる、〔3〕に記載の方法、
〔7〕 該バクテリオファージカ SP6ファージ、 T3ファージ、および T7ファージからなる 群より選択される、〔3〕、〔5〕、または〔6〕に記載の方法、 〔8〕 該マイナス鎖 RNAウィルスがセンダイウィルスである、〔1〕から〔7〕のいずれかに 記載の方法、
〔9〕 該ゲノム RNAまたはその相補鎖力 エンベロープ構成蛋白質をコードする遺伝 子の 1つまたは複数を欠損しており、エンベロープ構成蛋白質をコードする DNAを、 該細胞において発現させる工程をさらに含む、〔1〕から〔8〕のいずれかに記載の方 法、
〔10〕 サイトメガロウイノレスェンハンサーおよびニヮトリ 13 -ァクチンプロモーターとを 含むプロモーターの制御下に、リボザィムとマイナス鎖 RNAウィルスのゲノム RNAまた はその相補鎖とをコードする DNAが連結された DNAであって、該リボザィムは、転写 産物を該リボザィムとマイナス鎖 RNAウィルスのゲノム RNAまたはその相補鎖との間 で切断する活性を有する、 DNA、
〔11〕 該ゲノム RNAまたはその相補鎖が、エンベロープ構成蛋白質をコードする遺 伝子の 1つまたは複数を欠損している、〔10〕に記載の DNA、
〔12〕 該マイナス鎖 RNAウィルスがセンダイウィルスである、〔10〕または〔11〕に記載 の DNA、
〔13〕 該リボザィムがハンマーヘッドリボザィムである、〔10〕から〔12〕のいずれかに 記載の DNA、
〔14〕 リコンビナーゼにより発現誘導可能である、〔10〕から〔13〕のいずれかに記載 の DNA、
〔15〕 該リコンビナーゼが Creまたは Flpである、〔14〕に記載の DNA、
〔16〕 サイトメガロウイノレスェンハンサーおよび-ヮトリ β -ァクチンプロモーターを含 むプロモーターの制御下にバタテリオファージの RNAポリメラーゼをコードする DNAが 連結された DNA、
〔17〕 該バクテリオファージカ SP6ファージ、 T3ファージ、および T7ファージからな る群より選択される、〔16〕に記載の DNA、
〔18〕 リコンビナーゼにより発現誘導可能である、〔16〕または〔17〕に記載の DNA、 〔19〕 該リコンビナーゼが Creまたは Flpである、〔18〕に記載の DNA、
〔20〕 〔10〕から〔15〕のいずれかに記載の DNAを保持する哺乳動物細胞、 〔21〕 マイナス鎖 RNAウィルス生産用細胞である、〔20〕に記載の哺乳動物細胞、 [22] 該ゲノム RNAまたはその相補鎖が、エンベロープ構成蛋白質をコードする遺 伝子の 1つまたは複数を欠損している、〔20〕または〔21〕に記載の哺乳動物細胞、 〔23〕 該マイナス鎖 RNAウィルスがセンダイウィルスである、〔20〕から〔22〕のいずれ かに記載の哺乳動物細胞、
〔24〕 〔 16〕から〔 19〕の 、ずれかに記載の DNAを保持する哺乳動物細胞、 〔25〕 マイナス鎖 RNAウィルス生産用細胞である、〔24〕に記載の哺乳動物細胞、 〔26〕 該 RNAポリメラーゼの認識配列の制御下に連結されたマイナス鎖 RNAウィル スのゲノム RNAまたはその相補鎖をコードする DNAをさらに保持する、〔24〕または〔2 5]に記載の哺乳動物細胞、
[27] 該ゲノム RNAまたはその相補鎖が、エンベロープ構成蛋白質をコードする遺 伝子の 1つまたは複数を欠損している、〔26〕に記載の哺乳動物細胞、
〔28〕 該マイナス鎖 RNAウィルスがセンダイウィルスである、〔25〕から〔27〕のいずれ かに記載の哺乳動物細胞、に関する。
図面の簡単な説明
[図 l]pCAGGS(B type)および pCAGGS(BSX)の構築手順を示す図である。
[図 2]pCALNdLWE- zeo- NP(Z)の構築手順を示す図である。
[図 3]pCAGGS- P4C (-)の構築手順を示す図である。
[図 4]pCAGGS- L(TDK)の構築手順を示す図である。
[図 5]pCAGGS- Fの構築手順を示す図である。
[図 6]pCAGGS- F5Rの構築手順を示す図である。
[図7] pCAGGS- F5Rの構築手順を示す図である(図 6から続く)。
[図 8]pCAGGS- T7の構築手順を示す図である。
[図 9]pCAGGS- SeVおよび pCAGGS- SeV/ Δ F- GFPの構築手順を示す図である。
[図 10]pCAGGS- SeVおよび pCAGGS- SeV/ Δ F- GFPの構築手順を示す図である(図 9から続く)。
[図 1 l]pCAGGS- SeVの構築手順を示す図である(図 10から続く)。
[図 12]HamRbz法により回収した伝播型 SeVベクターの HAアツセィの結果を示す写真 である。
[図 13]HamRbz法においてゲノム DNAの量を変化させた場合の SeV/ Δ F- GFPの回収 効率を CIUアツセィにより検討した結果を示す図である。 2 g以上でほとんど変化は ない。
[図 14]HamRbz法による SeV/ Δ F- GFPの回収時における pCAGGS- Fと pCAGGS- F5R の回収効率の検討を行った結果を示す図である。 pCAGGS-F5Rを使用した場合の 方力 回収効率ははるかに向上した。
[図 15]pCAGGS- T7法により回収した伝播型 SeV(SeV(TDK)18+GFP)の HAアツセィ の結果を示す写真である。 BHK-21, BHK/T7, 293Tで希釈しないで鶏卵に接種した 時のみ HA活性が検出された。
[図 16]pCAGGS- T7法においてゲノム DNAの量を変化させた場合の SeV/ Δ F- GFPの 回収効率を CIUアツセィにより検討した結果を示す図である。 0.5— 5.0 gでほとんど 変化はないが、 5 gを使用した時に最も回収効率が良力つた。
[図 17]pCAGGS-T7法において導入試薬を変化させた場合の SeV18+GFP/ Δ Fの回 収効率を CIUアツセィにより検討した結果を示す図である。リン酸カルシウムを使用し た場合には TransIT-LT-1を使用した場合と同等以上の回収効率を示した。
[図 18]pCAGGS-T7法において細胞種を変化させた場合の SeV/ Δ F-GFPの回収効 率を CIUアツセィにより検討した結果を示す図である。試験した全ての細胞からウィル スが回収された。回収効率は BHK/T7〉BHK-21〉293T〉LLC- MK2の順だった。(但し
、 BHK/T7を使用する場合は pCAGGS- T7は添カ卩していない。 )
[図 19]HamRbz法と pCAGGS- T7法による SeV/ Δ F- GFPの回収効率の比較を CIUアツ セィにより検討した結果を示す図である。 PCAGGS-T7法は HamRbz法よりも再構成効 率が良力つた。
[図 20]pCAGGS-T7法による SeV/ Δ M- GFPの再構成を示す図である。
[図 21]pCAGGS- T7法による SeV/ Δ Μ Δ F- GFPの再構成を示す図である。
[図 22]CAプロモーターを用いたベクターの再構成と CMVプロモーターを用いたベタ ターの再構成を比較した結果を示す図である。 CAプロモーターのベクター再構成の 効率は圧倒的に高い。 発明を実施するための最良の形態
[0012] 本発明は、ウィルス生産細胞におけるマイナス鎖 RNAウィルスのゲノム RNAの転写 、および該ゲノム RNAとリボヌクレオプロテイン(RNP)を形成するマイナス鎖 RNAウイ ルス蛋白質の全ての発現を、サイトメガロウィルスェンハンサーおよび-ヮトリ j8 -ァク チンプロモーターを含むハイブリッドプロモーター(本発明にお!/ヽてこれを CAプロモ 一ターと称す)により誘導することを特徴とするマイナス鎖 RNAウィルスベクターの製 造方法に関する。本発明の方法において、マイナス鎖 RNAウィルスのゲノム RNAの転 写は、 CAプロモーターにより直接または間接に誘導する。マイナス鎖 RNAウィルスの ゲノム RNAの転写を CAプロモーターにより直接誘導するには、 CAプロモーターの制 御下にマイナス鎖 RNAウィルスのゲノム RNA (マイナス鎖)またはその相補鎖(プラス 鎖)をコードする DNAを連結する。ここで制御下に連結するとは、プロモーター活性に 応じて目的の遺伝子の転写が起こるように、該プロモーターの下流に該遺伝子をコ ードする DNAを連結することを言う。マイナス鎖 RNAウィルスのゲノム RNAの転写を CAプロモーターにより間接的に誘導するには、例えば CAプロモーターの制御下に RNAポリメラーゼをコードする DNAを連結した DNAと、該 RNAポリメラーゼの認識配列 の制御下にマイナス鎖 RNAウィルスのゲノム RNAまたはその相補鎖(すなわちプラス 鎖でもマイナス鎖でもよい)をコードする DNAを連結した DNAとを構築し、これらを細 胞に導入する。ここで RNAポリメラーゼの認識配列とは、該ポリメラーゼが転写を開始 するシグナルとなる DNA配列である。該認識配列にマイナス鎖 RNAウィルスのゲノム RNAまたはその相補鎖をコードする DNAを連結することにより、該ポリメラーゼにより ゲノム RNA (またはアンチゲノム RNA)を転写させることができる。 CAプロモーターによ り RNAポリメラーゼの発現が誘導され、この RNAポリメラーゼがマイナス鎖 RNAウィル スのゲノムの転写を誘導する。実施例に示すように、マイナス鎖 RNAウィルスのゲノム RNAの転写を CAプロモーターにより直接誘導するよりも、 RNAポリメラーゼの誘導を 介して間接にマイナス鎖 RNAウィルスのゲノム RNAの転写を誘導することで、より高 ヽ 力価でのウィルス製造が可能になる。
[0013] ゲノム RNAと RNPを構成するマイナス鎖 RNAウィルス蛋白質とは、マイナス鎖 RNAゥ ィルスのゲノム RNAと複合体を形成し、ゲノム RNAの複製およびゲノムにコードされて V、る遺伝子の発現に必要とされるウィルス蛋白質群を 、 、、これらの蛋白質を上記に おいて発現させるためには、該蛋白質のコード配列が CAプロモーターの下流に単純 に連結された発現ベクターを使用すればよい。これにより、該蛋白質群の発現は CA プロモーターにより直接誘導される。該蛋白質は、ウィルスのエンベロープを除くコア を形成する蛋白質であり、典型的には、 N (ヌクレオキヤプシド)、 P (ホスホ)、および L ( ラージ)蛋白質である。ウィルス種によっては、表記は異なることもあるが、対応する蛋 白質は当業者にとっては自明である(Anjeanette Robert et al., Virology 247:1-6 (1998》。例えば Nは NPと表記されることもある。
[0014] 本発明のマイナス鎖 RNAウィルスベクターの製造方法は、具体的には、
(a)哺乳動物細胞において、マイナス鎖 RNAウィルスのゲノム RNAまたはその相補鎖 の転写、および該マイナス鎖 RNAウィルスのリボヌクレオプロテイン(RNP)を構成する ウィルス蛋白質の発現を、 CAプロモーターにより誘導する工程、および
(b)該細胞にお!、て生産されたマイナス鎖 RNAウィルスまたはその増殖産物を回収 する工程、を含む方法である。
マイナス鎖 RNAウィルスのゲノム RNAまたはその相補鎖(アンチゲノム RNA)は、マイ ナス鎖 RNAウィルスの RNPを構成するウィルス蛋白質と共に RNPを形成し、ゲノムにコ ードされるウィルス蛋白質が発現して細胞内でゲノム RNAおよびアンチゲノム RNAが 増幅し、エンベロープ構成蛋白質が取り込まれてウィルス粒子が生成する。これを回 収すること〖こよって、ウイノレスを得ることができる。
[0015] 生成させたウィルスは、適宜増幅することができる。エンベロープ遺伝子を持つ伝 播型のウィルスの場合は、哺乳動物細胞に感染させれば、通常のウィルス増殖サイ クルに従ってウィルスが増殖する。エンベロープ構成蛋白質をコードする遺伝子を欠 損する伝播能を持たないウィルスの場合は、エンベロープ構成蛋白質を発現する細 胞 (ヘルパー細胞)に導入することで、感染性ウィルスを増幅することができる。
[0016] 本発明にお 、てサイトメガロウィルスェンハンサーおよび-ヮトリ 13 -ァクチンプロモ 一ターを含むプロモーター(CAプロモーター)とは、 (0サイトメガロウイノレス(CMV)の IE (immediate early)遺伝子のェンハンサー配列、および(ii) -ヮトリ j8 -ァクチン遺 伝子プロモーター配列を含むプロモーターを言う。 CMV IEェンハンサ一としては、所 望の CMV株の immediately early遺伝子のェンハンサーを用いることができるが、例え ば配列番号: 1の塩基配列を含む DNAを例示することができる。
また、 -ヮトリ β -ァクチンプロモーターとしては、 -ヮトリ β -ァクチン遺伝子のゲノム DNAの転写開始部位を含む DNA断片であって、プロモーター活性を持つ断片を使 用することができる。 -ヮトリ j8 -ァクチン遺伝子プロモーターの塩基配列については 、例えば T.A.Kostらによって報告されている(Nucl. Acids Res. 11, 8287-8286, 1983)。 -ヮトリの j8 -ァクチン遺伝子プロモーターは、 G (グァニン)および C (シトシン )含量が比較的高ぐ TATAボックス (Ann. Rev. Biochem. 50, 349-383, 1981)および CCAATボックス(Nucl. Acids Res. 8, 127-142, 1980)などプロモーターに特徴的な 配列が備わっている遺伝子断片である。 -ヮトリの j8 -ァクチンプロモーターにおいて は、本来の β -ァクチン構造遺伝子の翻訳開始コドン(ATG)の上流- 909の位置の G (グァニン)力も- 7の位置の G (グァニン)までの領域はイントロンと考えられる。このィ ントロンには転写を促進する活性があるため、このイントロンの少なくとも一部までを 含むゲノム DNA断片を用いることが好ましい。このような-ヮトリ j8 -ァクチンプロモー ターとしては、具体的には、例えば配列番号: 2の塩基配列を含む DNAを例示するこ とができる。イントロンのァクセプター配列は、他の遺伝子のイントロンァクセプター配 列を用いることが好ましぐ例えばゥサギ β -グロビンのスプライシングァクセプター配 列を用いてよい。具体的には、ゥサギ j8 -グロビンの開始コドンの直前にある第 2イント ロンのァクセプター部位を用いることができる。より具体的には、配列番号: 3に記載 の塩基配列を含む DNAを例示することができる。本発明にお ヽて CAプロモーターと しては、 CMV IEェンハンサー配列の下流に、イントロンの一部までを含む-ヮトリ β - ァクチンプロモーターを連結し、その下流に所望のイントロンァクセプター配列を付 加した DNAが好適である。一例を配列番号: 4に示した。蛋白質発現のためには、こ の配列の最後の ATGを開始コドンとして、 目的の蛋白質のコード配列を付加すれば よい。また、マイナス鎖 RNAウィルスゲノムを転写させるためには、上記のイントロンァ クセプター配列の下流にマイナス鎖 RNAウィルスゲノムまたはその相補鎖 (プラス鎖 またはマイナス鎖どちらでもよい)をコードする DNAを連結する。但し、後述のように、 イントロンァクセプター配列とマイナス鎖 RNAウィルスゲノムをコードする DNAとの間に は、自己切断型のリボザィムをコードする DNAを挿入するのが好適である。
[0018] ハイブリッドプロモーターに用いる CMVェンハンサー配列および-ヮトリ 13 -ァクチ ン遺伝子プロモーターは、単離株または単離個体によって配列に多様性があり得る 。また、これらの配列は、制限酵素認識部位を追加または削除したり、リンカ一配列を 挿入したりするために、軽微に改変されてもよい。すわなち、これらの配列は、配列番 号: 4に例示したのと全く同一の配列でなくても、同等またはそれ以上 (例えば 70%以 上、好ましくは 80%以上、 90%以上または 100%以上)のプロモーター活性を有する限り 、適宜使用することができる。塩基配列に変異を導入する方法は、当業者によく知ら れ" L ヽる (Molecular cloning: a laboratory manual., 3rd ed., Joseph Sambrook, David W. Russell, Cold Spring Harbor Laboratory Press, 2001)。 CMVェンハンサー配列 および-ヮトリ ι8 -ァクチン遺伝子プロモーター配列のバリアントとしては、例えば Genbank accession AF334827, AY237157, AJ575208,および X00182等が挙げら れ、これらに記載の配列を本発明において用いることができる。これらの配列力 CA プロモーターの構築に必要な配列を特定するには、配列番号: 1および 2とァライメン トを作成し、該当する領域を選択すればよい。また、 CAプロモーターの構築には、 pCAGGS (Niwa, H. et al. (1991) Gene. 108: 193-199、特開平 3- 168087)や
pCALNdLw (Arai, T. et al. J. Virology 72, 1998, pi 115- 1121)から DNAを切り出して 禾 IJ用することがでさる。
[0019] 上記のような CMV IEェンハンサー配列および-ヮトリ 13 -ァクチンプロモーターのバ リアントとしては、配列番号: 1に記載の CMV IEェンノ、ンサ一配列、および配列番号 : 2に例示された-ヮトリ j8 -ァクチンプロモーターにおいて、 30%以下、好ましくは 20% 以下、より好ましくは 15%以下、より好ましくは 10%以下、より好ましくは 5%以下、より好ま しくは 3%以下の塩基を置換、欠失、および/または挿入した塩基配列を含み、同等の プロモーター活性を示す配列が挙げられる。これらの配列は、それぞれ配列番号: 1 に記載の塩基配列、または配列番号: 2に記載の塩基配列と高いホモロジ一を示す 。高いホモロジ一としては、例えば 70%以上、より好ましくは 75%以上、より好ましくは 80%以上、より好ましくは 85%以上、より好ましくは 90%以上、より好ましくは 93%以上、よ り好ましくは 95%以上、より好ましくは 96%以上の同一性を有する塩基配列である。塩 基配列の同一性は、例えば BLASTプログラム(Altschul, S. F. et al., 1990, J. Mol. Biol. 215: 403- 410)を用いて決定することができる。例えば NCBI (National Center for Biotecnnology Informationノの BLA¾ i,のウェブへ ~~ン【こお ヽて Low complexity 含むフィルタ一は全て OFFにして、デフォルトのパラメータを用いて検索を行う( Altschul, S.F. et al. (1993) Nature Genet. 3:266-272; Madden, T丄. et al. (1996) Meth. Enzymol. 266:131—141; Altschul, S.F. et al. (1997) Nucleic Acids Res.
25:3389-3402; Zhang, J. & Madden, T丄.(1997) Genome Res. 7:649-656)。例えば 2つの配列の比較を行う blast2sequencesプログラム(Tatiana A et al. (1999) FEMS Microbiol Lett. 174:247-250)により、 2配列のァライメントを作成し、配列の同一性を 決定することができる。ギャップはミスマッチと同様に扱い、例えば配列番号: 1に記 載の塩基配列全体または配列番号: 2に記載の塩基配列全体に対する同一性の値 を計算する。具体的には、ァライメントにおける配列番号: 1または 2の総塩基数(ギヤ ップを含む)における一致する塩基数の割合を計算する。ァライメントにおける配列 番号: 1または 2の外側のギャップは計算から除外する。
また、 CMVェンハンサー配列およびニヮトリ j8 -ァクチンプロモーター配列は、 CMV のゲノム核酸および-ヮトリゲノム DNA力もハイブリダィゼーシヨンによって単離するこ とができる。本発明において使用される CMVェンハンサーおよびニヮトリ j8 -ァクチン プロモーターは、それぞれ配列番号:1に記載の塩基配列、または配列番号: 2に記 載の塩基配列あるいはその相補配列とストリンジェントな条件でノヽイブリダィズする DNAであって、これらと同等のプロモーター活性を有する DNAであってもよい。ハイ ブリダィゼーシヨンにおいては、例えば配列番号: 1に記載の塩基配列、配列番号: 2 に記載の塩基配列、またはそれらの相補配列を含む核酸力 プローブを調製、また はハイブリダィズの対象とする DNAからプローブを調製し、それが他方の DNAにハイ ブリダィズするかを検出することにより同定することができる。ストリンジェントなハイブ リダィゼーシヨンの条件は、例えば 5xSSC、 7%(W/V) SDS、 100 micro- g/ml変性サケ 精子 DNA、 5xデンハルト液(lxデンハルト溶液は 0.2%ポリビニールピロリドン、 0.2%牛 血清アルブミン、および 0.2%フイコールを含む)を含む溶液中、 60°C、好ましくは 65°C 、より好ましくは 68°Cでハイブリダィゼーシヨンを行い、その後ハイブリダィゼーシヨンと 同じ温度で 2xSSC中、好ましくは lxSSC中、より好ましくは 0.5xSSC中、より好ましくは O.lxSSC中で、振蘯しながら 2時間洗浄する条件である。
[0021] 本発明のマイナス鎖 RNAウィルスの製造方法の 1つの態様は、ウィルス生産細胞に お!、て、 CAプロモーターの制御下にリボザィムとマイナス鎖 RNAウィルスのゲノム RNAまたはその相補鎖をコードする DNAが連結された DNAを転写させる方法である。 この DNA力 転写される初期転写産物は、リボザィムとマイナス鎖 RNAウィルスのゲノ ム RNA (プラス鎖またはマイナス鎖)とを含んでいる。ここでリボザィムは、このリボザィ ムとマイナス鎖 RNAウィルスのゲノム RNAとの間を切断する活性を持つように設計す る。転写された RNA中のリボザィムは、シスまたはトランスに作用して、リボザィムとマ イナス鎖 RNAウィルスのゲノム RNAとの間を切断し、正確なゲノム末端を持つマイナス 鎖 RNAウィルスのゲノム RNAが生成される(Inoue, K. et al. J. Virol. Methods 107, 2003, 229-236) oリボザィムを用いた方法は、 DNAを転写させて RNAを生成させるだ けで、正確な末端を持つマイナス鎖 RNAウィルスのゲノム RNAが自己生成するため、 ウィルスの製造方法が簡便であり、特別な細胞を必要としない点で優れている。
[0022] 特定の配列を切断するリボザィムは、公知の技術に基づいて設計することが可能で ある。例えばハンマーヘッドリボザィムは、天然においてはウイロイドなどから単離さ れており(J. M. Buzayan et al., Nature, 1986, 323: 349-353; G.A. Prody et al., Science, 1986, 231:1577- 1580)、もともとは三つのループと三つのへリックスを持つ 金槌構造を有し、シスに作用する他、触媒活性を有する RNA部分と標的 RNAとを切り 離すことによりトランスで作用させることもできる。このようなリボザィムは例えば一つの ループとヘリックスをもち、ターゲットとなる配列と擬似的にループをとる(Turner, P.し., The Biochemistry or tne Hammerhead ibozyme. In: ¾canlon, KJ., and Kashani- Sabet, M. ed. Ribozymes in the Gene Tarapy of Cancer (Medical
Intelligence UNIT4), R. G. Landes Company, 1998; 3—14)。 ノヽンマーヘッドリボザィ ムは構造が十分明らかになつているリボザィムであり、タバコリングスポットウィルスの リボザィムは、 NUH (N= A, G, C,または U; H= A, C,または U)の塩基配列の 3'側を 特異的に切断する(M. Koizumiら, FEBS Lett. 228:225, 1988)。従って、標的とする 所望の RNA中の UC、 UUまたは UAと ヽぅ配列を含む部位を特異的に切断するリボザ ィムを作出することが可能である(M. Koizumiら, FEBS Lett. 239:285, 1988;小泉誠 および大塚栄子,蛋白質核酸酵素, 35: 2191, 1990; M. Koizumiら, Nucleic Acids Res. 17:7059, 1989)。
[0023] また、ヘアピンリボザィムも本発明の目的のために有用である。ヘアピンリボザィム は、例えばタバコリングスポットウィルスのサテライト RNAのマイナス鎖に見出される (J. M. Buzayan, Nature 323:349, 1986)。このリボザィムも、標的特異的な RNA切断を起 こすように設計できることが示されている(Y. Kikuchiおよび N. Sasaki, Nucleic Acids Res. 19:6751, 1992;菊池洋,化学と生物 30:112, 1992)。
[0024] これらのリボザィムは、適宜改変することができる。 In vitro進化系を用いて天然のリ ボザィムを改変し、活性の高い改変リボザィムを得る方法が知られている(
Joyce.1992. Selective Amplincation Tecnniques for Optimization of Ribozyme Function, in Antisense RNA and DNA pp. 353—372. Wiley— Liss Inc.)。またリボザィ ムは 2量体で機能するものも利用できる。
[0025] RNA切断活性を持つリボザィムは一般に、触媒活性に必須の配列と、標的 RNAの 認識に必要な標的認識配列を含んで 、る。ハンマーヘッドリボザィムの触媒に必要 な配列は、例えば δ'^^ΐ θ^ ^^ Α^ ^^ Ν ΝΜΝ Ν Ν Ν Ν Ν^^^^Α23 Α24Ν-3' (配列番号: 5)が挙げられるがこれに限定されない。ここで Νは G, A, U,また は Cであり、 5'-^° -3'と 5'-16Ν"Ν18Ν19Ν-3'は互いに相補的な配列にして塩 基対を形成できるようにする。例えば 5'- 3'として 5'- GUCC- 3'、5'- 16Ν17Ν18 Ν19Ν-3'として 5'-GGAC-3,が挙げられるがこれに制限されない。 12N13N14N15Nの 4塩基 はループを形成させることが好ましい。ここは 4塩基でなくとも、 2— 7塩基 (すなわち N )程度、例えば 3— 5塩基 (すなわち N )程度でもよ 、。 23A24Nは標的認識配列と
2—7 3—5
重なっており、 24Nは標的部位である上記の NUHの Nと相補的な塩基にする。例示と しては 5'-GUGA-3,があげられる。より具体的な配列は実施例に示されている。この 両端に標的認識配列を付加する。標的認識配列としては、リボザィムとマイナス鎖 RNAウィルスゲノムの間の配列と相補的な配列に設定する。
[0026] 本発明の方法の他の 1つの態様は、ウィルス生産細胞において、 CAプロモーター の制御下にバタテリオファージの RNAポリメラーゼをコードする DNAが連結された DNAを発現させる方法である。ここで、このウィルス生産細胞は、該 RNAポリメラーゼ の認識配列の下流に連結されたマイナス鎖 RNAウィルスのゲノム RNAまたはその相 補鎖をコードする DNAを含むようにする。発現された RNAポリメラーゼにより、 RNAポリ メラーゼの認識配列の下流に連結されたマイナス鎖 RNAウィルスのゲノム RNAをコー ドする DNAが転写され、ウィルスゲノム RNAが生成する。用いられる RNAポリメラーゼ としては、特異的配列(RNAポリメラーゼの標的配列で、一般にプロモーター配列とも 呼ばれる)を認識して転写を開始する所望のパクテリオファージ由来 RNAポリメラーゼ が用いられるが、具体的に例示すれば、大腸菌 T3ファージおよび T7ファージ、およ びサルモネラ SP6ファージ等が挙げられる(Krieg, P.A. and Melton, D.A. 1987. In vitro RNA synthesis with SP6 RNA polymerase. Methods Enzymol. 155: 397—15; Milligan, J.F., Groebe, D.R., Witherell, G.W., and Uhlenbeck, O.C. 1987.
Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res. 15: 8783—798; Pokrovskaya, I.D. and Gurevich, V.V. 1994. In vitro transcription: Preparative RNA yields in analytical scale reactions. Anal.Biochem. 220: 420-23)。
[0027] T3、 T7、および SP6の典型的な認識配列(プロモーター配列)を以下に示す。ここで 「+1」は転写される最初の塩基を表す。
+1
T7: TAATACGACTCACTATAGGGAGA (配列番号: 6 )
T3: AATTAACCCTCACTAAAGGGAGA (配列番号: 7 )
SP6 : ATTTAGGTGACACTATAGAAGNG (配列番号: 8 ) (N=A, G, C, or T)
-17から- 1までの領域は転写に必須であり、 2本鎖であることが必要である。また、上 記の +1から +6のうち、効率のよ 、転写を実現させるためには最初の 2塩基 (+1および +2)が GP (Ρ=プリン(Αまたは G))であることが重要であり、その他の塩基は他の塩基 に置換してもよい。好ましくは、上記の下線部に示した配列が用いられる。マイナス鎖 RNAウィルスのゲノム cDNA (プラス鎖またはマイナス鎖)は、上記 RNAポリメラーゼの 認識配列の直下に結合される。効率の高いウィルスの製造のためには、プラス鎖を 転写させるようにするとよい。
[0028] 以上に記載した、マイナス鎖 RNAウィルスのゲノムの転写ベクターおよびファージ RNAポリメラーゼの発現ベクターは、所望の DNAベクター、あるいは細胞に導入後に DNAに変換される、レトロウイルスのようなベクター等であってよいが、典型的にはプ ラスミドベクターが用いられる。ベクターは、細胞に導入後にェピソ一ムとして存在し て発現するベクターでもよぐあるいは細胞の染色体に組み込まれて発現する染色 体組み込み型のベクターであってもよい。例えばプラスミドを用いる場合は、トランス フエクシヨンにより一過的に発現させてもよぐあるいは染色体に組み込まれた安定導 入株を選択してもよい。特にファージ RNAポリメラーゼを安定発現する細胞株は、ウイ ルス製造の手順が簡略ィ匕でき、安定した高力価ウィルスの製造が可能になるので有 用である(実施例 2参照)。また、ベクターは、恒常的に発現するものであってもよいが 、必要なときに発現を誘導できるような誘導発現型のベクターであってもよい。例えば 、配列特異的リコンビナーゼ (組み換え酵素)を用いて、誘導的に発現させることが可 能である(実施例 2)。このために利用できるリコンビナーゼとしては、 Creリコンビナー ゼおよび FLPリコンビナーゼが挙げられる。リコンビナーゼ標的配列に挟まれた DNA を、 CAプロモーターと該リボザィムまたは RNAポリメラーゼのコード配列との間に挿入 することにより、リコンビナーゼに応答して発現を誘導することができる。
[0029] Creはバタテリオファージ P1が持つ約 38 kDaの cyclizationリコンビナーゼであり、 ΙοχΡ部位の間を特異的に組み換える(Sauer B, Henderson N. 1988. Site-specific DNA recombination in mammalian ceils by the し re recombinase of oactenophage PI. Proc Natl Acad Sci USA 85:5166—70; Sternberg N, Hamilton D. 1981.
Bacteriophage PI site-specific recombination. I. Recombination between loxP sites. J Mol Biol 150:467-86; Brian Sauer, Methods of Enzymology; 1993, Vol. 225, 890-900; Nagy A. 2000. Cre recombinase: the universal reagent for genome tailoring. Genesis 26:99-109)。 loxPは、 8 bpのスぺーサーを持つ 13 bpのァシンメトリ ックなインバーテッドリピート配列である (ATAACTTCGTATAATGTATGC
TATACGAAGTTAT:下線部がインバーテッドリピート) (配列番吾: 9)。
[0030] FLPリコンビナーゼは酵母 Saccharomyces cerevisiaeの 2 micronプラスミドに由来す る約 49 kDaの flippaseリコンビナーゼで、 FLP recombinase target (FRT)配列を標的と して組み換えを起こす(Utomo AR, Nikitin AY, Lee WH. 1999. Temporal, spatial, and cell type-specific control of Cre— mediated DNA recombination in transgenic mice. Nat Biotechnol 17:1091—6; Broach, J. R., Guarascio, V. R. & Jayaram, M. (1982) Cell 29, 227-34; Cox, M. M. (1983) Proc. Natl. Acad. Sci. USA 80,
4223-227; Vetter, D., Andrews, B. J., Roberts— Beatty, L. & Sadowski, P. D. (1983)
Proc. Natl. Acad. Sci. USA 80, 7284-288; Abremski, K. & Hoess, R. (1984) J. Biol.
Chem. 259, 1509—514; Stark, W. M., Boocock, M. R. & Sherratt, D. J. (1992) Tr ends Genet. 8, 432-39; Kilby, N. J., Snaith, M. R. & Murray, J. A. H. (1993) Trends Genet. 9, 413-21)。 loxPと同様に、 FRT配列も 8 bpのスぺーサーを持つ 13 bp のリピート配列からなる (GAAGTTCCTATTCTCTAGAAAGTATAGGAACTTC:配 列番号: 10) (Andrews, B. J. et al. (1985). The Fし P Recombinase of the 2 Micron し irele DNA of Yeast: Interaction with its Target Sequences. Cell 40, 795—803)。また 、標的特異的組み換えは、上記の loxP部位および FRT部位の変異配列を利用して ?Tつこともでさる (Baszczynski, し hristopherし et al, Ub Patent Application
20040003435)。
[0031] リコンビナーゼにより発現誘導可能な DNAを構築するには、一対のリコンビナーゼ 標的配列に挟まれた DNAを、 CAプロモーターとリボザィムまたはファージ RNAポリメラ ーゼのコード配列との間に挿入する。この状態では、挿入された DNA断片に妨げら れ、 CAプロモーターからはマイナス鎖 RNAウィルスのゲノム(リボザィムが付カ卩されて いる)またはファージ RNAポリメラーゼは発現しない。しかし、リコンビナーゼを作用さ せると、標的配列で挟まれた DNAが切り出され、 CAプロモーターからマイナス鎖 RNA ウィルスのゲノムまたはファージ RNAポリメラーゼが発現するようになる。このように、リ コンビナーゼにより、 CAプロモーター力もの発現を誘導することができる。リコンビナ ーゼの標的配列に挟まれた DNA中には、転写終結シグナルおよび/または終止コド ンを含むようにしておき、リコンビナーゼを作用させない時に、下流に連結されたマイ ナス鎖 RNAウィルスのゲノムまたはファージ RNAポリメラーゼの遺伝子の発現を確実 に遮断できるようにすることが好ましい。また、リコンビナーゼの標的配列に挟まれた DNA中には、適宜マーカー遺伝子を挿入しておくことができる。
[0032] 本明細書に記載したウィルス製造のための DNAおよび細胞は、適宜組み合わせて ウィルス製造のためのキットとすることができる。例えば本発明は、以下のようなキット に関する。
(1-1) CAプロモーターの制御下にバタテリオファージの RNAポリメラーゼをコードする DNAが連結された DNA、および該 RNAポリメラーゼの認識配列の制御下に連結され たマイナス鎖 RNAウィルスのゲノム RNAまたはその相補鎖をコードする DNA、を含む マイナス鎖 RNAウィルス製造キット。
(1-2) CAプロモーターの制御下に連結された、該ゲノム RNAと RNPを形成するマイナ ス鎖 RNAウィルス蛋白質をコードする DNAをさらに含む、上記(1-1)に記載のキット。 (1-3)該ゲノム RNAまたはその相補鎖力 エンベロープ構成蛋白質をコードする遺伝 子の 1つまたは複数を欠損している、上記(1-1)または(1-2)に記載のキット。
(1-4)エンベロープ構成蛋白質をコードする DNAをさらに含む、上記(1-1)から(1-3) の!、ずれかに記載のキット。
(1-5)エンベロープ構成蛋白質をコードする DNA力 CAプロモーターの制御下に連 結されている、上記(1-1)から(1-4)のいずれかに記載のキット。
(1-6)該マイナス鎖 RNAウィルスがセンダイウィルスである、上記(1-1)から(1-5)の いずれかに記載のキット。
(1-7)該バクテリオファージカ SP6ファージ、 T3ファージ、および T7ファージからなる 群より選択される、上記(1-1)から(1-6)の 、ずれかに記載のキット。
(1-8)該 RNAポリメラーゼがリコンビナーゼにより発現誘導可能である、上記(1-1)か ら(1-7)の!、ずれかに記載のキット。
(1-9)該リコンビナーゼが Creまたは Hpである、上記(1-8)に記載のキット。
(2-1) CAプロモーターの制御下にバタテリオファージの RNAポリメラーゼをコードする DNAが連結された DNAを保持する哺乳動物細胞、および該 RNAポリメラーゼの認識 配列の制御下に連結されたマイナス鎖 RNAウィルスのゲノム RNAまたはその相補鎖 をコードする DNA、を含むマイナス鎖 RNAウィルス製造キット。
(2-2) CAプロモーターの制御下に連結された、該ゲノム RNAと RNPを形成するマイナ ス鎖 RNAウィルス蛋白質をコードする DNAをさらに含む、上記(2-1)に記載のキット。 (2-3)該ゲノム RNAまたはその相補鎖力 エンベロープ構成蛋白質をコードする遺伝 子の 1つまたは複数を欠損している、上記 (2-1)または (2- 2)に記載のキット。
(2-4)エンベロープ構成蛋白質をコードする DNAをさらに含む、上記 (2-1)から(2-3) の!、ずれかに記載のキット。
(2-5)エンベロープ構成蛋白質をコードする DNA力 CAプロモーターの制御下に連 結されて!、る、上記(2-1)から(2-4)の 、ずれかに記載のキット。
(2-6)該マイナス鎖 RNAウィルスがセンダイウィルスである、上記(2-1)から(2-5)の いずれかに記載のキット。
(2-7)該バクテリオファージカ SP6ファージ、 T3ファージ、および T7ファージからなる 群より選択される、上記 (2-1)から (2-6)の 、ずれかに記載のキット。
(2-8)該 RNAポリメラーゼがリコンビナーゼにより発現誘導可能である、上記 (2-1)か ら(2-7)の!、ずれかに記載のキット。
(2-9)該リコンビナーゼが Creまたは Hpである、上記(2-8)に記載のキット。
(3-1) (0 CAプロモーターの制御下に、リボザィムとマイナス鎖 RNAウィルスのゲノム RNAまたはその相補鎖とをコードする DNAが連結された DNAであって、該リボザィム は、転写産物を該リボザィムとマイナス鎖 RNAウィルスのゲノム RNAまたはその相補 鎖との間で切断する活性を有する DNA、ならびに、 (ii) CAプロモーターの制御下に 連結された、該ゲノム RNAと RNPを形成するマイナス鎖 RNAウィルス蛋白質をコード する DNA、を含む、マイナス鎖 RNAウィルス製造キット。
(3-2)該ゲノム RNAまたはその相補鎖力 エンベロープ構成蛋白質をコードする遺伝 子の 1つまたは複数を欠損している、上記 (3-1)に記載のキット。
(3-3)エンベロープ構成蛋白質をコードする DNAをさらに含む、上記 (3-1)または( 3-2)に記載のキット。
(3-4)エンベロープ構成蛋白質をコードする DNA力 CAプロモーターの制御下に連 結されて!、る、上記(3-1)から(3-3)の!、ずれかに記載のキット。
(3-5)該マイナス鎖 RNAウィルスがセンダイウィルスである、上記(3-1)から(3-4)の いずれかに記載のキット。
(3-6)該バクテリオファージカ SP6ファージ、 T3ファージ、および T7ファージからなる 群より選択される、上記 (3-1)から (3-5)の 、ずれかに記載のキット。 (3-7)上記 (i)および/または GOの DNAがリコンビナーゼにより発現誘導可能である、 上記(3-1)から(3-6)の 、ずれかに記載のキット。
(3-8)該リコンビナーゼが Creまたは Hpである、上記(3-7)に記載のキット。
なおリコンビナーゼにより発現誘導可能とは、 CAプロモーターとその下流の DNAと の間に該リコンビナーゼの認識配列に挟まれた DNAが挿入されており、該リコンビナ ーゼにより認識配列に挟まれた DNAが除去され、 CAプロモーターの下流の DNAの 発現が誘導されるようになって ヽることである。
[0035] 本発明にお 、てマイナス鎖 RNAウィルスとは、マイナス鎖(ウィルス蛋白質をセンス にコードする鎖と相補的なアンチセンス鎖)の RNAをゲノムとして含むウィルスのこと である。マイナス鎖 RNAはネガティブ鎖 RNAとも呼ばれる。本発明において用いられ るマイナス鎖 RNAウィルスとしては、特に一本鎖マイナス鎖 RNAウィルス (非分節型( non- segmented)マイナス鎖 RNAウィルスとも言う)が挙げられる。「一本鎖ネガティブ 鎖 RNAウィルス」とは、一本鎖ネガティブ鎖 [すなわちマイナス鎖] RNAをゲノムに有 するウィルスを言う。このようなウィルスとしては、パラミクソウィルス(Paramyxoviridae; Paramyxovirus, Morbillivirus, Rubulavirus,および PneumovirusJ¾等を む)、フブト ウイノレス (Rhabdovindae; Vesiculovirus, Lyssavirus,および Epnemerovirus属等を含 む)、フィロウイノレス (Filoviridae)、ォノレトミクソゥイノレス (Orthomyxoviridae; Inluluenza virus A, B, C,および Thogoto- like viruses等を含む)、ブ-ャウィルス(
Bunyaviridae; Bunyavirus, Hantavirus, Nairo virus,および Phlebovirus属等を含? _?リ、 ァレナウィルス (Arenaviridae)などの科に属するウィルスが含まれる。
[0036] また、マイナス鎖 RNAウィルスベクターとは、マイナス鎖 RNAウィルスをベースとする 感染力を持つウィルスであって、遺伝子を細胞に導入するための担体を言う。ここで 「感染力」とは、マイナス鎖 RNAウィルスベクターが細胞への接着能を保持しており、 接着した細胞の内部にベクターに含まれる遺伝子を導入することのできる能力のこと を言う。また「遺伝子」は、本発明において製造するマイナス鎖 RNAウィルスベクター が有する任意の遺伝物質を指し外来遺伝子に限定されな!ヽ。すなわちマイナス鎖 RNAウィルスベクターは外来遺伝子を持って 、ても持たなくてもよ 、。本発明の方法 は、伝播能を有するウィルスベクターの製造、および伝播能を有さない欠損型べクタ 一の製造の両方に適用することができる。特に、伝播能を有さない欠損型ベクターの 効率的な製造を可能にする利点を有する。ここで「伝播能を有する」とは、ウィルスべ クタ一が宿主細胞に感染した場合、該細胞においてウィルスが複製され、感染性ウイ ルス粒子が産生されることを指す。
[0037] 組み換えウィルスとは、組み換えポリヌクレオチドを介して生成したウィルス、または そのウィルスの増幅産物を言う。組み換えポリヌクレオチドとは、両端または片端が自 然の状態と同じようには結合していないポリヌクレオチドを言う。具体的には、組み換 えポリヌクレオチドは、人為的にポリヌクレオチド鎖の結合が改変 (切断および/または 結合)されたポリヌクレオチドである。組み換えポリヌクレオチドは、ポリヌクレオチド合 成、ヌクレアーゼ処理、リガーゼ処理等を組み合わせて、公知の遺伝子組み換え方 法により生成させることができる。組み換えウィルスは、遺伝子操作により構築された ウィルスゲノムをコードするポリヌクレオチドを発現させ、ウィルスを再構築することに よって生成することができる。例えば、ウィルスゲノムをコードする cDNAから、ウィルス 再構成する方法が知られている(Y. Nagai, A. Kato, Microbiol. Immunol, 43, 613-624 (1999))。
[0038] 本発明にお ヽて遺伝子とは遺伝物質を指し、転写単位をコードする核酸を言う。遺 伝子は RNAであっても DNAであってもよ!/、。本発明にお!/、て蛋白質をコードする核酸 は、該蛋白質の遺伝子と呼ぶ。また一般に、遺伝子は蛋白質をコードしていなくても よぐ例えば遺伝子はリボザィムまたはアンチセンス RNAなどの機能的 RNAをコード するものであってもよい。一般に、遺伝子は天然由来または人為的に設計された配 列であり得る。また、本発明において「DNA」とは、一本鎖 DNAおよび二本鎖 DNAを 含む。また蛋白質をコードするとは、ポリヌクレオチドが該蛋白質を適当な条件下で 発現できるように、該蛋白質のアミノ酸配列をコードする ORFをセンスまたはアンチセ ンスに含むことを言う。
[0039] 本発明にお!/、て得に好適に用いられるマイナス鎖 RNAウィルスとしては、例えばパ ラミクソウィルス科 (Paramyxoviridae)ウィルスのセンダイウィルス (Sendai virus),ニュー カツスノレ f丙ウイノレス (Newcastle disease virus入お 7こふく;^ぜ1/イノレス (Mumps virus) ^ 淋诊ゥイノレス (Measles virus) ^ RSウイノレス (Respiratory syncytial virus) ^牛投ゥイノレス (rinderpest virus)ゝジステンノ ーウイノレス (distemper virus)ゝサノレノ《ラインフノレエンザゥ ィルス(SV5)、ヒトパラインフルエンザウイルス 1,2,3型、オルトミクソウィルス科
(Orthomyxoviridae)のインフノレエンザゥイノレス (Influenza virus),ラブドウイノレス科 (Rhabdoviridae)の水抱'性口内炎ウイノレス (Vesicular stomatitis virus),狂犬病ウイノレス (Rabies virus)等が挙げられる。
[0040] 本発明にお!/、て用いることができるウィルスをさらに例示すれば、例えば Sendai virus (SeV)、 human parainfluenza virus- 1 (HPIV- 1)、 human parainfluenza virus- 3 (HPIV- 3)、 phocine distemper virus (PDV)、 canine distemper virus (CDV)、 dolphin molbillivirus (DMV)、 peste—des—petits— ruminants virus (PDPR)、 measles virus (MV)、 rinderpest virus (RPV)、 Hendra virus (Hendra)、 Nipah virus (Nipah)、 human parainfluenza virus- 2 (HPIV- 2)、 simian parainfluenza virus 5 (SV5)、 human parainfluenza virus- 4a (HPIV- 4a)、 human parainfluenza virus- 4b (HPIV- 4b)、 mumps virus (Mumps),および Newcastle disease virus (NDV)などが含まれる。より好ましく は、 Sendai virus (SeV)、 human parainfluenza virus- 1 (HPIV- 1)、 human parainfluenza virus- 3 (HPIV- 3)、 phocine distemper virus (PDV)、 canine distemper virus (CDV)、 dolphin molbillivirus (DMV)、 peste—des—petits— ruminants virus (PDPR)、 measles virus (MV)、 rinderpest virus (RPV)、 Hendra virus (Hendra) ^および Nipah virus (Nipah)カゝらなる群より選択されるウィルスが挙げられる。
[0041] 本発明にお 、て製造されるマイナス鎖 RNAウィルスは、より好ましくは、ノ ラミクソゥ ィルス亜科(レスピロウィルス属、ルブラウィルス属、およびモルビリウィルス属を含む )に属するウィルスまたはその誘導体であり、より好ましくはレスピロウィルス属(genus Respirovirus) (パラミクソウィルス属(Paramyxovirus)とも言う)に属するウィルスまたは その誘導体である。誘導体には、ウィルスによる遺伝子導入能を損なわないように、 ウィルス遺伝子が改変されたウィルス、およびィ匕学修飾されたウィルス等が含まれる 。本発明を適用可能なレスピロウィルス属ウィルスとしては、例えばヒトパラインフルェ ンザウィルス 1型(HPIV- 1)、ヒトパラインフルエンザウイルス 3型(HPIV- 3)、ゥシパライ ンフルェンザウィルス 3型(BPIV-3)、センダイウィルス (Sendai virus;マウスパラインフ ルェンザウィルス 1型とも呼ばれる)、およびサルパラインフルエンザウイルス 10型( SPIV-10)などが含まれる。本発明においてパラミクソウィルスは、最も好ましくはセン ダイウィルスである。これらのウィルスは、天然株、野生株、変異株、ラボ継代株、およ び人為的に構築された株などに由来してもよい。
[0042] マイナス鎖 RNAウィルスベクターはウィルスゲノム RNAに搭載遺伝子をアンチセンス にコードしている。ウィルスゲノム RNAとは、マイナス鎖 RNAウィルスのウィルス蛋白質 と共にリボヌクレオプロテイン (RNP)を形成し、該蛋白質によりゲノム中の遺伝子が発 現し、この RNAが複製されて娘 RNPが形成される機能を持つ RNAである。一般にマイ ナス鎖 RNAウィルスのゲノムは、 3'リーダー領域と 5'トレイラ一領域の間に、ウィルス遺 伝子がアンチセンス配列として並んだ構成をしている。各遺伝子の ORFの間には、転 写終結配列 (E配列) -介在配列 (I配列) -転写開始配列 (S配列)が存在し、これによ り各遺伝子の ORFをコードする RNAが別々のシストロンとして転写される。本発明のゥ ィルスに含まれるゲノム RNAは、該 RNAにコードされる遺伝子群の発現および RNA自 身の自律的な複製に必要なウィルス蛋白質である N (ヌクレオキヤプシド)、 P (ホスホ )、および L (ラージ)をアンチセンスにコードしている。また該 RNAは、ウィルス粒子の 形成に必要な M (マトリックス)蛋白質をコードしていてもよい。さら〖こ該 RNAは、ウィル ス粒子の感染に必要なエンベロープ蛋白質をコードしていてもよい。マイナス鎖 RNA ウィルスのエンベロープ蛋白質としては、細胞膜融合を起こす蛋白質である F (フュー ジョン)蛋白質および細胞への接着に必要な HN (へマダルチュン-ノイラミニダーゼ) 蛋白質が挙げられる。但し、ある種の細胞では感染に HN蛋白質は必要なく(
Markwell, M.A. et al., Proc. Natil. Acad. Sci. USA 82(4):978— 982 (1985))、 F蛋白質 のみで感染が成立する。また、 F蛋白質および Zまたは HN蛋白質以外のウィルスェ ンべロープ蛋白質をコードさせてもよい。
[0043] 例えばパラミクソウィルス亜科に属する各ウィルスにおける各遺伝子は、一般に次の ように表記される。一般に、 NP遺伝子は" N〃とも表記される。また、 HNはノイラミニダ ーゼ活性を有さない場合には Hと表記される。
レスピロウィルス属 NP P/C/V M F HN - L
ルブラウィルス属 NP P/V M F HN (SH) L
モービリウィルス属 NP P/C/V M F H - L 例えばセンダイウィルスの各遺伝子の塩基配列のデータベースのァクセッション番 号は、 NP遺伝子については M29343、 M30202, M30203, M30204, M51331,
M55565, M69046, X17218, P遺伝子については M30202, M30203, M30204, M55565, M69046, X00583, X17007, X17008, M遺伝子については D11446, K02742, M30202, M30203, M30204, M69046, U31956, X00584, X53056、 F遺伝子 については D00152, D11446, D17334, D17335, M30202, M30203, M30204, M69046, X00152, X02131、 HN遺伝子については D26475, M12397, M30202, M30203, M30204, M69046, X00586, X02808, X56131、 L遺伝子については
D00053, M30202, M30203, M30204, M69040, X00587, X58886を参照のこと。またそ の他のウィルスがコードするウィルス遺伝子を例示すれば、 N遺伝子につ!、ては、 CDV, AF014953; DMV, X75961; HPIV— 1, D01070; HPIV— 2, M55320; HPIV— 3, D10025; Mapuera, X85128; Mumps, D86172; MV, K01711; NDV, AF064091;
PDPR, X74443; PDV, X75717; RPV, X68311; SeV, X00087; SV5, M81442;および Tupaia, AF079780, P遺伝子については、 CDV, X51869; DMV, Z47758; HPIV- 1, M74081; HPIV— 3, X04721; HPIV— 4a, M55975; HPIV— 4b, M55976; Mumps,
D86173; MV, M89920; NDV, M20302; PDV, X75960; RPV, X68311; SeV, M30202; SV5, AF052755;および Tupaia, AF079780, C遺伝子については CDV, AF014953; DMV, Z47758; HPIV- 1. M74081; HPIV- 3, D00047; MV, AB016162; RPV, X68311;
SeV, AB005796;および Tupaia, AF079780, M遺伝子については CDV, M12669; DMV Z30087; HPIV- 1, S38067; HPIV- 2, M62734; HPIV- 3, D00130; HPIV- 4a, D10241; HPIV- 4b, D10242; Mumps, D86171; MV, AB012948; NDV, AF089819; PDPR, Z47977; PDV, X75717; RPV, M34018; SeV, U31956;および SV5, M32248, F遺伝子については CDV, M21849; DMV, AJ224704; HPN- 1. M22347; HPIV- 2, M60182; HPIV— 3. X05303, HPIV— 4a, D49821; HPIV— 4b, D49822; Mumps, D86169;
MV, AB003178; NDV, AF048763; PDPR, Z37017; PDV, AJ224706; RPV, M21514;
SeV, D17334;および SV5, AB021962, HN (Hまたは G)遺伝子については CDV, AF112189; DMV, AJ224705; HPIV- 1, U709498; HPIV- 2. D000865; HPIV- 3, AB012132; HPIV-4A, M34033; HPIV-4B, AB006954; Mumps, X99040; MV, K01711; NDV, AF204872; PDPR, Z81358; PDV, Z36979; RPV, AF132934; SeV, U06433;および SV-5, S76876が例示できる。但し、各ウィルスは複数の株が知られ ており、株の違いにより上記に例示した以外の配列力もなる遺伝子も存在する。
[0045] これらのウィルス蛋白質をコードする ORFおよび外来遺伝子の ORFは、ゲノム RNA にお 、て上記の E-I-S配列を介してアンチセンスに配置される。ゲノム RNAにお!/、て 最も 3'に近い ORFは、 3'リーダー領域と該 ORFとの間に S配列のみが必要であり、 Eお よび I配列は必要ない。またゲノム RNAにおいて最も 5'に近い ORFは、 5'トレイラー領 域と該 ORFとの間に E配列のみが必要であり、 Iおよび S配列は必要ない。また 2つの ORFは、例えば IRES等の配列を用いて同一シストロンとして転写させることも可能で ある。このような場合は、これら 2つの ORFの間には E-ト S配列は必要ない。例えば、 野生型のパラミクソウィルスの場合、典型的な RNAゲノムは、 3'リーダー領域に続き、 N、 P、 M、 F、 HN、および L蛋白質をアンチセンスにコードする 6つの ORFが順に並ん でおり、それに続いて 5'トレイラ一領域を他端に有する。本発明においてゲノム RNA は、ウィルス遺伝子の配置はこれに限定されるものではないが、好ましくは、野生型ゥ ィルスと同様に、 3'リーダー領域に続き、 N、 P、 M、 F、 HN、および L蛋白質をコードす る ORFが順に並び、それに続いて 5'トレイラ一領域が配置されることが好ましい。ある 種のウィルスにおいては、ウィルス遺伝子が異なっている力 そのような場合でも上 記と同様に各ウィルス遺伝子を野生型と同様の配置とすることが好ましい。一般に N 、 P、および L遺伝子を保持しているベクターは、細胞内で自律的に RNAゲノム力 遺 伝子が発現し、ゲノム RNAが複製される。さらに Fおよび HN遺伝子等のエンベロープ のスパイク蛋白質をコードする遺伝子、および M遺伝子の働きにより、感染性のウィル ス粒子が形成され、細胞外に放出される。従って、このようなベクターは伝播能を有 するウィルスベクターとなる。ベクターに外来遺伝子を搭載させる場合は、後述するよ うに、このゲノム中の蛋白質非コード領域に挿入すればよい。
[0046] また、マイナス鎖 RNAウィルスベクターは、野生型ウィルスが持つ遺伝子のいずれ かを欠損したものであってよい。例えば、ウィルスのエンベロープ構成蛋白質の遺伝 子を欠失させたウィルスは、安全性の高い遺伝子導入ベクターとして有用である。本 発明の方法に従えば、エンベロープ構成蛋白質の遺伝子を欠失させたウィルスを、 ワクシニアウィルスベクターを使うことなぐ高力価で回収することが可能である。ェン ベロープ構成蛋白質とは、ウィルスのエンベロープの成分となるウィルス蛋白質を言 い、エンベロープ表面に露出し細胞への接着または感染に機能するスパイク蛋白質 およびエンベロープの形成等に機能する裏打ち蛋白質が含まれる。具体的には、ェ ンべロープ構成蛋白質の遺伝子としては F、 HN、および Mが挙げられ、ウィルス種 によっては H、 Ml、および G等の遺伝子が含まれる。これらのエンベロープ構成蛋 白質の遺伝子の 1つまたは複数を欠失させたウィルスは、感染細胞において感染性 ウィルス粒子を形成できないため安全性が高い。このようなウィルスの再構成は、例 えば、欠損している遺伝子産物を外来的に供給することにより行うことができる。ある いは、全く別のエンベロープ蛋白質で、ウィルスの感染性を相補してもよい。このよう なエンベロープ蛋白質としては、 VSV- Gを例示することができる。すなわち、ェンベロ ープ構成蛋白質遺伝子を欠失させたウィルスの構築に用いられるエンベロープ蛋白 質遺伝子は、ウィルスの形成および感染性を保障する限り、欠失させた遺伝子に限 定されない。このようにして製造されたウィルスは、野生型ウィルスと同様に宿主細胞 に接着して細胞融合を起こす力 細胞に導入されたウィルスゲノムはウィルス遺伝子 に欠損を有するため、最初と同じような感染力を持つ娘ウィルス粒子は形成されない 。このため、一回限りの遺伝子導入力を持つ安全なウィルスベクターとして有用であ る(WO00/70055、 WO00/70070,および WO03/025570; Li, H.— 0. et al, J. Virol. 74(14) 6564-6569 (2000))。ゲノム力 欠損させる遺伝子としては、例えば F遺伝子、 HN遺伝子、 M遺伝子、またはその任意の組み合わせが挙げられる。例えば、 F遺伝 子が欠損した組み換えマイナス鎖 RNAウィルスゲノムを発現するプラスミドを、 F蛋白 質の発現ベクターならびに NP、 P、および L蛋白質の発現ベクターと共に宿主細胞に トランスフエクシヨンすることにより、組み換えウィルスの再構成を行うことができる(実 施例 4一 5参照)。また、例えば、 F遺伝子が染色体に組み込まれた宿主細胞を用い てウィルスを製造することもできる。この場合は、 F遺伝子は誘導発現できるように、上 述の組み換え酵素標的配列を用いて、組み換え酵素特異的に発現を誘導できるよう にしておくことが好ましい。ウィルス生産細胞で発現させるこれらの蛋白質群は、その アミノ酸配列はウィルス由来の配列そのままでなくとも、核酸の導入における活性が 天然型のそれと同等かそれ以上ならば、変異を導入したり、あるいは他のウィルスの 相同遺伝子で代用してもょ 、。
また、本発明においては、先にも述べたが、ウィルスゲノムが由来するウィルスのェ ンべロープ蛋白質とは異なる蛋白質をエンベロープに含む組み換えウィルスを製造 することもできる。例えば、ウィルス再構成の際に、ベースとなるウィルスのゲノムが元 来コードするエンベロープ蛋白質以外のエンベロープ蛋白質を細胞で発現させるこ とにより、所望のエンベロープ蛋白質を有する組み換えウィルスを製造することができ る。このような蛋白質に特に制限はない。細胞への感染能を与える所望の蛋白質が 用いられる。例えば、他のウィルスのエンベロープ蛋白質、例えば水疱性口内炎ウイ ルス(Vesicular stomatitis virus; VSV)の G蛋白質(VSV— G)を挙げることができる。 VSV-G蛋白質は、任意の VSV株に由来するものであってよい。例えば Indiana血清 型株(J. Virology 39: 519-528 (1981))由来の VSV- G蛋白を用いることができる力 こ れに限定されない。また本発明のベクターは、他のウィルス由来のエンベロープ蛋白 質を任意に組み合わせて含むことができる。例えば、このような蛋白質として、ヒト細 胞に感染するウィルスに由来するエンベロープ蛋白質が好適である。このような蛋白 質としては、特に制限はないが、レトロウイルスのアンフォト口ピックエンベロープ蛋白 質などが挙げられる。レトロウイルスのアンフォト口ピックエンベロープ蛋白質としては 、例えばマウス白血病ウィルス (MuLV) 4070A株由来のエンベロープ蛋白質を用い 得る。また、 MuMLV 10A1由来のエンベロープ蛋白質を用いることもできる(例えば pCL-lOAl(Imgenex) (Naviaux, R. K. et al, J. Virol. 70: 5701-5705 (1996))。また、 ヘルぺスウィルス科の蛋白質としては、例えば単純へルぺスウィルスの gB、 gD、 gH、 gp85蛋白質、 EBウィルスの gp350、 gp220蛋白質などが挙げられる。へパドナウィルス 科の蛋白質としては、 B型肝炎ウィルスの S蛋白質などが挙げられる。これらの蛋白質 は、細胞外ドメインを F蛋白質または HN蛋白質の細胞内ドメインと結合させた融合蛋 白質として用いてもょ 、。このように本発明にお 、て用いられるウィルスベクターには 、 VSV-G蛋白質などのように、ゲノムが由来するウィルス以外のウィルスに由来する エンベロープ蛋白質を含むシユードタイプウィルスベクターが含まれる。ウィルスのゲ ノム RNAにはこれらのエンベロープ蛋白質をゲノムにコードされないように設計すれ ば、ウィルス粒子が細胞に感染した後は、ウィルスベクター力 この蛋白質が発現さ れることはない。
[0048] また、本発明においては、例えば、エンベロープ表面に特定の細胞に接着しうるよ うな接着因子、リガンド、受容体等の蛋白質、抗体またはその断片、あるいはこれらの 蛋白質を細胞外領域に有し、マイナス鎖 RNAウィルスのエンベロープ蛋白質由来の ポリペプチドを細胞内領域に有するキメラ蛋白質などを含むウィルスを製造することも できる。これにより、ウィルスベクターの感染の特異性を制御し得る。これらはウィルス ゲノムにコードされていてもよいし、ウィルスの再構成時に、ウィルスゲノム以外の遺 伝子 (例えば別の発現ベクターまたは宿主染色体上などにある遺伝子)からの発現 により供給されてもよい。
[0049] またウィルスベクターは、例えばウィルス蛋白質による免疫原性を低下させるために 、または RNAの転写効率または複製効率を高めるために、ウィルスに含まれる任意の ウィルス遺伝子が野生型遺伝子カゝら改変されていてよい。具体的には、例えば複製 因子である N、 P、および L遺伝子の中の少なくとも一つを改変し、転写または複製の 機能を高めることが考えられる。また、エンベロープ蛋白質の 1つである HN蛋白質は 、赤血球凝集素であるへマダルチュン (hemagglutinin)活性とノイラミニダーゼ( neuraminidase)活性との両者の活性を有するが、例えば前者の活性を弱めることが できれば、血液中でのウィルスの安定性を向上させることが可能であろうし、例えば 後者の活性を改変することにより、感染能を調節することも可能である。また、 F蛋白 質を改変することにより膜融合能を調節することもできる。また、例えば、細胞表面の 抗原分子となりうる F蛋白質および/または HN蛋白質の抗原提示ェピトープ等を解析 し、これを利用してこれらの蛋白質に関する抗原提示能を弱めた組み換えウィルスべ クタ一を作製することちできる。
[0050] またマイナス鎖 RNAウィルスベクターは、アクセサリー遺伝子が欠損したものであつ てよい。例えば SeVのアクセサリー遺伝子の 1つである V遺伝子をノックアウトすること により、培養細胞における遺伝子発現および複製は障害されることなぐマウス等の 宿主に対する SeVの病原性が顕著に減少する(Kato, A. et al., 1997, J. Virol. 71:7266-7272; Kato, A. et al" 1997, EMBO J. 16:578-587; Curran, J. et al" WO01/04272, EP1067179) oこのような弱毒化ベクターは、 in vivoまたは ex vivoにお ける毒性のない遺伝子導入用ウィルスベクターとして特に有用である。
[0051] マイナス鎖 RNAウィルスは遺伝子導入べクタ一として優れており、宿主細胞の細胞 質でのみ転写 ·複製を行 、、 DNAフェーズを持たな 、ため染色体への組み込み( integration) ί¾起こらな ヽ (Lamb, R.A. and Kolakofsky, D., Paramyxoviriaae: Tne viruses and their replication. In: Fields BN, Knipe DM, Howley PM, (eds). Fields of virology. Vol. 2. Lippincott - Raven Publishers: Philadelphia, 199b, pp. 11 / 7-1204) 。このため染色体異常による癌化および不死化などの安全面における問題が生じな い。マイナス鎖 RNAウィルスのこの特徴は、ベクター化した時の安全性に大きく寄与 している。異種遺伝子発現の結果では、例えばセンダイウィルス (SeV)を連続多代継 代しても殆ど塩基の変異が認められず、ゲノムの安定性が高ぐ挿入異種遺伝子を 長期間に渡って安定に発現する事が示されている(Yu, D. et al., Genes Cells 2, 457-466 (1997)) oまた、力プシド構造蛋白質を持たないことによる導入遺伝子のサイ ズまたはパッケージングの柔軟性 (flexibility)など性質上のメリットがある。このように、 マイナス鎖 RNAウィルスベクターは、ヒトの遺伝子治療のための高効率ベクターの新 しいクラスとなることが示唆される。伝播能を有する SeVベクターは、外来遺伝子を少 なくとも 5kbまで導入可能であり、転写ユニットを付加することによって 2種類以上の遺 伝子を同時に発現する事も可能である。
[0052] 特にセンダイウィルスは、齧歯類にとっては病原性で肺炎を生じることが知られてい る力 人に対しては病原性がない。これはまた、野生型センダイウィルスの経鼻的投 与によって非ヒト霊長類において重篤な有害作用を示さないというこれまでの報告に よっても支持されている(Hurwitz, J.L. et al., Vaccine 15: 533-540, 1997; Bitzer, M. et al" J. Gene Med,.5: 543-553, 2003; Slobod, K.S. et al" Vaccine 22: 3182-3186, 2004) oセンダイウィルスのこれらの特徴は、センダイウィルスベクターが人の治療へ 応用出来ることを示唆するものである。
[0053] ウィルスベクターは、ゲノム RNA中に所望の外来遺伝子をコードし得る。外来遺伝 子を含む糸且換えウィルスベクターは、上記のウィルスベクターのゲノムに外来遺伝子 を挿入すること〖こよって得られる。外来遺伝子の挿入位置は、例えばウィルスゲノム の蛋白質非コード領域の所望の部位を選択することができ、例えばゲノム RNAの 3'リ ーダー領域と 3'端に最も近いウィルス蛋白質 ORFとの間、各ウィルス蛋白質 ORFの 間、および/または 5'端に最も近いウィルス蛋白質 ORFと 5'トレイラ一領域の間に挿入 することができる。また、 M、 Fまたは HN遺伝子などのエンベロープ構成蛋白質遺伝 子を欠失するゲノムでは、その欠失領域に外来遺伝子をコードする核酸を挿入する ことができる。ノ ラミクソウィルスに外来遺伝子を導入する場合は、ゲノムへの挿入断 片のポリヌクレオチドの鎖長が 6の倍数となるように挿入することが望まし 、 (Journal of Virology, Vol. 67, No. 8, 4822-4830, 1993)。挿入した外来遺伝子とウィルス ORFと の間には、 E-ト S配列が構成されるようにする。 E-ト S配列を介して 2またはそれ以上 の外来遺伝子をタンデムに並べて挿入することができる。
[0054] 外来遺伝子を容易に挿入できるようにするために、ゲノム RNAをコードする cDNA中 に外来遺伝子を挿入するためのクローユングサイトを設計することができる。その部 位は、例えばゲノムの蛋白質非コード領域の所望の位置であってよぐ具体的には 3' リーダー領域と 3'に最も近いウィルス蛋白質 ORFとの間、各ウィルス蛋白質 ORFの間 、および/または 5'に最も近いウィルス蛋白質 ORFと 5'トレイラ一領域の間に挿入する ことができる。エンベロープ構成蛋白質遺伝子を欠失するゲノムでは、その欠失領域 にクロー-ングサイトを設計することができる。クロー-ングサイトは、例えば制限酵素 の認識配列とすることができる。クローユングサイトは、複数の制限酵素認識配列を 有する、いわゆるマルチクローユングサイトとしてもよい。複数の外来遺伝子をゲノム 中の別々の位置に挿入できるように、クローユングサイトは、ゲノム中の複数箇所に存 在してちょい。
[0055] ベクターに搭載する外来遺伝子の発現レベルは、その遺伝子の上流 (マイナス鎖( ネガティブ鎖)の 3'側)に付加する転写開始配列の種類により調節することができる( WO01/18223) oまた、ゲノム上の外来遺伝子の挿入位置によって制御することがで き、マイナス鎖の 3'の近くに挿入するほど発現レベルが高ぐ 5'の近くに挿入するほど 発現レベルが低くなる。このように、外来遺伝子の挿入位置は、該遺伝子の所望の発 現量を得るために、また前後のウィルス蛋白質をコードする遺伝子との組み合わせが 最適となる様に適宜調節することができる。一般に、外来遺伝子の高い発現が得られ ることが有利と考えられるため、外来遺伝子は、効率の高い転写開始配列に連結し、 マイナス鎖ゲノムの 3'端近くに挿入することが好ましい。具体的には、 3'リーダー領域 と 3'に最も近いウィルス蛋白質 ORFとの間に挿入される。あるいは、 3'に一番近いウイ ルス蛋白質遺伝子と 2番目のウィルス蛋白質遺伝子の ORFの間、または 3'から 2番目 と 3番目のウィルス蛋白質遺伝子の間に挿入してもよい。野生型パラミクソウィルスに おいては、ゲノムの 3'に最も近いウィルス蛋白質遺伝子は N遺伝子であり、 2番目の 遺伝子は P遺伝子、 3番目の遺伝子は M遺伝子である。逆に、導入遺伝子の高発現 が望ましくな 、場合は、例えば外来遺伝子の挿入位置をマイナス鎖ゲノムのなるべく 5'側に設定したり、転写開始配列を効率の低いものにするなどして、ウィルスベクター 力 の発現レベルを低く抑えることで適切な効果が得られるようにすることも可能であ る。
[0056] 外来遺伝子をコードする核酸をゲノムに挿入するときに付加する S配列としては、例 えばマイナス鎖 RNAウィルスの所望の S配列を用いることができる力 センダイウィル スであれば、 3'- UCCCWVUUWC- 5' (W= Aまたは C; V= A, C,または G) (配列番号 : 11)の配列を好適に用いることができる。特に 3'-UCCCAGUUUC-5' (配列番号: 12 )、 3'- UCCCACUUAC- 5' (配列番号: 13)、および 3'- UCCCACUUUC- 5' (配列番号 : 14)が好ましい。これらの配列は、プラス鎖をコードする DNA配列で表すとそれぞれ 5'- AGGGTCAAAG- 3' (配列番号: 15)、 5'- AGGGTGAATG- 3' (配列番号: 16)、およ び 5'-AGGGTGAAAG-3' (配列番号: 17)である。センダイウィルスベクターの E配列 としては、例えば 3'-AUUCUUUUU-5' (配列番号: 18) (プラス鎖をコードする DNAで は 5'-TAAGAAAAA-3' (配列番号: 19) )が好ましい。 I配列は、例えば任意の 3塩基 であってよぐ具体的には 3'- GAA- 5' (プラス鎖 DNAでは 5'- CTT- 3,)を用いればよ い。
[0057] マイナス鎖 RNAウィルスベクターを製造するには、哺乳動物細胞において、マイナ ス鎖 RNAウィルスのゲノム RNAを含む RNPの再構成に必要なウィルス蛋白質、すなわ ち N、 P、および L蛋白質の発現と、マイナス鎖 RNAウィルスのゲノム RNAをコードする cDNAの転写とを、 CAプロモーターにより誘導する。転写によりマイナス鎖ゲノム (す なわちウィルスゲノムと同じアンチセンス鎖)を生成させてもよぐあるいはプラス鎖 (ァ ンチゲノム。ゲノム RNAの相補鎖。)を生成させても、ウィルス RNPを再構成することが できる。ベクターの再構成効率を高めるには、好ましくはプラス鎖を生成させる。 RNA 末端は、天然のウィルスゲノムと同様に 3'リーダー配列と 5'トレイラ一配列の末端をな るべく正確に反映させることが好ましい。このためには、上述のように、転写産物の 5' 端に自己切断型のリボザィムを付加しておき、リボザィムによりマイナス鎖 RNAウィル スゲノムの末端を正確に切り出させることにより実現させることができる。あるいは、他 の態様においては、転写産物の 5'端を正確に制御するために、転写開始部位として ノ クテリオファージの RNAポリメラーゼ認識配列を利用し、該 RNAポリメラーゼを細胞 内で発現させる。
[0058] 転写産物の 3'端を制御するには、例えば転写産物の 3'端に自己切断型リボザィム をコードさせておき、このリボザィムにより正確に 3'端が切り出されるようにすることが できる(Hasan, M. K. et al" J. Gen. Virol. 78: 2813—2820, 1997、 Kato, A. et al" 1997, EMBO J. 16: 578-587及び Yu, D. et al" 1997, Genes Cells 2: 457-466)。リ ボザィムとしては、デルタ肝炎ウィルスのアンチゲノム鎖(antigenomic strand)由来の 自己開裂リボザィムが使用できる。
[0059] 例えば組み換えセンダイウィルスは、本明細書の開示および Hasan, M. K. et al., J.
Gen. Virol. 78: 2813-2820, 1997、 Kato, A. et al., 1997, EMBO J. 16: 578-587及 び Yu, D. et al., 1997, Genes Cells 2: 457-466の記載等に準じて、次のようにして構 築することができる。
外来遺伝子を組み込む場合は、まず、 目的の外来遺伝子の cDNA塩基配列を含む DNA試料を用意する。 DNA試料は、 25ng/micro-l以上の濃度で電気泳動的に単一 のプラスミドと確認できることが好ましい。以下、 Notl部位を利用してウィルスゲノム RNAをコードする DNAに外来遺伝子を挿入する場合を例にとって説明する。 目的と する cDNA塩基配列の中に Notl認識部位が含まれる場合は、部位特異的変異導入 法などを用いて、コードするアミノ酸配列を変化させないように塩基配列を改変し、 Notl部位を予め除去しておくことが好ましい。この試料から目的の遺伝子断片を PCR により増幅し回収する。 2つのプライマーの 5'部分に Notl部位を付加しておくことによ り、増幅された断片の両端を Notl部位とする。ウィルスゲノム上に挿入された後の外 来遺伝子の ORFとその両側のウィルス遺伝子の ORFとの間に E-ト S配列が配置され るように、プライマー中に E-ト S配列を含めるようにする。合成 DNAの長さは、付加し た E-I-S配列を含む最終的な挿入断片の鎖長が 6の倍数になるように塩基数を設計 する(いわゆる「6のルール(rule of six) J; Kolakofski, D. et al., J. Virol. 72:891-899, 1998; Calain, P. and Roux, L., J. Virol. 67:4822-4830, 1993; Calain, P. and Roux, L., J. Virol. 67: 4822-4830, 1993)。 E- 1- S配列は、例えば挿入断片のオリゴ DNAの 3'側にセンダイウィルスのマイナス鎖の S配列、 I配列、および E配列、例えばそれぞれ 5'- CTTTCACCCT- 3' (配列番号: 20)、 5し AAG- 3'、および
5 ' -TTTTTCTTACTACGG-3 ' (配列番号: 21)を用いることができる。
[0060] PCRは、 Taqポリメラーゼまたはその他の DNAポリメラーゼを用いる通常の方法を用 いることができる。増幅した目的断片は Notlで消化した後、 pBluescript等のプラスミド ベクターの Notl部位に挿入する。得られた PCR産物の塩基配列をシークェンサ一で 確認し、正しい配列のプラスミドを選択する。このプラスミドから挿入断片を Notlで切り 出し、ゲノム cDNAを含むプラスミドの Notl部位にクローユングする。またプラスミドべク ターを介さずにゲノム cDNAの Notl部位に直接挿入し、組み換えセンダイウィルス cDNAを得ることも可能である。
[0061] 例えば、組み換えセンダイウィルスゲノム cDNAであれば、文献記載の方法に準じ て構築することができる(Yu, D. et al., Genes Cells 2: 457-466, 1997; Hasan, M. K. et al., J. Gen. Virol. 78: 2813-2820, 1997) 0例えば、外来遺伝子のセンス鎖の 3'側 に E-I-S配列が連結した 2本鎖 DNAを合成する。これをゲノムのプラス鎖をコードする cDNAの所望の S配列のすぐ 3'側に挿入する。例えばプラス鎖ゲノムをコードする cDNAにおいて、所望のウィルス蛋白質遺伝子のコード配列とこれを転写する S配列 の間に予め制限酵素部位 (例えば Notl部位)を作っておき、ここに外来遺伝子 - E-I-S配列をコードする DNAを制限酵素部位を利用して挿入することができる(
Tokusumi, T. et al. (2002) Virus Res 86(1-2), 33-8)。
[0062] このようにして作製したウィルスゲノム RNAをコードする DNAを、 CAプロモーターに よって、上記のウィルス蛋白質 (L、 P、および N)存在下で細胞内で転写させることに より、効率的にウィルスベクターを再構成することができる。本発明の方法は、様々な 組み換えウィルスの再構成方法に適用することができる(W097/16539;
W097/16538; WO03/025570; Durbin, A. P. et al., 1997, Virology 235: 323-332; Whelan, S. P. et al" 1995, Proc. Natl. Acad. Sci. USA 92: 8388—8392; Schnell. M. J. et al., 1994, EMBO J. 13: 4195—4203; Radecke, F. et al., 1995, EMBO J. 14: 5773-5784; Lawson, N. D. et al" Proc. Natl. Acad. Sci. USA 92: 4477-4481;
Garcin, D. et al" 1995, EMBO J. 14: 6087-6094; Kato, A. et al" 1996, Genes Cells 1: 569-579; Baron, M. D. and Barrett, T., 1997, J. Virol. 71: 1265-1271; Bridgen, A. and Elliott, R. M., 1996, Proc. Natl. Acad. Sci. USA 93: 15400-15404)。これらの 方法に本発明の方法を適用することにより、ノ ラインフルエンザ、水疱性口内炎ウイ ルス、狂犬病ウィルス、麻疹ウィルス、リンダ一ペストウィルス、センダイウィルスなどを 含むマイナス鎖 RNAウィルスを DNA力も高 、効率で再構成させることができる。ウイ ルスゲノムをコードする DNAにおいて、 F遺伝子、 HN遺伝子、および/または M遺伝 子等のエンベロープ構成蛋白質遺伝子を欠失させた場合には、そのままでは感染 性のウィルス粒子を形成しないが、宿主細胞に、これら欠失させた遺伝子および/ま たは他のウィルスのエンベロープ蛋白質をコードする遺伝子などを別途、細胞に導 入し発現させることにより、感染性のウィルス粒子を形成させることが可能である( Hirata, T. et al" 2002, J. Virol. Methods, 104:125—133; Inoue, M. et al., 2003, J. Virol. 77:6419-6429) oウィルス生産細胞においてエンベロープ構成蛋白質を発現さ せる場合は、これらのエンベロープ構成蛋白質も CAプロモーターにより発現させるこ とが好ましい。このためには、 CAプロモーターの下流にエンベロープ構成蛋白質をコ ードする DNAを連結する。これにより、エンベロープ構成蛋白質の発現を CAプロモ 一ターにより直接発現することができる。
具体的な方法の 1つとしては、例えば一過的にウィルス製造を行う方法が挙げられ る。この方法の 1つは、 CAプロモーターの制御下にリボザィムとマイナス鎖 RNAウィル スのゲノム RNAまたはその相補鎖とをコードする DNAを転写するベクターを、マイナス 鎖 RNAウィルスのゲノム RNAを含む RNPを構成するウィルス蛋白質を CAプロモータ 一の制御下で発現するベクターと共に哺乳動物細胞にトランスフ クシヨンする方法 である。 RNPを構成するウィルス蛋白質の存在下で、 CAプロモーターからマイナス鎖 RNAウィルスゲノム RNAまたはアンチゲノム RNAが転写されることにより、機能的 RNP が形成されてウィルスが再構築される。細胞にぉ ヽて生産されたマイナス鎖 RNAウイ ルスまたはその増殖産物を回収することにより、マイナス鎖 RNAウィルスベクターを得 ることがでさる。
[0064] また、別の方法においては、 CAプロモーターの制御下にバタテリオファージの RNA ポリメラーゼをコードする DNAを含むベクターと、該 RNAポリメラーゼの認識配列の下 流に連結されたマイナス鎖 RNAウィルスのゲノム RNAまたはその相補鎖をコードする DNAを含むベクターを、マイナス鎖 RNAウィルスのゲノム RNAを含む RNPを構成する ウィルス蛋白質 (N、 L、および P)を CAプロモーターの制御下で発現するベクターと共 に哺乳動物細胞にトランスフエクシヨンする。 RNPを構成するウィルス蛋白質の存在下 で、 CAプロモーターから RNAポリメラーゼが発現し、これによりマイナス鎖 RNAウィル スゲノム RNAまたはアンチゲノム RNAが転写されることにより、機能的 RNPが形成され てウィルスが再構築される。細胞にぉ 、て生産されたマイナス鎖 RNAウィルスまたは その増殖産物を回収することにより、マイナス鎖 RNAウィルスベクターを得ることがで きる。
[0065] トランスフエクシヨンに用いるベクターとしては、例えばプラスミドが好適である。各プ ラスミドは、それぞれ一種類の蛋白質が発現するようにしてもよいし、複数の蛋白質を 1つのプラスミドから発現させてもよい。このためには、 1つのプラスミドにプロモーター を複数持たせるか、あるいは IRES等の利用して 1つのプロモーター力も複数の蛋白 質を生成させることもできる。例えば IRESなどの非プロモーター機構により 1つのプロ モーターから 2つ以上の蛋白質を発現させる場合は、該プロモーターが CAプロモー ターであれば、これらの蛋白質は CAプロモーター力 発現されるものとみなされる。 しかしマイナス鎖 RNAウィルスのゲノム RNAを含む RNPを構成するウィルス蛋白質(L 、 P、および N)は少なくとも、それぞれが別々の CAプロモーターカゝら発現が駆動され ることが好ましい。以上のようなトランスフエクシヨンによる一過的なウィルス生産は、特 別な細胞を用いなくても迅速にウィルスを製造できる点で優れて 、る。
[0066] 細胞への核酸のトランスフエクシヨンには、例えばリン酸カルシウム法(Graham, F. し. and Van Der Eb, J., 1973, Virology 52: 456; Wigler, M. and Silverstein, S., 1977, Cell 11: 223)、種々のトランスフエクシヨン試薬を用いた方法、あるいは電気穿孔法 等を用いることができる。リン酸カルシウム法については、例えば Chenおよび
Okayama(Chen, C. and Okayama, H., 1987, Mol. Cell. Biol. 7: 2745)に従って、 2— 4% CO、 35°C、 15— 24時間、沈殿混液中の DNA濃度 20— 30 micro- g/mlの条件
2
で実施することができる。トランスフエクシヨン試薬については、 DEAE-デキストラン( Sigma #D-9885 M.W. 5 X 105 )、 DOTMA (Roche)、 Superfect (QIAGEN #301305)、 DOTAP、 DOPE, DOSPER (Roche #1811169)、 TransIT—LTl (Mirus, Product No. MIR 2300)などを用いることができる。トランスフエクシヨン試薬と DNAとの複合体がェ ンドソーム中で分解されてしまうのを防ぐため、クロ口キンをカ卩えることができる(Calos, M. P., 1983, Proc. Natl. Acad. Sci. USA 80: 3015)。また、電気穿孔法は、細胞選 択性がないという点で汎用性が高ぐパルス電流の持続時間、パルスの形、電界 (電 極間のギャップ、電圧)の強さ、バッファーの導電率、 DNA濃度、細胞密度を最適化 して適用される。ベクター再構成のための DNAの細胞への導入には、操作が簡便で 多量の細胞を用いて多数の検体を検討することができる点で、トランスフエクシヨン試 薬を用いる方法が適している。好適には Superfect Transfection Ragent (QIAGEN, し at No. 301305)、 DOSPER Liposomal Transfection Reagent (Roche, Cat No.
1811169)、または TransIT-LTl (Mirus, Product No. MIR 2300)等が用いられるが、 これらに制限されない。
本発明のウィルス製造方法の他の様態では、ウィルスの生成に必要な蛋白質およ び/または RNAを、ウィルス生産細胞の染色体から発現させる。この方法の具体例と しては、 CAプロモーターからウィルスゲノム RNAまたはその相補鎖を転写する DNA、 あるいは、 CAプロモータ力 バタテリオファージ由来の RNAポリメラーゼを発現する DNAが、哺乳動物細胞の染色体に組み込まれた細胞株を用いる方法が挙げられる 。形質転換細胞のクローニングにより、発現量の高い細胞を選択することで、より高い 力価のウィルスを生産する能力を持つ細胞を調製することができる。このため、高力 価のウィルスを安定して製造するために有用である。これらの細胞株においては、普 段は CAプロモーターからウィルスゲノム RNAや RNAポリメラーゼを発現しな!、が、刺 激に応答して発現を誘導できるようにすることも好適である。上記の ΙοχΡや FRTを用 いて、誘導的に CAプロモーター力も遺伝子を発現させることができる。ウィルス製造 時に Creリコンビナーゼや FLPリコンビナーゼを発現させ、 CAプロモーターからの発 現を誘導する。
[0068] この細胞で、マイナス鎖 RNAウィルスのゲノム RNAを含む RNPを構成するウィルス蛋 白質 (N、 L、および P)の存在下、ウィルスゲノム RNAまたはその相補鎖を転写させる ことにより、マイナス鎖 RNAウィルスの再構築を行うことができる。 RNP構成蛋白質は、 それらをコードするプラスミドベクターのトランスフエクシヨンにより供給すればよい。
[0069] トランスフエクシヨンに用いる各プラスミドの量を例示すれば、マイナス鎖 RNAウィル スのゲノムをリボザィムで切り出す方法(例えば HamRbz法)においては、 NP発現プラ スミドを 0.1 μ g— 2 μ g (より好ましくは 0.3 μ g)、 P発現プラスミドを 0.1 g— 2 μ g (より好 ましくは 0.5 μ g)、 L発現プラスミドを 0.5 μ g— 4.5 μ g (より好ましくは 2.0 μ g)、 F発現プラ スミドを 0.1 μ g— 5 μ g (より好ましくは 0.5 μ g)、ウィルスゲノム RNA (プラス鎖またはマイ ナス鎖)をコードするプラスミドを 0.5 g— 5 g (より好ましくは 5 g)用いるとよい。例 えば SeVの製造のためには、実施例に記載の各プラスミドを以下の量でトランスフエク シヨンに使用するとよい。
pCAGGS-NP 0.1 μ g— 2 μ g (より好ましくは 0.3 μ g)
pCAGGS-P 0.1 μ g— 2 μ g (より好ましくは 0.5 μ g)
pCAGGS- L(TDK) 0.5 μ g— 4.5 μ g (より好ましくは 2.0 μ g)
pCAGGS- F5R 0.1 μ g— 5 μ g (より好ましくは 0.5 μ g)
pCAGGS- SeV 0.5 μ g— 5 μ g (より好ましくは 5 μ g)
(pCAGGS- SeV/ Δ F- GFP)
マイナス鎖 RNAウィルスのゲノムをバタテリオファージの RNAポリメラーゼを介して転 写させる方法においては、 NP発現プラスミドを 0.1 μ g— 2 μ g (より好ましくは 0.5 μ g)、 P 発現プラスミドを 0.1 μ g— 2 μ g (より好ましくは 0.5 μ g)、 L発現プラスミドを 0.5 μ g— 4.5 μ g (より好ましくは 2.0 g)、 F発現プラスミドを 0.1 μ g— 5 g (より好ましくは 0.5 g)、ゥ ィルスゲノム RNA (プラス鎖またはマイナス鎖)をコードするプラスミドを 0.5 μ g— 5 μ g( より好ましくは 5 g)用いるとよい。例えば SeVの製造のためには、実施例に記載の各 プラスミドを以下の量でトランスフエクシヨンに使用するとよい。 pCAGGS-NP 0.1 g— 2 g (より好ましくは 0.5 μ g)
pCAGGS-P 0.1 g— 2 g (より好ましくは 0.5 μ g)
pCAGGS- L(TDK) 0.5 μ g— 4.5 μ g (より好ましくは 2.0 μ g)
pCAGGS— F5R 0.1 μ g— 5 μ g (より好ましくは 0.5 μ g)
pCAGGS-SeV 0.5 μ g— 5 μ g (より好ましくは 5 μ g)
(pCAGGS- SeV/ Δ F- GFP)
トランスフエクシヨン力 48— 72時間程度培養後、細胞を回収し、凍結融解を 3回程 度繰り返して細胞を破砕した後、 RNPを含む破砕物を細胞に再度トランスフエクシヨン して培養する。または、培養上清を回収し、細胞の培養液に添加して感染させ培養 する。トランスフエクシヨンは、例えばリポフエクトァミンまたはポリカチォニックリポソ一 ムなどと共に複合体を形成させて細胞に導入することが可能である。具体的には、種 々のトランスフエクシヨン試薬が利用できる。例えば、 DOTMA (Roche) , Superfect ( QIAGEN #301305)、 DOTAPゝ DOPE, DOSPER (Roche #1811169)、 TransIT—LTl (Mirus, Product No. MIR 2300)などが挙げられる。エンドソーム中での分解を防ぐた め、クロ口キンを加えることもできる(Calos, M. P., 1983, Proc. Natl. Acad. Sci. USA 80: 3015)。 RNPが導入された細胞では、 RNPからのウィルス遺伝子の発現および RNPの複製の過程が進行しウィルスが増幅する。得られたウィルス溶液 (培養上清) は、適宜希釈して再増幅を繰り返すことにより、混入し得る煩雑物を取り除くことがで きる。しかし本発明の方法は、 T7 RNAポリメラーゼを発現するワクシニアウィルスを用 Vヽな 、ため、ワクシニアウィルスを除去するために再増幅を繰り返す必要はな!/、点で 優れている。得られたベクターは- 80°Cで保存することができる。エンベロープ構成蛋 白質をコードする遺伝子を欠損した伝播能を持たないウィルスを再構成させるには、 エンベロープ構成蛋白質を発現する細胞 (ヘルパー細胞)をトランスフエクシヨンに使 用するか、またはエンベロープ構成蛋白質発現プラスミドを共にトランスフエクシヨン すればよい。また、トランスフエクシヨンを行った細胞にエンベロープ構成蛋白質を発 現する細胞を重層して培養することによってエンベロープ構成蛋白質遺伝子欠損型 ウィルスを増幅することもできる(国際公開番号 WO00/70055および WO00/70070 参照)。 [0071] エンベロープ構成蛋白質遺伝子を欠損するマイナス鎖 RNAウィルスベクターを構 築するために用いるヘルパー細胞は、例えば欠損させたエンベロープ構成蛋白質あ るいは別のエンベロープ蛋白質(例えば VSV-Gやアンフォト口ピック env等)をコード する遺伝子をトランスフエクシヨンすることにより作製することができる (WO00/70055 および WO00/70070 ; Hasan, M. K. et al, 1997, J. General Virology 78: 2813-2820 参照)。誘導発現を可能にするためには、例えば Cre/loxP誘導型発現プラスミド pCALNdlw(Arai, T. et al., J. Virology 72, 1998, pi 115- 1121)等の組み換え酵素標 的配列を持つベクターにエンベロープ蛋白質遺伝子を み込む。細胞は、例えば SeVの増殖によく用いられているサル腎臓由来細胞株 LLC- MK2細胞 (ATCC CCL-7)を用いることができる。 LLC- MK2細胞は、 10%の熱処理した非動化ゥシ胎 児血清 (FBS)、ペニシリン Gナトリウム 50単位/ ml、およびストレプトマイシン 50 micro-g/mlを添カ卩した MEMで 37°C、 5% COで培養する。 SeV-F遺伝子産物は細胞
2
傷害性を有するため、 Cre DNAリコンビナーゼによりエンベロープ蛋白質遺伝子産 物を誘導発現されるように設計された上記プラスミド pCALNdLw/Fを、リン酸カルシゥ ム法(mammalian transfection kit (Stratagene))〖こより、周知のプロトコ一ノレに従って LLC-MK2細胞に遺伝子導入を行う。限界希釈により細胞をクローユングした後、細 胞を拡大培養し、導入遺伝子の高発現細胞株の選別を行う。このためには、例えば アデノウイルス AxCANCreを斉藤らの方法(Saito et al., Nucl. Acids Res. 23:
3816-3821 (1995); Arai, T.et al" J. Virol 72,1115-1121 (1998))により例えば moi=3 一 5で感染させ、ウェスタンブロッテイングまたはウィルス生産により、細胞を選択する
[0072] スノイク蛋白質である F遺伝子欠失または HN遺伝子欠失は、 SeVベクターを非伝播 性にするために、また、エンベロープの裏打ち蛋白質である M遺伝子欠失は感染細 胞からの粒子形成を不能にするために有効である。また、 F、 HN、および Mの少なくと も 2つの遺伝子の任意の組み合わせを欠損するベクターは、より安全性が保障される 。例えば、 Mおよび F遺伝子両欠失 SeV (SeV/ A M A F)は、非伝播性でかつ粒子形 成を欠くベクターとなる。 SeV/ Δ Μ Δ Fは in vitroおよび in vivoで高レベルの感染性お よび遺伝子発現能を保っており、そのレベルは野生型 SeVベクターのレベルと同様で ある。 SeV/ A M A Fのこれらの特徴は、 SeVの安全性の向上にさらに寄与するものと 考えられる。
[0073] 回収されたウィルスの力価は、例えば CIU (Cell Infecting Unit)測定または赤血球 凝集活性 (HA)の測定することにより決定することができる (WOOO/70070; Kato, A. et al., 199り, Genes Cells 1: 569—579; Yonemitsu, Y. & Kaneda, Y., Hemaggulutinating virus of Japan— liposome— mediated gene delivery to vascular cells. Ed. by Baker AH. Molecular Biology of Vascular Diseases. Method in Molecular Medicine: Humana Press: pp. 295-306, 1999)。また、 GFP (緑色蛍光蛋白質)などのマーカー遺伝子を 搭載したベクターについては、マーカーを指標に直接的に感染細胞をカウントするこ とにより力価を定量することができる(例えば GFP-CIUとして)。このようにして測定し た力価は、 CIUと同等に扱うことができる(WOOO/70070)。
[0074] ウィルスが再構成する限り、再構成に用いる宿主細胞は特に制限されな 、。例えば 、センダイウィルスベクター等の再構成においては、サル腎由来の LLC- MK2細胞お よび CV-1細胞(例えば ATCC CCL-70)、ハムスター腎由来の BHK細胞(例えば ATCC CCL-10)などの培養細胞、ヒト由来細胞等を使うことができる。また、大量に センダイウィルスベクターを得るために、上記の宿主力 得られたウィルスベクターを 発育鶏卵に感染させ、ベクターを増幅することができる。鶏卵を使ったウィルスベクタ 一の製造方法は既に開発されている(中西ら編, (1993),「神経科学研究の先端技術 プロトコール III,分子神経細胞生理学」,厚生社,大阪, ρρ.153-172)。具体的には、 例えば、受精卵を培養器に入れ 9一 12日間 37— 38°Cで培養し、胚を成長させる。ゥ ィルスベクターを尿膜腔へ接種し、数日間(例えば 3日間)卵を培養してウィルスべク ターを増殖させる。培養期間等の条件は、使用する組み換えセンダイウィルスにより 変わり得る。その後、ウィルスを含んだ尿液を回収する。尿液力ゝらのセンダイウィルス ベクターの分離 ·精製は常法に従って行うことができる(田代眞人,「ウィルス実験プロ トコール」,永井、石浜監修,メジカルビユー社, pp.68-73,(1995))。
[0075] 本明細書に記載したウィルス製造方法に従えば、本発明のウィルスベクターは、例 えば 1 X 105 CIU/mL以上、好ましくは 1 X 106 CIU/mL以上、より好ましくは 5 X 106 CIU/mL以上、より好ましくは 1 X 107 CIU/mL以上、より好ましくは 5 X 107 CIU/mL以 上、より好ましくは 1 X 108 CIU/mL以上、より好ましくは 5 X 108 CIU/mL以上の力価 でウィルス産生細胞の細胞外液中に放出させることが可能である。ウィルスの力価は 、本明細書および他に記載の方法により測定することができる(Kiyotani, K. et al, Virology 177(1), 65-74 (1990); WO00/70070)。
[0076] 回収したウィルスベクターは実質的に純粋になるよう精製することができる。精製方 法はフィルトレーシヨン (濾過)、遠心分離、吸着、およびカラム精製等を含む公知の 精製 ·分離方法またはその任意の組み合わせにより行うことができる。「実質的に純 粋」とは、ウィルスベクターを含む溶液中で該ウィルスの成分が主要な割合を占める ことを言う。例えば実質的に純粋なウィルスベクター組成物は、溶液中に含まれる全 蛋白質 (但しキャリアーや安定剤として加えた蛋白質は除く)のうち、ウィルスベクター の成分として含まれる蛋白質の割合が 10% (重量/重量)以上、好ましくは 20%以上、よ り好ましくは 50%以上、好ましくは 70%以上、より好ましくは 80%以上、さらに好ましく は 90%以上を占めることにより確認することができる。例えばパラミクソウィルスベクタ 一であれば、具体的な精製方法としては、セルロース硫酸エステルまたは架橋ポリサ ッカライド硫酸エステルを用いる方法 (特公昭 62-30752号公報、特公昭 62-33879号 公報、および特公昭 62-30753号公報)、およびフコース硫酸含有多糖および/または その分解物に吸着させる方法 (WO97/32010)等を例示することができる力 これらに 制限されない。
[0077] 本発明のウィルスベクターを含む組成物の製造においては、ベクターは必要に応 じて薬理学的に許容される所望の担体または媒体と組み合わせることができる。「薬 学的に許容される担体または媒体」とは、ベクターと共に投与することが可能であり、 ベクターによる遺伝子導入を有意に阻害しない材料である。このような担体または媒 体としては、例えば滅菌水、塩化ナトリウム溶液、デキストロース溶液、乳酸含有リン ゲル溶液、培養液、血清、リン酸緩衝生理食塩水(PBS)などが挙げられ、これらとベ クタ一を適宜組み合わせて製剤化することが考えられる。また本発明の組成物は、リ ポソ一ムの膜安定化剤(例えばコレステロール等のステロール類)を含んで 、てもよ
V、。また、抗酸化剤(例えばトコフエロールまたはビタミン Eなど)を含んで 、てもよ 、。 さらに、その他にも、植物油、懸濁剤、界面活性剤、安定剤、殺生物剤等が含有され ていてもよい。また保存剤やその他の添加剤を添加することができる。本発明の組成 物は、水溶液、カプセル、懸濁液、シロップなどの形態であり得る。また本発明の組 成物は溶液、凍結乾燥物、またはエアロゾルの形態の組成物であってよい。凍結乾 燥物の場合は安定化剤としてソルビトール、シユークロース、アミノ酸及び各種蛋白 質等を含んでいてもよい。
[0078] マイナス鎖 RNAウィルスベクターを、免疫を誘導するために用いる場合は、免疫原 性を高めるために、サイト力イン、コレラ毒素、サルモネラ毒素等の免疫促進剤を添 カロすることもできる。またこのようなワクチン組成物には、ミヨウノ ン、不完全 Freund'sァ ジュバント、 MF59 (オイルェマルジヨン)、 MTP-PE (マイコバクテリア細胞壁由来の muramyl tnpeptide入およ Ό、 Q¾-21 ^soapbarK tree Quilaia saponana由来)などのゾ ジュバントを組み合わせることもできる。また、組成物または細胞の投与に際しては、 アジュバント効果を高めるサイト力イン類を組み合わせることも有効である。このような 遺伝子としては、例えば i)一本鎖 IL- 12 (Proc. Natl. Acad. Sci. USA 96 (15):
8591-8596, 1999)、 ii)インターフェロン- gamma (米国特許第 5, 798,100号)、 iii)顆粒 球コロニー刺激因子(GM- CSF)、 iv) GM- CSFと IL- 4の組み合わせ (J.
Neurosurgery 90 (6), 1115-1124 (1999))などが挙げられる。
[0079] マイナス鎖 RNAウィルスベクターのインビボでの投与量は、疾患、患者の体重、年 齢、性別、症状、投与組成物の形態、投与方法、導入遺伝子等により異なるが、当業 者であれば適宜決定することが可能である。投与されるベクターは好ましくは約 105 ClU/mlから約 10u CIU/ml、より好ましくは約 107 CIU/mlから約 109 CIU/ml、最も好まし くは約 1 X 108 CIU/mlから約 5 X 108 CIU/mlの範囲内の量を薬学上容認可能な担体 中で投与することが好ましい。ヒトにおいては 1回当たりの投与量は 2 X 105 CIU— 2 X 1011 CIUが好ましぐ投与回数は、 1回または臨床上容認可能な副作用の範囲で 複数回可能であり、 1日の投与回数についても同様である。ヒト以外の動物について も、例えば目的の動物とヒトとの体重比または投与標的部位の容積比 (例えば平均値 )で上記の投与量を換算した量を投与することができる。なお、伝播性のマイナス鎖 RNAウィルスベクターを個体または細胞に投与後、治療が完了するなどウィルスべク ターの増殖を抑止する必要が生じた際には、 RNA依存性 RNAポリメラーゼ阻害剤を 投与すれば、宿主に障害を与えずにウィルスベクターの増殖だけを特異的に抑止す ることもできる。エタスビボ投与の場合は、体外 (例えば試験管またはシャーレ内)で 標的細胞にベクターを接触させる。 MOIは 1一 500の間で投与することが好ましぐより 好ましくは 2— 300、さらに好ましくは 3— 200、さらに好ましくは 5— 100、さらに好ましく は 7— 70である。本発明のマイナス鎖 RNAウィルスベクターの投与対象となる生物とし ては特に制限はなぐヒトおよび非ヒト哺乳動物を含む所望の哺乳動物が含まれ、具 体的には、ヒト、マウス、ラット、ィヌ、ブタ、ネコ、ゥシ、ゥサギ、ヒッジ、ャギ、サルが挙 げられる。
実施例
[0080] 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれら実施例に制 限されるものではない。なお、本明細書中に引用された文献は、すべて本明細書の 一部として組み込まれる。
[0081] [実施例 1] プラスミドの構築(図 1)
• pCAGGS(Btype)の構築
pCALNdLw (Arai, T. et al. J. Virology 72, 1998, pi 115- 1121)を Xho Iで消化し、 Qiaquick PCR Purification kitで精製し、ライゲーシヨンを行った。 Xho I断片が除かれ たものを選別し、得たものを pCAGGS(B type)とした。 pCAGGS(B type)を Sal Iで消ィ匕 し、 Pfo DNA polymeraseでブラント化し、 Qiaquick PCR Purification kitで精製し、ライ ゲーシヨンを行った。 Sal Iサイトがつぶれたものを選別し、 pCAGGS(BSX)とした。
[0082] · pCAGGS- NPの構築(図 2)
pCALNdLwを Spe I及び EcoT22Iで消化し、ァガロースゲル電気泳動で分離した。 2651 bp断片と 3674 bp断片を切り出し、 Qiaquick gel Extraction kitで精製した。 2651 bp断片をさらに Xho Iで消化し、ァガロースゲル電気泳動で分離後、 1761 bpの バンドを精製した。 Zeocin抵抗性遺伝子を pcDNA3.1/Zeo(+)をテンプレートにしてプ ライマー
CTCAC-3' (配列番号: 22)及びプライマー CAGTCCTGCTCCTCGGCCACGAAGTGCACGCAGTTG-3' (配列番号: 23)を用 V、て PCRにより増幅し Xhol及び EcoT22Iで消化し、ァガロースゲル電気泳動で分離し 、 438 bpのバンドを切り出し、 Qiaquick Gel Extraction kitで精製した。この Zeocin抵 抗性遺伝子を含むバンドと上記 3674 bp及び 1761bpの 3種類の断片をライゲーシヨン により連結して pCALNdLw- Zeoを得た。この pCALNdLw- Zeoを Swalで消化し Eco RI ンカー(STRATAGENE)を挿入することで pCALNdLWE- Zeoを得た。マルチクロー- ングサイトが導入されたセンダイウィルス cDNA (特開 2002-272465) (以下 pSeV(TDK) と称す)を Not I及び Xho Iで消化し、ァガロースゲル電気泳動で分離し、 1669 bpのバ ンドを切り出し、 Qiaquick Gel Extraction kitで精製した。この NP遺伝子を含む断片を Not I及び Xho I消化した pGEMllZ +) (Promega)へ挿入し、 pGEM- NP(Z)PCR14- 3と した。これをテンプレートにしてプライマー
(配列番号: 25)を用いて PCRにより増幅し、 Eco RI消化後、 pCALNdLWE- Zeoの Eco RIサイトに導入し、 pCALNdLWE- Zeo- NP(Z)を得た。次に pCALNdLWE- Zeo- NP(Z) を Xho I消化し、ライゲーシヨンを行い、 Xho I断片を除いたプラスミドを構築し、これを pCAGGS— NPとした。
· pCAGGS- P4C (-)の構築(図 3)
pCALNdLw-HygroM (Inoue, M. et al. J. Virology 77, 2003, p6419— 6429)を Xholで 消化し、ァガロースゲル電気泳動で分離後、 Hygromycin抵抗性遺伝子を含む 1679 bpのバンドを切り出し、 Qiaquick Gel Extraction kitで精製した。 pCALNdLwを Xho I 消化し、ァガロースゲル電気泳動後 4864 bpのバンドを切り出し、 Qiaquick Gel Extraction kitで精製した。両方の断片を用いてライゲーシヨンを行い
pCALNdLw- Hygroを構築した。この pCALNdLw- Hygroを Swalで消化し、 Nhe Iリンカ 一 (STRATAGENE)を挿入することで pCALNdLWN- Hygroを得た。 4C (-) SeV cDNA( Kurotani, Kato, Nagai.et al Genes to Cells 3, 1998, pill— 124)をテンプレートにして -3' (配列番号: 26)及び
-3' (配列番号: 27)を用いて KOD- PLUS DNA Polymerase (TOYOBO)で PCRを行た 。 gene clean kitを用いて精製し、 PCR産物を Nhe Iで消化し、 gene clean kitで精製し た。これを、上記の pCALNdLWN- hygroの Nhe Iサイトに導入し、
pCALNdLWN- hygro- P(Z)k4C (-)を得た。これを Xho Iで消化し、 Qiaquick PCR Purification kitで精製後、ライゲーシヨンを行い Xho I断片(Hygromycin抵抗性遺伝 子領域)を除いたものを選択し、 pCAGGS- P4C (-)を得た。
[0084] · pCAGGS- L(TDK)の構築(図 4)
pSeV(TDK)を Fse I及び Sac IIで消化し、ァガロースゲル電気泳動で分離後、 6732 bpのバンドを切り出し、 Qiaquick Gel Extraction kitで精製した。 P1U DNA Polymerase と dNTPを使用し、 72°Cで 10分間反応させブラント化した。 Qiaquick PCR purification kitで精製後、 pCAGGS(BSX)の Swa Iサイトに導入し pCAGGS- L(TDK)を得た。
[0085] 'pCAGGS- F及び pCAGGS- F5Rの構築(図 5— 7)
pCALNdLw/F (Li, H.- O. et al. J. Virology 74, 2000, p6564- 6569)を Xho I消化、 精製後、ライゲーシヨンを行い Xho I断片 (Neomycin耐性遺伝子領域)が除かれたも のを選択し、 pCAGGS- Fを得た。 pCALNdLw- ZeoF (特願 2001- 283451)をテンプレ ートにして条件 (I) 5 ' -C ATTTTGGC AAAGAATTGATTAATTCGAG-3 ' (配列番号: 28)及び 配列番号: 29)のプライマーの組み合わせと、条件 (II) (配列番号: 30)及び 号: 31)のプライマーの組み合わせを用いて Pfo Turbo (STRATAGENE)を使用して PCRを行った。 PCR産物はァガロースゲル電気泳動で分離後、条件 (I)の 1470 bpの バンドと条件 (II)の 1190 bpのバンドをそれぞれ切り出し、 GENE CLEAN KITを使用し て回収した (それぞれ PCR産物 (1)、 PCR産物 (Π)とする)。精製した PCR産物 (I)と PCR 産物 (Π)をそれぞれ 10倍希釈したものを 1 μ 1ずつを混合し、さらに
5 ' -C ATTTTGGC AAAGAATTGATTAATTCGAG-3 ' (配列番号: 28)及び 号: 31)のプライマーの組み合わせで Pfo Turboを使用し PCRを行った。 PCR産物 5 1をァガロースゲル電気泳動し、ェチジゥムブロマイド染色した結果、予想される 2.6 kb のバンドが検出された。そこで、残りの PCR産物を Qiaquick PCR Extraction kitで精 製した。その後 Dra IIIと Mfe Iで連続的に制限酵素処理を行い、ァガロースゲル電気 泳動で分離後、約 2.0 kbのバンドを切り出した。 pCALNdLw- Zeo- Fを Dra IIIと Mfe I で連続的に消化し、ァガロースゲル電気泳動により分離し、約 6kpのバンドを切り出し 、 GENECLEAN II KIT (BIO)で精製した。この pCALNdLw- Zeo- F Drain- Mfe I断片 と上記 PCR Dralll- Mfe I断片をライゲーシヨンすることにより pCALNdLw- Zeo- F forin を得た。次にこの pCALNdLw-Zeo-F forinをテンプレートにして、条件 (I)
5 ' -C ATTTTGGC AAAGAATTGATTAATTCGAG-3 ' (配列番号: 28)及び
ATC-3' (配列番号: 32)のプライマーの組み合わせ、条件 (II)
TGA-3' (配列番号: 33)及び 5 '-AAATCCTGGAGTGTCTTTAGAGC- 3' (配列番号 : 34)のプライマーの組み合わせで PCRを行った。電気泳動で分離後、条件 (I)の約 1.4 kbpのバンドと条件 (II)の約 200 bpのバンドを切り出し、 Qiaquick gel Extraction kit でそれぞれ精製した。 50倍希釈したものを 1 1ずつ混合し、さらに
5 ' -C ATTTTGGC AAAGAATTGATTAATTCGAG-3 ' (配列番号: 28)及び
5'- AAATCCTGGAGTGTCTTTAGAGC- 3' (配列番号: 34)のプライマーの糸且み合 わせで Pfo Turboを使用してさらに PCRを行った。 5 μ 1の PCR産物をァガロースゲル電 気泳動で分離後、染色し、約 1.6 kbpのバンドを確認した。残りを Qiaquick PCR Purification kitで精製し Cla Iと Fselで消化し、ァガロースゲル電気泳動で分離後、約 1 kbpのバンドを切り出し、 Qiaquick PCR Purification kitで精製した。
pCALNdLw-Zeo-F forinを Cla Iと Fse Iで消化、ァガロースゲル電気泳動で分離後、 約 8 kbpのバンドを切り出し Qiaquick PCR Purification kitで精製した。これと上記 PCR 産物の Clal-Fse I消化精製物でライゲーシヨンすることにより pCALNdLw-Zeo F5Rを 得た。この pCALNdLw-Zeo F5Rを Xho Iで消化し、精製後ライゲーシヨンを行い Xho I 断片 (Zeocin抵抗性遺伝子を含む)を含まな!/、ものを選択し、 pCAGGS- F5Rを得た。
[0086] 'pCAGGS- T7の構築(図 8)
PTF7-3 (ATCC No.67202)を Bam HIで消化し、ァガロースゲル電気泳動で分離後 、 T7 RNA Polymerase遺伝子を含む 2.65 kbpの断片を回収し、 pMW219 (二ツボンジ ーン)の Bam HIサイトに挿入し pMW219- T7を得た。この pMW219- T7を Sal Iで消化後 、 DNA Blunting kit (TaKaRa)を使用して平滑末端にし、 Eco RIリンカ一(Stratagene #901026)を導入し、 pMW219- T7- Eco RIを得た。この pMW219- T7- Eco RIを Eco RI で消化し、 T7 RNA Polymeraseを含む Eco RI断片を精製し、上記 pCALNdLWEの Eco RIサイトに導入することで pCALNdLWE-T7を得た。
[0087] · pCAGGS— SeVおよび pCAGGS— SeV/ Δ F— GFPの構築(図 9一 11)
pSeV(TDK)を Not I及び Kpn Iで消化し、ァガロースゲル電気泳動で分離後、 2995 bpのバンドを切り出し、 Qiaquick Gel Extraction kitで精製した。 MlinkerF
35)と MlinkerR 5'- CGCGGCTCGAGGCTAGCATCGATGTCGACGC- 3' (配列番号 : 36)を各 2 g (2 1)と H 0を 21 1を混合し、 95°C5分、 85°C15分、 65°C15分、 37
2
°C15分、 25°C15、分 4°Cでアニーリングさせた。この混合液と pSeV(TDK) Notl-Kpn I 精製液をライゲーシヨンし、 pSeV/Linkerを得た。この pSeV/Linkerをテンプレートにし て、 pGEM- F5 5 ' -CTTAACTATGCGGC ATC AGAGC-3 ' (配列番号: 37)及び pGEM-Rl 5 -GCCGATTCATTAATGCAGCTGG-3' (配列番号: 38)を使用し、 KOD-Plus (TOYOBO)を用いて PCR反応を行い Qiaquick PCR Purification kitを使 用して精製した。その精製液をテンプレートとして RibLFl
5 -CTATAGGAAAGGAATTCCTATAGTCACCAAACAAGAG-3' (配列番号: 39)と pGEM-Rl 5 -GCCGATTCATTAATGCAGCTGG-3' (配列番号: 38)を使用し、 KOD-PLUS (TOYOBO)を用いて PCR反応を行い Qiaquick PCR Purification kitを使 用して精製した。この精製液をテンプレートにして、 RibLF2
5 -GATGAGTCCGTGAGGACGAAACTATAGGAAAGGAATTC-3' (配列番号: 40) と pGEM— Rl 5'— GCCGATTCATTAATGCAGCTGG— 3' (配列番号: 38)を使用し、 KOD-Plus (TOYOBO)を用いて PCR反応を行い Qiaquick PCR Purification kitを使 用して精製した。さらにこの精製液をテンプレートにして RibLF3
41)と pGEM- Rl 5'- GCCGATTCATTAATGCAGCTGG- 3' (配列番号: 38)を使用し 、 KOD-Plus (TOYOBO)を用いて PCR反応を行い Qiaquick PCR Purification kitを使 用して精製した。この精製 PCR産物を pCAGGS(BSX)の Swa Iサイトに導入し、 pCAGGS— SeV(m)とした。次に pSeV18+b(+)/ A F— EGFP (Li, H.-O. et al. J. Virology 74, 2000, p6564-6569)を Not I及び Sal Iで消化し、ァガロースゲル電気泳動で分離 後、 1972 bpのバンドを切り出し、 Qiaquick Gel Extraction kitで精製し、 Not I及び Sal I消化し、精製した pCAGGS- SeV(m)とライゲーシヨンし、 pCAGGS- SeV(m)Aを得た。 pSeV(+)18/ Δ FをNhe I及び Kpn Iで消化し、ァガロースゲル電気泳動で分離後、 3325 bpのバンドを切り出し、 Qiaquick Gel Extraction kitで精製し、 Not I及び Sal I消 化し、精製した pCAGGS- SeV(m)とライゲーシヨンし、 pCAGGS- SeV(m)ACを得た。
[0088] pSeV18+b(+) (Li, H.-O. et al. J. Virology 74, 2000, p6564— 6569)を Sal I及び Nhe I で消化し、 Qiaquick PCR purification kitで精製した。そして、 LITMUS38 (NEW ENGLAND BioLabs)の Sal I— Nhelサイトに導入し Litmus38/SeV Sal I— Nhe Iを得た。こ の Litmus38/SeV Sal I- Nhe Iを Sal I及び Nhe Iで消化し、ァガロースゲル電気泳動で 分離後、 9886 bpのバンドを切り出し、 Qiaquick Gel Extraction kitで精製し、 pCAGGS- SeV(m)ACの Sal I- Nhe Iサイトに導入することで pCAGGS- SeVを得た。
[0089] pSeV/ Δ F- EGFP(Li, H.-O. et al. J. Virology 74, 2000, p6564- 6569)を Sal I及び Nhe Iで消化し、 Qiaquick PCR purification kitで精製した。そして、 LITMUS38 (NEW ENGLAND BioLabs)の Sal I— Nhelサイトに導入し Litmus38/Sal I— Nhe I Δ F— GFPを得 た。この Litmus38/Sal I- Nhe I Δ F- GFPを Sal I及び Nhe Iで消化し、ァガロースゲル電 気泳動で分離後、 8392 bpのバンドを切り出し、 Qiaquick Gel Extraction kitで精製し 、 pCAGGS— SeV(m)ACの Sal I— Nhe Iサイトに導入することで pCAGGS— SeV/ A F— GFP を得た。
[0090] 'pGEM- IRES- Luciの構築 pMAMneo-Luci(Clontech)から Bam HIで消化して得たルシフェラーゼフラグメントを pTMl (Nature, 348, 1 , November, 1990, 91- 92)の Bam HIサイトへ導入し
pGEM- IRES- Luciを構築した。
[0091] [実施例 2] T7 RNA Polymerase発現 BHK- 21 (以下 BHK/T7とする)の榭立
上記で構築した pCALNdLWE- T7を BHK- 21細胞(ATCC CCL- 10)に mammalian transfection kit (¾tratagene) ¾たは、 buperFect (Qiagenノ 使用し飞トフンスフエクンョ ンを行った。 400 g/mlの G418を含む D- MEMで 37°C、 5% CO下で 2週間培養し、単
2
一の細胞カゝら増殖した薬剤耐性クローンを得た。得られた薬剤耐性クローンは Cre DNA recombinaseを発現する組み換えアデノウイルス (AxCANCre)を Moi=4で感染し 、 24時間後に細胞を PBSで 1回洗浄した後に、細胞を回収し、 anti-T7 RNA
Polymerase rabbit Polyclonal antibodyを使用したウェスタンブロット解析によって T7 RNA Polymeraseの発現を確認した。
発現を確認出来たクローンに関して pGEM- IRES-Luciを SuperFectを使用してトラン スフエクシヨンした。 24時間後に細胞を回収しデュアルルシフェラーゼレポーターシス テム(Promega)キットを使用し MiniLumat LB9506 (EG&G BERTHOLD)にてルシフエ ラーゼ活性を測定し T7 RNA Polymeraseの活性を確認した。
[0092] [実施例 3] 従来法による組み換えセンダイウィルスの製造
LLC-MK2細胞を 5 X 106 cells/dishで 100 mmペトリ皿に蒔き、 24時間培養後、血 清を含まない MEMで 1回洗浄した後、 3 g/mlのソラレンと長波長紫外線 (365nm) で 5分間処理した T7 RNAポリメラーゼを発現するリコンビナントワクシニアウィルス
(Fuerst, T.R. et al., Proc.Natl.Acad.Sci.USA 83, 8122-8126(1986》に室温で 1時 間感染させた(moi=2)。細胞を血清を含まない MEMで 2回洗浄した後、 LacZ搭載 F欠失型センダイウィルスベクター cDNA (pSeV (+18:LacZ) Δ F), pGEM/NP, pGEM/P,及び pGEM/L (Kato, A. et al., Genes Cells 1 , 569-579(1996》をそれぞれ
12 g, 4 g, 2 g, 4 g/dishおよびエンベローププラスミド pGEM/FHNを 4 μ g/dishカロえ、 Optト MEM (GIBCO)に懸濁し、 SuperFect transfection reagent (1 ^ g DNA/5 μ 1の SuperFect, QIAGEN)を入れ、室温で 15分間放置後、最終的に 3% FBSを含む Opti-MEM 3 mlに入れた DNA-SuperFect混合物を細胞に添カ卩して培 養した。 3時間培養後、細胞を、血清を含まない MEMで 2回洗浄し、シトシン β -D-ァ ラビノフラノシド 40 μ g/ml (AraC, Sigma)とトリプシン 7.5 μ g/mlを含む MEMで 24時 間培養した。培養上清を取り除き、血清を含まない MEM (40 μ g/ml AraC, 7.5 μ g/m トリプシンを含む)に懸濁された 100 mmペトリ皿 1枚分の F発現 LLC-MK2/F7細 胞(F発現を誘導した細胞は LLC- MK2/F7/Aと記載する; Li, H.- 0. et al., J.
Virology 74. 6564-6569 (2000), WO00/70070)懸濁液 5 mlを重層した。さらに培養 48時間後、これらの細胞と上清を回収し、それぞれ P0-d3サンプルとした。 P0-d3の ペレットを Opti-MEMに懸濁し(2 X 107 cells/ml),凍結融解を 3回繰り返して lipofection reagent DOSPER (Boehringer mannheim と混合し (106 cells/25 μ 1 DOSPER)室温で 15分間放置した後、 F発現 LLC- MK2/F7細胞株(
LLC-MK2/F7/A)にトランスフエクシヨン(106 cells/well 24- weU- plate)し、血清を含 まない MEM (40 μ g/ml AraC, 7.5 μ g/mトリプシンを含む)で培養した。培養後 7日目 に上清を回収し、 Pl-d7サンプルとした。さらに上清全量を 12-weU-plateに捲いた F発 現 LLC-MK2/F7細胞株(LLC-MK2/F7/A)に 37°C1時間感染後、 MEM培地で一 回洗浄した後、血清を含まない MEM (40 μ g/ml AraC, 7.5 μ g/mlトリプシンを含む) で培養した。培養後 7日目に上清を回収し、 P2-d7サンプルとした。さらに上清全量を 6-weU-plateに捲いた F発現 LLC- MK2/F7細胞株(LLC- MK2/F7/A)に 37°C1時 間感染後、 MEM培地で一回洗浄した後、血清を含まない MEM (7.5 μ g/mlトリプシン を含む)で培養した。培養後 7日目に上清を回収し、 P3-d7サンプルとした。さらに上 清全量を 10 cm plateに捲いた F発現 LLC- MK2/F7細胞株(LLC- MK2/F7/A)に 37 °C1時間感染後、 MEM培地で一回洗浄した後、血清を含まない MEM (40 μ g/ml AraC, 7.5 g/mlトリプシンを含む)で培養した。培養後 7日目に上清を回収し、 P4-d7サンプルとした。
[0093] [実施例 4] CAプロモーターを使用したセンダイウィルスベクターの回収方法 1
•pCAGGSにハンマーヘッドリボザィムを付カ卩したセンダイウィルスゲノムを使用したセ ンダイウィルスベクターの回収方法(以下 HamRbz法とする)
[0094] 4 1 [伝播型 SeVベクターの回収]
293T細胞をトランスフエクシヨンする前日に 1 X 106 cells/well/2 ml 10% FBS入りの D-MEMで 6 well plateに蒔いた。トランスフエクシヨンは以下の様にして行った。 Opti-MEM 30 μ 1に TransIT- LT1 (Mirus)を 15 μ 1を混合し、室温で 10— 15分間培養 した。この間に DNA溶液を調整した。 Opti- MEM 20 1に pCAGGS- NP,
pCAGGS— P4C (―) , pCAGGS— L(TDK), pCAGGS— SeVをそれぞれ 0.5 μ g, 0.5 μ , 2 μ Ε, 2 /z gで溶解した。 10— 15分後に TransIT- LT1溶液と DNA溶液を混合し室温で 15分間静置した。この間に細胞の培地を抜いて新しい 10% FBS入りの D- MEMを 1 ml/wellで静かに添カ卩した。 15分後、 Opti-MEM (GIBCO) 500 1を
DNA-TransIT-LTl混合物に加え、全量を細胞に添カ卩して培養した。 37°C, 5% CO
2 下で 4日間培養後、培養液を捨て、トリプシン g/mlを含む (血清を含まない) MEM (以下 Try-MEM)に 1 X 106 cells/ mlになるように懸濁した LLC- MK2/F7/A細胞 を lml/wellで重層し、 37°C, 5% CO 下で 4日間培養した。 LLC- MK2/F7/A重層 4日
2
後に上清を回収し、 HAアツセィを行った。 HAはネガティブだったので、回収した上 清を 10日間孵卵させた鶏卵 3個に 100 1を接種し、孵卵機にて 35°Cで 3日間培養し た。その後、尿液を回収し、 HAアツセィを行った。その結果、 3個中 2個の鶏卵から回 収した尿液で HA活性が認められた。したがって、本方法により野生型のセンダイウイ ルスベクターを回収することが可能であることが示された(図 12)。
4 2 [F欠失型 SeVベクターの回収]
293T細胞をトランスフエクシヨンする前日に 1 X 106 cells/well/2 ml 10% FBS入りの D-MEMで 6 well plateに蒔いた。トランスフエクシヨンは以下の様にして行った。 Opti-MEM 30 μ 1に TransIT- LT1 (Mirus)を 15 μ 1を混合し、室温で 10— 15分間培養 した。この間に DNA溶液を調整した。 Opti- MEM 20 1に pCAGGS- NP,
pCAGGS- P4C (-) , pCAGGS- L(TDK), pCAGGS- F5R, pCAGGS- SeV/ Δ F- GFPをそ れぞれ 0.3 /z g, 0.5 /z g, 0.5 g, 0.5— 5 gで溶解した。 10— 15分後に Tran sIT-LTl溶液と DNA溶液を混合し室温で 15分間静置した。この間に細胞の培地を抜 いて新しい 10% FBS入りの D- MEMを lml/wellで静かに添カ卩した。 15分後、 Opti-MEM (GIBCO) 500 1を DNA-TransIT-LTl混合物に加え、全量を細胞に添カ卩して培養 した。 37°C, 5% CO下で 72時間培養後、培養液を捨て、トリプシン g/mlを含む
2
(血清を含まない) MEM (以下 Try-MEM)に 1 X 106 cells/ mlになるように懸濁した LLC- MK2/F7/A細胞を 1 ml/wellで重層し、 37°C, 5% CO下で培養した。それから
2
24時間後に培養液 1 mlを回収し、新しい Try-MEMを 1 ml加え、 37°C, 5% CO下で培
2 養した。 48時間後に培養液 1 mlを回収し、新しい Try-MEMを 1 ml加え、 37°C, 5% CO 下で培養した。 72時間後に培養液 1 mlを回収した。回収した培養液は、 7.5% BSAを
2
133 μ 1加え(最終濃度 1% BSA)、 CIUを測定するまで- 80°Cで保存した。
[0096] 4 3 [GFP発現細胞のカウントによる CIUの測定 (GFP-CIU)]
CIUアツセィの 2— 3日前に LLC- MK2細胞を 12 weU- plateに蒔いた。 2日前の場合 は 1.5 X 105 cells/wellの割合で、 10% FBS入りの MEM lml/wellで蒔き、 3日前の場合 は、 8.0 X 104 cells/wellの割合で、 10% FBS入りの MEM lml/wellで蒔いた。 CIUアツセ ィの当日に血清を含まない MEMで 1回洗浄した後、重層後 24、 48、 72時間目に回 収した培養液の 1Z10希釈系列を MEM培地で作製し、 37°C1時間感染後、 MEM 培地で一回洗浄し、 MEM培地 1 mlを添加した。 37°Cで 2日培養後、細胞を蛍光顕 微鏡で観察し、適度な希釈のゥエルの GFP陽性細胞の数を数えた。その結果、重層 72時間後に、 1 X 105— 1 X 107 GFP-CIU/mlのウィルスベクターが回収された(図 13)
[0097] 4-4 [F遺伝子の供給が野生型 F (以下 F)の場合に対する forin認識配列を導入した F (以下 F5R)の場合の生産性の改善]
pCAGGSで Fタンパク質を供給する時に、野生型の F遺伝子を用いた場合と forin認 識配列を導入した F5Rの場合とで再構成効率の比較を行った。 293T細胞をトランス フエクシヨンする前日に 1 X 106 cells/well/2 ml 10% FBS入りの D- MEMで 6 well plate に蒔いた。トランスフエクシヨンは以下の様にして行った。 Opti-MEM 30 1に
TransIT-LTl (Mirus)を 15 1を混合し、室温で 10— 15分間培養した。この間に DNA 溶液を調整した。 Opti-MEM 20 μ 1に、 pCAGGS— ΝΡ, pCAGGS— P4C (―) ,
pCAGGS- L, pCAGGS- SeV/ Δ F- GFPをそれぞれ 0.3 g, 0.5 g, 2 g, 2 gに固定 し、 pCAGGS— Fまたは pCAGGS— F5Rを 0.1 μ g, 0.3 μ g, 0.5 μ g, 0.7 μ g, 0.9 μ gと条件 を振って溶解した。 10— 15分後に TransIT-LTl溶液と DNA溶液を混合し室温で 15分 間静置した。この間に細胞の培地を抜いて新しい 10% FBS入りの D- MEMを 1 ml/well で静かに添力卩した。 15分後、 Opti-MEM (GIBCO) 500 1を DNA- TransIT- LT1混合 物に加え、全量を細胞に添加して培養した。 37°C, 5% CO下で 72時間培養後、培養
2
液を捨て、トリプシン 7.5 μ g/mlを含む(血清を含まない) MEM (以下 Try-MEM)に 1 X 106 cells/ mlになるように懸濁した LLC- MK2/F7/A細胞を 1 ml/wellで重層し、 37 °C, 5%CO下で培養した。それから 24時間後に培養液 1 mlを回収し、新しい
2
Try-MEMを lmlカ卩え、 37°C, 5%CO下で培養した。 48時間後に培養液 1 mlを回収し
2
、新しい Try-MEMを lml加え、 37°C, 5%CO下で培養した。 72時間後に培養液 1 ml
2
を回収した。回収した培養液は、 7.5% BSAを 133 μ 1加え(最終濃度 1% BSA)、 CIUを 測定するまで- 80°Cで保存した。全てのサンプルを回収後に CIUアツセィを行った。 その結果、 pCAGGS-Fは 0.7 gの時が最も再構成効率が良ぐ重層 24時間目、 48時 間目、 72時間目でそれぞれ 0 CIU/ml, 7.9 X 102 CIU/ml, 3.3 X 104 CIU/mlのウィル スベクターを含んでいた。一方で、 pCAGGS-F5Rを使用した場合は、 0.5 μ gの時が 最も良く重層 24時間目、 48時間目、 72時間目でそれぞれ 3.2 X 104 CIU/ml, 5.7 X 105 CIU/ml, 1.2 X 107 CIU/mlのウィルスベクターを含んでいた。両者で再構成効率が 最も良力つた条件で比較してみると、 PCAGGS-F5Rを使用する場合の方が pCAGGS-Fを使用する場合よりも再構成効率がはるかによぐ重層 72時間目で 373倍 高 、ウィルスベクターを得ることが出来た(図 14)。
[実施例 5] CAプロモーターを使用したセンダイウィルスベクターの回収方法 2
•PCAGGS-T7を使用したセンダイウィルスベクターの回収方法(以下 pCAGGS-T7法 とする)
5-1 [伝播型 SeVベクターの回収]
トランスフエクシヨンする前日に各細胞を 6 well plateに蒔いた(293T細胞: 1 X 106 cells/well/2 ml 10% FBS入りの D— MEM、 LLC— MK2細胞: 5.0 X 105 cells/well/2 ml 10% FBS入りの D- MEM、 BHK- 21細胞: 2.5 X 105 cells/well/2 ml 10% FBS入りの D— MEM、 BHK/T7細胞: 2.5 X 105 cells/well/2 ml 10% FBS入りの D— MEM)。トランス フエクシヨンは以下の様にして行った。 Optト MEM 30 μ 1に TransIT- LT1 (Mirus) 15 μ 1を混合し、室温で 10— 15分間培養した。この間に DNA溶液を調整した。 Opti-MEM に pCAGGS- T7, pCAGGS- NP, pCAGGS- P4C (-) , pCAGGS- L(TDK), pSeV(TDK)18+GFPをそれぞれ 0.5 μ g, 0.5 g, 0.5 g, 2 g, 5 gで溶解した。 10 一 15分後に TransIT-LTl溶液と DNA溶液を混合し室温で 15分間静置した。この間に 細胞の培地を抜いて新しい 10% FBS入りの D- MEMを 1 ml/wellで静かに添カ卩した。 15 分後、 Opti- MEM (GIBCO) 500 1を DNA- TransIT- LT1混合物に加え、全量を細胞 に添カ卩して培養した。 37°C, 5% CO下で 3日間培養した。このとき、 GFP陽性細胞の
2
数をカウントした結果、 293T細胞で 246個、 LLC- MK2細胞で 16個、 BHK- 21細胞で 288個、 BHK/T7細胞で 405個であった。その後、培養液を捨て、 PBS (-) 1 mlを細胞 に添加し、セルスクレーパーで剥がし、エツペンドルフチューブに回収した。 1回凍結 融解をした後に、希釈しない細胞懸濁液と PBS (-)で 10倍、 100倍、 1000倍希釈した細 胞懸濁液 100 μ 1を 10日鶏卵にそれぞれ接種した。孵卵機にて 35°Cで 3日間培養した 。その後、尿液を回収し、 HAアツセィを行った。その結果、希釈しない 293T細胞、 BHK-21細胞、 BHK/T7細胞懸濁液を接種した鶏卵でウィルスの増殖を確認出来た( 図 15)。
5— 2 [F欠失型 SeVベクターの回収]
293T細胞をトランスフエクシヨンする前日に 1 X 106 cells/well/2 ml 10% FBS入りの D-MEMで 6 well plateに蒔いた。トランスフエクシヨンは以下の様にして行った。
Opti- MEM 30 μ 1に TransIT- LT1 (Mirus)を 15 μ 1を混合し、室温で 10— 15分間培養 した。この間に DNA溶液を調整した。 Opti-MEM 20 1に pCAGGS-T7,
pCAGGS-NP, pCAGGS- P4C (-) , pCAGGS- L(TDK), pCAGGS- F5R, pSeV/ Δ F-GFP (WO00/70070)をそれぞれ 0.5 μ g, 0.5 μ g, 0.5 μ g, 2 μ g, 0.5 μ g, 0.5— 5 μ gで溶解した。 10— 15分後に TransIT-LTl溶液と DNA溶液を混合し室温で 15分間静 置した。この間に細胞の培地を抜いて新しい 10% FBS入りの D- MEMを lml/wellで静 力に添加した。 15分後、 Opti-MEM (GIBCO) 500 1を DNA— TransIT— LT1混合物に 加え、全量を細胞に添加して培養した。 37°C, 5% CO 下で 72時間培養後、培養液を
2
捨て、 Try-MEMに 1 X 106 cells/ mlになるように懸濁した LLC- MK2/F7/A細胞を lml/wellで重層し、 37°C, 5% CO 下で培養した。それから 24時間後に培養液 1 mlを
2
回収し、新しい Try-MEMを lmlカ卩え、 37°C, 5% CO下で培養した。 48時間後に培養
2
液 1 mlを回収し、新しい Try-MEMを lmlカ卩え、 37°C, 5% CO下で培養した。 72時間後
2
に培養液 1 mlを回収した。回収した培養液は、 7.5% BSAを 133 /z 1加え (最終濃度 1% BSA)、 CIUを測定するまで- 80°Cで保存した。
[0100] 5— 3 [GFP発現細胞のカウントによる CIUの測定 (GFP-CIU)]
CIUアツセィの 2— 3日前に LLC- MK2細胞を 12 weU- plateに蒔いた。 2日前の場合 は 1.5 X 105 cells/wellの割合で、 10% FBS入りの MEM lml/wellで蒔き、 3日前の場合 は、 8.0 X 104 cells/wellの割合で、 10% FBS入りの MEM lml/wellで蒔いた。 CIUアツセ ィの当日に血清を含まない MEMで 1回洗浄した後、重層後 24、 48、 72時間目に回 収した培養液の 1Z10希釈系列を MEM培地で作製し、 37°C1時間感染後、 MEM培 地で一回洗浄し、 MEM培地 1 mlを添加した。 37°Cで 2日培養後、細胞を蛍光顕微 鏡で観察し、適度な希釈のゥエルの GFP陽性細胞の数を数えた。その結果、重層 72 時間後に、 1 X 106— 1 X 107 GFP-CIU/mlのウィルスベクターが回収された(図 16)。 この PCAGGS-T7法はプラスミドの導入細胞に 293T細胞を使用した時は、リン酸力 ルシゥム法によっても SeV18+GFP/ A Fの回収に成功した。効率は、 TransIT-LTlと 同等以上であった(図 17)。
[0101] [実施例 6] pCAGGS- T7法の細胞種の検討
PCAGGS-T7法が 293T以外の細胞でもセンダイウィルスベクターの回収が出来るか どうかを検討するために、 LLC- MK2, BHK-21, BHK/T7, 293T細胞で回収すること が出来るかを試みた。各細胞をトランスフエクシヨンする前日に 6 well plateに蒔いた( LLC- MK細胞: 5 X 105 cells/well, BHK- 21細胞: 2.5 X 105 cells/well, BHK/T7細胞: 2.5 X 105 cells/well, 293T細胞: l.O X 106 cells/well)。トランスフエクシヨンは以下の様 にして行った。 Optト MEM 30 μ 1に TransIT- LTl(Mirus)を 15 μ 1を混合し、室温で 10— 15分間培養した。この間に DNA溶液を調整した。 Opti-MEM 20 1に pCAGGS-T7, pCAGGS-NP, pCAGGS- P4C (-) , pCAGGS- L(TDK), pCAGGS- F5R, pSeV/ Δ F- GFPをそれぞれ 0.5 μ g, 0.5 μ g, 0.5 g, 2 g, 0.5 g, 2 gで溶解した(ただし、 BHK/T7細胞を使用する時は pCAGGS-T7は添カ卩して!/、な!/、)。 10— 15分後に TransIT-LTl溶液と DNA溶液を混合し室温で 15分間静置した。この間に細胞の培地 を抜いて新しい 10% FBS入りの D- MEMを lml/wellで静かに添カ卩した。 15分後、 Opti-MEM (GIBCO) 500 1を DNA- TransIT- LT1混合物に加え、全量を細胞に添 加して培養した。 37°C, 5% CO下で 72時間培養後、培養液を捨て、 Try-MEMに 1 X 106 cells/mlになるように懸濁した LLC- MK2/F7/A細胞を 1 ml/wellで重層し、 37°C, 5% CO下で培養した。それから 24時間後に培養液 1 mlを回収し、新しい Try-MEMを
2
lmlカ卩え、 37°C, 5% CO下で培養した。 48時間後に培養液 1 mlを回収し、新しい
2
Try-MEMを lmlカ卩え、 37°C, 5% CO下で培養した。 72時間後に培養液 1 mlを回収し
2
た。回収した培養液は、 7.5% BSAを 133 μ 1加え(最終濃度 1% BSA)、 CIUを測定する まで- 80°Cで保存した。 n=3で行った。その結果、テストした全ての細胞種カゝらベクタ 一が回収された。ベクターの回収効率は BHK/T7細胞〉 BHK-21細胞〉 293T細胞〉 LLC- MK2細胞の順であった(図 18)。また、 BHK/T7発現株には pCAGGS- T7はトラ ンスフエクシヨンして ヽな 、ことから、 T7発現株にお!、て CAプロモーターを使用しても 、 F欠失型 SeV/ Δ F-GFPの回収が可能であることが示された。
[0102] [実施例 7] HamRbz法と pCAGGS- T7法の比較
293T細胞をトランスフエクシヨンする前日に 1 X 106 cells/well/2 ml 10% FBS入りの D-MEMで 6 well plateに蒔いた。トランスフエクシヨンは以下の様にして行った。
Opti-MEM 30 μ 1に TransIT- LT1 (Mirus)を 15 μ 1を混合し、室温で 10— 15分間培養 した。この間に DNA溶液を調整した。 Opti- MEM 20 1に pCAGGS- NP,
pCAGGS- P4C (-) , pCAGGS- L(TDK), pCAGGS- F5R, pCAGGS- SeV/ Δ F- GFPをそ れぞれ 0.3 μ g, 0.5 g, 2 g, 0.5 g, 5 gで溶解した。 10— 15分後に TransIT- LT1 溶液と DNA溶液を混合し室温で 15分間静置した。この間に細胞の培地を抜 ヽて新し い 10% FBS入りの D- MEMを 1 ml/wellで静かに添カ卩した。 15分後、 Opti-MEM
(GIBCO) 500 1を DNA-TransIT-LTl混合物に加え、全量を細胞に添カ卩して培養し た。 37°C, 5% CO 下で 72時間培養後、培養液を捨て、トリプシン g/mlを含む(
2
血清を含まない) MEM (以下 Try-MEM)に 1 X 106 cells/ mlになるように懸濁した LLC- MK2/F7/A細胞を 1 ml/wellで重層し、 37°C, 5% CO下で培養した。それから
2
24時間後に培養液 1 mlを回収し、新しい Try-MEMを lmlカ卩え、 37°C, 5% CO下で培
2 養した。 48時間後に培養液 1 mlを回収し、新しい Try-MEMを lml加え、 37°C, 5% CO
2 下で培養した。 72時間後に培養液 1 mlを回収した。回収した培養液は、 7.5% BSAを 133 μ 1加え(最終濃度 1% BSA)、 CIUを測定するまで- 80°Cで保存した。
[0103] pCAGGS-T7法につ!、ては、 293T細胞をトランスフエクシヨンする前日に 1 X 106 cells/well/2 ml 10% FBS入りの D- MEMで 6 well plateに蒔いた。トランスフエクシヨン は以下の様にして行った。 Opti- MEM 30 μ 1に TransIT- LT1 (Mirus)を 15 μ 1を混合し 、室温で 10— 15分間培養した。この間に DNA溶液を調整した。 Opti-MEM 20 1に PCAGGS-T7, pCAGGS-NP, pCAGGS- P4C (-) , pCAGGS- L(TDK), pCAGGS- F5R, pSeV/ Δ F- GFPをそれぞれ 0.5 μ g, 0.5 μ g, 0.5 g, 2 g, 0.5 g, 5 gで溶解した 。 10— 15分後に TransIT-LTl溶液と DNA溶液を混合し室温で 15分間静置した。この 間に細胞の培地を抜いて新しい 10% FBS入りの D- MEMを lml/wellで静かに添カ卩した 。 15分後、 Opti-MEM (GIBCO) 500 1を DNA- TransIT- LT1混合物に加え、全量を 細胞に添加して培養した。 37°C, 5% CO下で 72時間培養後、培養液を捨て、
2
Try-MEMに 1 X 106 cells/ mlになるように懸濁した LLC- MK2/F7/A細胞を 1 ml/well で重層し、 37°C, 5% CO下で培養した。それ力も 24時間後に培養液 1 mlを回収し、新
2
しい Try-MEMを 1 ml加え、 37°C, 5% CO下で培養した。 48時間後に培養液 1 mlを回
2
収し、新しい Try-MEMを 1 ml加え、 37°C, 5% CO下で培養した。 72時間後に培養液 1
2
mlを回収した。回収した培養液は、 7.5% BSAを 133 μ 1加え(最終濃度 1% BSA)、 CIU を測定するまで- 80°Cで保存した。 CIU測定の結果、 pCAGGS-T7法は HamRbz法より も再構成効率が高 、ことが示された (図 19)。
[実施例 8] M遺伝子欠失型ベクターおよび MF両遺伝子欠失型ベクターの構築
PCAGGS-T7法による M遺伝子欠失型センダイウィルスベクター (SeV/ Δ Μ)、および MF両遺伝子欠失型センダイウィルスベクター (SeV/ Δ Μ Δ F- GFP)の再構成を行った
• SeV/ Δ Mベクターの再構成
293T細胞をトランスフエクシヨンする前日に 1 X 106 cells/well/2 ml 10%FBS入りの D- MEMで 6well plateに蒔いた。トランスフエクシヨンは以下の様にして行った。
Opti-MEM 30 μ 1に TransIT- LT1 (Mirus)を 15 μ 1を混合し、室温で 10— 15分間培養し た。この間に DNA溶液を調整した。 Opti- MEM 20 1に、 pCAGGS- NP,
pCAGGS— P4C (―) , pCAGGS— L(TDK), pCAGGS— M, pCAGGS— T7, pSeV/ Δ Μ— GFP をそれぞれ 0.5 g, 0.5 g, 2 g, 1.0 g, 0.5 g, 5 gで溶解した。 10— 15分後に TransIT-LTl溶液と DNA溶液を混合し、室温で 15分間静置した。この間に細胞の培 地を抜いて、新しい 10% FBS入りの D- MEMを 1 ml/wellで静かに添カ卩した。 15分後 、 Opti-MEM (GIBCO) 500 1を DNA- TransIT- LT1混合物に加え、全量を細胞に添 加して培養した。 37°C, 5% CO下で 72時間培養後、培養液を捨て、トリプシン 7.5
2
g/mlを含む(血清を含まない) MEM (以下 Try-MEM)に 1 X 106 cells/mlになるよう に懸濁したセンダイウィルスの M遺伝子と F遺伝子の両方を発現する LLC-MK2細胞 (以下 LLC- M/Fとする)を 1 ml/wellで重層し、 37°C、 5%CO下で培養した。重層後 3
2
日間は毎日培地を新しい Try-MEMと交換した。その後は 2— 3日毎に交換した。トラ ンスフエクシヨン後 9日目に培養液を新しい LLC- MK2- M/F細胞に添カ卩し、 32°C、 5%CO下で 9日間培養した(2— 3日毎に培地交換した)。その上清を新しい
2
LLC- MK2-M/F細胞に添カ卩し、同様に 4日間培養した。この培養上清中には 5.4 X 10 8 ClU/mlの SeV/ Δ Μ- GFPベクターが存在していることを確認した。トランスフエクショ ン後 4日間培養した細胞 (P0d4)、一回目の継代後 7日間培養した細胞 (Pld7)、二回 目の継代後 4日間培養した細胞 (P2d4)のベクター感染細胞の広がりを GFPの蛍光で 観察した結果を図 20に示した。
• SeV/ Δ Μ Δ F- GFPの再構成
293T細胞をトランスフエクシヨンする前日に 1 X 106 cells/well/2ml 10%FBS入りの D-MEMで 6 well plateに蒔いた。トランスフエクシヨンは以下の様にして行った。
Opti-MEM 30 1に TransIT- LT1 (Mirus) 15 1を混合し、室温で 10— 15分間培養し た。この間に DNA溶液を調整した。 Opti- MEM 20 1に、 pCAGGS- NP,
pCAGGS— P4C (―) , pCAGGS-L(TDK), pCAGGS— F5R, pCAGGS— M, pCAGGS— T7, pSeV/ A M A F— GFPをそれぞれ 0.5 /z g, 0.5 ^ g, 2 ^ g, 0.5 ^ g, 1.0 ^ g, 0.5 ^ g, 5 ^ g で溶解した。 10— 15分後に TransIT- LT1溶液と DNA溶液を混合し室温で 15分間静 置した。この間に細胞の培地を抜いて新しい 10% FBS入りの D- MEMを lml/wellで静 力に添加した。 15分後、 Opti-MEM (GIBCO) 500 1を DNA- Trans IT- LT1混合物に 加え、全量を細胞に添加して培養した。 37°C, 5%CO下で 72時間培養後、培養液を
2
捨て、トリプシン 7.5 μ g/mlを含む(血清を含まない) MEM (以下 Try-MEM)に 1 X 106 cells/mlになるように懸濁した LLC- M/Fを 1 ml/wellで重層し、 37°C、 5%CO下で培養
2 した。重層後 3日間は毎日培地を新しい Try-MEMと交換した。その後は 2— 3日毎に 交換した。トランスフエクシヨン後 9日目に培養液を新しい LLC- M/F細胞に添加し、 32 °C、 5% CO下で 9日間培養した(2— 3日毎に培地交換した)。その上清を新しい
2
LLC-M/F細胞に添加し、同様に 4日間培養した。さらに、その上清を新しい
LLC- M/F細胞に添カ卩し、同様に 3日間培養した。この培養上清中には 4.6 X 107 ClU/mlの SeV/ Δ Μ Δ F- GFPベクターが存在して!/、ることを確認した。トランスフエクシ ヨン後 4日間培養した細胞 (P0d4)、一回目の継代後 9日間培養した細胞 (Pld9)、二 回目の継代後 4日間培養した細胞 (P2d4)、三回目の継代後 3日間培養した細胞 ( P3d3)のベクター感染細胞の広がりを GFPの蛍光で観察した結果を図 21に示した。
[実施例 9] CAプロモーターと CMVプロモーターの再構成効率の比較
CMVプロモーターと CAプロモーターの比較のために、 CMVプロモーター支配下の NP, P, L, F5R, T7 RNA polymeraseを pC neo (Promega)に搭載した(それぞれ pCl-neo-NP, pCHieo— P4C (―) , pCHieo— L(TDK), pCHieo— F5R,および
pC卜 neo- T7)。 293T細胞をトランスフエクシヨンする前日〖こ、 1 X 106 cells/well/2ml 10 %FBS入りの D- MEMで 6 well plateに蒔いた。トランスフエクシヨンは以下の様にして 行った。 Opti- MEM 30 1に TransIT- LT1 (Mirus) 15 を混合し、室温で 10— 15分 間培養した。この間に DNA溶液を調整した。 CAプロモーター(pCAGGSプラスミド)を 使用する場合は、 Opti- MEM 20 1に、 pCAGGS- NP, pCAGGS- P4C (-) ,
pCAGGS- L(TDK), pCAGGS- F5R, pCAGGS- T7, pSeV/ Δ F- GFPをそれぞれ 0.5 g, 0.5 g, 2 g, 0.5 μ g, 0.5 g, 5 gで溶解した。 CMVプロモーター(pC neo)を 使用する場合は、 Opti— MEM 20 1に pCHieo— NP, pCHieo— P4C(— ),
pCl-neo-L(TDK), pCHieo- F5R, pCHieo- T7, pSeV/ Δ F- GFPをそれぞれ 0.5 μ g, 0.5 g, 5 g, 0.5 g, 1 g, 5 gで溶解した。 10— 15分後に TransIT- LT1溶液と DNA溶液を混合し室温で 15分間静置した。この間に細胞の培地を抜いて新しい 10% FBS入りの D- MEMを 1 ml/wellで静かに添カ卩した。 15分後、 Opti- MEM (GIBCO) 500 1を DNA-TransIT-LTl混合物に加え、全量を細胞に添カ卩して培養した。 37°C, 5% CO下で 72時間培養後、培養液を捨て、トリプシン g/mlを含む(血清を含まな
2
い) MEM (以下 Try- MEM)に 1 X 106 cells/mlになるように懸濁した LLC- MK2/F7/A 細胞を 1 ml/wellで重層し、 37°C, 5% CO下で培養した。それ力も 24時間後に培養液 1 mlを回収し、新しい Try- MEMを 1 ml加え、 37°C, 5% CO下で培養した。 48時間後
2
に培養液 1 mlを回収し、新しい Try- MEMを 1 ml加え、 37°C, 5%CO下で培養した。
2
72時間後に培養液 1 mlを回収した。回収した培養液は、 7.5% BSAを 133 1カ卩ぇ( 最終濃度 1%BSA)、 CIUを測定するまで- 80°Cで保存した。
[0107] CAプロモーターを使用した場合は、トランスフエクシヨン 72時間目に GFPの広がりが 観察され、 LLC- MK2/F7/A細胞を重層後も効率良く増殖した。一方、 CMVプロモー ターを使用した場合は、トランスフエクシヨン 72時間目には GFPの蛍光は観察されず、 LLC-MK2/F7/A細胞重層 48時間後にようやく GFPの小さな広がりが観察された。ベ クタ一の再構成は、 CAプロモーターの方が 1000倍以上効率的であった。従って、 CA プロモーターの方力 SCMVプロモーターよりもはるかにベクターの回収に適している。 また、 CMVプロモーター支配下の遺伝子と CAプロモーター支配下の遺伝子の組 み合わせでの検討を行ったところ、ヘルパープラスミドの全てを CAプロモーターでド ライブする方が CMVと CAの組み合わせよりもベクターの回収効率ははるかに良かつ た。
産業上の利用可能性
[0108] 本発明の方法は、ワクシニアウィルスを用いることなぐ高効率でマイナス鎖 RNAゥ ィルスベクターを製造することが可能であり、製造過程および生成標品の安全性が 高い。特に本発明によれば、 F遺伝子、 HN遺伝子、および/または M遺伝子等のェン ベロープ構成蛋白質遺伝子を欠損するマイナス鎖 RNAウィルスベクターを、ヮクシ- ァウィルス非依存的に製造することができる。本発明の方法は、特に遺伝子治療用 ベクターなどの高い安全性が必要なベクターの製造方法として有用である。

Claims

請求の範囲
[1] マイナス鎖 RNAウィルスベクターの製造方法であって、ウィルス生産細胞における
(0該マイナス鎖 RNAウィルスのゲノム RNAまたはその相補鎖の転写および GO該ゲ ノム RNAとリボヌクレオプロテインを形成するマイナス鎖 RNAウィルス蛋白質の発現を
、サイトメガロウイノレスェンハンサーおよびニヮトリ β -ァクチンプロモーターを含むプ 口モーターにより誘導することを特徴とする方法。
[2] 該ウィルス生産細胞にぉ 、て、サイトメガロウィルスェンハンサーおよびニヮトリ β - ァクチンプロモーターを含むプロモーターの制御下にリボザィムとマイナス鎖 RNAゥ ィルスのゲノム RNAまたはその相補鎖とをコードする DNAが連結された DNAを転写さ せる工程を含み、該リボザィムは、転写産物を該リボザィムとゲノム RNAまたはその相 補鎖との間で切断する活性を有する、請求項 1に記載の方法。
[3] 該ウィルス生産細胞にぉ 、て、サイトメガロウィルスェンハンサーおよびニヮトリ β - ァクチンプロモーターを含むプロモーターの制御下にバタテリオファージの RNAポリメ ラーゼをコードする DNAが連結された DNAを発現させる工程、および該 RNAポリメラ ーゼにより、該 RNAポリメラーゼの認識配列の制御下に連結されたマイナス鎖 RNAゥ ィルスのゲノム RNAまたはその相補鎖をコードする DNAを転写させる工程を含む、請 求項 1に記載の方法。
[4] 該リボザィムがハンマーヘッドリボザィムである、請求項 2に記載の方法。
[5] 該 RNAポリメラーゼをコードする DNAが連結された DNAを、該ウィルス生産細胞に お 、てェピソ一マルに発現させる、請求項 3に記載の方法。
[6] 該 RNAポリメラーゼをコードする DNAが連結された DNAを、該ウィルス生産細胞の 染色体から発現させる、請求項 3に記載の方法。
[7] 該バクテリオファージカ SP6ファージ、 Τ3ファージ、および Τ7ファージからなる群よ り選択される、請求項 3に記載の方法。
[8] 該マイナス鎖 RNAウィルスがセンダイウィルスである、請求項 1に記載の方法。
[9] 該ゲノム RNAまたはその相補鎖力 エンベロープ構成蛋白質をコードする遺伝子の 1つまたは複数を欠損しており、エンベロープ構成蛋白質をコードする DNAを、該細 胞において発現させる工程をさらに含む、請求項 1に記載の方法。
[10] サイトメガロウイノレスェンハンサーおよびニヮトリ β -ァクチンプロモーターとを含むプ 口モーターの制御下に、リボザィムとマイナス鎖 RNAウィルスのゲノム RNAまたはその 相補鎖とをコードする DNAが連結された DNAであって、該リボザィムは、転写産物を 該リボザィムとマイナス鎖 RNAウィルスのゲノム RNAまたはその相補鎖との間で切断 する活性を有する、 DNA0
[11] 該ゲノム RNAまたはその相補鎖力 エンベロープ構成蛋白質をコードする遺伝子の
1つまたは複数を欠損している、請求項 10に記載の DNA。
[12] 該マイナス鎖 RNAウィルスがセンダイウィルスである、請求項 10に記載の DNA。
[13] 該リボザィムがハンマーヘッドリボザィムである、請求項 10に記載の DNA。
[14] リコンビナーゼにより発現誘導可能である、請求項 10に記載の DNA。
[15] 該リコンビナーゼが Creまたは Flpである、請求項 14に記載の DNA。
[16] サイトメガロウイノレスェンハンサーおよびニヮトリ β -ァクチンプロモーターを含むプ 口モーターの制御下にバタテリオファージの RNAポリメラーゼをコードする DNAが連 結された DNA。
[17] 該バクテリオファージカ SP6ファージ、 T3ファージ、および T7ファージからなる群よ り選択される、請求項 16に記載の DNA。
[18] リコンビナーゼにより発現誘導可能である、請求項 16に記載の DNA。
[19] 該リコンビナーゼが Creまたは Flpである、請求項 18に記載の DNA。
[20] 請求項 10に記載の DNAを保持する哺乳動物細胞。
[21] マイナス鎖 RNAウィルス生産用細胞である、請求項 20に記載の哺乳動物細胞。
[22] 該ゲノム RNAまたはその相補鎖力 エンベロープ構成蛋白質をコードする遺伝子の
1つまたは複数を欠損して 、る、請求項 20に記載の哺乳動物細胞。
[23] 該マイナス鎖 RNAウィルスがセンダイウィルスである、請求項 20に記載の哺乳動物 細胞。
[24] 請求項 16に記載の DNAを保持する哺乳動物細胞。
[25] マイナス鎖 RNAウィルス生産用細胞である、請求項 24に記載の哺乳動物細胞。
[26] 該 RNAポリメラーゼの認識配列の制御下に連結されたマイナス鎖 RNAウィルスのゲ ノム RNAまたはその相補鎖をコードする DNAをさらに保持する、請求項 24に記載の 哺乳動物細胞。
[27] 該ゲノム RNAまたはその相補鎖力 エンベロープ構成蛋白質をコードする遺伝子の 1つまたは複数を欠損している、請求項 26に記載の哺乳動物細胞。
[28] 該マイナス鎖 RNAウィルスがセンダイウィルスである、請求項 25に記載の哺乳動物 細胞。
PCT/JP2005/000705 2004-01-22 2005-01-20 サイトメガロウイルスエンハンサーおよびニワトリβ-アクチンプロモーターを含むハイブリッドプロモーターを利用したマイナス鎖RNAウイルスベクターの製造方法 WO2005071092A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US10/586,142 US8741650B2 (en) 2004-01-22 2005-01-20 Methods for producing minus-strand RNA viral vectors using hybrid promoter comprising cytomegalovirus enhancer and chicken β-actin promoter
EP05703933A EP1717317A4 (en) 2004-01-22 2005-01-20 METHOD OF GENERATING VIRAL NEGATIVE STRAND RNA VECTORS USING A HYBRID PROMOTER COMPRISING THE CYTOMEGALOVIRUS ENHANCER AND THE BETA ACTIN PROMOTER FROM CHICKEN
CN2005800091828A CN1934260B (zh) 2004-01-22 2005-01-20 利用含有巨细胞病毒增强子和鸡β-肌动蛋白启动子的杂合启动子制造负链RNA病毒载体的方法
AU2005206410A AU2005206410A1 (en) 2004-01-22 2005-01-20 Method of producing minus strand RNA virus vector with the use of hybrid promoter containing cytomegalovirus enhancer and avian beta-actin promoter
KR1020067016708A KR101279677B1 (ko) 2004-01-22 2005-01-20 사이토메갈로바이러스 인핸서 및 닭 β­액틴 프로모터를 포함하는 하이브리드 프로모터를 이용한 마이너스 가닥 RNA 바이러스 벡터의 제조방법
CA2553976A CA2553976C (en) 2004-01-22 2005-01-20 Method for producing minus-strand rna viral vectors using hybrid promoter comprising cytomegalovirus enhancer and chicken .beta.-actin promoter
JP2005517263A JP4999330B2 (ja) 2004-01-22 2005-01-20 サイトメガロウイルスエンハンサーおよびニワトリβ−アクチンプロモーターを含むハイブリッドプロモーターを利用したマイナス鎖RNAウイルスベクターの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-014653 2004-01-22
JP2004014653 2004-01-22

Publications (1)

Publication Number Publication Date
WO2005071092A1 true WO2005071092A1 (ja) 2005-08-04

Family

ID=34805423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/000705 WO2005071092A1 (ja) 2004-01-22 2005-01-20 サイトメガロウイルスエンハンサーおよびニワトリβ-アクチンプロモーターを含むハイブリッドプロモーターを利用したマイナス鎖RNAウイルスベクターの製造方法

Country Status (8)

Country Link
US (1) US8741650B2 (ja)
EP (2) EP1717317A4 (ja)
JP (2) JP4999330B2 (ja)
KR (1) KR101279677B1 (ja)
CN (1) CN1934260B (ja)
AU (1) AU2005206410A1 (ja)
CA (1) CA2553976C (ja)
WO (1) WO2005071092A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006134917A1 (ja) 2005-06-14 2006-12-21 Dnavec Corporation 抗体の作製方法
WO2007139178A1 (ja) 2006-05-31 2007-12-06 Dnavec Corporation アルツハイマー病治療薬
WO2008007581A1 (fr) 2006-07-13 2008-01-17 Dnavec Corporation Vecteur de virus paramyxoviridae non répliquant
WO2008096811A1 (ja) 2007-02-07 2008-08-14 Dnavec Corporation 弱毒化マイナス鎖rnaウイルス
WO2008136438A1 (ja) 2007-04-27 2008-11-13 Kyushu University, National University Corporation 遺伝子治療用ウイルスベクター
WO2010008054A1 (ja) 2008-07-16 2010-01-21 ディナベック株式会社 染色体非組み込み型ウイルスベクターを用いてリプログラムされた細胞を製造する方法
WO2010050586A1 (ja) 2008-10-31 2010-05-06 ディナベック株式会社 組み換え蛋白質の発現を増強する方法
KR101038126B1 (ko) 2010-11-30 2011-05-31 주식회사 엘지생명과학 새로운 융합 프로모터 및 이를 포함하는 재조합 벡터
WO2012029770A1 (ja) 2010-08-30 2012-03-08 ディナベック株式会社 多能性幹細胞を誘導するための組成物およびその使用
WO2012138340A1 (en) 2011-04-07 2012-10-11 Hewlett-Packard Development Company, L.P. Systems and methods for determining a power phase and/or a phase rotation
WO2015046229A1 (ja) 2013-09-24 2015-04-02 ディナベック株式会社 多能性幹細胞の誘導効率を改善する方法
WO2018092887A1 (ja) 2016-11-17 2018-05-24 国立感染症研究所長が代表する日本国 非感染性パラミクソウイルス粒子を用いた感染症ワクチン
WO2019017438A1 (ja) 2017-07-21 2019-01-24 株式会社Idファーマ 標的配列を改変するためのポリヌクレオチドおよびその使用
WO2019142933A1 (ja) 2018-01-22 2019-07-25 国立感染症研究所長が代表する日本国 選択的cd8陽性t細胞誘導ワクチン抗原
WO2022050419A1 (ja) 2020-09-04 2022-03-10 Heartseed株式会社 iPS細胞の品質改善剤、iPS細胞の製造方法、iPS細胞、及びiPS細胞製造用組成物
WO2022138964A1 (ja) 2020-12-25 2022-06-30 国立大学法人京都大学 体細胞からのナイーブ型ヒトiPS細胞製造方法
WO2023277069A1 (ja) 2021-06-30 2023-01-05 株式会社レプリテック マイナス鎖rnaウイルスベクターの製造方法および製造されたマイナス鎖rnaウイルスベクター
WO2023127871A1 (ja) 2021-12-27 2023-07-06 株式会社レプリテック 温度感受性のマイナス鎖rnaウイルスまたはウイルスベクターおよびそのrnaゲノム

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997016539A1 (fr) * 1995-11-01 1997-05-09 Dnavec Research Inc. Virus sendai recombinant
US20030166252A1 (en) * 1999-05-18 2003-09-04 Kaio Kitazato Paramyxovirus-derived RNP
AU2003234775A1 (en) * 2002-04-30 2003-11-17 Dnavec Research Inc. Vector with modified protease-dependent tropism
US20070269414A1 (en) * 2003-11-04 2007-11-22 Shinji Okano Method for Producing Gene Transferred Denritic Cells
JPWO2006001120A1 (ja) * 2004-06-24 2008-04-17 株式会社ディナベック研究所 マイナス鎖rnaウイルスを含む抗癌剤
CA2636600A1 (en) * 2006-01-17 2007-07-26 Dnavec Corporation Novel protein expression system
KR100725023B1 (ko) * 2006-10-16 2007-06-07 제일모직주식회사 카도계 수지를 함유한 수지 조성물 및 그에 의한 패턴의 제조방법, 이를 이용한 컬러필터
AU2009279334B2 (en) 2008-08-07 2014-07-10 Her Majesty The Queen In Right Of Canada As Represented By The Minister Of Health Optimized promoter sequence
CN102436142B (zh) 2010-09-29 2013-11-06 第一毛织株式会社 黑色光敏树脂组合物以及使用其的光阻层
KR101367253B1 (ko) 2010-10-13 2014-03-13 제일모직 주식회사 감광성 수지 조성물 및 이를 이용한 차광층
CN102028943A (zh) * 2010-12-08 2011-04-27 中国人民解放军军事医学科学院微生物流行病研究所 一种呼吸道合胞病毒样颗粒疫苗及其制备方法
KR101486560B1 (ko) 2010-12-10 2015-01-27 제일모직 주식회사 감광성 수지 조성물 및 이를 이용한 차광층
KR101453769B1 (ko) 2010-12-24 2014-10-22 제일모직 주식회사 감광성 수지 조성물 및 이를 이용한 컬러 필터
KR101344786B1 (ko) 2011-12-02 2013-12-26 제일모직주식회사 컬러필터용 감광성 수지 조성물 및 이를 이용한 컬러필터
FR2986536A1 (fr) * 2012-02-08 2013-08-09 Lfb Biotechnologies Unites de transcription et leur utilisation dans des vecteurs d'expression (cho)
PL2711426T3 (pl) * 2012-09-24 2015-09-30 Lonza Biologics Plc Wektory ekspresyjne zawierające chimeryczne sekwencje promotora i wzmacniacza wirusa cytomegalii
KR20140076320A (ko) 2012-12-12 2014-06-20 제일모직주식회사 감광성 수지 조성물 및 이를 이용한 블랙 스페이서
WO2014140924A2 (en) * 2013-03-12 2014-09-18 International Park Of Creativity Biological devices and methods for increasing the production of lycopene from plants
HUE046454T2 (hu) 2014-03-21 2020-03-30 Genzyme Corp Retinitis pigmentosa génterápia
CN104404005A (zh) * 2014-12-22 2015-03-11 天津瑞普生物技术股份有限公司 禽流感病毒ha基因重组腺病毒的制备方法
CA3070299A1 (en) 2017-07-26 2019-01-31 Oncorus, Inc. Oncolytic viral vectors and uses thereof
CN109929847B (zh) * 2019-02-27 2023-08-15 苏州系统医学研究所 一种pex26基因、蛋白及其应用
CN114040979B (zh) * 2019-06-21 2024-06-28 国立大学法人大阪大学 稳定地保持外源基因的人工重组rna病毒的制作方法
KR20220078650A (ko) * 2019-10-10 2022-06-10 온코루스, 인크. 이중 바이러스 및 이중 종양용해 바이러스 및 치료 방법
CN117535291A (zh) * 2021-09-08 2024-02-09 北京锦篮基因科技有限公司 一种高表达活性的组成型启动子及其应用

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU629554B2 (en) * 1988-06-24 1992-10-08 Juridical Foundation The Chemo-Sero-Therapeutic Research Institute Exogenous gene expression vector containing chick beta-actin gene promoter
JP2824434B2 (ja) 1989-11-28 1998-11-11 財団法人化学及血清療法研究所 新規発現ベクター
JP2001283451A (ja) 1992-05-13 2001-10-12 Matsushita Electric Ind Co Ltd 記録方法および再生方法
JPH06230752A (ja) 1992-09-14 1994-08-19 Hitachi Ltd 表示装置の駆動方法
JPH06230753A (ja) 1993-01-29 1994-08-19 Fuji Xerox Co Ltd 画像処理装置
JPH06233879A (ja) 1993-02-08 1994-08-23 Brother Ind Ltd ロックミシンのかがり方式変換装置
US5798100A (en) 1994-07-06 1998-08-25 Immunomedics, Inc. Multi-stage cascade boosting vaccine
DE69634904T2 (de) * 1995-10-31 2006-05-18 Dnavec Research Inc., Tsukuba Negativstrand rna virus mit selbständiger replikationsaktivität
WO1997016539A1 (fr) 1995-11-01 1997-05-09 Dnavec Research Inc. Virus sendai recombinant
AU1733697A (en) 1996-02-29 1997-09-16 Takara Shuzo Co., Ltd. Method of purifying and removing viruses
US6596529B1 (en) * 1997-05-02 2003-07-22 Uab Research Foundation Manipulation of negative stranded RNA viruses by rearrangement of their genes and uses thereof
US6187994B1 (en) 1997-11-18 2001-02-13 Pioneer Hi-Bred International, Inc. Compositions and methods for genetic modification of plants
CN1198934C (zh) 1998-08-11 2005-04-27 株式会社载体研究所 具有接触侵入能力的rna病毒载体
WO2000070070A1 (fr) 1999-05-18 2000-11-23 Dnavec Research Inc. Vecteur de virus paramyxoviridae defectueux dans un gene enveloppe
US7226786B2 (en) * 1999-05-18 2007-06-05 Dnavec Research Inc. Envelope gene-deficient Paramyxovirus vector
US20020169306A1 (en) * 1999-05-18 2002-11-14 Kaio Kitazato Envelope gene-deficient paramyxovirus vector
US20030022376A1 (en) * 1999-05-18 2003-01-30 Kaio Kitazato Paramyxovirus-derived RNP
WO2000070055A1 (fr) 1999-05-18 2000-11-23 Dnavec Research Inc. Ribonucleoproteine derivee d'un paramyxovirus
US20030166252A1 (en) * 1999-05-18 2003-09-04 Kaio Kitazato Paramyxovirus-derived RNP
EP1067179A1 (en) 1999-07-09 2001-01-10 Pierre Fabre Medicament Method to select attenuated paramyxoviridae useful for vaccines and therapeutics
DE60035885T2 (de) 1999-09-06 2008-05-08 Dnavec Research Inc., Tsukuba Paramyxoviren, die eine modifizierte transkriptionsstartsequenz umfassen
JP4791651B2 (ja) 2000-05-18 2011-10-12 株式会社ディナベック研究所 外来遺伝子導入用パラミクソウイルスベクター
CN1633599A (zh) 2001-09-18 2005-06-29 株式会社载体研究所 检查和制造降低了粒子形成能力的(-)链rna载体的方法
AU2003234775A1 (en) 2002-04-30 2003-11-17 Dnavec Research Inc. Vector with modified protease-dependent tropism
JPWO2006001120A1 (ja) * 2004-06-24 2008-04-17 株式会社ディナベック研究所 マイナス鎖rnaウイルスを含む抗癌剤
KR20080031167A (ko) * 2005-04-20 2008-04-08 디나벡크 가부시키가이샤 알츠하이머병 치료용의 고도로 안전한 비강투여용 유전자백신
KR20090027693A (ko) * 2006-05-31 2009-03-17 디나벡크 가부시키가이샤 알츠하이머병 치료제

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
INOUE M. ET AL.: "A new Sendai virus vector deficient in the matrix gene does not form virus particles and shows extensive cell-to-cell spreading", J. VIROL., vol. 77, no. 11, 2003, pages 6419 - 6429, XP002288853 *
INOUE M. ET AL.: "Nontransmissible virus-like particle formation by -deficient Sendai virus is temperature sensitive and reduced by mutations in M and HN proteins", J. VIROL., vol. 77, no. 5, 2003, pages 3238 - 3246, XP002986305 *
ISENI F. ET AL.: "Sendai virus trailer RNA binds TIAR, a cellular protein involved in virus-induced apoptosis", THE EMBO J., vol. 21, no. 19, 2002, pages 5141 - 5150, XP002986302 *
See also references of EP1717317A4 *
TAKEDA A. ET AL.: "Protective efficacy of an AIDS vaccine, a single DNA priming followed by a single booster with a recombinant replication-defective Sendai virus vector, in a macaque AIDS model", J. VIROL., vol. 77, no. 17, 2003, pages 9710 - 9715, XP002986304 *
WANING D.L. ET AL.: "Roles for the cytoplasmic tails of the fusion and hemagglutinin-neuraminidase proteins in budding of the paramyxovirus simian virus 5", J. VIROL., vol. 76, no. 18, 2002, pages 9284 - 9297, XP002986303 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006134917A1 (ja) 2005-06-14 2006-12-21 Dnavec Corporation 抗体の作製方法
WO2007139178A1 (ja) 2006-05-31 2007-12-06 Dnavec Corporation アルツハイマー病治療薬
WO2008007581A1 (fr) 2006-07-13 2008-01-17 Dnavec Corporation Vecteur de virus paramyxoviridae non répliquant
WO2008096811A1 (ja) 2007-02-07 2008-08-14 Dnavec Corporation 弱毒化マイナス鎖rnaウイルス
WO2008136438A1 (ja) 2007-04-27 2008-11-13 Kyushu University, National University Corporation 遺伝子治療用ウイルスベクター
EP3075850A1 (en) 2008-07-16 2016-10-05 IP Pharma Co., Ltd. Method for production of reprogrammed cell using chromosomally unintegrated virus vector
WO2010008054A1 (ja) 2008-07-16 2010-01-21 ディナベック株式会社 染色体非組み込み型ウイルスベクターを用いてリプログラムされた細胞を製造する方法
WO2010050586A1 (ja) 2008-10-31 2010-05-06 ディナベック株式会社 組み換え蛋白質の発現を増強する方法
WO2012029770A1 (ja) 2010-08-30 2012-03-08 ディナベック株式会社 多能性幹細胞を誘導するための組成物およびその使用
KR101038126B1 (ko) 2010-11-30 2011-05-31 주식회사 엘지생명과학 새로운 융합 프로모터 및 이를 포함하는 재조합 벡터
US9234211B2 (en) 2010-11-30 2016-01-12 Lg Life Sciences Ltd. Hybrid promoter and recombinant vector comprising the same
WO2012138340A1 (en) 2011-04-07 2012-10-11 Hewlett-Packard Development Company, L.P. Systems and methods for determining a power phase and/or a phase rotation
WO2015046229A1 (ja) 2013-09-24 2015-04-02 ディナベック株式会社 多能性幹細胞の誘導効率を改善する方法
WO2018092887A1 (ja) 2016-11-17 2018-05-24 国立感染症研究所長が代表する日本国 非感染性パラミクソウイルス粒子を用いた感染症ワクチン
WO2019017438A1 (ja) 2017-07-21 2019-01-24 株式会社Idファーマ 標的配列を改変するためのポリヌクレオチドおよびその使用
WO2019142933A1 (ja) 2018-01-22 2019-07-25 国立感染症研究所長が代表する日本国 選択的cd8陽性t細胞誘導ワクチン抗原
WO2022050419A1 (ja) 2020-09-04 2022-03-10 Heartseed株式会社 iPS細胞の品質改善剤、iPS細胞の製造方法、iPS細胞、及びiPS細胞製造用組成物
WO2022138964A1 (ja) 2020-12-25 2022-06-30 国立大学法人京都大学 体細胞からのナイーブ型ヒトiPS細胞製造方法
WO2023277069A1 (ja) 2021-06-30 2023-01-05 株式会社レプリテック マイナス鎖rnaウイルスベクターの製造方法および製造されたマイナス鎖rnaウイルスベクター
WO2024004235A1 (ja) * 2021-06-30 2024-01-04 株式会社レプリテック マイナス鎖rnaウイルスベクターの製造方法および製造されたマイナス鎖rnaウイルスベクター
WO2023127871A1 (ja) 2021-12-27 2023-07-06 株式会社レプリテック 温度感受性のマイナス鎖rnaウイルスまたはウイルスベクターおよびそのrnaゲノム

Also Published As

Publication number Publication date
JP2012130346A (ja) 2012-07-12
CA2553976C (en) 2013-09-24
EP2434020A3 (en) 2012-07-25
CN1934260B (zh) 2013-03-13
EP1717317A4 (en) 2009-02-11
AU2005206410A1 (en) 2005-08-04
CA2553976A1 (en) 2005-08-04
JP5438149B2 (ja) 2014-03-12
KR101279677B1 (ko) 2013-06-27
EP1717317A1 (en) 2006-11-02
EP2434020A2 (en) 2012-03-28
EP2434020B1 (en) 2014-11-05
JP4999330B2 (ja) 2012-08-15
US8741650B2 (en) 2014-06-03
CN1934260A (zh) 2007-03-21
JPWO2005071092A1 (ja) 2007-09-06
KR20070004636A (ko) 2007-01-09
US20070161110A1 (en) 2007-07-12

Similar Documents

Publication Publication Date Title
JP4999330B2 (ja) サイトメガロウイルスエンハンサーおよびニワトリβ−アクチンプロモーターを含むハイブリッドプロモーターを利用したマイナス鎖RNAウイルスベクターの製造方法
JP3602058B2 (ja) エンベロープ遺伝子欠損パラミクソ科ウイルスベクター
JP3766596B2 (ja) パラミクソウイルスに由来するrnp
US20040121308A1 (en) Paramyxoviruses comprising modified transcription start sequence
WO2005071085A1 (ja) ウイルスベクターの製造方法
EP1561819A1 (en) Method of transferring gene into t cells
KR20090052857A (ko) 비복제형 파라믹소바이러스과 바이러스 벡터
WO2002031138A1 (fr) Vecteur de paramyxovirus permettant de transferer un gene etranger dans le muscle squelettique
WO2006137517A1 (ja) 幼少個体への遺伝子導入用ベクター
JPWO2008096811A1 (ja) 弱毒化マイナス鎖rnaウイルス
JP4791651B2 (ja) 外来遺伝子導入用パラミクソウイルスベクター
EP1642966B1 (en) Minus strand rna viral vectors carrying a gene with altered hypermutable regions
WO2004067752A1 (ja) リボザイムをコードするパラミクソウイルスベクターおよびその利用

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2005206410

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2553976

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2005517263

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2005206410

Country of ref document: AU

Date of ref document: 20050120

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005206410

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2005703933

Country of ref document: EP

Ref document number: 1020067016708

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580009182.8

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2005703933

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007161110

Country of ref document: US

Ref document number: 10586142

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020067016708

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10586142

Country of ref document: US