WO2019017438A1 - 標的配列を改変するためのポリヌクレオチドおよびその使用 - Google Patents

標的配列を改変するためのポリヌクレオチドおよびその使用 Download PDF

Info

Publication number
WO2019017438A1
WO2019017438A1 PCT/JP2018/027141 JP2018027141W WO2019017438A1 WO 2019017438 A1 WO2019017438 A1 WO 2019017438A1 JP 2018027141 W JP2018027141 W JP 2018027141W WO 2019017438 A1 WO2019017438 A1 WO 2019017438A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
donor polynucleotide
cell
polynucleotide
vector
Prior art date
Application number
PCT/JP2018/027141
Other languages
English (en)
French (fr)
Inventor
好司 草野
孝行 木藤古
井上 誠
亜峰 朱
豊隆 森
Original Assignee
株式会社Idファーマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Idファーマ filed Critical 株式会社Idファーマ
Priority to AU2018302668A priority Critical patent/AU2018302668A1/en
Priority to US16/631,407 priority patent/US20200216858A1/en
Priority to JP2019530595A priority patent/JP6947825B2/ja
Priority to CA3070552A priority patent/CA3070552A1/en
Priority to CN201880061156.7A priority patent/CN111479920A/zh
Priority to EP18835736.2A priority patent/EP3656858A4/en
Publication of WO2019017438A1 publication Critical patent/WO2019017438A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • C12N15/907Stable introduction of foreign DNA into chromosome using homologous recombination in mammalian cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/155Paramyxoviridae, e.g. parainfluenza virus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/102Mutagenizing nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/005Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/16011Herpesviridae
    • C12N2710/16611Simplexvirus, e.g. human herpesvirus 1, 2
    • C12N2710/16641Use of virus, viral particle or viral elements as a vector
    • C12N2710/16643Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/18011Paramyxoviridae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/18011Paramyxoviridae
    • C12N2760/18811Sendai virus
    • C12N2760/18841Use of virus, viral particle or viral elements as a vector
    • C12N2760/18842Use of virus, viral particle or viral elements as a vector virus or viral particle as vehicle, e.g. encapsulating small organic molecule
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/18011Paramyxoviridae
    • C12N2760/18811Sendai virus
    • C12N2760/18841Use of virus, viral particle or viral elements as a vector
    • C12N2760/18843Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/10Plasmid DNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2810/00Vectors comprising a targeting moiety
    • C12N2810/50Vectors comprising as targeting moiety peptide derived from defined protein
    • C12N2810/60Vectors comprising as targeting moiety peptide derived from defined protein from viruses
    • C12N2810/6072Vectors comprising as targeting moiety peptide derived from defined protein from viruses negative strand RNA viruses

Definitions

  • the present invention relates to molecular genetics technology and the like which precisely modify gene sequences for the purpose of gene therapy, breeding, bioengineering and the like.
  • ZFN method, TALEN method and CRISPR / Cas 9 method are known as techniques for improving the frequency of gene modification by cleaving the nucleotide sequence site of the genome targeted for gene modification (Morton, J., et al. Cerak, T. et al., Nucleic Acids Res. 39, e82 (2011); Cong, L. et al., Science 339, .. Proc. Natl. Acad. Sci. USA 103, 16370-16375 (2006); 819-823 (2013); Mali, P. et al., Science 339, 823-826 (2013)).
  • the target site is correctly converted to the modified base sequence to be introduced, and other modifications are included. It is not easy to get no cells.
  • drug selection marker genes are generally used to select cells in which the target modified sequence has been introduced into the genome.
  • a vector is constructed in which the marker gene is inserted in the base sequence of the intron adjacent to the base sequence of the exon to be modified, the vector is introduced into cells to induce homologous recombination, and then drug selection is performed. It will be.
  • the marker gene will remain in the base sequence of the intron integrated into the cell's genome.
  • a donor DNA in which a drug resistance marker gene is inserted between site specific recombinant enzyme recognition sequences (LoxP and FRT) in the intron immediately adjacent to the target exon modified nucleotide sequence Is used.
  • site specific recombinant enzyme recognition sequences LoxP and FRT
  • the donor DNA is introduced into cells, the inside of the exon-intron region is cut, and a cell clone integrated into the genome over a long chain from the intron drug resistance marker gene to the exon-modified nucleotide sequence is isolated, the cell clone is In contrast, site-specific recombination enzyme (Cre, Flp) gene is introduced to obtain cells lacking only the drug resistance marker (Li, H. L. et al., Stem Cell Reports 4, 143- 154 (2015)).
  • Another method uses a donor DNA in which a drug resistance marker gene is inserted between a transposase recognition sequence (PiggyBac ITR) in an intron immediately adjacent to the target exon-modified nucleotide sequence.
  • the donor DNA is introduced into cells, the exon-intron region is cut, and a cell clone integrated into the genome over a long chain from the intron drug resistance marker gene to the exon-modified nucleotide sequence is isolated,
  • transposase (PiggyBac transposase) gene is introduced to obtain cells from which drug resistance marker and recognition sequence (PiggyBac ITR) are missing (Yusa, K. et al., Nature 478, 391-394 (2012)) .
  • this method has two problems.
  • One is that the insertion position of the selection marker gene flanked by PiggyBac ITR is limited to the TTAA sequence, in other words that it can not be applied if the TTAA sequence is not present near the modification target site, and the other is the application.
  • an additional step of introducing into cells the vector expressing transposase etc. is necessary, and the introduced transposase expression vector is removed from the cells. The procedure is complicated because it is also necessary to confirm the
  • the target site of the genome of the target cell to be subjected to genome editing is specifically cleaved, and at that site, homologous recombination occurs with the target sequence in the donor plasmid.
  • homologous recombination occurs with the target sequence in the donor plasmid.
  • the present invention relates to a donor polynucleotide for efficiently modifying a genomic sequence, a method for producing a genetically modified cell using the donor polynucleotide, and the like.
  • Off-target imprecise recombination As described above, because the enzyme currently used for genome editing cleaves the target sequence of chromosome, Off-target that cleaves a chromosomal site other than the target is not effective. There are concerns about the risk that will occur and the risk of introducing indel when the truncated genome is repaired. In order to avoid this problem, the present inventors considered not to cut the chromosome but to cut only the donor plasmid. For example, after the modification of the donor plasmid, the homologous region containing the sequence is cleaved before introduction, and the linear donor plasmid is introduced into the cell, or the circular donor plasmid is introduced into the cell and then sequence-specifically provided in the cell.
  • Cleavage of the plasmid does not result in cleavage of the target sequence, or off-target sequence (On / Off-Target) similar to the target sequence, and thus does not cause incorrect rebinding, so that indel is introduced. It is a technology suitable for precise gene modification such as gene therapy.
  • the two selectable marker genes are disposed in the backbone of the donor plasmid, the entire donor plasmid is inserted by homologous recombination occurring in the target sequence region, and the nucleotide sequence after modification from the donor plasmid and the chromosome
  • the base sequence before modification sandwiches the backbone region of the donor plasmid to form a vector target insert structure aligned in tandem. Since the post-modification base sequence and the pre-modification base sequence contained in this intermediate structure are susceptible to homologous recombination, a single cell consisting only of the post-modification base sequence spontaneously occurs only by culturing cells containing this structure in the genome. Replace to structure. Since this process does not require site-specific recombination enzymes, transposases, etc., it is possible to obtain the target cell extremely simply, and there is no possibility that the specific recombination recognition sequence will remain. Even better.
  • the target region on the chromosomal locus and the donor plasmid are cleaved by cleaving the homologous region containing the sequence after modification of the donor plasmid before introducing it and introducing a linear donor plasmid. Avoid cleavage of both of the derived target sequences.
  • a recognition sequence of a sequence-specific cleavage enzyme represented by, for example, I-SceI is inserted into a genomic fragment in a donor plasmid, and before, after, introduction of the donor plasmid into cells.
  • the sequence specific cleavage enzyme gene is expressed in cells to cleave the recognition sequence in the donor plasmid. Since the recognition sequence of the sequence-specific cleavage enzyme is not present in the corresponding region on the chromosomal locus of the cell, both cleavage of the target sequence on the chromosomal locus and the sequence derived from the donor plasmid is avoided, and the homologous recombination efficiency is achieved. Can be prevented.
  • the present invention provides a new genome editing technology that solves the problems of conventional genome editing technology, and it is possible to simply and accurately introduce only target modifications into the genome. Become.
  • the present invention relates to a novel donor polynucleotide for modifying a genomic sequence, its use and the like, and more specifically to the inventions described in the respective claims.
  • the invention consisting of two or more arbitrary combinations of the inventions recited in the claims, which also refer to the same claim, is also an invention contemplated in the present specification. That is, the present invention relates to the following inventions.
  • a donor polynucleotide for modifying a genomic sequence comprising a genomic fragment comprising one or more modifications, wherein both ends of the genomic fragment are linked by a polynucleotide, and in the linked polynucleotide, The genome fragment is cleavable, and the cleavable site is separated to be both ends of the donor polynucleotide chain by including both the positive selection marker gene and the negative selection marker gene, whereby the donor polynucleotide is linear.
  • a donor polynucleotide, wherein the sites are linked in a donor polynucleotide, and the donor polynucleotide may be circular.
  • [5] The donor polynucleotide according to any one of [1] to [4], wherein the linked polynucleotide is a plasmid polynucleotide.
  • [6] The donor polynucleotide according to any one of [1] to [5], which does not contain the genomic sequence of a cell targeted between the positive selection marker gene and the negative selection marker gene.
  • [7] The donor polynucleotide according to any one of [1] to [6], wherein a positive selection marker gene and a negative selection marker gene are fused, and the positive selection marker and the negative selection marker are expressed as a fusion protein.
  • a method of modifying a genomic sequence comprising the steps of: (a) introducing the donor polynucleotide according to any one of [1] to [7] into a cell; (b) selecting the donor polynucleotide according to a positive selection marker A method comprising the steps of: selecting a cell into which is introduced, and (c) selecting a cell from which the linked polynucleotide has been removed by a negative selection marker. [9] The method according to [8], which comprises the step of introducing into the cell a linear donor polynucleotide in which the site of the donor polynucleotide has been cleaved in step (a).
  • a cell from which a fragment derived from has a structure in which the linked polynucleotide is linked in an orderly manner and which contains a positive selection marker gene and a negative selection marker gene in the linked polynucleotide.
  • [16] A method for producing a cell whose genome has been modified, which comprises the step of selecting the cell described in [15] with a negative selection marker and selectively selecting the cell from which the linking polynucleotide has been removed.
  • [17] A minus-strand RNA virus vector used in the method according to [12], which encodes an endonuclease which cleaves a cleavage site of a donor polynucleotide.
  • the vector according to [17] which is a Sendai virus vector.
  • a composition for use in the method of [12] which comprises the vector of any one of [17] to [19].
  • the present invention provides molecular genetics technology that precisely modifies gene sequences.
  • the present invention can be used in various situations such as gene therapy, breeding, and biotechnological creation.
  • FIG. 1 shows a method of separating genetic variants from one of the vector target inserts by ganciclovir selection.
  • Gene modification method It is a figure which shows the problem of a conventional method, and the advantage of this invention.
  • the present invention provides novel donor polynucleotides for modifying genomic sequences.
  • the polynucleotide comprises a genomic fragment comprising one or more modified sites, both ends of the genomic fragment are linked by a polynucleotide (referred to as a linked polynucleotide in the present invention), in the linked polynucleotide.
  • a polynucleotide referred to as a linked polynucleotide in the present invention
  • the genomic fragment is derived, and it may be, for example, the genome of a desired eukaryote, such as genomic fragments derived from yeast, animal cells, plant cells and the like.
  • a genomic fragment derived from an animal cell more preferably a mammalian cell, such as a primate cell, and specifically, a genomic fragment of a mouse, rat, monkey, and human cell.
  • the genome fragment can be cleaved at any position.
  • the cleavable site may be separated to be both ends of the donor polynucleotide chain, whereby the donor polynucleotide may be linear, and the site is linked in the donor polynucleotide so that the donor polynucleotide is circular. It may be When the cleavable site is cleaved and the donor polynucleotide is linearized, the genome fragment of one polynucleotide fragment is split into two fragments, each of which is at both ends of the linked polynucleotide. Combined with That is, the linked polynucleotide has a structure sandwiched between a pair of genome sequences.
  • one end of the genomic fragment is linked to one end of the linked polynucleotide, and the other end of the genomic fragment is linked to the other end of the linked polynucleotide to form a cyclic structure.
  • the genomic fragment included in the donor polynucleotide may include one or more modifications.
  • the altered site means a site having a sequence different from the corresponding site of the genome of the target cell. These modified sites are different from the genome sequence of the target cell to be subjected to genome editing, and introduction of this donor polynucleotide results in modification of the genome sequence of the target cell.
  • the number of modification sites is not particularly limited, and may be one or more, for example, 2, 3, 4, 5, 10 or more.
  • each modification may be one or more of base substitution, base insertion, and / or base deletion, or a combination thereof.
  • both ends of the genomic fragment contained in the donor polynucleotide are linked by the polynucleotide.
  • the linking polynucleotide is linked so as to form a series of double stranded nucleic acids with the genomic fragment.
  • sequence of the linked polynucleotide includes plasmid vectors, phage vectors, cosmid vectors, viral vectors, artificial chromosome vectors (eg, including yeast artificial chromosome vector (YAC) and bacterial artificial chromosome vector (BAC)), etc. It may be a sequence derived from.
  • the donor polynucleotide of the present invention is also referred to as a donor vector (donor vector).
  • donor vector When the vector is a plasmid vector, the donor polynucleotide of the present invention is also referred to as a donor plasmid (donor plasmid).
  • the donor polynucleotide that functions as a vector can be maintained in a suitable host (cell or E. coli). Also, if the vector is capable of replication, the donor polynucleotide can be replicated in the host.
  • the donor polynucleotide of the present invention is preferably capable of autonomous replication in a suitable host.
  • the linked polynucleotide may contain the genome sequence of the target cell to be subjected to genome editing, but as described above, the target genomic sequence to be modified is connected to both ends of the linked polynucleotide. Genomic sequences, which may be included in the linked polynucleotide, are not target sequences to be altered.
  • the length of the linked polynucleotide there are no particular limitations on the length of the linked polynucleotide, and a polynucleotide of appropriate length can be appropriately used.
  • the length of the connecting polynucleotide may vary depending on the type of vector.
  • the length of the linked polynucleotide is, for example, 1 kb or more, 2 kb or more, 3 kb or more, 5 kb or more, 7 kb or more, 10 kb or more, It may be 20 kb or more, or 30 kb or more.
  • it may be 100 kb or less, 800 kb or less, 70 kb or less, 60 kb or less, 50 kb or less, 40 kb or less, 30 kb or less, 20 kb or less, 10 kb or less, or 8 kb or less.
  • the linked polynucleotide comprises a positive selection marker gene and a negative selection marker gene.
  • a positive selection marker gene is a gene encoding a marker used to select cells holding the marker (and / or remove cells without the marker)
  • a negative selection marker gene is A gene encoding a marker that is used to eliminate cells that retain the marker (and / or select cells that do not have the marker).
  • the positive selection marker gene and the negative selection marker gene can be selected appropriately.
  • various drug resistance genes such as Hyg (hygromycin resistance gene), Puro (puromycin resistance gene), ⁇ -geo (fusion gene of ⁇ -galactosidase and neomycin resistance gene), etc.
  • Negative selection marker genes include, for example, genes that directly or indirectly induce inhibition of cell growth or survival, and specifically, herpes simplex virus-derived thymidine kinase (TK) gene, diphtheria toxin A fragment (DT) -A) Gene, cytosine deaminase (CD) gene, etc., but not limited thereto.
  • TK herpes simplex virus-derived thymidine kinase
  • DT diphtheria toxin A fragment
  • CD cytosine deaminase
  • the donor polynucleotide used in conventional genome editing generally retains the positive selection marker gene in the genome fragment contained in the donor polynucleotide, and in the case of disposing the negative selection marker gene, it is outside the genome fragment. Be placed.
  • the donor polynucleotide of the present invention is characterized in that it contains both a positive selection marker gene and a negative selection marker gene in the linked polynucleotide. That is, it is preferable that the positive selection marker gene and the negative selection marker gene do not contain the genomic sequence of the target cell, or if so, have such a short length that recombination does not occur.
  • the length of such genomic sequences is, for example, within 1.0 kb, 0.8 kb, 0.6 kb, 0.5 kb, 0.4 kb, 0.3 kb, 0.2 kb, or 0.1 kb.
  • the positive selection marker gene and the negative selection marker gene contained in the linked polynucleotide are preferably in close proximity to each other.
  • the proximity between the two can prevent (or reduce the frequency of) the occurrence of recombination between the positive selection marker gene and the negative selection marker gene.
  • the distance between the positive selection marker gene and the negative selection marker gene is, for example, 10 kb or less, preferably 8 kb or less, more preferably 7 kb or less, 5 kb or less, 4 kb or less , 3 kb, 2 kb, 1 kb, or 0.5 kb.
  • the positive selection marker and the negative selection marker are transcribed from the same promoter. And most preferably, the positive selection marker gene and the negative selection marker gene are fused, and the positive selection marker and the negative selection marker are expressed as a fusion protein.
  • the genomic fragment contained in the donor polynucleotide can be cleaved at any position.
  • "cleavable” means that the position can be artificially cut. Cleavage preferably occurs uniquely at that position in the donor polynucleotide, ie, only at that position in the donor polynucleotide.
  • the cleavable genomic fragment includes, for example, the case where there is a restriction enzyme site in the genomic fragment. In that case, the position can be cleaved by the restriction enzyme.
  • the restriction enzyme site is preferably contained only at that site in the donor polynucleotide. Furthermore, if a cleavage sequence is added to the genome fragment, that site can be made a cleavable site.
  • the desired restriction enzyme cleavage sequence for example, NotI site), meganuclease cleavage sequence (I-SceI site, PI-SceI site, etc.), other cleavage enzyme recognition sequences, etc. may be used. Can.
  • the cleavage enzyme may be a natural nuclease or an artificial nuclease.
  • Cleavage may be single strand cleavage or double strand cleavage, preferably double strand cleavage. In the case of double stranded cleavage, the cleavage site may form a blunt end or may form a 5 'or 3' overhang.
  • a nuclear localization signal (nls) may be added as appropriate.
  • the nls amino acid sequence added to the NH 2 terminus of I-SceI nuclease shown in Example 3 is MDKAELIPEPPKPKKKRKVELGT (SEQ ID NO: 42), but is not limited to this sequence.
  • a specific example includes, but is not limited to, a homing endonuclease I-SceI (GenBank: EU004203.1) or a cleavage sequence of PI-SceI (GenBank: Z74233.1) derived from Saccharomyces cerevisiae.
  • the sequence corresponds to the genomic fragment of the cell to which the donor polynucleotide is to be administered, ie, the corresponding genomic fragment contained in the donor polynucleotide (ie, It is preferable that the genomic fragment of the cell before modification with the donor polynucleotide is not included in the sequence of the region corresponding to the genomic fragment contained in the donor polynucleotide.
  • the cleavage sequence is not included in the entire genome of the target cell, or is sufficiently low in frequency (eg, 10 or less, 5 or less, 3 or less, 2 or less, or 1 or less in the entire genome) Preferably, it can be reasonably and / or statistically expected to be included only in the following places.
  • the cleavage sequence of I-SceI is well known and the sequence of 5'- TAGGGATAACAGGGTAAT-3'18-bp (SEQ ID NO: 1) is used (Colleaux, L. et al. Recognition and cleavage site of the intron -encoded omega transposase. Proc. Natl. Acad. Sci. USA 85, 6022-6026 (1988)). If BLAST SEARCH is performed using the sequence as a query, no sequence matching the sequence is found in the human genome and transcript on the database.
  • modified sites targeted modified sites
  • the genomic fragment of the donor polynucleotide there is no particular limitation on the positional relationship between one or more modified sites (targeted modified sites) contained in the genomic fragment of the donor polynucleotide and the cleavable site, but preferably all of the modified sites are cleavable sites. It is concentrated on one side. By doing so, when homologous recombination with the genome of the target cell occurs near the cleavage site of the donor polynucleotide, multiple modified sites will be assembled together without being split, so that the target multiple It becomes possible to obtain the cells into which the modified site has been introduced by one operation.
  • the genome having the altered site and the genome originally possessed by the cell are arranged in random order before and after the linking polynucleotide.
  • the cleavable site in the genomic fragment contained in the donor polynucleotide is either upstream (ie, 5 'to the sense strand of the gene to be modified) or downstream (ie, to be modified) of the site of modification. It is included in any aspect that it is placed on the 3 'side of the sense strand of the gene to be expressed).
  • the length of the genomic fragment contained in the donor polynucleotide there is no particular restriction on the length of the genomic fragment contained in the donor polynucleotide, and if it is a length sufficient to cause homologous recombination with the cell genome when introduced into a cell, a fragment of the desired length is used be able to.
  • the length of the genomic fragment contained in the donor polynucleotide is, for example, 0.05 kb or more, 0.5 kb or more, 1 kb or more, 1.5 kb or more, 2 kb or more, 3 kb or more, 4 kb or more, or 5 kb or more, for example 10000 kb or less, 5000 kb or less , 500 kb or less, 300 kb or less, 200 kb or less, 100 kb or less, 80 kb or less, 50 kb or less, 30 kb or less, 20 kb or less, or 10 kb or less.
  • a plurality of mutations over a wide range can also be collectively modified by expanding the genome fragment contained in the donor polynucleotide to about several tens of kb or several hundreds of kb corresponding to one locus size.
  • the donor polynucleotides of the invention may comprise such long genomic fragments.
  • the sequence of the genomic fragment contained in the donor polynucleotide has high identity with the corresponding genomic sequence of the target cell, thereby inducing homologous recombination with the genome of the target cell.
  • the sequence of the genomic fragment other than the modified site and cleavage site is usually 90% or more, preferably 95% or more, preferably 96% or more, 97% or more, 98% or more, as the sequence of the corresponding fragment of the genome of the target cell Above, it may have 99% or more, or 100% identity.
  • the length from the cleavable site of the genomic fragment contained in the donor polynucleotide to the closest modification site is usually 10 bases or more, preferably 20 bases or more, 30 bases or more, 40 bases or more, 50 bases or more, 80 100 bases or more, 200 bases or more, 300 bases or more, 400 bases or more, 500 bases or more, 800 bases or more, or 1 kb or more.
  • the length from the modified site closest to the linking polynucleotide to the linking site with the linking polynucleotide is also the same as above.
  • the length from the cleavable site of the genomic fragment contained in the donor polynucleotide to the closest modification site is, for example, 100 bases or more, 150 bases or more, 200 bases or more, 250 bases or more, 300 bases.
  • the length from the cleavable site closest to the linking polynucleotide to the linking site with the linking polynucleotide is, for example, 200 bases or more, 250 bases or more, 300 bases or more, 316 More than bases, 350 bases, 400 bases, 500 bases, 500 bases, 600 bases, 1000 bases, 1200 bases, 1200 bases, 1500 bases, 1500 bases, 1960 bases, 2000 bases, 2000 bases, 2244 bases or more, or 2560 bases or more Is preferred.
  • the invention also relates to methods of altering the genomic sequence of a cell using the donor polynucleotides of the invention.
  • the method comprises the steps of (a) introducing a donor polynucleotide of the present invention into cells, (b) selecting cells into which the donor polynucleotide has been introduced by a positive selection marker, and (c) by a negative selection marker. Selecting the cells from which the ligation polynucleotide has been removed.
  • the method is performed, eg, in vitro (eg, in vitro or ex vivo). In the practice of the present invention in vitro also encompasses ex vivo practice.
  • the cell into which the donor polynucleotide is introduced is a cell having in the genome a sequence having high identity to the sequence of the genomic fragment contained in the donor polynucleotide, and usually the same as the organism from which the genomic fragment contained in the donor polynucleotide is derived. It is a cell of the species.
  • Such cells may be, for example, desired eukaryotic cells, such as animal cells or plant cells, preferably animal cells, more preferably mammalian cells, such as primate cells, in particular Mouse, rat, monkey and human cells are included.
  • the type of cells is not particularly limited, and cells of desired tissue can be used, and genome modification is carried out by introducing donor polynucleotides into differentiated cells, undifferentiated cells, precursor cells, progenitor cells, etc. be able to. It can also be introduced into pluripotent stem cells (eg, induced pluripotent stem cells (iPS cells)) and the like.
  • pluripotent stem cells eg, induced pluripotent stem cells (iPS cells)
  • the donor polynucleotide introduced into the cell may be cyclic or linear.
  • a linear donor polynucleotide is introduced, the cleavable site of the genomic fragment in the donor polynucleotide is cleaved and introduced into cells in a linear manner.
  • the cleavable site of the genomic fragment in the donor polynucleotide is cleaved when introduced into cells or later.
  • a nuclease that cleaves the site can be introduced or expressed in cells.
  • a vector encoding the nuclease can be introduced into cells.
  • the timing is not limited as long as the donor polynucleotide and the nuclease contact each other in the cell and the cleavage reaction occurs, and may be before, simultaneously with, or after introducing the donor polynucleotide into the cell. it can.
  • the nuclease is preferably expressed within 48 hours before and after the donor polynucleotide has been introduced into the cell, and more preferably within 24 hours.
  • the nuclease is preferably expressed within 48 hours before and after the donor polynucleotide is introduced into the cell, and more preferably within 24 hours.
  • genome editing can be efficiently achieved by simultaneously introducing a nuclease-expressing vector and a donor polynucleotide into cells.
  • the vector can be introduced into the cell prior to introducing the donor polynucleotide into the cell, in consideration of the time lag until the expression is sufficiently elevated.
  • the introduction of the donor polynucleotide and / or the vector expressing the nuclease into cells may be carried out by a well-known method, as appropriate, without particular limitation.
  • a well-known method for example, lipofection, electroporation, microinjection, particle cancer method, and viral vector can be used for introduction.
  • a viral vector When a viral vector is used for expression of nuclease, desired viral vector such as retroviral vector, adenoviral vector, adeno-associated virus vector, vaccinia virus vector can be used.
  • a virus vector particularly preferably used in the present invention includes a minus-strand RNA virus vector, and for example, a paramyxovirus vector can be suitably used.
  • Paramyxovirus refers to a virus belonging to Paramyxoviridae (Paramyxoviridae) or a derivative thereof.
  • the Paramyxoviridae family is Paramyxoviridae (Paramyxovirinae) (including Respirovirus genus (also called Paramyxovirus genus), Rubravirus genus, and Mobilivirus genus) and Pneumovirus family (Pneumovirinae) (pneumovirus) (Including Genus and Metapneumovirus).
  • Sendai virus Sendai virus
  • Newcastle disease virus Newcastle disease virus
  • Newcastle disease virus Newcastle disease virus
  • mumps virus Mumps virus
  • measles virus Measles virus
  • RS virus Respiratory syncytial virus
  • rinderpest virus distemper virus
  • monkey parainfluenza virus SV5
  • Sendai virus SeV
  • human parainfluenza virus-1 HPIV-1
  • human parainfluenza virus-3 HPIV-3
  • phocine distemper virus PDV
  • canine distemper virus CDV
  • dolphin molbillivirus DMV
  • peste-des-petits-ruminants virus PDPR
  • measles virus Measles virus
  • rinderpest virus RCV
  • Hendra virus Hendra
  • Nipah virus Nipah virus
  • human parainfluenza virus-2 HPIV-2
  • Simian parainfluenza virus 5 SV5
  • human parainfluenza virus 4a HPIV-4a
  • human parainfluenza virus 4b HPIV-4b
  • mumps virus Mumps
  • Newcastle disease virus NDV
  • Rhabdoviruses include Vesicular stomatitis virus of Rhabdoviridae (Rhabdoviridae), Rabies virus, and the like.
  • the negative strand RNA virus may also be derived from natural strains, wild strains, mutant strains, laboratory passage strains, artificially constructed strains, and the like.
  • the Sendai virus includes Z strain, but is not limited thereto (Medical Journal of Osaka University Vol. 6, No. 1, March 1955 p1-15).
  • any gene possessed by a wild-type virus may be mutated or deleted.
  • Viruses that do not express such envelope proteins are, for example, viruses that can replicate their genome in infected cells but can not form infectious viral particles.
  • Such transferability-deficient viruses are particularly suitable as highly safe vectors.
  • a virus which does not encode in the genome a gene of an envelope protein (spike protein) of either F or HN, or a gene of F and HN (WO00 / 70055 and WO00 / 70070; Li, H.-O Et al., J. Virol. 74 (14) 6564-6569 (2000)).
  • the virus can amplify the genome in infected cells if it encodes at least the proteins necessary for genome replication (eg, the N, P, and L proteins) in the genomic RNA.
  • the gene product deficient or the protein capable of complementing it can be supplied exogenously in virus producing cells (WO 00/70055 and WO 00 / 70070; Li, H.-O. et al., J. Virol. 74 (14) 6564-6569 (2000)).
  • non-infectious viral particles can be recovered by not complementing the defective viral protein at all (WO 00/70070).
  • a viral vector carrying a mutated viral protein gene is also preferable to use as the viral vector.
  • numerous mutations are known in envelope proteins and coat proteins, including attenuated mutations and temperature sensitive mutations.
  • Viruses having these mutant protein genes can be suitably used in the present invention.
  • vectors with reduced cytotoxicity can be used desirably.
  • numerous mutations are known, including attenuated mutations and temperature-sensitive mutations in structural proteins of viruses (NP, M) and RNA synthetases (P, L). Paramyxovirus vectors having these mutant protein genes can be suitably used in the present invention according to the purpose.
  • Sendai virus M protein has a genome encoding a mutant M protein in which any of the above three sites, preferably any two site combination, more preferably all three amino acids are substituted for other amino acids Viruses are preferably used in the present invention.
  • the amino acid mutation is preferably substituted with another amino acid having a different side chain chemical property, for example, BLOSUM 62 matrix (Henikoff, S. and Henikoff, J. G. (1992) Proc. Natl. Acad. Sci. USA 89: 10, 9-1019) is substituted with an amino acid having a value of 3 or less, preferably 2 or less, more preferably 1 or less, more preferably 0.
  • G69, T116 and A183 of Sendai virus M protein can be replaced with Glu (E), Ala (A) and Ser (S) respectively.
  • mutations that are homologous to mutations in the M protein of the measles virus temperature sensitive strain P253-505 (Morikawa, Y. et al., Kitasato Arch. Exp. Med. 1991: 64; 15-30) is there.
  • the mutation may be introduced, for example, using an oligonucleotide or the like according to a known mutation method.
  • preferred mutations of the HN gene include, for example, amino acid substitution at a site arbitrarily selected from the group consisting of positions 262 (A262), 264 (G264), and 461 (K461) of the HN protein of Sendai virus.
  • a virus having a genome encoding a mutant HN protein in which any one of the three sites, preferably any combination of two sites, more preferably all the amino acids at all three sites are replaced with other amino acids is used. It is preferably used. Similar to the above, substitution of amino acids is preferably substitution with other amino acids having different side chain chemical properties.
  • Sendai virus HN proteins A262, G264 and K461 are replaced with Thr (T), Arg (R) and Gly (G), respectively.
  • amino acids 464 and 468 of the HN protein can be mutated (Wright, K. E. et al., Virus Res. 2000: 67 49-57).
  • the Sendai virus may also have mutations in the P gene and / or the L gene.
  • mutations include mutations of Glu (E86) at position 86 of SeV P protein and substitution of other amino acids of Leu (L 511) at position 511 of SeV P protein.
  • substitution of amino acids is preferably substitution with other amino acids having different side chain chemical properties. Specifically, substitution of the 86th amino acid with Lys, substitution of the 511th amino acid with Phe, and the like can be exemplified.
  • substitution of the 1197th Asn (N 1197) and / or 1795th Lys (K 1795) with another amino acid is mentioned for SeV L protein, and the substitution of the amino acid is a side chain as described above. Substitution with other amino acids that differ in their chemical nature is preferred. Specifically, substitution of Ser at amino acid 1197 and substitution of Glu at amino acid 1795 can be exemplified. Mutation of P and L genes can significantly enhance the effects of persistent infectivity, suppression of secondary particle release, or suppression of cytotoxicity. Furthermore, combining the mutations and / or deletions of the envelope protein gene can dramatically increase these effects.
  • L gene includes substitution of SeV L protein with Tyr (Y 1214) at position 1214 and / or Met (M 1602) at position 1602 with other amino acids, and substitution of amino acids is similar to that described above. Substitution with other amino acids of different chemical properties is preferred. Specifically, substitution of Phe at amino acid 1214, substitution of Leu at amino acid 1602, and the like can be exemplified. The mutations exemplified above can be arbitrarily combined.
  • An F gene-deficient or deleted Sendai virus vector which is similar to or lower than, and / or has the same or higher suppression of NTVLP formation at 37 ° C. is preferred in the present invention.
  • the F gene is deleted, mutations of G69E, T116A, and A183S in M protein, mutations of A262T, G264R, and K461G in HN protein, mutations of L511F in P protein, and N1197S in L protein
  • a Sendai virus vector containing a mutation of K1795E in its genome can be suitably used in the present invention.
  • the combination of deletion of the F gene and these mutations is referred to as "TS ⁇ F".
  • L protein amino acid of a site selected arbitrarily from position 942 (Y942), position 1361 (L1361) and position 1558 (L1558) of SeV L protein
  • substitution of amino acids is preferably substitution with other amino acids having different side chain chemical properties.
  • substitution of the 942th amino acid to His substitution of the 1361th amino acid to Cys, substitution of the 1558th amino acid to Ile, and the like can be exemplified.
  • L protein substituted at least at position 942 or 1558 can be suitably used.
  • mutant L protein in which, in addition to position 1558, the position 1361 has been replaced by another amino acid is also suitable.
  • substitution of the amino acid of the site part arbitrarily selected from position 433 (D433), position 434 (R434), and position 437 (K437) of SeV P protein with another amino acid is mentioned. Similar to the above, substitution of amino acids is preferably substitution with other amino acids having different side chain chemical properties. Specifically, substitution of Ala (A) at the 433rd amino acid, substitution of Ala (A) at the 434th amino acid, substitution of Ala (A) at the 437th amino acid, and the like can be exemplified. In particular, P protein in which all three sites are substituted can be suitably used. These mutations can increase the temperature sensitivity of P protein.
  • At least position D of the SeV P protein, R at position 434, and three positions of K at position 437 were substituted for mutant P protein with other amino acids, and L for at least position 1558 of SeV L protein was substituted Sendai virus vector deficient or deficient in F gene encoding mutant L protein (preferably mutant L protein in which L at least at position 1361 is also substituted with another amino acid), and the cytotoxicity is the same or this
  • a Sendai virus vector having a deletion or deletion of an F gene having the same or higher temperature sensitivity as described above and / or below is also suitably used in the present invention.
  • Each viral protein may have mutations at other amino acids (eg, within 10, 5, 4, 4, 3, 2, or 1 amino acid) in addition to the mutations exemplified herein.
  • the cells are usually at a temperature (eg, about 37 ° C., specifically 36.5 to 37.5 ° C., preferably 36.6 to 37.4 ° C., more preferably 36.7 ° C. to 37.3 ° C.
  • the vector can be conveniently removed by culturing in For removal of the vector, culture may be carried out at a slightly elevated temperature (eg 37.5 to 39 ° C., preferably 38 to 39 ° C., or 38.5 to 39 ° C.).
  • the F gene is deleted, mutations of G69E, T116A, and A183S in M protein, mutations of A262T, G264R, and K461G in HN protein, mutations of L511F in P protein, and L
  • the proteins include Sendai virus vectors that contain the N1197S and K1795E mutations in their genome.
  • the F gene is deleted, mutations of G69E, T116A and A183S in M protein, mutations of A262T, G264R and K461G in HN protein, mutation of L511F in P protein and N1197S in L protein
  • ii Mutation of Y942H, L1361C and / or L1558I of L protein
  • the F gene is deleted, mutations of G69E, T116A and A183S in M protein, mutations of A262T, G264R and K461G in HN protein, mutations of L511F in P protein and L protein Examples include Sendai virus vectors that contain the N1197S and K1795E mutations in their genome, and further include any of the following mutations (i) to (iv) in their genome.
  • the nuclease gene When the nuclease gene is carried in a vector, the nuclease gene is either immediately (3 'to the genome) or immediately (5' to the genome) any of the viral genes (NP, P, M, F, HN, or L) Can be inserted into For example, it can be integrated immediately after P gene of Sendai virus, ie, immediately downstream of P gene (immediately 5 'of minus strand RNA genome), but it is not limited thereto.
  • production of a minus strand RNA virus can be carried out using the following known method (WO 97/16539; WO 97/16538; WO 00/70055; WO 00/70070; WO 01/18223; WO 03/025570; WO 2005 WO2006 / 137517; WO2007 / 083644; WO2008 / 007581; Hasan, M. K. et al., J. Gen. Virol. 78: 2813-2820, 1997, Kato, A. et al., 1997, EMBO. J. 16: 578-587 and Yu, D. et al., 1997, Genes Cells 2: 457-466; Durbin, A. P.
  • step (a) following the step of introducing a donor polynucleotide into cells (step (a)), cells carrying the linked polynucleotide (ie, cells carrying a donor polynucleotide) are selected by a positive selection marker.
  • Do (step (b)) This process can be suitably implemented according to the kind of marker. For example, when a drug resistance marker is used, cells are cultured with the drug to select cells expressing the marker. The selection of cells may be to completely separate cell populations expressing positive selection markers from non-expressing cell populations, or even to increase the proportion of cells expressing positive selection markers. Good.
  • the proportion of positively selectable marker-positive cells (or cells into which a donor polynucleotide has been introduced) in all cells is 10 times or more, 50 times or more, 100 times or more, 500 times or more, 1000 times or more, 5000 It will increase by more than twice, more than 10,000 times, more than 50,000 times, or more than 100,000 times.
  • the proportion of positively selectable marker-positive cells (or cells into which a donor polynucleotide has been introduced) in all the cells by the selection is 0.0000001 or more, 0.000001 or more, 0.000001 or more, 0.0001 or more, 0.001 or more, 0.001 or more, 0.01 or more, 0.02 or more, or 0.05 It is preferable that the above be 0.1 or more, 0.2 or more, 0.3 or more, 0.4 or more, 0.5 or more, 0.6 or more, 0.7 or more, 0.8 or more, 0.9 or more, 0.95 or more, 0.98 or more, or 0.99 or more.
  • the region is (a) a genomic fragment originally possessed by the cell-(b) a genomic fragment contained in the donor polynucleotide-(c A) A linked polynucleotide contained in the donor polynucleotide-(d) a genomic fragment contained in the donor polynucleotide-(e) a genomic fragment originally possessed by the cell,
  • the genomic fragment contained in the donor polynucleotide is identical to the genome of the cell except for the target modification site, apparently the same through the linking polynucleotide contained in the donor polynucleotide.
  • the genomic sequence will be in the form of a sequence before and after the linked polynucleotide.
  • such a construct is referred to as a target insertion construct for a donor polynucleotide.
  • a target insertion construct for a donor polynucleotide Depending on the position at which the homologous recombination has occurred, it may be changed depending on the position at which the homologous recombination has occurred, which of the genomic fragments arranged one behind the other via the linking polynucleotide contains the desired modification (ie the modified sequence contained in the donor polynucleotide).
  • the genomic fragment containing the target modification and the genomic fragment originally possessed by the cell are arranged in tandem via the linked polynucleotide.
  • the linked polynucleotide contains a positive selection marker gene and a negative selection marker gene. That is, a cell having a structure in which the donor polynucleotide of the present invention is integrated into the genome, obtained by the method of the present invention is a modified genomic fragment contained in the donor polynucleotide and a corresponding fragment derived from the genome of the cell. It is a cell having a structure in which the linked polynucleotides contained in the donor polynucleotide are arranged in an orderly manner and in which the positive selection marker gene and the negative selection marker gene are contained in the linked polynucleotide.
  • cells from which the linked polynucleotide has been removed by a negative selection marker are selected.
  • the donor polynucleotide of the present invention is introduced into the genome of a cell by homologous recombination, the genomic fragment containing the target modification and the genomic fragment originally possessed by the cell are tandemly connected via the linking polynucleotide. It becomes a lined structure. Since the pair of sequences has high homology, homologous recombination is induced with high efficiency, and as a result, the fragment containing the linked polynucleotide is removed from the genome. There is no need to take special action to cause this reaction.
  • Culturing the cells produces cells from which the ligation polynucleotide has been removed. And, by utilizing the negative selection marker gene in the linked polynucleotide, cells in which the linked polynucleotide has been removed from the genome can be positively selected.
  • This step can also be appropriately carried out depending on the type of negative selection marker.
  • the cells are cultured with ganciclovir, and cells which do not express the marker (or cells from which the linked polynucleotide has been removed) are selected.
  • the population of cells not expressing the negative selection marker or the cells from which the linking polynucleotide has been removed
  • the population of cells not expressing the negative selection marker is completely derived from the population of cells expressing the negative selection marker (or the cells from which the linking polynucleotide has not been removed) Or to increase the proportion of cells which do not express the negative selection marker (or cells from which the linking polynucleotide has been removed).
  • the proportion of cells which do not express the negative selection marker (or cells from which the linked polynucleotide has been removed) in all cells is 10 times or more, 50 times or more, 100 times or more, 500 times or more, 1000 times or more , 5000 times or more, 10000 times or more, 50000 times or more, or 100,000 times or more.
  • the proportion of cells not expressing the negative selection marker in all cells (or cells from which the linked polynucleotide has been removed) by the selection is 0.00001 or more, 0.0001 or more, 0.001 or more, 0.01 or more, 0.01 or more, 0.02 or more, 0.05 or more, 0.1 or more 0.2 or more, 0.3 or more, 0.4 or more, 0.5 or more, 0.6 or more, 0.7 or more, 0.8 or more, 0.9 or more, 0.95 or more, 0.98 or more, or 0.99 or more.
  • the genome fragments that were tandemly flanked before and after the linked polynucleotide have been restored to one copy as a result of homologous recombination.
  • the resulting cells are expected to have all the linked polynucleotide portions removed, but which portion of the overlapping genomic sequence region is removed can vary depending on the location at which recombination occurs. Therefore, the cells obtained are a mixture of cells into which the target genome modification has been introduced and cells into which the target genome modification has been introduced (ie, cells that have returned to the original state). However, since those cells will appear almost equally, stochastically, cells retaining the modification of interest can be easily obtained.
  • Whether or not the target modification is carried out can be performed, for example, by directly or indirectly detecting a sequence specific to the target modification site, for example, the target site is amplified by PCR to confirm the nucleotide sequence.
  • PCR can be carried out using primers or the like specific to a mutation site to identify the presence or absence of a PCR product, the length of an amplified fragment, and the like.
  • FIG. 1 shows a genetic modification scheme according to one embodiment of the present invention.
  • the donor polynucleotide is also referred to as a vector, a donor plasmid or the like.
  • a vector in which the base sequence after modification and the base sequence before modification are arranged in tandem with the backbone region of the donor plasmid, and the base sequence after modification and the base sequence before modification (in order not identical) The target insert structure is constructed in the target gene, and in the second step (FIG. 1B-C), a clone in which this vector target insert structure is spontaneously replaced with a single structure consisting only of modified base sequences is selected.
  • gene modification is performed by converting the pre-modification base sequence into the base sequence after modification.
  • the vector backbone of the donor plasmid is shown by a thin line
  • the sequence after modification of the donor plasmid is shown by a thick line with a sequence homologous to the modified gene located near the center
  • the locus for cell modification is indicated below the plasmid.
  • the genomic sequence possessed by the cell contains a disease mutation
  • the genomic fragment possessed by the donor plasmid has a normal sequence.
  • the homologous recombination reaction starts from the truncated end produced by I-SceI or the like, and as a result, a vector target insert is formed.
  • the structure shows that the fragment containing the modified sequence (normal sequence) and the fragment containing the modified sequence (disease mutation) are arranged in tandem with the vector backbone (linked polynucleotide) interposed therebetween.
  • the vector target insert cell clone is isolated, for example as a hygromycin resistant clone.
  • the pre-modification base sequence is converted to the base sequence after modification by naturally occurring substitution from this vector target insert structure to a single structure consisting only of the base sequence after modification.
  • This replacement cell clone is isolated, for example, as a ganciclovir resistant clone.
  • a fragment containing the vector target insert structure i.e. the modified sequence (normal sequence)
  • a fragment containing the pre-modification sequence disease mutation
  • a cell having a structure in which the nucleotides are arranged in tandem can be converted to a single structure consisting only of the base sequence after the modification, by naturally replacing the base sequence after modification with the base sequence after the modification. It is a cell type having a vector target insert structure.
  • the vector backbone of the donor polynucleotide used in the examples of the present application is a hygromycin resistant gene under the control of the E. coli DNA replication origin (pMB1), the kanamycin resistance gene (E. coli selectable marker; Km), and the human transcription initiation point. It contains a fusion gene (HygTK) consisting of (animal cell selection marker) and HSV-TK (animal cell exclusion marker).
  • sequence homologous to the altered gene consists of a 5488 bp fragment spanning intron 1 of the human HPRT gene, exon 2 with altered sequence (normal sequence), intron 2, exon 3 and intron 3 and the altered locus is an exon 2 has a pre-modification sequence (disease mutation; indicated by a cross-shaped star) to be modified inside.
  • FIG. 2 shows the procedure of a demonstration experiment of genetic modification by the genome editing technology of the present invention.
  • AC shows a gene modification scheme similar to that of FIG. 1, but since the donor plasmid has a molecular marker in which the vicinity of the SexA1 site (ACCAGGT) on exon 2 is synonymously converted, sequence modification of the gene coordinate region is performed from the SexA1 site This can be confirmed by the change to the synonymous conversion sequence.
  • D-F shows the operating procedure along the reaction to A-C.
  • Site-directed cleavage enzyme I-SceI treated with linear on-donor plasmid is introduced into cells of target locus (SexA1 site) and vector target insert cells are obtained by PCR screening from hygromycin resistant colonies After culturing and seeding this clone, ganciclovir resistant colonies are obtained to obtain a genetically modified product.
  • a single DNA on the 5 'side within the base sequence after the modification with respect to the base sequence site before modification Donor plasmid DNA (see Fig. 1A) that has a cleavage site and has a positive selection marker gene and a negative selection marker (exclusion marker) gene in the backbone region of the plasmid (see Figure 1A), or a single DNA cleavage at the 3 'end within the base sequence after modification
  • a donor plasmid DNA (see FIG. 2A) having a site and carrying a positive selection marker gene and a negative selection marker gene in the backbone region of the plasmid can be used.
  • the 5 'side and the 3' side refer to the 5 'side and the 3' side in the sense strand of the gene to be modified, respectively.
  • FIG. 3 shows a method of PCR screening of vector target inserts.
  • A the structure of the vector target inserted region is shown.
  • the post-modification sequence (synonymous conversion sequence) derived from the donor plasmid is located downstream, and the pre-modification sequence derived from the target locus (SexA1 sequence) is located upstream.
  • B As shown in the left panel, a fragment corresponding to 7577 bp was detected from the genomic DNA of the vector target cell, a primer GT68 located 5 'outside of the upstream 5488 bp fragment and a primer GT124 for the HygTK promoter region located in the vector backbone If so, it is considered to be the structure of the upstream region (5 'region) of the vector target insert.
  • a fragment corresponding to 7683 bp is detected from PCR with primer GT112 of the pMB1 region located in the vector backbone and primer GT68 3 'of the 5488 bp fragment downstream, it is the vector It is believed to be the structure of the downstream region (3 'region) of the target insert.
  • a fragment corresponding to 525 bp is obtained from PCR using primers GT19 / GT22 that amplify the region of exon 2 where the molecular marker sequence is located. Sequence analysis to confirm that the two marker sequences coexist from the resulting waveform chart.
  • FIG. 4 shows a method of separating genetic variants from vector target inserts by ganciclovir selection.
  • A when a substitution reaction from the vector target insert of FIG. 3A to the upstream (first half of the repeat) or downstream (second half of the repeat) sequence occurs, the vector plasmid having the downstream sequence or the upstream sequence is ejected accordingly It is shown that ganciclovir selection excludes the cells having the plasmid which has jumped out, and obtains candidate clones of gene variants in which substitution reaction has occurred at the gene locus.
  • PCR analysis with the primer GT38 / GT39 which amplifies the Hyg region of the HygTK gene on the plasmid, corresponds to 998 bp If it does not form any fragments, it can be determined that the cell clone does not contain the plasmid which has jumped out.
  • a fragment corresponding to 525 bp was obtained from PCR using primers GT19 / GT22 which amplify the region of exon 2 in which the molecular marker sequence is located, in order to isolate the genetic modification from the ganciclovir resistant clone. Show that it is possible to obtain a cell clone in which the substituted sequence is substituted among the repeated pre-altered sequence (SexA1 sequence) and the post-modification sequence (synonymous conversion sequence) on the vector target insertion region. .
  • the cleavage of the donor plasmid is at the 3 'side, but also the 5' side cleavage can be said to be a form for carrying out the invention.
  • the difference in length before and after the modified part in the overlapping area does not matter. That is, even if the overlapping region in front of the modification (5 'to the coding strand of the gene) is longer than the overlapping region on the back (3'), the preceding overlapping region is behind It may be shorter than a certain overlapping area or both may have the same length.
  • FIG. 5 shows the problems of the conventional gene modification method and the superiority of the method of the present invention.
  • A illustrates the problem to be solved by the invention.
  • the problems to be solved are the problems of On / Off-target imprecise recombination, the problem of site-specific recombination site survival, and the problem of loss of target cleavage sequence described above.
  • B shows means for solving the problem.
  • the problems such as On / Off-target imprecise rebinding, remaining of site-specific recombination sites (such as loxP), and loss of target cleavage sequences are avoided. It is possible.
  • the present invention is useful for introducing a desired modification into the genome of a cell, and can be used to convert a disease causing sequence into a normal sequence, for example, in a gene for causing an inherited disease.
  • a normal nucleotide sequence which does not cause a hereditary disease to be treated and a disease causing nucleotide sequence to be treated are linked polynucleotides in a donor polynucleotide (for example, In the target disease causative gene, a vector target insert structure is constructed in which the normal base sequence and the disease causative base sequence (in no particular order) are arranged in tandem across the backbone region of the plasmid), and this vector target insertion is performed.
  • a gene repair method can be mentioned which converts a target disease causative base sequence into a normal base sequence by naturally replacing the body structure with a single structure consisting only of the normal base sequence.
  • the donor polynucleotide used for disease mutation repair in order to obtain a cell having a vector target insert structure, which is a product of the first step in the aforementioned disease mutation repair method, 5 It has a single DNA cleavage site within the normal nucleotide sequence on the 'side (5' to the sense strand of the gene), and a selection marker (positive selection marker) gene and a linked polynucleotide (for example, a backbone region of a plasmid) of the donor polynucleotide A donor polynucleotide (see FIG.
  • a disease mutation repair vector target insert cell By introducing this donor polynucleotide into cells having a disease mutation, a disease mutation repair vector target insert cell can be obtained.
  • This cell consists only of the normal base sequence by spontaneously replacing the disease causing base sequence with the normal base sequence from the vector target insert structure which is the product of the first step in the above-mentioned disease mutation repair method. Cell types with vector target insert structure that can be converted to a single structure.
  • the normal nucleotide sequence that does not cause the hereditary disease to be treated and the disease-causing nucleotide sequence to be treated sandwich the linked polynucleotide (for example, the backbone region of the plasmid) in the donor polynucleotide in random order ( That is, cells having chromosomally aligned vector target insert structures arranged in tandem in any order.
  • this vector target insert structure is replaced with a single structure consisting of naturally occurring and stochastically only normal nucleotide sequences.
  • the invention also provides single locus replacement methods using the donor polynucleotides of the invention. Even if it is a monogenic disease, mutational diversity in sequence, structure and size exists in hereditary diseases, but locus replacement by one kind of donor polynucleotide is performed for each of such various disease mutations.
  • a normal locus that does not cause hereditary disease to be treated A vector target insertion in which one disease cause mutation locus to be treated is a tandem of the normal locus and the disease cause mutation locus (in order or not) in tandem with the linked polynucleotide (for example, a plasmid backbone region) in the donor polynucleotide.
  • the body structure is constructed at the target disease causative locus, and in the second stage, this vector target insert structure is spontaneously generated normally Replacement with a single structure consisting only of the child locus provides a gene repair method for converting the target disease cause mutation locus into a normal locus.
  • the present invention also relates to a single locus replacement donor polynucleotide used in the single locus replacement method.
  • the donor polynucleotide in order to obtain a cell having a vector target insert structure, which is a product of the first step in the single locus replacement method, the donor polynucleotide is a normal locus relative to the disease cause mutation site.
  • a donor polynucleotide having a single DNA cleavage site at the 5 'side of and having a selection marker gene and an exclusion marker gene in the linked polynucleotide (for example, the backbone region of the plasmid), which is used for the aforementioned disease mutation repair A homotypic large donor polynucleotide (see FIG.
  • the donor polynucleotide or a single DNA cleavage 3 'to the normal locus
  • a selectable marker in the ligated polynucleotide eg, in the backbone region of the plasmid
  • a single locus replacement vector target insert cell can be obtained by introducing this donor polynucleotide into a target cell for single locus replacement.
  • this cell only the normal locus is obtained by spontaneously replacing the disease causing mutation locus with the normal locus from the vector target insert structure which is the product of the first step in the single locus replacement method.
  • the present invention is also useful for introducing a donor polynucleotide into a target cell to shorten the process of acquiring a cell having a single structure through a target insert cell of the donor polynucleotide.
  • the donor polynucleotide has a plasmid vector backbone
  • the plasmid DNA is released from the genome, and during selective culture for cells suspended or inserted into a cell, in a target region included in the cell population.
  • a genomic random insertion cell of a donor plasmid DNA which has jumped out for example, a place which is not a target gene site It is conceivable to carry out negative selective culture on cells into which the sequence of the donor plasmid DNA has been inserted, select cells having a single structure, and select a clone consisting of the sequence after modification.
  • the donor polynucleotide of the present invention can be made into a composition together with a pharmaceutically acceptable carrier or vehicle, as appropriate.
  • the composition containing the donor polynucleotide of the present invention is used as a pharmaceutical composition, for example, a pharmaceutical composition for genome repair of a genetic disease.
  • the carrier and medium are not particularly limited, and examples thereof include water (eg, sterile water), saline (eg, phosphate buffered saline), ethanol, glycerol, lactose, sucrose, calcium phosphate, gelatin, dextran, agar, pectin, Peanut oil, sesame oil and the like can be mentioned, and buffers, diluents, excipients, adjuvants and the like can also be mentioned.
  • the administration route may be appropriately determined and is not particularly limited.
  • the donor polynucleotides or compositions of the present invention may be used in vitro or ex vivo, and also, for example, by intramuscular injection, intravenous, transdermal, intranasal, intraperitoneal, oral, mucosal or other delivery routes. Can be administered.
  • the frequency and dose of administration are not limited, and may be single use or multiple administration. Those skilled in the art can appropriately select these according to the type of composition, target cell, administration subject, tissue, disease, condition or condition of treatment subject, administration route, administration method and the like.
  • the administration subjects are, for example, mammals (including human and non-human mammals), and specifically, humans, non-human primates such as monkeys, rodents such as mice and rats, rabbits, goats, sheep, pigs And all other mammals such as cows, dogs, cats and the like.
  • the invention also relates to a kit comprising the donor polynucleotide of the invention.
  • the kit may include the donor polynucleotide of the present invention, and a cleavage enzyme or a vector encoding the same that cleaves a cleavable site of a genomic fragment in the donor polynucleotide.
  • an instruction manual can be attached as appropriate to the kit.
  • the kit of the present invention is useful for genome modification using the donor polynucleotide of the present invention.
  • a desired vector can be used as a vector, for example, a plasmid vector, a virus vector and the like can be mentioned, and as a virus vector, for example, a minus strand RNA virus vector, in particular a paramyxovirus vector, particularly a Sendai virus vector can be mentioned.
  • a virus vector for example, a minus strand RNA virus vector, in particular a paramyxovirus vector, particularly a Sendai virus vector can be mentioned.
  • pMB1KmHygTK indicates the backbone of the donor plasmid vector.
  • PMB1 in the vector backbone indicates the region necessary for initiation of E. coli DNA replication
  • Km indicates the kanamycin resistance gene that is the E. coli selection marker
  • HygTK indicates the human transcription initiation region.
  • the fusion gene which consists of a hygromycin resistance gene (animal cell selection marker) and HSV-TK (animal cell exclusion marker) under control of one hEF1-HTLV promoter is shown.
  • Sequences homologous to the modified target locus containing the modified sequence inserted in the vector backbone are shown as "-HPRTEx2Syn (1200) ISCEI” following the hyphen after the vector backbone.
  • HPRTEx2 indicates a fragment spanning intron 1, exon 2, intron 2, exon 3 and intron 3 of human HPRT gene
  • Ex2Syn indicates that the modified sequence Syn is included in Ex2 after modification.
  • (1200) ISCEI indicates that an I-SceI cleavage enzyme recognition sequence is present at a position 1200 bp from the sequence Syn after modification.
  • a sequence homologous to the locus to be modified including the modified sequence inserted in the vector backbone is shown as "-HPTLISSCEI (1200) Ex 2 Syn", following the hyphen after the vector backbone.
  • Ex2Syn indicates that the modified sequence Syn is included in Ex2
  • ISCEI (1200) indicates an I-SceI cleavage enzyme recognition sequence at a position of 1200 bp on the 5 'side from the modified sequence Syn. Indicates that exists.
  • pMB1KmHygTK Donor Plasmid See FIG. 2A
  • the construction of pSelect-Km-HSV1tk subplasmid was performed as follows. Using pCR-Blunt II-TOPO plasmid DNA (Invitrogen) as a template, 5'-CTTAATTAACTGCGCAGCGAGAATTGCCAGCTG-3 '(SEQ ID NO: 2) and 5'- ATGTGGTATGGAATTCGGTGGCCTCCTC ACGTGC-3' (SEQ ID NO: 3) Perform a PCR reaction with KOD-PLUS-DNA polymerase (TOYOBO) (94 ° C-2 minutes ⁇ 94 ° C-15 seconds, 55 ° C-30 seconds, 68 ° C-1 minute 30 seconds 40 cycles ⁇ 68 ° C 7 minutes), A PCR product of about 1000 base was obtained.
  • KOD-PLUS-DNA polymerase TOYOBO
  • pSelect-ZEO-HygTK subplasmid The construction of pSelect-ZEO-HygTK subplasmid was performed as follows. pSelect-ZEO-HSV1 tk was digested with NcoI and SphI and blunt-ended by treatment with T4 DNA polymerase in the presence of dNTPs.
  • the construction of the pMB1KmHygTK donor plasmid was performed as follows. Using pSelect-ZEO-HygTK (28-10) as a template, 5'- ATTTAAATCAGCGGCCGCGGATCTGCGATCGCTCCG-3 '(GT 84) (SEQ ID NO: 6) and 5'- TGTCTGGCAGCTAGCTCAGGTTTAGTTGGCC-3' (SEQ ID NO: 7) Perform a PCR reaction with KOD-PLUS-DNA polymerase (TOYOBO) (94 ° C-2 minutes ⁇ 94 ° C-15 seconds, 58 ° C-30 seconds, 68 ° C-3 minutes 40 cycles ⁇ 68 ° C 7 minutes) and approximately 2800 The PCR product of base was obtained.
  • KOD-PLUS-DNA polymerase TOYOBO
  • the 2800-bp PCR product described above was ligated with NotI and NheI-digested pSelect-Km-HSV1tk (1) using the In-Fusion kit (TOYOBO) to obtain pMB1KmHygTK (1). Thereafter, this plasmid was used as a donor plasmid vector.
  • pBS-HPRTEx2 subplasmid was performed as follows. Using the genomic DNA of HT-1080 cells derived from Fibrosarcoma as a template, using 5'- AGCCTGGGCAACATAGCGAGACTTC-3 '(SEQ ID NO: 8) and 5'-TCTGGTCCCTACAGAGTCCCACTATACC-3' (SEQ ID NO: 9) Perform PCR reaction (94 ° C-2 minutes ⁇ 94 ° C-15 seconds, 60 ° C-30 seconds, 68 ° C-3 minutes 30 seconds 40 cycles ⁇ 68 ° C 7 minutes) with KOD-PLUS-DNA polymerase (TOYOBO), A PCR product of approximately 2800 base was obtained.
  • KOD-PLUS-DNA polymerase TOYOBO
  • the 5500-bp PCR product described above was ligated with NotI-digested pBluescript SK + using an In-Fusion kit (Clontech Laboratories, Inc. Catalog No. 639649) to obtain pBS-HPRTEx2 (18-7). Subsequently, this plasmid was used as a template for site-directed mutagenesis.
  • the construction of the pBS-HPRTEx2ISCEI subplasmid was performed as follows.
  • the genomic DNA of HT-1080 cells from Fibrosarcoma as a template 5'- TAGTTCTAGAGCGGCCGCAGCCTGGGCAACATAGCGAGACTTC -3 '(GT35) ( SEQ ID NO: 14) and I-SceI recognition sequence including (underlined) 5'- ATTACCCTGTTATCCCTA ACCTGGTTCATCATCACTAATCTG -3' ( PCR reaction (94 ° C.-2 minutes ⁇ 94 ° C.-15 seconds, 58 ° C.-30 seconds, 68) with KOD-PLUS-DNA polymerase (TOYOBO Inc.
  • pBS-HPRTEx2Syn subplasmid was performed as follows.
  • pBS-HPRTEx2 the (18-7) as a template, modified after sequence Syn including (underlined) 5'- GGCTACGATCTCGACCTC TTTTGCATACCTAATCATTATGC -3 '(GT93 ) ( SEQ ID NO: 17) and 5'- TGGTTCATCATCACTAATCTG -3' (GT95) ( Using SEQ ID NO: 18), pBS-HPRTEx2Syn (Inv15) was obtained by using KOD-PLUS-Inverse PCR mutagenesis kit (TOYOBO) as one of site-directed mutagenesis methods.
  • TOYOBO KOD-PLUS-Inverse PCR mutagenesis kit
  • pBS-HPRTEx2Syn (Inv15) plasmid DNA was digested with BglII and SphI and gel extracted, ligated with BglII-SphI fragment containing Syn sequence, and HPRTEx2ISCEI (21-1) plasmid DNA digested with BglII and SphI, and pBS- HPRTEx2Syn (Inv15-2) was obtained.
  • pBS-HPRTEx2Syn (1200) ISCEI subplasmid was performed as follows.
  • pBS-HPRTEx2Syn (Inv15-2) is used as a template and contains ISCEI sequence (underlined) 5'- TAGGGATAACAGGGTAAT ATTTTG TAG AAACAGGGTTCGC-3 '(GT 86) (SEQ ID NO: 19) and 5' AAAAATATTAGCTGGGAGTGG-3 '(GT 87) (SEQ ID NO: 19) 20) was used to obtain pBS-HPRTEx2Syn (1200) ISCEI (1) by using KOD-PLUS-Inverse PCR mutagenesis kit (TOYOBO).
  • TOYOBO KOD-PLUS-Inverse PCR mutagenesis kit
  • the construction of the pMB1KmHygTK-HPRTEx2Syn (1200) ISCEI donor plasmid vector was performed as follows. Ligation of NotI-digested pBS-HPRTEx2Syn (1200) ISCEI (1) DNA sample with NotI-digested pMB1KmHygTK plasmid DNA was performed to obtain pMB1KmHygTK-HPRTEx2Syn (1200) ISCEI (5) and the insertion direction is as shown in FIG. 2A. I confirmed that there is.
  • the generation of vector target insert cell HTG 786 was performed as follows. Fibrosarcoma the HT-1080 cells from applying the 6 flask the day before 3x10 6 cells 10-mL DMEM medium / T75 flask electroporation perform adhesion culture, the medium is removed after 24 hours approximately, 5 mL PBS / T75 flasks Add and remove 0.25% trypsin / 1 mM EDTA solution in 2 mL / T75 flask, incubate at 37 ° C for 1 minute, add DMEM medium in 3 mL / T75 flask, and pipetting 3-4 times (10-mL) Cells) in 1) 50-mL tube, centrifuge at 1,200 rpm for 3 minutes, remove the supernatant, add 20 mL Opti-MEM, add cells by pipetting (for 10-mL) After suspension, counting the number
  • the vector target insert isolation procedure (see FIG. 2 DE; FIG. 3 AB) was performed as follows. For each of the HTG colonies, remove the cells by combining P1000 pipetman to 200 ⁇ L under a microscope and adding 2 mL of 100 ⁇ g / mL hygromycin and 7.5 ⁇ g / mL 6-thioguanine in DMEM, 1 in a 6-well plate The cells were suspended in wells, given a HTG clone number, subjected to selective culture under conditions of 37 ° C., 5% CO 2 , and culture was continued until near confluence.
  • the frozen cell pellet was thawed in ice, genomic DNA was extracted with GeneElute Mammalian Genomic DNA miniprep Kit (SIGMA-ALDRICH, Catalog No. G1N350), and stored at 4 ° C. as a 100 ⁇ L sample.
  • SIGMA-ALDRICH GeneElute Mammalian Genomic DNA miniprep Kit
  • the isolation procedure (see FIG. 4 AB) of the gene replacement having the sequence after gene modification from the vector target insert was performed as follows. HTG 786 cells, one of eight vector target insertion clones, were used. Thaw the -80 ° C storage cells of this clone in a 37 ° C water temperature layer, transfer to a 50 mL tube containing 9 mL DMEM medium, centrifuge at 1,200 rpm, 3 minutes, remove the supernatant, and pipet with 10 mL DMEM medium The suspension was incubated at 37 ° C. in 5% CO 2 in a T75 flask.
  • the selective culture was started by replacing with DMEM medium containing 1 ⁇ M ganciclovir (InvivoGen, catalog number # sud-gcv) on Day 5. Change the medium on days 7, 9 and 12, count the number of ganciclovir resistant (GCV) colonies on day 20-25, for each of the GCV colonies, adjust P1000 pipetman to 200 ⁇ L under a microscope and strip the cells Suspend in 1 well of a 6-well plate to which 2 mL of DMEM containing 1 ⁇ M ganciclovir was added, attach a GCV clone number, perform selective culture under conditions of 37 ° C., 5% CO 2 , and grow to confluence Continued.
  • DMEM medium containing 1 ⁇ M ganciclovir InvivoGen, catalog number # sud-gcv
  • the frozen cell pellet was thawed in ice, genomic DNA was extracted with GeneElute Mammalian Genomic DNA miniprep Kit (SIGMA-ALDRICH, Catalog No. G1N350), and stored at 4 ° C. as a 100 ⁇ L sample.
  • SIGMA-ALDRICH GeneElute Mammalian Genomic DNA miniprep Kit
  • Ex2Syn indicates that the sequence Syn is contained in Ex2 after the conversion to denature and change
  • ISCEI (1200) is an I-SceI cleaving enzyme at the position of 1200 bp on the 5 'side from the structure Syn after modification Indicates that a recognition sequence is present.
  • pBS-HPRTEx2Syn (Inv15-2) is used as a template and contains ISCEI sequence (underlined): 5'- TAGGGATAACAGGGTAAT CAAAGCACTGGGATTACAAGTG-3 '(GT117) (SEQ ID NO: 25) and 5'- GGAGGCTGAGACAGGAGAGTTGC-3' (GT118) 26) was used to obtain pBS-HPRTISCEI (1200) Ex2Syn (3) by using KOD-PLUS-Inverse PCR mutagenesis kit (TOYOBO). 2) Construction of pBS-HPRTISCEI (600) Ex2Syn subplasmid was performed as follows.
  • pBS-HPRTEx2Syn (Inv15-2) is used as a template and contains ISCEI sequence (underlined) 5'- TAGGGATAACAGGGTAAT CAAAGTGCTGGGATTACAGGC-3 '(SEQ ID NO: 27) and 5'- GGAGGCCGAGGCGGGTGGATCA-3' (GT 132) (SEQ ID NO: 2) 28) was used to obtain pBS-HPRTISCEI (600) Ex2Syn (4) by using KOD-PLUS-Inverse PCR mutagenesis kit (TOYOBO). 3) Construction of pBS-HPRTISCEI (316) Ex2Syn subplasmid was performed as follows.
  • pBS-HPRTEx2Syn (Inv15-2) is used as a template and contains ISCEI sequence (underlined) 5′- TAGGGATAACAGGGTAAT TGTATTTTTAGTAGAGACGGG-3 ′ (SEQ ID NO: 29) and 5′-AAAAATTAGCCGGGTGTGG-3 ′ (GT134) (SEQ ID NO: 2) 30) was used to obtain pBS-HPRTISCEI (316) Ex2Syn (2) by using KOD-PLUS-Inverse PCR mutagenesis kit (TOYOBO).
  • Example 3 Construction of I-SceI loaded Sendai virus vector A Sendai virus vector loaded with I-SceI sequence-specific cleavage enzyme gene, taking advantage of no risk of random insertion into genome in Sendai virus vector In order to introduce and express in cells, an I-SceI loaded Sendai virus vector was constructed as follows.
  • a gene for I-SceI enzyme having nuclear transfer signal at the N-terminus is N-terminally a gene of I-SceI enzyme using Saccharomyces cerevisiae extracted DNA as a template and 5'-GGATCCTGCAAAGATGAGATAAGCAGGAGA Perform PCR using KOD-PLUS-DNA polymerase (94 ° C-1 minute ⁇ 94 ° C-15 seconds, 40 ° C-Gradient-54 ° C-30 seconds, 68 ° C-1 minute for 30 cycles), approximately 800 The PCR product of base was obtained to obtain pUC-nlsISceI plasmid.
  • the PCR product was ligated with NotI-digested pCI-neo using the In-Fusion kit (TOYOBO) to obtain pCI-neo-nlsISceI (29-2).
  • TOYOBO In-Fusion kit
  • a first PCR product obtained by dividing the nlsISCEI sequence into two is obtained by the first PCR.
  • the third PCR product covering the entire length of the Cas9 nuclease sequence was obtained and loaded into a Sendai virus vector.
  • the reason for dividing the nlsISCEI sequence into two in the first PCR is that there are three A rich sequences (7A, 8A) in the nlsISCEI sequence, but on the A rich sequence, during the production of Sendai virus vector This is to avoid such an error phenomenon since errors are likely to occur due to Sendai virus RNA-dependent RNA polymerase.
  • PCR primers were set on the A rich sequence site, and each primer sequence was substituted from A / T to G / C under restriction of synonymous codons.
  • PCR product # 2 was obtained. After confirming the size of the PCR products by electrophoresis, and purified by NucleoSpin TM Gel and PCR Clean-up (MACGEREY-NAGEL Catalog No. 740609.250 / U0609C).
  • Primer Not1_NLS-I-SceIN_A36G_A78G_A81G_N (aka: NLS-I-SceIN_N1) 'an end 29 nucleotides 3' of the 5 with the end (underlined), primer Not1_NLS-I-SceIN_A36G_N 5'- ATATGCGGCCGCGACGCCACCATGGATAAAGCGGAATTAATTCC CGAGCCTCCAAAGAAGAAGAGAAAGGTCG -3 '( SEQ ID NO: 39)
  • NLS-I-SceI_EIS_Not1_C (SEQ ID NO: 38) and a template DNA, PCR reaction (94 ° C-2 minutes ⁇ 98 ° C-10 seconds) with KOD-FX-DNA polymerase (TOYOBO Co., Ltd.
  • Plasmid pSeV18 + TS15 / ⁇ F DNA F gene deleted, M (G69E / T116A / A183S), HN (A262T / G264 / K461G) digested with NotI and BAP-treated full-length nlsISceI fragment digested with NotI and gel extracted ), P (D 433 A / R 434 A / K 437 A / L 511 F), L (L 1361 C / L 1 558 I / N 1197 S / K 1795 E), and ligation is performed with the DNA encoding the genome of the Sendai virus vector (WO 2003/025570, WO 2010/008054) The nucleotide sequence of cloned nlsISceI was confirmed to obtain a plasmid pSeV18 + nlsISceITS15 / ⁇ F loaded with full-length nlsISceI optimized for SeV.
  • This plasmid DNA was used as a template for Sendai virus reconstitution to obtain nlsISceI loaded Sendai virus vector SeV18 + nlsISceITS15 / ⁇ F.
  • the inserted sequence is described below. NotI site (underlined), sequence inserted to adjust to 6n rule (gac), Kozak sequence (double underline) and EIS sequence (broken underline), NotI site (underlined) is there.
  • the said sequence contains the coding sequence (18th-785th of sequence number 40) of nlsISceI (sequence number 41).
  • Example 4 Optimization of Donor Plasmid Structure in Vector Target Insertion of Donor Polynucleotide For electroporation of genetic modification using donor polynucleotide shown in Example 2 (1), for I-SceI expression Instead of plasmid DNA (Nature vol. 401 pp 397), pCI-neo-nlsISceI (29-2) DNA (12.6 ⁇ g) was used to prepare a vector target insert with each of the three donor plasmids.
  • pCI-neo pCI-neo-nlsISceI (29-4)
  • plasmid pISceI I-SceI expression plasmid (Nature vol. 401 pp 397)
  • Left arm left homologous region length (bp) of ISCEI cleavage site (see FIG. 1A); left homologous region length (bp) of Syn synonymous conversion sequence site (see FIG. 2A)
  • Right arm Right homologous region length (bp) of Syn synonymous conversion sequence site (see FIG. 1A); Right homologous region length (bp) of ISCEI cleavage site (see FIG. 2A)
  • the length of the outside homology region of the breakpoint, the length of the outside homologous region of the design sequence, and the distance between the breakpoint and the design sequence are not limited, but the length of the outside homology region is 1960 bp or more, the distance between the breakpoint and the design sequence is 316 bp or more is desirable.
  • Example 5 Vector Target Insertion of Donor Polynucleotide by nlsISceI Loaded Sendai Virus Vector
  • the day before infection with nlsISceI loaded Sendai virus vector 5 ⁇ 10 5 HT-1080 cells / 2-mL DMEM / 10% FBS medium / well 6- Apply to a well plate, adhere and culture, remove the medium after approximately 24 hours, add 2 mL Opti-MEM, place at 37 ° C, measure the number of cells in 1 well and calculate the total number of cells to be infected , NlsISceI loaded Sendai virus vector SeV18 + nlsISCEITS15 / ⁇ F (Example 3) corresponding to multiplicity of infection 3, adjusted to 0.5 mL SeV-nlsISceI solution / well by dilution with Opti-MEM, Remove Opti-MEM, add 0.5 mL SeV-nlsISceI solution / well, start adsorption infection under 32 ° C,
  • Example 2 (1) After approximately 24 hours, the medium was replaced with fresh DMEM medium, transferred to 35 ° C., 5% CO 2 , and cultured as it was for approximately 24 hours. Subsequent cell recovery, the operation of electroporation for introducing a donor plasmid, cell application, non-selective culture and selective culture described in the table below are carried out in the same manner as in Example 2 (1), and a vector target is obtained. The isolation procedure was also performed in the same manner as in Example 2 (1).
  • the first was as described above (adsorption infection with Sendai virus vector using DMEM / 10% FBS medium, 32 ° C. for 24 hours, 35 ° C. for 24 hours, non-selective culture after cell application) 37 ° C. for 3 days and selective culture at 37 ° C.).
  • the second time using DMEM / 2% FBS / 1/100 volume GlutaMAX-1 (100x) (gibco, product number 35050-061) medium, adsorption infection of Sendai virus vector 32 ° C-48 hours after cell application Non selective culture 35 ° C. for 3 days and selective culture were performed at 37 ° C.
  • cleavage enzyme gene expression vector for intracellular cleavage is not limited to either a plasmid type or a virus vector type, in order to avoid random insertion of the cleavage enzyme gene expression vector, the viral vector type Is desirable.
  • Example 6 Insertion of Vector Target of Donor Polynucleotide by Donor Plasmid Excised Extracellularly in the Homologous Region Excision by genetic modification using the donor polynucleotide shown in Example 2 (1) in advance Only the designated donor plasmid (10 ⁇ g) was introduced to produce a vector target insert.
  • cleavage within the homologous region of the donor plasmid may be either extracellular or intracellular. However, since cleavage within the intracellular homologous region is less affected by the length of the outside homology region of the breakpoint, the length of the design homologous region outside, and the distance between the breakpoint and the design sequence, cleavage within the intracellular homologous region is desirable. Conceivable.
  • the present invention provides a novel donor polynucleotide in which both ends of a genomic fragment containing a cleavable site are linked by a polynucleotide containing a positive selection marker gene and a negative selection marker gene.
  • a donor polynucleotide By using the donor polynucleotide, it is possible to avoid the possibility of introducing a mutation other than the target sequence called Off-target by inserting a cleavage at the homologous site of the donor polynucleotide without inserting a cleavage into the target locus. Thus, it is possible to modify only the target gene.
  • the present invention is a molecular genetics technology that precisely modifies gene sequences, and is useful as a molecular genetics system that precisely modifies gene sequences for the purpose of gene therapy, breeding, and bioengineering.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Virology (AREA)
  • Medicinal Chemistry (AREA)
  • Immunology (AREA)
  • Mycology (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Cell Biology (AREA)
  • Pulmonology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

本発明は、切断可能部位を含むゲノム断片の両端を、ポジティブ選択マーカー遺伝子およびネガティブ選択マーカー遺伝子を含むポリヌクレオチドによって連結した新規なドナーポリヌクレオチドを提供する。当該ドナーポリヌクレオチドを用いることにより、標的遺伝子座内に切断を入れることなく、ドナーポリヌクレオチドの相同部位に切断を入れることによって、Off-targetと呼ばれる標的配列以外に変異が入る可能性を回避して標的遺伝子のみを改変することが可能となる。

Description

標的配列を改変するためのポリヌクレオチドおよびその使用
 本発明は、遺伝子治療、品種改良、生物工学的創作等を目的に遺伝子配列を精密に改変する分子遺伝学技術等に関する。
 遺伝子改変を目的に標的とするゲノムの塩基配列部位を切断することによって遺伝子改変頻度を向上させる技術として、ZFN法、TALEN法、CRISPR/Cas9法が知られている(Morton, J., et al., Proc. Natl. Acad. Sci. USA 103, 16370-16375 (2006); Cermak, T. et al., Nucleic Acids Res. 39, e82 (2011); Cong, L. et al., Science 339, 819-823 (2013); Mali, P. et al., Science 339, 823-826 (2013))。
 しかしながら、改変塩基配列の供与DNAを導入し、上記の3つ方法のいずれかによって標的部位を改変しようとしても、標的部位が、導入したい改変塩基配列に正確に変換され、それ以外の改変を含まない細胞を取得することは容易ではない。
 例えばZFN法、TALEN法、CRISPR/Cas9法では、標的配列の特異性を極めて厳密に制御することは困難であり、標的配列に類似した標的外配列が切断されそこで、再結合時にindelと呼ばれている挿入または欠失(不正確な再結合)が生じることがある(Off-target不正確再結合問題)。また、たとえ標的配列が切断されるとしても、再結合時にindelが導入される懸念は残る(On-target不正確再結合問題)。しかし、遺伝子治療など精密遺伝子改変の際にはこれらの現象は回避されなければならない。
 また、目的とする改変配列がゲノムに導入された細胞を選択するためには一般に薬剤選択マーカー遺伝子が用いられる。従来の方法においては、改変したいエキソンの塩基配列に隣接するイントロンの塩基配列中に当該マーカー遺伝子を挿入したベクターを構築し、当該ベクターを細胞に導入して相同組み換えを誘導後、薬剤選択が行われる。しかし得られた細胞は、当然、マーカー遺伝子を持っているので、このままでは、細胞のゲノムに組み込まれたイントロンの塩基配列中に当該マーカー遺伝子が残存することになってしまう。
 このマーカー遺伝子を除去するためには、目的とするエキソン改変塩基配列の直近にあるイントロン中に部位特異的組換え酵素認識配列(LoxPやFRT)で挟まれた薬剤耐性マーカー遺伝子を挿入した供与DNAが用いられる。当該供与DNAを細胞に導入、当該エキソン-イントロン領域内を切断、イントロン薬剤耐性マーカー遺伝子からエキソン改変塩基配列まで、長鎖に渡ってゲノムに組み込まれた細胞クローンを単離した後、当該細胞クローンに対して、部位特異的組換え酵素(Cre, Flp)遺伝子を導入して、薬剤耐性マーカーだけが抜けた細胞を獲得する(Li, H. L.et al., Stem Cell Reports 4, 143-154 (2015))。
 この方法により部位特的組換え酵素認識配列(LoxP, FRT)で挟まれた選択マーカー遺伝子だけが部位特異的組換えによって除去されるが、Cre/LoxP法、Flp/FRT法を代表とする方法では、組換え酵素の特性上、一つの認識配列が除去されずに残ってしまうため、遺伝子治療や厳密な遺伝子改変には適用できないという問題がある(部位特異的組換え配列の残存問題)。
 またこの方法においては、供与DNAが導入された細胞を選択後に、部位特異的組換え酵素を発現するベクター等を細胞に導入するという追加的な工程が必要であり、さらに導入した部位特異的組換え酵素発現ベクターが細胞から除去されたことを確認することも必要となるなど手順が煩雑となる。
 別の方法では、目的とするエキソン改変塩基配列の直近にあるイントロンにトランスポザーゼ認識配列(PiggyBac ITR)で挟まれた薬剤耐性マーカー遺伝子を挿入した供与DNAが用いられる。当該供与DNAを細胞に導入、当該エキソン-イントロン領域を切断、イントロン薬剤耐性マーカー遺伝子からエキソン改変塩基配列まで、長鎖に渡ってゲノムに組み込まれた細胞クローンを単離した後、当該細胞クローンに対して、トランスポザーゼ(PiggyBac transposase)遺伝子を導入して、薬剤耐性マーカーと認識配列(PiggyBac ITR)が抜けた細胞を獲得する(Yusa, K. et al., Nature 478, 391-394 (2012))。
 しかしながらこの方法には2つの問題がある。一つは、PiggyBac ITRに挟まれた選択マーカー遺伝子の挿入位置がTTAA配列に限定されること、言い換えれば、改変対象部位近傍にTTAA配列が存在しなければ適用できないこと、もう一つは、適用できたとしても、供与DNAが導入された細胞を選択後に、トランスポザーゼを発現するベクター等を細胞に導入するという追加的な工程が必要であり、さらに導入したトランスポザーゼ発現ベクターが細胞から除去されたことを確認することも必要となるなど手順が煩雑である。
 上述の通り、ZFN、TALEN、CRISPR/Cas9を用いる方法においては、ゲノム編集を行う対象細胞のゲノムの標的部位が特異的に切断され、当該部位において、供与プラスミド中の標的配列と相同組み換えが起きることになるが、この機構に依存する方法においては、染色体遺伝子座上の標的配列の切断のみならず、供与プラスミド由来標的配列の切断が生じると、相同組換え反応が阻害されるので、供与プラスミド上の標的塩基配列の除去(または非標的配列への変換)によって、供与プラスミド由来標的配列の切断を回避する必要がある。しかしながら、このために供与DNAの配列を改変してしまうと、その配列がゲノムに組み込まれた細胞では、この領域からゲノム本来の配列が喪失してしまうことになるため、遺伝子治療や厳密な遺伝子改変には適用できないという問題がある(切断部位のゲノム配列喪失問題)。
Morton, J., Davis, M. W., Jorgensen, E. M. & Carroll, D. Induction and repair of zinc-finger nuclease-targeted double-strand breaks in Caenorhabditis elegans somatic cells. Proc. Natl. Acad. Sci. USA 103, 16370-16375 (2006) Cermak, T. et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. 39, e82 (2011) Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823 (2013) Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823-826 (2013) Li, H. L.et al.Precise Correction of the Dystrophin Gene in Duchenne Muscular Dystrophy Patient Induced Pluripotent Stem Cells by TALEN and CRISPR-Cas9. Stem Cell Reports 4, 143-154 (2015) Yusa, K. et al. Targeted gene correction of α1-antitrypsin deficiency in induced pluripotent stem cells. Nature 478, 391-394 (2012)
 本発明は、ゲノム配列を効率的に改変するためのドナーポリヌクレオチド、および当該ドナーポリヌクレオチドを用いたゲノム改変細胞の製造方法等に関する。
On/Off-target不正確再結合
 上述の通り、現在ゲノム編集に用いられている酵素は染色体の標的配列を切断するものであるために、標的以外の染色体部位を切断してしまうOff-targetが起こるリスクや、切断されたゲノムが修復される際にindelが導入されるリスクが懸念される。この問題を回避するために本発明者らは、染色体を切断するのではなく、供与プラスミドのみを切断することを考えた。例えば、供与プラスミドの改変後配列を含む相同領域を導入前に切断し、直鎖型供与プラスミドを細胞に導入するか、または環状の供与プラスミドを細胞に導入後、細胞内で配列特異的に供与プラスミドを切断すれば、標的配列、または標的配列に類似した標的外配列(On/Off-Target)の切断が起こらず、従って不正確な再結合が生じることがないので、indelが導入されることがなく、遺伝子治療など精密遺伝子改変に相応しい技術となる。
部位特異的組換え部位残存
 また、ゲノム編集において標的部位に必要な改変のみを導入し、マーカー遺伝子や、マーカー遺伝子を除去した痕跡が残らないようにするために、本発明者らは、供与プラスミド中のゲノム断片の外側に、ポジティブ選択マーカー遺伝子とネガティブ選択マーカー遺伝子の両方を配置することを考えた。この場合、供与プラスミドの骨格内に2つの選択マーカー遺伝子が配置されているため、標的配列領域で生じる相同組換えによって供与プラスミド全体が挿入され、供与プラスミドからの改変後の塩基配列と染色体上の改変前の塩基配列(順不同)が、供与プラスミドの骨格領域を挟み、直列に並んだベクター標的挿入体構造を形成する。この中間体構造に含まれる改変後塩基配列と改変前塩基配列は相同組換えを起こし易いため、この構造をゲノムに含む細胞を培養するだけで、自然発生的に改変後塩基配列だけからなる単独構造へ置換する。この過程においては、部位特異的組換え酵素やトランスポザーゼ等を必要としないので、極めて簡便に目的の細胞を取得することが可能で、また、特異的組換え認識配列の残存の可能性はない点でも優れている。
標的切断配列の喪失
 また上述の通り、染色体遺伝子座上の標的配列の切断のみならず、供与プラスミド由来標的配列の切断が生じると、供与プラスミド上長鎖領域と遺伝子座上標的部位との相同組換え反応が阻害される。従来法では、供与プラスミド上から切断配列を除去することによって、供与プラスミド側の相同領域の切断を回避するが、そのような方法では、切断配列が除去された改変配列が細胞の染色体に組み込まれる懸念が生じることになる。これに対して本発明の一態様においては、供与プラスミドの改変後配列を含む相同領域を導入前に切断し、直鎖型供与プラスミドを導入することによって、染色体遺伝子座上の標的配列と供与プラスミド由来標的配列の両方の切断を回避する。また本発明のもう一つの態様においては、供与プラスミド中のゲノム断片に例えばI-SceIを代表とする配列特異的切断酵素の認識配列を挿入し、その供与プラスミドを細胞に導入する前、後、または同時に配列特異的切断酵素遺伝子を細胞内で発現させ、供与プラスミド内の認識配列を切断する。配列特異的切断酵素の認識配列は細胞が持つ染色体の遺伝子座上の対応する領域には存在しないため、染色体遺伝子座上の標的配列と供与プラスミド由来配列の両切断は回避され、相同組換え効率の低下を防ぐことができる。
 このように本発明は、従来のゲノム編集技術が持つ課題を解決する新たなゲノム編集技術を提供するものであり、これにより簡便かつ正確に、目的の改変のみをゲノムに導入することが可能となる。
 すなわち本発明は、ゲノム配列を改変するための新規なドナーポリヌクレオチドおよびその利用等に関し、より具体的には請求項の各項に記載の発明に関する。なお同一の請求項を引用する請求項に記載の発明の2つまたはそれ以上の任意の組み合わせからなる発明も、本明細書において意図された発明である。すなわち本発明は、以下の発明に関する。
〔1〕 ゲノム配列を改変するためのドナーポリヌクレオチドであって、1または複数の改変を含むゲノム断片を含み、該ゲノム断片の両端はポリヌクレオチドによって連結されており、該連結ポリヌクレオチド中に、ポジティブ選択マーカー遺伝子およびネガティブ選択マーカー遺伝子の両方を含み、該ゲノム断片は切断可能であり、当該切断可能な部位は切り離されてドナーポリヌクレオチド鎖の両末端となることによりドナーポリヌクレオチドが直鎖状となっていてもよく、当該部位はドナーポリヌクレオチドにおいてつながっていてドナーポリヌクレオチドが環状となっていてもよい、ドナーポリヌクレオチド。
〔2〕 当該切断可能部位に切断配列が付加されている、〔1〕に記載のドナーポリヌクレオチド。
〔3〕 当該部位に付加されている切断配列が、ドナーポリヌクレオチドが含むゲノム断片に対応する標的とする細胞のゲノム断片の配列には含まれない、〔2〕に記載のドナーポリヌクレオチド。
〔4〕 該ゲノム断片において、該1または複数の改変が、当該部位の片側のみに含まれる、〔1〕から〔3〕のいずれかに記載のドナーポリヌクレオチド。
〔5〕 該連結するポリヌクレオチドがプラスミドのポリヌクレオチドである、〔1〕から〔4〕のいずれかに記載のドナーポリヌクレオチド。
〔6〕 ポジティブ選択マーカー遺伝子およびネガティブ選択マーカー遺伝子の間に標的とする細胞のゲノム配列を含まない、〔1〕から〔5〕のいずれかに記載のドナーポリヌクレオチド。
〔7〕 ポジティブ選択マーカー遺伝子およびネガティブ選択マーカー遺伝子が融合しており、ポジティブ選択マーカーとネガティブ選択マーカーが融合蛋白質として発現される、〔1〕から〔6〕のいずれかに記載のドナーポリヌクレオチド。
〔8〕 ゲノム配列を改変する方法であって、(a)〔1〕から〔7〕のいずれかに記載のドナーポリヌクレオチドを細胞に導入する工程、(b)ポジティブ選択マーカーによって該ドナーポリヌクレオチドが導入された細胞を選択する工程、および、(c)ネガティブ選択マーカーによって該連結ポリヌクレオチドが除去された細胞を選択する工程、を含む方法。
〔9〕 工程(a)において、ドナーポリヌクレオチドの当該部位が切り離された直鎖状ドナーポリヌクレオチドを細胞に導入する工程を含む、〔8〕に記載の方法。
〔10〕 工程(a)において、当該部位がつながっている環状ドナーポリヌクレオチド、および、当該部位を切断する切断酵素または該酵素を発現するベクターを細胞に導入する工程を含む、〔8〕に記載の方法。
〔11〕 該環状ドナーポリヌクレオチド、および、該酵素または該ベクターを同時に導入することを特徴とする、〔10〕に記載の方法。
〔12〕 該酵素を発現するベクターが、該酵素を発現するマイナス鎖RNAウイルスベクターである、〔10〕または〔11〕に記載の方法。
〔13〕 目的の改変をゲノムに含む細胞を選択する工程をさらに含む、〔8〕から〔12〕のいずれかに記載の方法。
〔14〕 遺伝性疾患の原因遺伝子において、疾患原因配列を正常配列に変換するために用いられる、〔8〕から〔13〕のいずれかに記載の方法。
〔15〕 〔1〕から〔7〕のいずれかに記載のドナーポリヌクレオチドがゲノムに組み込まれた構造を有する細胞であって、ドナーポリヌクレオチドに含まれる改変ゲノム断片と、それに対応する細胞のゲノム由来の断片が、該連結ポリヌクレオチドを介して順不同に直列した構造を有し、該連結ポリヌクレオチド中にポジティブ選択マーカー遺伝子およびネガティブ選択マーカー遺伝子を含む、細胞。
〔16〕 ゲノムが改変された細胞の製造方法であって、〔15〕に記載の細胞をネガティブ選択マーカーによって選択し、該連結ポリヌクレオチドが除去された細胞を選択的する工程を含む、方法。
〔17〕 〔12〕に記載の方法に用いられるマイナス鎖RNAウイルスベクターであって、ドナーポリヌクレオチドの切断部位を切断するエンドヌクレアーをコードするベクター。
〔18〕 センダイウイルスベクターである、〔17〕に記載のベクター。
〔19〕 該エンドヌクレアーゼがI-SceIである、〔17〕または〔18〕に記載のベクター。
〔20〕 〔17〕から〔19〕のいずれかに記載のベクターを含む、〔12〕に記載の方法に用いるための組成物。
 なお、本明細書に記載した任意の技術的事項およびその任意の組み合わせは、本明細書に意図されている。また、それらの発明において、本明細書に記載の任意の事項またはその任意の組み合わせを除外した発明も、本明細書に意図されている。また本発明に関して、明細書中に記載されたある特定の態様は、それを開示するのみならず、その態様を含むより上位の本明細書に開示された発明から、その態様を除外した発明も開示するものである。
 本発明によって、遺伝子配列を精密に改変する分子遺伝学技術が提供される。本発明は、遺伝子治療、品種改良、生物工学的創作などの様々な場面において利用することが可能である。
新規ゲノム編集技術の骨子を示す図である。 新規ゲノム編集技術による遺伝子改変の実証実験を示す図である。 ベクター標的挿入体の構造確認方法を示す図である。 ベクター標的挿入体の一つからガンシクロビル選択による遺伝子改変体の分離方法を示す図である。 遺伝子改変法:従来法の問題点、および本発明の優位性を示す図である。
 本発明は、ゲノム配列を改変するための新規なドナーポリヌクレオチドを提供する。当該ポリヌクレオチドは、1または複数の改変箇所を含むゲノム断片を含み、該ゲノム断片の両端はポリヌクレオチドによって連結されており(本発明においてこれを連結ポリヌクレオチドと言う)、該連結ポリヌクレオチド中に、ポジティブ選択マーカー遺伝子およびネガティブ選択マーカー遺伝子の両方を含む。
 ゲノム断片が由来する種に特に制限はなく、例えば所望の真核生物のゲノムであってよく、例えば酵母、動物細胞、植物細胞などに由来するゲノム断片であってよい。好ましくは動物細胞に由来するゲノム断片であり、より好ましくは哺乳動物細胞、例えば霊長類の細胞であり、具体的にはマウス、ラット、サル、およびヒトの細胞のゲノム断片が挙げられる。
 また当該ゲノム断片は、いずれかの位置で切断可能である。当該切断可能な部位は切り離されてドナーポリヌクレオチド鎖の両末端となることにより、ドナーポリヌクレオチドが直鎖状となっていてもよく、当該部位はドナーポリヌクレオチドにおいてつながっていてドナーポリヌクレオチドが環状となっていてもよい。当該切断可能な部位が切断されてドナーポリヌクレオチドが直鎖状となっている場合、そのポリヌクレオチドは、もともと1つであったゲノム断片が分断されて2つとなり、それぞれが連結ポリヌクレオチドの両端に結合している。すなわち連結ポリヌクレオチドが一対のゲノム配列に挟まれた構造を取ることになる。ドナーポリヌクレオチドが環状となっている場合は、ゲノム断片の一端が連結ポリヌクレオチドの一端と連結し、ゲノム断片の他端が連結ポリヌクレオチドの他端と連結し、環状の構造を取ることになる。
 ドナーポリヌクレオチドに含まれるゲノム断片には、1または複数の改変箇所が含まれていてよい。ここで改変箇所とは、標的とする細胞が持つゲノムの対応する箇所の配列とは異なる配列を持つ箇所のことをいう。これらの改変箇所は、ゲノム編集を行おうとする対象細胞のゲノム配列とは異なっており、このドナーポリヌクレオチドが導入されることにより、対象細胞のゲノム配列は改変されることになる。改変箇所の数に特に限定はなく、1箇所またはそれ以上、例えば2、3、4、5、10箇所、またはそれ以上であってよい。また各改変は、1または複数の塩基置換、塩基の挿入、および/または塩基の欠失、あるいはそれらの組み合わせであってよい。
 上述の通り、ドナーポリヌクレオチドに含まれるゲノム断片の両端は、ポリヌクレオチドによって連結されている。連結ポリヌクレオチドは、ゲノム断片と一続きの連続した二本鎖核酸となるように連結されている。連結ポリヌクレオチドの配列には特に制限はなく、例えばプラスミドベクター、ファージベクター、コスミドベクター、ウイルスベクター、人工染色体ベクター(例えば酵母人工染色体ベクター(YAC)および細菌人工染色体ベクター(BAC)を含む)等に由来する配列であってよい。このように連結ポリヌクレオチドがベクター骨格を有し、ベクターとして機能する場合、本発明のドナーポリヌクレオチドは、ドナーベクター(供与ベクター)ともいう。ベクターがプラスミドベクターの場合、本発明のドナーポリヌクレオチドは、ドナープラスミド(供与プラスミド)ともいう。ベクターとして機能するドナーポリヌクレオチドは、適当な宿主(細胞や大腸菌)内で保持されうる。またベクターに複製能がある場合は、ドナーポリヌクレオチドは宿主内で複製されうる。本発明のドナーポリヌクレオチドは、好ましくは、適当な宿主内で自律複製能を有する。
 連結ポリヌクレオチド中には、ゲノム編集を行おうとする対象細胞のゲノム配列が含まれていてもよいが、上述の通り、改変を行おうとする標的ゲノム配列はあくまで連結ポリヌクレオチドの両端につながっているゲノム配列であり、連結ポリヌクレオチド中に含まれうるゲノム配列は、改変を行おうとする標的配列ではない。
 連結ポリヌクレオチドの長さに特に制限はなく、適宜適当な長さのポリヌクレオチドとすることができる。連結ポリヌクレオチドとしてベクターの骨格を用いる場合は、ベクターの種類に応じて、連結ポリヌクレオチドの長さは変わり得る。一例を示せば、連結ポリヌクレオチドの長さ(後述のポジティブ選択マーカー遺伝子およびネガティブ選択マーカー遺伝子を含めた長さ)は、例えば1kb以上、2kb以上、3kb以上、5kb以上、7kb以上、10kb以上、20kb以上、または30kb以上であってよい。また、100kb以下、800kb以下、70kb以下、60kb以下、50kb以下、40kb以下、30kb以下、20kb以下、10kb以下、または8kb以下であってよい。
 本発明において連結ポリヌクレオチドは、ポジティブ選択マーカー遺伝子およびネガティブ選択マーカー遺伝子を含んでいる。ここでポジティブ選択マーカー遺伝子とは、当該マーカーを保持する細胞を選択する(および/または当該マーカーを持たない細胞を除去する)ために用いられるマーカーをコードする遺伝子であり、ネガティブ選択マーカー遺伝子とは、当該マーカーを保持する細胞を除去する(および/または当該マーカーを持たない細胞を選択する)ために用いられるマーカーをコードする遺伝子を言う。ポジティブ選択マーカー遺伝子およびネガティブ選択マーカー遺伝子は適宜選択することができる。例えばポジティブ選択マーカー遺伝子としては、Hyg(ハイグロマイシン耐性遺伝子)、Puro(ピューロマイシン耐性遺伝子)、β-geo(βガラクトシダーゼとネオマイシン耐性遺伝子の融合遺伝子)などの種々の薬剤耐性遺伝子などが例示されるが、それらに限定されるものではない。ネガティブ選択マーカー遺伝子としては、例えば細胞増殖または生存の阻害を直接的または間接的に誘導する遺伝子が挙げられ、具体的には、単純ヘルペスウイルス由来チミジンキナーゼ(TK)遺伝子、ジフテリアトキシンAフラグメント(DT-A)遺伝子、シトシンデアミナーゼ(CD)遺伝子などが挙げられるが、これらに限定されない。
 従来のゲノム編集において用いられてきたドナーポリヌクレオチドは一般に、ドナーポリヌクレオチドに含まれるゲノム断片中にポジティブ選択マーカー遺伝子を保持しており、ネガティブ選択マーカー遺伝子を配置する場合は、ゲノム断片の外側に配置される。これに対して本発明のドナーポリヌクレオチドは、連結ポリヌクレオチド中にポジティブ選択マーカー遺伝子とネガティブ選択マーカー遺伝子の両方を含むことを特徴としている。すなわち、ポジティブ選択マーカー遺伝子とネガティブ選択マーカー遺伝子との間には、標的とする細胞のゲノム配列を含まないか、あるいは含むとしても、組み換えが起こらない程度の短いものであることが好ましい。そのようなゲノム配列の長さは、例えば1.0kb以内、0.8kb以内、0.6kb以内、0.5kb以内、0.4kb以内、0.3kb以内、0.2kb以内、または0.1kb以内である。
 連結ポリヌクレオチド中に含まれるポジティブ選択マーカー遺伝子とネガティブ選択マーカー遺伝子は、互いに近接していることが好ましい。両者が近接していることにより、ポジティブ選択マーカー遺伝子とネガティブ選択マーカー遺伝子の間で組み換えが起こることを防ぐ(あるいは十分に低い頻度に抑える)ことができる。例えばプロモーターから転写終結配列までを1つの遺伝子とみなした場合、ポジティブ選択マーカー遺伝子とネガティブ選択マーカー遺伝子との間は、例えば10kb以内、好ましくは8kb以内、より好ましくは7kb以内、5kb以内、4kb以内、3kb以内、2kb以内、1kb以内、または0.5kb以内である。
 より好ましくは、ポジティブ選択マーカーとネガティブ選択マーカーは、同一のプロモーターから転写される。そして最も好ましくは、ポジティブ選択マーカー遺伝子およびネガティブ選択マーカー遺伝子は融合しており、ポジティブ選択マーカーとネガティブ選択マーカーが融合蛋白質として発現される。
 上述の通り、ドナーポリヌクレオチドに含まれるゲノム断片は、いずれかの位置で切断可能である。ここで切断可能とは、その位置を人為的に切断することができることを言う。切断は、ドナーポリヌクレオチドにおいてその位置にユニークに起こること、すなわち、ドナーポリヌクレオチドにおいてその位置だけで起こることが好ましい。
 切断可能なゲノム断片としては、例えば、ゲノム断片中に制限酵素部位がある場合が挙げられる。その場合、当該制限酵素によってその位置を切断することができる。制限酵素部位は、ドナーポリヌクレオチドにおいてその部位だけに含まれることが好ましい。また、ゲノム断片中に切断配列を付加すれば、その部位を切断可能部位とすることができる。切断配列としては特に制限はなく、所望の制限酵素の切断配列(例えばNotI部位)やメガヌクレアーゼの切断配列(I-SceI部位、PI-SceI部位等)、その他の切断酵素認識配列等を用いることができる。切断酵素は天然のヌクレアーゼであっても人工のヌクレアーゼであってもよい。また、切断は一本鎖切断でも二本鎖切断でもよいが、好ましくは二本鎖切断である。二本鎖切断の場合、切断部位は平滑末端を形成するものであっても、5'または3'突出末端を形成するものであってもよい。ヌクレアーゼには、適宜、核移行シグナル(nls)を付加してもよい。実施例3で示した、I-SceIヌクレアーゼのNH2末端に付加されたnlsアミノ酸配列は、MDKAELIPEPPKKKRKVELGT(配列番号42)であるが、この配列に限定されない。
 具体的な一例としては、Saccharomyces cerevisiae由来のホーミングエンドヌクレアーゼI-SceI (GenBank: EU004203.1)あるいはPI-SceI (GenBank: Z74233.1)の切断配列が挙げられるが、それに限定されない。切断配列をドナーポリヌクレオチド中のゲノム断片内に付加する場合、当該配列は、ドナーポリヌクレオチドに含まれているゲノム断片に対応する、ドナーポリヌクレオチドの投与対象となる細胞の対応ゲノム断片(すなわち、ドナーポリヌクレオチドにより改変を行う前の細胞が持つゲノム断片であって、ドナーポリヌクレオチドに含まれているゲノム断片に対応する領域)の配列中には含まれないことが好ましい。より好ましくは、当該切断配列は、対象細胞のゲノム全体中にも含まれないか、あるいは十分に低頻度(例えばゲノム全体で10箇所以下、5箇所以下、3箇所以下、2箇所以下、または1箇所以下)でしか含まれないことが合理的および/または統計的に期待できることが好ましい。
 I-SceIの切断配列はよく知られており、5’-TAGGGATAACAGGGTAAT-3’18-bp(配列番号1)の配列が用いられている(Colleaux, L. et al. Recognition and cleavage site of the intron-encoded omega transposase. Proc. Natl. Acad. Sci. USA 85, 6022-6026 (1988))。なお当該配列をQueryにしてBLAST SEARCHを行っても、該配列にマッチする配列はデータベース上のヒトゲノム及び転写産物には見いだされない。
 ドナーポリヌクレオチドのゲノム断片に含まれる1または複数の改変箇所(目的とする改変箇所)と切断可能部位との位置関係に特に制限はないが、好ましくは、改変箇所のすべてが、切断可能部位の片側に集中している。そうすることにより、ドナーポリヌクレオチドの切断部位近傍で標的細胞のゲノムとの相同組換えが生じた場合に、複数の改変箇所が分断されずにまとめて組変わることになるので、目的とする複数の改変箇所が導入された細胞を一度の操作で取得することが可能となる。
 後述の通り、ドナーポリヌクレオチドが細胞のゲノムに導入されて出来る標的挿入構造体を持つ細胞は、改変箇所を持つゲノムと、もともと細胞が持っていたゲノムが、連結ポリヌクレオチドの前後に順不同に並ぶことになるが、この細胞は、さらに自然に組み換えが生じて連結ポリヌクレオチドが除去される際に、その前後にあるゲノム配列の一部も除去されることになる。本発明は、ドナーポリヌクレオチドに含まれるゲノム断片において、切断可能部位を、改変箇所の上流側(すなわち、改変対象とする遺伝子のセンス鎖で言う5'側)または下流側(すなわち、改変対象とする遺伝子のセンス鎖で言う3'側)に配置するといういずれの態様も包含される。
 ドナーポリヌクレオチドに含まれるゲノム断片の長さに特に制限はなく、細胞に導入した場合に、細胞のゲノムと相同組み換えが起こるのに十分な長さであれば、所望の長さの断片を用いることができる。ドナーポリヌクレオチドに含まれるゲノム断片の長さは、例えば0.05kb以上、0.5kb以上、1kb以上、1.5kb以上、2kb以上、3kb以上、4kb以上、または5kb以上であり、例えば10000kb以下、5000kb以下、500kb以下、300kb以下、200kb以下、100kb以下、80kb以下、50kb以下、30kb以下、20kb以下、または10kb以下である。なお、ドナーポリヌクレオチドに含まれるゲノム断片を、一遺伝子座サイズに相当する数十kbまたは数百kb程度まで拡大することによって、広範囲にわたる複数の変異箇所をまとめて改変することもできる。本発明のドナーポリヌクレオチドは、そのような長いゲノム断片を含んでいてもよい。
 ドナーポリヌクレオチドに含まれるゲノム断片の配列は、標的細胞の対応するゲノム配列と高い同一性を有しており、それにより標的細胞のゲノムとの間で相同組み換えが誘発される。例えば、改変箇所および切断部位を除くゲノム断片の配列は、標的とする細胞のゲノムの対応する断片の配列と、通常90%以上、好ましくは95%以上、96%以上、97%以上、98%以上、99%以上、または100%の同一性を有し得る。
 ドナーポリヌクレオチドに含まれるゲノム断片の切断可能部位から、それにもっとも近い改変箇所までの長さは、通常、10塩基以上、好ましくは20塩基以上、30塩基以上、40塩基以上、50塩基以上、80塩基以上、100塩基以上、200塩基以上、300塩基以上、400塩基以上、500塩基以上、800塩基以上、または1kb以上である。また通常、10000kb以内、5000kb以内、500kb以内、100kb以内であり、好ましくは80kb以内、70kb以内、60kb以内、50kb以内、40kb以内、30kb以内、20kb以内、10kb以内、8kb以内、7kb以内、6kb以内、または5kb以内である。また、ドナーポリヌクレオチドに含まれるゲノム断片において、連結ポリヌクレオチドに最も近い改変箇所からその連結ポリヌクレオチドとの連結部位までの長さも上記と同様である。
 より具体的には、ドナーポリヌクレオチドに含まれるゲノム断片の切断可能部位から、それにもっとも近い改変箇所までの長さは、例えば100塩基以上、150塩基以上、200塩基以上、250塩基以上、300塩基以上、316塩基以上、350塩基以上、400塩基以上、500塩基以上、600塩基以上、1000塩基以上、1200塩基以上、1500塩基以上、または1960塩基以上とすることが好ましい。また、ドナーポリヌクレオチドに含まれるゲノム断片において、連結ポリヌクレオチドに最も近い切断可能部位からその連結ポリヌクレオチドとの連結部位までの長さは、例えば200塩基以上、250塩基以上、300塩基以上、316塩基以上、350塩基以上、400塩基以上、500塩基以上、600塩基以上、1000塩基以上、1200塩基以上、1500塩基以上、1960塩基以上、2000塩基以上、2244塩基以上、または2560塩基以上とすることが好ましい。
 また本発明は、本発明のドナーポリヌクレオチドを用いて細胞のゲノム配列を改変する方法に関する。当該方法は、(a)本発明のドナーポリヌクレオチドを細胞に導入する工程、(b)ポジティブ選択マーカーによって該ドナーポリヌクレオチドが導入された細胞を選択する工程、および、(c)ネガティブ選択マーカーによって該連結ポリヌクレオチドが除去された細胞を選択する工程、を含む。当該方法は、例えば生体外(例えばインビトロまたはエクスビボ)において実施される。なお本発明においてインビトロにおける実施には、エクスビボにおける実施も包含される。
 ドナーポリヌクレオチドを導入する細胞は、ドナーポリヌクレオチドに含まれるゲノム断片の配列と高い同一性を有する配列をゲノムに有する細胞であり、通常、ドナーポリヌクレオチドに含まれるゲノム断片が由来する生物と同じ種の細胞である。そのような細胞は、例えば所望の真核生物の細胞であってよく、例えば動物細胞または植物細胞、好ましくは動物細胞であり、より好ましくは哺乳動物細胞、例えば霊長類の細胞、具体的にはマウス、ラット、サル、およびヒトの細胞が挙げられる。また、細胞の種類にも特に制限はなく、所望の組織の細胞を用いることができ、分化した細胞や未分化な細胞、前駆細胞、始原細胞等にドナーポリヌクレオチドを導入してゲノム改変を行うことができる。また、多能性幹細胞(例えば誘導多能性幹細胞 (iPS細胞))等に導入することもできる。
 細胞に導入するドナーポリヌクレオチドは環状であっても直鎖状であってもよい。直鎖状のドナーポリヌクレオチドを導入する場合、ドナーポリヌクレオチド中のゲノム断片の切断可能部位を切断して直鎖状にして細胞に導入する。当該部位の切断方法に特に制限はなく、例えばヌクレアーゼの切断部位であれば、当該ヌクレアーゼで切断することができる。切断後、ヌクレアーゼ等を除去するためにドナーポリヌクレオチドを精製するか、ヌクレアーゼを不活化してから細胞に導入することが好ましい。
 環状のドナーポリヌクレオチドを導入する場合、細胞に導入される時またはその後で、ドナーポリヌクレオチド中のゲノム断片の切断可能部位が切断される。当該部位を切断するために、当該部位を切断するヌクレアーゼを、細胞に導入または発現させることができる。ヌクレアーゼを発現させるためには、例えば当該ヌクレアーゼをコードするベクターを細胞に導入することができる。
 ヌクレアーゼを細胞で発現させる場合、そのタイミングは、ドナーポリヌクレオチドとヌクレアーゼが細胞内で接触し切断反応が起きる限り制限はなく、ドナーポリヌクレオチドを細胞に導入する前、同時、または後であることができる。ヌクレアーゼは、ドナーポリヌクレオチドが細胞に導入された前後48時間以内には発現していることが好ましく、24時間以内には発現していることがより好ましい。またヌクレアーゼは、ドナーポリヌクレオチドが細胞に導入された前後48時間以内に発現させることが好ましく、24時間以内に発現させることがより好ましい。例えばヌクレアーゼを発現するベクターとドナーポリヌクレオチドとを、細胞に同時に導入することで、効率的にゲノム編集を達成することができる。ヌクレアーゼをべクターから発現させる場合、発現が十分に上昇するまでのタイムラグを考慮して、ドナーポリヌクレオチドを細胞に導入するよりも前にベクターを細胞に導入することもできる。
 細胞へのドナーポリヌクレオチドおよび/またはヌクレアーゼを発現するベクターの導入は、適宜、周知の方法により実施してよく、特に制限はない。例えばリポフェクション、エレクトロポレーション、マイクロインジェクション、パーティクル・ガン法、およびウイルスベクターなどを利用して導入することができる。
 ウイルスベクターをヌクレアーゼの発現のために用いる場合、レトロウイルスベクター、アデノウイルスベクター、アデノ随伴ウイルスベクター、ワクシニアウイルスベクター等の所望のウイルスベクターを用いることができる。本発明において特に好適に用いられるウイルスベクターとしてはマイナス鎖RNAウイルスベクターが挙げられ、例えば、パラミクソウイルスベクターを好適に用いることができる。パラミクソウイルスとはパラミクソウイルス科(Paramyxoviridae)に属するウイルスまたはその誘導体を指す。パラミクソウイルス科はパラミクソウイルス亜科(Paramyxovirinae)(レスピロウイルス属(パラミクソウイルス属とも言う)、ルブラウイルス属、およびモービリウイルス属を含む)およびニューモウイルス亜科(Pneumovirinae)(ニューモウイルス属およびメタニューモウイルス属を含む)を含む。パラミクソウイルス科ウイルスに含まれるウイルスとして、具体的にはセンダイウイルス(Sendai virus)、ニューカッスル病ウイルス(Newcastle disease virus)、おたふくかぜウイルス(Mumps virus)、麻疹ウイルス(Measles virus)、RSウイルス(Respiratory syncytial virus)、牛疫ウイルス(rinderpest virus)、ジステンパーウイルス(distemper virus)、サルパラインフルエンザウイルス(SV5)、ヒトパラインフルエンザウイルス1, 2, 3型等が挙げられる。より具体的には、例えば Sendai virus (SeV)、human parainfluenza virus-1 (HPIV-1)、human parainfluenza virus-3 (HPIV-3)、phocine distemper virus (PDV)、canine distemper virus (CDV)、dolphin molbillivirus (DMV)、peste-des-petits-ruminants virus (PDPR)、measles virus (MeV)、rinderpest virus (RPV)、Hendra virus (Hendra)、Nipah virus (Nipah)、human parainfluenza virus-2 (HPIV-2)、simian parainfluenza virus 5 (SV5)、human parainfluenza virus-4a (HPIV-4a)、human parainfluenza virus-4b (HPIV-4b)、mumps virus (Mumps)、およびNewcastle disease virus (NDV) などが含まれる。ラブドウイルスとしては、ラブドウイルス科(Rhabdoviridae)の水疱性口内炎ウイルス(Vesicular stomatitis virus)、狂犬病ウイルス(Rabies virus)等が含まれる。
 またマイナス鎖RNAウイルスは、天然株、野生株、変異株、ラボ継代株、および人為的に構築された株などに由来してもよい。例えばセンダイウイルスであればZ株が挙げられるが、それに限定されるものではない(Medical Journal of Osaka University Vol.6, No.1, March 1955 p1-15)。例えば、野生型ウイルスが持ついずれかの遺伝子に変異や欠損があるものであってよい。例えば、ウイルスのエンベロープ蛋白質または外殻蛋白質をコードする少なくとも1つの遺伝子に欠損あるいはその発現を抑制するストップコドン変異などの変異を有する伝播能欠失型ウイルスを好適に用いることができる。このようなエンベロープ蛋白質を発現しないウイルスは、例えば感染細胞においてはゲノムを複製することはできるが、感染性ウイルス粒子を形成できないウイルスである。このような伝搬能欠損型のウイルスは、特に安全性の高いベクターとして好適である。例えば、FまたはHNのいずれかのエンベロープ蛋白質(スパイク蛋白質)の遺伝子、あるいはFおよびHNの遺伝子をゲノムにコードしないウイルスを用いることができる (WO00/70055 および WO00/70070; Li, H.-O. et al., J. Virol. 74(14) 6564-6569 (2000))。少なくともゲノム複製に必要な蛋白質(例えば N、P、およびL蛋白質)をゲノムRNAにコードしていれば、ウイルスは感染細胞においてゲノムを増幅することができる。エンベロープ蛋白質欠損型でありかつ感染性を持つウイルス粒子を製造するには、例えば、欠損している遺伝子産物またはそれを相補できる蛋白質をウイルス産生細胞において外来的に供給する(WO00/70055 および WO00/70070; Li, H.-O. et al., J. Virol. 74(14) 6564-6569 (2000))。一方、欠損するウイルス蛋白質を全く相補しないことによって、非感染性ウイルス粒子を回収することができる(WO00/70070)。
 ウイルスベクターとしては、また、変異型のウイルス蛋白質遺伝子を搭載するウイルスベクターを用いることも好ましい。例えば、エンベロープ蛋白質や外殻蛋白質において弱毒化変異や温度感受性変異を含む多数の変異が知られている。これらの変異蛋白質遺伝子を有するウイルスを本発明において好適に用いることができる。本発明においては、望ましくは細胞傷害性を減弱したベクターを用い得る。例えば、ウイルスの構造蛋白質(NP, M)やRNA合成酵素(P, L)において弱毒化変異や温度感受性変異を含む多数の変異が知られている。これらの変異蛋白質遺伝子を有するパラミクソウイルスベクターなどを本発明において目的に応じて好適に用いることができる。
 具体的には、例えばセンダイウイルスのM遺伝子の好ましい変異としては、M蛋白質における69位(G69)、116位(T116)、および183位(A183)からなる群より任意に選択される部位のアミノ酸置換が挙げられる(Inoue, M. et al., J.Virol. 2003, 77: 3238-3246)。センダイウイルスのM蛋白質に上記の3つの部位のいずれか、好ましくは任意の2部位の組み合わせ、さらに好ましくは3つの部位全てのアミノ酸が他のアミノ酸に置換された変異M蛋白質をコードするゲノムを有するウイルスは、本発明において好適に用いられる。
 アミノ酸変異は、側鎖の化学的性質の異なる他のアミノ酸への置換が好ましく、例えばBLOSUM62マトリックス(Henikoff, S. and Henikoff, J. G. (1992) Proc. Natl. Acad. Sci. USA 89: 10915-10919)の値が3以下、好ましくは2以下、より好ましくは1以下、より好ましくは0のアミノ酸に置換する。具体的には、センダイウイルスM蛋白質のG69、T116、およびA183を、それぞれGlu (E)、Ala (A)、およびSer (S) へ置換することができる。また、麻疹ウイルス温度感受性株 P253-505(Morikawa, Y. et al., Kitasato Arch. Exp. Med. 1991: 64; 15-30)のM蛋白質の変異と相同な変異を利用することも可能である。変異の導入は、例えばオリゴヌクレオチド等を用いて、公知の変異導入方法に従って実施すればよい。
 また、HN遺伝子の好ましい変異としては、例えばセンダイウイルスのHN蛋白質の262位(A262)、264位(G264)、および461位(K461)からなる群より任意に選択される部位のアミノ酸置換が挙げられる(Inoue, M. et al., J.Virol. 2003, 77: 3238-3246)。3つの部位のいずれか1つ、好ましくは任意の2部位の組み合わせ、さらに好ましくは3つの部位全てのアミノ酸が他のアミノ酸に置換された変異HN蛋白質をコードするゲノムを有するウイルスは、本発明において好適に用いられる。上記と同様に、アミノ酸の置換は、側鎖の化学的性質の異なる他のアミノ酸への置換が好ましい。好ましい一例を挙げれば、センダイウイルス HN蛋白質のA262、G264、およびK461を、それぞれThr (T)、Arg (R)、およびGly (G) へ置換する。また、例えば、ムンプスウイルスの温度感受性ワクチン株 Urabe AM9を参考に、HN蛋白質の464及び468番目のアミノ酸に変異導入することもできる(Wright, K. E. et al., Virus Res. 2000: 67; 49-57)。
 またセンダイウイルスは、P遺伝子および/またはL遺伝子に変異を有していてもよい。このような変異としては、具体的には、SeV P蛋白質の86番目のGlu(E86)の変異、SeV P蛋白質の511番目のLeu(L511)の他のアミノ酸への置換が挙げられる。上記と同様に、アミノ酸の置換は、側鎖の化学的性質の異なる他のアミノ酸への置換が好ましい。具体的には、86番目のアミノ酸のLysへの置換、511番目のアミノ酸のPheへの置換などが例示できる。またL蛋白質においては、SeV L蛋白質の1197番目のAsn(N1197)および/または1795番目のLys(K1795)の他のアミノ酸への置換が挙げられ、上記と同様に、アミノ酸の置換は、側鎖の化学的性質の異なる他のアミノ酸への置換が好ましい。具体的には、1197番目のアミノ酸のSerへの置換、1795番目のアミノ酸のGluへの置換などが例示できる。P遺伝子およびL遺伝子の変異は、持続感染性、2次粒子放出の抑制、または細胞傷害性の抑制の効果を顕著に高めることができる。さらに、エンベロープ蛋白質遺伝子の変異および/または欠損を組み合わせることで、これらの効果を劇的に上昇させることができる。またL遺伝子は、SeV L蛋白質の1214番目のTyr(Y1214)および/または1602番目のMet(M1602)の他のアミノ酸への置換が挙げられ、上記と同様に、アミノ酸の置換は、側鎖の化学的性質の異なる他のアミノ酸への置換が好ましい。具体的には、1214番目のアミノ酸のPheへの置換、1602番目のアミノ酸のLeuへの置換などが例示できる。以上に例示した変異は、任意に組み合わせることができる。
 例えば、SeV M蛋白質の少なくとも69位のG、116位のT、及び183位のA、SeV HN蛋白質の少なくとも262位のA,264位のG,及び461位のK、SeV P蛋白質の少なくとも511位のL、SeV L蛋白質の少なくとも1197位のN及び1795位のKが、それぞれ他のアミノ酸に置換されており、かつF遺伝子を欠損または欠失するセンダイウイルスベクター、ならびに、細胞傷害性がこれらと同様またはそれ以下、および/または37℃におけるNTVLP形成の抑制がこれらと同様またはそれ以上のF遺伝子欠損または欠失センダイウイルスベクターは、本発明において好適である。
 より具体的には、F遺伝子を欠失し、M蛋白質にG69E、T116A、およびA183Sの変異、HN蛋白質にA262T、G264R、およびK461Gの変異、P蛋白質にL511Fの変異、ならびにL蛋白質にN1197SおよびK1795Eの変異をゲノムに含むセンダイウイルスベクターは、本発明において好適に用いることができる。本発明において、F遺伝子の欠失とこれらの変異との組み合わせを「TSΔF」と称す。
 また、例えばセンダイウイルス(SeV)の場合、L蛋白質の変異としては、SeV L蛋白質の942位(Y942)、1361位(L1361)、および1558位(L1558)から任意に選択される部位のアミノ酸の他のアミノ酸への置換も挙げられる。上記と同様に、アミノ酸の置換は、側鎖の化学的性質の異なる他のアミノ酸への置換が好ましい。具体的には、942番目のアミノ酸のHisへの置換、1361番目のアミノ酸のCysへの置換、1558番目のアミノ酸のIleへの置換などが例示できる。特に少なくとも942位または1558位が置換されたL蛋白質を好適に用いることができる。例えば1558位に加え、1361位も他のアミノ酸に置換された変異L蛋白質も好適である。また、942位に加え、1558位および/または1361位も他のアミノ酸に置換された変異L蛋白質も好適である。これらの変異により、L蛋白質の温度感受性を上昇させることができる。
 またP蛋白質の変異としては、SeV P蛋白質の433位(D433)、434位(R434)、および437位(K437)から任意に選択される部位のアミノ酸の他のアミノ酸への置換が挙げられる。上記と同様に、アミノ酸の置換は、側鎖の化学的性質の異なる他のアミノ酸への置換が好ましい。具体的には、433番目のアミノ酸のAla (A) への置換、434番目のアミノ酸のAla (A) への置換、437番目のアミノ酸のAla (A) への置換などが例示できる。特にこれら3つの部位全てが置換されたP蛋白質を好適に用いることができる。これらの変異により、P蛋白質の温度感受性を上昇させることができる。
 SeV P蛋白質の少なくとも433位のD、434位のR、および437位のKの3箇所が、他のアミノ酸に置換された変異P蛋白質、およびSeV L蛋白質の少なくとも1558位のLが置換された変異L蛋白質(好ましくは少なくとも1361位のLも他のアミノ酸に置換された変異L蛋白質)をコードする、F遺伝子を欠損または欠失するセンダイウイルスベクター、ならびに、細胞傷害性がこれと同様またはそれ以下、および/または温度感受性がこれと同様またはそれ以上のF遺伝子を欠損または欠失するセンダイウイルスベクターも、本発明において好適に用いられる。各ウイルス蛋白質は、本明細書に例示した変異以外に他のアミノ酸(例えば10以内、5以内、4以内、3以内、2以内、または1アミノ酸)に変異を有していてもよい。上記に示した変異を有するベクターは高い温度感受性を示すので、細胞を通常温度(例えば約37℃、具体的には36.5~37.5℃、好ましくは36.6~37.4℃、より好ましくは36.7℃~37.3℃)で培養することにより、ベクターを簡便に除去することができる。ベクターの除去においては、やや高温(例えば37.5~39℃、好ましくは38~39℃、または38.5~39℃)で培養してもよい。
 具体的なベクターを例示すれば、例えばF遺伝子を欠失し、M蛋白質にG69E、T116A、およびA183Sの変異、HN蛋白質にA262T、G264R、およびK461Gの変異、P蛋白質にL511Fの変異、ならびにL蛋白質にN1197SおよびK1795Eの変異をゲノムに含むセンダイウイルスベクターが挙げられる。
 また、好ましくは、例えばF遺伝子を欠失し、M蛋白質にG69E、T116A、およびA183Sの変異、HN蛋白質にA262T、G264R、およびK461Gの変異、P蛋白質にL511Fの変異、ならびにL蛋白質にN1197SおよびK1795Eの変異をゲノムに含むセンダイウイルスベクターであって、以下の(i)および/または(ii)の変異をさらにゲノムに含むセンダイウイルスベクターが挙げられる。
 (i)P蛋白質のD433A、R434A、およびK437Aの変異
 (ii)L蛋白質のY942H、L1361Cおよび/またはL1558Iの変異
 より具体的に例示すれば、F遺伝子を欠失し、M蛋白質にG69E、T116A、およびA183Sの変異、HN蛋白質にA262T、G264R、およびK461Gの変異、P蛋白質にL511Fの変異、ならびにL蛋白質にN1197SおよびK1795Eの変異をゲノムに含み、以下の(i)から(iv)のいずれかの変異をさらにゲノムに含むセンダイウイルスベクターが挙げられる。
 (i)P蛋白質のD433A、R434A、およびK437Aの変異、ならびにL蛋白質のL1361CおよびL1558Iの変異(TS15)
 (ii)P蛋白質のD433A、R434A、およびK437Aの変異(TS12)
 (iii)L蛋白質のY942H、L1361C、およびL1558Iの変異(TS7)
 (iv)P蛋白質のD433A、R434A、およびK437Aの変異、ならびにL蛋白質のL1558Iの変異(TS13)
 (v)P蛋白質のD433A、R434A、およびK437Aの変異、ならびにL蛋白質のL1361Cの変異(TS14)
 ヌクレアーゼ遺伝子をベクターに搭載させる場合、ヌクレアーゼ遺伝子は、いずれかのウイルス遺伝子(NP, P, M, F, HN, または L)の直前(ゲノムの3'側)または直後(ゲノムの5'側)に挿入することができる。例えばセンダイウイルスのP遺伝子の直後、すなわちP遺伝子のすぐ下流(マイナス鎖RNAゲノムのすぐ5'側)に組み込むことができるが、それに限定されない。
 例えば、マイナス鎖RNAウイルスの製造は、以下の公知の方法を利用して実施することができる(WO97/16539; WO97/16538; WO00/70055; WO00/70070; WO01/18223; WO03/025570; WO2005/071092; WO2006/137517; WO2007/083644; WO2008/007581; Hasan, M. K. et al., J. Gen. Virol. 78: 2813-2820, 1997、Kato, A. et al., 1997, EMBO J. 16: 578-587 及び Yu, D. et al., 1997, Genes Cells 2: 457-466; Durbin, A. P. et al., 1997, Virology 235: 323-332; Whelan, S. P. et al., 1995, Proc. Natl. Acad. Sci. USA 92: 8388-8392; Schnell. M. J. et al., 1994, EMBO J. 13: 4195-4203; Radecke, F. et al., 1995, EMBO J. 14: 5773-5784; Lawson, N. D. et al., Proc. Natl. Acad. Sci. USA 92: 4477-4481; Garcin, D. et al., 1995, EMBO J. 14: 6087-6094; Kato, A. et al., 1996, Genes Cells 1: 569-579; Baron, M. D. and Barrett, T., 1997, J. Virol. 71: 1265-1271; Bridgen, A. and Elliott, R. M., 1996, Proc. Natl. Acad. Sci. USA 93: 15400-15404; Tokusumi, T. et al. Virus Res. 2002: 86; 33-38、Li, H.-O. et al., J. Virol. 2000: 74; 6564-6569)。またウイルスの増殖方法および組み換えウイルスの製造方法については、ウイルス学実験学 各論、改訂二版(国立予防衛生研究所学友会編、丸善、1982)も参照のこと。
 本発明の方法においては、ドナーポリヌクレオチドを細胞に導入する工程(工程(a))の次に、ポジティブ選択マーカーによって該連結ポリヌクレオチドを保持する細胞(すなわちドナーポリヌクレオチドを保持する細胞)を選択する(工程(b))。この工程は、マーカーの種類に応じて適宜実施することができる。例えば薬剤耐性マーカーを用いた場合は、当該薬剤と共に細胞を培養し、マーカーを発現する細胞を選択する。細胞の選択は、ポジティブ選択マーカーを発現する細胞集団を、発現しない細胞集団から完全に分離することであってもよく、また、ポジティブ選択マーカーを発現する細胞の割合を増加させることであってもよい。この選択によって、全細胞中におけるポジティブ選択マーカー陽性細胞(またはドナーポリヌクレオチドが導入された細胞)の割合は有意に上昇する。例えば、当該選択によって全細胞中におけるポジティブ選択マーカー陽性細胞(またはドナーポリヌクレオチドが導入された細胞)の割合は、10倍以上、50倍以上、100倍以上、500倍以上、1000倍以上、5000倍以上、10000倍以上、50000倍以上、または10万倍以上に上昇する。また当該選択によって全細胞中におけるポジティブ選択マーカー陽性細胞(またはドナーポリヌクレオチドが導入された細胞)の割合は、0.0000001以上、0.000001以上、0.00001以上、0.0001以上、0.001以上、0.01以上、0.02以上、0.05以上、0.1以上、0.2以上、0.3以上、0.4以上、0.5以上、0.6以上、0.7以上、0.8以上、0.9以上、0.95以上、0.98以上、または0.99以上となることが好ましい。
 本発明のドナーポリヌクレオチドが相同組み換えによって細胞のゲノムに組み込まれると、当該領域は、(a)細胞がもともと持っていたゲノム断片-(b)ドナーポリヌクレオチドに含まれていたゲノム断片-(c)ドナーポリヌクレオチドに含まれていた連結ポリヌクレオチド-(d)ドナーポリヌクレオチドに含まれていたゲノム断片-(e)細胞がもともと持っていたゲノム断片、という構造を取る。但し、ドナーポリヌクレオチドに含まれているゲノム断片が、目的の改変箇所以外は細胞のゲノムと同一である場合、外見上は、ドナーポリヌクレオチドに含まれていた連結ポリヌクレオチドを介して、ほとんど同じゲノム配列が連結ポリヌクレオチドの前後に並んだ構造を取ることになる。本発明においては、このような構造体を、ドナーポリヌクレオチドの標的挿入構造体と言う。連結ポリヌクレオチドを介して前後に並ぶゲノム断片のどちらに目的の改変(すなわちドナーポリヌクレオチドに含まれていた改変配列)が含まれるかは、相同組み換えが生じた位置によって変わり得るが、いずれにしろ、目的の改変を含むゲノム断片と、細胞がもともと持っていたゲノム断片が、連結ポリヌクレオチドを介して直列に並んだ構造となる。そして連結ポリヌクレオチドには、ポジティブ選択マーカー遺伝子およびネガティブ選択マーカー遺伝子が含まれている。すなわち本発明の方法によって取得される、本発明のドナーポリヌクレオチドがゲノムに組み込まれた構造を有する細胞は、ドナーポリヌクレオチドに含まれる改変ゲノム断片と、それに対応する細胞のゲノム由来の断片が、ドナーポリヌクレオチドに含まれる連結ポリヌクレオチドを介して順不同に直列した構造を有し、該連結ポリヌクレオチド中にポジティブ選択マーカー遺伝子およびネガティブ選択マーカー遺伝子を含む細胞である。
 本発明の方法においては、次に、ネガティブ選択マーカーによって該連結ポリヌクレオチドが除去された細胞を選択する。上述の通り、本発明のドナーポリヌクレオチドが相同組み換えによって細胞のゲノムに導入されると、連結ポリヌクレオチドを介して、目的の改変を含むゲノム断片と、細胞がもともと持っていたゲノム断片がタンデムに並ぶ構造となる。この一対の配列は高い相同性を有するため、高い効率で相同組み換えが誘発され、その結果、連結ポリヌクレオチドを含む断片がゲノムから除去される。この反応を引き起こすために特別な操作を行う必要はない。細胞を培養することによって、連結ポリヌクレオチドが除去された細胞が生成される。そして連結ポリヌクレオチド中のネガティブ選択マーカー遺伝子を利用することにより、連結ポリヌクレオチドがゲノムから除去された細胞を積極的に選択することができる。
 この工程も、ネガティブ選択マーカーの種類に応じて適宜実施することができる。例えばチミジンキナーゼ(TK)遺伝子を用いた場合は、ガンシクロビルと共に細胞を培養し、マーカーを発現しない細胞(または連結ポリヌクレオチドが除去された細胞)を選択する。細胞の選択は、ネガティブ選択マーカーを発現しない細胞(または連結ポリヌクレオチドが除去された細胞)の集団を、ネガティブ選択マーカーを発現する細胞(または連結ポリヌクレオチドが除去されていない細胞)の集団から完全に分離することであってもよく、また、ネガティブ選択マーカーを発現しない細胞(または連結ポリヌクレオチドが除去された細胞)の割合を増加させることであってもよい。この選択によって、全細胞中におけるネガティブ選択マーカーを発現しない細胞(または連結ポリヌクレオチドが除去された細胞)の割合は有意に上昇する。例えば、当該選択によって全細胞中におけるネガティブ選択マーカーを発現しない細胞(または連結ポリヌクレオチドが除去された細胞)の割合は、10倍以上、50倍以上、100倍以上、500倍以上、1000倍以上、5000倍以上、10000倍以上、50000倍以上、または10万倍以上に上昇する。また当該選択によって全細胞中におけるネガティブ選択マーカーを発現しない細胞(または連結ポリヌクレオチドが除去された細胞)の割合は、0.00001以上、0.0001以上、0.001以上、0.01以上、0.02以上、0.05以上、0.1以上、0.2以上、0.3以上、0.4以上、0.5以上、0.6以上、0.7以上、0.8以上、0.9以上、0.95以上、0.98以上、または0.99以上となることが好ましい。
 ネガティブ選択マーカーによる選択で得られる細胞は、相同組み換えによって、連結ポリヌクレオチドの前後にタンデムに並んでいたゲノム断片が、元通りに一コピーとなっている。得られる細胞は、連結ポリヌクレオチド部分はすべて除去されていることが期待されるが、重複するゲノム配列領域のどの部分が除去されるかは、組み換えが起こる位置によって変わり得る。したがって、得られる細胞には、目的とするゲノム改変が導入された細胞と、導入されていない細胞(すなわち元に戻ってしまった細胞)が混在することになる。しかしそれらの細胞は、確率的にほぼ同等に出現することになるので、目的の改変を保持する細胞は容易に取得することができる。目的とする改変を有しているか否かは、例えば目的の改変箇所に特異的な配列を直接または間接に検出することにより行うことができ、例えばPCRにより標的部位を増幅して塩基配列を確認したり、あるいは変異部位特異的なプライマー等を利用したPCRを行い、PCR産物の有無や増幅断片の長さ等を確認することにより識別することができる。
 本発明の遺伝子改変について、以下にさらに詳細に説明する。
 図1に、本発明の一実施形態による遺伝子改変スキームを示した。なお、ここではドナーポリヌクレオチドをベクター、または供与プラスミド等とも称す。第1段階において(図1A-B)、改変後の塩基配列と改変前の塩基配列が供与プラスミドの骨格領域を挟んで、直列に改変後塩基配列と改変前塩基配列(順不同)が並んだベクター標的挿入体構造を標的遺伝子内に構築し、第2段階において(図1B-C)、このベクター標的挿入体構造から自然発生的に、改変後塩基配列だけからなる単独構造へ置換したクローンを選抜することによって、改変前塩基配列を改変後塩基配列に変換することにより、遺伝子の改変が行われる。
 Aでは供与プラスミドのベクター骨格を細線で、供与プラスミドの改変後配列が中央付近に位置する改変遺伝子に相同な配列を太線で示し、当該プラスミドの下に、細胞の改変したい遺伝子座を示しているが、改変遺伝子座の細胞に、供与プラスミドが導入されると、改変遺伝子座と供与プラスミドの相同領域同士が整列することを示している。細胞が持つゲノム配列には、疾患変異が含まれており、供与プラスミドが持つゲノム断片は正常配列を持つ。
 Bでは、相同領域の整列後に、I-SceI等によって作られた切断断端から相同組換え反応が始まり、その結果、ベクター標的挿入体が形成される。その構造は、改変後配列(正常配列)を含む断片、改変前配列(疾患変異)を含む断片がベクター骨格(連結ポリヌクレオチド)を挟んで直列に並ぶことを示している。このベクター標的挿入体細胞クローンを、例えばハイグロマイシン耐性クローンとして、単離する。
 Cでは、このベクター標的挿入体構造から、改変後塩基配列だけからなる単独構造へ自然発生的に置換が起こることによって、改変前塩基配列が改変後塩基配列に変換されることを示している。この置換細胞クローンを、例えばガンシクロビル耐性クローンとして、単離する。このように、上述の第1段階の産物であるベクター標的挿入体構造(すなわち改変後配列(正常配列)を含む断片と、改変前配列(疾患変異)を含む断片とが、ベクター骨格(連結ポリヌクレオチド)を挟んで直列に並んだ構造)を持つ細胞は、改変前塩基配列が改変後塩基配列に自然発生的に置換されることによって、改変後塩基配列配列だけからなる単独構造に変換できる、ベクター標的挿入体構造を持つ細胞種である。
 本願の実施例で用いたドナーポリヌクレオチドのベクター骨格は、大腸菌DNA複製の開始点(pMB1)、カナマイシン耐性遺伝子(大腸菌選択マーカー;Km)、ヒト転写開始点の支配下にある、ハイグロマイシン耐性遺伝子(動物細胞選択マーカー)とHSV-TK(動物細胞排除マーカー)からなる融合遺伝子(HygTK)を含有する。改変遺伝子に相同な配列は、ヒトHPRT遺伝子のイントロン1、改変後配列(正常配列)を持つエキソン2、イントロン2、エキソン3、イントロン3に渡る5488 bpの断片から成り、改変遺伝子座は、エキソン2内部に改変対象である改変前配列(疾患変異;十字形の星で示した)を持つ。
 図2に、本発明のゲノム編集技術による遺伝子改変の実証実験の手順を示す。A-Cは図1と同様な遺伝子改変スキームを示すが、供与プラスミドは、エキソン2上のSexA1サイト(ACCAGGT)付近を同義変換させた分子マーカーを持つので、遺伝子座標的領域の配列改変をSexA1サイトから同義変換配列への変化によって確認できる。D-FはA-Cへの反応に沿った操作手順を示す。部位特異的切断酵素I-SceIにより処理した直鎖上供与プラスミド(同義変換配列)を標的遺伝子座(SexA1サイト)の細胞に導入し、ハイグロマイシン耐性コロニーからベクター標的挿入体細胞をPCRスクリーニングで取得し、このクローンを培養・播種後ガンシクロビル耐性コロニーを得て、遺伝子改変体を取得する。
 このように、本発明の方法の第1段階の産物であるベクター標的挿入体構造を持つ細胞を得るために、改変前塩基配列部位に対して、改変後塩基配列内の5'側に単独DNA切断部位を持ち、プラスミドの骨格領域にポジティブ選択マーカー遺伝子とネガティブ選択マーカー(排除マーカー)遺伝子を持つ供与プラスミドDNA(図1Aを参照)、または、改変後塩基配列内の3’側に単独DNA切断部位を持ち、プラスミドの骨格領域にポジティブ選択マーカー遺伝子とネガティブ選択マーカー遺伝子を持つ供与プラスミドDNA(図2Aを参照)を用いることができる。ここで5'側および3'側とは、それぞれ、改変対象とする遺伝子のセンス鎖で言う5'側および3'側を言う。
 図3に、ベクター標的挿入体のPCRスクリーニングの方法を示す。Aでは、ベクター標的挿入された領域の構造を示している。供与プラスミド由来の改変後配列(同義変換配列)は下流に、標的遺伝子座由来の改変前配列(SexA1配列)は上流に位置する。B左パネルのように、ベクター標的細胞のゲノムDNA、上流の5488 bp断片の5’外側のプライマーGT68とベクター骨格に位置するHygTKプロモーター領域のプライマーGT124によるPCRから、7577 bp相当の断片が検出されたならば、それはベクター標的挿入体の上流領域(5’領域)の構造であると考えられる。同様にB右パネルのように、ベクター骨格に位置するpMB1領域のプライマーGT112と下流の5488 bp断片の3’外側のプライマーGT68によるPCRから、7683 bp相当の断片が検出されたならば、それはベクター標的挿入体の下流領域(3’領域)の構造であると考えられる。さらに、上流領域のSexA1配列と下流領域の同義変換配列が共存することを確認するために、分子マーカー配列が位置するエキソン2の領域を増幅するプライマーGT19/GT22によるPCRから、525 bp相当の断片を得て配列解析を行い、得られる波形チャートから2種のマーカー配列が共存することを確認する。
 図4に、ベクター標的挿入体からガンシクロビル選択による遺伝子改変体の分離方法を示す。Aでは、図3Aのベクター標的挿入体から上流(繰り返しの前半)または下流(繰り返しの後半)配列への置換反応が起こると、それに伴って、それぞれ下流配列または上流配列を持つベクタープラスミドが飛び出すが、ガンシクロビル選択により、飛び出したプラスミドを持つ細胞は排除され、遺伝子座で置換反応が起こった遺伝子改変体の候補クローンを取得することを示している。B左パネルに示すように、ガンシクロビル耐性クローンの遺伝子座が置換体構造になっていることを確認するために、相同遺伝子座領域5488 bp断片の5’外側プライマーGT68と3’外側プライマーGT69によるPCR解析から、9367 bp相当の断片が検出されたならば、それは遺伝子改変体の構造であると考えられる。B中央パネルに示すように、ガンシクロビル耐性クローンの細胞内に飛び出したプラスミドが存在しないことを確認するために、プラスミド上HygTK遺伝子のHyg領域を増幅するプライマーGT38/GT39によるPCR解析から、998 bp相当の断片が生じないならば、その細胞クローンには飛び出したプラスミドが含まれないと判定できる。最後にB右パネルに示すように、ガンシクロビル耐性クローンから遺伝子改変体を単離するために、分子マーカー配列が位置するエキソン2の領域を増幅するプライマーGT19/GT22によるPCRから、525 bp相当の断片を得て配列を決定し、ベクター標的挿入領域上の繰り返された改変前配列(SexA1配列)と改変後配列(同義変換配列)のうち、改変後配列に置換された細胞クローンを取得できることを示す。また、供与プラスミドの切断が3’側である形態のみならず、5’側切断も発明を実施するための形態と言える。なお、重複領域における改変箇所の前後の長さの違いは問題としない。すなわち、改変箇所の前(遺伝子のコード鎖における5'側)にある重複領域の方が、後ろ(3'側)にある重複領域よりも長くても、前にある重複領域の方が後ろにある重複領域より短くても、両者が同じ長さであってもよい。
 図5に、従来遺伝子改変法の問題点と本発明の方法の優位性を示す。Aには、発明が解決しようとする課題を図示している。Cの「課題項目」の列に、上述したOn/Off-target不正確再結合の課題、部位特異的組換え部位残存の課題、標的切断配列の喪失の問題という解決すべき課題を挙げている。Bには、その課題を解決するための手段を図示している。Cに示した通り、本発明の方法を用いることにより、On/Off-target不正確再結合、部位特異的組換え部位(loxPなど)の残存、および標的切断配列の喪失などの問題を回避することが可能である。
 本発明は、細胞のゲノムに所望の改変を導入するために有用であり、例えば、遺伝性疾患の原因遺伝子において、疾患原因配列を正常配列に変換するために用いることができる。例えば本発明の疾患変異修復方法の一例としては、第1段階において、治療対象の遺伝性疾患を起こさない正常塩基配列と治療対象である疾患原因塩基配列がドナーポリヌクレオチド中の連結ポリヌクレオチド(例えばプラスミドの骨格領域)を挟んで、直列に正常塩基配列と疾患原因塩基配列(順不同に)が並んだベクター標的挿入体構造を標的疾患原因遺伝子内に構築し、第2段階において、このベクター標的挿入体構造から自然発生的に、正常塩基配列だけからなる単独構造へ置換することによって、標的疾患原因塩基配列を正常塩基配列に変換する遺伝子修復法が挙げられる。
 疾患変異修復のために用いられるドナーポリヌクレオチドの一例としては、前記の疾患変異修復方法における第1段階の産物であるベクター標的挿入体構造を持つ細胞を得るために、疾患原因塩基配列部位の5'側(遺伝子のセンス鎖における5'側)にある正常塩基配列内に単独DNA切断部位を持ち、ドナーポリヌクレオチドの連結ポリヌクレオチド(例えばプラスミドの骨格領域)に選択マーカー(ポジティブ選択マーカー)遺伝子と排除マーカー(ネガティブ選択マーカー)遺伝子を持つドナーポリヌクレオチド(図1Aを参照)、または、疾患原因塩基配列部位の3'側(遺伝子のセンス鎖における3'側)にある正常基配列内に単独DNA切断部位を持ち、連結ポリヌクレオチド中(例えばプラスミドの骨格領域)に選択マーカー遺伝子と排除マーカー遺伝子を持つドナーポリヌクレオチド(図2Aを参照)を挙げることができる。
 このドナーポリヌクレオチドを、疾患変異を持つ細胞に導入することにより、疾患変異修復ベクター標的挿入体細胞を得ることができる。この細胞は、前記の疾患変異修復方法における第1段階の産物であるベクター標的挿入体構造から、疾患原因塩基配列が正常塩基配列に自然発生的に置換されることによって、正常塩基配列だけからなる単独構造に変換できる、ベクター標的挿入体構造を持つ細胞種である。当該細胞種はすなわち、治療対象の遺伝性疾患を起こさない正常塩基配列と治療対象である疾患原因塩基配列がドナーポリヌクレオチド中の連結ポリヌクレオチド(例えばプラスミドの骨格領域)を挟んで、順不同に(すなわち任意の順番で)直列に並んだベクター標的挿入体構造を染色体上に有する細胞である。当該細胞種においてこのベクター標的挿入体構造は、自然発生的かつ確率論的に正常塩基配列だけからなる単独構造に置換される。
 また本発明は、本発明のドナーポリヌクレオチドを用いる一遺伝子座置換方法を提供する。遺伝性疾患には一遺伝子性疾患であっても、配列、構造、サイズにおける変異多様性が存在するが、このような多様な疾患変異のそれぞれに対して一種類のドナーポリヌクレオチドによって遺伝子座置換するために、本発明のドナーポリヌクレオチドを一遺伝子座サイズに相当する数十kb・数百kb程度まで拡大することによって、第1段階において、治療対象の遺伝性疾患を起こさない正常遺伝子座と治療対象である一つの疾患原因変異遺伝子座がドナーポリヌクレオチド中の連結ポリヌクレオチド(例えばプラスミド骨格領域)を挟んで、直列に正常遺伝子座と疾患原因変異遺伝子座(順不同)が並んだベクター標的挿入体構造を標的疾患原因遺伝子座に構築し、第2段階において、このベクター標的挿入体構造から自然発生的に、正常遺伝子座だけからなる単独構造に置換することによって、標的疾患原因変異遺伝子座を正常遺伝子座に変換する遺伝子修復法が提供される。
 また本発明は、前記一遺伝子座置換方法において用いられる、一遺伝子座置換ドナーポリヌクレオチドにも関する。具体的には、当該ドナーポリヌクレオチドは、前記の一遺伝子座置換方法における第1段階の産物であるベクター標的挿入体構造を持つ細胞を得るために、疾患原因変異部位に対して、正常遺伝子座の5’側に単独DNA切断部位を持ち、連結ポリヌクレオチド中(例えばプラスミドの骨格領域)に選択マーカー遺伝子と排除マーカー遺伝子を持つドナーポリヌクレオチドであって、前記した疾患変異修復のために用いられるドナーポリヌクレオチドに比して同型大型のドナーポリヌクレオチド(図1Aを参照)、または、正常遺伝子座の3’側に単独DNA切断を持ち、連結ポリヌクレオチド中(例えばプラスミドの骨格領域)に選択マーカー遺伝子と排除マーカー遺伝子を持つドナーポリヌクレオチド(図2Aを参照)である。
 このドナーポリヌクレオチドを、一遺伝子座置換を行う対象細胞に導入することにより、一遺伝子座置換ベクター標的挿入体細胞を得ることができる。この細胞は、前記の一遺伝子座置換方法における第1段階の産物であるベクター標的挿入体構造から、疾患原因変異遺伝子座が正常遺伝子座に自然発生的に置換されることによって、正常遺伝子座だけからなる単独構造に変換できる、前記した疾患変異修復方法における第1段階の産物であるベクター標的挿入体構造に比して同型大型のベクター標的挿入体構造を持つ細胞種である。
 また本発明は、ドナーポリヌクレオチドを対象細胞に導入して、ドナーポリヌクレオチドの標的挿入体細胞を介して、単独構造を持つ細胞を獲得する工程を短縮するためにも有用である。具体的には、例えばドナーポリヌクレオチドがプラスミドベクター骨格を有する場合に、当該プラスミドDNAがゲノムから遊離して浮遊又はゲノム挿入された細胞に対する選択培養中に、その細胞集団に含まれる標的領域でのベクター標的挿入体構造を持つ細胞から自然発生的に、上流または下流からなる単独構造に置換された細胞が生じる際に、飛び出した供与プラスミドDNAのゲノム無作為挿入細胞(例えば標的遺伝子部位ではない箇所に供与プラスミドDNAの配列が挿入された細胞)に対してネガティブ選択培養を行い、単独構造を持つ細胞を選択して、改変後配列からなるクローンを選抜することが考えられる。
 本発明のドナーポリヌクレオチドは、適宜、薬学的に許容される担体または媒体と共に組成物とすることができる。本発明のドナーポリヌクレオチドを含む組成物は、医薬組成物、例えば、遺伝子疾患のゲノム修復用の医薬組成物として用いられる。担体および媒体に特に制限はないが、例えば、水(例えば滅菌水)、生理食塩水(例えばリン酸緩衝生理食塩水)、エタノール、グリセロール、ラクトース、スクロース、リン酸カルシウム、ゼラチン、デキストラン、寒天、ペクチン、ピーナッツ油、ゴマ油等が挙げられ、緩衝液、培希釈剤、賦形剤、アジュバント等も挙げられる。
 投与経路は適宜決定してよく、特に限定されない。本発明のドナーポリヌクレオチドまたは組成物は、インビトロでもエクスビボでも使用することができ、また、例えば筋肉内注射、静脈内、経皮的、鼻腔内、腹腔内、経口、粘膜、または他の送達経路で投与することができる。投与回数および用量に制限はなく、単回用途であってもよく、複数回投与であってもよい。当業者であれば、これらは組成物の種類、標的細胞、投与対象、組織、疾患、治療対象の症状や状態、投与経路、投与方法等に応じて適宜選択することができる。投与対象は、例えば哺乳動物(ヒトおよび非ヒト哺乳類を含む)であり、具体的には、ヒト、サル等の非ヒト霊長類、マウス、ラットなどのげっ歯類、ウサギ、ヤギ、ヒツジ、ブタ、ウシ、イヌ、ネコなどその他の全ての哺乳動物が含まれる。
 また本発明は、本発明のドナーポリヌクレオチドを含むキットに関する。当該キットは、本発明のドナーポリヌクレオチドと、当該ドナーポリヌクレオチド中のゲノム断片の切断可能箇所を切断する切断酵素またはそれをコードするベクターとを含んでよい。また当該キットには、適宜、取扱説明書を添付することができる。本発明のキットは、本発明のドナーポリヌクレオチドを用いたゲノム改変に有用である。
 ベクターとしては所望のベクターを用いることができるが、例えばプラスミドベクターやウイルスベクターなどが挙げられ、ウイルスベクターとしては、例えばマイナス鎖RNAウイルスベクター、特にパラミクソウイルスベクター、中でもセンダイウイルスベクターが挙げられる。
 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれら実施例に制限されるものではない。また、本明細書中に引用された文献及びその他の参照は、すべて本明細書の一部として組み込まれる。
[実施例1]ドナーポリヌクレオチドの作製
 pMB1KmHygTK-HPRTEx2Syn(1200)ISCEI(図2A参照)の構築
 実施例で用いた供与プラスミドベクターの作製方法を以下に示す。
 本発明において「pMB1KmHygTK」とは、供与プラスミドベクターの骨格を示す。ベクター骨格中の「pMB1」とは、大腸菌DNA複製の開始に必要な領域を示し、「Km」とは、大腸菌選択マーカーであるカナマイシン耐性遺伝子を示し、「HygTK」とは、ヒト転写開始領域の一つであるhEF1-HTLVプロモーターの支配下にある、ハイグロマイシン耐性遺伝子(動物細胞選択マーカー)とHSV-TK(動物細胞排除マーカー)からなる融合遺伝子を示す。
 ベクター骨格に挿入された改変後配列を含む改変対象遺伝子座に相同な配列を、ベクター骨格の後のハイフンに続けて、「-HPRTEx2Syn(1200)ISCEI」のように示した。「HPRTEx2」とは、ヒトHPRT遺伝子のイントロン1、エキソン2、イントロン2、エキソン3、イントロン3に渡る断片を示し、さらに「Ex2Syn」とは、改変後配列SynがEx2内に含まれることを示し、「(1200)ISCEI」とは、改変後配列Synから3’側へ1200 bpの位置にI-SceI切断酵素認識配列が存在することを示す。他の例示では、ベクター骨格に挿入された改変後配列を含む改変対象遺伝子座に相同な配列を、ベクター骨格の後のハイフンに続けて、「-HPRTISCEI(1200)Ex2Syn」のように示した。「Ex2Syn」とは、改変後配列SynがEx2内に含まれることを示し、「ISCEI(1200)」とは、改変後配列Synから5’側へ1200 bpの位置にI-SceI切断酵素認識配列が存在することを示す。
 但しこれらは例示であって、本発明はこれらに限定されるものではない。
 pMB1KmHygTK供与プラスミド(図2A参照)の構築
 pSelect-Km-HSV1tkサブプラスミドの構築は以下の通りに行った。pCR-BluntII-TOPO plasmid DNA(Invitrogen)を鋳型にして、5’- CTTAATTAACCTGCAGCCGGAATTGCCAGCTG -3’(GT82)(配列番号2)及び 5’- ATGTGGTATGGAATTCGGTGGCCCTCCTCACGTGC -3’(GT83)(配列番号3)を用いて、KOD-PLUS-DNA polymerase(TOYOBO)によるPCR反応(94℃-2分→94℃-15秒、55℃-30秒、68℃-1分30秒を40サイクル→68℃7分)を行い、約1000 baseのPCR産物を得た。上記1000-base PCR産物とEcoRI制限酵素とPstI制限酵素で消化したpSelect-ZEO-HSV1tkをIn-Fusion kit(TOYOBO)で連結させてpSelect-Km-HSV1tk(1)を得た。
 pSelect-ZEO-HygTKサブプラスミドの構築は以下の通りに行った。pSelect-ZEO-HSV1tkをNcoIとSphIで消化してdNTPs存在下でT4 DNA polymeraseで処理することによって切断末端を平滑化した。一方で、pcDNA3.1/Hygroを鋳型にして、5’-TCACCGGTCACCATGAAAAAGCCTGAACTCACCGCG-3’(GT38)(配列番号4)及び 5’-TCAAAGGCAGAAGCAACTTCTACACAGCCATCGGTCC-3’(GT39)(配列番号5)を用いて、KOD-PLUS-DNA polymerase(TOYOBO)によるPCR反応(94℃-2分→94℃-15秒、58℃-30秒、68℃-1分30秒を40サイクル→68℃7分)を行い、約1000 baseのPCR産物を得た。上記の平滑化pSelect-ZEO-HSV1tkと1000-base PCR産物をIn-Fusion kit(TOYOBO)で連結させて、pSelect-ZEO-HygTK(28-10)を得た。
 pMB1KmHygTK供与プラスミドの構築は以下の通りに行った。pSelect-ZEO-HygTK(28-10)を鋳型にして、5’- ATTTAAATCAGCGGCCGCGGATCTGCGATCGCTCCG -3’(GT84)(配列番号6)及び 5’- TGTCTGGCCAGCTAGCTCAGGTTTAGTTGGCC -3’(GT85)(配列番号7)を用いて、KOD-PLUS-DNA polymerase(TOYOBO)によるPCR反応(94℃-2分→94℃-15秒、58℃-30秒、68℃-3分を40サイクル→68℃7分)を行い、約2800 baseのPCR産物を得た。上記の2800-bp PCR産物とNotIとNheIで消化したpSelect-Km-HSV1tk(1)とをIn-Fusion kit(TOYOBO)で連結させて、pMB1KmHygTK(1)を得た。以後、このプラスミドを供与プラスミドベクターとして用いた。
 pBS-HPRTEx2Syn(1200)ISCEIサブプラスミドの構築
 本発明で用いた供与プラスミドベクター作製のためのサブプラスミドの構築方法を以下に示す。本発明において「pBS」とは、pBluescript SK+を示す。
 pBS-HPRTEx2サブプラスミドの構築は以下の通りに行った。Fibrosarcoma由来のHT-1080細胞のgenomic DNAを鋳型にして、5’- AGCCTGGGCAACATAGCGAGACTTC -3’(GT28)(配列番号8)及び 5’- TCTGGTCCCTACAGAGTCCCACTATACC -3’(GT22)(配列番号9)を用いて、KOD-PLUS-DNA polymerase(TOYOBO)によるPCR反応(94℃-2分→94℃-15秒、60℃-30秒、68℃-3分30秒を40サイクル→68℃7分)を行い、約2800 baseのPCR産物を得た。Fibrosarcoma由来のHT-1080細胞のgenomic DNAを鋳型にして、5’- GCTGGGATTACACGTGTGAACCAACC -3’(GT19)(配列番号10)及び 5’- TGGCTGCCCAATCACCTACAGGATTG -3’(GT24)(配列番号11)を用いて、KOD-PLUS-DNA polymeraseによるPCR反応(94℃-2分→94℃-15秒、58℃-30秒、68℃-8分を40サイクル→68℃7分)を行い、約3100 baseのPCR産物を得た。上記の2800-bp PCR産物と3100-bp PCR産物を鋳型にして、5’- ATCCACTAGTTCTAGAAGCCTGGGCAACATAGCGAGACTTC -3’(GT29)(配列番号12)及び 5’- CACCGCGGTGGCGGCCGCTGGCTGCCCAATCACCTACAGGATTG -3’(GT30)(配列番号13)を用いて、KOD-PLUS-DNA polymerase(TOYOBO株式会社 コード番号KOD-101)によるPCR反応(94℃-2分→94℃-15秒、58℃-30秒、68℃-6分を40サイクル→68℃7分)を行い、約5500 baseのPCR産物を得た。上記の5500-bp PCR産物とNotIで消化したpBluescript SK+をIn-Fusion kit(Clontech Laboratories, Inc. カタログ番号639649)で連結させて、pBS-HPRTEx2(18-7)を得た。以後、このプラスミドをsite-directed mutagenesisの鋳型として用いた。
 pBS-HPRTEx2ISCEIサブプラスミドの構築は以下の通りに行った。Fibrosarcoma由来のHT-1080細胞のgenomic DNAを鋳型にして、5’- TAGTTCTAGAGCGGCCGCAGCCTGGGCAACATAGCGAGACTTC -3’(GT35)(配列番号14)及びI-SceI認識配列(下線)を含む 5’- ATTACCCTGTTATCCCTAACCTGGTTCATCATCACTAATCTG -3’(GT34)(配列番号15)を用いて、KOD-PLUS-DNA polymerase(TOYOBO株式会社 コード番号KOD-101)によるPCR反応(94℃-2分→94℃-15秒、58℃-30秒、68℃-3分を40サイクル→68℃7分)を行い、約2500 baseのPCR産物を得た。Fibrosarcoma由来のHT-1080細胞のgenomic DNAを鋳型にして、I-SceI認識配列(下線)を含む 5’- TAGGGATAACAGGGTAATTATGACCTTGATTTATTTTGCATACC -3’(GT33)(配列番号16)及び 5’- CACCGCGGTGGCGGCCGCTGGCTGCCCAATCACCTACAGGATTG -3’(GT30)(配列番号13)を用いて、KOD-PLUS-DNA polymeraseによるPCR反応(94℃-2分→94℃-15秒、58℃-30秒、68℃-3分を40サイクル→68℃7分)を行い、約2900 baseのPCR産物を得た。上記の2500-bp PCR産物と2900-bp PCR産物とNotIで消化したpBluescript SK+とをIn-Fusion kit(TOYOBO)で連結させて、pBS-HPRTEx2ISCEI(21-1)を得た。以後、このプラスミドを、site-directed mutagenesisから得られる改変配列を有した断片の置換先プラスミドとして用いた。
 pBS-HPRTEx2Synサブプラスミドの構築は以下の通りに行った。pBS-HPRTEx2(18-7)を鋳型にして、改変後配列Syn(下線)を含む 5’- GGCTACGATCTCGACCTCTTTTGCATACCTAATCATTATGC -3’(GT93)(配列番号17)及び 5’- TGGTTCATCATCACTAATCTG -3’(GT95)(配列番号18)を用いて、site-directed mutagenesis法の一つとしてKOD-PLUS-Inverse PCR mutagenesis kit(TOYOBO)を用いることによって、pBS-HPRTEx2Syn(Inv15)得た。pBS-HPRTEx2Syn(Inv15) plasmid DNA をBglIIとSphIで消化・ゲル抽出した、Syn配列を含むBglII-SphI断片とBglIIとSphIで消化したHPRTEx2ISCEI(21-1) plasmid DNAサンプルでライゲーションを行い、pBS-HPRTEx2Syn (Inv15-2)を得た。
 pBS-HPRTEx2Syn(1200)ISCEIサブプラスミドの構築は以下の通りに行った。pBS-HPRTEx2Syn(Inv15-2)を鋳型にして、ISCEI配列(下線)を含む 5’- TAGGGATAACAGGGTAATATTTTGTAGAAACAGGGTTCGC -3’(GT86)(配列番号19)及び 5’- AAAAATATTAGCTGGGAGTGG -3’(GT87)(配列番号20)を用いて、KOD-PLUS-Inverse PCR mutagenesis kit(TOYOBO)を用いることによって、pBS-HPRTEx2Syn(1200)ISCEI(1)を得た。
 pMB1KmHygTK-HPRTEx2Syn(1200)ISCEI供与プラスミドベクターの構築は以下の通りに行った。NotIで消化したpBS-HPRTEx2Syn(1200)ISCEI(1) DNAサンプルとNotIで消化したpMB1KmHygTK plasmid DNAのライゲーションを行い、pMB1KmHygTK-HPRTEx2Syn(1200)ISCEI(5)を得て挿入方向が図2Aの通りであることを確認した。
[実施例2]ドナーポリヌクレオチドを用いた遺伝子改変
(1)
 ベクター標的挿入体細胞HTG786(図2B;図3AB参照)の作製は以下の通りに行った。Fibrosarcoma由来のHT-1080細胞をエレクトロポレーションの前日に3x106細胞10-mL DMEM培地/T75フラスコで6フラスコに塗布し接着培養を行い、大凡24時間後に培地を除去、5 mL PBS/T75フラスコで添加・除去、0.25%トリプシン/1 mM EDTA液を2 mL/T75フラスコで添加、37℃1分インキュベート、3 mL/T75フラスコでDMEM培地を添加し3~4回のピペッティング(10-mL用)で細胞を剥離・懸濁、1本の50-mLチューブに回収、1,200 rpm 3分遠心し上清を除去、20 mL Opti-MEMを添加・ピペッティング(10-mL用)で細胞を懸濁、細胞数測定後、再度1,200 rpm 3分遠心し上清を除去、1-2x107細胞/mLでOpti-MEMを添加、P1000ピペットを800μLに合わせてピペッティングをゆっくり泡立てずに10-20回繰り返して、1.5 mL-エッペンドルフチューブに10μg のpMB1KmHygTK-HPRTEx2Syn(1200)ISCEI供与プラスミドベクターDNA (500-1000μg/mL endotoxin-free TE)と13.3μg のpISceI発現用プラスミドDNA (Nature vol.401 pp397);500-1000μg/mL endotoxin-free TE)を導入して、0.8 mL細胞懸濁液を導入・DNA溶液と混合、細胞DNA混合液の全量をエレクトロポレーション用キュベット(電極間4 mm)に移し氷中に5分置き、BTXエレクトロポレーターを140 mV, パルス時間70 mS, パルス数3, パルス間隔200 mSに設定、キュベットを装置にセットして電圧をかけて、キュベットを装置から外して氷中に5分置き、165 mLの選択薬剤を含まないDMEM培地にエレクトロポレーション液全量を移して、ゆっくり混合、10 mL/直径10-cmディッシュで16枚に塗布、37℃, 5%CO2条件下で非選択培養を開始した(Day 0)。Day 2で100μg/mLハイグロマイシンを含むDMEM培地に交換し選択培養を開始、2、3日置きに同じ選択培地で交換を行い、Day 14で4枚のディッシュを代表してハイグロマイシン耐性コロニー数を測定、100μg/mLハイグロマイシンと7.5μg/mL 6-チオグアニンを含むDMEM培地に交換し二重選択培養を開始、2日または3日置きに同じ選択培地で交換を行い、Day 21で全ディッシュ上のハイグロマイシン・6-チオグアニン両耐性(HTG)コロニー数を測定した。
 上記の実験の結果、ハイグロマイシン選択下で6472個のハイグロマイシン耐性コロニーを得、ハイグロマイシン・6-チオグアニン二重選択下で14個のHTGクローンを得た。
 ベクター標的挿入体単離手順(図2DE参照;図3AB参照)は以下の通りに行った。HTGコロニーのそれぞれに対して、顕微鏡下でP1000ピペットマンを200μLに合わせて細胞を剥ぎ取り、2 mL の100μg/mLハイグロマイシンと7.5μg/mL 6-チオグアニン含有DMEMを加えた、6ウェルプレートの1ウェルに懸濁して、HTGクローンナンバーを付して、37℃, 5%CO2条件下で選択培養を行い、コンフルエント付近まで培養を続けた。培地を除去、2 mL/wellでPBSを添加・除去、0.25%トリプシン/1 mM EDTA液を500μL/wellで添加、37℃1分インキュベート、500μL/wellでDMEM培地を添加し3~4回のP1000ピペッティングで細胞を剥離・懸濁、1本の1.5-mLエッペンドルフチューブに細胞を回収、2,500 rpm 3分遠心し上清を除去、100μL PBSを添加・ピペッティングで細胞を懸濁、40μLずつ2本のクライオチューブに分取、セルバンカー1プラスを500μL/クライオチューブで加えて-80℃に保管、残りの20μL PBS細胞懸濁液を2,500 rpm 3分遠心し上清を除去、細胞ペレットを-80℃にで凍結保存した。凍結細胞ペレットを氷中で解凍、GeneElute Mammalian Genomic DNA miniprep Kit(SIGMA-ALDRICH, カタログ番号G1N350)でゲノムDNAを抽出、100μLサンプルとして4℃保管した。HTGクローンのgenomic DNAを鋳型にして、5’- TTGCAAGCAGCAGATTACGC-3’(GT112)(配列番号21)及び5’- GCCACTGCACCCAGCCGTATGT-3’(GT69)(配列番号22)を用いて、KOD-FX-DNA polymerase(TOYOBO株式会社)によるPCR反応(94℃-2分→98℃-10秒、68℃-8分を40サイクル→68℃7分)を行い、図2B右と同様に約7700 baseのPCR産物をもたらしたHTGクローンを図2Aの構造を成すベクター標的挿入体細胞と判定した。
 上記の実験の結果、14個のHTGクローンから8個のベクター標的挿入体細胞を得た。ベクターの無作為挿入体と標的挿入体を合わせた全ベクターゲノム挿入体6472クローンのうち、8クローンがベクター標的挿入体であったことを示す。従って、標的挿入体獲得の実用性は、1.2x10-3であり、これは1000個のベクターゲノム挿入体クローンから狙いの標的挿入体を得ることができることを示唆する。
 図3および本明細書におけるその説明に示すように、ベクター標的挿入体が改変前配列(SexA1配列)と改変後配列(同義変換配列Syn)からなる2種のマーカー配列が共存するかどうか、つまり、ヘテロ型であるかどうかを配列解析したところ、8個のベクター標的挿入体クローンのうち、一つがSexA1ホモ型であったが、HTG786を含む他の7個はヘテロ型またはSynホモ型であることを確認した。ヘテロ型とSynホモ型のベクター標的挿入体が、遺伝子置換体を単離する工程(次段落に記載)に進むことができる。
 ベクター標的挿入体から遺伝子改変後配列を有する遺伝子置換体の単離手順(図4AB参照)は以下の通りに行った。8個のベクター標的挿入クローンのうちの一つであるHTG786細胞を用いた。本クローンの-80℃保管細胞を37℃水温層で解凍、9 mLのDMEM培地を含む50 mLチューブに移し、1,200 rpm, 3分で遠心、上清を除去、10 mL DMEM培地を添加ピペッティングで懸濁、T75フラスコで37℃, 5%CO2で接着培養を行った。凡そ24時間後に培地を除去、10 mL PBS/T75フラスコで添加・除去、0.25%トリプシン/1 mM EDTA液を1 mL/T75フラスコで添加、37℃1分インキュベート、9 mL/T75フラスコでDMEM培地を添加し3~4回のピペッティング(10-mL用)で細胞を剥離・懸濁、50-mLチューブに回収、細胞数測定後、1,200 rpm 3分遠心し上清を除去、2x105細胞/mLでDMEM培地を添加、この細胞懸濁液を50μL(1x104 cells)を10 mL DMEM培地を含む10-cmディッシュに拡散させ37℃, 5%CO2で接着培養を開始した(Day 0)。Day 5で1μMガンシクロビル(InvivoGen, カタログ番号#sud-gcv)を含むDMEM培地で交換し選択培養を開始した。Day 7, 9, 12で培地交換を行い、Day 20-25でガンシクロビル耐性(GCV)コロニー数をカウントし、GCVコロニーのそれぞれに対して、顕微鏡下でP1000ピペットマンを200μLに合わせて細胞を剥ぎ取り、2 mL の1μM ガンシクロビル含有DMEMを加えた、6ウェルプレートの1ウェルに懸濁して、GCVクローンナンバーを付して、37℃, 5%CO2条件下で選択培養を行い、コンフルエント状態まで培養を続けた。培地を除去、2 mL/wellでPBSを添加・除去、0.25%トリプシン/1 mM EDTA液を500μL/wellで添加、37℃1分インキュベート、500μL/wellでDMEM培地を添加し3~4回のP1000ピペッティングで細胞を剥離・懸濁、1本の1.5-mLエッペンドルフチューブに細胞を回収、2,500 rpm 3分遠心し上清を除去、100μL PBSを添加・ピペッティングで細胞を懸濁、40μLずつ2本のクライオチューブに分取、セルバンカー1プラスを500μL/クライオチューブで加えて-80℃に保管、残りの20μL PBS細胞懸濁液を2,500 rpm 3分遠心し上清を除去、細胞ペレットを-80℃で凍結保存した。凍結細胞ペレットを氷中で解凍、GeneElute Mammalian Genomic DNA miniprep Kit(SIGMA-ALDRICH, カタログ番号G1N350)でゲノムDNAを抽出、100μLサンプルとして4℃保管した。GCVクローンのgenomic DNAを鋳型にして、5’-GCTGGGATTACACGTGTGAACCAACC -3’(GT19)(配列番号10)及び5’-TCTGGTCCCTACAGAGTCCCACTATACC-3’(GT22)(配列番号9)を用いて、KOD-FX-DNA polymerase(TOYOBO株式会社コード番号KFX-101)によるPCR反応(94℃-2分→98℃-10秒、68℃-1分を40サイクル→68℃7分)を行い、図4Cと同様に約500 baseのPCR産物を確認して、PCR clean-up(MACHEREY-NAGEL, 740609.250)で精製後、シーケンシングを行った。
 上記の実験の結果、12個のGCVクローンを得て、改変前配列SEXA1(5’- CCAGGTTATGACCTTGATTTATTTT-3’)(配列番号23)から、pMB1KmHygTK-HPRTEx2Syn(1200)ISCEI供与プラスミドベクターに由来する改変後配列Syn (下線)(5’-CCAGGCTACGATCTCGACCTCTTTT-3’)(配列番号24)にエキソン2上で改変されたクローンを得た。
(2)
 ベクター標的挿入体HTG786から遺伝子改変後配列を有する遺伝子置換体の単離を再度行った。前段落に記載した実験(実験1)から得た12個のGCV耐性コロニーと同様の実験(実験2)から得た9個のGCV耐性コロニーのそれぞれを5 cells per well(96-well plate)で限界希釈後培養を行い、クローンを精製して、前段落に記載した手順のように、クローンのgenomic DNAを鋳型にして、5’-GCTGGGATTACACGTGTGAACCAACC -3’(GT19)(配列番号10)及び5’-TCTGGTCCCTACAGAGTCCCACTATACC-3’(GT22)(配列番号9)を用いて、KOD-FX-DNA polymerase(TOYOBO株式会社コード番号KFX-101)によるPCR反応(94℃-2分→98℃-10秒、68℃-1分を40サイクル→68℃7分)を行い、図4Cと同様に約500 baseのPCR産物を確認して、PCR clean-up(MACHEREY-NAGEL, 740609.250)で精製後、配列解析を行った。
 これら2度の実験から得たGCV耐性クローンの配列結果に基づいて分類を行い下表に纏めた。
[表1]
Figure JPOXMLDOC01-appb-I000001
 これらの結果から、10個程度のGCV耐性コロニーを遺伝子置換細胞候補として回収して、クローン精製を行うことによって、GCV耐性クローンからデザイン通りの遺伝子置換体(本試験の場合、Syn同義変換クローン)を獲得できることが示された。
 供与プラスミドの構造の最適化のため、供与プラスミドにおける同義変換配列部位とISCEI切断位置との間の距離が異なる、3種の供与プラスミドベクターの構築を行った。実施例1に示したように、ベクター骨格に挿入された改変後配列を含む改変対象遺伝子座に相同な配列を、ベクター骨格の後のハイフンに続けて、「-HPRTISCEI(1200)Ex2Syn」のように示した。「Ex2Syn」とは、同義変換改変後配列SynがEx2内に含まれることを示し、「ISCEI(1200)」とは、改変後配列Synから5’側へ1200 bpの位置にI-SceI切断酵素認識配列が存在することを示す。
1)pBS-HPRTISCEI(1200)Ex2Synサブプラスミドの構築は以下の通りに行った。pBS-HPRTEx2Syn(Inv15-2)を鋳型にして、ISCEI配列(下線)を含む 5’- TAGGGATAACAGGGTAATCAAAGCACTGGGATTACAAGTG -3’(GT117)(配列番号25)及び 5’- GGAGGCTGAGACAGGAGAGTTGC -3’(GT118)(配列番号26)を用いて、KOD-PLUS-Inverse PCR mutagenesis kit(TOYOBO)を用いることによって、pBS-HPRTISCEI(1200)Ex2Syn(3)を得た。
2)pBS-HPRTISCEI(600)Ex2Synサブプラスミドの構築は以下の通りに行った。pBS-HPRTEx2Syn(Inv15-2)を鋳型にして、ISCEI配列(下線)を含む 5’- TAGGGATAACAGGGTAATCAAAGTGCTGGGATTACAGGC-3’(GT131)(配列番号27)及び 5’- GGAGGCCGAGGCGGGTGGATCA -3’(GT132)(配列番号28)を用いて、KOD-PLUS-Inverse PCR mutagenesis kit(TOYOBO)を用いることによって、pBS-HPRTISCEI(600)Ex2Syn(4)を得た。
3)pBS-HPRTISCEI(316)Ex2Synサブプラスミドの構築は以下の通りに行った。pBS-HPRTEx2Syn(Inv15-2)を鋳型にして、ISCEI配列(下線)を含む 5’- TAGGGATAACAGGGTAATTGTATTTTTAGTAGAGACGGG -3’(GT133)(配列番号29)及び 5’- AAAAAATTAGCCGGGTGTGG -3’(GT134)(配列番号30)を用いて、KOD-PLUS-Inverse PCR mutagenesis kit(TOYOBO)を用いることによって、pBS-HPRTISCEI(316)Ex2Syn(2)を得た。
1)pMB1KmHygTK-HPRTISCEI(1200)Ex2Syn供与プラスミドベクターの構築は以下の通りに行った。NotIで消化したpBS-HPRTISCEI(1200)Ex2Syn(3) DNAサンプルとNotIで消化したpMB1KmHygTK plasmid DNAのライゲーションを行い、pMB1KmHygTK-HPRTISCEI(1200)Ex2Syn(1)を得て挿入方向が図2Aと同様であることを確認した。
2)pMB1KmHygTK-HPRTISCEI(600)Ex2Syn供与プラスミドベクターの構築は以下の通りに行った。NotIで消化したpBS-HPRTISCEI(600)Ex2Syn(4) DNAサンプルとNotIで消化したpMB1KmHygTK plasmid DNAのライゲーションを行い、pMB1KmHygTK-HPRTISCEI(600)Ex2Syn(1)を得て挿入方向が図2Aと同様であることを確認した。
3)pMB1KmHygTK-HPRTISCEI(316)Ex2Syn供与プラスミドベクターの構築は以下の通りに行った。NotIで消化したpBS-HPRTISCEI(316)Ex2Syn(2) DNAサンプルとNotIで消化したpMB1KmHygTK plasmid DNAのライゲーションを行い、pMB1KmHygTK-HPRTISCEI(316)Ex2Syn(1)を得て挿入方向が図2Aと同様であることを確認した。
[実施例3]I-SceI搭載センダイウィルスベクターの構築
 センダイウィルスベクターにおける、ゲノムへの無作為挿入の危険性がない利点を活かして、I-SceI配列特異的切断酵素遺伝子を搭載したセンダイウィルスベクターを細胞に導入し発現させるために、次のように、I-SceI搭載センダイウィルスベクターを構築した。
 核移行シグナルをN末端に持つI-SceI酵素の遺伝子をSaccharomyces cerevisiae抽出DNAを鋳型にして、5’- GGATCCTGCAAAGATGGATAAAGCGGAATTAATTCCCGAGCCTCCAAAAAAGAAGAGAAAGGTCGAATTGGGTACCATGAAAAATATTAAAAAAAATCAAGTAATGAATCTGGGTCC -3’(配列番号31)及び 5’- ATGCATTTATTTTAAAAAAGTTTCGGATGAAATAGTATTAGGC -3’(配列番号32)を用いて、KOD-PLUS-DNA polymeraseによるPCR反応(94℃-1分→94℃-15秒、40℃-Gradient-54℃-30秒、68℃-1分を30サイクル)を行い、約800 baseのPCR産物を得て、pUC-nlsISceIプラスミドを得た。このplasmid DNAを鋳型にして、5’- GTCGACCCGGGCGGCCGCCATGGATAAAGCGGAATTAATTCCCG -3’(GT40)(配列番号33)及び 5’- CTAAAGGGAAGCGGCCGCTTATTTTAAAAAAGTTTCGG -3’(GT41)(配列番号34)を用いて、KOD-PLUS-DNA polymeraseによるPCR反応(94℃-2分→94℃-15秒、55℃-30秒、68℃-1分を30サイクル→68℃7分)を行い、約800 baseのPCR産物を得た。この PCR産物とNotIで消化したpCI-neoとをIn-Fusion kit(TOYOBO)で連結させて、pCI-neo-nlsISceI(29-2)を得た。
 pCI-neo-nlsISceI(29-2)に由来するnlsISceI配列特異的切断酵素遺伝子をセンダイウィルスベクターSeVに搭載するために、第1PCRによって、当該nlsISCEI配列が2分割された第1PCR産物を得て、第2PCRでは、5’側の第1PCR産物と3’側の第1PCR産物を鋳型として、当該Cas9 nuclease配列の全長に渡る第3PCR産物を得て、これをセンダイウィルスベクターに搭載させた。第1PCRにおいて当該nlsISCEI配列を2分割する理由は、当該nlsISCEI配列内に3か所のA rich配列(7A,8A)が存在しているが、A rich配列上では、センダイウィルスベクターの生産過程でセンダイウィルスのRNA依存性RNAポリメラーゼによるエラーが起こりがちなので、このようなエラー現象を回避するためである。A rich配列部位上にPCRプライマーを設定して、各プライマー配列を同義コドンの制限下にA/TからG/Cに置換させた。
[表2]
第1PCRのプライマーと鋳型DNA
Figure JPOXMLDOC01-appb-I000002
 上段のプライマーペアNot1_NLS-I-SceIN_A36G_A78G_A81G_N (別名:NLS-I-SceIN_N1)5’-CGAGCCTCCAAAGAAGAAGAGAAAGGTCGAATTGGGTACCATGAAAAATATTAAGAAGAATCAAGTAAT-3’)(配列番号35), NLS-I-SceI_A426G_C(5’- GTTCGGGATGGTTTTCTTGTTGTTAACG-3’)(配列番号36)と鋳型DNAを用いて、KOD-PLUS-Ver.2-DNA polymerase(TOYOBO株式会社 コード番号KOD-211)によるPCR反応(94℃-2分→98℃-10秒、55℃-30秒、68℃-1分を30サイクル→68℃-7分)を行い、PCR産物#1を得た。下段のプライマーペアNLS-I-SceIN_A426G_N(5’- CGTTAACAACAAGAAAACCATCCCGAAC-3’)(配列番号37), NLS-I-SceI_EIS_Not1_C(5’- ATATGCGGCCGCGATGAACTTTCACCCTAAGTTTTTCTTACTACGGTTATTTTAAAAAAGTTTCGGATG -3’)(配列番号38)と鋳型DNAを用いて、KOD-FX-DNA polymerase(TOYOBO株式会社 コード番号KFX-101)によるPCR反応(94℃-2分→98℃-10秒、68℃-1分を30サイクル→68℃-7分)を行い、PCR産物#2を得た。電気泳動によってPCR産物のサイズを確認後、NucleoSpinTM Gel and PCR Clean-up (MACGEREY-NAGELカタログ番号740609.250/U0609C)にて精製した。
[表3]
第2PCRのプライマーと鋳型DNA
Figure JPOXMLDOC01-appb-I000003
 プライマーNot1_NLS-I-SceIN_A36G_A78G_A81G_N (別名:NLS-I-SceIN_N1)の5’端29 ヌクレオチドを3’端に持つ(下線)、プライマーNot1_NLS-I-SceIN_A36G_N 5’- ATATGCGGCCGCGACGCCACCATGGATAAAGCGGAATTAATTCCCGAGCCTCCAAAGAAGAAGAGAAAGGTCG-3’(配列番号39)とNLS-I-SceI_EIS_Not1_C (配列番号38)と鋳型DNAを用いて、KOD-FX-DNA polymerase(TOYOBO株式会社 コード番号KFX-101)によるPCR反応(94℃-2分→98℃-10秒、68℃-1分を40サイクル→68℃-7分)を行い、全長のPCR産物を得た。電気泳動によって産物サイズを確認後、NucleoSpinTM Gel and PCR Clean-up (MACGEREY-NAGELカタログ番号740609.250/U0609C)にて精製した。NotIで消化・ゲル抽出した全長nlsISceI断片を、NotIで消化・BAP処理したプラスミドpSeV18+TS15/ΔF DNA(F遺伝子を欠失し、M(G69E/T116A/A183S), HN(A262T/G264/K461G), P(D433A/R434A/K437A/L511F), L(L1361C/L1558I/N1197S/K1795E) の変異を有するセンダイウイルスベクター(WO2003/025570, WO2010/008054)のゲノムをコードするDNA)でライゲーションを行い、クローニングされたnlsISceIの塩基配列を確認して、SeVに最適化された全長nlsISceIを搭載したプラスミドpSeV18+nlsISceITS15/ΔFを得た。このプラスミド DNAを鋳型にしてセンダイウィルス再構成を行い、nlsISceI搭載センダイウィルスベクター SeV18+nlsISceITS15/ΔFを得た。挿入された配列を下記する。NotI サイト(下線)、6n規則に調整するために挿入された配列(gac)、コザック配列(二重下線)とEIS配列(波線下線)、NotIサイト(下線)に挟まれた領域が挿入配列である。当該配列は、nlsISceI(配列番号41)のコード配列(配列番号40の18-785番目)を含む。
Figure JPOXMLDOC01-appb-I000004
[実施例4]ドナーポリヌクレオチドのベクター標的挿入における供与プラスミド構造の最適化
 実施例2(1)に示したドナーポリヌクレオチドを用いた遺伝子改変法のエレクトロポレーションの際に、I-SceI発現用プラスミドDNA (Nature vol.401 pp397)の代わりに、pCI-neo-nlsISceI(29-2)DNA(12.6μg)を用いて、3種の供与プラスミドのそれぞれによるベクター標的挿入体の作製を行った。
[表4]
Figure JPOXMLDOC01-appb-I000005
pCI-neo: pCI-neo-nlsISceI(29-4)プラスミド
pISceI: I-SceI発現用プラスミド (Nature vol.401 pp397)
Left arm: ISCEI切断部位の左側相同領域長(bp)(図1A参照);Syn同義変換配列部位の左側相同領域長(bp) (図2A参照)
Right arm: Syn同義変換配列部位の右側相同領域長(bp)(図1A参照); ISCEI切断部位の右側相同領域長(bp) (図2A参照)
 これらの試験は、実施例2(1)に示すようにDMEM/10%FBS培地を用いて行われた。ISCEI(600)Syn型供与プラスミドを用いた3回目の試験においては、DMEM/2%FBS/1/100容量GlutaMAX-1(100x)(gibco,製品番号35050-061)培地を用いた。この低FBS条件下では、50μg/mLハイグロマイシン, 0.94μg/mL6-チオグアニンで選択培養を行った。
 これらの結果から、切断点外側相同領域長、デザイン配列外側相同領域長、切断点とデザイン配列との距離は限定されないが、外側相同領域長は1960 bp以上、切断点とデザイン配列との距離は316 bp以上が望ましい。
[実施例5]nlsISceI搭載センダイウィルスベクターによるドナーポリヌクレオチドのベクター標的挿入
 nlsISceI搭載センダイウィルスベクターの感染の前日に5x105個HT-1080細胞/2-mL DMEM/10%FBS培地/wellで6-well plateに塗布し接着培養を行い、大凡24時間後に培地を除去、2mL Opti-MEMを添加し、37℃に置く一方で、1 well内の細胞数を測定し感染する全細胞数を算出し、感染多重度3に相当するnlsISceI搭載センダイウィルスベクター SeV18+nlsISCEITS15/ΔF (実施例3)を採取し、Opti-MEMで希釈することによって0.5 mL SeV-nlsISceI溶液/wellに調整し、あらかじめ添加されていたOpti-MEMを除去、0.5 mL SeV-nlsISceI溶液/wellを加えて、32℃, 5%CO2条件下で吸着感染を開始し、15分毎に混合操作を行い、2時間後に、SeV-Cas9溶液を除去、2mL Opti-MEM/wellを添加、2-mL DMEM培地(6-thioguanine含)/wellで交換して、32℃, 5%CO2条件下で培養した。大凡24時間後に新しいDMEM培地に交換して、35℃, 5%CO2に移動させて、大凡24時間そのまま培養した。
 それに続く、細胞回収、下表に表記した、供与プラスミドの導入のためのエレクトロポレーションの操作、細胞塗布、非選択培養と選択培養は、実施例2(1)と同様に行い、ベクター標的体単離の操作も、実施例2(1)と同様に行った。
[表5]
Figure JPOXMLDOC01-appb-I000006
SeV/TS15: SeV18+nlsISCEITS15/ΔFセンダイウィルスベクター
 2回の試験のうち、1回目は上記の条件通り(DMEM/10%FBS培地を用いて、センダイウィルスベクターの吸着感染32℃-24時間、35℃-24時間、細胞塗布後の非選択培養37℃-3日間及び選択培養を37℃)に行った。2回目は、DMEM/2%FBS/1/100容量GlutaMAX-1(100x)(gibco,製品番号35050-061)培地を用いて、センダイウィルスベクターの吸着感染32℃-48時間、細胞塗布後の非選択培養35℃-3日間及び選択培養を37℃で行った。この低FBS条件下では、50μg/mLハイグロマイシン, 0.94μg/mL6-チオグアニンで選択培養を行った。
 これらの結果から、細胞内切断のための切断酵素遺伝子発現ベクターはプラスミド型、ウィルスベクター型のどちらにも限定されないが、切断酵素遺伝子発現ベクターの無作為挿入を回避するためには当該ウィルスベクター型が望ましい。
[実施例6]細胞外で相同領域内切断された供与プラスミドによるドナーポリヌクレオチドのベクター標的挿入
 実施例2(1)に示したドナーポリヌクレオチドを用いた遺伝子改変法のエレクトロポレーションで、あらかじめ切断された供与プラスミド(10μg)のみを導入して、ベクター標的挿入体の作製を行った。
[表6]
Figure JPOXMLDOC01-appb-I000007
Left arm: XMAIまたはISCEI切断部位の左側相同領域長(bp)(図1A参照);Syn同義変換配列部位の左側相同領域長(bp) (図2A参照)
Right arm: Syn同義変換配列部位の右側相同領域長(bp)(図1A参照); XMAIまたはISCEI切断部位の右側相同領域長(bp) (図2A参照)
 これらの結果から、供与プラスミドの相同領域内切断は、細胞外か細胞内のどちらであっても良いことが確認された。但し、細胞内相同領域内切断の方が、切断点外側相同領域長、デザイン配列外側相同領域長、切断点とデザイン配列との距離にあまり影響されないことから、細胞内相同領域内切断が望ましいと考えられる。
 本発明の好ましい態様を詳細に説明してきたが、これらの態様が変更され得ることは当業者にとって自明であろう。よって、本発明は、本発明が本明細書に詳細に記載された以外の方法や態様で実施され得ることを意図する。即ち、本発明は添付の「特許請求の範囲」の精神またはその本質的部分を同じくする範囲に包含されるすべての変更を含むものである。
 本発明によって、切断可能部位を含むゲノム断片の両端を、ポジティブ選択マーカー遺伝子およびネガティブ選択マーカー遺伝子を含むポリヌクレオチドによって連結した新規なドナーポリヌクレオチドが提供された。当該ドナーポリヌクレオチドを用いることにより、標的遺伝子座内に切断を入れることなく、ドナーポリヌクレオチドの相同部位に切断を入れることによって、Off-targetと呼ばれる標的配列以外に変異が入る可能性を回避して標的遺伝子のみを改変することが可能となる。本発明は遺伝子配列を精密に改変する分子遺伝学技術であり、遺伝子治療、品種改良、生物工学的創作を目的に遺伝子配列を精密に改変する分子遺伝学システムとして有用である。

Claims (20)

  1.  ゲノム配列を改変するためのドナーポリヌクレオチドであって、1または複数の改変を含むゲノム断片を含み、該ゲノム断片の両端はポリヌクレオチドによって連結されており、該連結ポリヌクレオチド中に、ポジティブ選択マーカー遺伝子およびネガティブ選択マーカー遺伝子の両方を含み、該ゲノム断片は切断可能であり、当該切断可能な部位は切り離されてドナーポリヌクレオチド鎖の両末端となることによりドナーポリヌクレオチドが直鎖状となっていてもよく、当該部位はドナーポリヌクレオチドにおいてつながっていてドナーポリヌクレオチドが環状となっていてもよい、ドナーポリヌクレオチド。
  2.  当該切断可能部位に切断配列が付加されている、請求項1に記載のドナーポリヌクレオチド。
  3.  当該部位に付加されている切断配列が、ドナーポリヌクレオチドが含むゲノム断片に対応する標的とする細胞のゲノム断片の配列には含まれない、請求項2に記載のドナーポリヌクレオチド。
  4.  該ゲノム断片において、該1または複数の改変が、当該部位の片側のみに含まれる、請求項1から3のいずれかに記載のドナーポリヌクレオチド。
  5.  該連結するポリヌクレオチドがプラスミドのポリヌクレオチドである、請求項1から4のいずれかに記載のドナーポリヌクレオチド。
  6.  ポジティブ選択マーカー遺伝子およびネガティブ選択マーカー遺伝子の間に標的とする細胞のゲノム配列を含まない、請求項1から5のいずれかに記載のドナーポリヌクレオチド。
  7.  ポジティブ選択マーカー遺伝子およびネガティブ選択マーカー遺伝子が融合しており、ポジティブ選択マーカーとネガティブ選択マーカーが融合蛋白質として発現される、請求項1から6のいずれかに記載のドナーポリヌクレオチド。
  8.  ゲノム配列を改変する方法であって、(a)請求項1から7のいずれかに記載のドナーポリヌクレオチドを細胞に導入する工程、(b)ポジティブ選択マーカーによって該ドナーポリヌクレオチドが導入された細胞を選択する工程、および、(c)ネガティブ選択マーカーによって該連結ポリヌクレオチドが除去された細胞を選択する工程、を含む方法。
  9.  工程(a)において、ドナーポリヌクレオチドの当該部位が切り離された直鎖状ドナーポリヌクレオチドを細胞に導入する工程を含む、請求項8に記載の方法。
  10.  工程(a)において、当該部位がつながっている環状ドナーポリヌクレオチド、および、当該部位を切断する切断酵素または該酵素を発現するベクターを細胞に導入する工程を含む、請求項8に記載の方法。
  11.  該環状ドナーポリヌクレオチド、および、該酵素または該ベクターを同時に導入することを特徴とする、請求項10に記載の方法。
  12.  該酵素を発現するベクターが、該酵素を発現するマイナス鎖RNAウイルスベクターである、請求項10または11に記載の方法。
  13.  目的の改変をゲノムに含む細胞を選択する工程をさらに含む、請求項8から12のいずれかに記載の方法。
  14.  遺伝性疾患の原因遺伝子において、疾患原因配列を正常配列に変換するために用いられる、請求項8から13のいずれかに記載の方法。
  15.  請求項1から7のいずれかに記載のドナーポリヌクレオチドがゲノムに組み込まれた構造を有する細胞であって、ドナーポリヌクレオチドに含まれる改変ゲノム断片と、それに対応する細胞のゲノム由来の断片が、該連結ポリヌクレオチドを介して順不同に直列した構造を有し、該連結ポリヌクレオチド中にポジティブ選択マーカー遺伝子およびネガティブ選択マーカー遺伝子を含む、細胞。
  16.  ゲノムが改変された細胞の製造方法であって、請求項15に記載の細胞をネガティブ選択マーカーによって選択し、該連結ポリヌクレオチドが除去された細胞を選択的する工程を含む、方法。
  17.  請求項12に記載の方法に用いられるマイナス鎖RNAウイルスベクターであって、ドナーポリヌクレオチドの切断部位を切断するエンドヌクレアーをコードするベクター。
  18.  センダイウイルスベクターである、請求項17に記載のベクター。
  19.  該エンドヌクレアーゼがI-SceIである、請求項17または18に記載のベクター。
  20.  請求項17から19のいずれかに記載のベクターを含む、請求項12に記載の方法に用いるための組成物。
PCT/JP2018/027141 2017-07-21 2018-07-19 標的配列を改変するためのポリヌクレオチドおよびその使用 WO2019017438A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2018302668A AU2018302668A1 (en) 2017-07-21 2018-07-19 Polynucleotide for modifying target sequence and use thereof
US16/631,407 US20200216858A1 (en) 2017-07-21 2018-07-19 Polynucleotide for modifying target sequence and use thereof
JP2019530595A JP6947825B2 (ja) 2017-07-21 2018-07-19 標的配列を改変するためのポリヌクレオチドおよびその使用
CA3070552A CA3070552A1 (en) 2017-07-21 2018-07-19 Polynucleotide for modifying target sequence and use thereof
CN201880061156.7A CN111479920A (zh) 2017-07-21 2018-07-19 用于修饰靶序列的多核苷酸及其用途
EP18835736.2A EP3656858A4 (en) 2017-07-21 2018-07-19 POLYNUCLEOTIDE INTENDED TO MODIFY A TARGET SEQUENCE AND ITS USE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017141691 2017-07-21
JP2017-141691 2017-07-21

Publications (1)

Publication Number Publication Date
WO2019017438A1 true WO2019017438A1 (ja) 2019-01-24

Family

ID=65016041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027141 WO2019017438A1 (ja) 2017-07-21 2018-07-19 標的配列を改変するためのポリヌクレオチドおよびその使用

Country Status (7)

Country Link
US (1) US20200216858A1 (ja)
EP (1) EP3656858A4 (ja)
JP (1) JP6947825B2 (ja)
CN (1) CN111479920A (ja)
AU (1) AU2018302668A1 (ja)
CA (1) CA3070552A1 (ja)
WO (1) WO2019017438A1 (ja)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997016538A1 (fr) 1995-10-31 1997-05-09 Dnavec Research Inc. Vecteur de virus d'arn a brin negatif possedant une activite de replication autonome
WO1997016539A1 (fr) 1995-11-01 1997-05-09 Dnavec Research Inc. Virus sendai recombinant
WO2000070055A1 (fr) 1999-05-18 2000-11-23 Dnavec Research Inc. Ribonucleoproteine derivee d'un paramyxovirus
WO2000070070A1 (fr) 1999-05-18 2000-11-23 Dnavec Research Inc. Vecteur de virus paramyxoviridae defectueux dans un gene enveloppe
WO2001018223A1 (fr) 1999-09-06 2001-03-15 Dnavec Research Inc. Paramoxyvirus possedant une sequence d'initiation de transcription modifiee
WO2003025570A1 (en) 2001-09-18 2003-03-27 Dnavec Research Inc. Method of examining (-) strand rna virus vector having lowered ability to form grains and method of constructing the same
US20040068761A1 (en) * 2002-10-07 2004-04-08 Golic Kent G. Ends-out gene targeting method
WO2005071092A1 (ja) 2004-01-22 2005-08-04 Dnavec Research Inc. サイトメガロウイルスエンハンサーおよびニワトリβ-アクチンプロモーターを含むハイブリッドプロモーターを利用したマイナス鎖RNAウイルスベクターの製造方法
WO2006137517A1 (ja) 2005-06-24 2006-12-28 Dnavec Corporation 幼少個体への遺伝子導入用ベクター
WO2007083644A1 (ja) 2006-01-17 2007-07-26 Dnavec Corporation 新規タンパク質発現系
WO2008007581A1 (fr) 2006-07-13 2008-01-17 Dnavec Corporation Vecteur de virus paramyxoviridae non répliquant
WO2010008054A1 (ja) 2008-07-16 2010-01-21 ディナベック株式会社 染色体非組み込み型ウイルスベクターを用いてリプログラムされた細胞を製造する方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005001082A1 (ja) * 2003-06-30 2006-08-10 株式会社ディナベック研究所 高変異領域が改変された遺伝子を搭載するマイナス鎖rnaウイルスベクター
US9253965B2 (en) * 2012-03-28 2016-02-09 Kymab Limited Animal models and therapeutic molecules
JP2016521561A (ja) * 2013-06-14 2016-07-25 セレクティス 植物における非トランスジェニックのゲノム編集のための方法
KR102274445B1 (ko) * 2013-12-19 2021-07-08 아미리스 인코퍼레이티드 게놈 삽입을 위한 방법
JP6956995B2 (ja) * 2017-02-09 2021-11-02 国立大学法人徳島大学 ゲノム編集方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997016538A1 (fr) 1995-10-31 1997-05-09 Dnavec Research Inc. Vecteur de virus d'arn a brin negatif possedant une activite de replication autonome
WO1997016539A1 (fr) 1995-11-01 1997-05-09 Dnavec Research Inc. Virus sendai recombinant
WO2000070055A1 (fr) 1999-05-18 2000-11-23 Dnavec Research Inc. Ribonucleoproteine derivee d'un paramyxovirus
WO2000070070A1 (fr) 1999-05-18 2000-11-23 Dnavec Research Inc. Vecteur de virus paramyxoviridae defectueux dans un gene enveloppe
WO2001018223A1 (fr) 1999-09-06 2001-03-15 Dnavec Research Inc. Paramoxyvirus possedant une sequence d'initiation de transcription modifiee
WO2003025570A1 (en) 2001-09-18 2003-03-27 Dnavec Research Inc. Method of examining (-) strand rna virus vector having lowered ability to form grains and method of constructing the same
US20040068761A1 (en) * 2002-10-07 2004-04-08 Golic Kent G. Ends-out gene targeting method
WO2005071092A1 (ja) 2004-01-22 2005-08-04 Dnavec Research Inc. サイトメガロウイルスエンハンサーおよびニワトリβ-アクチンプロモーターを含むハイブリッドプロモーターを利用したマイナス鎖RNAウイルスベクターの製造方法
WO2006137517A1 (ja) 2005-06-24 2006-12-28 Dnavec Corporation 幼少個体への遺伝子導入用ベクター
WO2007083644A1 (ja) 2006-01-17 2007-07-26 Dnavec Corporation 新規タンパク質発現系
WO2008007581A1 (fr) 2006-07-13 2008-01-17 Dnavec Corporation Vecteur de virus paramyxoviridae non répliquant
WO2010008054A1 (ja) 2008-07-16 2010-01-21 ディナベック株式会社 染色体非組み込み型ウイルスベクターを用いてリプログラムされた細胞を製造する方法

Non-Patent Citations (31)

* Cited by examiner, † Cited by third party
Title
"GenBank", Database accession no. EU004203.1
"Uirusu-gaku Jikken-gaku Kakuron (Detailed Virology Experiments", 1982, NATIONAL INSTITUTE OF HEALTH STUDENTS UNION EDITION
BARON, M. D.BARRETT, T., J. VIROL., vol. 71, 1997, pages 1265 - 1271
BRIDGEN, A.ELLIOTT, R. M., PROC. NATL. ACAD. SCI. USA, vol. 93, 1996, pages 15400 - 15404
CERMAK, T. ET AL.: "Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting", NUCLEIC ACIDS RES., vol. 39, 2011, pages e82
COLLEAUX, L. ET AL.: "Recognition and cleavage site of the intron-encoded omega transposase", PROC. NATL. ACAD. SCI. USA, vol. 85, 1988, pages 6022 - 6026
CONG, L. ET AL.: "Multiplex genome engineering using CRISPR/Cas systems", SCIENCE, vol. 339, 2013, pages 819 - 823, XP055458249, DOI: 10.1126/science.1231143
DE PIÉDOUE, G. ET AL.: "Improve gene replacement by intracellular formation of linear homologous DNA", J. GENE MED., vol. 7, no. 5, May 2005 (2005-05-01), pages 649 - 656, XP055360132, DOI: 10.1002/jgm.706 *
DURBIN, A. P. ET AL., VIROLOGY, vol. 235, 1997, pages 323 - 332
HASAN, M. K. ET AL., J. GEN. VIROL., vol. 78, 1997, pages 2813 - 2820
HENIKOFF, S.HENIKOFF, J. G., PROC. NATL. ACAD. SCI. USA, vol. 89, 1992, pages 10915 - 10919
INOUE, M. ET AL., J. VIROL., vol. 77, 2003, pages 3238 - 3246
KATO, A. ET AL., EMBO J., vol. 16, 1997, pages 578 - 587
KATO, A. ET AL., GENES CELLS, vol. 1, 1996, pages 569 - 579
LI, H. L. ET AL.: "Precise Correction of the Dystrophin Gene in Duchenne Muscular Dystrophy Patient Induced Pluripotent Stem Cells by TALEN and CRISPR-Cas9", STEM CELL REPORTS, vol. 4, 2015, pages 143 - 154, XP055541946, DOI: 10.1016/j.stemcr.2014.10.013
LI, H. -O. ET AL., J. VIROL., vol. 74, no. 14, 2000, pages 6564 - 6569
MALI, P. ET AL.: "RNA-guided human genome engineering via Cas9", SCIENCE, vol. 339, 2013, pages 823 - 826, XP055469277, DOI: 10.1126/science.1232033
MANSOUR, S.L.: "Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: A general strategy for targeting mutations to non-selectable genes", NATURE, vol. 326, 1988, pages 348 - 352, XP002946550, DOI: 10.1038/336348a0 *
MEDICAL JOURNAL OF OSAKA UNIVERSITY, vol. 6, no. 1, March 1955 (1955-03-01), pages l-15
MORIKAWA, Y. ET AL., KITASATO ARCH. EXP. MED., vol. 64, 1991, pages 15 - 30
MORTON, J.DAVIS, M. W.JORGENSEN, E. M.CARROLL, D.: "Induction and repair of zinc-finger nuclease-targeted double-strand breaks in Caenorhabditis elegans somatic cells", PROC. NATL. ACAD. SCI. USA, vol. 103, 2006, pages 16370 - 16375, XP055233358, DOI: 10.1073/pnas.0605633103
NATURE, vol. 401, pages 397
RADECKE, F. ET AL., EMBO J., vol. 14, 1995, pages 6087 - 6094
SCHNELL. M. J. ET AL., EMBO J., vol. 13, 1994, pages 4195 - 4203
See also references of EP3656858A4
TOKUSUMI, T. ET AL., VIRUS RES., vol. 86, 2002, pages 33 - 38
WHELAN, S. P. ET AL., PROC. NATL. ACAD. SCI. USA, vol. 92, 1995, pages 8388 - 8392
WRIGHT, K. E. ET AL., VIRUS RES., vol. 67, 2000, pages 49 - 57
XIE, H.B.: "Gene delitions by ends-in targeting in Drosophila Melanogaster", GENETICS, vol. 168, no. 3, November 2004 (2004-11-01), pages 1477 - 1489, XP055671118, DOI: 10.1534/genetics.104.030882 *
YU, D. ET AL., GENES CELLS, vol. 2, 1997, pages 457 - 466
YUSA, K. ET AL.: "Targeted gene correction of al-antitrypsin deficiency in induced pluripotent stem cells", NATURE, vol. 478, 2012, pages 391 - 394, XP055265365, DOI: 10.1038/nature10424

Also Published As

Publication number Publication date
AU2018302668A1 (en) 2020-02-06
EP3656858A1 (en) 2020-05-27
CN111479920A (zh) 2020-07-31
JP6947825B2 (ja) 2021-10-13
US20200216858A1 (en) 2020-07-09
JPWO2019017438A1 (ja) 2020-08-06
CA3070552A1 (en) 2019-01-24
EP3656858A4 (en) 2021-04-21

Similar Documents

Publication Publication Date Title
KR101279677B1 (ko) 사이토메갈로바이러스 인핸서 및 닭 β­액틴 프로모터를 포함하는 하이브리드 프로모터를 이용한 마이너스 가닥 RNA 바이러스 벡터의 제조방법
US7144579B2 (en) Paramyxoviruses comprising modified transcription start sequence
EP1561819A1 (en) Method of transferring gene into t cells
EP3375874B1 (en) Improved paramyxovirus vector
WO2016125364A1 (ja) 改良されたマイナス鎖rnaウイルスベクター
CA2488270A1 (en) Paramyxoviral vectors encoding antibodies, and uses thereof
KR20090114431A (ko) 약독화 마이너스 가닥 rna 바이러스
JP6947825B2 (ja) 標的配列を改変するためのポリヌクレオチドおよびその使用
EP1642966B1 (en) Minus strand rna viral vectors carrying a gene with altered hypermutable regions
WO2016056438A1 (ja) 心筋様細胞の作製方法及びそれに用いる心筋様細胞の作製用組成物
WO2004067752A1 (ja) リボザイムをコードするパラミクソウイルスベクターおよびその利用
WO2020022476A1 (ja) 標的配列を高効率で改変するシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18835736

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019530595

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3070552

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018302668

Country of ref document: AU

Date of ref document: 20180719

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018835736

Country of ref document: EP

Effective date: 20200221